1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 1988 AT&T 25 * All Rights Reserved 26 * 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include "_synonyms.h" 37 #include <stdio.h> 38 #include <sys/types.h> 39 #include <sys/mman.h> 40 #include <sys/lwp.h> 41 #include <sys/debug.h> 42 #include <stdarg.h> 43 #include <fcntl.h> 44 #include <string.h> 45 #include <ctype.h> 46 #include <dlfcn.h> 47 #include <unistd.h> 48 #include <stdlib.h> 49 #include <signal.h> 50 #include <sys/auxv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "conv.h" 54 #include "msg.h" 55 #include "debug.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * All error messages go through eprintf(). During process initialization these 61 * messages should be directed to the standard error, however once control has 62 * been passed to the applications code these messages should be stored in an 63 * internal buffer for use with dlerror(). Note, fatal error conditions that 64 * may occur while running the application will still cause a standard error 65 * message, see rtldexit() in this file for details. 66 * The `application' flag serves to indicate the transition between process 67 * initialization and when the applications code is running. 68 */ 69 70 /* 71 * Null function used as place where a debugger can set a breakpoint. 72 */ 73 void 74 rtld_db_dlactivity(void) 75 { 76 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a pre .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_preinit(void) 86 { 87 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 92 /* 93 * Null function used as place where debugger can set a post .init 94 * processing breakpoint. 95 */ 96 void 97 rtld_db_postinit(void) 98 { 99 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 100 r_debug.rtd_rdebug.r_state)); 101 } 102 103 104 /* 105 * Debugger Event Notification 106 * 107 * This function centralizes all debugger event notification (ala rtld_db). 108 * 109 * There's a simple intent, focused on insuring the primary link-map control 110 * list (or each link-map list) is consistent, and the indication that objects 111 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 112 * event are posted for each of these, most debuggers don't care, as their 113 * view is that these events simply convey an "inconsistent" state. 114 * 115 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 116 * enter ld.so.1. 117 * 118 * With auditors, we may be in the process of relocating a collection of 119 * objects, and will leave() ld.so.1 to call the auditor. At this point we 120 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 121 * object to the debuggers until relocation processing has been completed on it. 122 * To allow for the collection of these objects that are pending relocation, an 123 * RD_ADD event is set after completing a series of relocations on the primary 124 * link-map control list. 125 * 126 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 127 * required later (LML_FLG_DBNOTIF): 128 * 129 * i the first time we add or delete an object to the primary link-map 130 * control list. 131 * ii the first time we move a secondary link-map control list to the primary 132 * link-map control list (effectively, this is like adding a group of 133 * objects to the primary link-map control list). 134 * iii the first time we relocate a series of objects on the primary link-map 135 * control list. 136 * 137 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 138 * 139 * i each time we leave the runtime linker. 140 */ 141 void 142 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 143 { 144 void (*fptr)(); 145 146 switch (event) { 147 case RD_PREINIT: 148 fptr = rtld_db_preinit; 149 break; 150 case RD_POSTINIT: 151 fptr = rtld_db_postinit; 152 break; 153 case RD_DLACTIVITY: 154 switch (state) { 155 case RT_CONSISTENT: 156 lml->lm_flags &= ~LML_FLG_DBNOTIF; 157 158 /* 159 * Do we need to send a notification? 160 */ 161 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 162 return; 163 rtld_flags &= ~RT_FL_DBNOTIF; 164 break; 165 case RT_ADD: 166 case RT_DELETE: 167 lml->lm_flags |= LML_FLG_DBNOTIF; 168 169 /* 170 * If we are already in an inconsistent state, no 171 * notification is required. 172 */ 173 if (rtld_flags & RT_FL_DBNOTIF) 174 return; 175 rtld_flags |= RT_FL_DBNOTIF; 176 break; 177 }; 178 fptr = rtld_db_dlactivity; 179 break; 180 default: 181 /* 182 * RD_NONE - do nothing 183 */ 184 break; 185 }; 186 187 /* 188 * Set event state and call 'notification' function. 189 * 190 * The debugging clients have previously been told about these 191 * notification functions and have set breakpoints on them if they 192 * are interested in the notification. 193 */ 194 r_debug.rtd_rdebug.r_state = state; 195 r_debug.rtd_rdebug.r_rdevent = event; 196 fptr(); 197 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 198 } 199 200 #if defined(sparc) || defined(i386) || defined(__amd64) 201 /* 202 * Stack Cleanup. 203 * 204 * This function is invoked to 'remove' arguments that were passed in on the 205 * stack. This is most likely if ld.so.1 was invoked directly. In that case 206 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 207 * Which means we then need to slide everything above it on the stack down 208 * accordingly. 209 * 210 * While the stack layout is platform specific - it just so happens that x86, 211 * sparc, sparcv9, and amd64 all share the following initial stack layout. 212 * 213 * !_______________________! high addresses 214 * ! ! 215 * ! Information ! 216 * ! Block ! 217 * ! (size varies) ! 218 * !_______________________! 219 * ! 0 word ! 220 * !_______________________! 221 * ! Auxiliary ! 222 * ! vector ! 223 * ! 2 word entries ! 224 * ! ! 225 * !_______________________! 226 * ! 0 word ! 227 * !_______________________! 228 * ! Environment ! 229 * ! pointers ! 230 * ! ... ! 231 * ! (one word each) ! 232 * !_______________________! 233 * ! 0 word ! 234 * !_______________________! 235 * ! Argument ! low addresses 236 * ! pointers ! 237 * ! Argc words ! 238 * !_______________________! 239 * ! ! 240 * ! Argc ! 241 * !_______________________! 242 * ! ... ! 243 * 244 */ 245 static void 246 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 247 { 248 int ndx; 249 long *argc; 250 char **oargv, **nargv; 251 char **oenvp, **nenvp; 252 auxv_t *oauxv, *nauxv; 253 254 /* 255 * Slide ARGV[] and update argc. The argv pointer remains the same, 256 * however slide the applications arguments over the arguments to 257 * ld.so.1. 258 */ 259 nargv = &argv[0]; 260 oargv = &argv[rmcnt]; 261 262 for (ndx = 0; oargv[ndx]; ndx++) 263 nargv[ndx] = oargv[ndx]; 264 nargv[ndx] = oargv[ndx]; 265 266 argc = (long *)((uintptr_t)argv - sizeof (long *)); 267 *argc -= rmcnt; 268 269 /* 270 * Slide ENVP[], and update the environment array pointer. 271 */ 272 ndx++; 273 nenvp = &nargv[ndx]; 274 oenvp = &oargv[ndx]; 275 *envp = nenvp; 276 277 for (ndx = 0; oenvp[ndx]; ndx++) 278 nenvp[ndx] = oenvp[ndx]; 279 nenvp[ndx] = oenvp[ndx]; 280 281 /* 282 * Slide AUXV[], and update the aux vector pointer. 283 */ 284 ndx++; 285 nauxv = (auxv_t *)&nenvp[ndx]; 286 oauxv = (auxv_t *)&oenvp[ndx]; 287 *auxv = nauxv; 288 289 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 290 nauxv[ndx] = oauxv[ndx]; 291 nauxv[ndx] = oauxv[ndx]; 292 } 293 #else 294 /* 295 * Verify that the above routine is appropriate for any new platforms. 296 */ 297 #error unsupported architecture! 298 #endif 299 300 /* 301 * The only command line argument recognized is -e, followed by a runtime 302 * linker environment variable. 303 */ 304 int 305 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 306 Word *lmtflags, int aout) 307 { 308 int ndx; 309 310 for (ndx = 1; argv[ndx]; ndx++) { 311 char *str; 312 313 if (argv[ndx][0] != '-') 314 break; 315 316 if (argv[ndx][1] == '\0') { 317 ndx++; 318 break; 319 } 320 321 if (argv[ndx][1] != 'e') 322 return (1); 323 324 if (argv[ndx][2] == '\0') { 325 ndx++; 326 if (argv[ndx] == NULL) 327 return (1); 328 str = argv[ndx]; 329 } else 330 str = &argv[ndx][2]; 331 332 /* 333 * If the environment variable starts with LD_, strip the LD_. 334 * Otherwise, take things as is. 335 */ 336 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 337 (str[3] != '\0')) 338 str += 3; 339 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 340 return (1); 341 } 342 343 /* 344 * Make sure an object file has been specified. 345 */ 346 if (argv[ndx] == 0) 347 return (1); 348 349 /* 350 * Having gotten the arguments, clean ourselves off of the stack. 351 */ 352 stack_cleanup(argv, envp, auxv, ndx); 353 return (0); 354 } 355 356 /* 357 * Compare function for FullpathNode AVL tree. 358 */ 359 static int 360 fpavl_compare(const void * n1, const void * n2) 361 { 362 uint_t hash1, hash2; 363 const char *st1, *st2; 364 int rc; 365 366 hash1 = ((FullpathNode *)n1)->fpn_hash; 367 hash2 = ((FullpathNode *)n2)->fpn_hash; 368 369 if (hash1 > hash2) 370 return (1); 371 if (hash1 < hash2) 372 return (-1); 373 374 st1 = ((FullpathNode *)n1)->fpn_name; 375 st2 = ((FullpathNode *)n2)->fpn_name; 376 377 rc = strcmp(st1, st2); 378 if (rc > 0) 379 return (1); 380 if (rc < 0) 381 return (-1); 382 return (0); 383 } 384 385 386 /* 387 * Determine if a given pathname has already been loaded in the AVL tree. 388 * If the pathname does not exist in the AVL tree, the next insertion point 389 * is deposited in "where". This value can be used by fpavl_insert() to 390 * expedite the insertion. 391 */ 392 Rt_map * 393 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 394 { 395 FullpathNode fpn, *fpnp; 396 avl_tree_t *avlt; 397 398 /* 399 * Create the avl tree if required. 400 */ 401 if ((avlt = lml->lm_fpavl) == NULL) { 402 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 403 return (0); 404 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 405 SGSOFFSETOF(FullpathNode, fpn_avl)); 406 lml->lm_fpavl = avlt; 407 } 408 409 fpn.fpn_name = name; 410 fpn.fpn_hash = sgs_str_hash(name); 411 412 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 413 return (NULL); 414 415 return (fpnp->fpn_lmp); 416 } 417 418 419 /* 420 * Insert a name into the FullpathNode AVL tree for the link-map list. The 421 * objects NAME() is the path that would have originally been searched for, and 422 * is therefore the name to associate with any "where" value. If the object has 423 * a different PATHNAME(), perhaps because it has resolved to a different file 424 * (see fullpath), then this name is recorded also. See load_file(). 425 */ 426 int 427 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 428 { 429 FullpathNode *fpnp; 430 431 if (where == 0) { 432 /* LINTED */ 433 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 434 435 /* 436 * We better not get a hit now, we do not want duplicates in 437 * the tree. 438 */ 439 ASSERT(_lmp == 0); 440 } 441 442 /* 443 * Insert new node in tree 444 */ 445 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 446 return (0); 447 448 fpnp->fpn_name = name; 449 fpnp->fpn_hash = sgs_str_hash(name); 450 fpnp->fpn_lmp = lmp; 451 452 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 453 AL_CNT_FPNODE) == 0) { 454 free(fpnp); 455 return (0); 456 } 457 458 ASSERT(lml->lm_fpavl != NULL); 459 avl_insert(lml->lm_fpavl, fpnp, where); 460 return (1); 461 } 462 463 /* 464 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 465 * the objects link-map is torn down (remove_so), which is where any NAME() and 466 * PATHNAME() strings will be deallocated. 467 */ 468 void 469 fpavl_remove(Rt_map *lmp) 470 { 471 FullpathNode **fpnpp; 472 Aliste off; 473 474 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 475 FullpathNode *fpnp = *fpnpp; 476 477 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 478 free(fpnp); 479 } 480 free(FPNODE(lmp)); 481 FPNODE(lmp) = 0; 482 } 483 484 485 /* 486 * Prior to calling an object, either via a .plt or through dlsym(), make sure 487 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 488 * init's in the correct order, however, this order is typically based on needed 489 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 490 * still occur and result in bindings that were not captured during topological 491 * sorting. This routine compensates for this lack of binding information, and 492 * provides for dynamic .init firing. 