1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 /* 35 * Utility routines for run-time linker. some are duplicated here from libc 36 * (with different names) to avoid name space collisions. 37 */ 38 #include <stdio.h> 39 #include <sys/types.h> 40 #include <sys/mman.h> 41 #include <sys/lwp.h> 42 #include <sys/debug.h> 43 #include <stdarg.h> 44 #include <fcntl.h> 45 #include <string.h> 46 #include <ctype.h> 47 #include <dlfcn.h> 48 #include <unistd.h> 49 #include <stdlib.h> 50 #include <sys/auxv.h> 51 #include <debug.h> 52 #include <conv.h> 53 #include "_rtld.h" 54 #include "_audit.h" 55 #include "_elf.h" 56 #include "msg.h" 57 58 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 59 60 /* 61 * All error messages go through eprintf(). During process initialization these 62 * messages should be directed to the standard error, however once control has 63 * been passed to the applications code these messages should be stored in an 64 * internal buffer for use with dlerror(). Note, fatal error conditions that 65 * may occur while running the application will still cause a standard error 66 * message, see rtldexit() in this file for details. 67 * The `application' flag serves to indicate the transition between process 68 * initialization and when the applications code is running. 69 */ 70 71 /* 72 * Null function used as place where a debugger can set a breakpoint. 73 */ 74 void 75 rtld_db_dlactivity(Lm_list *lml) 76 { 77 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 78 r_debug.rtd_rdebug.r_state)); 79 } 80 81 /* 82 * Null function used as place where debugger can set a pre .init 83 * processing breakpoint. 84 */ 85 void 86 rtld_db_preinit(Lm_list *lml) 87 { 88 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 89 r_debug.rtd_rdebug.r_state)); 90 } 91 92 /* 93 * Null function used as place where debugger can set a post .init 94 * processing breakpoint. 95 */ 96 void 97 rtld_db_postinit(Lm_list *lml) 98 { 99 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 100 r_debug.rtd_rdebug.r_state)); 101 } 102 103 /* 104 * Debugger Event Notification 105 * 106 * This function centralizes all debugger event notification (ala rtld_db). 107 * 108 * There's a simple intent, focused on insuring the primary link-map control 109 * list (or each link-map list) is consistent, and the indication that objects 110 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 111 * event are posted for each of these, most debuggers don't care, as their 112 * view is that these events simply convey an "inconsistent" state. 113 * 114 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 115 * enter ld.so.1. 116 * 117 * With auditors, we may be in the process of relocating a collection of 118 * objects, and will leave() ld.so.1 to call the auditor. At this point we 119 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 120 * object to the debuggers until relocation processing has been completed on it. 121 * To allow for the collection of these objects that are pending relocation, an 122 * RD_ADD event is set after completing a series of relocations on the primary 123 * link-map control list. 124 * 125 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 126 * required later (LML_FLG_DBNOTIF): 127 * 128 * i the first time we add or delete an object to the primary link-map 129 * control list. 130 * ii the first time we move a secondary link-map control list to the primary 131 * link-map control list (effectively, this is like adding a group of 132 * objects to the primary link-map control list). 133 * 134 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 135 * 136 * i each time we leave the runtime linker. 137 */ 138 void 139 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 140 { 141 void (*fptr)(Lm_list *); 142 143 switch (event) { 144 case RD_PREINIT: 145 fptr = rtld_db_preinit; 146 break; 147 case RD_POSTINIT: 148 fptr = rtld_db_postinit; 149 break; 150 case RD_DLACTIVITY: 151 switch (state) { 152 case RT_CONSISTENT: 153 lml->lm_flags &= ~LML_FLG_DBNOTIF; 154 155 /* 156 * Do we need to send a notification? 157 */ 158 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 159 return; 160 rtld_flags &= ~RT_FL_DBNOTIF; 161 break; 162 case RT_ADD: 163 case RT_DELETE: 164 lml->lm_flags |= LML_FLG_DBNOTIF; 165 166 /* 167 * If we are already in an inconsistent state, no 168 * notification is required. 169 */ 170 if (rtld_flags & RT_FL_DBNOTIF) 171 return; 172 rtld_flags |= RT_FL_DBNOTIF; 173 break; 174 }; 175 fptr = rtld_db_dlactivity; 176 break; 177 default: 178 /* 179 * RD_NONE - do nothing 180 */ 181 break; 182 }; 183 184 /* 185 * Set event state and call 'notification' function. 186 * 187 * The debugging clients have previously been told about these 188 * notification functions and have set breakpoints on them if they 189 * are interested in the notification. 190 */ 191 r_debug.rtd_rdebug.r_state = state; 192 r_debug.rtd_rdebug.r_rdevent = event; 193 fptr(lml); 194 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 195 } 196 197 #if defined(__sparc) || defined(__x86) 198 /* 199 * Stack Cleanup. 200 * 201 * This function is invoked to 'remove' arguments that were passed in on the 202 * stack. This is most likely if ld.so.1 was invoked directly. In that case 203 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 204 * Which means we then need to slide everything above it on the stack down 205 * accordingly. 206 * 207 * While the stack layout is platform specific - it just so happens that __x86, 208 * and __sparc platforms share the following initial stack layout. 209 * 210 * !_______________________! high addresses 211 * ! ! 212 * ! Information ! 213 * ! Block ! 214 * ! (size varies) ! 215 * !_______________________! 216 * ! 0 word ! 217 * !_______________________! 218 * ! Auxiliary ! 219 * ! vector ! 220 * ! 2 word entries ! 221 * ! ! 222 * !_______________________! 223 * ! 0 word ! 224 * !_______________________! 225 * ! Environment ! 226 * ! pointers ! 227 * ! ... ! 228 * ! (one word each) ! 229 * !_______________________! 230 * ! 0 word ! 231 * !_______________________! 232 * ! Argument ! low addresses 233 * ! pointers ! 234 * ! Argc words ! 235 * !_______________________! 236 * ! ! 237 * ! Argc ! 238 * !_______________________! 239 * ! ... ! 240 * 241 */ 242 static void 243 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 244 { 245 int ndx; 246 long *argc; 247 char **oargv, **nargv; 248 char **oenvp, **nenvp; 249 auxv_t *oauxv, *nauxv; 250 251 /* 252 * Slide ARGV[] and update argc. The argv pointer remains the same, 253 * however slide the applications arguments over the arguments to 254 * ld.so.1. 255 */ 256 nargv = &argv[0]; 257 oargv = &argv[rmcnt]; 258 259 for (ndx = 0; oargv[ndx]; ndx++) 260 nargv[ndx] = oargv[ndx]; 261 nargv[ndx] = oargv[ndx]; 262 263 argc = (long *)((uintptr_t)argv - sizeof (long *)); 264 *argc -= rmcnt; 265 266 /* 267 * Slide ENVP[], and update the environment array pointer. 268 */ 269 ndx++; 270 nenvp = &nargv[ndx]; 271 oenvp = &oargv[ndx]; 272 *envp = nenvp; 273 274 for (ndx = 0; oenvp[ndx]; ndx++) 275 nenvp[ndx] = oenvp[ndx]; 276 nenvp[ndx] = oenvp[ndx]; 277 278 /* 279 * Slide AUXV[], and update the aux vector pointer. 280 */ 281 ndx++; 282 nauxv = (auxv_t *)&nenvp[ndx]; 283 oauxv = (auxv_t *)&oenvp[ndx]; 284 *auxv = nauxv; 285 286 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 287 nauxv[ndx] = oauxv[ndx]; 288 nauxv[ndx] = oauxv[ndx]; 289 } 290 #else 291 /* 292 * Verify that the above routine is appropriate for any new platforms. 293 */ 294 #error unsupported architecture! 295 #endif 296 297 /* 298 * The only command line argument recognized is -e, followed by a runtime 299 * linker environment variable. 300 */ 301 int 302 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 303 Word *lmtflags, int aout) 304 { 305 int ndx; 306 307 for (ndx = 1; argv[ndx]; ndx++) { 308 char *str; 309 310 if (argv[ndx][0] != '-') 311 break; 312 313 if (argv[ndx][1] == '\0') { 314 ndx++; 315 break; 316 } 317 318 if (argv[ndx][1] != 'e') 319 return (1); 320 321 if (argv[ndx][2] == '\0') { 322 ndx++; 323 if (argv[ndx] == NULL) 324 return (1); 325 str = argv[ndx]; 326 } else 327 str = &argv[ndx][2]; 328 329 /* 330 * If the environment variable starts with LD_, strip the LD_. 331 * Otherwise, take things as is. 332 */ 333 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 334 (str[3] != '\0')) 335 str += 3; 336 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 337 return (1); 338 } 339 340 /* 341 * Make sure an object file has been specified. 342 */ 343 if (argv[ndx] == 0) 344 return (1); 345 346 /* 347 * Having gotten the arguments, clean ourselves off of the stack. 348 */ 349 stack_cleanup(argv, envp, auxv, ndx); 350 return (0); 351 } 352 353 /* 354 * Compare function for PathNode AVL tree. 355 */ 356 static int 357 pnavl_compare(const void *n1, const void *n2) 358 { 359 uint_t hash1, hash2; 360 const char *st1, *st2; 361 int rc; 362 363 hash1 = ((PathNode *)n1)->pn_hash; 364 hash2 = ((PathNode *)n2)->pn_hash; 365 366 if (hash1 > hash2) 367 return (1); 368 if (hash1 < hash2) 369 return (-1); 370 371 st1 = ((PathNode *)n1)->pn_name; 372 st2 = ((PathNode *)n2)->pn_name; 373 374 rc = strcmp(st1, st2); 375 if (rc > 0) 376 return (1); 377 if (rc < 0) 378 return (-1); 379 return (0); 380 } 381 382 /* 383 * Determine if a pathname has already been recorded on the full path name 384 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 385 * successfully loaded. If the path name does not exist in this AVL tree, then 386 * the next insertion point is deposited in "where". This value can be used by 387 * fpavl_insert() to expedite the insertion. 388 */ 389 Rt_map * 390 fpavl_recorded(Lm_list *lml, const char *name, avl_index_t *where) 391 { 392 FullPathNode fpn, *fpnp; 393 avl_tree_t *avlt; 394 395 /* 396 * Create the avl tree if required. 397 */ 398 if ((avlt = lml->lm_fpavl) == NULL) { 399 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 400 return (0); 401 avl_create(avlt, pnavl_compare, sizeof (FullPathNode), 402 SGSOFFSETOF(FullPathNode, fpn_node.pn_avl)); 403 lml->lm_fpavl = avlt; 404 } 405 406 fpn.fpn_node.pn_name = name; 407 fpn.fpn_node.pn_hash = sgs_str_hash(name); 408 409 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 410 return (NULL); 411 412 return (fpnp->fpn_lmp); 413 } 414 415 /* 416 * Insert a name into the FullPathNode AVL tree for the link-map list. The 417 * objects NAME() is the path that would have originally been searched for, and 418 * is therefore the name to associate with any "where" value. If the object has 419 * a different PATHNAME(), perhaps because it has resolved to a different file 420 * (see fullpath()), then this name will be recorded as a separate FullPathNode 421 * (see load_file()). 422 */ 423 int 424 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 425 { 426 FullPathNode *fpnp; 427 428 if (where == 0) { 429 /* LINTED */ 430 Rt_map *_lmp = fpavl_recorded(lml, name, &where); 431 432 /* 433 * We better not get a hit now, we do not want duplicates in 434 * the tree. 435 */ 436 ASSERT(_lmp == 0); 437 } 438 439 /* 440 * Insert new node in tree. 441 */ 442 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == 0) 443 return (0); 444 445 fpnp->fpn_node.pn_name = name; 446 fpnp->fpn_node.pn_hash = sgs_str_hash(name); 447 fpnp->fpn_lmp = lmp; 448 449 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 450 free(fpnp); 451 return (0); 452 } 453 454 ASSERT(lml->lm_fpavl != NULL); 455 avl_insert(lml->lm_fpavl, fpnp, where); 456 return (1); 457 } 458 459 /* 460 * Remove an object from the FullPath AVL tree. Note, this is called *before* 461 * the objects link-map is torn down (remove_so), which is where any NAME() and 462 * PATHNAME() strings will be deallocated. 463 */ 464 void 465 fpavl_remove(Rt_map *lmp) 466 { 467 FullPathNode *fpnp; 468 Aliste idx; 469 470 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 471 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 472 free(fpnp); 473 } 474 free(FPNODE(lmp)); 475 FPNODE(lmp) = NULL; 476 } 477 478 /* 479 * Determine if a pathname has already been recorded on the not-found AVL tree. 480 * This tree maintains a node for each path name that ld.so.1 has explicitly 481 * inspected, but has failed to load during a single ld.so.1 operation. If the 482 * path name does not exist in this AVL tree, then the next insertion point is 483 * deposited in "where". This value can be used by nfavl_insert() to expedite 484 * the insertion. 485 */ 486 int 487 nfavl_recorded(const char *name, avl_index_t *where) 488 { 489 PathNode pn; 490 avl_tree_t *avlt; 491 492 /* 493 * Create the avl tree if required. 