1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include <sys/systeminfo.h> 37 #include <stdio.h> 38 #include <sys/time.h> 39 #include <sys/types.h> 40 #include <sys/mman.h> 41 #include <sys/lwp.h> 42 #include <sys/debug.h> 43 #include <stdarg.h> 44 #include <fcntl.h> 45 #include <string.h> 46 #include <dlfcn.h> 47 #include <unistd.h> 48 #include <stdlib.h> 49 #include <sys/auxv.h> 50 #include <limits.h> 51 #include <debug.h> 52 #include <conv.h> 53 #include "_rtld.h" 54 #include "_audit.h" 55 #include "_elf.h" 56 #include "msg.h" 57 58 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 59 60 /* 61 * Null function used as place where a debugger can set a breakpoint. 62 */ 63 void 64 rtld_db_dlactivity(Lm_list *lml) 65 { 66 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 67 r_debug.rtd_rdebug.r_state)); 68 } 69 70 /* 71 * Null function used as place where debugger can set a pre .init 72 * processing breakpoint. 73 */ 74 void 75 rtld_db_preinit(Lm_list *lml) 76 { 77 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 78 r_debug.rtd_rdebug.r_state)); 79 } 80 81 /* 82 * Null function used as place where debugger can set a post .init 83 * processing breakpoint. 84 */ 85 void 86 rtld_db_postinit(Lm_list *lml) 87 { 88 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 89 r_debug.rtd_rdebug.r_state)); 90 } 91 92 /* 93 * Debugger Event Notification 94 * 95 * This function centralizes all debugger event notification (ala rtld_db). 96 * 97 * There's a simple intent, focused on insuring the primary link-map control 98 * list (or each link-map list) is consistent, and the indication that objects 99 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 100 * event are posted for each of these, most debuggers don't care, as their 101 * view is that these events simply convey an "inconsistent" state. 102 * 103 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 104 * enter ld.so.1. 105 * 106 * With auditors, we may be in the process of relocating a collection of 107 * objects, and will leave() ld.so.1 to call the auditor. At this point we 108 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 109 * object to the debuggers until relocation processing has been completed on it. 110 * To allow for the collection of these objects that are pending relocation, an 111 * RD_ADD event is set after completing a series of relocations on the primary 112 * link-map control list. 113 * 114 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 115 * required later (LML_FLG_DBNOTIF): 116 * 117 * i the first time we add or delete an object to the primary link-map 118 * control list. 119 * ii the first time we move a secondary link-map control list to the primary 120 * link-map control list (effectively, this is like adding a group of 121 * objects to the primary link-map control list). 122 * 123 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 124 * 125 * i each time we leave the runtime linker. 126 */ 127 void 128 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 129 { 130 void (*fptr)(Lm_list *); 131 132 switch (event) { 133 case RD_PREINIT: 134 fptr = rtld_db_preinit; 135 break; 136 case RD_POSTINIT: 137 fptr = rtld_db_postinit; 138 break; 139 case RD_DLACTIVITY: 140 switch (state) { 141 case RT_CONSISTENT: 142 lml->lm_flags &= ~LML_FLG_DBNOTIF; 143 144 /* 145 * Do we need to send a notification? 146 */ 147 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 148 return; 149 rtld_flags &= ~RT_FL_DBNOTIF; 150 break; 151 case RT_ADD: 152 case RT_DELETE: 153 lml->lm_flags |= LML_FLG_DBNOTIF; 154 155 /* 156 * If we are already in an inconsistent state, no 157 * notification is required. 158 */ 159 if (rtld_flags & RT_FL_DBNOTIF) 160 return; 161 rtld_flags |= RT_FL_DBNOTIF; 162 break; 163 }; 164 fptr = rtld_db_dlactivity; 165 break; 166 default: 167 /* 168 * RD_NONE - do nothing 169 */ 170 break; 171 }; 172 173 /* 174 * Set event state and call 'notification' function. 175 * 176 * The debugging clients have previously been told about these 177 * notification functions and have set breakpoints on them if they 178 * are interested in the notification. 179 */ 180 r_debug.rtd_rdebug.r_state = state; 181 r_debug.rtd_rdebug.r_rdevent = event; 182 fptr(lml); 183 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 184 } 185 186 #if defined(__sparc) || defined(__x86) 187 /* 188 * Stack Cleanup. 189 * 190 * This function is invoked to 'remove' arguments that were passed in on the 191 * stack. This is most likely if ld.so.1 was invoked directly. In that case 192 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 193 * Which means we then need to slide everything above it on the stack down 194 * accordingly. 195 * 196 * While the stack layout is platform specific - it just so happens that __x86, 197 * and __sparc platforms share the following initial stack layout. 198 * 199 * !_______________________! high addresses 200 * ! ! 201 * ! Information ! 202 * ! Block ! 203 * ! (size varies) ! 204 * !_______________________! 205 * ! 0 word ! 206 * !_______________________! 207 * ! Auxiliary ! 208 * ! vector ! 209 * ! 2 word entries ! 210 * ! ! 211 * !_______________________! 212 * ! 0 word ! 213 * !_______________________! 214 * ! Environment ! 215 * ! pointers ! 216 * ! ... ! 217 * ! (one word each) ! 218 * !_______________________! 219 * ! 0 word ! 220 * !_______________________! 221 * ! Argument ! low addresses 222 * ! pointers ! 223 * ! Argc words ! 224 * !_______________________! 225 * ! ! 226 * ! Argc ! 227 * !_______________________! 228 * ! ... ! 229 * 230 */ 231 static void 232 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 233 { 234 int ndx; 235 long *argc; 236 char **oargv, **nargv; 237 char **oenvp, **nenvp; 238 auxv_t *oauxv, *nauxv; 239 240 /* 241 * Slide ARGV[] and update argc. The argv pointer remains the same, 242 * however slide the applications arguments over the arguments to 243 * ld.so.1. 244 */ 245 nargv = &argv[0]; 246 oargv = &argv[rmcnt]; 247 248 for (ndx = 0; oargv[ndx]; ndx++) 249 nargv[ndx] = oargv[ndx]; 250 nargv[ndx] = oargv[ndx]; 251 252 argc = (long *)((uintptr_t)argv - sizeof (long *)); 253 *argc -= rmcnt; 254 255 /* 256 * Slide ENVP[], and update the environment array pointer. 257 */ 258 ndx++; 259 nenvp = &nargv[ndx]; 260 oenvp = &oargv[ndx]; 261 *envp = nenvp; 262 263 for (ndx = 0; oenvp[ndx]; ndx++) 264 nenvp[ndx] = oenvp[ndx]; 265 nenvp[ndx] = oenvp[ndx]; 266 267 /* 268 * Slide AUXV[], and update the aux vector pointer. 269 */ 270 ndx++; 271 nauxv = (auxv_t *)&nenvp[ndx]; 272 oauxv = (auxv_t *)&oenvp[ndx]; 273 *auxv = nauxv; 274 275 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 276 nauxv[ndx] = oauxv[ndx]; 277 nauxv[ndx] = oauxv[ndx]; 278 } 279 #else 280 /* 281 * Verify that the above routine is appropriate for any new platforms. 282 */ 283 #error unsupported architecture! 284 #endif 285 286 /* 287 * The only command line argument recognized is -e, followed by a runtime 288 * linker environment variable. 289 */ 290 int 291 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 292 Word *lmtflags, int aout) 293 { 294 int ndx; 295 296 for (ndx = 1; argv[ndx]; ndx++) { 297 char *str; 298 299 if (argv[ndx][0] != '-') 300 break; 301 302 if (argv[ndx][1] == '\0') { 303 ndx++; 304 break; 305 } 306 307 if (argv[ndx][1] != 'e') 308 return (1); 309 310 if (argv[ndx][2] == '\0') { 311 ndx++; 312 if (argv[ndx] == NULL) 313 return (1); 314 str = argv[ndx]; 315 } else 316 str = &argv[ndx][2]; 317 318 /* 319 * If the environment variable starts with LD_, strip the LD_. 