493 */ 494 void 495 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 496 { 497 Rt_map ** tobj; 498 499 /* 500 * If the caller is an auditor, and the destination isn't, then don't 501 * run any .inits (see comments in load_completion()). 502 */ 503 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 504 (LIST(clmp) != LIST(dlmp))) 505 return; 506 507 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 508 return; 509 510 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 511 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 512 return; 513 514 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 515 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 516 DBG_CALL(Dbg_util_no_init(NAME(dlmp))); 517 return; 518 } 519 520 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 521 tobj[0] = dlmp; 522 call_init(tobj, DBG_INIT_DYN); 523 } 524 } 525 526 /* 527 * In a threaded environment insure the thread responsible for loading an object 528 * has completed .init processing for that object before any new thread is 529 * allowed to access the object. This check is only valid with libthread 530 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 531 * 532 * When a new link-map is created, the thread that causes it to be loaded is 533 * identified by THREADID(dlmp). Compare this with the current thread to 534 * determine if it must be blocked. 535 * 536 * NOTE, there are a number of instances (typically only for .plt processing) 537 * where we must skip this test: 538 * 539 * . any thread id of 0 - threads that call thr_exit() may be in this state 540 * thus we can't deduce what tid they used to be. Also some of the 541 * lib/libthread worker threads have this id and must bind (to themselves 542 * or libc) for libthread to function. 543 * 544 * . libthread itself binds to libc, and as libthread is INITFIRST 545 * libc's .init can't have fired yet. Luckly libc's .init is not required 546 * by libthreads binding. 547 * 548 * . if the caller is an auditor, and the destination isn't, then don't 549 * block (see comments in load_completion()). 550 */ 551 void 552 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 553 { 554 thread_t tid; 555 556 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 557 (LIST(clmp) != LIST(dlmp))) 558 return; 559 560 if ((rtld_flags & RT_FL_CONCUR) && 561 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 562 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 563 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 564 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 565 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 566 DBG_CALL(Dbg_util_wait(what, NAME(clmp), NAME(dlmp))); 567 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 568 } 569 } 570 } 571 572 /* 573 * Execute .{preinit|init|fini}array sections 574 */ 575 void 576 call_array(Addr * array, uint_t arraysz, Rt_map * lmp, uint_t shtype) 577 { 578 int start, stop, incr, i; 579 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 580 581 if (array == NULL) 582 return; 583 584 /* 585 * initarray & preinitarray are walked from beginning to end - while 586 * finiarray is walked from end to beginning. 587 */ 588 if (shtype == SHT_FINI_ARRAY) { 589 start = arraycnt - 1; 590 stop = incr = -1; 591 } else { 592 start = 0; 593 stop = arraycnt; 594 incr = 1; 595 } 596 597 /* 598 * Call the .*array[] entries 599 */ 600 for (i = start; i != stop; i += incr) { 601 void (* fptr)(); 602 603 DBG_CALL(Dbg_util_call_array(NAME(lmp), (void *)array[i], i, 604 shtype)); 605 606 fptr = (void(*)())array[i]; 607 leave(LIST(lmp)); 608 (*fptr)(); 609 (void) enter(); 610 } 611 } 612 613 614 /* 615 * Execute any .init sections. These are passed to us in an lmp array which 616 * (by default) will have been sorted. 617 */ 618 void 619 call_init(Rt_map ** tobj, int flag) 620 { 621 Rt_map ** _tobj, ** _nobj; 622 static List pending = { NULL, NULL }; 623 624 /* 625 * If we're in the middle of an INITFIRST, this must complete before 626 * any new init's are fired. In this case add the object list to the 627 * pending queue and return. We'll pick up the queue after any 628 * INITFIRST objects have their init's fired. 629 */ 630 if (rtld_flags & RT_FL_INITFIRST) { 631 (void) list_append(&pending, tobj); 632 return; 633 } 634 635 /* 636 * If a 'thread initialization' is pending - call it now before any 637 * .init code is fired. Also clear the thrinit() to mark it as done. 638 * Note, this is called for each link-map list, which is what libc 639 * expects. 640 */ 641 if (thrinit) { 642 void (*_thrinit)() = thrinit; 643 644 thrinit = 0; 645 leave((Lm_list *)0); 646 _thrinit(); 647 (void) enter(); 648 } 649 650 /* 651 * Traverse the tobj array firing each objects init. 652 */ 653 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 654 Rt_map * lmp = *_tobj; 655 void (* iptr)() = INIT(lmp); 656 657 if (FLAGS(lmp) & FLG_RT_INITCALL) 658 continue; 659 660 FLAGS(lmp) |= FLG_RT_INITCALL; 661 662 /* 663 * Establish an initfirst state if necessary - no other inits 664 * will be fired (because of additional relocation bindings) 665 * when in this state. 666 */ 667 if (FLAGS(lmp) & FLG_RT_INITFRST) 668 rtld_flags |= RT_FL_INITFIRST; 669 670 if (INITARRAY(lmp) || iptr) { 671 Aliste off; 672 Bnd_desc ** bdpp; 673 674 /* 675 * Make sure that all dependencies that have been 676 * relocated to are initialized before this objects 677 * .init is executed. This insures that a dependency 678 * on an external item that must first be initialized 679 * by its associated object is satisfied. 680 */ 681 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 682 Bnd_desc * bdp = *bdpp; 683 684 if ((bdp->b_flags & BND_REFER) == 0) 685 continue; 686 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 687 } 688 DBG_CALL(Dbg_util_call_init(NAME(lmp), flag)); 689 } 690 691 if (iptr) { 692 leave(LIST(lmp)); 693 (*iptr)(); 694 (void) enter(); 695 } 696 697 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 698 SHT_INIT_ARRAY); 699 700 if (INITARRAY(lmp) || iptr) 701 DBG_CALL(Dbg_util_call_init(NAME(lmp), DBG_INIT_DONE)); 702 703 /* 704 * Set the initdone flag regardless of whether this object 705 * actually contains an .init section. This flag prevents us 706 * from processing this section again for an .init and also 707 * signifies that a .fini must be called should it exist. 708 * Clear the sort field for use in later .fini processing. 709 */ 710 FLAGS(lmp) |= FLG_RT_INITDONE; 711 SORTVAL(lmp) = -1; 712 713 /* 714 * Wake anyone up who might be waiting on this .init. 715 */ 716 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 717 DBG_CALL(Dbg_util_broadcast(NAME(lmp))); 718 (void) rt_cond_broadcast(CONDVAR(lmp)); 719 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 720 } 721 722 /* 723 * If we're firing an INITFIRST object, and other objects must 724 * be fired which are not INITFIRST, make sure we grab any 725 * pending objects that might have been delayed as this 726 * INITFIRST was processed. 727 */ 728 if ((rtld_flags & RT_FL_INITFIRST) && 729 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 730 Listnode * lnp; 731 Rt_map ** pobj; 732 733 rtld_flags &= ~RT_FL_INITFIRST; 734 735 while ((lnp = pending.head) != NULL) { 736 if ((pending.head = lnp->next) == NULL) 737 pending.tail = NULL; 738 pobj = lnp->data; 739 free(lnp); 740 741 call_init(pobj, DBG_INIT_PEND); 742 } 743 } 744 } 745 free(tobj); 746 } 747 748 /* 749 * Function called by atexit(3C). Calls all .fini sections related with the 750 * mains dependent shared libraries in the order in which the shared libraries 751 * have been loaded. Skip any .fini defined in the main executable, as this 752 * will be called by crt0 (main was never marked as initdone). 753 */ 754 void 755 call_fini(Lm_list * lml, Rt_map ** tobj) 756 { 757 Rt_map **_tobj; 758 759 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 760 Rt_map * clmp, * lmp = *_tobj; 761 Aliste off; 762 Bnd_desc ** bdpp; 763 764 /* 765 * If concurrency checking isn't enabled only fire .fini if 766 * .init has completed. We collect all .fini sections of 767 * objects that had their .init collected, but that doesn't 768 * mean at the time that the .init had completed. 769 */ 770 if ((rtld_flags & RT_FL_CONCUR) || 771 (FLAGS(lmp) & FLG_RT_INITDONE)) { 772 void (*fptr)() = FINI(lmp); 773 774 if (FINIARRAY(lmp) || fptr) { 775 /* 776 * If concurrency checking is enabled make sure 777 * this object's .init is completed before 778 * calling any .fini. 779 */ 780 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 781 DBG_CALL(Dbg_util_call_fini(NAME(lmp))); 782 } 783 784 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), 785 lmp, SHT_FINI_ARRAY); 786 787 if (fptr) { 788 leave(LIST(lmp)); 789 (*fptr)(); 790 (void) enter(); 791 } 792 } 793 794 /* 795 * Skip main, this is explicitly called last in atexit_fini(). 796 */ 797 if (FLAGS(lmp) & FLG_RT_ISMAIN) 798 continue; 799 800 /* 801 * Audit `close' operations at this point. The library has 802 * exercised its last instructions (regardless of whether it 803 * will be unmapped or not). 804 * 805 * First call any global auditing. 806 */ 807 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 808 _audit_objclose(&(auditors->ad_list), lmp); 809 810 /* 811 * Finally determine whether this object has local auditing 812 * requirements by inspecting itself and then its dependencies. 813 */ 814 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 815 continue; 816 817 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 818 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 819 820 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 821 Bnd_desc * bdp = *bdpp; 822 823 clmp = bdp->b_caller; 824 825 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 826 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 827 break; 828 } 829 } 830 } 831 DBG_CALL(Dbg_bind_plt_summary(M_MACH, pltcnt21d, pltcnt24d, 832 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 833 834 free(tobj); 835 } 836 837 void 838 atexit_fini() 839 { 840 Rt_map ** tobj, * lmp; 841 Lm_list * lml; 842 Listnode * lnp; 843 844 (void) enter(); 845 846 rtld_flags |= RT_FL_ATEXIT; 847 848 lml = &lml_main; 849 lml->lm_flags |= LML_FLG_ATEXIT; 850 lmp = (Rt_map *)lml->lm_head; 851 852 /* 853 * Display any objects that haven't been referenced so far. 854 */ 855 unused(lml); 856 857 /* 858 * Reverse topologically sort the main link-map for .fini execution. 859 */ 860 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 861 (tobj != (Rt_map **)S_ERROR)) 862 call_fini(lml, tobj); 863 864 /* 865 * Add an explicit close to main and ld.so.1. Although main's .fini is 866 * collected in call_fini() to provide for FINITARRAY processing, its 867 * audit_objclose is explicitly skipped. This provides for it to be 868 * called last, here. This is the reverse of the explicit calls to 869 * audit_objopen() made in setup(). 870 */ 871 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 872 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 873 audit_objclose(lmp, lmp); 874 } 875 876 /* 877 * Now that all .fini code has been run, see what unreferenced objects 878 * remain. Any difference between this and the above unused() would 879 * indicate an object is only being used for .fini processing, which 880 * might be fine, but might also indicate an overhead whose removal 881 * would be worth considering. 882 */ 883 unused(lml); 884 885 /* 886 * Traverse any alternative link-map lists. 887 */ 888 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 889 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 890 continue; 891 892 if ((lmp = (Rt_map *)lml->lm_head) == 0) 893 continue; 894 895 lml->lm_flags |= LML_FLG_ATEXIT; 896 897 /* 898 * Reverse topologically sort the link-map for .fini execution. 899 */ 900 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 901 (tobj != (Rt_map **)S_ERROR)) 902 call_fini(lml, tobj); 903 904 unused(lml); 905 } 906 907 /* 908 * Finally reverse topologically sort the runtime linkers link-map for 909 * .fini execution. 