1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <limits.h> 50 #include <debug.h> 51 #include <conv.h> 52 #include "_rtld.h" 53 #include "_audit.h" 54 #include "_elf.h" 55 #include "msg.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * Null function used as place where a debugger can set a breakpoint. 61 */ 62 void 63 rtld_db_dlactivity(Lm_list *lml) 64 { 65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 66 r_debug.rtd_rdebug.r_state)); 67 } 68 69 /* 70 * Null function used as place where debugger can set a pre .init 71 * processing breakpoint. 72 */ 73 void 74 rtld_db_preinit(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a post .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_postinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Debugger Event Notification 93 * 94 * This function centralizes all debugger event notification (ala rtld_db). 95 * 96 * There's a simple intent, focused on insuring the primary link-map control 97 * list (or each link-map list) is consistent, and the indication that objects 98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 99 * event are posted for each of these, most debuggers don't care, as their 100 * view is that these events simply convey an "inconsistent" state. 101 * 102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 103 * enter ld.so.1. 104 * 105 * With auditors, we may be in the process of relocating a collection of 106 * objects, and will leave() ld.so.1 to call the auditor. At this point we 107 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 108 * object to the debuggers until relocation processing has been completed on it. 109 * To allow for the collection of these objects that are pending relocation, an 110 * RD_ADD event is set after completing a series of relocations on the primary 111 * link-map control list. 112 * 113 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 114 * required later (LML_FLG_DBNOTIF): 115 * 116 * i the first time we add or delete an object to the primary link-map 117 * control list. 118 * ii the first time we move a secondary link-map control list to the primary 119 * link-map control list (effectively, this is like adding a group of 120 * objects to the primary link-map control list). 121 * 122 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 123 * 124 * i each time we leave the runtime linker. 125 */ 126 void 127 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 128 { 129 void (*fptr)(Lm_list *); 130 131 switch (event) { 132 case RD_PREINIT: 133 fptr = rtld_db_preinit; 134 break; 135 case RD_POSTINIT: 136 fptr = rtld_db_postinit; 137 break; 138 case RD_DLACTIVITY: 139 switch (state) { 140 case RT_CONSISTENT: 141 lml->lm_flags &= ~LML_FLG_DBNOTIF; 142 143 /* 144 * Do we need to send a notification? 145 */ 146 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 147 return; 148 rtld_flags &= ~RT_FL_DBNOTIF; 149 break; 150 case RT_ADD: 151 case RT_DELETE: 152 lml->lm_flags |= LML_FLG_DBNOTIF; 153 154 /* 155 * If we are already in an inconsistent state, no 156 * notification is required. 157 */ 158 if (rtld_flags & RT_FL_DBNOTIF) 159 return; 160 rtld_flags |= RT_FL_DBNOTIF; 161 break; 162 }; 163 fptr = rtld_db_dlactivity; 164 break; 165 default: 166 /* 167 * RD_NONE - do nothing 168 */ 169 break; 170 }; 171 172 /* 173 * Set event state and call 'notification' function. 174 * 175 * The debugging clients have previously been told about these 176 * notification functions and have set breakpoints on them if they 177 * are interested in the notification. 178 */ 179 r_debug.rtd_rdebug.r_state = state; 180 r_debug.rtd_rdebug.r_rdevent = event; 181 fptr(lml); 182 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 183 } 184 185 #if defined(__sparc) || defined(__x86) 186 /* 187 * Stack Cleanup. 188 * 189 * This function is invoked to 'remove' arguments that were passed in on the 190 * stack. This is most likely if ld.so.1 was invoked directly. In that case 191 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 192 * Which means we then need to slide everything above it on the stack down 193 * accordingly. 194 * 195 * While the stack layout is platform specific - it just so happens that __x86, 196 * and __sparc platforms share the following initial stack layout. 197 * 198 * !_______________________! high addresses 199 * ! ! 200 * ! Information ! 201 * ! Block ! 202 * ! (size varies) ! 203 * !_______________________! 204 * ! 0 word ! 205 * !_______________________! 206 * ! Auxiliary ! 207 * ! vector ! 208 * ! 2 word entries ! 209 * ! ! 210 * !_______________________! 211 * ! 0 word ! 212 * !_______________________! 213 * ! Environment ! 214 * ! pointers ! 215 * ! ... ! 216 * ! (one word each) ! 217 * !_______________________! 218 * ! 0 word ! 219 * !_______________________! 220 * ! Argument ! low addresses 221 * ! pointers ! 222 * ! Argc words ! 223 * !_______________________! 224 * ! ! 225 * ! Argc ! 226 * !_______________________! 227 * ! ... ! 228 * 229 */ 230 static void 231 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 232 { 233 int ndx; 234 long *argc; 235 char **oargv, **nargv; 236 char **oenvp, **nenvp; 237 auxv_t *oauxv, *nauxv; 238 239 /* 240 * Slide ARGV[] and update argc. The argv pointer remains the same, 241 * however slide the applications arguments over the arguments to 242 * ld.so.1. 243 */ 244 nargv = &argv[0]; 245 oargv = &argv[rmcnt]; 246 247 for (ndx = 0; oargv[ndx]; ndx++) 248 nargv[ndx] = oargv[ndx]; 249 nargv[ndx] = oargv[ndx]; 250 251 argc = (long *)((uintptr_t)argv - sizeof (long *)); 252 *argc -= rmcnt; 253 254 /* 255 * Slide ENVP[], and update the environment array pointer. 256 */ 257 ndx++; 258 nenvp = &nargv[ndx]; 259 oenvp = &oargv[ndx]; 260 *envp = nenvp; 261 262 for (ndx = 0; oenvp[ndx]; ndx++) 263 nenvp[ndx] = oenvp[ndx]; 264 nenvp[ndx] = oenvp[ndx]; 265 266 /* 267 * Slide AUXV[], and update the aux vector pointer. 268 */ 269 ndx++; 270 nauxv = (auxv_t *)&nenvp[ndx]; 271 oauxv = (auxv_t *)&oenvp[ndx]; 272 *auxv = nauxv; 273 274 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 275 nauxv[ndx] = oauxv[ndx]; 276 nauxv[ndx] = oauxv[ndx]; 277 } 278 #else 279 /* 280 * Verify that the above routine is appropriate for any new platforms. 281 */ 282 #error unsupported architecture! 283 #endif 284 285 /* 286 * The only command line argument recognized is -e, followed by a runtime 287 * linker environment variable. 288 */ 289 int 290 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 291 Word *lmtflags, int aout) 292 { 293 int ndx; 294 295 for (ndx = 1; argv[ndx]; ndx++) { 296 char *str; 297 298 if (argv[ndx][0] != '-') 299 break; 300 301 if (argv[ndx][1] == '\0') { 302 ndx++; 303 break; 304 } 305 306 if (argv[ndx][1] != 'e') 307 return (1); 308 309 if (argv[ndx][2] == '\0') { 310 ndx++; 311 if (argv[ndx] == NULL) 312 return (1); 313 str = argv[ndx]; 314 } else 315 str = &argv[ndx][2]; 316 317 /* 318 * If the environment variable starts with LD_, strip the LD_. 319 * Otherwise, take things as is. 320 */ 321 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 322 (str[3] != '\0')) 323 str += 3; 324 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 325 return (1); 326 } 327 328 /* 329 * Make sure an object file has been specified. 330 */ 331 if (argv[ndx] == NULL) 332 return (1); 333 334 /* 335 * Having gotten the arguments, clean ourselves off of the stack. 336 */ 337 stack_cleanup(argv, envp, auxv, ndx); 338 return (0); 339 } 340 341 /* 342 * Compare function for PathNode AVL tree. 343 */ 344 static int 345 pnavl_compare(const void *n1, const void *n2) 346 { 347 uint_t hash1, hash2; 348 const char *st1, *st2; 349 int rc; 350 351 hash1 = ((PathNode *)n1)->pn_hash; 352 hash2 = ((PathNode *)n2)->pn_hash; 353 354 if (hash1 > hash2) 355 return (1); 356 if (hash1 < hash2) 357 return (-1); 358 359 st1 = ((PathNode *)n1)->pn_name; 360 st2 = ((PathNode *)n2)->pn_name; 361 362 rc = strcmp(st1, st2); 363 if (rc > 0) 364 return (1); 365 if (rc < 0) 366 return (-1); 367 return (0); 368 } 369 370 /* 371 * Create an AVL tree. 372 */ 373 static avl_tree_t * 374 pnavl_create(size_t size) 375 { 376 avl_tree_t *avlt; 377 378 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 379 return (NULL); 380 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 381 return (avlt); 382 } 383 384 /* 385 * Determine if a pathname has already been recorded on the full path name 386 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 387 * successfully loaded. If the path name does not exist in this AVL tree, then 388 * the next insertion point is deposited in "where". This value can be used by 389 * fpavl_insert() to expedite the insertion. 390 */ 391 Rt_map * 392 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 393 { 394 FullPathNode fpn, *fpnp; 395 396 /* 397 * Create the avl tree if required. 398 */ 399 if ((lml->lm_fpavl == NULL) && 400 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 401 return (NULL); 402 403 fpn.fpn_node.pn_name = name; 404 if ((fpn.fpn_node.pn_hash = hash) == 0) 405 fpn.fpn_node.pn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 /* 414 * Insert a name into the FullPathNode AVL tree for the link-map list. The 415 * objects NAME() is the path that would have originally been searched for, and 416 * is therefore the name to associate with any "where" value. If the object has 417 * a different PATHNAME(), perhaps because it has resolved to a different file 418 * (see fullpath()), then this name will be recorded as a separate FullPathNode 419 * (see load_file()). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullPathNode *fpnp; 425 uint_t hash = sgs_str_hash(name); 426 427 if (where == 0) { 428 /* LINTED */ 429 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 430 431 /* 432 * We better not get a hit now, we do not want duplicates in 433 * the tree. 434 */ 435 ASSERT(_lmp == NULL); 436 } 437 438 /* 439 * Insert new node in tree. 440 */ 441 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 442 return (0); 443 444 fpnp->fpn_node.pn_name = name; 445 fpnp->fpn_node.pn_hash = hash; 446 fpnp->fpn_lmp = lmp; 447 448 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the FullPathNode AVL tree. 460 */ 461 void 462 fpavl_remove(Rt_map *lmp) 463 { 464 FullPathNode *fpnp; 465 Aliste idx; 466 467 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 468 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 469 free(fpnp); 470 } 471 free(FPNODE(lmp)); 472 FPNODE(lmp) = NULL; 473 } 474 475 /* 476 * Determine if a pathname has already been recorded on the not-found AVL tree. 477 * This tree maintains a node for each path name that ld.so.1 has explicitly 478 * inspected, but has failed to load during a single ld.so.1 operation. If the 479 * path name does not exist in this AVL tree, then the next insertion point is 480 * deposited in "where". This value can be used by nfavl_insert() to expedite 481 * the insertion. 482 */ 483 int 484 nfavl_recorded(const char *name, uint_t hash, avl_index_t *where) 485 { 486 PathNode pn; 487 488 /* 489 * Create the avl tree if required. 490 */ 491 if ((nfavl == NULL) && 492 ((nfavl = pnavl_create(sizeof (PathNode))) == NULL)) 493 return (NULL); 494 495 pn.pn_name = name; 496 if ((pn.pn_hash = hash) == 0) 497 pn.pn_hash = sgs_str_hash(name); 498 499 if (avl_find(nfavl, &pn, where) == NULL) 500 return (0); 501 502 return (1); 503 } 504 505 /* 506 * Insert a name into the not-found AVL tree. 507 */ 508 void 509 nfavl_insert(const char *name, avl_index_t where) 510 { 511 PathNode *pnp; 512 uint_t hash = sgs_str_hash(name); 513 514 if (where == 0) { 515 /* LINTED */ 516 int in_nfavl = nfavl_recorded(name, hash, &where); 517 518 /* 519 * We better not get a hit now, we do not want duplicates in 520 * the tree. 521 */ 522 ASSERT(in_nfavl == 0); 523 } 524 525 /* 526 * Insert new node in tree. 527 */ 528 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 529 pnp->pn_name = name; 530 pnp->pn_hash = hash; 531 avl_insert(nfavl, pnp, where); 532 } 533 } 534 535 static avl_tree_t *spavl = NULL; 536 537 /* 538 * Search for a path name within the secure path AVL tree. This tree is used 539 * to maintain a list of directories in which the dependencies of a secure 540 * process have been found. This list provides a fall-back in the case that a 541 * $ORIGIN expansion is deemed insecure, when the expansion results in a path 542 * name that has already provided dependencies. 543 */ 544 int 545 spavl_recorded(const char *name, avl_index_t *where) 546 { 547 PathNode pn; 548 549 /* 550 * Create the avl tree if required. 