320 * Otherwise, take things as is. 321 */ 322 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 323 (str[3] != '\0')) 324 str += 3; 325 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 326 return (1); 327 } 328 329 /* 330 * Make sure an object file has been specified. 331 */ 332 if (argv[ndx] == NULL) 333 return (1); 334 335 /* 336 * Having gotten the arguments, clean ourselves off of the stack. 337 */ 338 stack_cleanup(argv, envp, auxv, ndx); 339 return (0); 340 } 341 342 /* 343 * Compare function for PathNode AVL tree. 344 */ 345 static int 346 pnavl_compare(const void *n1, const void *n2) 347 { 348 uint_t hash1, hash2; 349 const char *st1, *st2; 350 int rc; 351 352 hash1 = ((PathNode *)n1)->pn_hash; 353 hash2 = ((PathNode *)n2)->pn_hash; 354 355 if (hash1 > hash2) 356 return (1); 357 if (hash1 < hash2) 358 return (-1); 359 360 st1 = ((PathNode *)n1)->pn_name; 361 st2 = ((PathNode *)n2)->pn_name; 362 363 rc = strcmp(st1, st2); 364 if (rc > 0) 365 return (1); 366 if (rc < 0) 367 return (-1); 368 return (0); 369 } 370 371 /* 372 * Create an AVL tree. 373 */ 374 static avl_tree_t * 375 pnavl_create(size_t size) 376 { 377 avl_tree_t *avlt; 378 379 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 380 return (NULL); 381 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 382 return (avlt); 383 } 384 385 /* 386 * Determine whether a PathNode is recorded. 387 */ 388 int 389 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 390 avl_index_t *where) 391 { 392 PathNode pn; 393 394 /* 395 * Create the avl tree if required. 396 */ 397 if ((*pnavl == NULL) && 398 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 399 return (0); 400 401 pn.pn_name = name; 402 if ((pn.pn_hash = hash) == 0) 403 pn.pn_hash = sgs_str_hash(name); 404 405 if (avl_find(*pnavl, &pn, where) == NULL) 406 return (0); 407 408 return (1); 409 } 410 411 /* 412 * Determine if a pathname has already been recorded on the full path name 413 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 414 * successfully loaded. If the path name does not exist in this AVL tree, then 415 * the next insertion point is deposited in "where". This value can be used by 416 * fpavl_insert() to expedite the insertion. 417 */ 418 Rt_map * 419 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 420 { 421 FullPathNode fpn, *fpnp; 422 423 /* 424 * Create the avl tree if required. 425 */ 426 if ((lml->lm_fpavl == NULL) && 427 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 428 return (NULL); 429 430 fpn.fpn_node.pn_name = name; 431 if ((fpn.fpn_node.pn_hash = hash) == 0) 432 fpn.fpn_node.pn_hash = sgs_str_hash(name); 433 434 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 435 return (NULL); 436 437 return (fpnp->fpn_lmp); 438 } 439 440 /* 441 * Insert a name into the FullPathNode AVL tree for the link-map list. The 442 * objects NAME() is the path that would have originally been searched for, and 443 * is therefore the name to associate with any "where" value. If the object has 444 * a different PATHNAME(), perhaps because it has resolved to a different file 445 * (see fullpath()), then this name will be recorded as a separate FullPathNode 446 * (see load_file()). 447 */ 448 int 449 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 450 { 451 FullPathNode *fpnp; 452 uint_t hash = sgs_str_hash(name); 453 454 if (where == 0) { 455 /* LINTED */ 456 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 457 458 /* 459 * We better not get a hit now, we do not want duplicates in 460 * the tree. 461 */ 462 ASSERT(_lmp == NULL); 463 } 464 465 /* 466 * Insert new node in tree. 467 */ 468 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 469 return (0); 470 471 fpnp->fpn_node.pn_name = name; 472 fpnp->fpn_node.pn_hash = hash; 473 fpnp->fpn_lmp = lmp; 474 475 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 476 free(fpnp); 477 return (0); 478 } 479 480 ASSERT(lml->lm_fpavl != NULL); 481 avl_insert(lml->lm_fpavl, fpnp, where); 482 return (1); 483 } 484 485 /* 486 * Remove an object from the FullPathNode AVL tree. 487 */ 488 void 489 fpavl_remove(Rt_map *lmp) 490 { 491 FullPathNode *fpnp; 492 Aliste idx; 493 494 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 495 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 496 free(fpnp); 497 } 498 free(FPNODE(lmp)); 499 FPNODE(lmp) = NULL; 500 } 501 502 /* 503 * Insert a path name into the not-found AVL tree. 504 * 505 * This tree maintains a node for each path name that ld.so.1 has explicitly 506 * inspected, but has failed to load during a single ld.so.1 operation. If the 507 * path name does not exist in this AVL tree, then the next insertion point is 508 * deposited in "where". This value can be used by nfavl_insert() to expedite 509 * the insertion. 510 */ 511 void 512 nfavl_insert(const char *name, avl_index_t where) 513 { 514 PathNode *pnp; 515 uint_t hash = sgs_str_hash(name); 516 517 if (where == 0) { 518 /* LINTED */ 519 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 520 521 /* 522 * We better not get a hit now, we do not want duplicates in 523 * the tree. 524 */ 525 ASSERT(in_nfavl == 0); 526 } 527 528 /* 529 * Insert new node in tree. 530 */ 531 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 532 pnp->pn_name = name; 533 pnp->pn_hash = hash; 534 avl_insert(nfavl, pnp, where); 535 } 536 } 537 538 /* 539 * Insert the directory name, of a full path name, into the secure path AVL 540 * tree. 541 * 542 * This tree is used to maintain a list of directories in which the dependencies 543 * of a secure process have been found. This list provides a fall-back in the 544 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 545 * in a path name that has already provided dependencies. 546 */ 547 void 548 spavl_insert(const char *name) 549 { 550 char buffer[PATH_MAX], *str; 551 size_t size; 552 avl_index_t where; 553 PathNode *pnp; 554 uint_t hash; 555 556 /* 557 * Separate the directory name from the path name. 558 */ 559 if ((str = strrchr(name, '/')) == name) 560 size = 1; 561 else 562 size = str - name; 563 564 (void) strncpy(buffer, name, size); 565 buffer[size] = '\0'; 566 hash = sgs_str_hash(buffer); 567 568 /* 569 * Determine whether this directory name is already recorded, or if 570 * not, 'where" will provide the insertion point for the new string. 571 */ 572 if (pnavl_recorded(&spavl, buffer, hash, &where)) 573 return; 574 575 /* 576 * Insert new node in tree. 577 */ 578 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 579 pnp->pn_name = strdup(buffer); 580 pnp->pn_hash = hash; 581 avl_insert(spavl, pnp, where); 582 } 583 } 584 585 /* 586 * Inspect the generic string AVL tree for the given string. If the string is 587 * not present, duplicate it, and insert the string in the AVL tree. Return the 588 * duplicated string to the caller. 589 * 590 * These strings are maintained for the life of ld.so.1 and represent path 591 * names, file names, and search paths. All other AVL trees that maintain 592 * FullPathNode and not-found path names use the same string pointer 593 * established for this string. 594 */ 595 static avl_tree_t *stravl = NULL; 596 static char *strbuf = NULL; 597 static PathNode *pnbuf = NULL; 598 static size_t strsize = 0, pnsize = 0; 599 600 const char * 601 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 602 { 603 char str[PATH_MAX]; 604 PathNode *pnp; 605 avl_index_t where; 606 607 /* 608 * Create the avl tree if required. 609 */ 610 if ((stravl == NULL) && 611 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 612 return (NULL); 613 614 /* 615 * Determine the string size if not provided by the caller. 616 */ 617 if (nsize == 0) 618 nsize = strlen(name) + 1; 619 else if (substr) { 620 /* 621 * The string passed to us may be a multiple path string for 622 * which we only need the first component. Using the provided 623 * size, strip out the required string. 