910 */ 911 lml = &lml_rtld; 912 lml->lm_flags |= LML_FLG_ATEXIT; 913 lmp = (Rt_map *)lml->lm_head; 914 915 dbg_mask = 0; 916 917 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 918 (tobj != (Rt_map **)S_ERROR)) 919 call_fini(lml, tobj); 920 921 leave(&lml_main); 922 } 923 924 925 /* 926 * This routine is called to complete any runtime linker activity which may have 927 * resulted in objects being loaded. This is called from all user entry points 928 * and from any internal dl*() requests. 929 */ 930 void 931 load_completion(Rt_map * nlmp, Rt_map * clmp) 932 { 933 Rt_map **tobj = 0; 934 935 /* 936 * Establish any .init processing. Note, in a world of lazy loading, 937 * objects may have been loaded regardless of whether the users request 938 * was fulfilled (i.e., a dlsym() request may have failed to find a 939 * symbol but objects might have been loaded during its search). Thus, 940 * any tsorting starts from the nlmp (new link-maps) pointer and not 941 * necessarily from the link-map that may have satisfied the request. 942 * 943 * Note, if the caller is an auditor, and the destination isn't, then 944 * don't run any .inits. This scenario is typical of an auditor trying 945 * to inspect another link-map for symbols. Allow this inspection 946 * without running any code on the inspected link-map, as running this 947 * code may reenter the auditor, who has not yet finished their own 948 * initialization. 949 */ 950 if (nlmp && ((clmp == 0) || 951 ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) == 0) || 952 (LIST(clmp) == LIST(nlmp)))) { 953 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 954 RT_SORT_REV)) == (Rt_map **)S_ERROR) 955 tobj = 0; 956 } 957 958 /* 959 * Indicate the link-map list is consistent. 960 */ 961 if (clmp && 962 ((LIST(clmp)->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 963 audit_activity(clmp, LA_ACT_CONSISTENT); 964 965 /* 966 * Fire any .init's. 967 */ 968 if (tobj) 969 call_init(tobj, DBG_INIT_SORT); 970 } 971 972 /* 973 * Append an item to the specified list, and return a pointer to the list 974 * node created. 975 */ 976 Listnode * 977 list_append(List *lst, const void *item) 978 { 979 Listnode * _lnp; 980 981 if ((_lnp = malloc(sizeof (Listnode))) == 0) 982 return (0); 983 984 _lnp->data = (void *)item; 985 _lnp->next = NULL; 986 987 if (lst->head == NULL) 988 lst->tail = lst->head = _lnp; 989 else { 990 lst->tail->next = _lnp; 991 lst->tail = lst->tail->next; 992 } 993 return (_lnp); 994 } 995 996 997 /* 998 * Add an item after specified listnode, and return a pointer to the list 999 * node created. 1000 */ 1001 Listnode * 1002 list_insert(List *lst, const void *item, Listnode *lnp) 1003 { 1004 Listnode * _lnp; 1005 1006 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1007 return (0); 1008 1009 _lnp->data = (void *)item; 1010 _lnp->next = lnp->next; 1011 if (_lnp->next == NULL) 1012 lst->tail = _lnp; 1013 lnp->next = _lnp; 1014 return (_lnp); 1015 } 1016 1017 /* 1018 * Prepend an item to the specified list, and return a pointer to the 1019 * list node created. 1020 */ 1021 Listnode * 1022 list_prepend(List * lst, const void * item) 1023 { 1024 Listnode * _lnp; 1025 1026 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1027 return (0); 1028 1029 _lnp->data = (void *)item; 1030 1031 if (lst->head == NULL) { 1032 _lnp->next = NULL; 1033 lst->tail = lst->head = _lnp; 1034 } else { 1035 _lnp->next = lst->head; 1036 lst->head = _lnp; 1037 } 1038 return (_lnp); 1039 } 1040 1041 1042 /* 1043 * Delete a 'listnode' from a list. 1044 */ 1045 void 1046 list_delete(List * lst, void * item) 1047 { 1048 Listnode * clnp, * plnp; 1049 1050 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1051 if (item == clnp->data) 1052 break; 1053 plnp = clnp; 1054 } 1055 1056 if (clnp == 0) 1057 return; 1058 1059 if (lst->head == clnp) 1060 lst->head = clnp->next; 1061 if (lst->tail == clnp) 1062 lst->tail = plnp; 1063 1064 if (plnp) 1065 plnp->next = clnp->next; 1066 1067 free(clnp); 1068 } 1069 1070 /* 1071 * Append an item to the specified link map control list. 1072 */ 1073 void 1074 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1075 { 1076 Lm_cntl *lmc; 1077 int add = 1; 1078 1079 /* 1080 * Indicate that this link-map list has a new object. 1081 */ 1082 (lml->lm_obj)++; 1083 1084 /* 1085 * Alert the debuggers that we are about to mess with the main link-map 1086 * control list. 1087 */ 1088 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1089 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1090 1091 /* LINTED */ 1092 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1093 1094 /* 1095 * A link-map list header points to one of more link-map control lists 1096 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1097 * the list of relocated objects. Other lists maintain objects that 1098 * are still being analyzed or relocated. This list provides the core 1099 * link-map list information used by all ld.so.1 routines. 1100 */ 1101 if (lmc->lc_head == NULL) { 1102 /* 1103 * If this is the first link-map for the given control list, 1104 * initialize the list. 1105 */ 1106 lmc->lc_head = lmc->lc_tail = lmp; 1107 add = 0; 1108 1109 } else if (FLAGS(lmp) & FLG_RT_INTRPOSE) { 1110 Rt_map *tlmp; 1111 1112 /* 1113 * If this is an interposer then append the link-map following 1114 * any other interposers (these are objects that have been 1115 * previously preloaded, or were identified with -z interpose). 1116 * Interposers can only be inserted on the first link-map 1117 * control list, as once relocation has started, interposition 1118 * from new interposers can't be guaranteed. 1119 * 1120 * NOTE: We do not interpose on the head of a list. This model 1121 * evolved because dynamic executables have already been fully 1122 * relocated within themselves and thus can't be interposed on. 1123 * Nowadays it's possible to have shared objects at the head of 1124 * a list, which conceptually means they could be interposed on. 1125 * But, shared objects can be created via dldump() and may only 1126 * be partially relocated (just relatives), in which case they 1127 * are interposable, but are marked as fixed (ET_EXEC). 1128 * 1129 * Thus we really don't have a clear method of deciding when the 1130 * head of a link-map is interposable. So, to be consistent, 1131 * for now only add interposers after the link-map lists head 1132 * object. 1133 */ 1134 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1135 tlmp = (Rt_map *)NEXT(tlmp)) { 1136 1137 if (FLAGS(tlmp) & FLG_RT_INTRPOSE) 1138 continue; 1139 1140 /* 1141 * Insert the new link-map before this non-interposer, 1142 * and indicate an interposer is found. 1143 */ 1144 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1145 PREV(lmp) = PREV(tlmp); 1146 1147 NEXT(lmp) = (Link_map *)tlmp; 1148 PREV(tlmp) = (Link_map *)lmp; 1149 1150 lmc->lc_flags |= LMC_FLG_REANALYZE; 1151 add = 0; 1152 break; 1153 } 1154 } 1155 1156 /* 1157 * Fall through to appending the new link map to the tail of the list. 1158 * If we're processing the initial objects of this link-map list, add 1159 * them to the backward compatibility list. 1160 */ 1161 if (add) { 1162 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1163 PREV(lmp) = (Link_map *)lmc->lc_tail; 1164 lmc->lc_tail = lmp; 1165 } 1166 1167 /* 1168 * Having added this link-map to a control list, indicate which control 1169 * list the link-map belongs to. Note, control list information is 1170 * always maintained as an offset, as the Alist can be reallocated. 1171 */ 1172 CNTL(lmp) = lmco; 1173 1174 /* 1175 * Indicate if an interposer is found. Note that the first object on a 1176 * link-map can be explicitly defined as an interposer so that it can 1177 * provide interposition over direct binding requests. 1178 */ 1179 if (FLAGS(lmp) & FLG_RT_INTRPOSE) 1180 lml->lm_flags |= LML_FLG_INTRPOSE; 1181 1182 /* 1183 * For backward compatibility with debuggers, the link-map list contains 1184 * pointers to the main control list. 1185 */ 1186 if (lmco == ALO_DATA) { 1187 lml->lm_head = lmc->lc_head; 1188 lml->lm_tail = lmc->lc_tail; 1189 } 1190 } 1191 1192 /* 1193 * Delete an item from the specified link map control list. 1194 */ 1195 void 1196 lm_delete(Lm_list *lml, Rt_map *lmp) 1197 { 1198 Lm_cntl *lmc; 1199 1200 /* 1201 * If the control list pointer hasn't been initialized, this object 1202 * never got added to a link-map list. 1203 */ 1204 if (CNTL(lmp) == 0) 1205 return; 1206 1207 /* 1208 * Alert the debuggers that we are about to mess with the main link-map 1209 * control list. 1210 */ 1211 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1212 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1213 1214 /* LINTED */ 1215 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1216 1217 if (lmc->lc_head == lmp) 1218 lmc->lc_head = (Rt_map *)NEXT(lmp); 1219 else 1220 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1221 1222 if (lmc->lc_tail == lmp) 1223 lmc->lc_tail = (Rt_map *)PREV(lmp); 1224 else 1225 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1226 1227 /* 1228 * For backward compatibility with debuggers, the link-map list contains 1229 * pointers to the main control list. 1230 */ 1231 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1232 lml->lm_head = lmc->lc_head; 1233 lml->lm_tail = lmc->lc_tail; 1234 } 1235 1236 /* 1237 * Indicate we have one less object on this control list. 1238 */ 1239 (lml->lm_obj)--; 1240 } 1241 1242 /* 1243 * Move a link-map control list to another. Objects that are being relocated 1244 * are maintained on secondary control lists. Once their relocation is 1245 * complete, the entire list is appended to the previous control list, as this 1246 * list must have been the trigger for generating the new control list. 1247 */ 1248 void 1249 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1250 { 1251 Rt_map *lmp; 1252 1253 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1254 1255 /* 1256 * Alert the debuggers that we are about to mess with the main link-map 1257 * control list. 1258 */ 1259 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1260 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1261 1262 /* 1263 * Indicate each new link-map has been moved to the previous link-map 1264 * control list. 1265 */ 1266 1267 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1268 CNTL(lmp) = plmco; 1269 1270 /* 1271 * Move the new link-map control list, to the callers link-map control 1272 * list. 1273 */ 1274 if (plmc->lc_head == 0) { 1275 plmc->lc_head = nlmc->lc_head; 1276 PREV(nlmc->lc_head) = 0; 1277 } else { 1278 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1279 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1280 } 1281 1282 plmc->lc_tail = nlmc->lc_tail; 1283 nlmc->lc_head = nlmc->lc_tail = 0; 1284 1285 /* 1286 * For backward compatibility with debuggers, the link-map list contains 1287 * pointers to the main control list. 1288 */ 1289 if (plmco == ALO_DATA) { 1290 lml->lm_head = plmc->lc_head; 1291 lml->lm_tail = plmc->lc_tail; 1292 } 1293 } 1294 1295 /* 1296 * Dlopening a family of objects occurs on a new link-map control list. If the 1297 * dlopen fails, then its handle is used to tear down the family (dlclose). 1298 * However, the relocation of this family may have triggered other objects to 1299 * be loaded, and after their relocation they will have been moved to the 1300 * dlopen families control list. After a dlopen() failure, see if there are 1301 * any objects that can be savaged before tearing down this control list. 1302 */ 1303 int 1304 lm_salvage(Lm_list *lml, int test, Aliste nlmco) 1305 { 1306 Lm_cntl *nlmc; 1307 1308 /* 1309 * If a dlopen occurred on a new link-map list, then its dlclose may 1310 * have completely torn down the link-map list. Check that the link-map 1311 * list still exists before proceeding. 1312 */ 1313 if (test) { 1314 Listnode *lnp; 1315 Lm_list *tlml; 1316 int found = 0; 1317 1318 for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) { 1319 if (tlml == lml) { 1320 found++; 1321 break; 1322 } 1323 } 1324 if (found == 0) 1325 return (0); 1326 } 1327 1328 /* LINTED */ 1329 nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco); 1330 1331 /* 1332 * If this link-map control list still contains objects, determine the 1333 * previous control list and move the objects. 