1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include <stdio.h> 37 #include <sys/time.h> 38 #include <sys/types.h> 39 #include <sys/mman.h> 40 #include <sys/lwp.h> 41 #include <sys/debug.h> 42 #include <stdarg.h> 43 #include <fcntl.h> 44 #include <string.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <limits.h> 50 #include <debug.h> 51 #include <conv.h> 52 #include "_rtld.h" 53 #include "_audit.h" 54 #include "_elf.h" 55 #include "msg.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * Null function used as place where a debugger can set a breakpoint. 61 */ 62 void 63 rtld_db_dlactivity(Lm_list *lml) 64 { 65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 66 r_debug.rtd_rdebug.r_state)); 67 } 68 69 /* 70 * Null function used as place where debugger can set a pre .init 71 * processing breakpoint. 72 */ 73 void 74 rtld_db_preinit(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a post .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_postinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Debugger Event Notification 93 * 94 * This function centralizes all debugger event notification (ala rtld_db). 95 * 96 * There's a simple intent, focused on insuring the primary link-map control 97 * list (or each link-map list) is consistent, and the indication that objects 98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 99 * event are posted for each of these, most debuggers don't care, as their 100 * view is that these events simply convey an "inconsistent" state. 101 * 102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 103 * enter ld.so.1. 104 * 105 * With auditors, we may be in the process of relocating a collection of 106 * objects, and will leave() ld.so.1 to call the auditor. At this point we 107 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 108 * object to the debuggers until relocation processing has been completed on it. 109 * To allow for the collection of these objects that are pending relocation, an 110 * RD_ADD event is set after completing a series of relocations on the primary 111 * link-map control list. 112 * 113 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 114 * required later (LML_FLG_DBNOTIF): 115 * 116 * i the first time we add or delete an object to the primary link-map 117 * control list. 118 * ii the first time we move a secondary link-map control list to the primary 119 * link-map control list (effectively, this is like adding a group of 120 * objects to the primary link-map control list). 121 * 122 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 123 * 124 * i each time we leave the runtime linker. 125 */ 126 void 127 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 128 { 129 void (*fptr)(Lm_list *); 130 131 switch (event) { 132 case RD_PREINIT: 133 fptr = rtld_db_preinit; 134 break; 135 case RD_POSTINIT: 136 fptr = rtld_db_postinit; 137 break; 138 case RD_DLACTIVITY: 139 switch (state) { 140 case RT_CONSISTENT: 141 lml->lm_flags &= ~LML_FLG_DBNOTIF; 142 143 /* 144 * Do we need to send a notification? 145 */ 146 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 147 return; 148 rtld_flags &= ~RT_FL_DBNOTIF; 149 break; 150 case RT_ADD: 151 case RT_DELETE: 152 lml->lm_flags |= LML_FLG_DBNOTIF; 153 154 /* 155 * If we are already in an inconsistent state, no 156 * notification is required. 157 */ 158 if (rtld_flags & RT_FL_DBNOTIF) 159 return; 160 rtld_flags |= RT_FL_DBNOTIF; 161 break; 162 }; 163 fptr = rtld_db_dlactivity; 164 break; 165 default: 166 /* 167 * RD_NONE - do nothing 168 */ 169 break; 170 }; 171 172 /* 173 * Set event state and call 'notification' function. 174 * 175 * The debugging clients have previously been told about these 176 * notification functions and have set breakpoints on them if they 177 * are interested in the notification. 178 */ 179 r_debug.rtd_rdebug.r_state = state; 180 r_debug.rtd_rdebug.r_rdevent = event; 181 fptr(lml); 182 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 183 } 184 185 #if defined(__sparc) || defined(__x86) 186 /* 187 * Stack Cleanup. 188 * 189 * This function is invoked to 'remove' arguments that were passed in on the 190 * stack. This is most likely if ld.so.1 was invoked directly. In that case 191 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 192 * Which means we then need to slide everything above it on the stack down 193 * accordingly. 194 * 195 * While the stack layout is platform specific - it just so happens that __x86, 196 * and __sparc platforms share the following initial stack layout. 197 * 198 * !_______________________! high addresses 199 * ! ! 200 * ! Information ! 201 * ! Block ! 202 * ! (size varies) ! 203 * !_______________________! 204 * ! 0 word ! 205 * !_______________________! 206 * ! Auxiliary ! 207 * ! vector ! 208 * ! 2 word entries ! 209 * ! ! 210 * !_______________________! 211 * ! 0 word ! 212 * !_______________________! 213 * ! Environment ! 214 * ! pointers ! 215 * ! ... ! 216 * ! (one word each) ! 217 * !_______________________! 218 * ! 0 word ! 219 * !_______________________! 220 * ! Argument ! low addresses 221 * ! pointers ! 222 * ! Argc words ! 223 * !_______________________! 224 * ! ! 225 * ! Argc ! 226 * !_______________________! 227 * ! ... ! 228 * 229 */ 230 static void 231 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 232 { 233 int ndx; 234 long *argc; 235 char **oargv, **nargv; 236 char **oenvp, **nenvp; 237 auxv_t *oauxv, *nauxv; 238 239 /* 240 * Slide ARGV[] and update argc. The argv pointer remains the same, 241 * however slide the applications arguments over the arguments to 242 * ld.so.1. 243 */ 244 nargv = &argv[0]; 245 oargv = &argv[rmcnt]; 246 247 for (ndx = 0; oargv[ndx]; ndx++) 248 nargv[ndx] = oargv[ndx]; 249 nargv[ndx] = oargv[ndx]; 250 251 argc = (long *)((uintptr_t)argv - sizeof (long *)); 252 *argc -= rmcnt; 253 254 /* 255 * Slide ENVP[], and update the environment array pointer. 256 */ 257 ndx++; 258 nenvp = &nargv[ndx]; 259 oenvp = &oargv[ndx]; 260 *envp = nenvp; 261 262 for (ndx = 0; oenvp[ndx]; ndx++) 263 nenvp[ndx] = oenvp[ndx]; 264 nenvp[ndx] = oenvp[ndx]; 265 266 /* 267 * Slide AUXV[], and update the aux vector pointer. 268 */ 269 ndx++; 270 nauxv = (auxv_t *)&nenvp[ndx]; 271 oauxv = (auxv_t *)&oenvp[ndx]; 272 *auxv = nauxv; 273 274 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 275 nauxv[ndx] = oauxv[ndx]; 276 nauxv[ndx] = oauxv[ndx]; 277 } 278 #else 279 /* 280 * Verify that the above routine is appropriate for any new platforms. 281 */ 282 #error unsupported architecture! 283 #endif 284 285 /* 286 * The only command line argument recognized is -e, followed by a runtime 287 * linker environment variable. 288 */ 289 int 290 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 291 Word *lmtflags, int aout) 292 { 293 int ndx; 294 295 for (ndx = 1; argv[ndx]; ndx++) { 296 char *str; 297 298 if (argv[ndx][0] != '-') 299 break; 300 301 if (argv[ndx][1] == '\0') { 302 ndx++; 303 break; 304 } 305 306 if (argv[ndx][1] != 'e') 307 return (1); 308 309 if (argv[ndx][2] == '\0') { 310 ndx++; 311 if (argv[ndx] == NULL) 312 return (1); 313 str = argv[ndx]; 314 } else 315 str = &argv[ndx][2]; 316 317 /* 318 * If the environment variable starts with LD_, strip the LD_. 319 * Otherwise, take things as is. 320 */ 321 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 322 (str[3] != '\0')) 323 str += 3; 324 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 325 return (1); 326 } 327 328 /* 329 * Make sure an object file has been specified. 330 */ 331 if (argv[ndx] == NULL) 332 return (1); 333 334 /* 335 * Having gotten the arguments, clean ourselves off of the stack. 336 */ 337 stack_cleanup(argv, envp, auxv, ndx); 338 return (0); 339 } 340 341 /* 342 * Compare function for PathNode AVL tree. 343 */ 344 static int 345 pnavl_compare(const void *n1, const void *n2) 346 { 347 uint_t hash1, hash2; 348 const char *st1, *st2; 349 int rc; 350 351 hash1 = ((PathNode *)n1)->pn_hash; 352 hash2 = ((PathNode *)n2)->pn_hash; 353 354 if (hash1 > hash2) 355 return (1); 356 if (hash1 < hash2) 357 return (-1); 358 359 st1 = ((PathNode *)n1)->pn_name; 360 st2 = ((PathNode *)n2)->pn_name; 361 362 rc = strcmp(st1, st2); 363 if (rc > 0) 364 return (1); 365 if (rc < 0) 366 return (-1); 367 return (0); 368 } 369 370 /* 371 * Create an AVL tree. 372 */ 373 static avl_tree_t * 374 pnavl_create(size_t size) 375 { 376 avl_tree_t *avlt; 377 378 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 379 return (NULL); 380 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 381 return (avlt); 382 } 383 384 /* 385 * Determine if a pathname has already been recorded on the full path name 386 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 387 * successfully loaded. If the path name does not exist in this AVL tree, then 388 * the next insertion point is deposited in "where". This value can be used by 389 * fpavl_insert() to expedite the insertion. 390 */ 391 Rt_map * 392 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 393 { 394 FullPathNode fpn, *fpnp; 395 396 /* 397 * Create the avl tree if required. 398 */ 399 if ((lml->lm_fpavl == NULL) && 400 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 401 return (NULL); 402 403 fpn.fpn_node.pn_name = name; 404 if ((fpn.fpn_node.pn_hash = hash) == 0) 405 fpn.fpn_node.pn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 /* 414 * Insert a name into the FullPathNode AVL tree for the link-map list. The 415 * objects NAME() is the path that would have originally been searched for, and 416 * is therefore the name to associate with any "where" value. If the object has 417 * a different PATHNAME(), perhaps because it has resolved to a different file 418 * (see fullpath()), then this name will be recorded as a separate FullPathNode 419 * (see load_file()). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullPathNode *fpnp; 425 uint_t hash = sgs_str_hash(name); 426 427 if (where == 0) { 428 /* LINTED */ 429 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 430 431 /* 432 * We better not get a hit now, we do not want duplicates in 433 * the tree. 434 */ 435 ASSERT(_lmp == NULL); 436 } 437 438 /* 439 * Insert new node in tree. 440 */ 441 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 442 return (0); 443 444 fpnp->fpn_node.pn_name = name; 445 fpnp->fpn_node.pn_hash = hash; 446 fpnp->fpn_lmp = lmp; 447 448 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the FullPathNode AVL tree. 460 */ 461 void 462 fpavl_remove(Rt_map *lmp) 463 { 464 FullPathNode *fpnp; 465 Aliste idx; 466 467 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 468 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 469 free(fpnp); 470 } 471 free(FPNODE(lmp)); 472 FPNODE(lmp) = NULL; 473 } 474 475 /* 476 * Determine if a pathname has already been recorded on the not-found AVL tree. 477 * This tree maintains a node for each path name that ld.so.1 has explicitly 478 * inspected, but has failed to load during a single ld.so.1 operation. If the 479 * path name does not exist in this AVL tree, then the next insertion point is 480 * deposited in "where". This value can be used by nfavl_insert() to expedite 481 * the insertion. 482 */ 483 int 484 nfavl_recorded(const char *name, uint_t hash, avl_index_t *where) 485 { 486 PathNode pn; 487 488 /* 489 * Create the avl tree if required. 490 */ 491 if ((nfavl == NULL) && 492 ((nfavl = pnavl_create(sizeof (PathNode))) == NULL)) 493 return (NULL); 494 495 pn.pn_name = name; 496 if ((pn.pn_hash = hash) == 0) 497 pn.pn_hash = sgs_str_hash(name); 498 499 if (avl_find(nfavl, &pn, where) == NULL) 500 return (0); 501 502 return (1); 503 } 504 505 /* 506 * Insert a name into the not-found AVL tree. 507 */ 508 void 509 nfavl_insert(const char *name, avl_index_t where) 510 { 511 PathNode *pnp; 512 uint_t hash = sgs_str_hash(name); 513 514 if (where == 0) { 515 /* LINTED */ 516 int in_nfavl = nfavl_recorded(name, hash, &where); 517 518 /* 519 * We better not get a hit now, we do not want duplicates in 520 * the tree. 521 */ 522 ASSERT(in_nfavl == 0); 523 } 524 525 /* 526 * Insert new node in tree. 527 */ 528 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 529 pnp->pn_name = name; 530 pnp->pn_hash = hash; 531 avl_insert(nfavl, pnp, where); 532 } 533 } 534 535 static avl_tree_t *spavl = NULL; 536 537 /* 538 * Search for a path name within the secure path AVL tree. This tree is used 539 * to maintain a list of directories in which the dependencies of a secure 540 * process have been found. This list provides a fall-back in the case that a 541 * $ORIGIN expansion is deemed insecure, when the expansion results in a path 542 * name that has already provided dependencies. 543 */ 544 int 545 spavl_recorded(const char *name, avl_index_t *where) 546 { 547 PathNode pn; 548 549 /* 550 * Create the avl tree if required. 