551 */ 552 if ((spavl == NULL) && 553 ((spavl = pnavl_create(sizeof (PathNode))) == NULL)) 554 return (0); 555 556 pn.pn_name = name; 557 pn.pn_hash = sgs_str_hash(name); 558 559 if (avl_find(spavl, &pn, where) == NULL) 560 return (0); 561 562 return (1); 563 } 564 565 /* 566 * Insert the directory name, of a full path name, into the secure path AVL 567 * tree. 568 */ 569 void 570 spavl_insert(const char *name) 571 { 572 char buffer[PATH_MAX], *str; 573 size_t size; 574 avl_index_t where; 575 PathNode *pnp; 576 577 /* 578 * Separate the directory name from the path name. 579 */ 580 if ((str = strrchr(name, '/')) == name) 581 size = 1; 582 else 583 size = str - name; 584 585 (void) strncpy(buffer, name, size); 586 buffer[size] = '\0'; 587 588 /* 589 * Determine whether this directory name is already recorded, or if 590 * not, 'where" will provide the insertion point for the new string. 591 */ 592 if (spavl_recorded(buffer, &where)) 593 return; 594 595 /* 596 * Insert new node in tree. 597 */ 598 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 599 pnp->pn_name = strdup(buffer); 600 pnp->pn_hash = sgs_str_hash(buffer); 601 avl_insert(spavl, pnp, where); 602 } 603 } 604 605 /* 606 * Inspect the generic string AVL tree for the given string. If the string is 607 * not present, duplicate it, and insert the string in the AVL tree. Return the 608 * duplicated string to the caller. 609 * 610 * These strings are maintained for the life of ld.so.1 and represent path 611 * names, file names, and search paths. All other AVL trees that maintain 612 * FullPathNode and not-found path names use the same string pointer 613 * established for this string. 614 */ 615 static avl_tree_t *stravl = NULL; 616 static char *strbuf = NULL; 617 static PathNode *pnbuf = NULL; 618 static size_t strsize = 0, pnsize = 0; 619 620 const char * 621 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 622 { 623 char str[PATH_MAX]; 624 PathNode *pnp; 625 avl_index_t where; 626 627 /* 628 * Create the avl tree if required. 629 */ 630 if ((stravl == NULL) && 631 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 632 return (NULL); 633 634 /* 635 * Determine the string size if not provided by the caller. 636 */ 637 if (nsize == 0) 638 nsize = strlen(name) + 1; 639 else if (substr) { 640 /* 641 * The string passed to us may be a multiple path string for 642 * which we only need the first component. Using the provided 643 * size, strip out the required string. 644 */ 645 (void) strncpy(str, name, nsize); 646 str[nsize - 1] = '\0'; 647 name = str; 648 } 649 650 /* 651 * Allocate a PathNode buffer if one doesn't exist, or any existing 652 * buffer has been used up. 653 */ 654 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 655 pnsize = syspagsz; 656 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 657 MAP_PRIVATE)) == MAP_FAILED) 658 return (NULL); 659 } 660 /* 661 * Determine whether this string already exists. 662 */ 663 pnbuf->pn_name = name; 664 if ((pnbuf->pn_hash = hash) == 0) 665 pnbuf->pn_hash = sgs_str_hash(name); 666 667 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 668 return (pnp->pn_name); 669 670 /* 671 * Allocate a string buffer if one does not exist, or if there is 672 * insufficient space for the new string in any existing buffer. 673 */ 674 if ((strbuf == NULL) || (nsize > strsize)) { 675 strsize = S_ROUND(nsize, syspagsz); 676 677 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 678 MAP_PRIVATE)) == MAP_FAILED) 679 return (NULL); 680 } 681 682 (void) memcpy(strbuf, name, nsize); 683 pnp = pnbuf; 684 pnp->pn_name = strbuf; 685 avl_insert(stravl, pnp, where); 686 687 strbuf += nsize; 688 strsize -= nsize; 689 pnbuf++; 690 pnsize -= sizeof (PathNode); 691 return (pnp->pn_name); 692 } 693 694 /* 695 * Prior to calling an object, either via a .plt or through dlsym(), make sure 696 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 697 * init's in the correct order, however, this order is typically based on needed 698 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 699 * still occur and result in bindings that were not captured during topological 700 * sorting. This routine compensates for this lack of binding information, and 701 * provides for dynamic .init firing. 702 */ 703 void 704 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 705 { 706 Rt_map **tobj; 707 708 /* 709 * If the caller is an auditor, and the destination isn't, then don't 710 * run any .inits (see comments in load_completion()). 711 */ 712 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 713 (LIST(clmp) != LIST(dlmp))) 714 return; 715 716 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 717 return; 718 719 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 720 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 721 return; 722 723 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 724 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 725 DBG_CALL(Dbg_util_no_init(dlmp)); 726 return; 727 } 728 729 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 730 tobj[0] = dlmp; 731 call_init(tobj, DBG_INIT_DYN); 732 } 733 } 734 735 /* 736 * Execute .{preinit|init|fini}array sections 737 */ 738 void 739 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 740 { 741 int start, stop, incr, ndx; 742 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 743 744 if (array == NULL) 745 return; 746 747 /* 748 * initarray & preinitarray are walked from beginning to end - while 749 * finiarray is walked from end to beginning. 750 */ 751 if (shtype == SHT_FINI_ARRAY) { 752 start = arraycnt - 1; 753 stop = incr = -1; 754 } else { 755 start = 0; 756 stop = arraycnt; 757 incr = 1; 758 } 759 760 /* 761 * Call the .*array[] entries 762 */ 763 for (ndx = start; ndx != stop; ndx += incr) { 764 void (*fptr)(void) = (void(*)())array[ndx]; 765 766 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 767 768 leave(LIST(lmp), 0); 769 (*fptr)(); 770 (void) enter(0); 771 } 772 } 773 774 775 /* 776 * Execute any .init sections. These are passed to us in an lmp array which 777 * (by default) will have been sorted. 778 */ 779 void 780 call_init(Rt_map **tobj, int flag) 781 { 782 Rt_map **_tobj, **_nobj; 783 static APlist *pending = NULL; 784 785 /* 786 * If we're in the middle of an INITFIRST, this must complete before 787 * any new init's are fired. In this case add the object list to the 788 * pending queue and return. We'll pick up the queue after any 789 * INITFIRST objects have their init's fired. 790 */ 791 if (rtld_flags & RT_FL_INITFIRST) { 792 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 793 return; 794 } 795 796 /* 797 * Traverse the tobj array firing each objects init. 798 */ 799 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 800 Rt_map *lmp = *_tobj; 801 void (*iptr)() = INIT(lmp); 802 803 if (FLAGS(lmp) & FLG_RT_INITCALL) 804 continue; 805 806 FLAGS(lmp) |= FLG_RT_INITCALL; 807 808 /* 809 * Establish an initfirst state if necessary - no other inits 810 * will be fired (because of additional relocation bindings) 811 * when in this state. 812 */ 813 if (FLAGS(lmp) & FLG_RT_INITFRST) 814 rtld_flags |= RT_FL_INITFIRST; 815 816 if (INITARRAY(lmp) || iptr) 817 DBG_CALL(Dbg_util_call_init(lmp, flag)); 818 819 if (iptr) { 820 leave(LIST(lmp), 0); 821 (*iptr)(); 822 (void) enter(0); 823 } 824 825 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 826 SHT_INIT_ARRAY); 827 828 if (INITARRAY(lmp) || iptr) 829 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 830 831 /* 832 * Set the initdone flag regardless of whether this object 833 * actually contains an .init section. This flag prevents us 834 * from processing this section again for an .init and also 835 * signifies that a .fini must be called should it exist. 836 * Clear the sort field for use in later .fini processing. 837 */ 838 FLAGS(lmp) |= FLG_RT_INITDONE; 839 SORTVAL(lmp) = -1; 840 841 /* 842 * If we're firing an INITFIRST object, and other objects must 843 * be fired which are not INITFIRST, make sure we grab any 844 * pending objects that might have been delayed as this 845 * INITFIRST was processed. 846 */ 847 if ((rtld_flags & RT_FL_INITFIRST) && 848 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 849 Aliste idx; 850 Rt_map **pobj; 851 852 rtld_flags &= ~RT_FL_INITFIRST; 853 854 for (APLIST_TRAVERSE(pending, idx, pobj)) { 855 aplist_delete(pending, &idx); 856 call_init(pobj, DBG_INIT_PEND); 857 } 858 } 859 } 860 free(tobj); 861 } 862 863 /* 864 * Function called by atexit(3C). Calls all .fini sections related with the 865 * mains dependent shared libraries in the order in which the shared libraries 866 * have been loaded. Skip any .fini defined in the main executable, as this 867 * will be called by crt0 (main was never marked as initdone). 868 */ 869 void 870 call_fini(Lm_list * lml, Rt_map ** tobj) 871 { 872 Rt_map **_tobj; 873 874 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 875 Rt_map *clmp, * lmp = *_tobj; 876 Aliste idx; 877 Bnd_desc *bdp; 878 879 /* 880 * Only fire a .fini if the objects corresponding .init has 881 * completed. We collect all .fini sections of objects that 882 * had their .init collected, but that doesn't mean that at 883 * the time of collection, that the .init had completed. 884 */ 885 if (FLAGS(lmp) & FLG_RT_INITDONE) { 886 void (*fptr)(void) = FINI(lmp); 887 888 if (FINIARRAY(lmp) || fptr) 889 DBG_CALL(Dbg_util_call_fini(lmp)); 890 891 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 892 SHT_FINI_ARRAY); 893 894 if (fptr) { 895 leave(LIST(lmp), 0); 896 (*fptr)(); 897 (void) enter(0); 898 } 899 } 900 901 /* 902 * Skip main, this is explicitly called last in atexit_fini(). 903 */ 904 if (FLAGS(lmp) & FLG_RT_ISMAIN) 905 continue; 906 907 /* 908 * Audit `close' operations at this point. The library has 909 * exercised its last instructions (regardless of whether it 910 * will be unmapped or not). 911 * 912 * First call any global auditing. 913 */ 914 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 915 _audit_objclose(auditors->ad_list, lmp); 916 917 /* 918 * Finally determine whether this object has local auditing 919 * requirements by inspecting itself and then its dependencies. 920 */ 921 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 922 continue; 923 924 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 925 _audit_objclose(AUDITORS(lmp)->ad_list, lmp); 926 927 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 928 clmp = bdp->b_caller; 929 930 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 931 _audit_objclose(AUDITORS(clmp)->ad_list, lmp); 932 break; 933 } 934 } 935 } 936 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 937 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 938 939 free(tobj); 940 } 941 942 void 943 atexit_fini() 944 { 945 Rt_map **tobj, *lmp; 946 Lm_list *lml; 947 Aliste idx; 948 949 (void) enter(0); 950 951 rtld_flags |= RT_FL_ATEXIT; 952 953 lml = &lml_main; 954 lml->lm_flags |= LML_FLG_ATEXIT; 955 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 956 lmp = (Rt_map *)lml->lm_head; 957 958 /* 959 * Reverse topologically sort the main link-map for .fini execution. 960 */ 961 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 962 (tobj != (Rt_map **)S_ERROR)) 963 call_fini(lml, tobj); 964 965 /* 966 * Add an explicit close to main and ld.so.1. Although main's .fini is 967 * collected in call_fini() to provide for FINITARRAY processing, its 968 * audit_objclose is explicitly skipped. This provides for it to be 969 * called last, here. This is the reverse of the explicit calls to 970 * audit_objopen() made in setup(). 971 */ 972 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 973 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 974 audit_objclose(lmp, lmp); 975 } 976 977 /* 978 * Now that all .fini code has been run, see what unreferenced objects 979 * remain. 980 */ 981 unused(lml); 982 983 /* 984 * Traverse any alternative link-map lists. 985 */ 986 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 987 /* 988 * Ignore the base-link-map list, which has already been 989 * processed, and the runtime linkers link-map list, which is 990 * typically processed last. 991 */ 992 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 993 continue; 994 995 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 996 continue; 997 998 lml->lm_flags |= LML_FLG_ATEXIT; 999 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1000 1001 /* 1002 * Reverse topologically sort the link-map for .fini execution. 1003 */ 1004 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1005 (tobj != (Rt_map **)S_ERROR)) 1006 call_fini(lml, tobj); 1007 1008 unused(lml); 1009 } 1010 1011 /* 1012 * Finally reverse topologically sort the runtime linkers link-map for 1013 * .fini execution. 