1334 */ 1335 if (nlmc->lc_head) { 1336 Lm_cntl *plmc; 1337 Aliste plmco; 1338 1339 plmco = nlmco - lml->lm_lists->al_size; 1340 /* LINTED */ 1341 plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco); 1342 1343 lm_move(lml, nlmco, plmco, nlmc, plmc); 1344 } 1345 return (1); 1346 } 1347 1348 /* 1349 * Environment variables can have a variety of defined permutations, and thus 1350 * the following infrastructure exists to allow this variety and to select the 1351 * required definition. 1352 * 1353 * Environment variables can be defined as 32- or 64-bit specific, and if so 1354 * they will take precedence over any instruction set neutral form. Typically 1355 * this is only useful when the environment value is an informational string. 1356 * 1357 * Environment variables may be obtained from the standard user environment or 1358 * from a configuration file. The latter provides a fallback if no user 1359 * environment setting is found, and can take two forms: 1360 * 1361 * . a replaceable definition - this will be used if no user environment 1362 * setting has been seen, or 1363 * 1364 * . an permanent definition - this will be used no matter what user 1365 * environment setting is seen. In the case of list variables it will be 1366 * appended to any process environment setting seen. 1367 * 1368 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1369 * override any replaceable environment variables from a configuration file. 1370 */ 1371 static u_longlong_t rplgen; /* replaceable generic */ 1372 /* variables */ 1373 static u_longlong_t rplisa; /* replaceable ISA specific */ 1374 /* variables */ 1375 static u_longlong_t prmgen; /* permanent generic */ 1376 /* variables */ 1377 static u_longlong_t prmisa; /* permanent ISA specific */ 1378 /* variables */ 1379 1380 /* 1381 * Classify an environment variables type. 1382 */ 1383 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1384 /* the wrong ISA */ 1385 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1386 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1387 /* config file */ 1388 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1389 1390 /* 1391 * Identify all environment variables. 1392 */ 1393 #define ENV_FLG_AUDIT 0x0000000001ULL 1394 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1395 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1396 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1397 #define ENV_FLG_BINDINGS 0x0000000010ULL 1398 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1399 #define ENV_FLG_CONFGEN 0x0000000040ULL 1400 #define ENV_FLG_CONFIG 0x0000000080ULL 1401 #define ENV_FLG_DEBUG 0x0000000100ULL 1402 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1403 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1404 #define ENV_FLG_FLAGS 0x0000000800ULL 1405 #define ENV_FLG_INIT 0x0000001000ULL 1406 #define ENV_FLG_LIBPATH 0x0000002000ULL 1407 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1408 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1409 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1410 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1411 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1412 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1413 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1414 #define ENV_FLG_NODIRECT 0x0000200000ULL 1415 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1416 #define ENV_FLG_NOLAZY 0x0000800000ULL 1417 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1418 #define ENV_FLG_NOVERSION 0x0002000000ULL 1419 #define ENV_FLG_PRELOAD 0x0004000000ULL 1420 #define ENV_FLG_PROFILE 0x0008000000ULL 1421 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1422 #define ENV_FLG_SIGNAL 0x0020000000ULL 1423 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1424 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1425 #define ENV_FLG_UNREF 0x0100000000ULL 1426 #define ENV_FLG_UNUSED 0x0200000000ULL 1427 #define ENV_FLG_VERBOSE 0x0400000000ULL 1428 #define ENV_FLG_WARN 0x0800000000ULL 1429 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1430 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1431 1432 #ifdef SIEBEL_DISABLE 1433 #define ENV_FLG_FIX_1 0x8000000000ULL 1434 #endif 1435 1436 #define SEL_REPLACE 0x0001 1437 #define SEL_PERMANT 0x0002 1438 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1439 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1440 #define SEL_ACT_STR 0x0400 /* setting string value */ 1441 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1442 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1443 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1444 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1445 1446 /* 1447 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1448 * and len specifies its length (comparing a strings length before the string 1449 * itself speed things up). s2 points to the token itself which has already 1450 * had any leading white-space removed. 1451 */ 1452 static void 1453 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1454 Word *lmtflags, uint_t env_flags, int aout) 1455 { 1456 u_longlong_t variable = 0; 1457 unsigned short select = 0; 1458 const char **str; 1459 Word val = 0; 1460 1461 /* 1462 * Determine whether we're dealing with a replaceable or permanent 1463 * string. 1464 */ 1465 if (env_flags & ENV_TYP_PERMANT) { 1466 /* 1467 * If the string is from a configuration file and defined as 1468 * permanent, assign it as permanent. 1469 */ 1470 select |= SEL_PERMANT; 1471 } else 1472 select |= SEL_REPLACE; 1473 1474 /* 1475 * Parse the variable given. 1476 * 1477 * The LD_AUDIT family. 1478 */ 1479 if (*s1 == 'A') { 1480 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1481 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1482 /* 1483 * Replaceable and permanent audit objects can exist. 1484 */ 1485 select |= SEL_ACT_STR; 1486 if (select & SEL_REPLACE) 1487 str = &rpl_audit; 1488 else { 1489 str = &prm_audit; 1490 rpl_audit = 0; 1491 } 1492 variable = ENV_FLG_AUDIT; 1493 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1494 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1495 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1496 /* 1497 * A specialized variable for plt_exit() use, not 1498 * documented for general use. 1499 */ 1500 select |= SEL_ACT_SPEC_2; 1501 variable = ENV_FLG_AUDIT_ARGS; 1502 } 1503 } 1504 /* 1505 * The LD_BIND family and LD_BREADTH (historic). 1506 */ 1507 else if (*s1 == 'B') { 1508 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1509 MSG_ORIG(MSG_LD_BIND_LAZY), 1510 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1511 select |= SEL_ACT_RT2; 1512 val = RT_FL2_BINDLAZY; 1513 variable = ENV_FLG_BIND_LAZY; 1514 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1515 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1516 select |= SEL_ACT_RT2; 1517 val = RT_FL2_BINDNOW; 1518 variable = ENV_FLG_BIND_NOW; 1519 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1520 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1521 /* 1522 * Another trick, enabled to help debug AOUT 1523 * applications under BCP, but not documented for 1524 * general use. 1525 */ 1526 select |= SEL_ACT_RT; 1527 val = RT_FL_NOBIND; 1528 variable = ENV_FLG_BIND_NOT; 1529 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1530 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1531 /* 1532 * This variable is simply for backward compatibility. 1533 * If this and LD_DEBUG are both specified, only one of 1534 * the strings is going to get processed. 1535 */ 1536 select |= SEL_ACT_SPEC_2; 1537 variable = ENV_FLG_BINDINGS; 1538 #ifndef LD_BREADTH_DISABLED 1539 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1540 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1541 /* 1542 * Besides some old patches this is no longer available. 1543 */ 1544 rtld_flags |= RT_FL_BREADTH; 1545 return; 1546 #endif 1547 } 1548 } 1549 /* 1550 * LD_CONCURRENCY and LD_CONFIG family. 1551 */ 1552 else if (*s1 == 'C') { 1553 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1554 MSG_ORIG(MSG_LD_CONCURRENCY), 1555 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1556 /* 1557 * Waiting in the wings, as concurrency checking isn't 1558 * yet enabled. 1559 */ 1560 select |= SEL_ACT_SPEC_2; 1561 variable = ENV_FLG_CONCURRENCY; 1562 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1563 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1564 /* 1565 * Set by crle(1) to indicate it's building a 1566 * configuration file, not documented for general use. 1567 */ 1568 select |= SEL_ACT_SPEC_2; 1569 variable = ENV_FLG_CONFGEN; 1570 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1571 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1572 /* 1573 * Secure applications must use a default configuration 1574 * file. A setting from a configuration file doesn't 1575 * make sense (given we must be reading a configuration 1576 * file to have gotten this). 1577 */ 1578 if ((rtld_flags & RT_FL_SECURE) || 1579 (env_flags & ENV_TYP_CONFIG)) 1580 return; 1581 select |= SEL_ACT_STR; 1582 str = &config->c_name; 1583 variable = ENV_FLG_CONFIG; 1584 } 1585 } 1586 /* 1587 * The LD_DEBUG family and LD_DEMANGLE. 1588 */ 1589 else if (*s1 == 'D') { 1590 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1591 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1592 select |= SEL_ACT_STR; 1593 if (select & SEL_REPLACE) 1594 str = &rpl_debug; 1595 else { 1596 str = &prm_debug; 1597 rpl_debug = 0; 1598 } 1599 variable = ENV_FLG_DEBUG; 1600 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1601 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1602 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1603 select |= SEL_ACT_STR; 1604 str = &dbg_file; 1605 variable = ENV_FLG_DEBUG_OUTPUT; 1606 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1607 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1608 select |= SEL_ACT_RT; 1609 val = RT_FL_DEMANGLE; 1610 variable = ENV_FLG_DEMANGLE; 1611 } 1612 } 1613 /* 1614 * LD_FLAGS - collect the best variable definition. On completion of 1615 * environment variable processing pass the result to ld_flags_env() 1616 * where they'll be decomposed and passed back to this routine. 1617 */ 1618 else if (*s1 == 'F') { 1619 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1620 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1621 select |= SEL_ACT_SPEC_1; 1622 if (select & SEL_REPLACE) 1623 str = &rpl_ldflags; 1624 else { 1625 str = &prm_ldflags; 1626 rpl_ldflags = 0; 1627 } 1628 variable = ENV_FLG_FLAGS; 1629 } 1630 } 1631 /* 1632 * LD_INIT (internal, used by ldd(1)). 1633 */ 1634 else if (*s1 == 'I') { 1635 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1636 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1637 select |= SEL_ACT_LML; 1638 val = LML_FLG_TRC_INIT; 1639 variable = ENV_FLG_INIT; 1640 } 1641 } 1642 /* 1643 * The LD_LIBRARY_PATH and LD_LOAD families. 1644 */ 1645 else if (*s1 == 'L') { 1646 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1647 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1648 select |= SEL_ACT_SPEC_1; 1649 if (select & SEL_REPLACE) 1650 str = &rpl_libpath; 1651 else { 1652 str = &prm_libpath; 1653 rpl_libpath = 0; 1654 } 1655 variable = ENV_FLG_LIBPATH; 1656 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1657 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1658 /* 1659 * Internal use by crle(1), not documented for general 1660 * use. 1661 */ 1662 select |= SEL_ACT_LML; 1663 val = LML_FLG_LOADAVAIL; 1664 variable = ENV_FLG_LOADAVAIL; 1665 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1666 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1667 select |= SEL_ACT_SPEC_2; 1668 variable = ENV_FLG_LOADFLTR; 1669 } 1670 } 1671 /* 1672 * The LD_NO family. 