624 */ 625 (void) strncpy(str, name, nsize); 626 str[nsize - 1] = '\0'; 627 name = str; 628 } 629 630 /* 631 * Allocate a PathNode buffer if one doesn't exist, or any existing 632 * buffer has been used up. 633 */ 634 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 635 pnsize = syspagsz; 636 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 637 MAP_PRIVATE)) == MAP_FAILED) 638 return (NULL); 639 } 640 /* 641 * Determine whether this string already exists. 642 */ 643 pnbuf->pn_name = name; 644 if ((pnbuf->pn_hash = hash) == 0) 645 pnbuf->pn_hash = sgs_str_hash(name); 646 647 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 648 return (pnp->pn_name); 649 650 /* 651 * Allocate a string buffer if one does not exist, or if there is 652 * insufficient space for the new string in any existing buffer. 653 */ 654 if ((strbuf == NULL) || (nsize > strsize)) { 655 strsize = S_ROUND(nsize, syspagsz); 656 657 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 658 MAP_PRIVATE)) == MAP_FAILED) 659 return (NULL); 660 } 661 662 (void) memcpy(strbuf, name, nsize); 663 pnp = pnbuf; 664 pnp->pn_name = strbuf; 665 avl_insert(stravl, pnp, where); 666 667 strbuf += nsize; 668 strsize -= nsize; 669 pnbuf++; 670 pnsize -= sizeof (PathNode); 671 return (pnp->pn_name); 672 } 673 674 /* 675 * Prior to calling an object, either via a .plt or through dlsym(), make sure 676 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 677 * init's in the correct order, however, this order is typically based on needed 678 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 679 * still occur and result in bindings that were not captured during topological 680 * sorting. This routine compensates for this lack of binding information, and 681 * provides for dynamic .init firing. 682 */ 683 void 684 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 685 { 686 Rt_map **tobj; 687 688 /* 689 * If the caller is an auditor, and the destination isn't, then don't 690 * run any .inits (see comments in load_completion()). 691 */ 692 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 693 (LIST(clmp) != LIST(dlmp))) 694 return; 695 696 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 697 return; 698 699 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 700 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 701 return; 702 703 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 704 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 705 DBG_CALL(Dbg_util_no_init(dlmp)); 706 return; 707 } 708 709 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 710 tobj[0] = dlmp; 711 call_init(tobj, DBG_INIT_DYN); 712 } 713 } 714 715 /* 716 * Execute .{preinit|init|fini}array sections 717 */ 718 void 719 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 720 { 721 int start, stop, incr, ndx; 722 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 723 724 if (array == NULL) 725 return; 726 727 /* 728 * initarray & preinitarray are walked from beginning to end - while 729 * finiarray is walked from end to beginning. 730 */ 731 if (shtype == SHT_FINI_ARRAY) { 732 start = arraycnt - 1; 733 stop = incr = -1; 734 } else { 735 start = 0; 736 stop = arraycnt; 737 incr = 1; 738 } 739 740 /* 741 * Call the .*array[] entries 742 */ 743 for (ndx = start; ndx != stop; ndx += incr) { 744 void (*fptr)(void) = (void(*)())array[ndx]; 745 746 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 747 748 leave(LIST(lmp), 0); 749 (*fptr)(); 750 (void) enter(0); 751 } 752 } 753 754 755 /* 756 * Execute any .init sections. These are passed to us in an lmp array which 757 * (by default) will have been sorted. 758 */ 759 void 760 call_init(Rt_map **tobj, int flag) 761 { 762 Rt_map **_tobj, **_nobj; 763 static APlist *pending = NULL; 764 765 /* 766 * If we're in the middle of an INITFIRST, this must complete before 767 * any new init's are fired. In this case add the object list to the 768 * pending queue and return. We'll pick up the queue after any 769 * INITFIRST objects have their init's fired. 770 */ 771 if (rtld_flags & RT_FL_INITFIRST) { 772 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 773 return; 774 } 775 776 /* 777 * Traverse the tobj array firing each objects init. 778 */ 779 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 780 Rt_map *lmp = *_tobj; 781 void (*iptr)() = INIT(lmp); 782 uint_t rtldflags; 783 784 if (FLAGS(lmp) & FLG_RT_INITCALL) 785 continue; 786 787 FLAGS(lmp) |= FLG_RT_INITCALL; 788 789 /* 790 * It is possible, that during the initial handshake with libc, 791 * an interposition object has resolved a symbol binding, and 792 * that this objects .init must be fired. As we're about to 793 * run user code, make sure any dynamic linking errors remain 794 * internal (ie., only obtainable from dlerror()), and are not 795 * flushed to stderr. 796 */ 797 rtldflags = (rtld_flags & RT_FL_APPLIC) ? 0 : RT_FL_APPLIC; 798 rtld_flags |= rtldflags; 799 800 /* 801 * Establish an initfirst state if necessary - no other inits 802 * will be fired (because of additional relocation bindings) 803 * when in this state. 804 */ 805 if (FLAGS(lmp) & FLG_RT_INITFRST) 806 rtld_flags |= RT_FL_INITFIRST; 807 808 if (INITARRAY(lmp) || iptr) 809 DBG_CALL(Dbg_util_call_init(lmp, flag)); 810 811 if (iptr) { 812 leave(LIST(lmp), 0); 813 (*iptr)(); 814 (void) enter(0); 815 } 816 817 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 818 SHT_INIT_ARRAY); 819 820 if (INITARRAY(lmp) || iptr) 821 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 822 823 /* 824 * Return to a non-application setting if necessary. 825 */ 826 rtld_flags &= ~rtldflags; 827 828 /* 829 * Set the initdone flag regardless of whether this object 830 * actually contains an .init section. This flag prevents us 831 * from processing this section again for an .init and also 832 * signifies that a .fini must be called should it exist. 833 * Clear the sort field for use in later .fini processing. 834 */ 835 FLAGS(lmp) |= FLG_RT_INITDONE; 836 SORTVAL(lmp) = -1; 837 838 /* 839 * If we're firing an INITFIRST object, and other objects must 840 * be fired which are not INITFIRST, make sure we grab any 841 * pending objects that might have been delayed as this 842 * INITFIRST was processed. 843 */ 844 if ((rtld_flags & RT_FL_INITFIRST) && 845 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 846 Aliste idx; 847 Rt_map **pobj; 848 849 rtld_flags &= ~RT_FL_INITFIRST; 850 851 for (APLIST_TRAVERSE(pending, idx, pobj)) { 852 aplist_delete(pending, &idx); 853 call_init(pobj, DBG_INIT_PEND); 854 } 855 } 856 } 857 free(tobj); 858 } 859 860 /* 861 * Function called by atexit(3C). Calls all .fini sections related with the 862 * mains dependent shared libraries in the order in which the shared libraries 863 * have been loaded. Skip any .fini defined in the main executable, as this 864 * will be called by crt0 (main was never marked as initdone). 865 */ 866 void 867 call_fini(Lm_list * lml, Rt_map ** tobj) 868 { 869 Rt_map **_tobj; 870 871 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 872 Rt_map *clmp, * lmp = *_tobj; 873 Aliste idx; 874 Bnd_desc *bdp; 875 876 /* 877 * Only fire a .fini if the objects corresponding .init has 878 * completed. We collect all .fini sections of objects that 879 * had their .init collected, but that doesn't mean that at 880 * the time of collection, that the .init had completed. 