551 */ 552 if ((spavl == NULL) && 553 ((spavl = pnavl_create(sizeof (PathNode))) == NULL)) 554 return (0); 555 556 pn.pn_name = name; 557 pn.pn_hash = sgs_str_hash(name); 558 559 if (avl_find(spavl, &pn, where) == NULL) 560 return (0); 561 562 return (1); 563 } 564 565 /* 566 * Insert the directory name, of a full path name, into the secure path AVL 567 * tree. 568 */ 569 void 570 spavl_insert(const char *name) 571 { 572 char buffer[PATH_MAX], *str; 573 size_t size; 574 avl_index_t where; 575 PathNode *pnp; 576 577 /* 578 * Separate the directory name from the path name. 579 */ 580 if ((str = strrchr(name, '/')) == name) 581 size = 1; 582 else 583 size = str - name; 584 585 (void) strncpy(buffer, name, size); 586 buffer[size] = '\0'; 587 588 /* 589 * Determine whether this directory name is already recorded, or if 590 * not, 'where" will provide the insertion point for the new string. 591 */ 592 if (spavl_recorded(buffer, &where)) 593 return; 594 595 /* 596 * Insert new node in tree. 597 */ 598 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 599 pnp->pn_name = strdup(buffer); 600 pnp->pn_hash = sgs_str_hash(buffer); 601 avl_insert(spavl, pnp, where); 602 } 603 } 604 605 /* 606 * Inspect the generic string AVL tree for the given string. If the string is 607 * not present, duplicate it, and insert the string in the AVL tree. Return the 608 * duplicated string to the caller. 609 * 610 * These strings are maintained for the life of ld.so.1 and represent path 611 * names, file names, and search paths. All other AVL trees that maintain 612 * FullPathNode and not-found path names use the same string pointer 613 * established for this string. 614 */ 615 static avl_tree_t *stravl = NULL; 616 static char *strbuf = NULL; 617 static PathNode *pnbuf = NULL; 618 static size_t strsize = 0, pnsize = 0; 619 620 const char * 621 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 622 { 623 char str[PATH_MAX]; 624 PathNode *pnp; 625 avl_index_t where; 626 627 /* 628 * Create the avl tree if required. 629 */ 630 if ((stravl == NULL) && 631 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 632 return (NULL); 633 634 /* 635 * Determine the string size if not provided by the caller. 636 */ 637 if (nsize == 0) 638 nsize = strlen(name) + 1; 639 else if (substr) { 640 /* 641 * The string passed to us may be a multiple path string for 642 * which we only need the first component. Using the provided 643 * size, strip out the required string. 644 */ 645 (void) strncpy(str, name, nsize); 646 str[nsize - 1] = '\0'; 647 name = str; 648 } 649 650 /* 651 * Allocate a PathNode buffer if one doesn't exist, or any existing 652 * buffer has been used up. 653 */ 654 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 655 pnsize = syspagsz; 656 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 657 MAP_PRIVATE)) == MAP_FAILED) 658 return (NULL); 659 } 660 /* 661 * Determine whether this string already exists. 662 */ 663 pnbuf->pn_name = name; 664 if ((pnbuf->pn_hash = hash) == 0) 665 pnbuf->pn_hash = sgs_str_hash(name); 666 667 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 668 return (pnp->pn_name); 669 670 /* 671 * Allocate a string buffer if one does not exist, or if there is 672 * insufficient space for the new string in any existing buffer. 673 */ 674 if ((strbuf == NULL) || (nsize > strsize)) { 675 strsize = S_ROUND(nsize, syspagsz); 676 677 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 678 MAP_PRIVATE)) == MAP_FAILED) 679 return (NULL); 680 } 681 682 (void) memcpy(strbuf, name, nsize); 683 pnp = pnbuf; 684 pnp->pn_name = strbuf; 685 avl_insert(stravl, pnp, where); 686 687 strbuf += nsize; 688 strsize -= nsize; 689 pnbuf++; 690 pnsize -= sizeof (PathNode); 691 return (pnp->pn_name); 692 } 693 694 /* 695 * Prior to calling an object, either via a .plt or through dlsym(), make sure 696 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 697 * init's in the correct order, however, this order is typically based on needed 698 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 699 * still occur and result in bindings that were not captured during topological 700 * sorting. This routine compensates for this lack of binding information, and 701 * provides for dynamic .init firing. 702 */ 703 void 704 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 705 { 706 Rt_map **tobj; 707 708 /* 709 * If the caller is an auditor, and the destination isn't, then don't 710 * run any .inits (see comments in load_completion()). 711 */ 712 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 713 (LIST(clmp) != LIST(dlmp))) 714 return; 715 716 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 717 return; 718 719 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 720 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 721 return; 722 723 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 724 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 725 DBG_CALL(Dbg_util_no_init(dlmp)); 726 return; 727 } 728 729 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 730 tobj[0] = dlmp; 731 call_init(tobj, DBG_INIT_DYN); 732 } 733 } 734 735 /* 736 * Execute .{preinit|init|fini}array sections 737 */ 738 void 739 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 740 { 741 int start, stop, incr, ndx; 742 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 743 744 if (array == NULL) 745 return; 746 747 /* 748 * initarray & preinitarray are walked from beginning to end - while 749 * finiarray is walked from end to beginning. 750 */ 751 if (shtype == SHT_FINI_ARRAY) { 752 start = arraycnt - 1; 753 stop = incr = -1; 754 } else { 755 start = 0; 756 stop = arraycnt; 757 incr = 1; 758 } 759 760 /* 761 * Call the .*array[] entries 762 */ 763 for (ndx = start; ndx != stop; ndx += incr) { 764 void (*fptr)(void) = (void(*)())array[ndx]; 765 766 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 767 768 leave(LIST(lmp), 0); 769 (*fptr)(); 770 (void) enter(0); 771 } 772 } 773 774 775 /* 776 * Execute any .init sections. These are passed to us in an lmp array which 777 * (by default) will have been sorted. 778 */ 779 void 780 call_init(Rt_map **tobj, int flag) 781 { 782 Rt_map **_tobj, **_nobj; 783 static APlist *pending = NULL; 784 785 /* 786 * If we're in the middle of an INITFIRST, this must complete before 787 * any new init's are fired. In this case add the object list to the 788 * pending queue and return. We'll pick up the queue after any 789 * INITFIRST objects have their init's fired. 790 */ 791 if (rtld_flags & RT_FL_INITFIRST) { 792 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 793 return; 794 } 795 796 /* 797 * Traverse the tobj array firing each objects init. 798 */ 799 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 800 Rt_map *lmp = *_tobj; 801 void (*iptr)() = INIT(lmp); 802 uint_t rtldflags; 803 804 if (FLAGS(lmp) & FLG_RT_INITCALL) 805 continue; 806 807 FLAGS(lmp) |= FLG_RT_INITCALL; 808 809 /* 810 * It is possible, that during the initial handshake with libc, 811 * an interposition object has resolved a symbol binding, and 812 * that this objects .init must be fired. As we're about to 813 * run user code, make sure any dynamic linking errors remain 814 * internal (ie., only obtainable from dlerror()), and are not 815 * flushed to stderr. 816 */ 817 rtldflags = (rtld_flags & RT_FL_APPLIC) ? 0 : RT_FL_APPLIC; 818 rtld_flags |= rtldflags; 819 820 /* 821 * Establish an initfirst state if necessary - no other inits 822 * will be fired (because of additional relocation bindings) 823 * when in this state. 824 */ 825 if (FLAGS(lmp) & FLG_RT_INITFRST) 826 rtld_flags |= RT_FL_INITFIRST; 827 828 if (INITARRAY(lmp) || iptr) 829 DBG_CALL(Dbg_util_call_init(lmp, flag)); 830 831 if (iptr) { 832 leave(LIST(lmp), 0); 833 (*iptr)(); 834 (void) enter(0); 835 } 836 837 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 838 SHT_INIT_ARRAY); 839 840 if (INITARRAY(lmp) || iptr) 841 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 842 843 /* 844 * Return to a non-application setting if necessary. 845 */ 846 rtld_flags &= ~rtldflags; 847 848 /* 849 * Set the initdone flag regardless of whether this object 850 * actually contains an .init section. This flag prevents us 851 * from processing this section again for an .init and also 852 * signifies that a .fini must be called should it exist. 853 * Clear the sort field for use in later .fini processing. 854 */ 855 FLAGS(lmp) |= FLG_RT_INITDONE; 856 SORTVAL(lmp) = -1; 857 858 /* 859 * If we're firing an INITFIRST object, and other objects must 860 * be fired which are not INITFIRST, make sure we grab any 861 * pending objects that might have been delayed as this 862 * INITFIRST was processed. 863 */ 864 if ((rtld_flags & RT_FL_INITFIRST) && 865 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 866 Aliste idx; 867 Rt_map **pobj; 868 869 rtld_flags &= ~RT_FL_INITFIRST; 870 871 for (APLIST_TRAVERSE(pending, idx, pobj)) { 872 aplist_delete(pending, &idx); 873 call_init(pobj, DBG_INIT_PEND); 874 } 875 } 876 } 877 free(tobj); 878 } 879 880 /* 881 * Function called by atexit(3C). Calls all .fini sections related with the 882 * mains dependent shared libraries in the order in which the shared libraries 883 * have been loaded. Skip any .fini defined in the main executable, as this 884 * will be called by crt0 (main was never marked as initdone). 885 */ 886 void 887 call_fini(Lm_list * lml, Rt_map ** tobj) 888 { 889 Rt_map **_tobj; 890 891 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 892 Rt_map *clmp, * lmp = *_tobj; 893 Aliste idx; 894 Bnd_desc *bdp; 895 896 /* 897 * Only fire a .fini if the objects corresponding .init has 898 * completed. We collect all .fini sections of objects that 899 * had their .init collected, but that doesn't mean that at 900 * the time of collection, that the .init had completed. 901 */ 902 if (FLAGS(lmp) & FLG_RT_INITDONE) { 903 void (*fptr)(void) = FINI(lmp); 904 905 if (FINIARRAY(lmp) || fptr) 906 DBG_CALL(Dbg_util_call_fini(lmp)); 907 908 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 909 SHT_FINI_ARRAY); 910 911 if (fptr) { 912 leave(LIST(lmp), 0); 913 (*fptr)(); 914 (void) enter(0); 915 } 916 } 917 918 /* 919 * Skip main, this is explicitly called last in atexit_fini(). 920 */ 921 if (FLAGS(lmp) & FLG_RT_ISMAIN) 922 continue; 923 924 /* 925 * Audit `close' operations at this point. The library has 926 * exercised its last instructions (regardless of whether it 927 * will be unmapped or not). 928 * 929 * First call any global auditing. 930 */ 931 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 932 _audit_objclose(auditors->ad_list, lmp); 933 934 /* 935 * Finally determine whether this object has local auditing 936 * requirements by inspecting itself and then its dependencies. 937 */ 938 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 939 continue; 940 941 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 942 _audit_objclose(AUDITORS(lmp)->ad_list, lmp); 943 944 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 945 clmp = bdp->b_caller; 946 947 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 948 _audit_objclose(AUDITORS(clmp)->ad_list, lmp); 949 break; 950 } 951 } 952 } 953 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 954 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 955 956 free(tobj); 957 } 958 959 void 960 atexit_fini() 961 { 962 Rt_map **tobj, *lmp; 963 Lm_list *lml; 964 Aliste idx; 965 966 (void) enter(0); 967 968 rtld_flags |= RT_FL_ATEXIT; 969 970 lml = &lml_main; 971 lml->lm_flags |= LML_FLG_ATEXIT; 972 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 973 lmp = (Rt_map *)lml->lm_head; 974 975 /* 976 * Reverse topologically sort the main link-map for .fini execution. 977 */ 978 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 979 (tobj != (Rt_map **)S_ERROR)) 980 call_fini(lml, tobj); 981 982 /* 983 * Add an explicit close to main and ld.so.1. Although main's .fini is 984 * collected in call_fini() to provide for FINITARRAY processing, its 985 * audit_objclose is explicitly skipped. This provides for it to be 986 * called last, here. This is the reverse of the explicit calls to 987 * audit_objopen() made in setup(). 988 */ 989 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 990 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 991 audit_objclose(lmp, lmp); 992 } 993 994 /* 995 * Now that all .fini code has been run, see what unreferenced objects 996 * remain. 997 */ 998 unused(lml); 999 1000 /* 1001 * Traverse any alternative link-map lists. 1002 */ 1003 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 1004 /* 1005 * Ignore the base-link-map list, which has already been 1006 * processed, and the runtime linkers link-map list, which is 1007 * typically processed last. 1008 */ 1009 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 1010 continue; 1011 1012 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 1013 continue; 1014 1015 lml->lm_flags |= LML_FLG_ATEXIT; 1016 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1017 1018 /* 1019 * Reverse topologically sort the link-map for .fini execution. 