1673 */ 1674 else if (*s1 == 'N') { 1675 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1677 select |= SEL_ACT_RT; 1678 val = RT_FL_NOAUDIT; 1679 variable = ENV_FLG_NOAUDIT; 1680 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1681 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1682 select |= SEL_ACT_RT; 1683 val = RT_FL_NOAUXFLTR; 1684 variable = ENV_FLG_NOAUXFLTR; 1685 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1686 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1687 select |= SEL_ACT_RT; 1688 val = RT_FL_NOBAPLT; 1689 variable = ENV_FLG_NOBAPLT; 1690 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1691 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1692 select |= SEL_ACT_RT; 1693 val = RT_FL_NOCFG; 1694 variable = ENV_FLG_NOCONFIG; 1695 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NODIRCONFIG), 1697 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1698 select |= SEL_ACT_RT; 1699 val = RT_FL_NODIRCFG; 1700 variable = ENV_FLG_NODIRCONFIG; 1701 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1703 select |= SEL_ACT_LMLT; 1704 val = LML_TFLG_NODIRECT; 1705 variable = ENV_FLG_NODIRECT; 1706 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1707 MSG_ORIG(MSG_LD_NOENVCONFIG), 1708 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1709 select |= SEL_ACT_RT; 1710 val = RT_FL_NOENVCFG; 1711 variable = ENV_FLG_NOENVCONFIG; 1712 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1713 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1714 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1715 select |= SEL_ACT_RT2; 1716 val = RT_FL2_NOFLTCFG; 1717 variable = ENV_FLG_NOFLTCONFIG; 1718 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1719 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1720 select |= SEL_ACT_LMLT; 1721 val = LML_TFLG_NOLAZYLD; 1722 variable = ENV_FLG_NOLAZY; 1723 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1724 MSG_ORIG(MSG_LD_NOOBJALTER), 1725 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1726 select |= SEL_ACT_RT; 1727 val = RT_FL_NOOBJALT; 1728 variable = ENV_FLG_NOOBJALTER; 1729 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1730 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1731 select |= SEL_ACT_RT; 1732 val = RT_FL_NOVERSION; 1733 variable = ENV_FLG_NOVERSION; 1734 } 1735 } 1736 /* 1737 * LD_ORIGIN. 1738 */ 1739 else if (*s1 == 'O') { 1740 #ifndef EXPAND_RELATIVE 1741 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1742 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1743 /* 1744 * Besides some old patches this is no longer required. 1745 */ 1746 rtld_flags |= RT_FL_RELATIVE; 1747 } 1748 #endif 1749 return; 1750 } 1751 /* 1752 * LD_PRELOAD and LD_PROFILE family. 1753 */ 1754 else if (*s1 == 'P') { 1755 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1756 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1757 select |= SEL_ACT_STR; 1758 if (select & SEL_REPLACE) 1759 str = &rpl_preload; 1760 else { 1761 str = &prm_preload; 1762 rpl_preload = 0; 1763 } 1764 variable = ENV_FLG_PRELOAD; 1765 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1766 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1767 /* 1768 * Only one user library can be profiled at a time. 1769 */ 1770 select |= SEL_ACT_SPEC_2; 1771 variable = ENV_FLG_PROFILE; 1772 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1773 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1774 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1775 /* 1776 * Only one user library can be profiled at a time. 1777 */ 1778 select |= SEL_ACT_STR; 1779 str = &profile_out; 1780 variable = ENV_FLG_PROFILE_OUTPUT; 1781 } 1782 } 1783 /* 1784 * LD_SIGNAL. 1785 */ 1786 else if (*s1 == 'S') { 1787 if (rtld_flags & RT_FL_SECURE) 1788 return; 1789 if ((len == MSG_LD_SIGNAL_SIZE) && 1790 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1791 MSG_LD_SIGNAL_SIZE) == 0)) { 1792 select |= SEL_ACT_SPEC_2; 1793 variable = ENV_FLG_SIGNAL; 1794 } 1795 } 1796 /* 1797 * The LD_TRACE family (internal, used by ldd(1)). 1798 */ 1799 else if (*s1 == 'T') { 1800 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1801 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1802 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1803 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1804 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1805 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1806 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1807 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1808 select |= SEL_ACT_SPEC_2; 1809 variable = ENV_FLG_TRACE_OBJS; 1810 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1811 MSG_ORIG(MSG_LD_TRACE_PTHS), 1812 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1813 select |= SEL_ACT_LML; 1814 val = LML_FLG_TRC_SEARCH; 1815 variable = ENV_FLG_TRACE_PTHS; 1816 } 1817 } 1818 /* 1819 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1820 */ 1821 else if (*s1 == 'U') { 1822 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1823 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1824 select |= SEL_ACT_LML; 1825 val = LML_FLG_TRC_UNREF; 1826 variable = ENV_FLG_UNREF; 1827 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1828 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1829 select |= SEL_ACT_LML; 1830 val = LML_FLG_TRC_UNUSED; 1831 variable = ENV_FLG_UNUSED; 1832 } 1833 } 1834 /* 1835 * LD_VERBOSE (internal, used by ldd(1)). 1836 */ 1837 else if (*s1 == 'V') { 1838 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1839 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1840 select |= SEL_ACT_LML; 1841 val = LML_FLG_TRC_VERBOSE; 1842 variable = ENV_FLG_VERBOSE; 1843 } 1844 } 1845 /* 1846 * LD_WARN (internal, used by ldd(1)). 1847 */ 1848 else if (*s1 == 'W') { 1849 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1850 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1851 select |= SEL_ACT_LML; 1852 val = LML_FLG_TRC_WARN; 1853 variable = ENV_FLG_WARN; 1854 } 1855 #ifdef SIEBEL_DISABLE 1856 } 1857 /* 1858 * LD__FIX__ (undocumented, enable future technology that can't be 1859 * delivered in a patch release). 1860 */ 1861 else if (*s1 == '_') { 1862 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1863 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1864 select |= SEL_ACT_RT; 1865 val = RT_FL_DISFIX_1; 1866 variable = ENV_FLG_FIX_1; 1867 } 1868 #endif 1869 } 1870 if (variable == 0) 1871 return; 1872 1873 /* 1874 * If the variable is already processed with ISA specific variable, 1875 * no further processing needed. 1876 */ 1877 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1878 ((select & SEL_PERMANT) && (prmisa & variable))) 1879 return; 1880 1881 /* 1882 * Now mark the appropriate variables. 1883 * If the replaceable variable is already set, then the 1884 * process environment variable must be set. Any replaceable 1885 * variable specified in a configuration file can be ignored. 1886 */ 1887 if (env_flags & ENV_TYP_ISA) { 1888 /* 1889 * This is ISA setting. We do the setting 1890 * even if s2 is NULL. 1891 * If s2 is NULL, we might need to undo 1892 * the setting. 1893 */ 1894 if (select & SEL_REPLACE) { 1895 if (rplisa & variable) 1896 return; 1897 rplisa |= variable; 1898 } else { 1899 prmisa |= variable; 1900 } 1901 } else if (s2) { 1902 /* 1903 * This is non0-ISA setting 1904 */ 1905 if (select & SEL_REPLACE) { 1906 if (rplgen & variable) 1907 return; 1908 rplgen |= variable; 1909 } else 1910 prmgen |= variable; 1911 } else 1912 /* 1913 * This is non-ISA setting which 1914 * can be ignored. 1915 */ 1916 return; 1917 1918 /* 1919 * Now perform the setting. 1920 */ 1921 if (select & SEL_ACT_RT) { 1922 if (s2) 1923 rtld_flags |= val; 1924 else 1925 rtld_flags &= ~val; 1926 } else if (select & SEL_ACT_RT2) { 1927 if (s2) 1928 rtld_flags2 |= val; 1929 else 1930 rtld_flags2 &= ~val; 1931 } else if (select & SEL_ACT_STR) 1932 *str = s2; 1933 else if (select & SEL_ACT_LML) { 1934 if (s2) 1935 *lmflags |= val; 1936 else 1937 *lmflags &= ~val; 1938 } else if (select & SEL_ACT_LMLT) { 1939 if (s2) 1940 *lmtflags |= val; 1941 else 1942 *lmtflags &= ~val; 1943 } else if (select & SEL_ACT_SPEC_1) { 1944 /* 1945 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1946 */ 1947 *str = s2; 1948 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1949 if (s2) { 1950 if (variable == ENV_FLG_FLAGS) 1951 env_info |= ENV_INF_FLAGCFG; 1952 else 1953 env_info |= ENV_INF_PATHCFG; 1954 } else { 1955 if (variable == ENV_FLG_FLAGS) 1956 env_info &= ~ENV_INF_FLAGCFG; 1957 else 1958 env_info &= ~ENV_INF_PATHCFG; 1959 } 1960 } 1961 } else if (select & SEL_ACT_SPEC_2) { 1962 /* 1963 * variables can be: ENV_FLG_ 1964 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1965 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1966 */ 1967 if (variable == ENV_FLG_AUDIT_ARGS) { 1968 if (s2) { 1969 audit_argcnt = atoi(s2); 1970 audit_argcnt += audit_argcnt % 2; 1971 } else 1972 audit_argcnt = 0; 1973 } else if (variable == ENV_FLG_BINDINGS) { 1974 if (s2) 1975 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1976 else 1977 rpl_debug = 0; 1978 } else if (variable == ENV_FLG_CONCURRENCY) { 1979 if (s2) 1980 rtld_flags &= ~RT_FL_NOCONCUR; 1981 else 1982 rtld_flags |= RT_FL_NOCONCUR; 1983 } else if (variable == ENV_FLG_CONFGEN) { 1984 if (s2) { 1985 rtld_flags |= RT_FL_CONFGEN; 1986 *lmflags |= LML_FLG_IGNRELERR; 1987 } else { 1988 rtld_flags &= ~RT_FL_CONFGEN; 1989 *lmflags &= ~LML_FLG_IGNRELERR; 1990 } 1991 } else if (variable == ENV_FLG_LOADFLTR) { 1992 if (s2) { 1993 *lmtflags |= LML_TFLG_LOADFLTR; 1994 if (*s2 == '2') 1995 rtld_flags |= RT_FL_WARNFLTR; 1996 } else { 1997 *lmtflags &= ~LML_TFLG_LOADFLTR; 1998 rtld_flags &= ~RT_FL_WARNFLTR; 1999 } 2000 } else if (variable == ENV_FLG_PROFILE) { 2001 profile_name = s2; 2002 if (s2) { 2003 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2004 return; 2005 } 2006 if (rtld_flags & RT_FL_SECURE) { 2007 profile_lib = 2008 #if defined(_ELF64) 2009 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2010 #else 2011 MSG_ORIG(MSG_PTH_LDPROFSE); 2012 #endif 2013 } else { 2014 profile_lib = 2015 #if defined(_ELF64) 2016 MSG_ORIG(MSG_PTH_LDPROF_64); 2017 #else 2018 MSG_ORIG(MSG_PTH_LDPROF); 2019 #endif 2020 } 2021 } else 2022 profile_lib = 0; 2023 } else if (variable == ENV_FLG_SIGNAL) { 2024 killsig = s2 ? atoi(s2) : SIGKILL; 2025 } else if (variable == ENV_FLG_TRACE_OBJS) { 2026 if (s2) { 2027 *lmflags |= LML_FLG_TRC_ENABLE; 2028 if (*s2 == '2') 2029 *lmflags |= LML_FLG_TRC_LDDSTUB; 2030 } else 2031 *lmflags &= 2032 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2033 } 2034 } 2035 } 2036 2037 /* 2038 * Determine whether we have an architecture specific environment variable. 2039 * If we do, and we're the wrong architecture, it'll just get ignored. 2040 * Otherwise the variable is processed in it's architecture neutral form. 2041 */ 2042 static int 2043 ld_arch_env(const char *s1, size_t *len) 2044 { 2045 size_t _len = *len - 3; 2046 2047 if (s1[_len++] == '_') { 2048 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2049 #if defined(_ELF64) 2050 return (ENV_TYP_IGNORE); 2051 #else 2052 *len = *len - 3; 2053 return (ENV_TYP_ISA); 2054 #endif 2055 } 2056 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2057 #if defined(_ELF64) 2058 *len = *len - 3; 2059 return (ENV_TYP_ISA); 2060 #else 2061 return (ENV_TYP_IGNORE); 2062 #endif 2063 } 2064 } 2065 return (0); 2066 } 2067 2068 2069 /* 2070 * Process an LD_FLAGS environment variable. The value can be a comma 2071 * separated set of tokens, which are sent (in upper case) into the generic 2072 * LD_XXXX environment variable engine. For example: 2073 * 2074 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2075 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2076 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2077 * or 2078 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2079 */ 2080 static int 2081 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2082 uint_t env_flags, int aout) 2083 { 2084 char *nstr, *sstr, *estr = 0; 2085 size_t nlen, len; 2086 2087 if (str == 0) 2088 return (0); 2089 2090 /* 2091 * Create a new string as we're going to transform the token(s) into 2092 * uppercase and separate tokens with nulls. 2093 */ 2094 len = strlen(str); 2095 if ((nstr = malloc(len + 1)) == 0) 2096 return (1); 2097 (void) strcpy(nstr, str); 2098 2099 for (sstr = nstr; sstr; sstr++, len--) { 2100 int flags; 2101 2102 if ((*sstr != '\0') && (*sstr != ',')) { 2103 if (estr == 0) { 2104 if (*sstr == '=') 2105 estr = sstr; 2106 else { 2107 /* 2108 * Translate token to uppercase. Don't 2109 * use toupper(3C) as including this 2110 * code doubles the size of ld.so.1. 