1014 */ 1015 lml = &lml_rtld; 1016 lml->lm_flags |= LML_FLG_ATEXIT; 1017 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1018 lmp = (Rt_map *)lml->lm_head; 1019 1020 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1021 (tobj != (Rt_map **)S_ERROR)) 1022 call_fini(lml, tobj); 1023 1024 leave(&lml_main, 0); 1025 } 1026 1027 1028 /* 1029 * This routine is called to complete any runtime linker activity which may have 1030 * resulted in objects being loaded. This is called from all user entry points 1031 * and from any internal dl*() requests. 1032 */ 1033 void 1034 load_completion(Rt_map *nlmp) 1035 { 1036 Rt_map **tobj = NULL; 1037 Lm_list *nlml; 1038 1039 /* 1040 * Establish any .init processing. Note, in a world of lazy loading, 1041 * objects may have been loaded regardless of whether the users request 1042 * was fulfilled (i.e., a dlsym() request may have failed to find a 1043 * symbol but objects might have been loaded during its search). Thus, 1044 * any tsorting starts from the nlmp (new link-maps) pointer and not 1045 * necessarily from the link-map that may have satisfied the request. 1046 * 1047 * Note, the primary link-map has an initialization phase where dynamic 1048 * .init firing is suppressed. This provides for a simple and clean 1049 * handshake with the primary link-maps libc, which is important for 1050 * establishing uberdata. In addition, auditors often obtain handles 1051 * to primary link-map objects as the objects are loaded, so as to 1052 * inspect the link-map for symbols. This inspection is allowed without 1053 * running any code on the primary link-map, as running this code may 1054 * reenter the auditor, who may not yet have finished its own 1055 * initialization. 1056 */ 1057 if (nlmp) 1058 nlml = LIST(nlmp); 1059 1060 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1061 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1062 if ((tobj = tsort(nlmp, nlml->lm_init, 1063 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1064 tobj = NULL; 1065 } 1066 1067 /* 1068 * Make sure any alternative link-map retrieves any external interfaces 1069 * and initializes threads. 1070 */ 1071 if (nlmp && (nlml != &lml_main)) { 1072 (void) rt_get_extern(nlml, nlmp); 1073 rt_thr_init(nlml); 1074 } 1075 1076 /* 1077 * Traverse the list of new link-maps and register any dynamic TLS. 1078 * This storage is established for any objects not on the primary 1079 * link-map, and for any objects added to the primary link-map after 1080 * static TLS has been registered. 1081 */ 1082 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1083 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1084 Rt_map *lmp; 1085 1086 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1087 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1088 tls_modaddrem(lmp, TM_FLG_MODADD); 1089 } 1090 nlml->lm_tls = 0; 1091 } 1092 1093 /* 1094 * Fire any .init's. 1095 */ 1096 if (tobj) 1097 call_init(tobj, DBG_INIT_SORT); 1098 } 1099 1100 /* 1101 * Append an item to the specified link map control list. 1102 */ 1103 void 1104 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1105 { 1106 Lm_cntl *lmc; 1107 int add = 1; 1108 1109 /* 1110 * Indicate that this link-map list has a new object. 1111 */ 1112 (lml->lm_obj)++; 1113 1114 /* 1115 * If we're about to add a new object to the main link-map control list, 1116 * alert the debuggers that we are about to mess with this list. 1117 * Additions of individual objects to the main link-map control list 1118 * occur during initial setup as the applications immediate dependencies 1119 * are loaded. Individual objects are also loaded on the main link-map 1120 * control list of new alternative link-map control lists. 1121 */ 1122 if ((lmco == ALIST_OFF_DATA) && 1123 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1124 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1125 1126 /* LINTED */ 1127 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1128 1129 /* 1130 * A link-map list header points to one of more link-map control lists 1131 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1132 * the list of relocated objects. Other lists maintain objects that 1133 * are still being analyzed or relocated. This list provides the core 1134 * link-map list information used by all ld.so.1 routines. 1135 */ 1136 if (lmc->lc_head == NULL) { 1137 /* 1138 * If this is the first link-map for the given control list, 1139 * initialize the list. 1140 */ 1141 lmc->lc_head = lmc->lc_tail = lmp; 1142 add = 0; 1143 1144 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1145 Rt_map *tlmp; 1146 1147 /* 1148 * If this is an interposer then append the link-map following 1149 * any other interposers (these are objects that have been 1150 * previously preloaded, or were identified with -z interpose). 1151 * Interposers can only be inserted on the first link-map 1152 * control list, as once relocation has started, interposition 1153 * from new interposers can't be guaranteed. 1154 * 1155 * NOTE: We do not interpose on the head of a list. This model 1156 * evolved because dynamic executables have already been fully 1157 * relocated within themselves and thus can't be interposed on. 1158 * Nowadays it's possible to have shared objects at the head of 1159 * a list, which conceptually means they could be interposed on. 1160 * But, shared objects can be created via dldump() and may only 1161 * be partially relocated (just relatives), in which case they 1162 * are interposable, but are marked as fixed (ET_EXEC). 1163 * 1164 * Thus we really don't have a clear method of deciding when the 1165 * head of a link-map is interposable. So, to be consistent, 1166 * for now only add interposers after the link-map lists head 1167 * object. 1168 */ 1169 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1170 tlmp = NEXT_RT_MAP(tlmp)) { 1171 1172 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1173 continue; 1174 1175 /* 1176 * Insert the new link-map before this non-interposer, 1177 * and indicate an interposer is found. 1178 */ 1179 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1180 PREV(lmp) = PREV(tlmp); 1181 1182 NEXT(lmp) = (Link_map *)tlmp; 1183 PREV(tlmp) = (Link_map *)lmp; 1184 1185 lmc->lc_flags |= LMC_FLG_REANALYZE; 1186 add = 0; 1187 break; 1188 } 1189 } 1190 1191 /* 1192 * Fall through to appending the new link map to the tail of the list. 1193 * If we're processing the initial objects of this link-map list, add 1194 * them to the backward compatibility list. 1195 */ 1196 if (add) { 1197 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1198 PREV(lmp) = (Link_map *)lmc->lc_tail; 1199 lmc->lc_tail = lmp; 1200 } 1201 1202 /* 1203 * Having added this link-map to a control list, indicate which control 1204 * list the link-map belongs to. Note, control list information is 1205 * always maintained as an offset, as the Alist can be reallocated. 1206 */ 1207 CNTL(lmp) = lmco; 1208 1209 /* 1210 * Indicate if an interposer is found. Note that the first object on a 1211 * link-map can be explicitly defined as an interposer so that it can 1212 * provide interposition over direct binding requests. 1213 */ 1214 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1215 lml->lm_flags |= LML_FLG_INTRPOSE; 1216 1217 /* 1218 * For backward compatibility with debuggers, the link-map list contains 1219 * pointers to the main control list. 1220 */ 1221 if (lmco == ALIST_OFF_DATA) { 1222 lml->lm_head = lmc->lc_head; 1223 lml->lm_tail = lmc->lc_tail; 1224 } 1225 } 1226 1227 /* 1228 * Delete an item from the specified link map control list. 1229 */ 1230 void 1231 lm_delete(Lm_list *lml, Rt_map *lmp) 1232 { 1233 Lm_cntl *lmc; 1234 1235 /* 1236 * If the control list pointer hasn't been initialized, this object 1237 * never got added to a link-map list. 1238 */ 1239 if (CNTL(lmp) == 0) 1240 return; 1241 1242 /* 1243 * If we're about to delete an object from the main link-map control 1244 * list, alert the debuggers that we are about to mess with this list. 1245 */ 1246 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1247 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1248 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1249 1250 /* LINTED */ 1251 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1252 1253 if (lmc->lc_head == lmp) 1254 lmc->lc_head = NEXT_RT_MAP(lmp); 1255 else 1256 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1257 1258 if (lmc->lc_tail == lmp) 1259 lmc->lc_tail = PREV_RT_MAP(lmp); 1260 else 1261 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1262 1263 /* 1264 * For backward compatibility with debuggers, the link-map list contains 1265 * pointers to the main control list. 1266 */ 1267 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1268 lml->lm_head = lmc->lc_head; 1269 lml->lm_tail = lmc->lc_tail; 1270 } 1271 1272 /* 1273 * Indicate we have one less object on this control list. 1274 */ 1275 (lml->lm_obj)--; 1276 } 1277 1278 /* 1279 * Move a link-map control list to another. Objects that are being relocated 1280 * are maintained on secondary control lists. Once their relocation is 1281 * complete, the entire list is appended to the previous control list, as this 1282 * list must have been the trigger for generating the new control list. 1283 */ 1284 void 1285 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1286 { 1287 Rt_map *lmp; 1288 1289 /* 1290 * If we're about to add a new family of objects to the main link-map 1291 * control list, alert the debuggers that we are about to mess with this 1292 * list. Additions of object families to the main link-map control 1293 * list occur during lazy loading, filtering and dlopen(). 1294 */ 1295 if ((plmco == ALIST_OFF_DATA) && 1296 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1297 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1298 1299 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1300 1301 /* 1302 * Indicate each new link-map has been moved to the previous link-map 1303 * control list. 1304 */ 1305 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1306 CNTL(lmp) = plmco; 1307 1308 /* 1309 * If these objects are being added to the main link-map 1310 * control list, indicate that there are init's available 1311 * for harvesting. 1312 */ 1313 if (plmco == ALIST_OFF_DATA) { 1314 lml->lm_init++; 1315 lml->lm_flags |= LML_FLG_OBJADDED; 1316 } 1317 } 1318 1319 /* 1320 * Move the new link-map control list, to the callers link-map control 1321 * list. 1322 */ 1323 if (plmc->lc_head == NULL) { 1324 plmc->lc_head = nlmc->lc_head; 1325 PREV(nlmc->lc_head) = NULL; 1326 } else { 1327 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1328 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1329 } 1330 1331 plmc->lc_tail = nlmc->lc_tail; 1332 nlmc->lc_head = nlmc->lc_tail = NULL; 1333 1334 /* 1335 * For backward compatibility with debuggers, the link-map list contains 1336 * pointers to the main control list. 1337 */ 1338 if (plmco == ALIST_OFF_DATA) { 1339 lml->lm_head = plmc->lc_head; 1340 lml->lm_tail = plmc->lc_tail; 1341 } 1342 } 1343 1344 /* 1345 * Environment variables can have a variety of defined permutations, and thus 1346 * the following infrastructure exists to allow this variety and to select the 1347 * required definition. 1348 * 1349 * Environment variables can be defined as 32- or 64-bit specific, and if so 1350 * they will take precedence over any instruction set neutral form. Typically 1351 * this is only useful when the environment value is an informational string. 1352 * 1353 * Environment variables may be obtained from the standard user environment or 1354 * from a configuration file. The latter provides a fallback if no user 1355 * environment setting is found, and can take two forms: 1356 * 1357 * - a replaceable definition - this will be used if no user environment 1358 * setting has been seen, or 1359 * 1360 * - an permanent definition - this will be used no matter what user 1361 * environment setting is seen. In the case of list variables it will be 1362 * appended to any process environment setting seen. 1363 * 1364 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1365 * override any replaceable environment variables from a configuration file. 1366 */ 1367 static u_longlong_t rplgen; /* replaceable generic */ 1368 /* variables */ 1369 static u_longlong_t rplisa; /* replaceable ISA specific */ 1370 /* variables */ 1371 static u_longlong_t prmgen; /* permanent generic */ 1372 /* variables */ 1373 static u_longlong_t prmisa; /* permanent ISA specific */ 1374 /* variables */ 1375 1376 /* 1377 * Classify an environment variables type. 1378 */ 1379 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1380 /* the wrong ISA */ 1381 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1382 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1383 /* config file */ 1384 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1385 1386 /* 1387 * Identify all environment variables. 