494 */ 495 if ((avlt = nfavl) == NULL) { 496 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 497 return (0); 498 avl_create(avlt, pnavl_compare, sizeof (PathNode), 499 SGSOFFSETOF(PathNode, pn_avl)); 500 nfavl = avlt; 501 } 502 503 pn.pn_name = name; 504 pn.pn_hash = sgs_str_hash(name); 505 506 if (avl_find(avlt, &pn, where) == NULL) 507 return (0); 508 509 return (1); 510 } 511 512 /* 513 * Insert a name into the not-found AVL tree. 514 */ 515 void 516 nfavl_insert(const char *name, avl_index_t where) 517 { 518 PathNode *pnp; 519 520 if (where == 0) { 521 /* LINTED */ 522 int in_nfavl = nfavl_recorded(name, &where); 523 524 /* 525 * We better not get a hit now, we do not want duplicates in 526 * the tree. 527 */ 528 ASSERT(in_nfavl == 0); 529 } 530 531 /* 532 * Insert new node in tree. 533 */ 534 if ((pnp = calloc(sizeof (PathNode), 1)) != 0) { 535 pnp->pn_name = name; 536 pnp->pn_hash = sgs_str_hash(name); 537 avl_insert(nfavl, pnp, where); 538 } 539 } 540 541 /* 542 * Prior to calling an object, either via a .plt or through dlsym(), make sure 543 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 544 * init's in the correct order, however, this order is typically based on needed 545 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 546 * still occur and result in bindings that were not captured during topological 547 * sorting. This routine compensates for this lack of binding information, and 548 * provides for dynamic .init firing. 549 */ 550 void 551 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 552 { 553 Rt_map **tobj; 554 555 /* 556 * If the caller is an auditor, and the destination isn't, then don't 557 * run any .inits (see comments in load_completion()). 558 */ 559 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 560 (LIST(clmp) != LIST(dlmp))) 561 return; 562 563 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 564 return; 565 566 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 567 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 568 return; 569 570 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 571 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 572 DBG_CALL(Dbg_util_no_init(dlmp)); 573 return; 574 } 575 576 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 577 tobj[0] = dlmp; 578 call_init(tobj, DBG_INIT_DYN); 579 } 580 } 581 582 /* 583 * In a threaded environment insure the thread responsible for loading an object 584 * has completed .init processing for that object before any new thread is 585 * allowed to access the object. This check is only valid with libthread 586 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 587 * 588 * When a new link-map is created, the thread that causes it to be loaded is 589 * identified by THREADID(dlmp). Compare this with the current thread to 590 * determine if it must be blocked. 591 * 592 * NOTE, there are a number of instances (typically only for .plt processing) 593 * where we must skip this test: 594 * 595 * . any thread id of 0 - threads that call thr_exit() may be in this state 596 * thus we can't deduce what tid they used to be. Also some of the 597 * lib/libthread worker threads have this id and must bind (to themselves 598 * or libc) for libthread to function. 599 * 600 * . libthread itself binds to libc, and as libthread is INITFIRST 601 * libc's .init can't have fired yet. Luckly libc's .init is not required 602 * by libthreads binding. 603 * 604 * . if the caller is an auditor, and the destination isn't, then don't 605 * block (see comments in load_completion()). 606 */ 607 void 608 /* ARGSUSED2 */ 609 is_dep_ready(Rt_map *dlmp, Rt_map *clmp, int what) 610 { 611 thread_t tid; 612 613 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 614 (LIST(clmp) != LIST(dlmp))) 615 return; 616 617 if ((rtld_flags & RT_FL_CONCUR) && 618 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 619 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 620 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 621 rtldexit(LIST(dlmp), 1); 622 } 623 } 624 625 /* 626 * Execute .{preinit|init|fini}array sections 627 */ 628 void 629 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 630 { 631 int start, stop, incr, ndx; 632 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 633 634 if (array == NULL) 635 return; 636 637 /* 638 * initarray & preinitarray are walked from beginning to end - while 639 * finiarray is walked from end to beginning. 640 */ 641 if (shtype == SHT_FINI_ARRAY) { 642 start = arraycnt - 1; 643 stop = incr = -1; 644 } else { 645 start = 0; 646 stop = arraycnt; 647 incr = 1; 648 } 649 650 /* 651 * Call the .*array[] entries 652 */ 653 for (ndx = start; ndx != stop; ndx += incr) { 654 void (*fptr)(void) = (void(*)())array[ndx]; 655 656 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 657 658 leave(LIST(lmp), 0); 659 (*fptr)(); 660 (void) enter(0); 661 } 662 } 663 664 665 /* 666 * Execute any .init sections. These are passed to us in an lmp array which 667 * (by default) will have been sorted. 668 */ 669 void 670 call_init(Rt_map **tobj, int flag) 671 { 672 Rt_map **_tobj, **_nobj; 673 static List pending = { NULL, NULL }; 674 675 /* 676 * If we're in the middle of an INITFIRST, this must complete before 677 * any new init's are fired. In this case add the object list to the 678 * pending queue and return. We'll pick up the queue after any 679 * INITFIRST objects have their init's fired. 680 */ 681 if (rtld_flags & RT_FL_INITFIRST) { 682 (void) list_append(&pending, tobj); 683 return; 684 } 685 686 /* 687 * Traverse the tobj array firing each objects init. 688 */ 689 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 690 Rt_map *lmp = *_tobj; 691 void (*iptr)() = INIT(lmp); 692 693 if (FLAGS(lmp) & FLG_RT_INITCALL) 694 continue; 695 696 FLAGS(lmp) |= FLG_RT_INITCALL; 697 698 /* 699 * Establish an initfirst state if necessary - no other inits 700 * will be fired (because of additional relocation bindings) 701 * when in this state. 702 */ 703 if (FLAGS(lmp) & FLG_RT_INITFRST) 704 rtld_flags |= RT_FL_INITFIRST; 705 706 if (INITARRAY(lmp) || iptr) { 707 Aliste idx; 708 Bnd_desc *bdp; 709 710 /* 711 * Make sure that all dependencies that have been 712 * relocated to are initialized before this objects 713 * .init is executed. This insures that a dependency 714 * on an external item that must first be initialized 715 * by its associated object is satisfied. 716 */ 717 for (APLIST_TRAVERSE(DEPENDS(lmp), idx, bdp)) { 718 if ((bdp->b_flags & BND_REFER) == 0) 719 continue; 720 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 721 } 722 DBG_CALL(Dbg_util_call_init(lmp, flag)); 723 } 724 725 if (iptr) { 726 leave(LIST(lmp), 0); 727 (*iptr)(); 728 (void) enter(0); 729 } 730 731 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 732 SHT_INIT_ARRAY); 733 734 if (INITARRAY(lmp) || iptr) 735 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 736 737 /* 738 * Set the initdone flag regardless of whether this object 739 * actually contains an .init section. This flag prevents us 740 * from processing this section again for an .init and also 741 * signifies that a .fini must be called should it exist. 742 * Clear the sort field for use in later .fini processing. 743 */ 744 FLAGS(lmp) |= FLG_RT_INITDONE; 745 SORTVAL(lmp) = -1; 746 747 /* 748 * Wake anyone up who might be waiting on this .init. 749 */ 750 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 751 DBG_CALL(Dbg_util_broadcast(lmp)); 752 (void) rt_cond_broadcast(CONDVAR(lmp)); 753 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 754 } 755 756 /* 757 * If we're firing an INITFIRST object, and other objects must 758 * be fired which are not INITFIRST, make sure we grab any 759 * pending objects that might have been delayed as this 760 * INITFIRST was processed. 761 */ 762 if ((rtld_flags & RT_FL_INITFIRST) && 763 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 764 Listnode *lnp; 765 Rt_map **pobj; 766 767 rtld_flags &= ~RT_FL_INITFIRST; 768 769 while ((lnp = pending.head) != NULL) { 770 if ((pending.head = lnp->next) == NULL) 771 pending.tail = NULL; 772 pobj = lnp->data; 773 free(lnp); 774 775 call_init(pobj, DBG_INIT_PEND); 776 } 777 } 778 } 779 free(tobj); 780 } 781 782 /* 783 * Function called by atexit(3C). Calls all .fini sections related with the 784 * mains dependent shared libraries in the order in which the shared libraries 785 * have been loaded. Skip any .fini defined in the main executable, as this 786 * will be called by crt0 (main was never marked as initdone). 787 */ 788 void 789 call_fini(Lm_list * lml, Rt_map ** tobj) 790 { 791 Rt_map **_tobj; 792 793 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 794 Rt_map *clmp, * lmp = *_tobj; 795 Aliste idx; 796 Bnd_desc *bdp; 797 798 /* 799 * If concurrency checking isn't enabled only fire .fini if 800 * .init has completed. We collect all .fini sections of 801 * objects that had their .init collected, but that doesn't 802 * mean at the time that the .init had completed. 803 */ 804 if ((rtld_flags & RT_FL_CONCUR) || 805 (FLAGS(lmp) & FLG_RT_INITDONE)) { 806 void (*fptr)(void) = FINI(lmp); 807 808 if (FINIARRAY(lmp) || fptr) { 809 /* 810 * If concurrency checking is enabled make sure 811 * this object's .init is completed before 812 * calling any .fini. 813 */ 814 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 815 DBG_CALL(Dbg_util_call_fini(lmp)); 816 } 817 818 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 819 SHT_FINI_ARRAY); 820 821 if (fptr) { 822 leave(LIST(lmp), 0); 823 (*fptr)(); 824 (void) enter(0); 825 } 826 } 827 828 /* 829 * Skip main, this is explicitly called last in atexit_fini(). 830 */ 831 if (FLAGS(lmp) & FLG_RT_ISMAIN) 832 continue; 833 834 /* 835 * Audit `close' operations at this point. The library has 836 * exercised its last instructions (regardless of whether it 837 * will be unmapped or not). 838 * 839 * First call any global auditing. 840 */ 841 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 842 _audit_objclose(&(auditors->ad_list), lmp); 843 844 /* 845 * Finally determine whether this object has local auditing 846 * requirements by inspecting itself and then its dependencies. 847 */ 848 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 849 continue; 850 851 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 852 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 853 854 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 855 clmp = bdp->b_caller; 856 857 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 858 _audit_objclose(&(AUDITORS(clmp)->ad_list), 859 lmp); 860 break; 861 } 862 } 863 } 864 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 865 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 866 867 free(tobj); 868 } 869 870 void 871 atexit_fini() 872 { 873 Rt_map **tobj, *lmp; 874 Lm_list *lml; 875 Listnode *lnp; 876 877 (void) enter(0); 878 879 rtld_flags |= RT_FL_ATEXIT; 880 881 lml = &lml_main; 882 lml->lm_flags |= LML_FLG_ATEXIT; 883 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 884 lmp = (Rt_map *)lml->lm_head; 885 886 /* 887 * Reverse topologically sort the main link-map for .fini execution. 888 */ 889 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 890 (tobj != (Rt_map **)S_ERROR)) 891 call_fini(lml, tobj); 892 893 /* 894 * Add an explicit close to main and ld.so.1. Although main's .fini is 895 * collected in call_fini() to provide for FINITARRAY processing, its 896 * audit_objclose is explicitly skipped. This provides for it to be 897 * called last, here. This is the reverse of the explicit calls to 898 * audit_objopen() made in setup(). 899 */ 900 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 901 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 902 audit_objclose(lmp, lmp); 903 } 904 905 /* 906 * Now that all .fini code has been run, see what unreferenced objects 907 * remain. 908 */ 909 unused(lml); 910 911 /* 912 * Traverse any alternative link-map lists. 913 */ 914 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 915 /* 916 * Ignore the base-link-map list, which has already been 917 * processed, and the runtime linkers link-map list, which is 918 * typically processed last. 919 */ 920 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 921 continue; 922 923 if ((lmp = (Rt_map *)lml->lm_head) == 0) 924 continue; 925 926 lml->lm_flags |= LML_FLG_ATEXIT; 927 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 928 929 /* 930 * Reverse topologically sort the link-map for .fini execution. 931 */ 932 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 933 (tobj != (Rt_map **)S_ERROR)) 934 call_fini(lml, tobj); 935 936 unused(lml); 937 } 938 939 /* 940 * Finally reverse topologically sort the runtime linkers link-map for 941 * .fini execution. 942 */ 943 lml = &lml_rtld; 944 lml->lm_flags |= LML_FLG_ATEXIT; 945 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 946 lmp = (Rt_map *)lml->lm_head; 947 948 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 949 (tobj != (Rt_map **)S_ERROR)) 950 call_fini(lml, tobj); 951 952 leave(&lml_main, 0); 953 } 954 955 956 /* 957 * This routine is called to complete any runtime linker activity which may have 958 * resulted in objects being loaded. This is called from all user entry points 959 * and from any internal dl*() requests. 960 */ 961 void 962 load_completion(Rt_map *nlmp) 963 { 964 Rt_map **tobj = 0; 965 Lm_list *nlml; 966 967 /* 968 * Establish any .init processing. Note, in a world of lazy loading, 969 * objects may have been loaded regardless of whether the users request 970 * was fulfilled (i.e., a dlsym() request may have failed to find a 971 * symbol but objects might have been loaded during its search). Thus, 972 * any tsorting starts from the nlmp (new link-maps) pointer and not 973 * necessarily from the link-map that may have satisfied the request. 