2111 */ 2112 if ((*sstr >= 'a') && (*sstr <= 'z')) 2113 *sstr = *sstr - ('a' - 'A'); 2114 } 2115 } 2116 continue; 2117 } 2118 2119 *sstr = '\0'; 2120 if (estr) { 2121 nlen = estr - nstr; 2122 if ((*++estr == '\0') || (*estr == ',')) 2123 estr = 0; 2124 } else 2125 nlen = sstr - nstr; 2126 2127 /* 2128 * Fabricate a boolean definition for any unqualified variable. 2129 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2130 * The value is sufficient to assert any boolean variables, plus 2131 * the term "(null)" is specifically chosen in case someone 2132 * mistakenly supplies something like LD_FLAGS=library_path. 2133 */ 2134 if (estr == 0) 2135 estr = (char *)MSG_INTL(MSG_STR_NULL); 2136 2137 /* 2138 * Determine whether the environment variable is 32- or 64-bit 2139 * specific. The length, len, will reflect the architecture 2140 * neutral portion of the string. 2141 */ 2142 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2143 ld_generic_env(nstr, nlen, estr, lmflags, 2144 lmtflags, (env_flags | flags), aout); 2145 } 2146 if (len == 0) 2147 return (0); 2148 2149 nstr = sstr + 1; 2150 estr = 0; 2151 } 2152 return (0); 2153 } 2154 2155 2156 /* 2157 * Process a single environment string. Only strings starting with `LD_' are 2158 * reserved for our use. By convention, all strings should be of the form 2159 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2160 * functionality is enabled. Also pick off applicable locale variables. 2161 */ 2162 #define LOC_LANG 1 2163 #define LOC_MESG 2 2164 #define LOC_ALL 3 2165 2166 static void 2167 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2168 int aout) 2169 { 2170 const char *s2; 2171 static size_t loc = 0; 2172 2173 if (*s1++ != 'L') 2174 return; 2175 2176 /* 2177 * See if we have any locale environment settings. These environment 2178 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2179 * is higher than LANG. 2180 */ 2181 s2 = s1; 2182 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2183 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2184 s2 += MSG_LC_ALL_SIZE; 2185 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2186 locale = s2; 2187 loc = LOC_ALL; 2188 } 2189 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2190 MSG_LC_MESSAGES_SIZE) == 0) { 2191 s2 += MSG_LC_MESSAGES_SIZE; 2192 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2193 locale = s2; 2194 loc = LOC_MESG; 2195 } 2196 } 2197 return; 2198 } 2199 2200 s2 = s1; 2201 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2202 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2203 locale = s2; 2204 loc = LOC_LANG; 2205 return; 2206 } 2207 2208 /* 2209 * Pick off any LD_XXXX environment variables. 2210 */ 2211 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2212 size_t len; 2213 int flags; 2214 2215 /* 2216 * Environment variables with no value (ie. LD_XXXX=) typically 2217 * have no impact, however if environment variables are defined 2218 * within a configuration file, these null user settings can be 2219 * used to disable any configuration replaceable definitions. 2220 */ 2221 if ((s2 = strchr(s1, '=')) == 0) { 2222 len = strlen(s1); 2223 s2 = 0; 2224 } else if (*++s2 == '\0') { 2225 len = strlen(s1) - 1; 2226 s2 = 0; 2227 } else { 2228 len = s2 - s1 - 1; 2229 while (isspace(*s2)) 2230 s2++; 2231 } 2232 2233 /* 2234 * Determine whether the environment variable is 32- or 64-bit 2235 * specific. The length, len, will reflect the architecture 2236 * neutral portion of the string. 2237 */ 2238 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2239 return; 2240 env_flags |= flags; 2241 2242 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2243 } 2244 } 2245 2246 /* 2247 * Internal getenv routine. Called immediately after ld.so.1 initializes 2248 * itself. 2249 */ 2250 int 2251 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2252 { 2253 if (envp == (const char **)0) 2254 return (0); 2255 2256 while (*envp != (const char *)0) 2257 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2258 2259 /* 2260 * Having collected the best representation of any LD_FLAGS, process 2261 * these strings. 2262 */ 2263 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2264 return (1); 2265 2266 /* 2267 * Don't allow environment controlled auditing when tracing or if 2268 * explicitly disabled. Trigger all tracing modes from 2269 * LML_FLG_TRC_ENABLE. 2270 */ 2271 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2272 rpl_audit = profile_lib = profile_name = 0; 2273 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2274 *lmflags &= ~LML_MSK_TRC; 2275 2276 /* 2277 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2278 */ 2279 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2280 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2281 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2282 2283 /* 2284 * If we have a locale setting make sure its worth processing further. 2285 * Duplicate the string so that new locale setting can generically 2286 * cleanup any previous locales. 2287 */ 2288 if (locale) { 2289 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2290 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0)) 2291 locale = 0; 2292 else 2293 locale = strdup(locale); 2294 } 2295 return (0); 2296 } 2297 2298 /* 2299 * Configuration environment processing. Called after the a.out has been 2300 * processed (as the a.out can specify its own configuration file). 2301 */ 2302 int 2303 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2304 { 2305 Word * lmflags = &(lml_main.lm_flags); 2306 Word * lmtflags = &(lml_main.lm_tflags); 2307 2308 if (envtbl == (Rtc_env *)0) 2309 return (0); 2310 2311 while (envtbl->env_str) { 2312 uint_t env_flags = ENV_TYP_CONFIG; 2313 2314 if (envtbl->env_flags & RTC_ENV_PERMANT) 2315 env_flags |= ENV_TYP_PERMANT; 2316 2317 ld_str_env((const char *)(envtbl->env_str + addr), 2318 lmflags, lmtflags, env_flags, 0); 2319 envtbl++; 2320 } 2321 2322 /* 2323 * Having collected the best representation of any LD_FLAGS, process 2324 * these strings. 2325 */ 2326 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2327 return (1); 2328 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2329 aout) == 1) 2330 return (1); 2331 2332 /* 2333 * Don't allow environment controlled auditing when tracing or if 2334 * explicitly disabled. Trigger all tracing modes from 2335 * LML_FLG_TRC_ENABLE. 2336 */ 2337 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2338 prm_audit = profile_lib = profile_name = 0; 2339 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2340 *lmflags &= ~LML_MSK_TRC; 2341 2342 return (0); 2343 } 2344 2345 int 2346 dowrite(Prfbuf * prf) 2347 { 2348 /* 2349 * We do not have a valid file descriptor, so we are unable 2350 * to flush the buffer. 2351 */ 2352 if (prf->pr_fd == -1) 2353 return (0); 2354 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2355 prf->pr_cur = prf->pr_buf; 2356 return (1); 2357 } 2358 2359 /* 2360 * Simplified printing. The following conversion specifications are supported: 2361 * 2362 * % [#] [-] [min field width] [. precision] s|d|x|c 2363 * 2364 * 2365 * dorprf takes the output buffer in the form of Prfbuf which permits 2366 * the verification of the output buffer size and the concatenation 2367 * of data to an already existing output buffer. The Prfbuf 2368 * structure contains the following: 2369 * 2370 * pr_buf pointer to the beginning of the output buffer. 2371 * pr_cur pointer to the next available byte in the output buffer. By 2372 * setting pr_cur ahead of pr_buf you can append to an already 2373 * existing buffer. 2374 * pr_len the size of the output buffer. By setting pr_len to '0' you 2375 * disable protection from overflows in the output buffer. 2376 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2377 * output to. If pr_fd is set to '-1' then it's assumed there is 2378 * no output buffer and doprf() will return with an error if the 2379 * output buffer is overflowed. If pr_fd is > -1 then when the 2380 * output buffer is filled it will be flushed to pr_fd and then 2381 * the available for additional data. 2382 */ 2383 #define FLG_UT_MINUS 0x0001 /* - */ 2384 #define FLG_UT_SHARP 0x0002 /* # */ 2385 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2386 2387 /* 2388 * This macro is for use from within doprf only. it's to be used 2389 * for checking the output buffer size and placing characters into 2390 * the buffer. 2391 */ 2392 #define PUTC(c) \ 2393 { \ 2394 register char tmpc; \ 2395 \ 2396 tmpc = (c); \ 2397 if ((bufsiz) && ((bp + 1) >= bufend)) { \ 2398 prf->pr_cur = bp; \ 2399 if (dowrite(prf) == 0) \ 2400 return (0); \ 2401 bp = prf->pr_cur; \ 2402 } \ 2403 *bp++ = tmpc; \ 2404 } 2405 2406 size_t 2407 doprf(const char *format, va_list args, Prfbuf *prf) 2408 { 2409 char c; 2410 char *bp = prf->pr_cur; 2411 char *bufend = prf->pr_buf + prf->pr_len; 2412 size_t bufsiz = prf->pr_len; 2413 2414 while ((c = *format++) != '\0') { 2415 if (c != '%') { 2416 PUTC(c); 2417 } else { 2418 int base = 0, flag = 0, width = 0, prec = 0; 2419 size_t _i; 2420 int _c, _n; 2421 char *_s; 2422 int ls = 0; 2423 again: 2424 c = *format++; 2425 switch (c) { 2426 case '-': 2427 flag |= FLG_UT_MINUS; 2428 goto again; 2429 case '#': 2430 flag |= FLG_UT_SHARP; 2431 goto again; 2432 case '.': 2433 flag |= FLG_UT_DOTSEEN; 2434 goto again; 2435 case '0': 2436 case '1': 2437 case '2': 2438 case '3': 2439 case '4': 2440 case '5': 2441 case '6': 2442 case '7': 2443 case '8': 2444 case '9': 2445 if (flag & FLG_UT_DOTSEEN) 2446 prec = (prec * 10) + c - '0'; 2447 else 2448 width = (width * 10) + c - '0'; 2449 goto again; 2450 case 'x': 2451 case 'X': 2452 base = 16; 2453 break; 2454 case 'd': 2455 case 'D': 2456 case 'u': 2457 base = 10; 2458 flag &= ~FLG_UT_SHARP; 2459 break; 2460 case 'l': 2461 base = 10; 2462 ls++; /* number of l's (long or long long) */ 2463 if ((*format == 'l') || 2464 (*format == 'd') || (*format == 'D') || 2465 (*format == 'x') || (*format == 'X') || 2466 (*format == 'o') || (*format == 'O')) 2467 goto again; 2468 break; 2469 case 'o': 2470 case 'O': 2471 base = 8; 2472 break; 2473 case 'c': 2474 _c = va_arg(args, int); 2475 2476 for (_i = 24; _i > 0; _i -= 8) { 2477 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2478 PUTC(c); 2479 } 2480 } 2481 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2482 PUTC(c); 2483 } 2484 break; 2485 case 's': 2486 _s = va_arg(args, char *); 2487 _i = strlen(_s); 2488 /* LINTED */ 2489 _n = (int)(width - _i); 2490 if (!prec) 2491 /* LINTED */ 2492 prec = (int)_i; 2493 2494 if (width && !(flag & FLG_UT_MINUS)) { 2495 while (_n-- > 0) 2496 PUTC(' '); 2497 } 2498 while (((c = *_s++) != 0) && prec--) { 2499 PUTC(c); 2500 } 2501 if (width && (flag & FLG_UT_MINUS)) { 2502 while (_n-- > 0) 2503 PUTC(' '); 2504 } 2505 break; 2506 case '%': 2507 PUTC('%'); 2508 break; 2509 default: 2510 break; 2511 } 2512 2513 /* 2514 * Numeric processing 2515 */ 2516 if (base) { 2517 char local[20]; 2518 const char *string = 2519 MSG_ORIG(MSG_STR_HEXNUM); 2520 size_t ssize = 0, psize = 0; 2521 const char *prefix = 2522 MSG_ORIG(MSG_STR_EMPTY); 2523 u_longlong_t num; 2524 2525 switch (ls) { 2526 case 0: /* int */ 2527 num = (u_longlong_t) 2528 va_arg(args, uint_t); 2529 break; 2530 case 1: /* long */ 2531 num = (u_longlong_t) 2532 va_arg(args, ulong_t); 2533 break; 2534 case 2: /* long long */ 2535 num = va_arg(args, u_longlong_t); 2536 break; 2537 } 2538 2539 if (flag & FLG_UT_SHARP) { 2540 if (base == 16) { 2541 prefix = MSG_ORIG(MSG_STR_HEX); 2542 psize = 2; 2543 } else { 2544 prefix = MSG_ORIG(MSG_STR_ZERO); 2545 psize = 1; 2546 } 2547 } 2548 if ((base == 10) && (long)num < 0) { 2549 prefix = MSG_ORIG(MSG_STR_NEGATE); 2550 psize = MSG_STR_NEGATE_SIZE; 2551 num = (u_longlong_t)(-(longlong_t)num); 2552 } 2553 2554 /* 2555 * Convert the numeric value into a local 2556 * string (stored in reverse order). 2557 */ 2558 _s = local; 2559 do { 2560 *_s++ = string[num % base]; 2561 num /= base; 2562 ssize++; 2563 } while (num); 2564 2565 /* 2566 * Provide any precision or width padding. 