1020 */ 1021 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1022 (tobj != (Rt_map **)S_ERROR)) 1023 call_fini(lml, tobj); 1024 1025 unused(lml); 1026 } 1027 1028 /* 1029 * Finally reverse topologically sort the runtime linkers link-map for 1030 * .fini execution. 1031 */ 1032 lml = &lml_rtld; 1033 lml->lm_flags |= LML_FLG_ATEXIT; 1034 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1035 lmp = (Rt_map *)lml->lm_head; 1036 1037 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1038 (tobj != (Rt_map **)S_ERROR)) 1039 call_fini(lml, tobj); 1040 1041 leave(&lml_main, 0); 1042 } 1043 1044 1045 /* 1046 * This routine is called to complete any runtime linker activity which may have 1047 * resulted in objects being loaded. This is called from all user entry points 1048 * and from any internal dl*() requests. 1049 */ 1050 void 1051 load_completion(Rt_map *nlmp) 1052 { 1053 Rt_map **tobj = NULL; 1054 Lm_list *nlml; 1055 1056 /* 1057 * Establish any .init processing. Note, in a world of lazy loading, 1058 * objects may have been loaded regardless of whether the users request 1059 * was fulfilled (i.e., a dlsym() request may have failed to find a 1060 * symbol but objects might have been loaded during its search). Thus, 1061 * any tsorting starts from the nlmp (new link-maps) pointer and not 1062 * necessarily from the link-map that may have satisfied the request. 1063 * 1064 * Note, the primary link-map has an initialization phase where dynamic 1065 * .init firing is suppressed. This provides for a simple and clean 1066 * handshake with the primary link-maps libc, which is important for 1067 * establishing uberdata. In addition, auditors often obtain handles 1068 * to primary link-map objects as the objects are loaded, so as to 1069 * inspect the link-map for symbols. This inspection is allowed without 1070 * running any code on the primary link-map, as running this code may 1071 * reenter the auditor, who may not yet have finished its own 1072 * initialization. 1073 */ 1074 if (nlmp) 1075 nlml = LIST(nlmp); 1076 1077 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1078 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1079 if ((tobj = tsort(nlmp, nlml->lm_init, 1080 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1081 tobj = NULL; 1082 } 1083 1084 /* 1085 * Make sure any alternative link-map retrieves any external interfaces 1086 * and initializes threads. 1087 */ 1088 if (nlmp && (nlml != &lml_main)) { 1089 (void) rt_get_extern(nlml, nlmp); 1090 rt_thr_init(nlml); 1091 } 1092 1093 /* 1094 * Traverse the list of new link-maps and register any dynamic TLS. 1095 * This storage is established for any objects not on the primary 1096 * link-map, and for any objects added to the primary link-map after 1097 * static TLS has been registered. 1098 */ 1099 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1100 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1101 Rt_map *lmp; 1102 1103 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1104 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1105 tls_modaddrem(lmp, TM_FLG_MODADD); 1106 } 1107 nlml->lm_tls = 0; 1108 } 1109 1110 /* 1111 * Fire any .init's. 1112 */ 1113 if (tobj) 1114 call_init(tobj, DBG_INIT_SORT); 1115 } 1116 1117 /* 1118 * Append an item to the specified link map control list. 1119 */ 1120 void 1121 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1122 { 1123 Lm_cntl *lmc; 1124 int add = 1; 1125 1126 /* 1127 * Indicate that this link-map list has a new object. 1128 */ 1129 (lml->lm_obj)++; 1130 1131 /* 1132 * If we're about to add a new object to the main link-map control list, 1133 * alert the debuggers that we are about to mess with this list. 1134 * Additions of individual objects to the main link-map control list 1135 * occur during initial setup as the applications immediate dependencies 1136 * are loaded. Individual objects are also loaded on the main link-map 1137 * control list of new alternative link-map control lists. 1138 */ 1139 if ((lmco == ALIST_OFF_DATA) && 1140 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1141 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1142 1143 /* LINTED */ 1144 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1145 1146 /* 1147 * A link-map list header points to one of more link-map control lists 1148 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1149 * the list of relocated objects. Other lists maintain objects that 1150 * are still being analyzed or relocated. This list provides the core 1151 * link-map list information used by all ld.so.1 routines. 1152 */ 1153 if (lmc->lc_head == NULL) { 1154 /* 1155 * If this is the first link-map for the given control list, 1156 * initialize the list. 1157 */ 1158 lmc->lc_head = lmc->lc_tail = lmp; 1159 add = 0; 1160 1161 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1162 Rt_map *tlmp; 1163 1164 /* 1165 * If this is an interposer then append the link-map following 1166 * any other interposers (these are objects that have been 1167 * previously preloaded, or were identified with -z interpose). 1168 * Interposers can only be inserted on the first link-map 1169 * control list, as once relocation has started, interposition 1170 * from new interposers can't be guaranteed. 1171 * 1172 * NOTE: We do not interpose on the head of a list. This model 1173 * evolved because dynamic executables have already been fully 1174 * relocated within themselves and thus can't be interposed on. 1175 * Nowadays it's possible to have shared objects at the head of 1176 * a list, which conceptually means they could be interposed on. 1177 * But, shared objects can be created via dldump() and may only 1178 * be partially relocated (just relatives), in which case they 1179 * are interposable, but are marked as fixed (ET_EXEC). 1180 * 1181 * Thus we really don't have a clear method of deciding when the 1182 * head of a link-map is interposable. So, to be consistent, 1183 * for now only add interposers after the link-map lists head 1184 * object. 1185 */ 1186 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1187 tlmp = NEXT_RT_MAP(tlmp)) { 1188 1189 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1190 continue; 1191 1192 /* 1193 * Insert the new link-map before this non-interposer, 1194 * and indicate an interposer is found. 1195 */ 1196 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1197 PREV(lmp) = PREV(tlmp); 1198 1199 NEXT(lmp) = (Link_map *)tlmp; 1200 PREV(tlmp) = (Link_map *)lmp; 1201 1202 lmc->lc_flags |= LMC_FLG_REANALYZE; 1203 add = 0; 1204 break; 1205 } 1206 } 1207 1208 /* 1209 * Fall through to appending the new link map to the tail of the list. 1210 * If we're processing the initial objects of this link-map list, add 1211 * them to the backward compatibility list. 1212 */ 1213 if (add) { 1214 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1215 PREV(lmp) = (Link_map *)lmc->lc_tail; 1216 lmc->lc_tail = lmp; 1217 } 1218 1219 /* 1220 * Having added this link-map to a control list, indicate which control 1221 * list the link-map belongs to. Note, control list information is 1222 * always maintained as an offset, as the Alist can be reallocated. 1223 */ 1224 CNTL(lmp) = lmco; 1225 1226 /* 1227 * Indicate if an interposer is found. Note that the first object on a 1228 * link-map can be explicitly defined as an interposer so that it can 1229 * provide interposition over direct binding requests. 1230 */ 1231 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1232 lml->lm_flags |= LML_FLG_INTRPOSE; 1233 1234 /* 1235 * For backward compatibility with debuggers, the link-map list contains 1236 * pointers to the main control list. 1237 */ 1238 if (lmco == ALIST_OFF_DATA) { 1239 lml->lm_head = lmc->lc_head; 1240 lml->lm_tail = lmc->lc_tail; 1241 } 1242 } 1243 1244 /* 1245 * Delete an item from the specified link map control list. 1246 */ 1247 void 1248 lm_delete(Lm_list *lml, Rt_map *lmp) 1249 { 1250 Lm_cntl *lmc; 1251 1252 /* 1253 * If the control list pointer hasn't been initialized, this object 1254 * never got added to a link-map list. 1255 */ 1256 if (CNTL(lmp) == 0) 1257 return; 1258 1259 /* 1260 * If we're about to delete an object from the main link-map control 1261 * list, alert the debuggers that we are about to mess with this list. 1262 */ 1263 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1264 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1265 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1266 1267 /* LINTED */ 1268 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1269 1270 if (lmc->lc_head == lmp) 1271 lmc->lc_head = NEXT_RT_MAP(lmp); 1272 else 1273 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1274 1275 if (lmc->lc_tail == lmp) 1276 lmc->lc_tail = PREV_RT_MAP(lmp); 1277 else 1278 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1279 1280 /* 1281 * For backward compatibility with debuggers, the link-map list contains 1282 * pointers to the main control list. 1283 */ 1284 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1285 lml->lm_head = lmc->lc_head; 1286 lml->lm_tail = lmc->lc_tail; 1287 } 1288 1289 /* 1290 * Indicate we have one less object on this control list. 1291 */ 1292 (lml->lm_obj)--; 1293 } 1294 1295 /* 1296 * Move a link-map control list to another. Objects that are being relocated 1297 * are maintained on secondary control lists. Once their relocation is 1298 * complete, the entire list is appended to the previous control list, as this 1299 * list must have been the trigger for generating the new control list. 1300 */ 1301 void 1302 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1303 { 1304 Rt_map *lmp; 1305 1306 /* 1307 * If we're about to add a new family of objects to the main link-map 1308 * control list, alert the debuggers that we are about to mess with this 1309 * list. Additions of object families to the main link-map control 1310 * list occur during lazy loading, filtering and dlopen(). 1311 */ 1312 if ((plmco == ALIST_OFF_DATA) && 1313 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1314 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1315 1316 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1317 1318 /* 1319 * Indicate each new link-map has been moved to the previous link-map 1320 * control list. 1321 */ 1322 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1323 CNTL(lmp) = plmco; 1324 1325 /* 1326 * If these objects are being added to the main link-map 1327 * control list, indicate that there are init's available 1328 * for harvesting. 1329 */ 1330 if (plmco == ALIST_OFF_DATA) { 1331 lml->lm_init++; 1332 lml->lm_flags |= LML_FLG_OBJADDED; 1333 } 1334 } 1335 1336 /* 1337 * Move the new link-map control list, to the callers link-map control 1338 * list. 1339 */ 1340 if (plmc->lc_head == NULL) { 1341 plmc->lc_head = nlmc->lc_head; 1342 PREV(nlmc->lc_head) = NULL; 1343 } else { 1344 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1345 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1346 } 1347 1348 plmc->lc_tail = nlmc->lc_tail; 1349 nlmc->lc_head = nlmc->lc_tail = NULL; 1350 1351 /* 1352 * For backward compatibility with debuggers, the link-map list contains 1353 * pointers to the main control list. 1354 */ 1355 if (plmco == ALIST_OFF_DATA) { 1356 lml->lm_head = plmc->lc_head; 1357 lml->lm_tail = plmc->lc_tail; 1358 } 1359 } 1360 1361 /* 1362 * Create, or assign a link-map control list. Each link-map list contains a 1363 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1364 * description in include/rtld.h). During the initial construction of a 1365 * process, objects are added to this main control list. This control list is 1366 * never deleted, unless an alternate link-map list has been requested (say for 1367 * auditors), and the associated objects could not be loaded or relocated. 1368 * 1369 * Once relocation has started, any lazy loadable objects, or filtees, are 1370 * processed on a new, temporary control list. Only when these objects have 1371 * been fully relocated, are they moved to the main link-map control list. 1372 * Once the objects are moved, this temporary control list is deleted (see 1373 * remove_cntl()). 1374 * 1375 * A dlopen() always requires a new temporary link-map control list. 1376 * Typically, a dlopen() occurs on a link-map list that had already started 1377 * relocation, however, auditors can dlopen() objects on the main link-map 1378 * list while under initial construction, before any relocation has begun. 1379 * Hence, dlopen() requests are explicitly flagged. 1380 */ 1381 Aliste 1382 create_cntl(Lm_list *lml, int dlopen) 1383 { 1384 /* 1385 * If the head link-map object has already been relocated, create a 1386 * new, temporary, control list. 1387 */ 1388 if (dlopen || (lml->lm_head == NULL) || 1389 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1390 Lm_cntl *lmc; 1391 1392 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1393 AL_CNT_LMLISTS)) == NULL) 1394 return (NULL); 1395 1396 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1397 } 1398 1399 return (ALIST_OFF_DATA); 1400 } 1401 1402 /* 1403 * Environment variables can have a variety of defined permutations, and thus 1404 * the following infrastructure exists to allow this variety and to select the 1405 * required definition. 