1388 */ 1389 #define ENV_FLG_AUDIT 0x0000000001ULL 1390 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1391 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1392 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1393 #define ENV_FLG_BINDINGS 0x0000000010ULL 1394 1395 #define ENV_FLG_CONFGEN 0x0000000040ULL 1396 #define ENV_FLG_CONFIG 0x0000000080ULL 1397 #define ENV_FLG_DEBUG 0x0000000100ULL 1398 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1399 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1400 #define ENV_FLG_FLAGS 0x0000000800ULL 1401 #define ENV_FLG_INIT 0x0000001000ULL 1402 #define ENV_FLG_LIBPATH 0x0000002000ULL 1403 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1404 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1405 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1406 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1407 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1408 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1409 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1410 #define ENV_FLG_NODIRECT 0x0000200000ULL 1411 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1412 #define ENV_FLG_NOLAZY 0x0000800000ULL 1413 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1414 #define ENV_FLG_NOVERSION 0x0002000000ULL 1415 #define ENV_FLG_PRELOAD 0x0004000000ULL 1416 #define ENV_FLG_PROFILE 0x0008000000ULL 1417 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1418 #define ENV_FLG_SIGNAL 0x0020000000ULL 1419 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1420 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1421 #define ENV_FLG_UNREF 0x0100000000ULL 1422 #define ENV_FLG_UNUSED 0x0200000000ULL 1423 #define ENV_FLG_VERBOSE 0x0400000000ULL 1424 #define ENV_FLG_WARN 0x0800000000ULL 1425 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1426 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1427 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1428 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1429 1430 #define SEL_REPLACE 0x0001 1431 #define SEL_PERMANT 0x0002 1432 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1433 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1434 #define SEL_ACT_STR 0x0400 /* setting string value */ 1435 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1436 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1437 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1438 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1439 1440 /* 1441 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1442 * and len specifies its length (comparing a strings length before the string 1443 * itself speed things up). s2 points to the token itself which has already 1444 * had any leading white-space removed. 1445 */ 1446 static void 1447 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1448 Word *lmtflags, uint_t env_flags, int aout) 1449 { 1450 u_longlong_t variable = 0; 1451 ushort_t select = 0; 1452 const char **str; 1453 Word val = 0; 1454 1455 /* 1456 * Determine whether we're dealing with a replaceable or permanent 1457 * string. 1458 */ 1459 if (env_flags & ENV_TYP_PERMANT) { 1460 /* 1461 * If the string is from a configuration file and defined as 1462 * permanent, assign it as permanent. 1463 */ 1464 select |= SEL_PERMANT; 1465 } else 1466 select |= SEL_REPLACE; 1467 1468 /* 1469 * Parse the variable given. 1470 * 1471 * The LD_AUDIT family. 1472 */ 1473 if (*s1 == 'A') { 1474 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1475 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1476 /* 1477 * Replaceable and permanent audit objects can exist. 1478 */ 1479 select |= SEL_ACT_STR; 1480 if (select & SEL_REPLACE) 1481 str = &rpl_audit; 1482 else { 1483 str = &prm_audit; 1484 rpl_audit = 0; 1485 } 1486 variable = ENV_FLG_AUDIT; 1487 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1488 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1489 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1490 /* 1491 * A specialized variable for plt_exit() use, not 1492 * documented for general use. 1493 */ 1494 select |= SEL_ACT_SPEC_2; 1495 variable = ENV_FLG_AUDIT_ARGS; 1496 } 1497 } 1498 /* 1499 * The LD_BIND family. 1500 */ 1501 else if (*s1 == 'B') { 1502 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1503 MSG_ORIG(MSG_LD_BIND_LAZY), 1504 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1505 select |= SEL_ACT_RT2; 1506 val = RT_FL2_BINDLAZY; 1507 variable = ENV_FLG_BIND_LAZY; 1508 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1509 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1510 select |= SEL_ACT_RT2; 1511 val = RT_FL2_BINDNOW; 1512 variable = ENV_FLG_BIND_NOW; 1513 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1514 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1515 /* 1516 * Another trick, enabled to help debug AOUT 1517 * applications under BCP, but not documented for 1518 * general use. 1519 */ 1520 select |= SEL_ACT_RT; 1521 val = RT_FL_NOBIND; 1522 variable = ENV_FLG_BIND_NOT; 1523 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1524 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1525 /* 1526 * This variable is simply for backward compatibility. 1527 * If this and LD_DEBUG are both specified, only one of 1528 * the strings is going to get processed. 1529 */ 1530 select |= SEL_ACT_SPEC_2; 1531 variable = ENV_FLG_BINDINGS; 1532 } 1533 } 1534 /* 1535 * LD_CONFIG family. 1536 */ 1537 else if (*s1 == 'C') { 1538 if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1539 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1540 /* 1541 * Set by crle(1) to indicate it's building a 1542 * configuration file, not documented for general use. 1543 */ 1544 select |= SEL_ACT_SPEC_2; 1545 variable = ENV_FLG_CONFGEN; 1546 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1547 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1548 /* 1549 * Secure applications must use a default configuration 1550 * file. A setting from a configuration file doesn't 1551 * make sense (given we must be reading a configuration 1552 * file to have gotten this). 1553 */ 1554 if ((rtld_flags & RT_FL_SECURE) || 1555 (env_flags & ENV_TYP_CONFIG)) 1556 return; 1557 select |= SEL_ACT_STR; 1558 str = &config->c_name; 1559 variable = ENV_FLG_CONFIG; 1560 } 1561 } 1562 /* 1563 * The LD_DEBUG family and LD_DEMANGLE. 1564 */ 1565 else if (*s1 == 'D') { 1566 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1568 select |= SEL_ACT_STR; 1569 if (select & SEL_REPLACE) 1570 str = &rpl_debug; 1571 else { 1572 str = &prm_debug; 1573 rpl_debug = 0; 1574 } 1575 variable = ENV_FLG_DEBUG; 1576 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1577 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1578 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1579 select |= SEL_ACT_STR; 1580 str = &dbg_file; 1581 variable = ENV_FLG_DEBUG_OUTPUT; 1582 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1583 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1584 select |= SEL_ACT_RT; 1585 val = RT_FL_DEMANGLE; 1586 variable = ENV_FLG_DEMANGLE; 1587 } 1588 } 1589 /* 1590 * LD_FLAGS - collect the best variable definition. On completion of 1591 * environment variable processing pass the result to ld_flags_env() 1592 * where they'll be decomposed and passed back to this routine. 1593 */ 1594 else if (*s1 == 'F') { 1595 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1596 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1597 select |= SEL_ACT_SPEC_1; 1598 if (select & SEL_REPLACE) 1599 str = &rpl_ldflags; 1600 else { 1601 str = &prm_ldflags; 1602 rpl_ldflags = 0; 1603 } 1604 variable = ENV_FLG_FLAGS; 1605 } 1606 } 1607 /* 1608 * LD_INIT (internal, used by ldd(1)). 1609 */ 1610 else if (*s1 == 'I') { 1611 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1612 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1613 select |= SEL_ACT_LML; 1614 val = LML_FLG_TRC_INIT; 1615 variable = ENV_FLG_INIT; 1616 } 1617 } 1618 /* 1619 * The LD_LIBRARY_PATH and LD_LOAD families. 1620 */ 1621 else if (*s1 == 'L') { 1622 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1623 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1624 select |= SEL_ACT_SPEC_1; 1625 if (select & SEL_REPLACE) 1626 str = &rpl_libpath; 1627 else { 1628 str = &prm_libpath; 1629 rpl_libpath = 0; 1630 } 1631 variable = ENV_FLG_LIBPATH; 1632 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1633 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1634 /* 1635 * Internal use by crle(1), not documented for general 1636 * use. 1637 */ 1638 select |= SEL_ACT_LML; 1639 val = LML_FLG_LOADAVAIL; 1640 variable = ENV_FLG_LOADAVAIL; 1641 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1642 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1643 select |= SEL_ACT_SPEC_2; 1644 variable = ENV_FLG_LOADFLTR; 1645 } 1646 } 1647 /* 1648 * The LD_NO family. 1649 */ 1650 else if (*s1 == 'N') { 1651 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1652 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1653 select |= SEL_ACT_RT; 1654 val = RT_FL_NOAUDIT; 1655 variable = ENV_FLG_NOAUDIT; 1656 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1657 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1658 select |= SEL_ACT_RT; 1659 val = RT_FL_NOAUXFLTR; 1660 variable = ENV_FLG_NOAUXFLTR; 1661 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1662 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1663 select |= SEL_ACT_RT; 1664 val = RT_FL_NOBAPLT; 1665 variable = ENV_FLG_NOBAPLT; 1666 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1667 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1668 select |= SEL_ACT_RT; 1669 val = RT_FL_NOCFG; 1670 variable = ENV_FLG_NOCONFIG; 1671 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1672 MSG_ORIG(MSG_LD_NODIRCONFIG), 1673 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1674 select |= SEL_ACT_RT; 1675 val = RT_FL_NODIRCFG; 1676 variable = ENV_FLG_NODIRCONFIG; 1677 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1678 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1679 select |= SEL_ACT_LMLT; 1680 val = LML_TFLG_NODIRECT; 1681 variable = ENV_FLG_NODIRECT; 1682 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1683 MSG_ORIG(MSG_LD_NOENVCONFIG), 1684 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1685 select |= SEL_ACT_RT; 1686 val = RT_FL_NOENVCFG; 1687 variable = ENV_FLG_NOENVCONFIG; 1688 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1689 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1690 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1691 select |= SEL_ACT_RT2; 1692 val = RT_FL2_NOFLTCFG; 1693 variable = ENV_FLG_NOFLTCONFIG; 1694 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1695 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1696 select |= SEL_ACT_LMLT; 1697 val = LML_TFLG_NOLAZYLD; 1698 variable = ENV_FLG_NOLAZY; 1699 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1700 MSG_ORIG(MSG_LD_NOOBJALTER), 1701 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1702 select |= SEL_ACT_RT; 1703 val = RT_FL_NOOBJALT; 1704 variable = ENV_FLG_NOOBJALTER; 1705 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1707 select |= SEL_ACT_RT; 1708 val = RT_FL_NOVERSION; 1709 variable = ENV_FLG_NOVERSION; 1710 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1711 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1712 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1713 /* 1714 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1715 */ 1716 select |= SEL_ACT_LML; 1717 val = LML_FLG_TRC_NOUNRESWEAK; 1718 variable = ENV_FLG_NOUNRESWEAK; 1719 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1720 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1721 select |= SEL_ACT_LML; 1722 val = LML_FLG_TRC_NOPAREXT; 1723 variable = ENV_FLG_NOPAREXT; 1724 } 1725 } 1726 /* 1727 * LD_PRELOAD and LD_PROFILE family. 