974 * 975 * Note, the primary link-map has an initialization phase where dynamic 976 * .init firing is suppressed. This provides for a simple and clean 977 * handshake with the primary link-maps libc, which is important for 978 * establishing uberdata. In addition, auditors often obtain handles 979 * to primary link-map objects as the objects are loaded, so as to 980 * inspect the link-map for symbols. This inspection is allowed without 981 * running any code on the primary link-map, as running this code may 982 * reenter the auditor, who may not yet have finished its own 983 * initialization. 984 */ 985 if (nlmp) 986 nlml = LIST(nlmp); 987 988 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 989 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 990 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 991 RT_SORT_REV)) == (Rt_map **)S_ERROR) 992 tobj = 0; 993 } 994 995 /* 996 * Make sure any alternative link-map retrieves any external interfaces 997 * and initializes threads. 998 */ 999 if (nlmp && (nlml != &lml_main)) { 1000 (void) rt_get_extern(nlml, nlmp); 1001 rt_thr_init(nlml); 1002 } 1003 1004 /* 1005 * Traverse the list of new link-maps and register any dynamic TLS. 1006 * This storage is established for any objects not on the primary 1007 * link-map, and for any objects added to the primary link-map after 1008 * static TLS has been registered. 1009 */ 1010 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1011 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1012 Rt_map *lmp; 1013 1014 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 1015 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1016 tls_modaddrem(lmp, TM_FLG_MODADD); 1017 } 1018 nlml->lm_tls = 0; 1019 } 1020 1021 /* 1022 * Fire any .init's. 1023 */ 1024 if (tobj) 1025 call_init(tobj, DBG_INIT_SORT); 1026 } 1027 1028 /* 1029 * Append an item to the specified list, and return a pointer to the list 1030 * node created. 1031 */ 1032 Listnode * 1033 list_append(List *lst, const void *item) 1034 { 1035 Listnode *_lnp; 1036 1037 if ((_lnp = malloc(sizeof (Listnode))) == 0) 1038 return (0); 1039 1040 _lnp->data = (void *)item; 1041 _lnp->next = NULL; 1042 1043 if (lst->head == NULL) 1044 lst->tail = lst->head = _lnp; 1045 else { 1046 lst->tail->next = _lnp; 1047 lst->tail = lst->tail->next; 1048 } 1049 return (_lnp); 1050 } 1051 1052 1053 /* 1054 * Add an item after specified listnode, and return a pointer to the list 1055 * node created. 1056 */ 1057 Listnode * 1058 list_insert(List *lst, const void *item, Listnode *lnp) 1059 { 1060 Listnode *_lnp; 1061 1062 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1063 return (0); 1064 1065 _lnp->data = (void *)item; 1066 _lnp->next = lnp->next; 1067 if (_lnp->next == NULL) 1068 lst->tail = _lnp; 1069 lnp->next = _lnp; 1070 return (_lnp); 1071 } 1072 1073 /* 1074 * Prepend an item to the specified list, and return a pointer to the 1075 * list node created. 1076 */ 1077 Listnode * 1078 list_prepend(List * lst, const void * item) 1079 { 1080 Listnode *_lnp; 1081 1082 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1083 return (0); 1084 1085 _lnp->data = (void *)item; 1086 1087 if (lst->head == NULL) { 1088 _lnp->next = NULL; 1089 lst->tail = lst->head = _lnp; 1090 } else { 1091 _lnp->next = lst->head; 1092 lst->head = _lnp; 1093 } 1094 return (_lnp); 1095 } 1096 1097 1098 /* 1099 * Delete a 'listnode' from a list. 1100 */ 1101 void 1102 list_delete(List *lst, void *item) 1103 { 1104 Listnode *clnp, *plnp; 1105 1106 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1107 if (item == clnp->data) 1108 break; 1109 plnp = clnp; 1110 } 1111 1112 if (clnp == 0) 1113 return; 1114 1115 if (lst->head == clnp) 1116 lst->head = clnp->next; 1117 if (lst->tail == clnp) 1118 lst->tail = plnp; 1119 1120 if (plnp) 1121 plnp->next = clnp->next; 1122 1123 free(clnp); 1124 } 1125 1126 /* 1127 * Append an item to the specified link map control list. 1128 */ 1129 void 1130 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1131 { 1132 Lm_cntl *lmc; 1133 int add = 1; 1134 1135 /* 1136 * Indicate that this link-map list has a new object. 1137 */ 1138 (lml->lm_obj)++; 1139 1140 /* 1141 * If we're about to add a new object to the main link-map control list, 1142 * alert the debuggers that we are about to mess with this list. 1143 * Additions of individual objects to the main link-map control list 1144 * occur during initial setup as the applications immediate dependencies 1145 * are loaded. Individual objects are also loaded on the main link-map 1146 * control list of new alternative link-map control lists. 1147 */ 1148 if ((lmco == ALIST_OFF_DATA) && 1149 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1150 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1151 1152 /* LINTED */ 1153 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1154 1155 /* 1156 * A link-map list header points to one of more link-map control lists 1157 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1158 * the list of relocated objects. Other lists maintain objects that 1159 * are still being analyzed or relocated. This list provides the core 1160 * link-map list information used by all ld.so.1 routines. 1161 */ 1162 if (lmc->lc_head == NULL) { 1163 /* 1164 * If this is the first link-map for the given control list, 1165 * initialize the list. 1166 */ 1167 lmc->lc_head = lmc->lc_tail = lmp; 1168 add = 0; 1169 1170 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1171 Rt_map *tlmp; 1172 1173 /* 1174 * If this is an interposer then append the link-map following 1175 * any other interposers (these are objects that have been 1176 * previously preloaded, or were identified with -z interpose). 1177 * Interposers can only be inserted on the first link-map 1178 * control list, as once relocation has started, interposition 1179 * from new interposers can't be guaranteed. 1180 * 1181 * NOTE: We do not interpose on the head of a list. This model 1182 * evolved because dynamic executables have already been fully 1183 * relocated within themselves and thus can't be interposed on. 1184 * Nowadays it's possible to have shared objects at the head of 1185 * a list, which conceptually means they could be interposed on. 1186 * But, shared objects can be created via dldump() and may only 1187 * be partially relocated (just relatives), in which case they 1188 * are interposable, but are marked as fixed (ET_EXEC). 1189 * 1190 * Thus we really don't have a clear method of deciding when the 1191 * head of a link-map is interposable. So, to be consistent, 1192 * for now only add interposers after the link-map lists head 1193 * object. 1194 */ 1195 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1196 tlmp = (Rt_map *)NEXT(tlmp)) { 1197 1198 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1199 continue; 1200 1201 /* 1202 * Insert the new link-map before this non-interposer, 1203 * and indicate an interposer is found. 1204 */ 1205 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1206 PREV(lmp) = PREV(tlmp); 1207 1208 NEXT(lmp) = (Link_map *)tlmp; 1209 PREV(tlmp) = (Link_map *)lmp; 1210 1211 lmc->lc_flags |= LMC_FLG_REANALYZE; 1212 add = 0; 1213 break; 1214 } 1215 } 1216 1217 /* 1218 * Fall through to appending the new link map to the tail of the list. 1219 * If we're processing the initial objects of this link-map list, add 1220 * them to the backward compatibility list. 1221 */ 1222 if (add) { 1223 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1224 PREV(lmp) = (Link_map *)lmc->lc_tail; 1225 lmc->lc_tail = lmp; 1226 } 1227 1228 /* 1229 * Having added this link-map to a control list, indicate which control 1230 * list the link-map belongs to. Note, control list information is 1231 * always maintained as an offset, as the Alist can be reallocated. 1232 */ 1233 CNTL(lmp) = lmco; 1234 1235 /* 1236 * Indicate if an interposer is found. Note that the first object on a 1237 * link-map can be explicitly defined as an interposer so that it can 1238 * provide interposition over direct binding requests. 1239 */ 1240 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1241 lml->lm_flags |= LML_FLG_INTRPOSE; 1242 1243 /* 1244 * For backward compatibility with debuggers, the link-map list contains 1245 * pointers to the main control list. 1246 */ 1247 if (lmco == ALIST_OFF_DATA) { 1248 lml->lm_head = lmc->lc_head; 1249 lml->lm_tail = lmc->lc_tail; 1250 } 1251 } 1252 1253 /* 1254 * Delete an item from the specified link map control list. 1255 */ 1256 void 1257 lm_delete(Lm_list *lml, Rt_map *lmp) 1258 { 1259 Lm_cntl *lmc; 1260 1261 /* 1262 * If the control list pointer hasn't been initialized, this object 1263 * never got added to a link-map list. 1264 */ 1265 if (CNTL(lmp) == 0) 1266 return; 1267 1268 /* 1269 * If we're about to delete an object from the main link-map control 1270 * list, alert the debuggers that we are about to mess with this list. 1271 */ 1272 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1273 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1274 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1275 1276 /* LINTED */ 1277 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1278 1279 if (lmc->lc_head == lmp) 1280 lmc->lc_head = (Rt_map *)NEXT(lmp); 1281 else 1282 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1283 1284 if (lmc->lc_tail == lmp) 1285 lmc->lc_tail = (Rt_map *)PREV(lmp); 1286 else 1287 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1288 1289 /* 1290 * For backward compatibility with debuggers, the link-map list contains 1291 * pointers to the main control list. 1292 */ 1293 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1294 lml->lm_head = lmc->lc_head; 1295 lml->lm_tail = lmc->lc_tail; 1296 } 1297 1298 /* 1299 * Indicate we have one less object on this control list. 1300 */ 1301 (lml->lm_obj)--; 1302 } 1303 1304 /* 1305 * Move a link-map control list to another. Objects that are being relocated 1306 * are maintained on secondary control lists. Once their relocation is 1307 * complete, the entire list is appended to the previous control list, as this 1308 * list must have been the trigger for generating the new control list. 1309 */ 1310 void 1311 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1312 { 1313 Rt_map *lmp; 1314 1315 /* 1316 * If we're about to add a new family of objects to the main link-map 1317 * control list, alert the debuggers that we are about to mess with this 1318 * list. Additions of object families to the main link-map control 1319 * list occur during lazy loading, filtering and dlopen(). 1320 */ 1321 if ((plmco == ALIST_OFF_DATA) && 1322 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1323 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1324 1325 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1326 1327 /* 1328 * Indicate each new link-map has been moved to the previous link-map 1329 * control list. 1330 */ 1331 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1332 CNTL(lmp) = plmco; 1333 1334 /* 1335 * Move the new link-map control list, to the callers link-map control 1336 * list. 1337 */ 1338 if (plmc->lc_head == 0) { 1339 plmc->lc_head = nlmc->lc_head; 1340 PREV(nlmc->lc_head) = 0; 1341 } else { 1342 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1343 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1344 } 1345 1346 plmc->lc_tail = nlmc->lc_tail; 1347 nlmc->lc_head = nlmc->lc_tail = 0; 1348 1349 /* 1350 * For backward compatibility with debuggers, the link-map list contains 1351 * pointers to the main control list. 1352 */ 1353 if (plmco == ALIST_OFF_DATA) { 1354 lml->lm_head = plmc->lc_head; 1355 lml->lm_tail = plmc->lc_tail; 1356 } 1357 } 1358 1359 /* 1360 * Environment variables can have a variety of defined permutations, and thus 1361 * the following infrastructure exists to allow this variety and to select the 1362 * required definition. 1363 * 1364 * Environment variables can be defined as 32- or 64-bit specific, and if so 1365 * they will take precedence over any instruction set neutral form. Typically 1366 * this is only useful when the environment value is an informational string. 1367 * 1368 * Environment variables may be obtained from the standard user environment or 1369 * from a configuration file. The latter provides a fallback if no user 1370 * environment setting is found, and can take two forms: 1371 * 1372 * . a replaceable definition - this will be used if no user environment 1373 * setting has been seen, or 1374 * 1375 * . an permanent definition - this will be used no matter what user 1376 * environment setting is seen. In the case of list variables it will be 1377 * appended to any process environment setting seen. 1378 * 1379 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1380 * override any replaceable environment variables from a configuration file. 1381 */ 1382 static u_longlong_t rplgen; /* replaceable generic */ 1383 /* variables */ 1384 static u_longlong_t rplisa; /* replaceable ISA specific */ 1385 /* variables */ 1386 static u_longlong_t prmgen; /* permanent generic */ 1387 /* variables */ 1388 static u_longlong_t prmisa; /* permanent ISA specific */ 1389 /* variables */ 1390 1391 /* 1392 * Classify an environment variables type. 1393 */ 1394 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1395 /* the wrong ISA */ 1396 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1397 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1398 /* config file */ 1399 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1400 1401 /* 1402 * Identify all environment variables. 