2567 */ 2568 if (prec) { 2569 /* LINTED */ 2570 _n = (int)(prec - ssize); 2571 while (_n-- > 0) { 2572 *_s++ = '0'; 2573 ssize++; 2574 } 2575 } 2576 if (width && !(flag & FLG_UT_MINUS)) { 2577 /* LINTED */ 2578 _n = (int)(width - ssize - psize); 2579 while (_n-- > 0) { 2580 PUTC(' '); 2581 } 2582 } 2583 2584 /* 2585 * Print any prefix and the numeric string 2586 */ 2587 while (*prefix) 2588 PUTC(*prefix++); 2589 do { 2590 PUTC(*--_s); 2591 } while (_s > local); 2592 2593 /* 2594 * Provide any width padding. 2595 */ 2596 if (width && (flag & FLG_UT_MINUS)) { 2597 /* LINTED */ 2598 _n = (int)(width - ssize - psize); 2599 while (_n-- > 0) 2600 PUTC(' '); 2601 } 2602 } 2603 } 2604 } 2605 PUTC('\0'); 2606 prf->pr_cur = bp; 2607 return (1); 2608 } 2609 2610 static int 2611 doprintf(const char *format, va_list args, Prfbuf *prf) 2612 { 2613 char *ocur = prf->pr_cur; 2614 2615 if (doprf(format, args, prf) == 0) 2616 return (0); 2617 /* LINTED */ 2618 return ((int)(prf->pr_cur - ocur)); 2619 } 2620 2621 /* VARARGS2 */ 2622 int 2623 sprintf(char *buf, const char *format, ...) 2624 { 2625 va_list args; 2626 int len; 2627 Prfbuf prf; 2628 2629 va_start(args, format); 2630 prf.pr_buf = prf.pr_cur = buf; 2631 prf.pr_len = 0; 2632 prf.pr_fd = -1; 2633 len = doprintf(format, args, &prf); 2634 va_end(args); 2635 2636 /* 2637 * sprintf() return value excludes the terminating null byte. 2638 */ 2639 return (len - 1); 2640 } 2641 2642 /* VARARGS3 */ 2643 int 2644 snprintf(char *buf, size_t n, const char *format, ...) 2645 { 2646 va_list args; 2647 int len; 2648 Prfbuf prf; 2649 2650 va_start(args, format); 2651 prf.pr_buf = prf.pr_cur = buf; 2652 prf.pr_len = n; 2653 prf.pr_fd = -1; 2654 len = doprintf(format, args, &prf); 2655 va_end(args); 2656 2657 return (len); 2658 } 2659 2660 /* VARARGS2 */ 2661 int 2662 bufprint(Prfbuf *prf, const char *format, ...) 2663 { 2664 va_list args; 2665 int len; 2666 2667 va_start(args, format); 2668 len = doprintf(format, args, prf); 2669 va_end(args); 2670 2671 return (len); 2672 } 2673 2674 /*PRINTFLIKE1*/ 2675 int 2676 printf(const char *format, ...) 2677 { 2678 va_list args; 2679 char buffer[ERRSIZE]; 2680 Prfbuf prf; 2681 2682 va_start(args, format); 2683 prf.pr_buf = prf.pr_cur = buffer; 2684 prf.pr_len = ERRSIZE; 2685 prf.pr_fd = 1; 2686 (void) doprf(format, args, &prf); 2687 va_end(args); 2688 /* 2689 * Trim trailing '\0' form buffer 2690 */ 2691 prf.pr_cur--; 2692 return (dowrite(&prf)); 2693 } 2694 2695 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2696 2697 /*PRINTFLIKE2*/ 2698 void 2699 eprintf(Error error, const char *format, ...) 2700 { 2701 va_list args; 2702 int overflow = 0; 2703 static int lock = 0; 2704 Prfbuf prf; 2705 2706 if (lock || (nextptr == (errbuf + ERRSIZE))) 2707 return; 2708 2709 /* 2710 * Note: this lock is here to prevent the same thread from recursively 2711 * entering itself during a eprintf. ie: during eprintf malloc() fails 2712 * and we try and call eprintf ... and then malloc() fails .... 2713 */ 2714 lock = 1; 2715 2716 /* 2717 * If we have completed startup initialization, all error messages 2718 * must be saved. These are reported through dlerror(). If we're 2719 * still in the initialization stage, output the error directly and 2720 * add a newline. 2721 */ 2722 va_start(args, format); 2723 2724 prf.pr_buf = prf.pr_cur = nextptr; 2725 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2726 2727 if (!(rtld_flags & RT_FL_APPLIC)) 2728 prf.pr_fd = 2; 2729 else 2730 prf.pr_fd = -1; 2731 2732 if (error > ERR_NONE) { 2733 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2734 error = ERR_WARNING; 2735 if (error == ERR_WARNING) { 2736 if (err_strs[ERR_WARNING] == 0) 2737 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2738 } else if (error == ERR_FATAL) { 2739 if (err_strs[ERR_FATAL] == 0) 2740 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2741 } else if (error == ERR_ELF) { 2742 if (err_strs[ERR_ELF] == 0) 2743 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2744 } 2745 if (procname) { 2746 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2747 rtldname, procname, err_strs[error]) == 0) 2748 overflow = 1; 2749 } else { 2750 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2751 rtldname, err_strs[error]) == 0) 2752 overflow = 1; 2753 } 2754 if (overflow == 0) { 2755 /* 2756 * Remove the terminating '\0'. 2757 */ 2758 prf.pr_cur--; 2759 } 2760 } 2761 2762 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2763 overflow = 1; 2764 2765 /* 2766 * If this is an ELF error, it will have been generated by a support 2767 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2768 * ELF error messages as it doesn't interact with libelf. Determine the 2769 * ELF error string. 2770 */ 2771 if ((overflow == 0) && (error == ERR_ELF)) { 2772 static int (*elfeno)() = 0; 2773 static const char *(*elfemg)(); 2774 const char *emsg; 2775 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2776 2777 if (NEXT(lmp) && (elfeno == 0)) { 2778 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2779 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2780 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2781 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2782 elfeno = 0; 2783 } 2784 2785 /* 2786 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2787 */ 2788 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2789 prf.pr_cur--; 2790 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2791 emsg) == 0) 2792 overflow = 1; 2793 } 2794 } 2795 2796 /* 2797 * Push out any message that's been built. Note, in the case of an 2798 * overflow condition, this message may be incomplete, in which case 2799 * make sure any partial string is null terminated. 2800 */ 2801 if (overflow) 2802 *(prf.pr_cur) = '\0'; 2803 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2804 *(prf.pr_cur - 1) = '\n'; 2805 (void) dowrite(&prf); 2806 } 2807 2808 DBG_CALL(Dbg_util_str(nextptr)); 2809 va_end(args); 2810 2811 /* 2812 * Determine if there was insufficient space left in the buffer to 2813 * complete the message. If so, we'll have printed out as much as had 2814 * been processed if we're not yet executing the application. 2815 * Otherwise, there will be some debugging diagnostic indicating 2816 * as much of the error message as possible. Write out a final buffer 2817 * overflow diagnostic - unlocalized, so we don't chance more errors. 2818 */ 2819 if (overflow) { 2820 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2821 2822 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2823 lasterr = str; 2824 2825 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2826 (void) write(2, str, strlen(str)); 2827 (void) write(2, MSG_ORIG(MSG_STR_NL), 2828 MSG_STR_NL_SIZE); 2829 } 2830 } 2831 DBG_CALL(Dbg_util_str(str)); 2832 2833 lock = 0; 2834 nextptr = errbuf + ERRSIZE; 2835 return; 2836 } 2837 2838 /* 2839 * If the application has started, then error messages are being saved 2840 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2841 * the case of a fatal error. In this case, establish the next error 2842 * pointer. If we haven't started the application, the whole message 2843 * buffer can be reused. 2844 */ 2845 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2846 lasterr = nextptr; 2847 2848 /* 2849 * Note, should we encounter an error such as ENOMEM, there may 2850 * be a number of the same error messages (ie. an operation 2851 * fails with ENOMEM, and then the attempts to construct the 2852 * error message itself, which incurs additional ENOMEM errors). 2853 * Compare any previous error message with the one we've just 2854 * created to prevent any duplication clutter. 2855 */ 2856 if ((rtld_flags & RT_FL_APPLIC) && 2857 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2858 prevptr = nextptr; 2859 nextptr = prf.pr_cur; 2860 *nextptr = '\0'; 2861 } 2862 } 2863 lock = 0; 2864 } 2865 2866 2867 #if DEBUG 2868 /* 2869 * Provide assfail() for ASSERT() statements, 2870 * see <sys/debug.h> for further details. 2871 */ 2872 int 2873 assfail(const char *a, const char *f, int l) 2874 { 2875 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2876 (void) _lwp_kill(_lwp_self(), SIGABRT); 2877 return (0); 2878 } 2879 #endif 2880 2881 /* 2882 * Exit. If we arrive here with a non zero status it's because of a fatal 2883 * error condition (most commonly a relocation error). If the application has 2884 * already had control, then the actual fatal error message will have been 2885 * recorded in the dlerror() message buffer. Print the message before really 2886 * exiting. 2887 */ 2888 void 2889 rtldexit(Lm_list * lml, int status) 2890 { 2891 if (status) { 2892 if (rtld_flags & RT_FL_APPLIC) { 2893 /* 2894 * If the error buffer has been used, write out all 2895 * pending messages - lasterr is simply a pointer to 2896 * the last message in this buffer. However, if the 2897 * buffer couldn't be created at all, lasterr points 2898 * to a constant error message string. 2899 */ 2900 if (*errbuf) { 2901 char *errptr = errbuf; 2902 char *errend = errbuf + ERRSIZE; 2903 2904 while ((errptr < errend) && *errptr) { 2905 size_t size = strlen(errptr); 2906 (void) write(2, errptr, size); 2907 (void) write(2, MSG_ORIG(MSG_STR_NL), 2908 MSG_STR_NL_SIZE); 2909 errptr += (size + 1); 2910 } 2911 } 2912 if (lasterr && ((lasterr < errbuf) || 2913 (lasterr > (errbuf + ERRSIZE)))) { 2914 (void) write(2, lasterr, strlen(lasterr)); 2915 (void) write(2, MSG_ORIG(MSG_STR_NL), 2916 MSG_STR_NL_SIZE); 2917 } 2918 } 2919 leave(lml); 2920 (void) _lwp_kill(_lwp_self(), killsig); 2921 } 2922 _exit(status); 2923 } 2924 2925 /* 2926 * Routines to co-ordinate the opening of /dev/zero and /proc. 2927 * dz_fd is exported for possible use by libld.so, and to insure it gets 2928 * closed on leaving ld.so.1. 2929 */ 2930 int dz_fd = FD_UNAVAIL; 2931 2932 void 2933 dz_init(int fd) 2934 { 2935 dz_fd = fd; 2936 } 2937 2938 2939 /* 2940 * mmap() a page from MAP_ANON 2941 * 2942 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2943 * not only mmap(MAP_ANON) but to also probe if it is available 2944 * on the current OS. 2945 */ 2946 Am_ret 2947 anon_map(caddr_t *addr, size_t len, int prot, int flags) 2948 { 2949 #if defined(MAP_ANON) 2950 static int noanon = 0; 2951 caddr_t va; 2952 2953 if (noanon == 0) { 2954 if ((va = (caddr_t)mmap(*addr, len, prot, 2955 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2956 *addr = va; 2957 return (AM_OK); 2958 } 2959 2960 if ((errno != EBADF) && (errno != EINVAL)) { 2961 int err = errno; 2962 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2963 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2964 return (AM_ERROR); 2965 } else 2966 noanon = 1; 2967 } 2968 #endif 2969 return (AM_NOSUP); 2970 } 2971 2972 /* 2973 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2974 * 2975 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2976 * behavior for older systems.) 2977 */ 2978 caddr_t 2979 dz_map(caddr_t addr, size_t len, int prot, int flags) 2980 { 2981 caddr_t va; 2982 int err; 2983 Am_ret amret; 2984 2985 amret = anon_map(&addr, len, prot, flags); 2986 2987 if (amret == AM_OK) 2988 return (addr); 2989 if (amret == AM_ERROR) 2990 return (MAP_FAILED); 2991 2992 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 2993 2994 if (dz_fd == FD_UNAVAIL) { 2995 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 2996 O_RDONLY)) == FD_UNAVAIL) { 2997 err = errno; 2998 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 2999 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3000 return (MAP_FAILED); 3001 } 3002 } 3003 3004 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3005 err = errno; 3006 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3007 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3008 } 3009 return (va); 3010 } 3011 3012 static int pr_fd = FD_UNAVAIL; 3013 3014 int 3015 pr_open() 3016 { 3017 char proc[16]; 3018 3019 if (pr_fd == FD_UNAVAIL) { 3020 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3021 (int)getpid()); 3022 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3023 int err = errno; 3024 3025 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3026 strerror(err)); 3027 } 3028 } 3029 return (pr_fd); 3030 } 3031 3032 static int nu_fd = FD_UNAVAIL; 3033 3034 caddr_t 3035 nu_map(caddr_t addr, size_t len, int prot, int flags) 3036 { 3037 caddr_t va; 3038 int err; 3039 3040 if (nu_fd == FD_UNAVAIL) { 3041 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3042 O_RDONLY)) == FD_UNAVAIL) { 3043 err = errno; 3044 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3045 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3046 return (MAP_FAILED); 3047 } 3048 } 3049 3050 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3051 MAP_FAILED) { 3052 err = errno; 3053 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3054 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3055 } 3056 return (va); 3057 } 3058 3059 /* 3060 * Generic entry point from user code - simply grabs a lock. 3061 */ 3062 int 3063 enter(void) 3064 { 3065 if (rt_bind_guard(THR_FLG_RTLD)) { 3066 (void) rt_mutex_lock(&rtldlock); 3067 return (1); 3068 } 3069 return (0); 3070 } 3071 3072 /* 3073 * Generate diagnostics as to whether an object has been used. A symbolic 3074 * reference that gets bound to an object marks it as used. Dependencies that 3075 * are unused when RTLD_NOW is in effect should be removed from future builds 3076 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3077 * candidates for lazy-loading. 