1728 */ 1729 else if (*s1 == 'P') { 1730 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1731 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1732 select |= SEL_ACT_STR; 1733 if (select & SEL_REPLACE) 1734 str = &rpl_preload; 1735 else { 1736 str = &prm_preload; 1737 rpl_preload = 0; 1738 } 1739 variable = ENV_FLG_PRELOAD; 1740 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1741 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1742 /* 1743 * Only one user library can be profiled at a time. 1744 */ 1745 select |= SEL_ACT_SPEC_2; 1746 variable = ENV_FLG_PROFILE; 1747 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1748 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1749 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1750 /* 1751 * Only one user library can be profiled at a time. 1752 */ 1753 select |= SEL_ACT_STR; 1754 str = &profile_out; 1755 variable = ENV_FLG_PROFILE_OUTPUT; 1756 } 1757 } 1758 /* 1759 * LD_SIGNAL. 1760 */ 1761 else if (*s1 == 'S') { 1762 if (rtld_flags & RT_FL_SECURE) 1763 return; 1764 if ((len == MSG_LD_SIGNAL_SIZE) && 1765 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1766 MSG_LD_SIGNAL_SIZE) == 0)) { 1767 select |= SEL_ACT_SPEC_2; 1768 variable = ENV_FLG_SIGNAL; 1769 } 1770 } 1771 /* 1772 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1773 * the key to enabling all other ldd(1) specific environment variables. 1774 * In case an auditor is called, which in turn might exec(2) a 1775 * subprocess, this variable is disabled, so that any subprocess 1776 * escapes ldd(1) processing. 1777 */ 1778 else if (*s1 == 'T') { 1779 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1780 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1781 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1782 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1783 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1784 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1785 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1786 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1787 char *s0 = (char *)s1; 1788 1789 select |= SEL_ACT_SPEC_2; 1790 variable = ENV_FLG_TRACE_OBJS; 1791 1792 #if defined(__sparc) || defined(__x86) 1793 /* 1794 * The simplest way to "disable" this variable is to 1795 * truncate this string to "LD_'\0'". This string is 1796 * ignored by any ld.so.1 environment processing. 1797 * Use of such interfaces as unsetenv(3c) are overkill, 1798 * and would drag too much libc implementation detail 1799 * into ld.so.1. 1800 */ 1801 *s0 = '\0'; 1802 #else 1803 /* 1804 * Verify that the above write is appropriate for any new platforms. 1805 */ 1806 #error unsupported architecture! 1807 #endif 1808 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1809 MSG_ORIG(MSG_LD_TRACE_PTHS), 1810 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1811 select |= SEL_ACT_LML; 1812 val = LML_FLG_TRC_SEARCH; 1813 variable = ENV_FLG_TRACE_PTHS; 1814 } 1815 } 1816 /* 1817 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1818 */ 1819 else if (*s1 == 'U') { 1820 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1821 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1822 select |= SEL_ACT_LML; 1823 val = LML_FLG_TRC_UNREF; 1824 variable = ENV_FLG_UNREF; 1825 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1826 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1827 select |= SEL_ACT_LML; 1828 val = LML_FLG_TRC_UNUSED; 1829 variable = ENV_FLG_UNUSED; 1830 } 1831 } 1832 /* 1833 * LD_VERBOSE (internal, used by ldd(1)). 1834 */ 1835 else if (*s1 == 'V') { 1836 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1837 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1838 select |= SEL_ACT_LML; 1839 val = LML_FLG_TRC_VERBOSE; 1840 variable = ENV_FLG_VERBOSE; 1841 } 1842 } 1843 /* 1844 * LD_WARN (internal, used by ldd(1)). 1845 */ 1846 else if (*s1 == 'W') { 1847 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1848 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1849 select |= SEL_ACT_LML; 1850 val = LML_FLG_TRC_WARN; 1851 variable = ENV_FLG_WARN; 1852 } 1853 } 1854 1855 if (variable == 0) 1856 return; 1857 1858 /* 1859 * If the variable is already processed with ISA specific variable, 1860 * no further processing needed. 1861 */ 1862 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1863 ((select & SEL_PERMANT) && (prmisa & variable))) 1864 return; 1865 1866 /* 1867 * Now mark the appropriate variables. 1868 * If the replaceable variable is already set, then the 1869 * process environment variable must be set. Any replaceable 1870 * variable specified in a configuration file can be ignored. 1871 */ 1872 if (env_flags & ENV_TYP_ISA) { 1873 /* 1874 * This is ISA setting. We do the setting 1875 * even if s2 is NULL. 1876 * If s2 is NULL, we might need to undo 1877 * the setting. 1878 */ 1879 if (select & SEL_REPLACE) { 1880 if (rplisa & variable) 1881 return; 1882 rplisa |= variable; 1883 } else { 1884 prmisa |= variable; 1885 } 1886 } else if (s2) { 1887 /* 1888 * This is non0-ISA setting 1889 */ 1890 if (select & SEL_REPLACE) { 1891 if (rplgen & variable) 1892 return; 1893 rplgen |= variable; 1894 } else 1895 prmgen |= variable; 1896 } else 1897 /* 1898 * This is non-ISA setting which 1899 * can be ignored. 1900 */ 1901 return; 1902 1903 /* 1904 * Now perform the setting. 1905 */ 1906 if (select & SEL_ACT_RT) { 1907 if (s2) 1908 rtld_flags |= val; 1909 else 1910 rtld_flags &= ~val; 1911 } else if (select & SEL_ACT_RT2) { 1912 if (s2) 1913 rtld_flags2 |= val; 1914 else 1915 rtld_flags2 &= ~val; 1916 } else if (select & SEL_ACT_STR) 1917 *str = s2; 1918 else if (select & SEL_ACT_LML) { 1919 if (s2) 1920 *lmflags |= val; 1921 else 1922 *lmflags &= ~val; 1923 } else if (select & SEL_ACT_LMLT) { 1924 if (s2) 1925 *lmtflags |= val; 1926 else 1927 *lmtflags &= ~val; 1928 } else if (select & SEL_ACT_SPEC_1) { 1929 /* 1930 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1931 */ 1932 *str = s2; 1933 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1934 if (s2) { 1935 if (variable == ENV_FLG_FLAGS) 1936 env_info |= ENV_INF_FLAGCFG; 1937 else 1938 env_info |= ENV_INF_PATHCFG; 1939 } else { 1940 if (variable == ENV_FLG_FLAGS) 1941 env_info &= ~ENV_INF_FLAGCFG; 1942 else 1943 env_info &= ~ENV_INF_PATHCFG; 1944 } 1945 } 1946 } else if (select & SEL_ACT_SPEC_2) { 1947 /* 1948 * variables can be: ENV_FLG_ 1949 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1950 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1951 */ 1952 if (variable == ENV_FLG_AUDIT_ARGS) { 1953 if (s2) { 1954 audit_argcnt = atoi(s2); 1955 audit_argcnt += audit_argcnt % 2; 1956 } else 1957 audit_argcnt = 0; 1958 } else if (variable == ENV_FLG_BINDINGS) { 1959 if (s2) 1960 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1961 else 1962 rpl_debug = NULL; 1963 } else if (variable == ENV_FLG_CONFGEN) { 1964 if (s2) { 1965 rtld_flags |= RT_FL_CONFGEN; 1966 *lmflags |= LML_FLG_IGNRELERR; 1967 } else { 1968 rtld_flags &= ~RT_FL_CONFGEN; 1969 *lmflags &= ~LML_FLG_IGNRELERR; 1970 } 1971 } else if (variable == ENV_FLG_LOADFLTR) { 1972 if (s2) { 1973 *lmtflags |= LML_TFLG_LOADFLTR; 1974 if (*s2 == '2') 1975 rtld_flags |= RT_FL_WARNFLTR; 1976 } else { 1977 *lmtflags &= ~LML_TFLG_LOADFLTR; 1978 rtld_flags &= ~RT_FL_WARNFLTR; 1979 } 1980 } else if (variable == ENV_FLG_PROFILE) { 1981 profile_name = s2; 1982 if (s2) { 1983 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1984 return; 1985 } 1986 /* BEGIN CSTYLED */ 1987 if (rtld_flags & RT_FL_SECURE) { 1988 profile_lib = 1989 #if defined(_ELF64) 1990 MSG_ORIG(MSG_PTH_LDPROFSE_64); 1991 #else 1992 MSG_ORIG(MSG_PTH_LDPROFSE); 1993 #endif 1994 } else { 1995 profile_lib = 1996 #if defined(_ELF64) 1997 MSG_ORIG(MSG_PTH_LDPROF_64); 1998 #else 1999 MSG_ORIG(MSG_PTH_LDPROF); 2000 #endif 2001 } 2002 /* END CSTYLED */ 2003 } else 2004 profile_lib = NULL; 2005 } else if (variable == ENV_FLG_SIGNAL) { 2006 killsig = s2 ? atoi(s2) : SIGKILL; 2007 } else if (variable == ENV_FLG_TRACE_OBJS) { 2008 if (s2) { 2009 *lmflags |= LML_FLG_TRC_ENABLE; 2010 if (*s2 == '2') 2011 *lmflags |= LML_FLG_TRC_LDDSTUB; 2012 } else 2013 *lmflags &= 2014 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2015 } 2016 } 2017 } 2018 2019 /* 2020 * Determine whether we have an architecture specific environment variable. 2021 * If we do, and we're the wrong architecture, it'll just get ignored. 2022 * Otherwise the variable is processed in it's architecture neutral form. 2023 */ 2024 static int 2025 ld_arch_env(const char *s1, size_t *len) 2026 { 2027 size_t _len = *len - 3; 2028 2029 if (s1[_len++] == '_') { 2030 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2031 #if defined(_ELF64) 2032 return (ENV_TYP_IGNORE); 2033 #else 2034 *len = *len - 3; 2035 return (ENV_TYP_ISA); 2036 #endif 2037 } 2038 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2039 #if defined(_ELF64) 2040 *len = *len - 3; 2041 return (ENV_TYP_ISA); 2042 #else 2043 return (ENV_TYP_IGNORE); 2044 #endif 2045 } 2046 } 2047 return (0); 2048 } 2049 2050 2051 /* 2052 * Process an LD_FLAGS environment variable. The value can be a comma 2053 * separated set of tokens, which are sent (in upper case) into the generic 2054 * LD_XXXX environment variable engine. For example: 2055 * 2056 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2057 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2058 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2059 * or 2060 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2061 */ 2062 static int 2063 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2064 uint_t env_flags, int aout) 2065 { 2066 char *nstr, *sstr, *estr = NULL; 2067 size_t nlen, len; 2068 2069 if (str == NULL) 2070 return (0); 2071 2072 /* 2073 * Create a new string as we're going to transform the token(s) into 2074 * uppercase and separate tokens with nulls. 2075 */ 2076 len = strlen(str); 2077 if ((nstr = malloc(len + 1)) == NULL) 2078 return (1); 2079 (void) strcpy(nstr, str); 2080 2081 for (sstr = nstr; sstr; sstr++, len--) { 2082 int flags; 2083 2084 if ((*sstr != '\0') && (*sstr != ',')) { 2085 if (estr == NULL) { 2086 if (*sstr == '=') 2087 estr = sstr; 2088 else { 2089 /* 2090 * Translate token to uppercase. Don't 2091 * use toupper(3C) as including this 2092 * code doubles the size of ld.so.1. 2093 */ 2094 if ((*sstr >= 'a') && (*sstr <= 'z')) 2095 *sstr = *sstr - ('a' - 'A'); 2096 } 2097 } 2098 continue; 2099 } 2100 2101 *sstr = '\0'; 2102 if (estr) { 2103 nlen = estr - nstr; 2104 if ((*++estr == '\0') || (*estr == ',')) 2105 estr = NULL; 2106 } else 2107 nlen = sstr - nstr; 2108 2109 /* 2110 * Fabricate a boolean definition for any unqualified variable. 2111 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2112 * The value is sufficient to assert any boolean variables, plus 2113 * the term "(null)" is specifically chosen in case someone 2114 * mistakenly supplies something like LD_FLAGS=library_path. 2115 */ 2116 if (estr == NULL) 2117 estr = (char *)MSG_INTL(MSG_STR_NULL); 2118 2119 /* 2120 * Determine whether the environment variable is 32- or 64-bit 2121 * specific. The length, len, will reflect the architecture 2122 * neutral portion of the string. 2123 */ 2124 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2125 ld_generic_env(nstr, nlen, estr, lmflags, 2126 lmtflags, (env_flags | flags), aout); 2127 } 2128 if (len == 0) 2129 return (0); 2130 2131 nstr = sstr + 1; 2132 estr = NULL; 2133 } 2134 return (0); 2135 } 2136 2137 2138 /* 2139 * Process a single environment string. Only strings starting with `LD_' are 2140 * reserved for our use. By convention, all strings should be of the form 2141 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2142 * functionality is enabled. Also pick off applicable locale variables. 2143 */ 2144 #define LOC_LANG 1 2145 #define LOC_MESG 2 2146 #define LOC_ALL 3 2147 2148 static void 2149 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2150 int aout) 2151 { 2152 const char *s2; 2153 static size_t loc = 0; 2154 2155 if (*s1++ != 'L') 2156 return; 2157 2158 /* 2159 * See if we have any locale environment settings. These environment 2160 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2161 * is higher than LANG. 2162 */ 2163 s2 = s1; 2164 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2165 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2166 s2 += MSG_LC_ALL_SIZE; 2167 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2168 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2169 loc = LOC_ALL; 2170 } 2171 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2172 MSG_LC_MESSAGES_SIZE) == 0) { 2173 s2 += MSG_LC_MESSAGES_SIZE; 2174 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2175 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2176 loc = LOC_MESG; 2177 } 2178 } 2179 return; 2180 } 2181 2182 s2 = s1; 2183 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2184 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2185 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2186 loc = LOC_LANG; 2187 return; 2188 } 2189 2190 /* 2191 * Pick off any LD_XXXX environment variables. 