1403 */ 1404 #define ENV_FLG_AUDIT 0x0000000001ULL 1405 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1406 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1407 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1408 #define ENV_FLG_BINDINGS 0x0000000010ULL 1409 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1410 #define ENV_FLG_CONFGEN 0x0000000040ULL 1411 #define ENV_FLG_CONFIG 0x0000000080ULL 1412 #define ENV_FLG_DEBUG 0x0000000100ULL 1413 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1414 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1415 #define ENV_FLG_FLAGS 0x0000000800ULL 1416 #define ENV_FLG_INIT 0x0000001000ULL 1417 #define ENV_FLG_LIBPATH 0x0000002000ULL 1418 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1419 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1420 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1421 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1422 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1423 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1424 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1425 #define ENV_FLG_NODIRECT 0x0000200000ULL 1426 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1427 #define ENV_FLG_NOLAZY 0x0000800000ULL 1428 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1429 #define ENV_FLG_NOVERSION 0x0002000000ULL 1430 #define ENV_FLG_PRELOAD 0x0004000000ULL 1431 #define ENV_FLG_PROFILE 0x0008000000ULL 1432 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1433 #define ENV_FLG_SIGNAL 0x0020000000ULL 1434 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1435 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1436 #define ENV_FLG_UNREF 0x0100000000ULL 1437 #define ENV_FLG_UNUSED 0x0200000000ULL 1438 #define ENV_FLG_VERBOSE 0x0400000000ULL 1439 #define ENV_FLG_WARN 0x0800000000ULL 1440 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1441 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1442 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1443 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1444 1445 #ifdef SIEBEL_DISABLE 1446 #define ENV_FLG_FIX_1 0x8000000000ULL 1447 #endif 1448 1449 #define SEL_REPLACE 0x0001 1450 #define SEL_PERMANT 0x0002 1451 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1452 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1453 #define SEL_ACT_STR 0x0400 /* setting string value */ 1454 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1455 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1456 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1457 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1458 1459 /* 1460 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1461 * and len specifies its length (comparing a strings length before the string 1462 * itself speed things up). s2 points to the token itself which has already 1463 * had any leading white-space removed. 1464 */ 1465 static void 1466 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1467 Word *lmtflags, uint_t env_flags, int aout) 1468 { 1469 u_longlong_t variable = 0; 1470 ushort_t select = 0; 1471 const char **str; 1472 Word val = 0; 1473 1474 /* 1475 * Determine whether we're dealing with a replaceable or permanent 1476 * string. 1477 */ 1478 if (env_flags & ENV_TYP_PERMANT) { 1479 /* 1480 * If the string is from a configuration file and defined as 1481 * permanent, assign it as permanent. 1482 */ 1483 select |= SEL_PERMANT; 1484 } else 1485 select |= SEL_REPLACE; 1486 1487 /* 1488 * Parse the variable given. 1489 * 1490 * The LD_AUDIT family. 1491 */ 1492 if (*s1 == 'A') { 1493 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1494 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1495 /* 1496 * Replaceable and permanent audit objects can exist. 1497 */ 1498 select |= SEL_ACT_STR; 1499 if (select & SEL_REPLACE) 1500 str = &rpl_audit; 1501 else { 1502 str = &prm_audit; 1503 rpl_audit = 0; 1504 } 1505 variable = ENV_FLG_AUDIT; 1506 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1507 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1508 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1509 /* 1510 * A specialized variable for plt_exit() use, not 1511 * documented for general use. 1512 */ 1513 select |= SEL_ACT_SPEC_2; 1514 variable = ENV_FLG_AUDIT_ARGS; 1515 } 1516 } 1517 /* 1518 * The LD_BIND family and LD_BREADTH (historic). 1519 */ 1520 else if (*s1 == 'B') { 1521 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1522 MSG_ORIG(MSG_LD_BIND_LAZY), 1523 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1524 select |= SEL_ACT_RT2; 1525 val = RT_FL2_BINDLAZY; 1526 variable = ENV_FLG_BIND_LAZY; 1527 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1528 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1529 select |= SEL_ACT_RT2; 1530 val = RT_FL2_BINDNOW; 1531 variable = ENV_FLG_BIND_NOW; 1532 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1533 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1534 /* 1535 * Another trick, enabled to help debug AOUT 1536 * applications under BCP, but not documented for 1537 * general use. 1538 */ 1539 select |= SEL_ACT_RT; 1540 val = RT_FL_NOBIND; 1541 variable = ENV_FLG_BIND_NOT; 1542 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1543 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1544 /* 1545 * This variable is simply for backward compatibility. 1546 * If this and LD_DEBUG are both specified, only one of 1547 * the strings is going to get processed. 1548 */ 1549 select |= SEL_ACT_SPEC_2; 1550 variable = ENV_FLG_BINDINGS; 1551 #ifndef LD_BREADTH_DISABLED 1552 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1553 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1554 /* 1555 * Besides some old patches this is no longer available. 1556 */ 1557 rtld_flags |= RT_FL_BREADTH; 1558 return; 1559 #endif 1560 } 1561 } 1562 /* 1563 * LD_CONCURRENCY and LD_CONFIG family. 1564 */ 1565 else if (*s1 == 'C') { 1566 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_CONCURRENCY), 1568 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1569 /* 1570 * Waiting in the wings, as concurrency checking isn't 1571 * yet enabled. 1572 */ 1573 select |= SEL_ACT_SPEC_2; 1574 variable = ENV_FLG_CONCURRENCY; 1575 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1576 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1577 /* 1578 * Set by crle(1) to indicate it's building a 1579 * configuration file, not documented for general use. 1580 */ 1581 select |= SEL_ACT_SPEC_2; 1582 variable = ENV_FLG_CONFGEN; 1583 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1584 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1585 /* 1586 * Secure applications must use a default configuration 1587 * file. A setting from a configuration file doesn't 1588 * make sense (given we must be reading a configuration 1589 * file to have gotten this). 1590 */ 1591 if ((rtld_flags & RT_FL_SECURE) || 1592 (env_flags & ENV_TYP_CONFIG)) 1593 return; 1594 select |= SEL_ACT_STR; 1595 str = &config->c_name; 1596 variable = ENV_FLG_CONFIG; 1597 } 1598 } 1599 /* 1600 * The LD_DEBUG family and LD_DEMANGLE. 1601 */ 1602 else if (*s1 == 'D') { 1603 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1604 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1605 select |= SEL_ACT_STR; 1606 if (select & SEL_REPLACE) 1607 str = &rpl_debug; 1608 else { 1609 str = &prm_debug; 1610 rpl_debug = 0; 1611 } 1612 variable = ENV_FLG_DEBUG; 1613 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1614 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1615 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1616 select |= SEL_ACT_STR; 1617 str = &dbg_file; 1618 variable = ENV_FLG_DEBUG_OUTPUT; 1619 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1620 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1621 select |= SEL_ACT_RT; 1622 val = RT_FL_DEMANGLE; 1623 variable = ENV_FLG_DEMANGLE; 1624 } 1625 } 1626 /* 1627 * LD_FLAGS - collect the best variable definition. On completion of 1628 * environment variable processing pass the result to ld_flags_env() 1629 * where they'll be decomposed and passed back to this routine. 1630 */ 1631 else if (*s1 == 'F') { 1632 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1633 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1634 select |= SEL_ACT_SPEC_1; 1635 if (select & SEL_REPLACE) 1636 str = &rpl_ldflags; 1637 else { 1638 str = &prm_ldflags; 1639 rpl_ldflags = 0; 1640 } 1641 variable = ENV_FLG_FLAGS; 1642 } 1643 } 1644 /* 1645 * LD_INIT (internal, used by ldd(1)). 1646 */ 1647 else if (*s1 == 'I') { 1648 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1649 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1650 select |= SEL_ACT_LML; 1651 val = LML_FLG_TRC_INIT; 1652 variable = ENV_FLG_INIT; 1653 } 1654 } 1655 /* 1656 * The LD_LIBRARY_PATH and LD_LOAD families. 1657 */ 1658 else if (*s1 == 'L') { 1659 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1660 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1661 select |= SEL_ACT_SPEC_1; 1662 if (select & SEL_REPLACE) 1663 str = &rpl_libpath; 1664 else { 1665 str = &prm_libpath; 1666 rpl_libpath = 0; 1667 } 1668 variable = ENV_FLG_LIBPATH; 1669 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1670 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1671 /* 1672 * Internal use by crle(1), not documented for general 1673 * use. 1674 */ 1675 select |= SEL_ACT_LML; 1676 val = LML_FLG_LOADAVAIL; 1677 variable = ENV_FLG_LOADAVAIL; 1678 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1679 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1680 select |= SEL_ACT_SPEC_2; 1681 variable = ENV_FLG_LOADFLTR; 1682 } 1683 } 1684 /* 1685 * The LD_NO family. 1686 */ 1687 else if (*s1 == 'N') { 1688 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1689 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1690 select |= SEL_ACT_RT; 1691 val = RT_FL_NOAUDIT; 1692 variable = ENV_FLG_NOAUDIT; 1693 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1694 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1695 select |= SEL_ACT_RT; 1696 val = RT_FL_NOAUXFLTR; 1697 variable = ENV_FLG_NOAUXFLTR; 1698 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1699 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1700 select |= SEL_ACT_RT; 1701 val = RT_FL_NOBAPLT; 1702 variable = ENV_FLG_NOBAPLT; 1703 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1704 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1705 select |= SEL_ACT_RT; 1706 val = RT_FL_NOCFG; 1707 variable = ENV_FLG_NOCONFIG; 1708 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1709 MSG_ORIG(MSG_LD_NODIRCONFIG), 1710 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1711 select |= SEL_ACT_RT; 1712 val = RT_FL_NODIRCFG; 1713 variable = ENV_FLG_NODIRCONFIG; 1714 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1715 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1716 select |= SEL_ACT_LMLT; 1717 val = LML_TFLG_NODIRECT; 1718 variable = ENV_FLG_NODIRECT; 1719 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1720 MSG_ORIG(MSG_LD_NOENVCONFIG), 1721 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1722 select |= SEL_ACT_RT; 1723 val = RT_FL_NOENVCFG; 1724 variable = ENV_FLG_NOENVCONFIG; 1725 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1726 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1727 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1728 select |= SEL_ACT_RT2; 1729 val = RT_FL2_NOFLTCFG; 1730 variable = ENV_FLG_NOFLTCONFIG; 1731 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1732 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1733 select |= SEL_ACT_LMLT; 1734 val = LML_TFLG_NOLAZYLD; 1735 variable = ENV_FLG_NOLAZY; 1736 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1737 MSG_ORIG(MSG_LD_NOOBJALTER), 1738 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1739 select |= SEL_ACT_RT; 1740 val = RT_FL_NOOBJALT; 1741 variable = ENV_FLG_NOOBJALTER; 1742 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1743 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1744 select |= SEL_ACT_RT; 1745 val = RT_FL_NOVERSION; 1746 variable = ENV_FLG_NOVERSION; 1747 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1748 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1749 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1750 /* 1751 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1752 */ 1753 select |= SEL_ACT_LML; 1754 val = LML_FLG_TRC_NOUNRESWEAK; 1755 variable = ENV_FLG_NOUNRESWEAK; 1756 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1757 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1758 select |= SEL_ACT_LML; 1759 val = LML_FLG_TRC_NOPAREXT; 1760 variable = ENV_FLG_NOPAREXT; 1761 } 1762 } 1763 /* 1764 * LD_ORIGIN. 1765 */ 1766 else if (*s1 == 'O') { 1767 #ifndef EXPAND_RELATIVE 1768 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1769 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1770 /* 1771 * Besides some old patches this is no longer required. 