1406 * 1407 * Environment variables can be defined as 32- or 64-bit specific, and if so 1408 * they will take precedence over any instruction set neutral form. Typically 1409 * this is only useful when the environment value is an informational string. 1410 * 1411 * Environment variables may be obtained from the standard user environment or 1412 * from a configuration file. The latter provides a fallback if no user 1413 * environment setting is found, and can take two forms: 1414 * 1415 * - a replaceable definition - this will be used if no user environment 1416 * setting has been seen, or 1417 * 1418 * - an permanent definition - this will be used no matter what user 1419 * environment setting is seen. In the case of list variables it will be 1420 * appended to any process environment setting seen. 1421 * 1422 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1423 * override any replaceable environment variables from a configuration file. 1424 */ 1425 static u_longlong_t rplgen; /* replaceable generic */ 1426 /* variables */ 1427 static u_longlong_t rplisa; /* replaceable ISA specific */ 1428 /* variables */ 1429 static u_longlong_t prmgen; /* permanent generic */ 1430 /* variables */ 1431 static u_longlong_t prmisa; /* permanent ISA specific */ 1432 /* variables */ 1433 1434 /* 1435 * Classify an environment variables type. 1436 */ 1437 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1438 /* the wrong ISA */ 1439 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1440 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1441 /* config file */ 1442 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1443 1444 /* 1445 * Identify all environment variables. 1446 */ 1447 #define ENV_FLG_AUDIT 0x0000000001ULL 1448 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1449 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1450 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1451 #define ENV_FLG_BINDINGS 0x0000000010ULL 1452 1453 #define ENV_FLG_CONFGEN 0x0000000040ULL 1454 #define ENV_FLG_CONFIG 0x0000000080ULL 1455 #define ENV_FLG_DEBUG 0x0000000100ULL 1456 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1457 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1458 #define ENV_FLG_FLAGS 0x0000000800ULL 1459 #define ENV_FLG_INIT 0x0000001000ULL 1460 #define ENV_FLG_LIBPATH 0x0000002000ULL 1461 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1462 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1463 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1464 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1465 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1466 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1467 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1468 #define ENV_FLG_NODIRECT 0x0000200000ULL 1469 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1470 #define ENV_FLG_NOLAZY 0x0000800000ULL 1471 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1472 #define ENV_FLG_NOVERSION 0x0002000000ULL 1473 #define ENV_FLG_PRELOAD 0x0004000000ULL 1474 #define ENV_FLG_PROFILE 0x0008000000ULL 1475 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1476 #define ENV_FLG_SIGNAL 0x0020000000ULL 1477 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1478 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1479 #define ENV_FLG_UNREF 0x0100000000ULL 1480 #define ENV_FLG_UNUSED 0x0200000000ULL 1481 #define ENV_FLG_VERBOSE 0x0400000000ULL 1482 #define ENV_FLG_WARN 0x0800000000ULL 1483 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1484 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1485 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1486 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1487 1488 #define SEL_REPLACE 0x0001 1489 #define SEL_PERMANT 0x0002 1490 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1491 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1492 #define SEL_ACT_STR 0x0400 /* setting string value */ 1493 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1494 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1495 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1496 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1497 1498 /* 1499 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1500 * and len specifies its length (comparing a strings length before the string 1501 * itself speed things up). s2 points to the token itself which has already 1502 * had any leading white-space removed. 1503 */ 1504 static void 1505 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1506 Word *lmtflags, uint_t env_flags, int aout) 1507 { 1508 u_longlong_t variable = 0; 1509 ushort_t select = 0; 1510 const char **str; 1511 Word val = 0; 1512 1513 /* 1514 * Determine whether we're dealing with a replaceable or permanent 1515 * string. 1516 */ 1517 if (env_flags & ENV_TYP_PERMANT) { 1518 /* 1519 * If the string is from a configuration file and defined as 1520 * permanent, assign it as permanent. 1521 */ 1522 select |= SEL_PERMANT; 1523 } else 1524 select |= SEL_REPLACE; 1525 1526 /* 1527 * Parse the variable given. 1528 * 1529 * The LD_AUDIT family. 1530 */ 1531 if (*s1 == 'A') { 1532 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1533 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1534 /* 1535 * Replaceable and permanent audit objects can exist. 1536 */ 1537 select |= SEL_ACT_STR; 1538 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1539 variable = ENV_FLG_AUDIT; 1540 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1541 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1542 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1543 /* 1544 * A specialized variable for plt_exit() use, not 1545 * documented for general use. 1546 */ 1547 select |= SEL_ACT_SPEC_2; 1548 variable = ENV_FLG_AUDIT_ARGS; 1549 } 1550 } 1551 /* 1552 * The LD_BIND family. 1553 */ 1554 else if (*s1 == 'B') { 1555 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1556 MSG_ORIG(MSG_LD_BIND_LAZY), 1557 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1558 select |= SEL_ACT_RT2; 1559 val = RT_FL2_BINDLAZY; 1560 variable = ENV_FLG_BIND_LAZY; 1561 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1562 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1563 select |= SEL_ACT_RT2; 1564 val = RT_FL2_BINDNOW; 1565 variable = ENV_FLG_BIND_NOW; 1566 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1568 /* 1569 * Another trick, enabled to help debug AOUT 1570 * applications under BCP, but not documented for 1571 * general use. 1572 */ 1573 select |= SEL_ACT_RT; 1574 val = RT_FL_NOBIND; 1575 variable = ENV_FLG_BIND_NOT; 1576 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1577 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1578 /* 1579 * This variable is simply for backward compatibility. 1580 * If this and LD_DEBUG are both specified, only one of 1581 * the strings is going to get processed. 1582 */ 1583 select |= SEL_ACT_SPEC_2; 1584 variable = ENV_FLG_BINDINGS; 1585 } 1586 } 1587 /* 1588 * LD_CONFIG family. 1589 */ 1590 else if (*s1 == 'C') { 1591 if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1592 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1593 /* 1594 * Set by crle(1) to indicate it's building a 1595 * configuration file, not documented for general use. 1596 */ 1597 select |= SEL_ACT_SPEC_2; 1598 variable = ENV_FLG_CONFGEN; 1599 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1600 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1601 /* 1602 * Secure applications must use a default configuration 1603 * file. A setting from a configuration file doesn't 1604 * make sense (given we must be reading a configuration 1605 * file to have gotten this). 1606 */ 1607 if ((rtld_flags & RT_FL_SECURE) || 1608 (env_flags & ENV_TYP_CONFIG)) 1609 return; 1610 select |= SEL_ACT_STR; 1611 str = &config->c_name; 1612 variable = ENV_FLG_CONFIG; 1613 } 1614 } 1615 /* 1616 * The LD_DEBUG family and LD_DEMANGLE. 1617 */ 1618 else if (*s1 == 'D') { 1619 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1620 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1621 select |= SEL_ACT_STR; 1622 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1623 variable = ENV_FLG_DEBUG; 1624 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1625 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1626 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1627 select |= SEL_ACT_STR; 1628 str = &dbg_file; 1629 variable = ENV_FLG_DEBUG_OUTPUT; 1630 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1631 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1632 select |= SEL_ACT_RT; 1633 val = RT_FL_DEMANGLE; 1634 variable = ENV_FLG_DEMANGLE; 1635 } 1636 } 1637 /* 1638 * LD_FLAGS - collect the best variable definition. On completion of 1639 * environment variable processing pass the result to ld_flags_env() 1640 * where they'll be decomposed and passed back to this routine. 1641 */ 1642 else if (*s1 == 'F') { 1643 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1644 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1645 select |= SEL_ACT_SPEC_1; 1646 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1647 &prm_ldflags; 1648 variable = ENV_FLG_FLAGS; 1649 } 1650 } 1651 /* 1652 * LD_INIT (internal, used by ldd(1)). 1653 */ 1654 else if (*s1 == 'I') { 1655 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1656 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1657 select |= SEL_ACT_LML; 1658 val = LML_FLG_TRC_INIT; 1659 variable = ENV_FLG_INIT; 1660 } 1661 } 1662 /* 1663 * The LD_LIBRARY_PATH and LD_LOAD families. 1664 */ 1665 else if (*s1 == 'L') { 1666 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1667 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1668 select |= SEL_ACT_SPEC_1; 1669 str = (select & SEL_REPLACE) ? &rpl_libpath : 1670 &prm_libpath; 1671 variable = ENV_FLG_LIBPATH; 1672 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1673 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1674 /* 1675 * Internal use by crle(1), not documented for general 1676 * use. 1677 */ 1678 select |= SEL_ACT_LML; 1679 val = LML_FLG_LOADAVAIL; 1680 variable = ENV_FLG_LOADAVAIL; 1681 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1682 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1683 select |= SEL_ACT_SPEC_2; 1684 variable = ENV_FLG_LOADFLTR; 1685 } 1686 } 1687 /* 1688 * The LD_NO family. 1689 */ 1690 else if (*s1 == 'N') { 1691 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1692 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1693 select |= SEL_ACT_RT; 1694 val = RT_FL_NOAUDIT; 1695 variable = ENV_FLG_NOAUDIT; 1696 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1697 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1698 select |= SEL_ACT_RT; 1699 val = RT_FL_NOAUXFLTR; 1700 variable = ENV_FLG_NOAUXFLTR; 1701 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1703 select |= SEL_ACT_RT; 1704 val = RT_FL_NOBAPLT; 1705 variable = ENV_FLG_NOBAPLT; 1706 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1707 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1708 select |= SEL_ACT_RT; 1709 val = RT_FL_NOCFG; 1710 variable = ENV_FLG_NOCONFIG; 1711 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1712 MSG_ORIG(MSG_LD_NODIRCONFIG), 1713 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1714 select |= SEL_ACT_RT; 1715 val = RT_FL_NODIRCFG; 1716 variable = ENV_FLG_NODIRCONFIG; 1717 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1718 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1719 select |= SEL_ACT_LMLT; 1720 val = LML_TFLG_NODIRECT; 1721 variable = ENV_FLG_NODIRECT; 1722 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1723 MSG_ORIG(MSG_LD_NOENVCONFIG), 1724 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1725 select |= SEL_ACT_RT; 1726 val = RT_FL_NOENVCFG; 1727 variable = ENV_FLG_NOENVCONFIG; 1728 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1729 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1730 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1731 select |= SEL_ACT_RT2; 1732 val = RT_FL2_NOFLTCFG; 1733 variable = ENV_FLG_NOFLTCONFIG; 1734 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1735 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1736 select |= SEL_ACT_LMLT; 1737 val = LML_TFLG_NOLAZYLD; 1738 variable = ENV_FLG_NOLAZY; 1739 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1740 MSG_ORIG(MSG_LD_NOOBJALTER), 1741 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1742 select |= SEL_ACT_RT; 1743 val = RT_FL_NOOBJALT; 1744 variable = ENV_FLG_NOOBJALTER; 1745 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1746 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1747 select |= SEL_ACT_RT; 1748 val = RT_FL_NOVERSION; 1749 variable = ENV_FLG_NOVERSION; 1750 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1751 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1752 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1753 /* 1754 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1755 */ 1756 select |= SEL_ACT_LML; 1757 val = LML_FLG_TRC_NOUNRESWEAK; 1758 variable = ENV_FLG_NOUNRESWEAK; 1759 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1760 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1761 select |= SEL_ACT_LML; 1762 val = LML_FLG_TRC_NOPAREXT; 1763 variable = ENV_FLG_NOPAREXT; 1764 } 1765 } 1766 /* 1767 * LD_PRELOAD and LD_PROFILE family. 