2192 */ 2193 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2194 size_t len; 2195 int flags; 2196 2197 /* 2198 * In a branded process we must ignore all LD_XXXX env vars 2199 * because they are intended for the brand's linker. 2200 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2201 */ 2202 if (rtld_flags2 & RT_FL2_BRANDED) { 2203 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2204 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2205 return; 2206 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2207 } 2208 2209 /* 2210 * Environment variables with no value (ie. LD_XXXX=) typically 2211 * have no impact, however if environment variables are defined 2212 * within a configuration file, these null user settings can be 2213 * used to disable any configuration replaceable definitions. 2214 */ 2215 if ((s2 = strchr(s1, '=')) == NULL) { 2216 len = strlen(s1); 2217 s2 = NULL; 2218 } else if (*++s2 == '\0') { 2219 len = strlen(s1) - 1; 2220 s2 = NULL; 2221 } else { 2222 len = s2 - s1 - 1; 2223 while (isspace(*s2)) 2224 s2++; 2225 } 2226 2227 /* 2228 * Determine whether the environment variable is 32- or 64-bit 2229 * specific. The length, len, will reflect the architecture 2230 * neutral portion of the string. 2231 */ 2232 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2233 return; 2234 env_flags |= flags; 2235 2236 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2237 } 2238 } 2239 2240 /* 2241 * Internal getenv routine. Called immediately after ld.so.1 initializes 2242 * itself. 2243 */ 2244 int 2245 readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout) 2246 { 2247 char *locale; 2248 2249 if (envp == NULL) 2250 return (0); 2251 2252 while (*envp != NULL) 2253 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2254 2255 /* 2256 * Having collected the best representation of any LD_FLAGS, process 2257 * these strings. 2258 */ 2259 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2260 return (1); 2261 2262 /* 2263 * Don't allow environment controlled auditing when tracing or if 2264 * explicitly disabled. Trigger all tracing modes from 2265 * LML_FLG_TRC_ENABLE. 2266 */ 2267 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2268 rpl_audit = profile_lib = profile_name = NULL; 2269 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2270 *lmflags &= ~LML_MSK_TRC; 2271 2272 /* 2273 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2274 */ 2275 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2276 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2277 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2278 2279 /* 2280 * When using ldd(1) -r or -d against an executable, assert -p. 2281 */ 2282 if ((*lmflags & 2283 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2284 *lmflags |= LML_FLG_TRC_NOPAREXT; 2285 2286 /* 2287 * If we have a locale setting make sure its worth processing further. 2288 * C and POSIX locales don't need any processing. In addition, to 2289 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2290 * the locale to contain a segment that leads upward in the file system 2291 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2292 * the /usr/lib/locale hierarchy, there is no need to extensively 2293 * validate the mode or ownership of any message file (as libc's 2294 * generic handling of message files does). Duplicate the string so 2295 * that new locale setting can generically cleanup any previous locales. 2296 */ 2297 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2298 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2299 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2300 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2301 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2302 else 2303 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2304 } 2305 return (0); 2306 } 2307 2308 /* 2309 * Configuration environment processing. Called after the a.out has been 2310 * processed (as the a.out can specify its own configuration file). 2311 */ 2312 int 2313 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2314 { 2315 Word *lmflags = &(lml_main.lm_flags); 2316 Word *lmtflags = &(lml_main.lm_tflags); 2317 2318 if (envtbl == NULL) 2319 return (0); 2320 2321 while (envtbl->env_str) { 2322 uint_t env_flags = ENV_TYP_CONFIG; 2323 2324 if (envtbl->env_flags & RTC_ENV_PERMANT) 2325 env_flags |= ENV_TYP_PERMANT; 2326 2327 ld_str_env((const char *)(envtbl->env_str + addr), 2328 lmflags, lmtflags, env_flags, 0); 2329 envtbl++; 2330 } 2331 2332 /* 2333 * Having collected the best representation of any LD_FLAGS, process 2334 * these strings. 2335 */ 2336 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2337 return (1); 2338 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2339 aout) == 1) 2340 return (1); 2341 2342 /* 2343 * Don't allow environment controlled auditing when tracing or if 2344 * explicitly disabled. Trigger all tracing modes from 2345 * LML_FLG_TRC_ENABLE. 2346 */ 2347 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2348 prm_audit = profile_lib = profile_name = NULL; 2349 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2350 *lmflags &= ~LML_MSK_TRC; 2351 2352 return (0); 2353 } 2354 2355 int 2356 dowrite(Prfbuf * prf) 2357 { 2358 /* 2359 * We do not have a valid file descriptor, so we are unable 2360 * to flush the buffer. 2361 */ 2362 if (prf->pr_fd == -1) 2363 return (0); 2364 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2365 prf->pr_cur = prf->pr_buf; 2366 return (1); 2367 } 2368 2369 /* 2370 * Simplified printing. The following conversion specifications are supported: 2371 * 2372 * % [#] [-] [min field width] [. precision] s|d|x|c 2373 * 2374 * 2375 * dorprf takes the output buffer in the form of Prfbuf which permits 2376 * the verification of the output buffer size and the concatenation 2377 * of data to an already existing output buffer. The Prfbuf 2378 * structure contains the following: 2379 * 2380 * pr_buf pointer to the beginning of the output buffer. 2381 * pr_cur pointer to the next available byte in the output buffer. By 2382 * setting pr_cur ahead of pr_buf you can append to an already 2383 * existing buffer. 2384 * pr_len the size of the output buffer. By setting pr_len to '0' you 2385 * disable protection from overflows in the output buffer. 2386 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2387 * output to. If pr_fd is set to '-1' then it's assumed there is 2388 * no output buffer, and doprf() will return with an error to 2389 * indicate an output buffer overflow. If pr_fd is > -1 then when 2390 * the output buffer is filled it will be flushed to pr_fd and will 2391 * then be available for additional data. 2392 */ 2393 #define FLG_UT_MINUS 0x0001 /* - */ 2394 #define FLG_UT_SHARP 0x0002 /* # */ 2395 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2396 2397 /* 2398 * This macro is for use from within doprf only. It is to be used for checking 2399 * the output buffer size and placing characters into the buffer. 2400 */ 2401 #define PUTC(c) \ 2402 { \ 2403 char tmpc; \ 2404 \ 2405 tmpc = (c); \ 2406 if (bufsiz && (bp >= bufend)) { \ 2407 prf->pr_cur = bp; \ 2408 if (dowrite(prf) == 0) \ 2409 return (0); \ 2410 bp = prf->pr_cur; \ 2411 } \ 2412 *bp++ = tmpc; \ 2413 } 2414 2415 /* 2416 * Define a local buffer size for building a numeric value - large enough to 2417 * hold a 64-bit value. 2418 */ 2419 #define NUM_SIZE 22 2420 2421 size_t 2422 doprf(const char *format, va_list args, Prfbuf *prf) 2423 { 2424 char c; 2425 char *bp = prf->pr_cur; 2426 char *bufend = prf->pr_buf + prf->pr_len; 2427 size_t bufsiz = prf->pr_len; 2428 2429 while ((c = *format++) != '\0') { 2430 if (c != '%') { 2431 PUTC(c); 2432 } else { 2433 int base = 0, flag = 0, width = 0, prec = 0; 2434 size_t _i; 2435 int _c, _n; 2436 char *_s; 2437 int ls = 0; 2438 again: 2439 c = *format++; 2440 switch (c) { 2441 case '-': 2442 flag |= FLG_UT_MINUS; 2443 goto again; 2444 case '#': 2445 flag |= FLG_UT_SHARP; 2446 goto again; 2447 case '.': 2448 flag |= FLG_UT_DOTSEEN; 2449 goto again; 2450 case '0': 2451 case '1': 2452 case '2': 2453 case '3': 2454 case '4': 2455 case '5': 2456 case '6': 2457 case '7': 2458 case '8': 2459 case '9': 2460 if (flag & FLG_UT_DOTSEEN) 2461 prec = (prec * 10) + c - '0'; 2462 else 2463 width = (width * 10) + c - '0'; 2464 goto again; 2465 case 'x': 2466 case 'X': 2467 base = 16; 2468 break; 2469 case 'd': 2470 case 'D': 2471 case 'u': 2472 base = 10; 2473 flag &= ~FLG_UT_SHARP; 2474 break; 2475 case 'l': 2476 base = 10; 2477 ls++; /* number of l's (long or long long) */ 2478 if ((*format == 'l') || 2479 (*format == 'd') || (*format == 'D') || 2480 (*format == 'x') || (*format == 'X') || 2481 (*format == 'o') || (*format == 'O')) 2482 goto again; 2483 break; 2484 case 'o': 2485 case 'O': 2486 base = 8; 2487 break; 2488 case 'c': 2489 _c = va_arg(args, int); 2490 2491 for (_i = 24; _i > 0; _i -= 8) { 2492 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2493 PUTC(c); 2494 } 2495 } 2496 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2497 PUTC(c); 2498 } 2499 break; 2500 case 's': 2501 _s = va_arg(args, char *); 2502 _i = strlen(_s); 2503 /* LINTED */ 2504 _n = (int)(width - _i); 2505 if (!prec) 2506 /* LINTED */ 2507 prec = (int)_i; 2508 2509 if (width && !(flag & FLG_UT_MINUS)) { 2510 while (_n-- > 0) 2511 PUTC(' '); 2512 } 2513 while (((c = *_s++) != 0) && prec--) { 2514 PUTC(c); 2515 } 2516 if (width && (flag & FLG_UT_MINUS)) { 2517 while (_n-- > 0) 2518 PUTC(' '); 2519 } 2520 break; 2521 case '%': 2522 PUTC('%'); 2523 break; 2524 default: 2525 break; 2526 } 2527 2528 /* 2529 * Numeric processing 2530 */ 2531 if (base) { 2532 char local[NUM_SIZE]; 2533 size_t ssize = 0, psize = 0; 2534 const char *string = 2535 MSG_ORIG(MSG_STR_HEXNUM); 2536 const char *prefix = 2537 MSG_ORIG(MSG_STR_EMPTY); 2538 u_longlong_t num; 2539 2540 switch (ls) { 2541 case 0: /* int */ 2542 num = (u_longlong_t) 2543 va_arg(args, uint_t); 2544 break; 2545 case 1: /* long */ 2546 num = (u_longlong_t) 2547 va_arg(args, ulong_t); 2548 break; 2549 case 2: /* long long */ 2550 num = va_arg(args, u_longlong_t); 2551 break; 2552 } 2553 2554 if (flag & FLG_UT_SHARP) { 2555 if (base == 16) { 2556 prefix = MSG_ORIG(MSG_STR_HEX); 2557 psize = 2; 2558 } else { 2559 prefix = MSG_ORIG(MSG_STR_ZERO); 2560 psize = 1; 2561 } 2562 } 2563 if ((base == 10) && (long)num < 0) { 2564 prefix = MSG_ORIG(MSG_STR_NEGATE); 2565 psize = MSG_STR_NEGATE_SIZE; 2566 num = (u_longlong_t)(-(longlong_t)num); 2567 } 2568 2569 /* 2570 * Convert the numeric value into a local 2571 * string (stored in reverse order). 2572 */ 2573 _s = local; 2574 do { 2575 *_s++ = string[num % base]; 2576 num /= base; 2577 ssize++; 2578 } while (num); 2579 2580 ASSERT(ssize < sizeof (local)); 2581 2582 /* 2583 * Provide any precision or width padding. 2584 */ 2585 if (prec) { 2586 /* LINTED */ 2587 _n = (int)(prec - ssize); 2588 while ((_n-- > 0) && 2589 (ssize < sizeof (local))) { 2590 *_s++ = '0'; 2591 ssize++; 2592 } 2593 } 2594 if (width && !(flag & FLG_UT_MINUS)) { 2595 /* LINTED */ 2596 _n = (int)(width - ssize - psize); 2597 while (_n-- > 0) { 2598 PUTC(' '); 2599 } 2600 } 2601 2602 /* 2603 * Print any prefix and the numeric string 2604 */ 2605 while (*prefix) 2606 PUTC(*prefix++); 2607 do { 2608 PUTC(*--_s); 2609 } while (_s > local); 2610 2611 /* 2612 * Provide any width padding. 2613 */ 2614 if (width && (flag & FLG_UT_MINUS)) { 2615 /* LINTED */ 2616 _n = (int)(width - ssize - psize); 2617 while (_n-- > 0) 2618 PUTC(' '); 2619 } 2620 } 2621 } 2622 } 2623 2624 PUTC('\0'); 2625 prf->pr_cur = bp; 2626 return (1); 2627 } 2628 2629 static int 2630 doprintf(const char *format, va_list args, Prfbuf *prf) 2631 { 2632 char *ocur = prf->pr_cur; 2633 2634 if (doprf(format, args, prf) == 0) 2635 return (0); 2636 /* LINTED */ 2637 return ((int)(prf->pr_cur - ocur)); 2638 } 2639 2640 /* VARARGS2 */ 2641 int 2642 sprintf(char *buf, const char *format, ...) 2643 { 2644 va_list args; 2645 int len; 2646 Prfbuf prf; 2647 2648 va_start(args, format); 2649 prf.pr_buf = prf.pr_cur = buf; 2650 prf.pr_len = 0; 2651 prf.pr_fd = -1; 2652 len = doprintf(format, args, &prf); 2653 va_end(args); 2654 2655 /* 2656 * sprintf() return value excludes the terminating null byte. 2657 */ 2658 return (len - 1); 2659 } 2660 2661 /* VARARGS3 */ 2662 int 2663 snprintf(char *buf, size_t n, const char *format, ...) 2664 { 2665 va_list args; 2666 int len; 2667 Prfbuf prf; 2668 2669 va_start(args, format); 2670 prf.pr_buf = prf.pr_cur = buf; 2671 prf.pr_len = n; 2672 prf.pr_fd = -1; 2673 len = doprintf(format, args, &prf); 2674 va_end(args); 2675 2676 return (len); 2677 } 2678 2679 /* VARARGS2 */ 2680 int 2681 bufprint(Prfbuf *prf, const char *format, ...) 