881 */ 882 if (FLAGS(lmp) & FLG_RT_INITDONE) { 883 void (*fptr)(void) = FINI(lmp); 884 885 if (FINIARRAY(lmp) || fptr) 886 DBG_CALL(Dbg_util_call_fini(lmp)); 887 888 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 889 SHT_FINI_ARRAY); 890 891 if (fptr) { 892 leave(LIST(lmp), 0); 893 (*fptr)(); 894 (void) enter(0); 895 } 896 } 897 898 /* 899 * Skip main, this is explicitly called last in atexit_fini(). 900 */ 901 if (FLAGS(lmp) & FLG_RT_ISMAIN) 902 continue; 903 904 /* 905 * Audit `close' operations at this point. The library has 906 * exercised its last instructions (regardless of whether it 907 * will be unmapped or not). 908 * 909 * First call any global auditing. 910 */ 911 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 912 _audit_objclose(auditors->ad_list, lmp); 913 914 /* 915 * Finally determine whether this object has local auditing 916 * requirements by inspecting itself and then its dependencies. 917 */ 918 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 919 continue; 920 921 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 922 _audit_objclose(AUDITORS(lmp)->ad_list, lmp); 923 924 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 925 clmp = bdp->b_caller; 926 927 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 928 _audit_objclose(AUDITORS(clmp)->ad_list, lmp); 929 break; 930 } 931 } 932 } 933 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 934 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 935 936 free(tobj); 937 } 938 939 void 940 atexit_fini() 941 { 942 Rt_map **tobj, *lmp; 943 Lm_list *lml; 944 Aliste idx; 945 946 (void) enter(0); 947 948 rtld_flags |= RT_FL_ATEXIT; 949 950 lml = &lml_main; 951 lml->lm_flags |= LML_FLG_ATEXIT; 952 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 953 lmp = (Rt_map *)lml->lm_head; 954 955 /* 956 * Reverse topologically sort the main link-map for .fini execution. 957 */ 958 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 959 (tobj != (Rt_map **)S_ERROR)) 960 call_fini(lml, tobj); 961 962 /* 963 * Add an explicit close to main and ld.so.1. Although main's .fini is 964 * collected in call_fini() to provide for FINITARRAY processing, its 965 * audit_objclose is explicitly skipped. This provides for it to be 966 * called last, here. This is the reverse of the explicit calls to 967 * audit_objopen() made in setup(). 968 */ 969 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 970 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 971 audit_objclose(lmp, lmp); 972 } 973 974 /* 975 * Now that all .fini code has been run, see what unreferenced objects 976 * remain. 977 */ 978 unused(lml); 979 980 /* 981 * Traverse any alternative link-map lists. 982 */ 983 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 984 /* 985 * Ignore the base-link-map list, which has already been 986 * processed, and the runtime linkers link-map list, which is 987 * typically processed last. 988 */ 989 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 990 continue; 991 992 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 993 continue; 994 995 lml->lm_flags |= LML_FLG_ATEXIT; 996 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 997 998 /* 999 * Reverse topologically sort the link-map for .fini execution. 1000 */ 1001 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1002 (tobj != (Rt_map **)S_ERROR)) 1003 call_fini(lml, tobj); 1004 1005 unused(lml); 1006 } 1007 1008 /* 1009 * Finally reverse topologically sort the runtime linkers link-map for 1010 * .fini execution. 1011 */ 1012 lml = &lml_rtld; 1013 lml->lm_flags |= LML_FLG_ATEXIT; 1014 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1015 lmp = (Rt_map *)lml->lm_head; 1016 1017 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1018 (tobj != (Rt_map **)S_ERROR)) 1019 call_fini(lml, tobj); 1020 1021 leave(&lml_main, 0); 1022 } 1023 1024 1025 /* 1026 * This routine is called to complete any runtime linker activity which may have 1027 * resulted in objects being loaded. This is called from all user entry points 1028 * and from any internal dl*() requests. 1029 */ 1030 void 1031 load_completion(Rt_map *nlmp) 1032 { 1033 Rt_map **tobj = NULL; 1034 Lm_list *nlml; 1035 1036 /* 1037 * Establish any .init processing. Note, in a world of lazy loading, 1038 * objects may have been loaded regardless of whether the users request 1039 * was fulfilled (i.e., a dlsym() request may have failed to find a 1040 * symbol but objects might have been loaded during its search). Thus, 1041 * any tsorting starts from the nlmp (new link-maps) pointer and not 1042 * necessarily from the link-map that may have satisfied the request. 1043 * 1044 * Note, the primary link-map has an initialization phase where dynamic 1045 * .init firing is suppressed. This provides for a simple and clean 1046 * handshake with the primary link-maps libc, which is important for 1047 * establishing uberdata. In addition, auditors often obtain handles 1048 * to primary link-map objects as the objects are loaded, so as to 1049 * inspect the link-map for symbols. This inspection is allowed without 1050 * running any code on the primary link-map, as running this code may 1051 * reenter the auditor, who may not yet have finished its own 1052 * initialization. 1053 */ 1054 if (nlmp) 1055 nlml = LIST(nlmp); 1056 1057 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1058 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1059 if ((tobj = tsort(nlmp, nlml->lm_init, 1060 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1061 tobj = NULL; 1062 } 1063 1064 /* 1065 * Make sure any alternative link-map retrieves any external interfaces 1066 * and initializes threads. 1067 */ 1068 if (nlmp && (nlml != &lml_main)) { 1069 (void) rt_get_extern(nlml, nlmp); 1070 rt_thr_init(nlml); 1071 } 1072 1073 /* 1074 * Traverse the list of new link-maps and register any dynamic TLS. 1075 * This storage is established for any objects not on the primary 1076 * link-map, and for any objects added to the primary link-map after 1077 * static TLS has been registered. 1078 */ 1079 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1080 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1081 Rt_map *lmp; 1082 1083 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1084 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1085 tls_modaddrem(lmp, TM_FLG_MODADD); 1086 } 1087 nlml->lm_tls = 0; 1088 } 1089 1090 /* 1091 * Fire any .init's. 1092 */ 1093 if (tobj) 1094 call_init(tobj, DBG_INIT_SORT); 1095 } 1096 1097 /* 1098 * Append an item to the specified link map control list. 1099 */ 1100 void 1101 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1102 { 1103 Lm_cntl *lmc; 1104 int add = 1; 1105 1106 /* 1107 * Indicate that this link-map list has a new object. 1108 */ 1109 (lml->lm_obj)++; 1110 1111 /* 1112 * If we're about to add a new object to the main link-map control list, 1113 * alert the debuggers that we are about to mess with this list. 1114 * Additions of individual objects to the main link-map control list 1115 * occur during initial setup as the applications immediate dependencies 1116 * are loaded. Individual objects are also loaded on the main link-map 1117 * control list of new alternative link-map control lists. 1118 */ 1119 if ((lmco == ALIST_OFF_DATA) && 1120 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1121 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1122 1123 /* LINTED */ 1124 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1125 1126 /* 1127 * A link-map list header points to one of more link-map control lists 1128 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1129 * the list of relocated objects. Other lists maintain objects that 1130 * are still being analyzed or relocated. This list provides the core 1131 * link-map list information used by all ld.so.1 routines. 