1768 */ 1769 else if (*s1 == 'P') { 1770 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1771 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1772 select |= SEL_ACT_STR; 1773 str = (select & SEL_REPLACE) ? &rpl_preload : 1774 &prm_preload; 1775 variable = ENV_FLG_PRELOAD; 1776 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1777 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1778 /* 1779 * Only one user library can be profiled at a time. 1780 */ 1781 select |= SEL_ACT_SPEC_2; 1782 variable = ENV_FLG_PROFILE; 1783 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1784 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1785 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1786 /* 1787 * Only one user library can be profiled at a time. 1788 */ 1789 select |= SEL_ACT_STR; 1790 str = &profile_out; 1791 variable = ENV_FLG_PROFILE_OUTPUT; 1792 } 1793 } 1794 /* 1795 * LD_SIGNAL. 1796 */ 1797 else if (*s1 == 'S') { 1798 if (rtld_flags & RT_FL_SECURE) 1799 return; 1800 if ((len == MSG_LD_SIGNAL_SIZE) && 1801 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1802 MSG_LD_SIGNAL_SIZE) == 0)) { 1803 select |= SEL_ACT_SPEC_2; 1804 variable = ENV_FLG_SIGNAL; 1805 } 1806 } 1807 /* 1808 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1809 * the key to enabling all other ldd(1) specific environment variables. 1810 * In case an auditor is called, which in turn might exec(2) a 1811 * subprocess, this variable is disabled, so that any subprocess 1812 * escapes ldd(1) processing. 1813 */ 1814 else if (*s1 == 'T') { 1815 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1816 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1817 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1818 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1819 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1820 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1821 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1822 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1823 char *s0 = (char *)s1; 1824 1825 select |= SEL_ACT_SPEC_2; 1826 variable = ENV_FLG_TRACE_OBJS; 1827 1828 #if defined(__sparc) || defined(__x86) 1829 /* 1830 * The simplest way to "disable" this variable is to 1831 * truncate this string to "LD_'\0'". This string is 1832 * ignored by any ld.so.1 environment processing. 1833 * Use of such interfaces as unsetenv(3c) are overkill, 1834 * and would drag too much libc implementation detail 1835 * into ld.so.1. 1836 */ 1837 *s0 = '\0'; 1838 #else 1839 /* 1840 * Verify that the above write is appropriate for any new platforms. 1841 */ 1842 #error unsupported architecture! 1843 #endif 1844 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1845 MSG_ORIG(MSG_LD_TRACE_PTHS), 1846 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1847 select |= SEL_ACT_LML; 1848 val = LML_FLG_TRC_SEARCH; 1849 variable = ENV_FLG_TRACE_PTHS; 1850 } 1851 } 1852 /* 1853 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1854 */ 1855 else if (*s1 == 'U') { 1856 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1857 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1858 select |= SEL_ACT_LML; 1859 val = LML_FLG_TRC_UNREF; 1860 variable = ENV_FLG_UNREF; 1861 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1862 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1863 select |= SEL_ACT_LML; 1864 val = LML_FLG_TRC_UNUSED; 1865 variable = ENV_FLG_UNUSED; 1866 } 1867 } 1868 /* 1869 * LD_VERBOSE (internal, used by ldd(1)). 1870 */ 1871 else if (*s1 == 'V') { 1872 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1873 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1874 select |= SEL_ACT_LML; 1875 val = LML_FLG_TRC_VERBOSE; 1876 variable = ENV_FLG_VERBOSE; 1877 } 1878 } 1879 /* 1880 * LD_WARN (internal, used by ldd(1)). 1881 */ 1882 else if (*s1 == 'W') { 1883 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1884 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1885 select |= SEL_ACT_LML; 1886 val = LML_FLG_TRC_WARN; 1887 variable = ENV_FLG_WARN; 1888 } 1889 } 1890 1891 if (variable == 0) 1892 return; 1893 1894 /* 1895 * If the variable is already processed with and ISA specific variable, 1896 * no further processing is needed. 1897 */ 1898 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1899 ((select & SEL_PERMANT) && (prmisa & variable))) 1900 return; 1901 1902 /* 1903 * Mark the appropriate variables. 1904 */ 1905 if (env_flags & ENV_TYP_ISA) { 1906 /* 1907 * This is an ISA setting. 1908 */ 1909 if (select & SEL_REPLACE) { 1910 if (rplisa & variable) 1911 return; 1912 rplisa |= variable; 1913 } else { 1914 prmisa |= variable; 1915 } 1916 } else { 1917 /* 1918 * This is a non-ISA setting. 1919 */ 1920 if (select & SEL_REPLACE) { 1921 if (rplgen & variable) 1922 return; 1923 rplgen |= variable; 1924 } else 1925 prmgen |= variable; 1926 } 1927 1928 /* 1929 * Now perform the setting. 1930 */ 1931 if (select & SEL_ACT_RT) { 1932 if (s2) 1933 rtld_flags |= val; 1934 else 1935 rtld_flags &= ~val; 1936 } else if (select & SEL_ACT_RT2) { 1937 if (s2) 1938 rtld_flags2 |= val; 1939 else 1940 rtld_flags2 &= ~val; 1941 } else if (select & SEL_ACT_STR) { 1942 *str = s2; 1943 } else if (select & SEL_ACT_LML) { 1944 if (s2) 1945 *lmflags |= val; 1946 else 1947 *lmflags &= ~val; 1948 } else if (select & SEL_ACT_LMLT) { 1949 if (s2) 1950 *lmtflags |= val; 1951 else 1952 *lmtflags &= ~val; 1953 } else if (select & SEL_ACT_SPEC_1) { 1954 /* 1955 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1956 */ 1957 *str = s2; 1958 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1959 if (s2) { 1960 if (variable == ENV_FLG_FLAGS) 1961 env_info |= ENV_INF_FLAGCFG; 1962 else 1963 env_info |= ENV_INF_PATHCFG; 1964 } else { 1965 if (variable == ENV_FLG_FLAGS) 1966 env_info &= ~ENV_INF_FLAGCFG; 1967 else 1968 env_info &= ~ENV_INF_PATHCFG; 1969 } 1970 } 1971 } else if (select & SEL_ACT_SPEC_2) { 1972 /* 1973 * variables can be: ENV_FLG_ 1974 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 1975 * SIGNAL, TRACE_OBJS 1976 */ 1977 switch (variable) { 1978 case ENV_FLG_AUDIT_ARGS: 1979 if (s2) { 1980 audit_argcnt = atoi(s2); 1981 audit_argcnt += audit_argcnt % 2; 1982 } else 1983 audit_argcnt = 0; 1984 break; 1985 case ENV_FLG_BINDINGS: 1986 if (s2) 1987 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1988 else 1989 rpl_debug = NULL; 1990 break; 1991 case ENV_FLG_CONFGEN: 1992 if (s2) { 1993 rtld_flags |= RT_FL_CONFGEN; 1994 *lmflags |= LML_FLG_IGNRELERR; 1995 } else { 1996 rtld_flags &= ~RT_FL_CONFGEN; 1997 *lmflags &= ~LML_FLG_IGNRELERR; 1998 } 1999 break; 2000 case ENV_FLG_LOADFLTR: 2001 if (s2) { 2002 *lmtflags |= LML_TFLG_LOADFLTR; 2003 if (*s2 == '2') 2004 rtld_flags |= RT_FL_WARNFLTR; 2005 } else { 2006 *lmtflags &= ~LML_TFLG_LOADFLTR; 2007 rtld_flags &= ~RT_FL_WARNFLTR; 2008 } 2009 break; 2010 case ENV_FLG_PROFILE: 2011 profile_name = s2; 2012 if (s2) { 2013 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2014 return; 2015 } 2016 /* BEGIN CSTYLED */ 2017 if (rtld_flags & RT_FL_SECURE) { 2018 profile_lib = 2019 #if defined(_ELF64) 2020 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2021 #else 2022 MSG_ORIG(MSG_PTH_LDPROFSE); 2023 #endif 2024 } else { 2025 profile_lib = 2026 #if defined(_ELF64) 2027 MSG_ORIG(MSG_PTH_LDPROF_64); 2028 #else 2029 MSG_ORIG(MSG_PTH_LDPROF); 2030 #endif 2031 } 2032 /* END CSTYLED */ 2033 } else 2034 profile_lib = NULL; 2035 break; 2036 case ENV_FLG_SIGNAL: 2037 killsig = s2 ? atoi(s2) : SIGKILL; 2038 break; 2039 case ENV_FLG_TRACE_OBJS: 2040 if (s2) { 2041 *lmflags |= LML_FLG_TRC_ENABLE; 2042 if (*s2 == '2') 2043 *lmflags |= LML_FLG_TRC_LDDSTUB; 2044 } else 2045 *lmflags &= 2046 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2047 break; 2048 } 2049 } 2050 } 2051 2052 /* 2053 * Determine whether we have an architecture specific environment variable. 2054 * If we do, and we're the wrong architecture, it'll just get ignored. 2055 * Otherwise the variable is processed in it's architecture neutral form. 2056 */ 2057 static int 2058 ld_arch_env(const char *s1, size_t *len) 2059 { 2060 size_t _len = *len - 3; 2061 2062 if (s1[_len++] == '_') { 2063 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2064 #if defined(_ELF64) 2065 return (ENV_TYP_IGNORE); 2066 #else 2067 *len = *len - 3; 2068 return (ENV_TYP_ISA); 2069 #endif 2070 } 2071 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2072 #if defined(_ELF64) 2073 *len = *len - 3; 2074 return (ENV_TYP_ISA); 2075 #else 2076 return (ENV_TYP_IGNORE); 2077 #endif 2078 } 2079 } 2080 return (0); 2081 } 2082 2083 2084 /* 2085 * Process an LD_FLAGS environment variable. The value can be a comma 2086 * separated set of tokens, which are sent (in upper case) into the generic 2087 * LD_XXXX environment variable engine. For example: 2088 * 2089 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2090 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2091 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2092 * or 2093 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2094 */ 2095 static int 2096 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2097 uint_t env_flags, int aout) 2098 { 2099 char *nstr, *sstr, *estr = NULL; 2100 size_t nlen, len; 2101 2102 if (str == NULL) 2103 return (0); 2104 2105 /* 2106 * Create a new string as we're going to transform the token(s) into 2107 * uppercase and separate tokens with nulls. 2108 */ 2109 len = strlen(str); 2110 if ((nstr = malloc(len + 1)) == NULL) 2111 return (1); 2112 (void) strcpy(nstr, str); 2113 2114 for (sstr = nstr; sstr; sstr++, len--) { 2115 int flags; 2116 2117 if ((*sstr != '\0') && (*sstr != ',')) { 2118 if (estr == NULL) { 2119 if (*sstr == '=') 2120 estr = sstr; 2121 else { 2122 /* 2123 * Translate token to uppercase. Don't 2124 * use toupper(3C) as including this 2125 * code doubles the size of ld.so.1. 2126 */ 2127 if ((*sstr >= 'a') && (*sstr <= 'z')) 2128 *sstr = *sstr - ('a' - 'A'); 2129 } 2130 } 2131 continue; 2132 } 2133 2134 *sstr = '\0'; 2135 if (estr) { 2136 nlen = estr - nstr; 2137 if ((*++estr == '\0') || (*estr == ',')) 2138 estr = NULL; 2139 } else 2140 nlen = sstr - nstr; 2141 2142 /* 2143 * Fabricate a boolean definition for any unqualified variable. 2144 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2145 * The value is sufficient to assert any boolean variables, plus 2146 * the term "(null)" is specifically chosen in case someone 2147 * mistakenly supplies something like LD_FLAGS=library_path. 2148 */ 2149 if (estr == NULL) 2150 estr = (char *)MSG_INTL(MSG_STR_NULL); 2151 2152 /* 2153 * Determine whether the environment variable is 32- or 64-bit 2154 * specific. The length, len, will reflect the architecture 2155 * neutral portion of the string. 2156 */ 2157 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2158 ld_generic_env(nstr, nlen, estr, lmflags, 2159 lmtflags, (env_flags | flags), aout); 2160 } 2161 if (len == 0) 2162 return (0); 2163 2164 nstr = sstr + 1; 2165 estr = NULL; 2166 } 2167 return (0); 2168 } 2169 2170 2171 /* 2172 * Process a single environment string. Only strings starting with `LD_' are 2173 * reserved for our use. By convention, all strings should be of the form 2174 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2175 * functionality is enabled. Also pick off applicable locale variables. 2176 */ 2177 #define LOC_LANG 1 2178 #define LOC_MESG 2 2179 #define LOC_ALL 3 2180 2181 static void 2182 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2183 int aout) 2184 { 2185 const char *s2; 2186 static size_t loc = 0; 2187 2188 if (*s1++ != 'L') 2189 return; 2190 2191 /* 2192 * See if we have any locale environment settings. These environment 2193 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2194 * is higher than LANG. 2195 */ 2196 s2 = s1; 2197 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2198 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2199 s2 += MSG_LC_ALL_SIZE; 2200 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2201 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2202 loc = LOC_ALL; 2203 } 2204 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2205 MSG_LC_MESSAGES_SIZE) == 0) { 2206 s2 += MSG_LC_MESSAGES_SIZE; 2207 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2208 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2209 loc = LOC_MESG; 2210 } 2211 } 2212 return; 2213 } 2214 2215 s2 = s1; 2216 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2217 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2218 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2219 loc = LOC_LANG; 2220 return; 2221 } 2222 2223 /* 2224 * Pick off any LD_XXXX environment variables. 