2682 { 2683 va_list args; 2684 int len; 2685 2686 va_start(args, format); 2687 len = doprintf(format, args, prf); 2688 va_end(args); 2689 2690 return (len); 2691 } 2692 2693 /*PRINTFLIKE1*/ 2694 int 2695 printf(const char *format, ...) 2696 { 2697 va_list args; 2698 char buffer[ERRSIZE]; 2699 Prfbuf prf; 2700 2701 va_start(args, format); 2702 prf.pr_buf = prf.pr_cur = buffer; 2703 prf.pr_len = ERRSIZE; 2704 prf.pr_fd = 1; 2705 (void) doprf(format, args, &prf); 2706 va_end(args); 2707 /* 2708 * Trim trailing '\0' form buffer 2709 */ 2710 prf.pr_cur--; 2711 return (dowrite(&prf)); 2712 } 2713 2714 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2715 2716 /* 2717 * All error messages go through eprintf(). During process initialization, 2718 * these messages are directed to the standard error, however once control has 2719 * been passed to the applications code these messages are stored in an internal 2720 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2721 * while running the application will still cause a standard error message, see 2722 * rtldexit() in this file for details. 2723 * The RT_FL_APPLIC flag serves to indicate the transition between process 2724 * initialization and when the applications code is running. 2725 */ 2726 /*PRINTFLIKE3*/ 2727 void 2728 eprintf(Lm_list *lml, Error error, const char *format, ...) 2729 { 2730 va_list args; 2731 int overflow = 0; 2732 static int lock = 0; 2733 Prfbuf prf; 2734 2735 if (lock || (nextptr == (errbuf + ERRSIZE))) 2736 return; 2737 2738 /* 2739 * Note: this lock is here to prevent the same thread from recursively 2740 * entering itself during a eprintf. ie: during eprintf malloc() fails 2741 * and we try and call eprintf ... and then malloc() fails .... 2742 */ 2743 lock = 1; 2744 2745 /* 2746 * If we have completed startup initialization, all error messages 2747 * must be saved. These are reported through dlerror(). If we're 2748 * still in the initialization stage, output the error directly and 2749 * add a newline. 2750 */ 2751 va_start(args, format); 2752 2753 prf.pr_buf = prf.pr_cur = nextptr; 2754 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2755 2756 if (!(rtld_flags & RT_FL_APPLIC)) 2757 prf.pr_fd = 2; 2758 else 2759 prf.pr_fd = -1; 2760 2761 if (error > ERR_NONE) { 2762 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2763 error = ERR_WARNING; 2764 if (error == ERR_WARNING) { 2765 if (err_strs[ERR_WARNING] == NULL) 2766 err_strs[ERR_WARNING] = 2767 MSG_INTL(MSG_ERR_WARNING); 2768 } else if (error == ERR_FATAL) { 2769 if (err_strs[ERR_FATAL] == NULL) 2770 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2771 } else if (error == ERR_ELF) { 2772 if (err_strs[ERR_ELF] == NULL) 2773 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2774 } 2775 if (procname) { 2776 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2777 rtldname, procname, err_strs[error]) == 0) 2778 overflow = 1; 2779 } else { 2780 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2781 rtldname, err_strs[error]) == 0) 2782 overflow = 1; 2783 } 2784 if (overflow == 0) { 2785 /* 2786 * Remove the terminating '\0'. 2787 */ 2788 prf.pr_cur--; 2789 } 2790 } 2791 2792 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2793 overflow = 1; 2794 2795 /* 2796 * If this is an ELF error, it will have been generated by a support 2797 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2798 * ELF error messages as it doesn't interact with libelf. Determine the 2799 * ELF error string. 2800 */ 2801 if ((overflow == 0) && (error == ERR_ELF)) { 2802 static int (*elfeno)() = 0; 2803 static const char *(*elfemg)(); 2804 const char *emsg; 2805 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2806 2807 if (NEXT(lmp) && (elfeno == 0)) { 2808 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2809 MSG_ORIG(MSG_SYM_ELFERRMSG), 2810 lmp, &dlmp)) == NULL) || 2811 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2812 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2813 elfeno = 0; 2814 } 2815 2816 /* 2817 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2818 */ 2819 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2820 prf.pr_cur--; 2821 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2822 emsg) == 0) 2823 overflow = 1; 2824 } 2825 } 2826 2827 /* 2828 * Push out any message that's been built. Note, in the case of an 2829 * overflow condition, this message may be incomplete, in which case 2830 * make sure any partial string is null terminated. 2831 */ 2832 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2833 *(prf.pr_cur - 1) = '\n'; 2834 (void) dowrite(&prf); 2835 } 2836 if (overflow) 2837 *(prf.pr_cur - 1) = '\0'; 2838 2839 DBG_CALL(Dbg_util_str(lml, nextptr)); 2840 va_end(args); 2841 2842 /* 2843 * Determine if there was insufficient space left in the buffer to 2844 * complete the message. If so, we'll have printed out as much as had 2845 * been processed if we're not yet executing the application. 2846 * Otherwise, there will be some debugging diagnostic indicating 2847 * as much of the error message as possible. Write out a final buffer 2848 * overflow diagnostic - unlocalized, so we don't chance more errors. 2849 */ 2850 if (overflow) { 2851 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2852 2853 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2854 lasterr = str; 2855 2856 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2857 (void) write(2, str, strlen(str)); 2858 (void) write(2, MSG_ORIG(MSG_STR_NL), 2859 MSG_STR_NL_SIZE); 2860 } 2861 } 2862 DBG_CALL(Dbg_util_str(lml, str)); 2863 2864 lock = 0; 2865 nextptr = errbuf + ERRSIZE; 2866 return; 2867 } 2868 2869 /* 2870 * If the application has started, then error messages are being saved 2871 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2872 * the case of a fatal error. In this case, establish the next error 2873 * pointer. If we haven't started the application, the whole message 2874 * buffer can be reused. 2875 */ 2876 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2877 lasterr = nextptr; 2878 2879 /* 2880 * Note, should we encounter an error such as ENOMEM, there may 2881 * be a number of the same error messages (ie. an operation 2882 * fails with ENOMEM, and then the attempts to construct the 2883 * error message itself, which incurs additional ENOMEM errors). 2884 * Compare any previous error message with the one we've just 2885 * created to prevent any duplication clutter. 2886 */ 2887 if ((rtld_flags & RT_FL_APPLIC) && 2888 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 2889 prevptr = nextptr; 2890 nextptr = prf.pr_cur; 2891 *nextptr = '\0'; 2892 } 2893 } 2894 lock = 0; 2895 } 2896 2897 2898 #if DEBUG 2899 /* 2900 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 2901 * details. 2902 */ 2903 int 2904 assfail(const char *a, const char *f, int l) 2905 { 2906 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2907 (void) _lwp_kill(_lwp_self(), SIGABRT); 2908 return (0); 2909 } 2910 #endif 2911 2912 /* 2913 * Exit. If we arrive here with a non zero status it's because of a fatal 2914 * error condition (most commonly a relocation error). If the application has 2915 * already had control, then the actual fatal error message will have been 2916 * recorded in the dlerror() message buffer. Print the message before really 2917 * exiting. 2918 */ 2919 void 2920 rtldexit(Lm_list * lml, int status) 2921 { 2922 if (status) { 2923 if (rtld_flags & RT_FL_APPLIC) { 2924 /* 2925 * If the error buffer has been used, write out all 2926 * pending messages - lasterr is simply a pointer to 2927 * the last message in this buffer. However, if the 2928 * buffer couldn't be created at all, lasterr points 2929 * to a constant error message string. 2930 */ 2931 if (*errbuf) { 2932 char *errptr = errbuf; 2933 char *errend = errbuf + ERRSIZE; 2934 2935 while ((errptr < errend) && *errptr) { 2936 size_t size = strlen(errptr); 2937 (void) write(2, errptr, size); 2938 (void) write(2, MSG_ORIG(MSG_STR_NL), 2939 MSG_STR_NL_SIZE); 2940 errptr += (size + 1); 2941 } 2942 } 2943 if (lasterr && ((lasterr < errbuf) || 2944 (lasterr > (errbuf + ERRSIZE)))) { 2945 (void) write(2, lasterr, strlen(lasterr)); 2946 (void) write(2, MSG_ORIG(MSG_STR_NL), 2947 MSG_STR_NL_SIZE); 2948 } 2949 } 2950 leave(lml, 0); 2951 (void) _lwp_kill(_lwp_self(), killsig); 2952 } 2953 _exit(status); 2954 } 2955 2956 /* 2957 * Map anonymous memory via MAP_ANON (added in Solaris 8). 2958 */ 2959 void * 2960 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 2961 { 2962 caddr_t va; 2963 2964 if ((va = (caddr_t)mmap(addr, len, prot, 2965 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 2966 int err = errno; 2967 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2968 strerror(err)); 2969 return (MAP_FAILED); 2970 } 2971 return (va); 2972 } 2973 2974 static int nu_fd = FD_UNAVAIL; 2975 2976 void * 2977 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 2978 { 2979 caddr_t va; 2980 int err; 2981 2982 if (nu_fd == FD_UNAVAIL) { 2983 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 2984 O_RDONLY)) == FD_UNAVAIL) { 2985 err = errno; 2986 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 2987 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 2988 return (MAP_FAILED); 2989 } 2990 } 2991 2992 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 2993 MAP_FAILED) { 2994 err = errno; 2995 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 2996 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 2997 } 2998 return (va); 2999 } 3000 3001 /* 3002 * Generic entry point from user code - simply grabs a lock, and bumps the 3003 * entrance count. 3004 */ 3005 int 3006 enter(int flags) 3007 { 3008 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3009 if (!thr_flg_nolock) 3010 (void) rt_mutex_lock(&rtldlock); 3011 if (rtld_flags & RT_FL_OPERATION) 3012 ld_entry_cnt++; 3013 return (1); 3014 } 3015 return (0); 3016 } 3017 3018 /* 3019 * Determine whether a search path has been used. 3020 */ 3021 static void 3022 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3023 { 3024 Pdesc *pdp; 3025 Aliste idx; 3026 3027 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3028 const char *fmt, *name; 3029 3030 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3031 continue; 3032 3033 /* 3034 * If this pathname originated from an expanded token, use the 3035 * original for any diagnostic output. 3036 */ 3037 if ((name = pdp->pd_oname) == NULL) 3038 name = pdp->pd_pname; 3039 3040 if (unref == 0) { 3041 if ((*nl)++ == 0) 3042 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3043 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3044 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3045 continue; 3046 } 3047 3048 if (pdp->pd_flags & LA_SER_LIBPATH) { 3049 if (pdp->pd_flags & LA_SER_CONFIG) { 3050 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3051 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3052 else 3053 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3054 } else { 3055 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3056 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3057 else 3058 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3059 } 3060 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3061 fmt = MSG_INTL(MSG_USD_RUNPATH); 3062 } else 3063 continue; 3064 3065 if ((*nl)++ == 0) 3066 (void) printf(MSG_ORIG(MSG_STR_NL)); 3067 (void) printf(fmt, name, obj); 3068 } 3069 } 3070 3071 /* 3072 * Generate diagnostics as to whether an object has been used. A symbolic 3073 * reference that gets bound to an object marks it as used. Dependencies that 3074 * are unused when RTLD_NOW is in effect should be removed from future builds 3075 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3076 * candidates for lazy-loading. 3077 * 3078 * Unreferenced objects identify objects that are defined as dependencies but 3079 * are unreferenced by the caller. These unreferenced objects may however be 3080 * referenced by other objects within the process, and therefore don't qualify 3081 * as completely unused. They are still an unnecessary overhead. 3082 * 3083 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3084 * debugging. 3085 */ 3086 void 3087 unused(Lm_list *lml) 3088 { 3089 Rt_map *lmp; 3090 int nl = 0; 3091 Word unref, unuse; 3092 3093 /* 3094 * If we're not tracing unused references or dependencies, or debugging 3095 * there's nothing to do. 3096 */ 3097 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3098 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3099 3100 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3101 return; 3102 3103 /* 3104 * Detect unused global search paths. 