1132 */ 1133 if (lmc->lc_head == NULL) { 1134 /* 1135 * If this is the first link-map for the given control list, 1136 * initialize the list. 1137 */ 1138 lmc->lc_head = lmc->lc_tail = lmp; 1139 add = 0; 1140 1141 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1142 Rt_map *tlmp; 1143 1144 /* 1145 * If this is an interposer then append the link-map following 1146 * any other interposers (these are objects that have been 1147 * previously preloaded, or were identified with -z interpose). 1148 * Interposers can only be inserted on the first link-map 1149 * control list, as once relocation has started, interposition 1150 * from new interposers can't be guaranteed. 1151 * 1152 * NOTE: We do not interpose on the head of a list. This model 1153 * evolved because dynamic executables have already been fully 1154 * relocated within themselves and thus can't be interposed on. 1155 * Nowadays it's possible to have shared objects at the head of 1156 * a list, which conceptually means they could be interposed on. 1157 * But, shared objects can be created via dldump() and may only 1158 * be partially relocated (just relatives), in which case they 1159 * are interposable, but are marked as fixed (ET_EXEC). 1160 * 1161 * Thus we really don't have a clear method of deciding when the 1162 * head of a link-map is interposable. So, to be consistent, 1163 * for now only add interposers after the link-map lists head 1164 * object. 1165 */ 1166 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1167 tlmp = NEXT_RT_MAP(tlmp)) { 1168 1169 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1170 continue; 1171 1172 /* 1173 * Insert the new link-map before this non-interposer, 1174 * and indicate an interposer is found. 1175 */ 1176 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1177 PREV(lmp) = PREV(tlmp); 1178 1179 NEXT(lmp) = (Link_map *)tlmp; 1180 PREV(tlmp) = (Link_map *)lmp; 1181 1182 lmc->lc_flags |= LMC_FLG_REANALYZE; 1183 add = 0; 1184 break; 1185 } 1186 } 1187 1188 /* 1189 * Fall through to appending the new link map to the tail of the list. 1190 * If we're processing the initial objects of this link-map list, add 1191 * them to the backward compatibility list. 1192 */ 1193 if (add) { 1194 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1195 PREV(lmp) = (Link_map *)lmc->lc_tail; 1196 lmc->lc_tail = lmp; 1197 } 1198 1199 /* 1200 * Having added this link-map to a control list, indicate which control 1201 * list the link-map belongs to. Note, control list information is 1202 * always maintained as an offset, as the Alist can be reallocated. 1203 */ 1204 CNTL(lmp) = lmco; 1205 1206 /* 1207 * Indicate if an interposer is found. Note that the first object on a 1208 * link-map can be explicitly defined as an interposer so that it can 1209 * provide interposition over direct binding requests. 1210 */ 1211 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1212 lml->lm_flags |= LML_FLG_INTRPOSE; 1213 1214 /* 1215 * For backward compatibility with debuggers, the link-map list contains 1216 * pointers to the main control list. 1217 */ 1218 if (lmco == ALIST_OFF_DATA) { 1219 lml->lm_head = lmc->lc_head; 1220 lml->lm_tail = lmc->lc_tail; 1221 } 1222 } 1223 1224 /* 1225 * Delete an item from the specified link map control list. 1226 */ 1227 void 1228 lm_delete(Lm_list *lml, Rt_map *lmp) 1229 { 1230 Lm_cntl *lmc; 1231 1232 /* 1233 * If the control list pointer hasn't been initialized, this object 1234 * never got added to a link-map list. 1235 */ 1236 if (CNTL(lmp) == 0) 1237 return; 1238 1239 /* 1240 * If we're about to delete an object from the main link-map control 1241 * list, alert the debuggers that we are about to mess with this list. 1242 */ 1243 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1244 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1245 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1246 1247 /* LINTED */ 1248 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1249 1250 if (lmc->lc_head == lmp) 1251 lmc->lc_head = NEXT_RT_MAP(lmp); 1252 else 1253 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1254 1255 if (lmc->lc_tail == lmp) 1256 lmc->lc_tail = PREV_RT_MAP(lmp); 1257 else 1258 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1259 1260 /* 1261 * For backward compatibility with debuggers, the link-map list contains 1262 * pointers to the main control list. 1263 */ 1264 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1265 lml->lm_head = lmc->lc_head; 1266 lml->lm_tail = lmc->lc_tail; 1267 } 1268 1269 /* 1270 * Indicate we have one less object on this control list. 1271 */ 1272 (lml->lm_obj)--; 1273 } 1274 1275 /* 1276 * Move a link-map control list to another. Objects that are being relocated 1277 * are maintained on secondary control lists. Once their relocation is 1278 * complete, the entire list is appended to the previous control list, as this 1279 * list must have been the trigger for generating the new control list. 1280 */ 1281 void 1282 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1283 { 1284 Rt_map *lmp; 1285 1286 /* 1287 * If we're about to add a new family of objects to the main link-map 1288 * control list, alert the debuggers that we are about to mess with this 1289 * list. Additions of object families to the main link-map control 1290 * list occur during lazy loading, filtering and dlopen(). 1291 */ 1292 if ((plmco == ALIST_OFF_DATA) && 1293 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1294 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1295 1296 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1297 1298 /* 1299 * Indicate each new link-map has been moved to the previous link-map 1300 * control list. 1301 */ 1302 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1303 CNTL(lmp) = plmco; 1304 1305 /* 1306 * If these objects are being added to the main link-map 1307 * control list, indicate that there are init's available 1308 * for harvesting. 1309 */ 1310 if (plmco == ALIST_OFF_DATA) { 1311 lml->lm_init++; 1312 lml->lm_flags |= LML_FLG_OBJADDED; 1313 } 1314 } 1315 1316 /* 1317 * Move the new link-map control list, to the callers link-map control 1318 * list. 1319 */ 1320 if (plmc->lc_head == NULL) { 1321 plmc->lc_head = nlmc->lc_head; 1322 PREV(nlmc->lc_head) = NULL; 1323 } else { 1324 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1325 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1326 } 1327 1328 plmc->lc_tail = nlmc->lc_tail; 1329 nlmc->lc_head = nlmc->lc_tail = NULL; 1330 1331 /* 1332 * For backward compatibility with debuggers, the link-map list contains 1333 * pointers to the main control list. 1334 */ 1335 if (plmco == ALIST_OFF_DATA) { 1336 lml->lm_head = plmc->lc_head; 1337 lml->lm_tail = plmc->lc_tail; 1338 } 1339 } 1340 1341 /* 1342 * Create, or assign a link-map control list. Each link-map list contains a 1343 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1344 * description in include/rtld.h). During the initial construction of a 1345 * process, objects are added to this main control list. This control list is 1346 * never deleted, unless an alternate link-map list has been requested (say for 1347 * auditors), and the associated objects could not be loaded or relocated. 1348 * 1349 * Once relocation has started, any lazy loadable objects, or filtees, are 1350 * processed on a new, temporary control list. Only when these objects have 1351 * been fully relocated, are they moved to the main link-map control list. 1352 * Once the objects are moved, this temporary control list is deleted (see 1353 * remove_cntl()). 