1772 */ 1773 rtld_flags |= RT_FL_RELATIVE; 1774 } 1775 #endif 1776 return; 1777 } 1778 /* 1779 * LD_PRELOAD and LD_PROFILE family. 1780 */ 1781 else if (*s1 == 'P') { 1782 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1783 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1784 select |= SEL_ACT_STR; 1785 if (select & SEL_REPLACE) 1786 str = &rpl_preload; 1787 else { 1788 str = &prm_preload; 1789 rpl_preload = 0; 1790 } 1791 variable = ENV_FLG_PRELOAD; 1792 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1793 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1794 /* 1795 * Only one user library can be profiled at a time. 1796 */ 1797 select |= SEL_ACT_SPEC_2; 1798 variable = ENV_FLG_PROFILE; 1799 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1800 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1801 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1802 /* 1803 * Only one user library can be profiled at a time. 1804 */ 1805 select |= SEL_ACT_STR; 1806 str = &profile_out; 1807 variable = ENV_FLG_PROFILE_OUTPUT; 1808 } 1809 } 1810 /* 1811 * LD_SIGNAL. 1812 */ 1813 else if (*s1 == 'S') { 1814 if (rtld_flags & RT_FL_SECURE) 1815 return; 1816 if ((len == MSG_LD_SIGNAL_SIZE) && 1817 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1818 MSG_LD_SIGNAL_SIZE) == 0)) { 1819 select |= SEL_ACT_SPEC_2; 1820 variable = ENV_FLG_SIGNAL; 1821 } 1822 } 1823 /* 1824 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1825 * the key to enabling all other ldd(1) specific environment variables. 1826 * In case an auditor is called, which in turn might exec(2) a 1827 * subprocess, this variable is disabled, so that any subprocess 1828 * escapes ldd(1) processing. 1829 */ 1830 else if (*s1 == 'T') { 1831 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1832 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1833 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1834 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1835 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1836 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1837 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1838 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1839 char *s0 = (char *)s1; 1840 1841 select |= SEL_ACT_SPEC_2; 1842 variable = ENV_FLG_TRACE_OBJS; 1843 1844 #if defined(__sparc) || defined(__x86) 1845 /* 1846 * The simplest way to "disable" this variable is to 1847 * truncate this string to "LD_'\0'". This string is 1848 * ignored by any ld.so.1 environment processing. 1849 * Use of such interfaces as unsetenv(3c) are overkill, 1850 * and would drag too much libc implementation detail 1851 * into ld.so.1. 1852 */ 1853 *s0 = '\0'; 1854 #else 1855 /* 1856 * Verify that the above write is appropriate for any new platforms. 1857 */ 1858 #error unsupported architecture! 1859 #endif 1860 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1861 MSG_ORIG(MSG_LD_TRACE_PTHS), 1862 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1863 select |= SEL_ACT_LML; 1864 val = LML_FLG_TRC_SEARCH; 1865 variable = ENV_FLG_TRACE_PTHS; 1866 } 1867 } 1868 /* 1869 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1870 */ 1871 else if (*s1 == 'U') { 1872 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1873 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1874 select |= SEL_ACT_LML; 1875 val = LML_FLG_TRC_UNREF; 1876 variable = ENV_FLG_UNREF; 1877 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1878 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1879 select |= SEL_ACT_LML; 1880 val = LML_FLG_TRC_UNUSED; 1881 variable = ENV_FLG_UNUSED; 1882 } 1883 } 1884 /* 1885 * LD_VERBOSE (internal, used by ldd(1)). 1886 */ 1887 else if (*s1 == 'V') { 1888 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1889 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1890 select |= SEL_ACT_LML; 1891 val = LML_FLG_TRC_VERBOSE; 1892 variable = ENV_FLG_VERBOSE; 1893 } 1894 } 1895 /* 1896 * LD_WARN (internal, used by ldd(1)). 1897 */ 1898 else if (*s1 == 'W') { 1899 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1900 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1901 select |= SEL_ACT_LML; 1902 val = LML_FLG_TRC_WARN; 1903 variable = ENV_FLG_WARN; 1904 } 1905 #ifdef SIEBEL_DISABLE 1906 } 1907 /* 1908 * LD__FIX__ (undocumented, enable future technology that can't be 1909 * delivered in a patch release). 1910 */ 1911 else if (*s1 == '_') { 1912 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1913 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1914 select |= SEL_ACT_RT; 1915 val = RT_FL_DISFIX_1; 1916 variable = ENV_FLG_FIX_1; 1917 } 1918 #endif 1919 } 1920 if (variable == 0) 1921 return; 1922 1923 /* 1924 * If the variable is already processed with ISA specific variable, 1925 * no further processing needed. 1926 */ 1927 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1928 ((select & SEL_PERMANT) && (prmisa & variable))) 1929 return; 1930 1931 /* 1932 * Now mark the appropriate variables. 1933 * If the replaceable variable is already set, then the 1934 * process environment variable must be set. Any replaceable 1935 * variable specified in a configuration file can be ignored. 1936 */ 1937 if (env_flags & ENV_TYP_ISA) { 1938 /* 1939 * This is ISA setting. We do the setting 1940 * even if s2 is NULL. 1941 * If s2 is NULL, we might need to undo 1942 * the setting. 1943 */ 1944 if (select & SEL_REPLACE) { 1945 if (rplisa & variable) 1946 return; 1947 rplisa |= variable; 1948 } else { 1949 prmisa |= variable; 1950 } 1951 } else if (s2) { 1952 /* 1953 * This is non0-ISA setting 1954 */ 1955 if (select & SEL_REPLACE) { 1956 if (rplgen & variable) 1957 return; 1958 rplgen |= variable; 1959 } else 1960 prmgen |= variable; 1961 } else 1962 /* 1963 * This is non-ISA setting which 1964 * can be ignored. 1965 */ 1966 return; 1967 1968 /* 1969 * Now perform the setting. 1970 */ 1971 if (select & SEL_ACT_RT) { 1972 if (s2) 1973 rtld_flags |= val; 1974 else 1975 rtld_flags &= ~val; 1976 } else if (select & SEL_ACT_RT2) { 1977 if (s2) 1978 rtld_flags2 |= val; 1979 else 1980 rtld_flags2 &= ~val; 1981 } else if (select & SEL_ACT_STR) 1982 *str = s2; 1983 else if (select & SEL_ACT_LML) { 1984 if (s2) 1985 *lmflags |= val; 1986 else 1987 *lmflags &= ~val; 1988 } else if (select & SEL_ACT_LMLT) { 1989 if (s2) 1990 *lmtflags |= val; 1991 else 1992 *lmtflags &= ~val; 1993 } else if (select & SEL_ACT_SPEC_1) { 1994 /* 1995 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1996 */ 1997 *str = s2; 1998 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1999 if (s2) { 2000 if (variable == ENV_FLG_FLAGS) 2001 env_info |= ENV_INF_FLAGCFG; 2002 else 2003 env_info |= ENV_INF_PATHCFG; 2004 } else { 2005 if (variable == ENV_FLG_FLAGS) 2006 env_info &= ~ENV_INF_FLAGCFG; 2007 else 2008 env_info &= ~ENV_INF_PATHCFG; 2009 } 2010 } 2011 } else if (select & SEL_ACT_SPEC_2) { 2012 /* 2013 * variables can be: ENV_FLG_ 2014 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 2015 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 2016 */ 2017 if (variable == ENV_FLG_AUDIT_ARGS) { 2018 if (s2) { 2019 audit_argcnt = atoi(s2); 2020 audit_argcnt += audit_argcnt % 2; 2021 } else 2022 audit_argcnt = 0; 2023 } else if (variable == ENV_FLG_BINDINGS) { 2024 if (s2) 2025 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2026 else 2027 rpl_debug = 0; 2028 } else if (variable == ENV_FLG_CONCURRENCY) { 2029 if (s2) 2030 rtld_flags &= ~RT_FL_NOCONCUR; 2031 else 2032 rtld_flags |= RT_FL_NOCONCUR; 2033 } else if (variable == ENV_FLG_CONFGEN) { 2034 if (s2) { 2035 rtld_flags |= RT_FL_CONFGEN; 2036 *lmflags |= LML_FLG_IGNRELERR; 2037 } else { 2038 rtld_flags &= ~RT_FL_CONFGEN; 2039 *lmflags &= ~LML_FLG_IGNRELERR; 2040 } 2041 } else if (variable == ENV_FLG_LOADFLTR) { 2042 if (s2) { 2043 *lmtflags |= LML_TFLG_LOADFLTR; 2044 if (*s2 == '2') 2045 rtld_flags |= RT_FL_WARNFLTR; 2046 } else { 2047 *lmtflags &= ~LML_TFLG_LOADFLTR; 2048 rtld_flags &= ~RT_FL_WARNFLTR; 2049 } 2050 } else if (variable == ENV_FLG_PROFILE) { 2051 profile_name = s2; 2052 if (s2) { 2053 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2054 return; 2055 } 2056 /* BEGIN CSTYLED */ 2057 if (rtld_flags & RT_FL_SECURE) { 2058 profile_lib = 2059 #if defined(_ELF64) 2060 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2061 #else 2062 MSG_ORIG(MSG_PTH_LDPROFSE); 2063 #endif 2064 } else { 2065 profile_lib = 2066 #if defined(_ELF64) 2067 MSG_ORIG(MSG_PTH_LDPROF_64); 2068 #else 2069 MSG_ORIG(MSG_PTH_LDPROF); 2070 #endif 2071 } 2072 /* END CSTYLED */ 2073 } else 2074 profile_lib = 0; 2075 } else if (variable == ENV_FLG_SIGNAL) { 2076 killsig = s2 ? atoi(s2) : SIGKILL; 2077 } else if (variable == ENV_FLG_TRACE_OBJS) { 2078 if (s2) { 2079 *lmflags |= LML_FLG_TRC_ENABLE; 2080 if (*s2 == '2') 2081 *lmflags |= LML_FLG_TRC_LDDSTUB; 2082 } else 2083 *lmflags &= 2084 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2085 } 2086 } 2087 } 2088 2089 /* 2090 * Determine whether we have an architecture specific environment variable. 2091 * If we do, and we're the wrong architecture, it'll just get ignored. 2092 * Otherwise the variable is processed in it's architecture neutral form. 2093 */ 2094 static int 2095 ld_arch_env(const char *s1, size_t *len) 2096 { 2097 size_t _len = *len - 3; 2098 2099 if (s1[_len++] == '_') { 2100 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2101 #if defined(_ELF64) 2102 return (ENV_TYP_IGNORE); 2103 #else 2104 *len = *len - 3; 2105 return (ENV_TYP_ISA); 2106 #endif 2107 } 2108 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2109 #if defined(_ELF64) 2110 *len = *len - 3; 2111 return (ENV_TYP_ISA); 2112 #else 2113 return (ENV_TYP_IGNORE); 2114 #endif 2115 } 2116 } 2117 return (0); 2118 } 2119 2120 2121 /* 2122 * Process an LD_FLAGS environment variable. The value can be a comma 2123 * separated set of tokens, which are sent (in upper case) into the generic 2124 * LD_XXXX environment variable engine. For example: 2125 * 2126 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2127 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2128 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2129 * or 2130 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2131 */ 2132 static int 2133 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2134 uint_t env_flags, int aout) 2135 { 2136 char *nstr, *sstr, *estr = 0; 2137 size_t nlen, len; 2138 2139 if (str == 0) 2140 return (0); 2141 2142 /* 2143 * Create a new string as we're going to transform the token(s) into 2144 * uppercase and separate tokens with nulls. 2145 */ 2146 len = strlen(str); 2147 if ((nstr = malloc(len + 1)) == 0) 2148 return (1); 2149 (void) strcpy(nstr, str); 2150 2151 for (sstr = nstr; sstr; sstr++, len--) { 2152 int flags; 2153 2154 if ((*sstr != '\0') && (*sstr != ',')) { 2155 if (estr == 0) { 2156 if (*sstr == '=') 2157 estr = sstr; 2158 else { 2159 /* 2160 * Translate token to uppercase. Don't 2161 * use toupper(3C) as including this 2162 * code doubles the size of ld.so.1. 2163 */ 2164 if ((*sstr >= 'a') && (*sstr <= 'z')) 2165 *sstr = *sstr - ('a' - 'A'); 2166 } 2167 } 2168 continue; 2169 } 2170 2171 *sstr = '\0'; 2172 if (estr) { 2173 nlen = estr - nstr; 2174 if ((*++estr == '\0') || (*estr == ',')) 2175 estr = 0; 2176 } else 2177 nlen = sstr - nstr; 2178 2179 /* 2180 * Fabricate a boolean definition for any unqualified variable. 2181 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2182 * The value is sufficient to assert any boolean variables, plus 2183 * the term "(null)" is specifically chosen in case someone 2184 * mistakenly supplies something like LD_FLAGS=library_path. 2185 */ 2186 if (estr == 0) 2187 estr = (char *)MSG_INTL(MSG_STR_NULL); 2188 2189 /* 2190 * Determine whether the environment variable is 32- or 64-bit 2191 * specific. The length, len, will reflect the architecture 2192 * neutral portion of the string. 2193 */ 2194 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2195 ld_generic_env(nstr, nlen, estr, lmflags, 2196 lmtflags, (env_flags | flags), aout); 2197 } 2198 if (len == 0) 2199 return (0); 2200 2201 nstr = sstr + 1; 2202 estr = 0; 2203 } 2204 return (0); 2205 } 2206 2207 2208 /* 2209 * Process a single environment string. Only strings starting with `LD_' are 2210 * reserved for our use. By convention, all strings should be of the form 2211 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2212 * functionality is enabled. Also pick off applicable locale variables. 