2225 */ 2226 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2227 size_t len; 2228 int flags; 2229 2230 /* 2231 * In a branded process we must ignore all LD_XXXX env vars 2232 * because they are intended for the brand's linker. 2233 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2234 */ 2235 if (rtld_flags2 & RT_FL2_BRANDED) { 2236 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2237 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2238 return; 2239 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2240 } 2241 2242 /* 2243 * Environment variables with no value (ie. LD_XXXX=) typically 2244 * have no impact, however if environment variables are defined 2245 * within a configuration file, these null user settings can be 2246 * used to disable any configuration replaceable definitions. 2247 */ 2248 if ((s2 = strchr(s1, '=')) == NULL) { 2249 len = strlen(s1); 2250 s2 = NULL; 2251 } else if (*++s2 == '\0') { 2252 len = strlen(s1) - 1; 2253 s2 = NULL; 2254 } else { 2255 len = s2 - s1 - 1; 2256 while (conv_strproc_isspace(*s2)) 2257 s2++; 2258 } 2259 2260 /* 2261 * Determine whether the environment variable is 32- or 64-bit 2262 * specific. The length, len, will reflect the architecture 2263 * neutral portion of the string. 2264 */ 2265 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2266 return; 2267 env_flags |= flags; 2268 2269 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2270 } 2271 } 2272 2273 /* 2274 * Internal getenv routine. Called immediately after ld.so.1 initializes 2275 * itself. 2276 */ 2277 int 2278 readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout) 2279 { 2280 char *locale; 2281 2282 if (envp == NULL) 2283 return (0); 2284 2285 while (*envp != NULL) 2286 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2287 2288 /* 2289 * Having collected the best representation of any LD_FLAGS, process 2290 * these strings. 2291 */ 2292 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2293 return (1); 2294 2295 /* 2296 * Don't allow environment controlled auditing when tracing or if 2297 * explicitly disabled. Trigger all tracing modes from 2298 * LML_FLG_TRC_ENABLE. 2299 */ 2300 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2301 rpl_audit = profile_lib = profile_name = NULL; 2302 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2303 *lmflags &= ~LML_MSK_TRC; 2304 2305 /* 2306 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2307 */ 2308 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2309 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2310 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2311 2312 /* 2313 * When using ldd(1) -r or -d against an executable, assert -p. 2314 */ 2315 if ((*lmflags & 2316 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2317 *lmflags |= LML_FLG_TRC_NOPAREXT; 2318 2319 /* 2320 * If we have a locale setting make sure its worth processing further. 2321 * C and POSIX locales don't need any processing. In addition, to 2322 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2323 * the locale to contain a segment that leads upward in the file system 2324 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2325 * the /usr/lib/locale hierarchy, there is no need to extensively 2326 * validate the mode or ownership of any message file (as libc's 2327 * generic handling of message files does). Duplicate the string so 2328 * that new locale setting can generically cleanup any previous locales. 2329 */ 2330 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2331 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2332 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2333 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2334 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2335 else 2336 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2337 } 2338 return (0); 2339 } 2340 2341 /* 2342 * Configuration environment processing. Called after the a.out has been 2343 * processed (as the a.out can specify its own configuration file). 2344 */ 2345 int 2346 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2347 { 2348 Word *lmflags = &(lml_main.lm_flags); 2349 Word *lmtflags = &(lml_main.lm_tflags); 2350 2351 if (envtbl == NULL) 2352 return (0); 2353 2354 while (envtbl->env_str) { 2355 uint_t env_flags = ENV_TYP_CONFIG; 2356 2357 if (envtbl->env_flags & RTC_ENV_PERMANT) 2358 env_flags |= ENV_TYP_PERMANT; 2359 2360 ld_str_env((const char *)(envtbl->env_str + addr), 2361 lmflags, lmtflags, env_flags, 0); 2362 envtbl++; 2363 } 2364 2365 /* 2366 * Having collected the best representation of any LD_FLAGS, process 2367 * these strings. 2368 */ 2369 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2370 return (1); 2371 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2372 aout) == 1) 2373 return (1); 2374 2375 /* 2376 * Don't allow environment controlled auditing when tracing or if 2377 * explicitly disabled. Trigger all tracing modes from 2378 * LML_FLG_TRC_ENABLE. 2379 */ 2380 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2381 prm_audit = profile_lib = profile_name = NULL; 2382 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2383 *lmflags &= ~LML_MSK_TRC; 2384 2385 return (0); 2386 } 2387 2388 int 2389 dowrite(Prfbuf * prf) 2390 { 2391 /* 2392 * We do not have a valid file descriptor, so we are unable 2393 * to flush the buffer. 2394 */ 2395 if (prf->pr_fd == -1) 2396 return (0); 2397 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2398 prf->pr_cur = prf->pr_buf; 2399 return (1); 2400 } 2401 2402 /* 2403 * Simplified printing. The following conversion specifications are supported: 2404 * 2405 * % [#] [-] [min field width] [. precision] s|d|x|c 2406 * 2407 * 2408 * dorprf takes the output buffer in the form of Prfbuf which permits 2409 * the verification of the output buffer size and the concatenation 2410 * of data to an already existing output buffer. The Prfbuf 2411 * structure contains the following: 2412 * 2413 * pr_buf pointer to the beginning of the output buffer. 2414 * pr_cur pointer to the next available byte in the output buffer. By 2415 * setting pr_cur ahead of pr_buf you can append to an already 2416 * existing buffer. 2417 * pr_len the size of the output buffer. By setting pr_len to '0' you 2418 * disable protection from overflows in the output buffer. 2419 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2420 * output to. If pr_fd is set to '-1' then it's assumed there is 2421 * no output buffer, and doprf() will return with an error to 2422 * indicate an output buffer overflow. If pr_fd is > -1 then when 2423 * the output buffer is filled it will be flushed to pr_fd and will 2424 * then be available for additional data. 2425 */ 2426 #define FLG_UT_MINUS 0x0001 /* - */ 2427 #define FLG_UT_SHARP 0x0002 /* # */ 2428 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2429 2430 /* 2431 * This macro is for use from within doprf only. It is to be used for checking 2432 * the output buffer size and placing characters into the buffer. 2433 */ 2434 #define PUTC(c) \ 2435 { \ 2436 char tmpc; \ 2437 \ 2438 tmpc = (c); \ 2439 if (bufsiz && (bp >= bufend)) { \ 2440 prf->pr_cur = bp; \ 2441 if (dowrite(prf) == 0) \ 2442 return (0); \ 2443 bp = prf->pr_cur; \ 2444 } \ 2445 *bp++ = tmpc; \ 2446 } 2447 2448 /* 2449 * Define a local buffer size for building a numeric value - large enough to 2450 * hold a 64-bit value. 2451 */ 2452 #define NUM_SIZE 22 2453 2454 size_t 2455 doprf(const char *format, va_list args, Prfbuf *prf) 2456 { 2457 char c; 2458 char *bp = prf->pr_cur; 2459 char *bufend = prf->pr_buf + prf->pr_len; 2460 size_t bufsiz = prf->pr_len; 2461 2462 while ((c = *format++) != '\0') { 2463 if (c != '%') { 2464 PUTC(c); 2465 } else { 2466 int base = 0, flag = 0, width = 0, prec = 0; 2467 size_t _i; 2468 int _c, _n; 2469 char *_s; 2470 int ls = 0; 2471 again: 2472 c = *format++; 2473 switch (c) { 2474 case '-': 2475 flag |= FLG_UT_MINUS; 2476 goto again; 2477 case '#': 2478 flag |= FLG_UT_SHARP; 2479 goto again; 2480 case '.': 2481 flag |= FLG_UT_DOTSEEN; 2482 goto again; 2483 case '0': 2484 case '1': 2485 case '2': 2486 case '3': 2487 case '4': 2488 case '5': 2489 case '6': 2490 case '7': 2491 case '8': 2492 case '9': 2493 if (flag & FLG_UT_DOTSEEN) 2494 prec = (prec * 10) + c - '0'; 2495 else 2496 width = (width * 10) + c - '0'; 2497 goto again; 2498 case 'x': 2499 case 'X': 2500 base = 16; 2501 break; 2502 case 'd': 2503 case 'D': 2504 case 'u': 2505 base = 10; 2506 flag &= ~FLG_UT_SHARP; 2507 break; 2508 case 'l': 2509 base = 10; 2510 ls++; /* number of l's (long or long long) */ 2511 if ((*format == 'l') || 2512 (*format == 'd') || (*format == 'D') || 2513 (*format == 'x') || (*format == 'X') || 2514 (*format == 'o') || (*format == 'O') || 2515 (*format == 'u') || (*format == 'U')) 2516 goto again; 2517 break; 2518 case 'o': 2519 case 'O': 2520 base = 8; 2521 break; 2522 case 'c': 2523 _c = va_arg(args, int); 2524 2525 for (_i = 24; _i > 0; _i -= 8) { 2526 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2527 PUTC(c); 2528 } 2529 } 2530 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2531 PUTC(c); 2532 } 2533 break; 2534 case 's': 2535 _s = va_arg(args, char *); 2536 _i = strlen(_s); 2537 /* LINTED */ 2538 _n = (int)(width - _i); 2539 if (!prec) 2540 /* LINTED */ 2541 prec = (int)_i; 2542 2543 if (width && !(flag & FLG_UT_MINUS)) { 2544 while (_n-- > 0) 2545 PUTC(' '); 2546 } 2547 while (((c = *_s++) != 0) && prec--) { 2548 PUTC(c); 2549 } 2550 if (width && (flag & FLG_UT_MINUS)) { 2551 while (_n-- > 0) 2552 PUTC(' '); 2553 } 2554 break; 2555 case '%': 2556 PUTC('%'); 2557 break; 2558 default: 2559 break; 2560 } 2561 2562 /* 2563 * Numeric processing 2564 */ 2565 if (base) { 2566 char local[NUM_SIZE]; 2567 size_t ssize = 0, psize = 0; 2568 const char *string = 2569 MSG_ORIG(MSG_STR_HEXNUM); 2570 const char *prefix = 2571 MSG_ORIG(MSG_STR_EMPTY); 2572 u_longlong_t num; 2573 2574 switch (ls) { 2575 case 0: /* int */ 2576 num = (u_longlong_t) 2577 va_arg(args, uint_t); 2578 break; 2579 case 1: /* long */ 2580 num = (u_longlong_t) 2581 va_arg(args, ulong_t); 2582 break; 2583 case 2: /* long long */ 2584 num = va_arg(args, u_longlong_t); 2585 break; 2586 } 2587 2588 if (flag & FLG_UT_SHARP) { 2589 if (base == 16) { 2590 prefix = MSG_ORIG(MSG_STR_HEX); 2591 psize = 2; 2592 } else { 2593 prefix = MSG_ORIG(MSG_STR_ZERO); 2594 psize = 1; 2595 } 2596 } 2597 if ((base == 10) && (long)num < 0) { 2598 prefix = MSG_ORIG(MSG_STR_NEGATE); 2599 psize = MSG_STR_NEGATE_SIZE; 2600 num = (u_longlong_t)(-(longlong_t)num); 2601 } 2602 2603 /* 2604 * Convert the numeric value into a local 2605 * string (stored in reverse order). 2606 */ 2607 _s = local; 2608 do { 2609 *_s++ = string[num % base]; 2610 num /= base; 2611 ssize++; 2612 } while (num); 2613 2614 ASSERT(ssize < sizeof (local)); 2615 2616 /* 2617 * Provide any precision or width padding. 2618 */ 2619 if (prec) { 2620 /* LINTED */ 2621 _n = (int)(prec - ssize); 2622 while ((_n-- > 0) && 2623 (ssize < sizeof (local))) { 2624 *_s++ = '0'; 2625 ssize++; 2626 } 2627 } 2628 if (width && !(flag & FLG_UT_MINUS)) { 2629 /* LINTED */ 2630 _n = (int)(width - ssize - psize); 2631 while (_n-- > 0) { 2632 PUTC(' '); 2633 } 2634 } 2635 2636 /* 2637 * Print any prefix and the numeric string 2638 */ 2639 while (*prefix) 2640 PUTC(*prefix++); 2641 do { 2642 PUTC(*--_s); 2643 } while (_s > local); 2644 2645 /* 2646 * Provide any width padding. 2647 */ 2648 if (width && (flag & FLG_UT_MINUS)) { 2649 /* LINTED */ 2650 _n = (int)(width - ssize - psize); 2651 while (_n-- > 0) 2652 PUTC(' '); 2653 } 2654 } 2655 } 2656 } 2657 2658 PUTC('\0'); 2659 prf->pr_cur = bp; 2660 return (1); 2661 } 2662 2663 static int 2664 doprintf(const char *format, va_list args, Prfbuf *prf) 2665 { 2666 char *ocur = prf->pr_cur; 2667 2668 if (doprf(format, args, prf) == 0) 2669 return (0); 2670 /* LINTED */ 2671 return ((int)(prf->pr_cur - ocur)); 2672 } 2673 2674 /* VARARGS2 */ 2675 int 2676 sprintf(char *buf, const char *format, ...) 2677 { 2678 va_list args; 2679 int len; 2680 Prfbuf prf; 2681 2682 va_start(args, format); 2683 prf.pr_buf = prf.pr_cur = buf; 2684 prf.pr_len = 0; 2685 prf.pr_fd = -1; 2686 len = doprintf(format, args, &prf); 2687 va_end(args); 2688 2689 /* 2690 * sprintf() return value excludes the terminating null byte. 2691 */ 2692 return (len - 1); 2693 } 2694 2695 /* VARARGS3 */ 2696 int 2697 snprintf(char *buf, size_t n, const char *format, ...) 