1354 * 1355 * A dlopen() always requires a new temporary link-map control list. 1356 * Typically, a dlopen() occurs on a link-map list that had already started 1357 * relocation, however, auditors can dlopen() objects on the main link-map 1358 * list while under initial construction, before any relocation has begun. 1359 * Hence, dlopen() requests are explicitly flagged. 1360 */ 1361 Aliste 1362 create_cntl(Lm_list *lml, int dlopen) 1363 { 1364 /* 1365 * If the head link-map object has already been relocated, create a 1366 * new, temporary, control list. 1367 */ 1368 if (dlopen || (lml->lm_head == NULL) || 1369 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1370 Lm_cntl *lmc; 1371 1372 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1373 AL_CNT_LMLISTS)) == NULL) 1374 return (NULL); 1375 1376 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1377 } 1378 1379 return (ALIST_OFF_DATA); 1380 } 1381 1382 /* 1383 * Environment variables can have a variety of defined permutations, and thus 1384 * the following infrastructure exists to allow this variety and to select the 1385 * required definition. 1386 * 1387 * Environment variables can be defined as 32- or 64-bit specific, and if so 1388 * they will take precedence over any instruction set neutral form. Typically 1389 * this is only useful when the environment value is an informational string. 1390 * 1391 * Environment variables may be obtained from the standard user environment or 1392 * from a configuration file. The latter provides a fallback if no user 1393 * environment setting is found, and can take two forms: 1394 * 1395 * - a replaceable definition - this will be used if no user environment 1396 * setting has been seen, or 1397 * 1398 * - an permanent definition - this will be used no matter what user 1399 * environment setting is seen. In the case of list variables it will be 1400 * appended to any process environment setting seen. 1401 * 1402 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1403 * override any replaceable environment variables from a configuration file. 1404 */ 1405 static u_longlong_t rplgen; /* replaceable generic */ 1406 /* variables */ 1407 static u_longlong_t rplisa; /* replaceable ISA specific */ 1408 /* variables */ 1409 static u_longlong_t prmgen; /* permanent generic */ 1410 /* variables */ 1411 static u_longlong_t prmisa; /* permanent ISA specific */ 1412 /* variables */ 1413 1414 /* 1415 * Classify an environment variables type. 1416 */ 1417 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1418 /* the wrong ISA */ 1419 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1420 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1421 /* config file */ 1422 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1423 1424 /* 1425 * Identify all environment variables. 1426 */ 1427 #define ENV_FLG_AUDIT 0x0000000000001ULL 1428 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1429 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1430 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1431 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1432 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1433 #define ENV_FLG_CONFIG 0x0000000000040ULL 1434 #define ENV_FLG_DEBUG 0x0000000000080ULL 1435 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1436 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1437 #define ENV_FLG_FLAGS 0x0000000000400ULL 1438 #define ENV_FLG_INIT 0x0000000000800ULL 1439 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1440 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1441 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1442 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1443 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1444 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1445 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1446 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1447 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1448 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1449 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1450 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1451 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1452 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1453 #define ENV_FLG_PROFILE 0x0000004000000ULL 1454 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1455 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1456 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1457 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1458 #define ENV_FLG_UNREF 0x0000080000000ULL 1459 #define ENV_FLG_UNUSED 0x0000100000000ULL 1460 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1461 #define ENV_FLG_WARN 0x0000400000000ULL 1462 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1463 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1464 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1465 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1466 #define ENV_FLG_HWCAP 0x0008000000000ULL 1467 #define ENV_FLG_SFCAP 0x0010000000000ULL 1468 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1469 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1470 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1471 1472 #define SEL_REPLACE 0x0001 1473 #define SEL_PERMANT 0x0002 1474 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1475 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1476 #define SEL_ACT_STR 0x0400 /* setting string value */ 1477 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1478 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1479 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1480 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1481 1482 /* 1483 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1484 * and len specifies its length (comparing a strings length before the string 1485 * itself speed things up). s2 points to the token itself which has already 1486 * had any leading white-space removed. 1487 */ 1488 static void 1489 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1490 Word *lmtflags, uint_t env_flags, int aout) 1491 { 1492 u_longlong_t variable = 0; 1493 ushort_t select = 0; 1494 const char **str; 1495 Word val = 0; 1496 1497 /* 1498 * Determine whether we're dealing with a replaceable or permanent 1499 * string. 1500 */ 1501 if (env_flags & ENV_TYP_PERMANT) { 1502 /* 1503 * If the string is from a configuration file and defined as 1504 * permanent, assign it as permanent. 1505 */ 1506 select |= SEL_PERMANT; 1507 } else 1508 select |= SEL_REPLACE; 1509 1510 /* 1511 * Parse the variable given. 1512 * 1513 * The LD_AUDIT family. 1514 */ 1515 if (*s1 == 'A') { 1516 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1517 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1518 /* 1519 * Replaceable and permanent audit objects can exist. 1520 */ 1521 select |= SEL_ACT_STR; 1522 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1523 variable = ENV_FLG_AUDIT; 1524 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1525 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1526 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1527 /* 1528 * A specialized variable for plt_exit() use, not 1529 * documented for general use. 1530 */ 1531 select |= SEL_ACT_SPEC_2; 1532 variable = ENV_FLG_AUDIT_ARGS; 1533 } 1534 } 1535 /* 1536 * The LD_BIND family. 