2213 */ 2214 #define LOC_LANG 1 2215 #define LOC_MESG 2 2216 #define LOC_ALL 3 2217 2218 static void 2219 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2220 int aout) 2221 { 2222 const char *s2; 2223 static size_t loc = 0; 2224 2225 if (*s1++ != 'L') 2226 return; 2227 2228 /* 2229 * See if we have any locale environment settings. These environment 2230 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2231 * is higher than LANG. 2232 */ 2233 s2 = s1; 2234 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2235 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2236 s2 += MSG_LC_ALL_SIZE; 2237 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2238 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2239 loc = LOC_ALL; 2240 } 2241 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2242 MSG_LC_MESSAGES_SIZE) == 0) { 2243 s2 += MSG_LC_MESSAGES_SIZE; 2244 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2245 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2246 loc = LOC_MESG; 2247 } 2248 } 2249 return; 2250 } 2251 2252 s2 = s1; 2253 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2254 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2255 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2256 loc = LOC_LANG; 2257 return; 2258 } 2259 2260 /* 2261 * Pick off any LD_XXXX environment variables. 2262 */ 2263 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2264 size_t len; 2265 int flags; 2266 2267 /* 2268 * In a branded process we must ignore all LD_XXXX env vars 2269 * because they are intended for the brand's linker. 2270 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2271 */ 2272 if (rtld_flags2 & RT_FL2_BRANDED) { 2273 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2274 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2275 return; 2276 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2277 } 2278 2279 /* 2280 * Environment variables with no value (ie. LD_XXXX=) typically 2281 * have no impact, however if environment variables are defined 2282 * within a configuration file, these null user settings can be 2283 * used to disable any configuration replaceable definitions. 2284 */ 2285 if ((s2 = strchr(s1, '=')) == 0) { 2286 len = strlen(s1); 2287 s2 = 0; 2288 } else if (*++s2 == '\0') { 2289 len = strlen(s1) - 1; 2290 s2 = 0; 2291 } else { 2292 len = s2 - s1 - 1; 2293 while (isspace(*s2)) 2294 s2++; 2295 } 2296 2297 /* 2298 * Determine whether the environment variable is 32- or 64-bit 2299 * specific. The length, len, will reflect the architecture 2300 * neutral portion of the string. 2301 */ 2302 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2303 return; 2304 env_flags |= flags; 2305 2306 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2307 } 2308 } 2309 2310 /* 2311 * Internal getenv routine. Called immediately after ld.so.1 initializes 2312 * itself. 2313 */ 2314 int 2315 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2316 { 2317 char *locale; 2318 2319 if (envp == (const char **)0) 2320 return (0); 2321 2322 while (*envp != (const char *)0) 2323 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2324 2325 /* 2326 * Having collected the best representation of any LD_FLAGS, process 2327 * these strings. 2328 */ 2329 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2330 return (1); 2331 2332 /* 2333 * Don't allow environment controlled auditing when tracing or if 2334 * explicitly disabled. Trigger all tracing modes from 2335 * LML_FLG_TRC_ENABLE. 2336 */ 2337 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2338 rpl_audit = profile_lib = profile_name = 0; 2339 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2340 *lmflags &= ~LML_MSK_TRC; 2341 2342 /* 2343 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2344 */ 2345 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2346 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2347 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2348 2349 /* 2350 * When using ldd(1) -r or -d against an executable, assert -p. 2351 */ 2352 if ((*lmflags & 2353 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2354 *lmflags |= LML_FLG_TRC_NOPAREXT; 2355 2356 /* 2357 * If we have a locale setting make sure its worth processing further. 2358 * C and POSIX locales don't need any processing. In addition, to 2359 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2360 * the locale to contain a segment that leads upward in the file system 2361 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2362 * the /usr/lib/locale hierarchy, there is no need to extensively 2363 * validate the mode or ownership of any message file (as libc's 2364 * generic handling of message files does). Duplicate the string so 2365 * that new locale setting can generically cleanup any previous locales. 2366 */ 2367 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2368 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2369 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2370 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2371 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2372 else 2373 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2374 } 2375 return (0); 2376 } 2377 2378 /* 2379 * Configuration environment processing. Called after the a.out has been 2380 * processed (as the a.out can specify its own configuration file). 2381 */ 2382 int 2383 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2384 { 2385 Word *lmflags = &(lml_main.lm_flags); 2386 Word *lmtflags = &(lml_main.lm_tflags); 2387 2388 if (envtbl == (Rtc_env *)0) 2389 return (0); 2390 2391 while (envtbl->env_str) { 2392 uint_t env_flags = ENV_TYP_CONFIG; 2393 2394 if (envtbl->env_flags & RTC_ENV_PERMANT) 2395 env_flags |= ENV_TYP_PERMANT; 2396 2397 ld_str_env((const char *)(envtbl->env_str + addr), 2398 lmflags, lmtflags, env_flags, 0); 2399 envtbl++; 2400 } 2401 2402 /* 2403 * Having collected the best representation of any LD_FLAGS, process 2404 * these strings. 2405 */ 2406 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2407 return (1); 2408 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2409 aout) == 1) 2410 return (1); 2411 2412 /* 2413 * Don't allow environment controlled auditing when tracing or if 2414 * explicitly disabled. Trigger all tracing modes from 2415 * LML_FLG_TRC_ENABLE. 2416 */ 2417 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2418 prm_audit = profile_lib = profile_name = 0; 2419 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2420 *lmflags &= ~LML_MSK_TRC; 2421 2422 return (0); 2423 } 2424 2425 int 2426 dowrite(Prfbuf * prf) 2427 { 2428 /* 2429 * We do not have a valid file descriptor, so we are unable 2430 * to flush the buffer. 2431 */ 2432 if (prf->pr_fd == -1) 2433 return (0); 2434 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2435 prf->pr_cur = prf->pr_buf; 2436 return (1); 2437 } 2438 2439 /* 2440 * Simplified printing. The following conversion specifications are supported: 2441 * 2442 * % [#] [-] [min field width] [. precision] s|d|x|c 2443 * 2444 * 2445 * dorprf takes the output buffer in the form of Prfbuf which permits 2446 * the verification of the output buffer size and the concatenation 2447 * of data to an already existing output buffer. The Prfbuf 2448 * structure contains the following: 2449 * 2450 * pr_buf pointer to the beginning of the output buffer. 2451 * pr_cur pointer to the next available byte in the output buffer. By 2452 * setting pr_cur ahead of pr_buf you can append to an already 2453 * existing buffer. 2454 * pr_len the size of the output buffer. By setting pr_len to '0' you 2455 * disable protection from overflows in the output buffer. 2456 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2457 * output to. If pr_fd is set to '-1' then it's assumed there is 2458 * no output buffer, and doprf() will return with an error to 2459 * indicate an output buffer overflow. If pr_fd is > -1 then when 2460 * the output buffer is filled it will be flushed to pr_fd and will 2461 * then be available for additional data. 2462 */ 2463 #define FLG_UT_MINUS 0x0001 /* - */ 2464 #define FLG_UT_SHARP 0x0002 /* # */ 2465 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2466 2467 /* 2468 * This macro is for use from within doprf only. It is to be used for checking 2469 * the output buffer size and placing characters into the buffer. 2470 */ 2471 #define PUTC(c) \ 2472 { \ 2473 char tmpc; \ 2474 \ 2475 tmpc = (c); \ 2476 if (bufsiz && (bp >= bufend)) { \ 2477 prf->pr_cur = bp; \ 2478 if (dowrite(prf) == 0) \ 2479 return (0); \ 2480 bp = prf->pr_cur; \ 2481 } \ 2482 *bp++ = tmpc; \ 2483 } 2484 2485 /* 2486 * Define a local buffer size for building a numeric value - large enough to 2487 * hold a 64-bit value. 2488 */ 2489 #define NUM_SIZE 22 2490 2491 size_t 2492 doprf(const char *format, va_list args, Prfbuf *prf) 2493 { 2494 char c; 2495 char *bp = prf->pr_cur; 2496 char *bufend = prf->pr_buf + prf->pr_len; 2497 size_t bufsiz = prf->pr_len; 2498 2499 while ((c = *format++) != '\0') { 2500 if (c != '%') { 2501 PUTC(c); 2502 } else { 2503 int base = 0, flag = 0, width = 0, prec = 0; 2504 size_t _i; 2505 int _c, _n; 2506 char *_s; 2507 int ls = 0; 2508 again: 2509 c = *format++; 2510 switch (c) { 2511 case '-': 2512 flag |= FLG_UT_MINUS; 2513 goto again; 2514 case '#': 2515 flag |= FLG_UT_SHARP; 2516 goto again; 2517 case '.': 2518 flag |= FLG_UT_DOTSEEN; 2519 goto again; 2520 case '0': 2521 case '1': 2522 case '2': 2523 case '3': 2524 case '4': 2525 case '5': 2526 case '6': 2527 case '7': 2528 case '8': 2529 case '9': 2530 if (flag & FLG_UT_DOTSEEN) 2531 prec = (prec * 10) + c - '0'; 2532 else 2533 width = (width * 10) + c - '0'; 2534 goto again; 2535 case 'x': 2536 case 'X': 2537 base = 16; 2538 break; 2539 case 'd': 2540 case 'D': 2541 case 'u': 2542 base = 10; 2543 flag &= ~FLG_UT_SHARP; 2544 break; 2545 case 'l': 2546 base = 10; 2547 ls++; /* number of l's (long or long long) */ 2548 if ((*format == 'l') || 2549 (*format == 'd') || (*format == 'D') || 2550 (*format == 'x') || (*format == 'X') || 2551 (*format == 'o') || (*format == 'O')) 2552 goto again; 2553 break; 2554 case 'o': 2555 case 'O': 2556 base = 8; 2557 break; 2558 case 'c': 2559 _c = va_arg(args, int); 2560 2561 for (_i = 24; _i > 0; _i -= 8) { 2562 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2563 PUTC(c); 2564 } 2565 } 2566 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2567 PUTC(c); 2568 } 2569 break; 2570 case 's': 2571 _s = va_arg(args, char *); 2572 _i = strlen(_s); 2573 /* LINTED */ 2574 _n = (int)(width - _i); 2575 if (!prec) 2576 /* LINTED */ 2577 prec = (int)_i; 2578 2579 if (width && !(flag & FLG_UT_MINUS)) { 2580 while (_n-- > 0) 2581 PUTC(' '); 2582 } 2583 while (((c = *_s++) != 0) && prec--) { 2584 PUTC(c); 2585 } 2586 if (width && (flag & FLG_UT_MINUS)) { 2587 while (_n-- > 0) 2588 PUTC(' '); 2589 } 2590 break; 2591 case '%': 2592 PUTC('%'); 2593 break; 2594 default: 2595 break; 2596 } 2597 2598 /* 2599 * Numeric processing 2600 */ 2601 if (base) { 2602 char local[NUM_SIZE]; 2603 size_t ssize = 0, psize = 0; 2604 const char *string = 2605 MSG_ORIG(MSG_STR_HEXNUM); 2606 const char *prefix = 2607 MSG_ORIG(MSG_STR_EMPTY); 2608 u_longlong_t num; 2609 2610 switch (ls) { 2611 case 0: /* int */ 2612 num = (u_longlong_t) 2613 va_arg(args, uint_t); 2614 break; 2615 case 1: /* long */ 2616 num = (u_longlong_t) 2617 va_arg(args, ulong_t); 2618 break; 2619 case 2: /* long long */ 2620 num = va_arg(args, u_longlong_t); 2621 break; 2622 } 2623 2624 if (flag & FLG_UT_SHARP) { 2625 if (base == 16) { 2626 prefix = MSG_ORIG(MSG_STR_HEX); 2627 psize = 2; 2628 } else { 2629 prefix = MSG_ORIG(MSG_STR_ZERO); 2630 psize = 1; 2631 } 2632 } 2633 if ((base == 10) && (long)num < 0) { 2634 prefix = MSG_ORIG(MSG_STR_NEGATE); 2635 psize = MSG_STR_NEGATE_SIZE; 2636 num = (u_longlong_t)(-(longlong_t)num); 2637 } 2638 2639 /* 2640 * Convert the numeric value into a local 2641 * string (stored in reverse order). 2642 */ 2643 _s = local; 2644 do { 2645 *_s++ = string[num % base]; 2646 num /= base; 2647 ssize++; 2648 } while (num); 2649 2650 ASSERT(ssize < sizeof (local)); 2651 2652 /* 2653 * Provide any precision or width padding. 2654 */ 2655 if (prec) { 2656 /* LINTED */ 2657 _n = (int)(prec - ssize); 2658 while ((_n-- > 0) && 2659 (ssize < sizeof (local))) { 2660 *_s++ = '0'; 2661 ssize++; 2662 } 2663 } 2664 if (width && !(flag & FLG_UT_MINUS)) { 2665 /* LINTED */ 2666 _n = (int)(width - ssize - psize); 2667 while (_n-- > 0) { 2668 PUTC(' '); 2669 } 2670 } 2671 2672 /* 2673 * Print any prefix and the numeric string 2674 */ 2675 while (*prefix) 2676 PUTC(*prefix++); 2677 do { 2678 PUTC(*--_s); 2679 } while (_s > local); 2680 2681 /* 2682 * Provide any width padding. 2683 */ 2684 if (width && (flag & FLG_UT_MINUS)) { 2685 /* LINTED */ 2686 _n = (int)(width - ssize - psize); 2687 while (_n-- > 0) 2688 PUTC(' '); 2689 } 2690 } 2691 } 2692 } 2693 2694 PUTC('\0'); 2695 prf->pr_cur = bp; 2696 return (1); 2697 } 2698 2699 static int 2700 doprintf(const char *format, va_list args, Prfbuf *prf) 2701 { 2702 char *ocur = prf->pr_cur; 2703 2704 if (doprf(format, args, prf) == 0) 2705 return (0); 2706 /* LINTED */ 2707 return ((int)(prf->pr_cur - ocur)); 2708 } 2709 2710 /* VARARGS2 */ 2711 int 2712 sprintf(char *buf, const char *format, ...) 2713 { 2714 va_list args; 2715 int len; 2716 Prfbuf prf; 2717 2718 va_start(args, format); 2719 prf.pr_buf = prf.pr_cur = buf; 2720 prf.pr_len = 0; 2721 prf.pr_fd = -1; 2722 len = doprintf(format, args, &prf); 2723 va_end(args); 2724 2725 /* 2726 * sprintf() return value excludes the terminating null byte. 2727 */ 2728 return (len - 1); 2729 } 2730 2731 /* VARARGS3 */ 2732 int 2733 snprintf(char *buf, size_t n, const char *format, ...) 