3105 */ 3106 if (rpl_libdirs) 3107 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3108 if (prm_libdirs) 3109 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3110 3111 nl = 0; 3112 lmp = lml->lm_head; 3113 if (RLIST(lmp)) 3114 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3115 3116 /* 3117 * Traverse the link-maps looking for unreferenced or unused 3118 * dependencies. Ignore the first object on a link-map list, as this 3119 * is always used. 3120 */ 3121 nl = 0; 3122 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3123 /* 3124 * Determine if this object contains any runpaths that have 3125 * not been used. 3126 */ 3127 if (RLIST(lmp)) 3128 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3129 3130 /* 3131 * If tracing unreferenced objects, or under debugging, 3132 * determine whether any of this objects callers haven't 3133 * referenced it. 3134 */ 3135 if (unref || DBG_ENABLED) { 3136 Bnd_desc *bdp; 3137 Aliste idx; 3138 3139 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3140 Rt_map *clmp; 3141 3142 if (bdp->b_flags & BND_REFER) 3143 continue; 3144 3145 clmp = bdp->b_caller; 3146 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3147 continue; 3148 3149 /* BEGIN CSTYLED */ 3150 if (nl++ == 0) { 3151 if (unref) 3152 (void) printf(MSG_ORIG(MSG_STR_NL)); 3153 else 3154 DBG_CALL(Dbg_util_nl(lml, 3155 DBG_NL_STD)); 3156 } 3157 3158 if (unref) 3159 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3160 NAME(lmp), NAME(clmp)); 3161 else 3162 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3163 /* END CSTYLED */ 3164 } 3165 } 3166 3167 /* 3168 * If tracing unused objects simply display those objects that 3169 * haven't been referenced by anyone. 3170 */ 3171 if (FLAGS1(lmp) & FL1_RT_USED) 3172 continue; 3173 3174 if (nl++ == 0) { 3175 if (unref || unuse) 3176 (void) printf(MSG_ORIG(MSG_STR_NL)); 3177 else 3178 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3179 } 3180 if (CYCGROUP(lmp)) { 3181 if (unref || unuse) 3182 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3183 NAME(lmp), CYCGROUP(lmp)); 3184 else 3185 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3186 CYCGROUP(lmp))); 3187 } else { 3188 if (unref || unuse) 3189 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3190 NAME(lmp)); 3191 else 3192 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3193 } 3194 } 3195 3196 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3197 } 3198 3199 /* 3200 * Generic cleanup routine called prior to returning control to the user. 3201 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3202 * released, and any locks dropped. 3203 */ 3204 void 3205 leave(Lm_list *lml, int flags) 3206 { 3207 Lm_list *elml = lml; 3208 Rt_map *clmp; 3209 Aliste idx; 3210 3211 /* 3212 * Alert the debuggers that the link-maps are consistent. Note, in the 3213 * case of tearing down a whole link-map list, lml will be null. In 3214 * this case use the main link-map list to test for a notification. 3215 */ 3216 if (elml == NULL) 3217 elml = &lml_main; 3218 if (elml->lm_flags & LML_FLG_DBNOTIF) 3219 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3220 3221 /* 3222 * Alert any auditors that the link-maps are consistent. 3223 */ 3224 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3225 audit_activity(clmp, LA_ACT_CONSISTENT); 3226 3227 aplist_delete(elml->lm_actaudit, &idx); 3228 } 3229 3230 if (nu_fd != FD_UNAVAIL) { 3231 (void) close(nu_fd); 3232 nu_fd = FD_UNAVAIL; 3233 } 3234 3235 /* 3236 * Reinitialize error message pointer, and any overflow indication. 3237 */ 3238 nextptr = errbuf; 3239 prevptr = NULL; 3240 3241 /* 3242 * Defragment any freed memory. 3243 */ 3244 if (aplist_nitems(free_alp)) 3245 defrag(); 3246 3247 /* 3248 * Don't drop our lock if we are running on our link-map list as 3249 * there's little point in doing so since we are single-threaded. 3250 * 3251 * LML_FLG_HOLDLOCK is set for: 3252 * - The ld.so.1's link-map list. 3253 * - The auditor's link-map if the environment is pre-UPM. 3254 */ 3255 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3256 return; 3257 3258 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3259 if (!thr_flg_nolock) 3260 (void) rt_mutex_unlock(&rtldlock); 3261 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3262 } 3263 } 3264 3265 int 3266 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3267 { 3268 APlist *calp, *dalp; 3269 Aliste idx1, idx2; 3270 Grp_hdl *ghp1, *ghp2; 3271 3272 /* 3273 * An object can always find symbols within itself. 3274 */ 3275 if (clmp == dlmp) 3276 return (1); 3277 3278 /* 3279 * The search for a singleton must look in every loaded object. 3280 */ 3281 if (slflags & LKUP_SINGLETON) 3282 return (1); 3283 3284 /* 3285 * Don't allow an object to bind to an object that is being deleted 3286 * unless the binder is also being deleted. 3287 */ 3288 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3289 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3290 return (0); 3291 3292 /* 3293 * An object with world access can always bind to an object with global 3294 * visibility. 3295 */ 3296 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3297 (MODE(dlmp) & RTLD_GLOBAL)) 3298 return (1); 3299 3300 /* 3301 * An object with local access can only bind to an object that is a 3302 * member of the same group. 3303 */ 3304 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3305 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3306 return (0); 3307 3308 /* 3309 * Traverse the list of groups the caller is a part of. 3310 */ 3311 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3312 /* 3313 * If we're testing for the ability of two objects to bind to 3314 * each other regardless of a specific group, ignore that group. 3315 */ 3316 if (ghp && (ghp1 == ghp)) 3317 continue; 3318 3319 /* 3320 * Traverse the list of groups the destination is a part of. 3321 */ 3322 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3323 Grp_desc *gdp; 3324 Aliste idx3; 3325 3326 if (ghp1 != ghp2) 3327 continue; 3328 3329 /* 3330 * Make sure the relationship between the destination 3331 * and the caller provide symbols for relocation. 3332 * Parents are maintained as callers, but unless the 3333 * destination object was opened with RTLD_PARENT, the 3334 * parent doesn't provide symbols for the destination 3335 * to relocate against. 3336 */ 3337 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3338 if (dlmp != gdp->gd_depend) 3339 continue; 3340 3341 if (gdp->gd_flags & GPD_RELOC) 3342 return (1); 3343 } 3344 } 3345 } 3346 return (0); 3347 } 3348 3349 /* 3350 * Initialize the environ symbol. Traditionally this is carried out by the crt 3351 * code prior to jumping to main. However, init sections get fired before this 3352 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3353 * information. In addition, a process may have multiple link-maps (ld.so.1's 3354 * debugging and preloading objects), and link auditing, and each may need an 3355 * environ variable set. 3356 * 3357 * This routine is called after a relocation() pass, and thus provides for: 3358 * 3359 * - setting environ on the main link-map after the initial application and 3360 * its dependencies have been established. Typically environ lives in the 3361 * application (provided by its crt), but in older applications it might 3362 * be in libc. Who knows what's expected of applications not built on 3363 * Solaris. 3364 * 3365 * - after loading a new shared object. We can add shared objects to various 3366 * link-maps, and any link-map dependencies requiring getopt() require 3367 * their own environ. In addition, lazy loading might bring in the 3368 * supplier of environ (libc used to be a lazy loading candidate) after 3369 * the link-map has been established and other objects are present. 3370 * 3371 * This routine handles all these scenarios, without adding unnecessary overhead 3372 * to ld.so.1. 3373 */ 3374 void 3375 set_environ(Lm_list *lml) 3376 { 3377 Rt_map *dlmp; 3378 Sym *sym; 3379 Slookup sl; 3380 uint_t binfo; 3381 3382 /* 3383 * Initialize the symbol lookup data structure. 3384 */ 3385 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3386 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3387 3388 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3389 lml->lm_environ = (char ***)sym->st_value; 3390 3391 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3392 lml->lm_environ = 3393 (char ***)((uintptr_t)lml->lm_environ + 3394 (uintptr_t)ADDR(dlmp)); 3395 *(lml->lm_environ) = (char **)environ; 3396 lml->lm_flags |= LML_FLG_ENVIRON; 3397 } 3398 } 3399 3400 /* 3401 * Determine whether we have a secure executable. Uid and gid information 3402 * can be passed to us via the aux vector, however if these values are -1 3403 * then use the appropriate system call to obtain them. 3404 * 3405 * - If the user is the root they can do anything 3406 * 3407 * - If the real and effective uid's don't match, or the real and 3408 * effective gid's don't match then this is determined to be a `secure' 3409 * application. 3410 * 3411 * This function is called prior to any dependency processing (see _setup.c). 3412 * Any secure setting will remain in effect for the life of the process. 3413 */ 3414 void 3415 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3416 { 3417 if (auxflags != -1) { 3418 if ((auxflags & AF_SUN_SETUGID) != 0) 3419 rtld_flags |= RT_FL_SECURE; 3420 return; 3421 } 3422 3423 if (uid == (uid_t)-1) 3424 uid = getuid(); 3425 if (uid) { 3426 if (euid == (uid_t)-1) 3427 euid = geteuid(); 3428 if (uid != euid) 3429 rtld_flags |= RT_FL_SECURE; 3430 else { 3431 if (gid == (gid_t)-1) 3432 gid = getgid(); 3433 if (egid == (gid_t)-1) 3434 egid = getegid(); 3435 if (gid != egid) 3436 rtld_flags |= RT_FL_SECURE; 3437 } 3438 } 3439 } 3440 3441 /* 3442 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3443 */ 3444 int 3445 is_rtld_setuid() 3446 { 3447 rtld_stat_t status; 3448 3449 if ((rtld_flags2 & RT_FL2_SETUID) || 3450 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3451 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3452 rtld_flags2 |= RT_FL2_SETUID; 3453 return (1); 3454 } 3455 return (0); 3456 } 3457 3458 /* 3459 * _REENTRANT code gets errno redefined to a function so provide for return 3460 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3461 * is basically singled threaded. Provide the interface for our dependencies. 3462 */ 3463 #undef errno 3464 int * 3465 ___errno() 3466 { 3467 extern int errno; 3468 3469 return (&errno); 3470 } 3471 3472 /* 3473 * Determine whether a symbol name should be demangled. 3474 */ 3475 const char * 3476 demangle(const char *name) 3477 { 3478 if (rtld_flags & RT_FL_DEMANGLE) 3479 return (conv_demangle_name(name)); 3480 else 3481 return (name); 3482 } 3483 3484 #ifndef _LP64 3485 /* 3486 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3487 * underneath while preserving the object size limits of a non-largefile 3488 * enabled 32-bit process. The purpose of this is to prevent large inode 3489 * values from causing stat() to fail. 3490 */ 3491 inline static int 3492 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3493 { 3494 extern int errno; 3495 3496 /* 3497 * Although we used a 64-bit capable stat(), the 32-bit rtld 3498 * can only handle objects < 2GB in size. If this object is 3499 * too big, turn the success into an overflow error. 3500 */ 3501 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3502 errno = EOVERFLOW; 3503 return (-1); 3504 } 3505 3506 /* 3507 * Transfer the information needed by rtld into a rtld_stat_t 3508 * structure that preserves the non-largile types for everything 3509 * except inode. 3510 */ 3511 buf->st_dev = lbuf->st_dev; 3512 buf->st_ino = lbuf->st_ino; 3513 buf->st_mode = lbuf->st_mode; 3514 buf->st_uid = lbuf->st_uid; 3515 buf->st_size = (off_t)lbuf->st_size; 3516 buf->st_mtim = lbuf->st_mtim; 3517 #ifdef sparc 3518 buf->st_blksize = lbuf->st_blksize; 3519 #endif 3520 3521 return (r); 3522 } 3523 3524 int 3525 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3526 { 3527 struct stat64 lbuf; 3528 int r; 3529 3530 r = stat64(path, &lbuf); 3531 if (r != -1) 3532 r = rtld_stat_process(r, &lbuf, buf); 3533 return (r); 3534 } 3535 3536 int 3537 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3538 { 3539 struct stat64 lbuf; 3540 int r; 3541 3542 r = fstat64(fildes, &lbuf); 3543 if (r != -1) 3544 r = rtld_stat_process(r, &lbuf, buf); 3545 return (r); 3546 } 3547 #endif 3548