2698 { 2699 va_list args; 2700 int len; 2701 Prfbuf prf; 2702 2703 va_start(args, format); 2704 prf.pr_buf = prf.pr_cur = buf; 2705 prf.pr_len = n; 2706 prf.pr_fd = -1; 2707 len = doprintf(format, args, &prf); 2708 va_end(args); 2709 2710 return (len); 2711 } 2712 2713 /* VARARGS2 */ 2714 int 2715 bufprint(Prfbuf *prf, const char *format, ...) 2716 { 2717 va_list args; 2718 int len; 2719 2720 va_start(args, format); 2721 len = doprintf(format, args, prf); 2722 va_end(args); 2723 2724 return (len); 2725 } 2726 2727 /*PRINTFLIKE1*/ 2728 int 2729 printf(const char *format, ...) 2730 { 2731 va_list args; 2732 char buffer[ERRSIZE]; 2733 Prfbuf prf; 2734 2735 va_start(args, format); 2736 prf.pr_buf = prf.pr_cur = buffer; 2737 prf.pr_len = ERRSIZE; 2738 prf.pr_fd = 1; 2739 (void) doprf(format, args, &prf); 2740 va_end(args); 2741 /* 2742 * Trim trailing '\0' form buffer 2743 */ 2744 prf.pr_cur--; 2745 return (dowrite(&prf)); 2746 } 2747 2748 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2749 2750 /* 2751 * All error messages go through eprintf(). During process initialization, 2752 * these messages are directed to the standard error, however once control has 2753 * been passed to the applications code these messages are stored in an internal 2754 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2755 * while running the application will still cause a standard error message, see 2756 * rtldexit() in this file for details. 2757 * The RT_FL_APPLIC flag serves to indicate the transition between process 2758 * initialization and when the applications code is running. 2759 */ 2760 /*PRINTFLIKE3*/ 2761 void 2762 eprintf(Lm_list *lml, Error error, const char *format, ...) 2763 { 2764 va_list args; 2765 int overflow = 0; 2766 static int lock = 0; 2767 Prfbuf prf; 2768 2769 if (lock || (nextptr == (errbuf + ERRSIZE))) 2770 return; 2771 2772 /* 2773 * Note: this lock is here to prevent the same thread from recursively 2774 * entering itself during a eprintf. ie: during eprintf malloc() fails 2775 * and we try and call eprintf ... and then malloc() fails .... 2776 */ 2777 lock = 1; 2778 2779 /* 2780 * If we have completed startup initialization, all error messages 2781 * must be saved. These are reported through dlerror(). If we're 2782 * still in the initialization stage, output the error directly and 2783 * add a newline. 2784 */ 2785 va_start(args, format); 2786 2787 prf.pr_buf = prf.pr_cur = nextptr; 2788 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2789 2790 if (!(rtld_flags & RT_FL_APPLIC)) 2791 prf.pr_fd = 2; 2792 else 2793 prf.pr_fd = -1; 2794 2795 if (error > ERR_NONE) { 2796 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2797 error = ERR_WARNING; 2798 if (error == ERR_WARNING) { 2799 if (err_strs[ERR_WARNING] == NULL) 2800 err_strs[ERR_WARNING] = 2801 MSG_INTL(MSG_ERR_WARNING); 2802 } else if (error == ERR_FATAL) { 2803 if (err_strs[ERR_FATAL] == NULL) 2804 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2805 } else if (error == ERR_ELF) { 2806 if (err_strs[ERR_ELF] == NULL) 2807 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2808 } 2809 if (procname) { 2810 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2811 rtldname, procname, err_strs[error]) == 0) 2812 overflow = 1; 2813 } else { 2814 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2815 rtldname, err_strs[error]) == 0) 2816 overflow = 1; 2817 } 2818 if (overflow == 0) { 2819 /* 2820 * Remove the terminating '\0'. 2821 */ 2822 prf.pr_cur--; 2823 } 2824 } 2825 2826 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2827 overflow = 1; 2828 2829 /* 2830 * If this is an ELF error, it will have been generated by a support 2831 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2832 * ELF error messages as it doesn't interact with libelf. Determine the 2833 * ELF error string. 2834 */ 2835 if ((overflow == 0) && (error == ERR_ELF)) { 2836 static int (*elfeno)() = 0; 2837 static const char *(*elfemg)(); 2838 const char *emsg; 2839 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2840 2841 if (NEXT(lmp) && (elfeno == 0)) { 2842 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2843 MSG_ORIG(MSG_SYM_ELFERRMSG), 2844 lmp, &dlmp)) == NULL) || 2845 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2846 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2847 elfeno = 0; 2848 } 2849 2850 /* 2851 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2852 */ 2853 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2854 prf.pr_cur--; 2855 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2856 emsg) == 0) 2857 overflow = 1; 2858 } 2859 } 2860 2861 /* 2862 * Push out any message that's been built. Note, in the case of an 2863 * overflow condition, this message may be incomplete, in which case 2864 * make sure any partial string is null terminated. 2865 */ 2866 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2867 *(prf.pr_cur - 1) = '\n'; 2868 (void) dowrite(&prf); 2869 } 2870 if (overflow) 2871 *(prf.pr_cur - 1) = '\0'; 2872 2873 DBG_CALL(Dbg_util_str(lml, nextptr)); 2874 va_end(args); 2875 2876 /* 2877 * Determine if there was insufficient space left in the buffer to 2878 * complete the message. If so, we'll have printed out as much as had 2879 * been processed if we're not yet executing the application. 2880 * Otherwise, there will be some debugging diagnostic indicating 2881 * as much of the error message as possible. Write out a final buffer 2882 * overflow diagnostic - unlocalized, so we don't chance more errors. 2883 */ 2884 if (overflow) { 2885 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2886 2887 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2888 lasterr = str; 2889 2890 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2891 (void) write(2, str, strlen(str)); 2892 (void) write(2, MSG_ORIG(MSG_STR_NL), 2893 MSG_STR_NL_SIZE); 2894 } 2895 } 2896 DBG_CALL(Dbg_util_str(lml, str)); 2897 2898 lock = 0; 2899 nextptr = errbuf + ERRSIZE; 2900 return; 2901 } 2902 2903 /* 2904 * If the application has started, then error messages are being saved 2905 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2906 * the case of a fatal error. In this case, establish the next error 2907 * pointer. If we haven't started the application, the whole message 2908 * buffer can be reused. 2909 */ 2910 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2911 lasterr = nextptr; 2912 2913 /* 2914 * Note, should we encounter an error such as ENOMEM, there may 2915 * be a number of the same error messages (ie. an operation 2916 * fails with ENOMEM, and then the attempts to construct the 2917 * error message itself, which incurs additional ENOMEM errors). 2918 * Compare any previous error message with the one we've just 2919 * created to prevent any duplication clutter. 2920 */ 2921 if ((rtld_flags & RT_FL_APPLIC) && 2922 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 2923 prevptr = nextptr; 2924 nextptr = prf.pr_cur; 2925 *nextptr = '\0'; 2926 } 2927 } 2928 lock = 0; 2929 } 2930 2931 2932 #if DEBUG 2933 /* 2934 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 2935 * details. 2936 */ 2937 int 2938 assfail(const char *a, const char *f, int l) 2939 { 2940 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2941 (void) _lwp_kill(_lwp_self(), SIGABRT); 2942 return (0); 2943 } 2944 #endif 2945 2946 /* 2947 * Exit. If we arrive here with a non zero status it's because of a fatal 2948 * error condition (most commonly a relocation error). If the application has 2949 * already had control, then the actual fatal error message will have been 2950 * recorded in the dlerror() message buffer. Print the message before really 2951 * exiting. 2952 */ 2953 void 2954 rtldexit(Lm_list * lml, int status) 2955 { 2956 if (status) { 2957 if (rtld_flags & RT_FL_APPLIC) { 2958 /* 2959 * If the error buffer has been used, write out all 2960 * pending messages - lasterr is simply a pointer to 2961 * the last message in this buffer. However, if the 2962 * buffer couldn't be created at all, lasterr points 2963 * to a constant error message string. 2964 */ 2965 if (*errbuf) { 2966 char *errptr = errbuf; 2967 char *errend = errbuf + ERRSIZE; 2968 2969 while ((errptr < errend) && *errptr) { 2970 size_t size = strlen(errptr); 2971 (void) write(2, errptr, size); 2972 (void) write(2, MSG_ORIG(MSG_STR_NL), 2973 MSG_STR_NL_SIZE); 2974 errptr += (size + 1); 2975 } 2976 } 2977 if (lasterr && ((lasterr < errbuf) || 2978 (lasterr > (errbuf + ERRSIZE)))) { 2979 (void) write(2, lasterr, strlen(lasterr)); 2980 (void) write(2, MSG_ORIG(MSG_STR_NL), 2981 MSG_STR_NL_SIZE); 2982 } 2983 } 2984 leave(lml, 0); 2985 (void) _lwp_kill(_lwp_self(), killsig); 2986 } 2987 _exit(status); 2988 } 2989 2990 /* 2991 * Map anonymous memory via MAP_ANON (added in Solaris 8). 2992 */ 2993 void * 2994 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 2995 { 2996 caddr_t va; 2997 2998 if ((va = (caddr_t)mmap(addr, len, prot, 2999 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3000 int err = errno; 3001 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3002 strerror(err)); 3003 return (MAP_FAILED); 3004 } 3005 return (va); 3006 } 3007 3008 static int nu_fd = FD_UNAVAIL; 3009 3010 void * 3011 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3012 { 3013 caddr_t va; 3014 int err; 3015 3016 if (nu_fd == FD_UNAVAIL) { 3017 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3018 O_RDONLY)) == FD_UNAVAIL) { 3019 err = errno; 3020 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3021 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3022 return (MAP_FAILED); 3023 } 3024 } 3025 3026 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3027 MAP_FAILED) { 3028 err = errno; 3029 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3030 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3031 } 3032 return (va); 3033 } 3034 3035 /* 3036 * Generic entry point from user code - simply grabs a lock, and bumps the 3037 * entrance count. 3038 */ 3039 int 3040 enter(int flags) 3041 { 3042 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3043 if (!thr_flg_nolock) 3044 (void) rt_mutex_lock(&rtldlock); 3045 if (rtld_flags & RT_FL_OPERATION) { 3046 ld_entry_cnt++; 3047 3048 /* 3049 * Reset the diagnostic time information for each new 3050 * "operation". Thus timing diagnostics are relative 3051 * to entering ld.so.1. 3052 */ 3053 if (DBG_ISTIME() && 3054 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3055 DBG_DELTATIME = DBG_TOTALTIME; 3056 DBG_ONRESET(); 3057 } 3058 } 3059 return (1); 3060 } 3061 return (0); 3062 } 3063 3064 /* 3065 * Determine whether a search path has been used. 3066 */ 3067 static void 3068 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3069 { 3070 Pdesc *pdp; 3071 Aliste idx; 3072 3073 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3074 const char *fmt, *name; 3075 3076 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3077 continue; 3078 3079 /* 3080 * If this pathname originated from an expanded token, use the 3081 * original for any diagnostic output. 3082 */ 3083 if ((name = pdp->pd_oname) == NULL) 3084 name = pdp->pd_pname; 3085 3086 if (unref == 0) { 3087 if ((*nl)++ == 0) 3088 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3089 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3090 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3091 continue; 3092 } 3093 3094 if (pdp->pd_flags & LA_SER_LIBPATH) { 3095 if (pdp->pd_flags & LA_SER_CONFIG) { 3096 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3097 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3098 else 3099 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3100 } else { 3101 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3102 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3103 else 3104 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3105 } 3106 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3107 fmt = MSG_INTL(MSG_USD_RUNPATH); 3108 } else 3109 continue; 3110 3111 if ((*nl)++ == 0) 3112 (void) printf(MSG_ORIG(MSG_STR_NL)); 3113 (void) printf(fmt, name, obj); 3114 } 3115 } 3116 3117 /* 3118 * Generate diagnostics as to whether an object has been used. A symbolic 3119 * reference that gets bound to an object marks it as used. Dependencies that 3120 * are unused when RTLD_NOW is in effect should be removed from future builds 3121 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3122 * candidates for lazy-loading. 3123 * 3124 * Unreferenced objects identify objects that are defined as dependencies but 3125 * are unreferenced by the caller. These unreferenced objects may however be 3126 * referenced by other objects within the process, and therefore don't qualify 3127 * as completely unused. They are still an unnecessary overhead. 3128 * 3129 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3130 * debugging. 