2734 { 2735 va_list args; 2736 int len; 2737 Prfbuf prf; 2738 2739 va_start(args, format); 2740 prf.pr_buf = prf.pr_cur = buf; 2741 prf.pr_len = n; 2742 prf.pr_fd = -1; 2743 len = doprintf(format, args, &prf); 2744 va_end(args); 2745 2746 return (len); 2747 } 2748 2749 /* VARARGS2 */ 2750 int 2751 bufprint(Prfbuf *prf, const char *format, ...) 2752 { 2753 va_list args; 2754 int len; 2755 2756 va_start(args, format); 2757 len = doprintf(format, args, prf); 2758 va_end(args); 2759 2760 return (len); 2761 } 2762 2763 /*PRINTFLIKE1*/ 2764 int 2765 printf(const char *format, ...) 2766 { 2767 va_list args; 2768 char buffer[ERRSIZE]; 2769 Prfbuf prf; 2770 2771 va_start(args, format); 2772 prf.pr_buf = prf.pr_cur = buffer; 2773 prf.pr_len = ERRSIZE; 2774 prf.pr_fd = 1; 2775 (void) doprf(format, args, &prf); 2776 va_end(args); 2777 /* 2778 * Trim trailing '\0' form buffer 2779 */ 2780 prf.pr_cur--; 2781 return (dowrite(&prf)); 2782 } 2783 2784 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2785 2786 /*PRINTFLIKE3*/ 2787 void 2788 eprintf(Lm_list *lml, Error error, const char *format, ...) 2789 { 2790 va_list args; 2791 int overflow = 0; 2792 static int lock = 0; 2793 Prfbuf prf; 2794 2795 if (lock || (nextptr == (errbuf + ERRSIZE))) 2796 return; 2797 2798 /* 2799 * Note: this lock is here to prevent the same thread from recursively 2800 * entering itself during a eprintf. ie: during eprintf malloc() fails 2801 * and we try and call eprintf ... and then malloc() fails .... 2802 */ 2803 lock = 1; 2804 2805 /* 2806 * If we have completed startup initialization, all error messages 2807 * must be saved. These are reported through dlerror(). If we're 2808 * still in the initialization stage, output the error directly and 2809 * add a newline. 2810 */ 2811 va_start(args, format); 2812 2813 prf.pr_buf = prf.pr_cur = nextptr; 2814 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2815 2816 if (!(rtld_flags & RT_FL_APPLIC)) 2817 prf.pr_fd = 2; 2818 else 2819 prf.pr_fd = -1; 2820 2821 if (error > ERR_NONE) { 2822 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2823 error = ERR_WARNING; 2824 if (error == ERR_WARNING) { 2825 if (err_strs[ERR_WARNING] == 0) 2826 err_strs[ERR_WARNING] = 2827 MSG_INTL(MSG_ERR_WARNING); 2828 } else if (error == ERR_FATAL) { 2829 if (err_strs[ERR_FATAL] == 0) 2830 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2831 } else if (error == ERR_ELF) { 2832 if (err_strs[ERR_ELF] == 0) 2833 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2834 } 2835 if (procname) { 2836 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2837 rtldname, procname, err_strs[error]) == 0) 2838 overflow = 1; 2839 } else { 2840 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2841 rtldname, err_strs[error]) == 0) 2842 overflow = 1; 2843 } 2844 if (overflow == 0) { 2845 /* 2846 * Remove the terminating '\0'. 2847 */ 2848 prf.pr_cur--; 2849 } 2850 } 2851 2852 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2853 overflow = 1; 2854 2855 /* 2856 * If this is an ELF error, it will have been generated by a support 2857 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2858 * ELF error messages as it doesn't interact with libelf. Determine the 2859 * ELF error string. 2860 */ 2861 if ((overflow == 0) && (error == ERR_ELF)) { 2862 static int (*elfeno)() = 0; 2863 static const char *(*elfemg)(); 2864 const char *emsg; 2865 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2866 2867 if (NEXT(lmp) && (elfeno == 0)) { 2868 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2869 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2870 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2871 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2872 elfeno = 0; 2873 } 2874 2875 /* 2876 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2877 */ 2878 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2879 prf.pr_cur--; 2880 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2881 emsg) == 0) 2882 overflow = 1; 2883 } 2884 } 2885 2886 /* 2887 * Push out any message that's been built. Note, in the case of an 2888 * overflow condition, this message may be incomplete, in which case 2889 * make sure any partial string is null terminated. 2890 */ 2891 if (overflow) 2892 *(prf.pr_cur) = '\0'; 2893 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2894 *(prf.pr_cur - 1) = '\n'; 2895 (void) dowrite(&prf); 2896 } 2897 2898 DBG_CALL(Dbg_util_str(lml, nextptr)); 2899 va_end(args); 2900 2901 /* 2902 * Determine if there was insufficient space left in the buffer to 2903 * complete the message. If so, we'll have printed out as much as had 2904 * been processed if we're not yet executing the application. 2905 * Otherwise, there will be some debugging diagnostic indicating 2906 * as much of the error message as possible. Write out a final buffer 2907 * overflow diagnostic - unlocalized, so we don't chance more errors. 2908 */ 2909 if (overflow) { 2910 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2911 2912 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2913 lasterr = str; 2914 2915 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2916 (void) write(2, str, strlen(str)); 2917 (void) write(2, MSG_ORIG(MSG_STR_NL), 2918 MSG_STR_NL_SIZE); 2919 } 2920 } 2921 DBG_CALL(Dbg_util_str(lml, str)); 2922 2923 lock = 0; 2924 nextptr = errbuf + ERRSIZE; 2925 return; 2926 } 2927 2928 /* 2929 * If the application has started, then error messages are being saved 2930 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2931 * the case of a fatal error. In this case, establish the next error 2932 * pointer. If we haven't started the application, the whole message 2933 * buffer can be reused. 2934 */ 2935 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2936 lasterr = nextptr; 2937 2938 /* 2939 * Note, should we encounter an error such as ENOMEM, there may 2940 * be a number of the same error messages (ie. an operation 2941 * fails with ENOMEM, and then the attempts to construct the 2942 * error message itself, which incurs additional ENOMEM errors). 2943 * Compare any previous error message with the one we've just 2944 * created to prevent any duplication clutter. 2945 */ 2946 if ((rtld_flags & RT_FL_APPLIC) && 2947 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2948 prevptr = nextptr; 2949 nextptr = prf.pr_cur; 2950 *nextptr = '\0'; 2951 } 2952 } 2953 lock = 0; 2954 } 2955 2956 2957 #if DEBUG 2958 /* 2959 * Provide assfail() for ASSERT() statements, 2960 * see <sys/debug.h> for further details. 2961 */ 2962 int 2963 assfail(const char *a, const char *f, int l) 2964 { 2965 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2966 (void) _lwp_kill(_lwp_self(), SIGABRT); 2967 return (0); 2968 } 2969 #endif 2970 2971 /* 2972 * Exit. If we arrive here with a non zero status it's because of a fatal 2973 * error condition (most commonly a relocation error). If the application has 2974 * already had control, then the actual fatal error message will have been 2975 * recorded in the dlerror() message buffer. Print the message before really 2976 * exiting. 2977 */ 2978 void 2979 rtldexit(Lm_list * lml, int status) 2980 { 2981 if (status) { 2982 if (rtld_flags & RT_FL_APPLIC) { 2983 /* 2984 * If the error buffer has been used, write out all 2985 * pending messages - lasterr is simply a pointer to 2986 * the last message in this buffer. However, if the 2987 * buffer couldn't be created at all, lasterr points 2988 * to a constant error message string. 2989 */ 2990 if (*errbuf) { 2991 char *errptr = errbuf; 2992 char *errend = errbuf + ERRSIZE; 2993 2994 while ((errptr < errend) && *errptr) { 2995 size_t size = strlen(errptr); 2996 (void) write(2, errptr, size); 2997 (void) write(2, MSG_ORIG(MSG_STR_NL), 2998 MSG_STR_NL_SIZE); 2999 errptr += (size + 1); 3000 } 3001 } 3002 if (lasterr && ((lasterr < errbuf) || 3003 (lasterr > (errbuf + ERRSIZE)))) { 3004 (void) write(2, lasterr, strlen(lasterr)); 3005 (void) write(2, MSG_ORIG(MSG_STR_NL), 3006 MSG_STR_NL_SIZE); 3007 } 3008 } 3009 leave(lml, 0); 3010 (void) _lwp_kill(_lwp_self(), killsig); 3011 } 3012 _exit(status); 3013 } 3014 3015 /* 3016 * Routines to co-ordinate the opening of /dev/zero and /proc. 3017 * dz_fd is exported for possible use by libld.so, and to insure it gets 3018 * closed on leaving ld.so.1. 3019 */ 3020 int dz_fd = FD_UNAVAIL; 3021 3022 void 3023 dz_init(int fd) 3024 { 3025 dz_fd = fd; 3026 } 3027 3028 3029 /* 3030 * mmap() a page from MAP_ANON 3031 * 3032 * Note: MAP_ANON is only on Solaris8++, we use this routine to 3033 * not only mmap(MAP_ANON) but to also probe if it is available 3034 * on the current OS. 3035 */ 3036 Am_ret 3037 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 3038 { 3039 #if defined(MAP_ANON) 3040 static int noanon = 0; 3041 caddr_t va; 3042 3043 if (noanon == 0) { 3044 if ((va = (caddr_t)mmap(*addr, len, prot, 3045 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 3046 *addr = va; 3047 return (AM_OK); 3048 } 3049 3050 if ((errno != EBADF) && (errno != EINVAL)) { 3051 int err = errno; 3052 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3053 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3054 return (AM_ERROR); 3055 } else 3056 noanon = 1; 3057 } 3058 #endif 3059 return (AM_NOSUP); 3060 } 3061 3062 /* 3063 * Map anonymous memory from /dev/zero, or via MAP_ANON. 3064 * 3065 * (MAP_ANON only appears on Solaris 8, so we need fall-back 3066 * behavior for older systems.) 3067 */ 3068 caddr_t 3069 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3070 { 3071 caddr_t va; 3072 int err; 3073 Am_ret amret; 3074 3075 amret = anon_map(lml, &addr, len, prot, flags); 3076 3077 if (amret == AM_OK) 3078 return (addr); 3079 if (amret == AM_ERROR) 3080 return (MAP_FAILED); 3081 3082 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3083 3084 if (dz_fd == FD_UNAVAIL) { 3085 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3086 O_RDONLY)) == FD_UNAVAIL) { 3087 err = errno; 3088 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3089 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3090 return (MAP_FAILED); 3091 } 3092 } 3093 3094 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3095 err = errno; 3096 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3097 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3098 } 3099 return (va); 3100 } 3101 3102 static int pr_fd = FD_UNAVAIL; 3103 3104 int 3105 pr_open(Lm_list *lml) 3106 { 3107 char proc[16]; 3108 3109 if (pr_fd == FD_UNAVAIL) { 3110 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3111 (int)getpid()); 3112 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3113 int err = errno; 3114 3115 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3116 strerror(err)); 3117 } 3118 } 3119 return (pr_fd); 3120 } 3121 3122 static int nu_fd = FD_UNAVAIL; 3123 3124 caddr_t 3125 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3126 { 3127 caddr_t va; 3128 int err; 3129 3130 if (nu_fd == FD_UNAVAIL) { 3131 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3132 O_RDONLY)) == FD_UNAVAIL) { 3133 err = errno; 3134 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3135 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3136 return (MAP_FAILED); 3137 } 3138 } 3139 3140 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3141 MAP_FAILED) { 3142 err = errno; 3143 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3144 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3145 } 3146 return (va); 3147 } 3148 3149 /* 3150 * Generic entry point from user code - simply grabs a lock, and bumps the 3151 * entrance count. 3152 */ 3153 int 3154 enter(int flags) 3155 { 3156 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3157 if (!thr_flg_nolock) 3158 (void) rt_mutex_lock(&rtldlock); 3159 if (rtld_flags & RT_FL_OPERATION) 3160 ld_entry_cnt++; 3161 return (1); 3162 } 3163 return (0); 3164 } 3165 3166 /* 3167 * Determine whether a search path has been used. 3168 */ 3169 static void 3170 is_path_used(Lm_list *lml, Word unref, int *nl, Pnode *pnp, const char *obj) 3171 { 3172 for (; pnp; pnp = pnp->p_next) { 3173 const char *fmt, *name; 3174 3175 if ((pnp->p_len == 0) || (pnp->p_orig & PN_FLG_USED)) 3176 continue; 3177 3178 /* 3179 * If this pathname originated from an expanded token, use the 3180 * original for any diagnostic output. 3181 */ 3182 if ((name = pnp->p_oname) == 0) 3183 name = pnp->p_name; 3184 3185 if (unref == 0) { 3186 if ((*nl)++ == 0) 3187 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3188 DBG_CALL(Dbg_unused_path(lml, name, pnp->p_orig, 3189 (pnp->p_orig & PN_FLG_DUPLICAT), obj)); 3190 continue; 3191 } 3192 3193 if (pnp->p_orig & LA_SER_LIBPATH) { 3194 if (pnp->p_orig & LA_SER_CONFIG) { 3195 if (pnp->p_orig & PN_FLG_DUPLICAT) 3196 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3197 else 3198 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3199 } else { 3200 if (pnp->p_orig & PN_FLG_DUPLICAT) 3201 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3202 else 3203 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3204 } 3205 } else if (pnp->p_orig & LA_SER_RUNPATH) { 3206 fmt = MSG_INTL(MSG_USD_RUNPATH); 3207 } else 3208 continue; 3209 3210 if ((*nl)++ == 0) 3211 (void) printf(MSG_ORIG(MSG_STR_NL)); 3212 (void) printf(fmt, name, obj); 3213 } 3214 } 3215 3216 /* 3217 * Generate diagnostics as to whether an object has been used. A symbolic 3218 * reference that gets bound to an object marks it as used. Dependencies that 3219 * are unused when RTLD_NOW is in effect should be removed from future builds 3220 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3221 * candidates for lazy-loading. 