3078 * Unreferenced objects identify objects that are defined as dependencies but 3079 * are unreferenced by the caller (they may however be referenced by other 3080 * objects within the process, and therefore don't qualify as completely unused. 3081 */ 3082 void 3083 unused(Lm_list *lml) 3084 { 3085 Rt_map *lmp; 3086 int nl = 0; 3087 Word tracing; 3088 3089 /* 3090 * If we're not tracing unused references or dependencies, or debugging 3091 * there's nothing to do. 3092 */ 3093 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3094 3095 if ((tracing == 0) && (dbg_mask == 0)) 3096 return; 3097 3098 /* 3099 * Traverse the link-maps looking for unreferenced or unused 3100 * dependencies. Ignore the first object on a link-map list, as this 3101 * is effectively always used. 3102 */ 3103 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3104 lmp = (Rt_map *)NEXT(lmp)) { 3105 /* 3106 * If tracing unreferenced objects, or under debugging, 3107 * determine whether any of this objects callers haven't 3108 * referenced it. 3109 */ 3110 if ((tracing & LML_FLG_TRC_UNREF) || dbg_mask) { 3111 Bnd_desc ** bdpp; 3112 Aliste off; 3113 3114 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3115 Bnd_desc * bdp = *bdpp; 3116 Rt_map * clmp; 3117 3118 if (bdp->b_flags & BND_REFER) 3119 continue; 3120 3121 clmp = bdp->b_caller; 3122 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3123 continue; 3124 3125 if (nl++ == 0) { 3126 if (tracing & LML_FLG_TRC_UNREF) 3127 (void) printf(MSG_ORIG(MSG_STR_NL)); 3128 else 3129 DBG_CALL(Dbg_util_nl()); 3130 } 3131 3132 if (tracing & LML_FLG_TRC_UNREF) 3133 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3134 NAME(lmp), NAME(clmp)); 3135 else 3136 DBG_CALL(Dbg_unused_unref(NAME(lmp), 3137 NAME(clmp))); 3138 } 3139 } 3140 3141 /* 3142 * If tracing unused objects simply display those objects that 3143 * haven't been referenced by anyone. 3144 */ 3145 if (FLAGS1(lmp) & FL1_RT_USED) 3146 continue; 3147 3148 if (nl++ == 0) { 3149 if (tracing) 3150 (void) printf(MSG_ORIG(MSG_STR_NL)); 3151 else 3152 DBG_CALL(Dbg_util_nl()); 3153 } 3154 if (CYCGROUP(lmp)) { 3155 if (tracing) 3156 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3157 NAME(lmp), CYCGROUP(lmp)); 3158 else 3159 DBG_CALL(Dbg_unused_file(NAME(lmp), 0, 3160 CYCGROUP(lmp))); 3161 } else { 3162 if (tracing) 3163 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3164 NAME(lmp)); 3165 else 3166 DBG_CALL(Dbg_unused_file(NAME(lmp), 0, 0)); 3167 } 3168 } 3169 3170 if (dbg_mask) 3171 DBG_CALL(Dbg_util_nl()); 3172 } 3173 3174 /* 3175 * Initialization routine for the Fmap structure. If the fmap structure is 3176 * already in use, any mapping is released. The structure is then initialized 3177 * in preparation for further use. 3178 */ 3179 void 3180 fmap_setup() 3181 { 3182 #if defined(MAP_ALIGN) 3183 /* 3184 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3185 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3186 * should now be freed. 3187 */ 3188 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3189 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3190 3191 /* 3192 * Providing we haven't determined that this system doesn't support 3193 * MAP_ALIGN, initialize the mapping address with the default segment 3194 * alignment. 3195 */ 3196 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3197 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3198 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3199 } else { 3200 fmap->fm_maddr = 0; 3201 fmap->fm_mflags = MAP_PRIVATE; 3202 } 3203 #else 3204 if (fmap->fm_maddr) 3205 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3206 3207 fmap->fm_maddr = 0; 3208 fmap->fm_mflags = MAP_PRIVATE; 3209 #endif 3210 3211 fmap->fm_msize = syspagsz; 3212 fmap->fm_hwptr = 0; 3213 } 3214 3215 /* 3216 * Generic cleanup routine called prior to returning control to the user. 3217 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3218 * released, and any locks dropped. 3219 */ 3220 void 3221 leave(Lm_list * lml) 3222 { 3223 /* 3224 * Alert the debuggers that the link-maps are consistent. 3225 */ 3226 if (lml) 3227 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3228 3229 if (dz_fd != FD_UNAVAIL) { 3230 (void) close(dz_fd); 3231 dz_fd = FD_UNAVAIL; 3232 } 3233 3234 if (pr_fd != FD_UNAVAIL) { 3235 (void) close(pr_fd); 3236 pr_fd = FD_UNAVAIL; 3237 } 3238 3239 if (nu_fd != FD_UNAVAIL) { 3240 (void) close(nu_fd); 3241 nu_fd = FD_UNAVAIL; 3242 } 3243 3244 fmap_setup(); 3245 3246 /* 3247 * Reinitialize error message pointer, and any overflow indication. 3248 */ 3249 nextptr = errbuf; 3250 prevptr = 0; 3251 3252 /* 3253 * Don't drop our lock if we are running on our link-map list as 3254 * there's little point in doing so since we are single-threaded. 3255 * 3256 * LML_FLG_HOLDLOCK is set for: 3257 * *) The ld.so.1's link-map list. 3258 * *) The auditor's link-map if the environment is 3259 * libc/libthread un-unified. 3260 */ 3261 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3262 return; 3263 3264 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3265 (void) rt_mutex_unlock(&rtldlock); 3266 (void) rt_bind_clear(THR_FLG_RTLD); 3267 } 3268 } 3269 3270 int 3271 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3272 { 3273 Alist * calp, * dalp; 3274 Aliste cnt1, cnt2; 3275 Grp_hdl ** ghpp1, ** ghpp2; 3276 3277 /* 3278 * An object can always find symbols within itself. 3279 */ 3280 if (clmp == dlmp) 3281 return (1); 3282 3283 /* 3284 * Don't allow an object to bind to an object that is being deleted 3285 * unless the binder is also being deleted. 3286 */ 3287 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3288 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3289 return (0); 3290 3291 /* 3292 * An object with world access can always bind to an object with global 3293 * visibility. 3294 */ 3295 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3296 return (1); 3297 3298 /* 3299 * An object with local access can only bind to an object that is a 3300 * member of the same group. 3301 */ 3302 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3303 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3304 return (0); 3305 3306 /* 3307 * Traverse the list of groups the caller is a part of. 3308 */ 3309 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3310 /* 3311 * If we're testing for the ability of two objects to bind to 3312 * each other regardless of a specific group, ignore that group. 3313 */ 3314 if (ghp && (*ghpp1 == ghp)) 3315 continue; 3316 3317 /* 3318 * Traverse the list of groups the destination is a part of. 3319 */ 3320 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3321 if (*ghpp1 == *ghpp2) 3322 return (1); 3323 } 3324 } 3325 return (0); 3326 } 3327 3328 /* 3329 * Initialize the environ symbol. Traditionally this is carried out by the crt 3330 * code prior to jumping to main. However, init sections get fired before this 3331 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3332 * information. In addition, a process may have multiple link-maps (ld.so.1's 3333 * debugging and preloading objects), and link auditing, and each may need an 3334 * environ variable set. 3335 * 3336 * This routine is called after a relocation() pass, and thus provides for: 3337 * 3338 * o setting environ on the main link-map after the initial application and 3339 * its dependencies have been established. Typically environ lives in the 3340 * application (provided by its crt), but in older applications it might 3341 * be in libc. Who knows what's expected of applications not built on 3342 * Solaris. 3343 * 3344 * o after loading a new shared object. We can add shared objects to various 3345 * link-maps, and any link-map dependencies requiring getopt() require 3346 * their own environ. In addition, lazy loading might bring in the 3347 * supplier of environ (libc used to be a lazy loading candidate) after 3348 * the link-map has been established and other objects are present. 3349 * 3350 * This routine handles all these scenarios, without adding unnecessary overhead 3351 * to ld.so.1. 3352 */ 3353 void 3354 set_environ(Lm_list *lml) 3355 { 3356 Rt_map * dlmp; 3357 Sym * sym; 3358 Slookup sl; 3359 uint_t binfo; 3360 3361 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3362 sl.sl_cmap = lml->lm_head; 3363 sl.sl_imap = lml->lm_head; 3364 sl.sl_hash = 0; 3365 sl.sl_rsymndx = 0; 3366 sl.sl_flags = LKUP_WEAK; 3367 3368 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3369 lml->lm_environ = (char ***)sym->st_value; 3370 3371 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3372 lml->lm_environ = 3373 (char ***)((uintptr_t)lml->lm_environ + 3374 (uintptr_t)ADDR(dlmp)); 3375 *(lml->lm_environ) = (char **)environ; 3376 lml->lm_flags |= LML_FLG_ENVIRON; 3377 } 3378 } 3379 3380 /* 3381 * Determine whether we have a secure executable. Uid and gid information 3382 * can be passed to us via the aux vector, however if these values are -1 3383 * then use the appropriate system call to obtain them. 3384 * 3385 * o If the user is the root they can do anything 3386 * 3387 * o If the real and effective uid's don't match, or the real and 3388 * effective gid's don't match then this is determined to be a `secure' 3389 * application. 3390 * 3391 * This function is called prior to any dependency processing (see _setup.c). 3392 * Any secure setting will remain in effect for the life of the process. 3393 */ 3394 void 3395 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3396 { 3397 #ifdef AT_SUN_AUXFLAGS 3398 if (auxflags != -1) { 3399 if ((auxflags & AF_SUN_SETUGID) != 0) 3400 rtld_flags |= RT_FL_SECURE; 3401 return; 3402 } 3403 #endif 3404 if (uid == -1) 3405 uid = getuid(); 3406 if (uid) { 3407 if (euid == -1) 3408 euid = geteuid(); 3409 if (uid != euid) 3410 rtld_flags |= RT_FL_SECURE; 3411 else { 3412 if (gid == -1) 3413 gid = getgid(); 3414 if (egid == -1) 3415 egid = getegid(); 3416 if (gid != egid) 3417 rtld_flags |= RT_FL_SECURE; 3418 } 3419 } 3420 } 3421 3422 /* 3423 * _REENTRANT code gets errno redefined to a function so provide for return 3424 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3425 * is basically singled threaded. Provide the interface for our dependencies. 3426 */ 3427 #undef errno 3428 #pragma weak _private___errno = ___errno 3429 int * 3430 ___errno() 3431 { 3432 extern int errno; 3433 3434 return (&errno); 3435 } 3436 3437 /* 3438 * The interface with the c library which is supplied through libdl.so.1. 3439 * A non-null argument allows a function pointer array to be passed to us which 3440 * is used to re-initialize the linker libc table. 3441 */ 3442 void 3443 _ld_libc(void * ptr) 3444 { 3445 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3446 } 3447 3448 /* 3449 * Determine whether a symbol name should be demangled. 3450 */ 3451 const char * 3452 demangle(const char *name) 3453 { 3454 if (rtld_flags & RT_FL_DEMANGLE) 3455 return (conv_sym_dem(name)); 3456 else 3457 return (name); 3458 } 3459