1537 */ 1538 else if (*s1 == 'B') { 1539 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1540 MSG_ORIG(MSG_LD_BIND_LAZY), 1541 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1542 select |= SEL_ACT_RT2; 1543 val = RT_FL2_BINDLAZY; 1544 variable = ENV_FLG_BIND_LAZY; 1545 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1546 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1547 select |= SEL_ACT_RT2; 1548 val = RT_FL2_BINDNOW; 1549 variable = ENV_FLG_BIND_NOW; 1550 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1551 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1552 /* 1553 * Another trick, enabled to help debug AOUT 1554 * applications under BCP, but not documented for 1555 * general use. 1556 */ 1557 select |= SEL_ACT_RT; 1558 val = RT_FL_NOBIND; 1559 variable = ENV_FLG_BIND_NOT; 1560 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1561 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1562 /* 1563 * This variable is simply for backward compatibility. 1564 * If this and LD_DEBUG are both specified, only one of 1565 * the strings is going to get processed. 1566 */ 1567 select |= SEL_ACT_SPEC_2; 1568 variable = ENV_FLG_BINDINGS; 1569 } 1570 } 1571 /* 1572 * LD_CAP_FILES and LD_CONFIG family. 1573 */ 1574 else if (*s1 == 'C') { 1575 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1576 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1577 select |= SEL_ACT_STR; 1578 str = (select & SEL_REPLACE) ? 1579 &rpl_cap_files : &prm_cap_files; 1580 variable = ENV_FLG_CAP_FILES; 1581 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1582 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1583 /* 1584 * Set by crle(1) to indicate it's building a 1585 * configuration file, not documented for general use. 1586 */ 1587 select |= SEL_ACT_SPEC_2; 1588 variable = ENV_FLG_CONFGEN; 1589 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1590 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1591 /* 1592 * Secure applications must use a default configuration 1593 * file. A setting from a configuration file doesn't 1594 * make sense (given we must be reading a configuration 1595 * file to have gotten this). 1596 */ 1597 if ((rtld_flags & RT_FL_SECURE) || 1598 (env_flags & ENV_TYP_CONFIG)) 1599 return; 1600 select |= SEL_ACT_STR; 1601 str = &config->c_name; 1602 variable = ENV_FLG_CONFIG; 1603 } 1604 } 1605 /* 1606 * The LD_DEBUG family and LD_DEMANGLE. 1607 */ 1608 else if (*s1 == 'D') { 1609 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1610 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1611 select |= SEL_ACT_STR; 1612 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1613 variable = ENV_FLG_DEBUG; 1614 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1615 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1616 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1617 select |= SEL_ACT_STR; 1618 str = &dbg_file; 1619 variable = ENV_FLG_DEBUG_OUTPUT; 1620 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1621 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1622 select |= SEL_ACT_RT; 1623 val = RT_FL_DEMANGLE; 1624 variable = ENV_FLG_DEMANGLE; 1625 } 1626 } 1627 /* 1628 * LD_FLAGS - collect the best variable definition. On completion of 1629 * environment variable processing pass the result to ld_flags_env() 1630 * where they'll be decomposed and passed back to this routine. 1631 */ 1632 else if (*s1 == 'F') { 1633 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1634 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1635 select |= SEL_ACT_SPEC_1; 1636 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1637 &prm_ldflags; 1638 variable = ENV_FLG_FLAGS; 1639 } 1640 } 1641 /* 1642 * LD_HWCAP. 1643 */ 1644 else if (*s1 == 'H') { 1645 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1646 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1647 select |= SEL_ACT_STR; 1648 str = (select & SEL_REPLACE) ? 1649 &rpl_hwcap : &prm_hwcap; 1650 variable = ENV_FLG_HWCAP; 1651 } 1652 } 1653 /* 1654 * LD_INIT (internal, used by ldd(1)). 1655 */ 1656 else if (*s1 == 'I') { 1657 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1658 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1659 select |= SEL_ACT_LML; 1660 val = LML_FLG_TRC_INIT; 1661 variable = ENV_FLG_INIT; 1662 } 1663 } 1664 /* 1665 * The LD_LIBRARY_PATH and LD_LOAD families. 1666 */ 1667 else if (*s1 == 'L') { 1668 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1669 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1670 select |= SEL_ACT_SPEC_1; 1671 str = (select & SEL_REPLACE) ? &rpl_libpath : 1672 &prm_libpath; 1673 variable = ENV_FLG_LIBPATH; 1674 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1675 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1676 /* 1677 * Internal use by crle(1), not documented for general 1678 * use. 1679 */ 1680 select |= SEL_ACT_LML; 1681 val = LML_FLG_LOADAVAIL; 1682 variable = ENV_FLG_LOADAVAIL; 1683 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1684 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1685 select |= SEL_ACT_SPEC_2; 1686 variable = ENV_FLG_LOADFLTR; 1687 } 1688 } 1689 /* 1690 * LD_MACHCAP. 1691 */ 1692 else if (*s1 == 'M') { 1693 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1694 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1695 select |= SEL_ACT_STR; 1696 str = (select & SEL_REPLACE) ? 1697 &rpl_machcap : &prm_machcap; 1698 variable = ENV_FLG_MACHCAP; 1699 } 1700 } 1701 /* 1702 * The LD_NO family. 1703 */ 1704 else if (*s1 == 'N') { 1705 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1707 select |= SEL_ACT_RT; 1708 val = RT_FL_NOAUDIT; 1709 variable = ENV_FLG_NOAUDIT; 1710 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1711 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1712 select |= SEL_ACT_RT; 1713 val = RT_FL_NOAUXFLTR; 1714 variable = ENV_FLG_NOAUXFLTR; 1715 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1716 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1717 select |= SEL_ACT_RT; 1718 val = RT_FL_NOBAPLT; 1719 variable = ENV_FLG_NOBAPLT; 1720 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1721 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1722 select |= SEL_ACT_RT; 1723 val = RT_FL_NOCFG; 1724 variable = ENV_FLG_NOCONFIG; 1725 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1726 MSG_ORIG(MSG_LD_NODIRCONFIG), 1727 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1728 select |= SEL_ACT_RT; 1729 val = RT_FL_NODIRCFG; 1730 variable = ENV_FLG_NODIRCONFIG; 1731 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1732 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1733 select |= SEL_ACT_LMLT; 1734 val = LML_TFLG_NODIRECT; 1735 variable = ENV_FLG_NODIRECT; 1736 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1737 MSG_ORIG(MSG_LD_NOENVCONFIG), 1738 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1739 select |= SEL_ACT_RT; 1740 val = RT_FL_NOENVCFG; 1741 variable = ENV_FLG_NOENVCONFIG; 1742 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1743 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1744 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1745 select |= SEL_ACT_RT2; 1746 val = RT_FL2_NOFLTCFG; 1747 variable = ENV_FLG_NOFLTCONFIG; 1748 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1749 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1750 select |= SEL_ACT_LMLT; 1751 val = LML_TFLG_NOLAZYLD; 1752 variable = ENV_FLG_NOLAZY; 1753 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1754 MSG_ORIG(MSG_LD_NOOBJALTER), 1755 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1756 select |= SEL_ACT_RT; 1757 val = RT_FL_NOOBJALT; 1758 variable = ENV_FLG_NOOBJALTER; 1759 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1760 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1761 select |= SEL_ACT_RT; 1762 val = RT_FL_NOVERSION; 1763 variable = ENV_FLG_NOVERSION; 1764 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1765 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1766 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1767 /* 1768 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1769 */ 1770 select |= SEL_ACT_LML; 1771 val = LML_FLG_TRC_NOUNRESWEAK; 1772 variable = ENV_FLG_NOUNRESWEAK; 1773 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1774 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1775 select |= SEL_ACT_LML; 1776 val = LML_FLG_TRC_NOPAREXT; 1777 variable = ENV_FLG_NOPAREXT; 1778 } 1779 } 1780 /* 1781 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1782 */ 1783 else if (*s1 == 'P') { 1784 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1785 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1786 select |= SEL_ACT_STR; 1787 str = (select & SEL_REPLACE) ? 