3131 */ 3132 void 3133 unused(Lm_list *lml) 3134 { 3135 Rt_map *lmp; 3136 int nl = 0; 3137 Word unref, unuse; 3138 3139 /* 3140 * If we're not tracing unused references or dependencies, or debugging 3141 * there's nothing to do. 3142 */ 3143 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3144 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3145 3146 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3147 return; 3148 3149 /* 3150 * Detect unused global search paths. 3151 */ 3152 if (rpl_libdirs) 3153 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3154 if (prm_libdirs) 3155 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3156 3157 nl = 0; 3158 lmp = lml->lm_head; 3159 if (RLIST(lmp)) 3160 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3161 3162 /* 3163 * Traverse the link-maps looking for unreferenced or unused 3164 * dependencies. Ignore the first object on a link-map list, as this 3165 * is always used. 3166 */ 3167 nl = 0; 3168 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3169 /* 3170 * Determine if this object contains any runpaths that have 3171 * not been used. 3172 */ 3173 if (RLIST(lmp)) 3174 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3175 3176 /* 3177 * If tracing unreferenced objects, or under debugging, 3178 * determine whether any of this objects callers haven't 3179 * referenced it. 3180 */ 3181 if (unref || DBG_ENABLED) { 3182 Bnd_desc *bdp; 3183 Aliste idx; 3184 3185 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3186 Rt_map *clmp; 3187 3188 if (bdp->b_flags & BND_REFER) 3189 continue; 3190 3191 clmp = bdp->b_caller; 3192 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3193 continue; 3194 3195 /* BEGIN CSTYLED */ 3196 if (nl++ == 0) { 3197 if (unref) 3198 (void) printf(MSG_ORIG(MSG_STR_NL)); 3199 else 3200 DBG_CALL(Dbg_util_nl(lml, 3201 DBG_NL_STD)); 3202 } 3203 3204 if (unref) 3205 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3206 NAME(lmp), NAME(clmp)); 3207 else 3208 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3209 /* END CSTYLED */ 3210 } 3211 } 3212 3213 /* 3214 * If tracing unused objects simply display those objects that 3215 * haven't been referenced by anyone. 3216 */ 3217 if (FLAGS1(lmp) & FL1_RT_USED) 3218 continue; 3219 3220 if (nl++ == 0) { 3221 if (unref || unuse) 3222 (void) printf(MSG_ORIG(MSG_STR_NL)); 3223 else 3224 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3225 } 3226 if (CYCGROUP(lmp)) { 3227 if (unref || unuse) 3228 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3229 NAME(lmp), CYCGROUP(lmp)); 3230 else 3231 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3232 CYCGROUP(lmp))); 3233 } else { 3234 if (unref || unuse) 3235 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3236 NAME(lmp)); 3237 else 3238 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3239 } 3240 } 3241 3242 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3243 } 3244 3245 /* 3246 * Generic cleanup routine called prior to returning control to the user. 3247 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3248 * released, and any locks dropped. 3249 */ 3250 void 3251 leave(Lm_list *lml, int flags) 3252 { 3253 Lm_list *elml = lml; 3254 Rt_map *clmp; 3255 Aliste idx; 3256 3257 /* 3258 * Alert the debuggers that the link-maps are consistent. Note, in the 3259 * case of tearing down a whole link-map list, lml will be null. In 3260 * this case use the main link-map list to test for a notification. 3261 */ 3262 if (elml == NULL) 3263 elml = &lml_main; 3264 if (elml->lm_flags & LML_FLG_DBNOTIF) 3265 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3266 3267 /* 3268 * Alert any auditors that the link-maps are consistent. 3269 */ 3270 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3271 audit_activity(clmp, LA_ACT_CONSISTENT); 3272 3273 aplist_delete(elml->lm_actaudit, &idx); 3274 } 3275 3276 if (nu_fd != FD_UNAVAIL) { 3277 (void) close(nu_fd); 3278 nu_fd = FD_UNAVAIL; 3279 } 3280 3281 /* 3282 * Reinitialize error message pointer, and any overflow indication. 3283 */ 3284 nextptr = errbuf; 3285 prevptr = NULL; 3286 3287 /* 3288 * Defragment any freed memory. 3289 */ 3290 if (aplist_nitems(free_alp)) 3291 defrag(); 3292 3293 /* 3294 * Don't drop our lock if we are running on our link-map list as 3295 * there's little point in doing so since we are single-threaded. 3296 * 3297 * LML_FLG_HOLDLOCK is set for: 3298 * - The ld.so.1's link-map list. 3299 * - The auditor's link-map if the environment is pre-UPM. 3300 */ 3301 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3302 return; 3303 3304 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3305 if (!thr_flg_nolock) 3306 (void) rt_mutex_unlock(&rtldlock); 3307 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3308 } 3309 } 3310 3311 int 3312 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3313 { 3314 APlist *calp, *dalp; 3315 Aliste idx1, idx2; 3316 Grp_hdl *ghp1, *ghp2; 3317 3318 /* 3319 * An object can always find symbols within itself. 3320 */ 3321 if (clmp == dlmp) 3322 return (1); 3323 3324 /* 3325 * The search for a singleton must look in every loaded object. 3326 */ 3327 if (slflags & LKUP_SINGLETON) 3328 return (1); 3329 3330 /* 3331 * Don't allow an object to bind to an object that is being deleted 3332 * unless the binder is also being deleted. 3333 */ 3334 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3335 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3336 return (0); 3337 3338 /* 3339 * An object with world access can always bind to an object with global 3340 * visibility. 3341 */ 3342 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3343 (MODE(dlmp) & RTLD_GLOBAL)) 3344 return (1); 3345 3346 /* 3347 * An object with local access can only bind to an object that is a 3348 * member of the same group. 3349 */ 3350 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3351 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3352 return (0); 3353 3354 /* 3355 * Traverse the list of groups the caller is a part of. 3356 */ 3357 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3358 /* 3359 * If we're testing for the ability of two objects to bind to 3360 * each other regardless of a specific group, ignore that group. 3361 */ 3362 if (ghp && (ghp1 == ghp)) 3363 continue; 3364 3365 /* 3366 * Traverse the list of groups the destination is a part of. 3367 */ 3368 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3369 Grp_desc *gdp; 3370 Aliste idx3; 3371 3372 if (ghp1 != ghp2) 3373 continue; 3374 3375 /* 3376 * Make sure the relationship between the destination 3377 * and the caller provide symbols for relocation. 3378 * Parents are maintained as callers, but unless the 3379 * destination object was opened with RTLD_PARENT, the 3380 * parent doesn't provide symbols for the destination 3381 * to relocate against. 3382 */ 3383 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3384 if (dlmp != gdp->gd_depend) 3385 continue; 3386 3387 if (gdp->gd_flags & GPD_RELOC) 3388 return (1); 3389 } 3390 } 3391 } 3392 return (0); 3393 } 3394 3395 /* 3396 * Initialize the environ symbol. Traditionally this is carried out by the crt 3397 * code prior to jumping to main. However, init sections get fired before this 3398 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3399 * information. In addition, a process may have multiple link-maps (ld.so.1's 3400 * debugging and preloading objects), and link auditing, and each may need an 3401 * environ variable set. 3402 * 3403 * This routine is called after a relocation() pass, and thus provides for: 3404 * 3405 * - setting environ on the main link-map after the initial application and 3406 * its dependencies have been established. Typically environ lives in the 3407 * application (provided by its crt), but in older applications it might 3408 * be in libc. Who knows what's expected of applications not built on 3409 * Solaris. 3410 * 3411 * - after loading a new shared object. We can add shared objects to various 3412 * link-maps, and any link-map dependencies requiring getopt() require 3413 * their own environ. In addition, lazy loading might bring in the 3414 * supplier of environ (libc used to be a lazy loading candidate) after 3415 * the link-map has been established and other objects are present. 3416 * 3417 * This routine handles all these scenarios, without adding unnecessary overhead 3418 * to ld.so.1. 3419 */ 3420 void 3421 set_environ(Lm_list *lml) 3422 { 3423 Rt_map *dlmp; 3424 Sym *sym; 3425 Slookup sl; 3426 uint_t binfo; 3427 3428 /* 3429 * Initialize the symbol lookup data structure. 3430 */ 3431 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3432 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3433 3434 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3435 lml->lm_environ = (char ***)sym->st_value; 3436 3437 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3438 lml->lm_environ = 3439 (char ***)((uintptr_t)lml->lm_environ + 3440 (uintptr_t)ADDR(dlmp)); 3441 *(lml->lm_environ) = (char **)environ; 3442 lml->lm_flags |= LML_FLG_ENVIRON; 3443 } 3444 } 3445 3446 /* 3447 * Determine whether we have a secure executable. Uid and gid information 3448 * can be passed to us via the aux vector, however if these values are -1 3449 * then use the appropriate system call to obtain them. 3450 * 3451 * - If the user is the root they can do anything 3452 * 3453 * - If the real and effective uid's don't match, or the real and 3454 * effective gid's don't match then this is determined to be a `secure' 3455 * application. 3456 * 3457 * This function is called prior to any dependency processing (see _setup.c). 3458 * Any secure setting will remain in effect for the life of the process. 3459 */ 3460 void 3461 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3462 { 3463 if (auxflags != -1) { 3464 if ((auxflags & AF_SUN_SETUGID) != 0) 3465 rtld_flags |= RT_FL_SECURE; 3466 return; 3467 } 3468 3469 if (uid == (uid_t)-1) 3470 uid = getuid(); 3471 if (uid) { 3472 if (euid == (uid_t)-1) 3473 euid = geteuid(); 3474 if (uid != euid) 3475 rtld_flags |= RT_FL_SECURE; 3476 else { 3477 if (gid == (gid_t)-1) 3478 gid = getgid(); 3479 if (egid == (gid_t)-1) 3480 egid = getegid(); 3481 if (gid != egid) 3482 rtld_flags |= RT_FL_SECURE; 3483 } 3484 } 3485 } 3486 3487 /* 3488 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3489 */ 3490 int 3491 is_rtld_setuid() 3492 { 3493 rtld_stat_t status; 3494 3495 if ((rtld_flags2 & RT_FL2_SETUID) || 3496 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3497 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3498 rtld_flags2 |= RT_FL2_SETUID; 3499 return (1); 3500 } 3501 return (0); 3502 } 3503 3504 /* 3505 * _REENTRANT code gets errno redefined to a function so provide for return 3506 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3507 * is basically singled threaded. Provide the interface for our dependencies. 3508 */ 3509 #undef errno 3510 int * 3511 ___errno() 3512 { 3513 extern int errno; 3514 3515 return (&errno); 3516 } 3517 3518 /* 3519 * Determine whether a symbol name should be demangled. 3520 */ 3521 const char * 3522 demangle(const char *name) 3523 { 3524 if (rtld_flags & RT_FL_DEMANGLE) 3525 return (conv_demangle_name(name)); 3526 else 3527 return (name); 3528 } 3529 3530 #ifndef _LP64 3531 /* 3532 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3533 * underneath while preserving the object size limits of a non-largefile 3534 * enabled 32-bit process. The purpose of this is to prevent large inode 3535 * values from causing stat() to fail. 3536 */ 3537 inline static int 3538 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3539 { 3540 extern int errno; 3541 3542 /* 3543 * Although we used a 64-bit capable stat(), the 32-bit rtld 3544 * can only handle objects < 2GB in size. If this object is 3545 * too big, turn the success into an overflow error. 3546 */ 3547 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3548 errno = EOVERFLOW; 3549 return (-1); 3550 } 3551 3552 /* 3553 * Transfer the information needed by rtld into a rtld_stat_t 3554 * structure that preserves the non-largile types for everything 3555 * except inode. 3556 */ 3557 buf->st_dev = lbuf->st_dev; 3558 buf->st_ino = lbuf->st_ino; 3559 buf->st_mode = lbuf->st_mode; 3560 buf->st_uid = lbuf->st_uid; 3561 buf->st_size = (off_t)lbuf->st_size; 3562 buf->st_mtim = lbuf->st_mtim; 3563 #ifdef sparc 3564 buf->st_blksize = lbuf->st_blksize; 3565 #endif 3566 3567 return (r); 3568 } 3569 3570 int 3571 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3572 { 3573 struct stat64 lbuf; 3574 int r; 3575 3576 r = stat64(path, &lbuf); 3577 if (r != -1) 3578 r = rtld_stat_process(r, &lbuf, buf); 3579 return (r); 3580 } 3581 3582 int 3583 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3584 { 3585 struct stat64 lbuf; 3586 int r; 3587 3588 r = fstat64(fildes, &lbuf); 3589 if (r != -1) 3590 r = rtld_stat_process(r, &lbuf, buf); 3591 return (r); 3592 } 3593 #endif 3594