3222 * 3223 * Unreferenced objects identify objects that are defined as dependencies but 3224 * are unreferenced by the caller. These unreferenced objects may however be 3225 * referenced by other objects within the process, and therefore don't qualify 3226 * as completely unused. They are still an unnecessary overhead. 3227 * 3228 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3229 * debugging. 3230 */ 3231 void 3232 unused(Lm_list *lml) 3233 { 3234 Rt_map *lmp; 3235 int nl = 0; 3236 Word unref, unuse; 3237 3238 /* 3239 * If we're not tracing unused references or dependencies, or debugging 3240 * there's nothing to do. 3241 */ 3242 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3243 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3244 3245 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3246 return; 3247 3248 /* 3249 * Detect unused global search paths. 3250 */ 3251 if (rpl_libdirs) 3252 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3253 if (prm_libdirs) 3254 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3255 3256 nl = 0; 3257 lmp = lml->lm_head; 3258 if (RLIST(lmp)) 3259 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3260 3261 /* 3262 * Traverse the link-maps looking for unreferenced or unused 3263 * dependencies. Ignore the first object on a link-map list, as this 3264 * is always used. 3265 */ 3266 nl = 0; 3267 for (lmp = (Rt_map *)NEXT(lmp); lmp; lmp = (Rt_map *)NEXT(lmp)) { 3268 /* 3269 * Determine if this object contains any runpaths that have 3270 * not been used. 3271 */ 3272 if (RLIST(lmp)) 3273 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3274 3275 /* 3276 * If tracing unreferenced objects, or under debugging, 3277 * determine whether any of this objects callers haven't 3278 * referenced it. 3279 */ 3280 if (unref || DBG_ENABLED) { 3281 Bnd_desc *bdp; 3282 Aliste idx; 3283 3284 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3285 Rt_map *clmp; 3286 3287 if (bdp->b_flags & BND_REFER) 3288 continue; 3289 3290 clmp = bdp->b_caller; 3291 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3292 continue; 3293 3294 /* BEGIN CSTYLED */ 3295 if (nl++ == 0) { 3296 if (unref) 3297 (void) printf(MSG_ORIG(MSG_STR_NL)); 3298 else 3299 DBG_CALL(Dbg_util_nl(lml, 3300 DBG_NL_STD)); 3301 } 3302 3303 if (unref) 3304 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3305 NAME(lmp), NAME(clmp)); 3306 else 3307 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3308 /* END CSTYLED */ 3309 } 3310 } 3311 3312 /* 3313 * If tracing unused objects simply display those objects that 3314 * haven't been referenced by anyone. 3315 */ 3316 if (FLAGS1(lmp) & FL1_RT_USED) 3317 continue; 3318 3319 if (nl++ == 0) { 3320 if (unref || unuse) 3321 (void) printf(MSG_ORIG(MSG_STR_NL)); 3322 else 3323 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3324 } 3325 if (CYCGROUP(lmp)) { 3326 if (unref || unuse) 3327 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3328 NAME(lmp), CYCGROUP(lmp)); 3329 else 3330 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3331 CYCGROUP(lmp))); 3332 } else { 3333 if (unref || unuse) 3334 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3335 NAME(lmp)); 3336 else 3337 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3338 } 3339 } 3340 3341 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3342 } 3343 3344 /* 3345 * Initialization routine for the Fmap structure. If the fmap structure is 3346 * already in use, any mapping is released. The structure is then initialized 3347 * in preparation for further use. 3348 */ 3349 void 3350 fmap_setup() 3351 { 3352 #if defined(MAP_ALIGN) 3353 /* 3354 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3355 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3356 * should now be freed. 3357 */ 3358 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3359 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3360 3361 /* 3362 * Providing we haven't determined that this system doesn't support 3363 * MAP_ALIGN, initialize the mapping address with the default segment 3364 * alignment. 3365 */ 3366 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3367 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3368 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3369 } else { 3370 fmap->fm_maddr = 0; 3371 fmap->fm_mflags = MAP_PRIVATE; 3372 } 3373 #else 3374 if (fmap->fm_maddr) 3375 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3376 3377 fmap->fm_maddr = 0; 3378 fmap->fm_mflags = MAP_PRIVATE; 3379 #endif 3380 3381 fmap->fm_msize = FMAP_SIZE; 3382 fmap->fm_hwptr = 0; 3383 } 3384 3385 /* 3386 * Generic cleanup routine called prior to returning control to the user. 3387 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3388 * released, and any locks dropped. 3389 */ 3390 void 3391 leave(Lm_list *lml, int flags) 3392 { 3393 Lm_list *elml = lml; 3394 Rt_map *clmp; 3395 Aliste idx; 3396 3397 /* 3398 * Alert the debuggers that the link-maps are consistent. Note, in the 3399 * case of tearing down a whole link-map list, lml will be null. In 3400 * this case use the main link-map list to test for a notification. 3401 */ 3402 if (elml == 0) 3403 elml = &lml_main; 3404 if (elml->lm_flags & LML_FLG_DBNOTIF) 3405 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3406 3407 /* 3408 * Alert any auditors that the link-maps are consistent. 3409 */ 3410 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3411 audit_activity(clmp, LA_ACT_CONSISTENT); 3412 3413 aplist_delete(elml->lm_actaudit, &idx); 3414 } 3415 3416 if (dz_fd != FD_UNAVAIL) { 3417 (void) close(dz_fd); 3418 dz_fd = FD_UNAVAIL; 3419 } 3420 3421 if (pr_fd != FD_UNAVAIL) { 3422 (void) close(pr_fd); 3423 pr_fd = FD_UNAVAIL; 3424 } 3425 3426 if (nu_fd != FD_UNAVAIL) { 3427 (void) close(nu_fd); 3428 nu_fd = FD_UNAVAIL; 3429 } 3430 3431 fmap_setup(); 3432 3433 /* 3434 * Reinitialize error message pointer, and any overflow indication. 3435 */ 3436 nextptr = errbuf; 3437 prevptr = 0; 3438 3439 /* 3440 * Don't drop our lock if we are running on our link-map list as 3441 * there's little point in doing so since we are single-threaded. 3442 * 3443 * LML_FLG_HOLDLOCK is set for: 3444 * *) The ld.so.1's link-map list. 3445 * *) The auditor's link-map if the environment is 3446 * libc/libthread un-unified. 3447 */ 3448 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3449 return; 3450 3451 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3452 if (!thr_flg_nolock) 3453 (void) rt_mutex_unlock(&rtldlock); 3454 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3455 } 3456 } 3457 3458 int 3459 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3460 { 3461 APlist *calp, *dalp; 3462 Aliste idx1, idx2; 3463 Grp_hdl *ghp1, *ghp2; 3464 3465 /* 3466 * An object can always find symbols within itself. 3467 */ 3468 if (clmp == dlmp) 3469 return (1); 3470 3471 /* 3472 * The search for a singleton must look in every loaded object. 3473 */ 3474 if (slflags & LKUP_SINGLETON) 3475 return (1); 3476 3477 /* 3478 * Don't allow an object to bind to an object that is being deleted 3479 * unless the binder is also being deleted. 3480 */ 3481 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3482 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3483 return (0); 3484 3485 /* 3486 * An object with world access can always bind to an object with global 3487 * visibility. 3488 */ 3489 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3490 return (1); 3491 3492 /* 3493 * An object with local access can only bind to an object that is a 3494 * member of the same group. 3495 */ 3496 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3497 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3498 return (0); 3499 3500 /* 3501 * Traverse the list of groups the caller is a part of. 3502 */ 3503 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3504 /* 3505 * If we're testing for the ability of two objects to bind to 3506 * each other regardless of a specific group, ignore that group. 3507 */ 3508 if (ghp && (ghp1 == ghp)) 3509 continue; 3510 3511 /* 3512 * Traverse the list of groups the destination is a part of. 3513 */ 3514 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3515 Grp_desc *gdp; 3516 Aliste idx3; 3517 3518 if (ghp1 != ghp2) 3519 continue; 3520 3521 /* 3522 * Make sure the relationship between the destination 3523 * and the caller provide symbols for relocation. 3524 * Parents are maintained as callers, but unless the 3525 * destination object was opened with RTLD_PARENT, the 3526 * parent doesn't provide symbols for the destination 3527 * to relocate against. 3528 */ 3529 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3530 if (dlmp != gdp->gd_depend) 3531 continue; 3532 3533 if (gdp->gd_flags & GPD_RELOC) 3534 return (1); 3535 } 3536 } 3537 } 3538 return (0); 3539 } 3540 3541 /* 3542 * Initialize the environ symbol. Traditionally this is carried out by the crt 3543 * code prior to jumping to main. However, init sections get fired before this 3544 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3545 * information. In addition, a process may have multiple link-maps (ld.so.1's 3546 * debugging and preloading objects), and link auditing, and each may need an 3547 * environ variable set. 3548 * 3549 * This routine is called after a relocation() pass, and thus provides for: 3550 * 3551 * o setting environ on the main link-map after the initial application and 3552 * its dependencies have been established. Typically environ lives in the 3553 * application (provided by its crt), but in older applications it might 3554 * be in libc. Who knows what's expected of applications not built on 3555 * Solaris. 3556 * 3557 * o after loading a new shared object. We can add shared objects to various 3558 * link-maps, and any link-map dependencies requiring getopt() require 3559 * their own environ. In addition, lazy loading might bring in the 3560 * supplier of environ (libc used to be a lazy loading candidate) after 3561 * the link-map has been established and other objects are present. 3562 * 3563 * This routine handles all these scenarios, without adding unnecessary overhead 3564 * to ld.so.1. 3565 */ 3566 void 3567 set_environ(Lm_list *lml) 3568 { 3569 Rt_map *dlmp; 3570 Sym *sym; 3571 Slookup sl; 3572 uint_t binfo; 3573 3574 /* 3575 * Initialize the symbol lookup data structure. 3576 */ 3577 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3578 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3579 3580 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3581 lml->lm_environ = (char ***)sym->st_value; 3582 3583 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3584 lml->lm_environ = 3585 (char ***)((uintptr_t)lml->lm_environ + 3586 (uintptr_t)ADDR(dlmp)); 3587 *(lml->lm_environ) = (char **)environ; 3588 lml->lm_flags |= LML_FLG_ENVIRON; 3589 } 3590 } 3591 3592 /* 3593 * Determine whether we have a secure executable. Uid and gid information 3594 * can be passed to us via the aux vector, however if these values are -1 3595 * then use the appropriate system call to obtain them. 3596 * 3597 * o If the user is the root they can do anything 3598 * 3599 * o If the real and effective uid's don't match, or the real and 3600 * effective gid's don't match then this is determined to be a `secure' 3601 * application. 3602 * 3603 * This function is called prior to any dependency processing (see _setup.c). 3604 * Any secure setting will remain in effect for the life of the process. 3605 */ 3606 void 3607 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3608 { 3609 #ifdef AT_SUN_AUXFLAGS 3610 if (auxflags != -1) { 3611 if ((auxflags & AF_SUN_SETUGID) != 0) 3612 rtld_flags |= RT_FL_SECURE; 3613 return; 3614 } 3615 #endif 3616 if (uid == (uid_t)-1) 3617 uid = getuid(); 3618 if (uid) { 3619 if (euid == (uid_t)-1) 3620 euid = geteuid(); 3621 if (uid != euid) 3622 rtld_flags |= RT_FL_SECURE; 3623 else { 3624 if (gid == (gid_t)-1) 3625 gid = getgid(); 3626 if (egid == (gid_t)-1) 3627 egid = getegid(); 3628 if (gid != egid) 3629 rtld_flags |= RT_FL_SECURE; 3630 } 3631 } 3632 } 3633 3634 /* 3635 * _REENTRANT code gets errno redefined to a function so provide for return 3636 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3637 * is basically singled threaded. Provide the interface for our dependencies. 3638 */ 3639 #undef errno 3640 int * 3641 ___errno() 3642 { 3643 extern int errno; 3644 3645 return (&errno); 3646 } 3647 3648 /* 3649 * The interface with the c library which is supplied through libdl.so.1. 3650 * A non-null argument allows a function pointer array to be passed to us which 3651 * is used to re-initialize the linker libc table. 3652 */ 3653 void 3654 _ld_libc(void * ptr) 3655 { 3656 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3657 } 3658 3659 /* 3660 * Determine whether a symbol name should be demangled. 3661 */ 3662 const char * 3663 demangle(const char *name) 3664 { 3665 if (rtld_flags & RT_FL_DEMANGLE) 3666 return (conv_demangle_name(name)); 3667 else 3668 return (name); 3669 } 3670