1788 &rpl_platcap : &prm_platcap; 1789 variable = ENV_FLG_PLATCAP; 1790 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1791 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1792 select |= SEL_ACT_STR; 1793 str = (select & SEL_REPLACE) ? &rpl_preload : 1794 &prm_preload; 1795 variable = ENV_FLG_PRELOAD; 1796 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1797 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1798 /* 1799 * Only one user library can be profiled at a time. 1800 */ 1801 select |= SEL_ACT_SPEC_2; 1802 variable = ENV_FLG_PROFILE; 1803 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1804 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1805 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1806 /* 1807 * Only one user library can be profiled at a time. 1808 */ 1809 select |= SEL_ACT_STR; 1810 str = &profile_out; 1811 variable = ENV_FLG_PROFILE_OUTPUT; 1812 } 1813 } 1814 /* 1815 * LD_SFCAP and LD_SIGNAL. 1816 */ 1817 else if (*s1 == 'S') { 1818 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1819 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1820 select |= SEL_ACT_STR; 1821 str = (select & SEL_REPLACE) ? 1822 &rpl_sfcap : &prm_sfcap; 1823 variable = ENV_FLG_SFCAP; 1824 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1825 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1826 MSG_LD_SIGNAL_SIZE) == 0) && 1827 ((rtld_flags & RT_FL_SECURE) == 0)) { 1828 select |= SEL_ACT_SPEC_2; 1829 variable = ENV_FLG_SIGNAL; 1830 } 1831 } 1832 /* 1833 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1834 * the key to enabling all other ldd(1) specific environment variables. 1835 * In case an auditor is called, which in turn might exec(2) a 1836 * subprocess, this variable is disabled, so that any subprocess 1837 * escapes ldd(1) processing. 1838 */ 1839 else if (*s1 == 'T') { 1840 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1841 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1842 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1843 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1844 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1845 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1846 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1847 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1848 char *s0 = (char *)s1; 1849 1850 select |= SEL_ACT_SPEC_2; 1851 variable = ENV_FLG_TRACE_OBJS; 1852 1853 #if defined(__sparc) || defined(__x86) 1854 /* 1855 * The simplest way to "disable" this variable is to 1856 * truncate this string to "LD_'\0'". This string is 1857 * ignored by any ld.so.1 environment processing. 1858 * Use of such interfaces as unsetenv(3c) are overkill, 1859 * and would drag too much libc implementation detail 1860 * into ld.so.1. 1861 */ 1862 *s0 = '\0'; 1863 #else 1864 /* 1865 * Verify that the above write is appropriate for any new platforms. 1866 */ 1867 #error unsupported architecture! 1868 #endif 1869 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1870 MSG_ORIG(MSG_LD_TRACE_PTHS), 1871 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1872 select |= SEL_ACT_LML; 1873 val = LML_FLG_TRC_SEARCH; 1874 variable = ENV_FLG_TRACE_PTHS; 1875 } 1876 } 1877 /* 1878 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1879 */ 1880 else if (*s1 == 'U') { 1881 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1882 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1883 select |= SEL_ACT_LML; 1884 val = LML_FLG_TRC_UNREF; 1885 variable = ENV_FLG_UNREF; 1886 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1887 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1888 select |= SEL_ACT_LML; 1889 val = LML_FLG_TRC_UNUSED; 1890 variable = ENV_FLG_UNUSED; 1891 } 1892 } 1893 /* 1894 * LD_VERBOSE (internal, used by ldd(1)). 1895 */ 1896 else if (*s1 == 'V') { 1897 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1898 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1899 select |= SEL_ACT_LML; 1900 val = LML_FLG_TRC_VERBOSE; 1901 variable = ENV_FLG_VERBOSE; 1902 } 1903 } 1904 /* 1905 * LD_WARN (internal, used by ldd(1)). 1906 */ 1907 else if (*s1 == 'W') { 1908 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1909 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1910 select |= SEL_ACT_LML; 1911 val = LML_FLG_TRC_WARN; 1912 variable = ENV_FLG_WARN; 1913 } 1914 } 1915 1916 if (variable == 0) 1917 return; 1918 1919 /* 1920 * If the variable is already processed with and ISA specific variable, 1921 * no further processing is needed. 1922 */ 1923 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1924 ((select & SEL_PERMANT) && (prmisa & variable))) 1925 return; 1926 1927 /* 1928 * Mark the appropriate variables. 1929 */ 1930 if (env_flags & ENV_TYP_ISA) { 1931 /* 1932 * This is an ISA setting. 1933 */ 1934 if (select & SEL_REPLACE) { 1935 if (rplisa & variable) 1936 return; 1937 rplisa |= variable; 1938 } else { 1939 prmisa |= variable; 1940 } 1941 } else { 1942 /* 1943 * This is a non-ISA setting. 1944 */ 1945 if (select & SEL_REPLACE) { 1946 if (rplgen & variable) 1947 return; 1948 rplgen |= variable; 1949 } else 1950 prmgen |= variable; 1951 } 1952 1953 /* 1954 * Now perform the setting. 1955 */ 1956 if (select & SEL_ACT_RT) { 1957 if (s2) 1958 rtld_flags |= val; 1959 else 1960 rtld_flags &= ~val; 1961 } else if (select & SEL_ACT_RT2) { 1962 if (s2) 1963 rtld_flags2 |= val; 1964 else 1965 rtld_flags2 &= ~val; 1966 } else if (select & SEL_ACT_STR) { 1967 *str = s2; 1968 } else if (select & SEL_ACT_LML) { 1969 if (s2) 1970 *lmflags |= val; 1971 else 1972 *lmflags &= ~val; 1973 } else if (select & SEL_ACT_LMLT) { 1974 if (s2) 1975 *lmtflags |= val; 1976 else 1977 *lmtflags &= ~val; 1978 } else if (select & SEL_ACT_SPEC_1) { 1979 /* 1980 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1981 */ 1982 *str = s2; 1983 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1984 if (s2) { 1985 if (variable == ENV_FLG_FLAGS) 1986 env_info |= ENV_INF_FLAGCFG; 1987 else 1988 env_info |= ENV_INF_PATHCFG; 1989 } else { 1990 if (variable == ENV_FLG_FLAGS) 1991 env_info &= ~ENV_INF_FLAGCFG; 1992 else 1993 env_info &= ~ENV_INF_PATHCFG; 1994 } 1995 } 1996 } else if (select & SEL_ACT_SPEC_2) { 1997 /* 1998 * variables can be: ENV_FLG_ 1999 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 2000 * SIGNAL, TRACE_OBJS 2001 */ 2002 switch (variable) { 2003 case ENV_FLG_AUDIT_ARGS: 2004 if (s2) { 2005 audit_argcnt = atoi(s2); 2006 audit_argcnt += audit_argcnt % 2; 2007 } else 2008 audit_argcnt = 0; 2009 break; 2010 case ENV_FLG_BINDINGS: 2011 if (s2) 2012 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2013 else 2014 rpl_debug = NULL; 2015 break; 2016 case ENV_FLG_CONFGEN: 2017 if (s2) { 2018 rtld_flags |= RT_FL_CONFGEN; 2019 *lmflags |= LML_FLG_IGNRELERR; 2020 } else { 2021 rtld_flags &= ~RT_FL_CONFGEN; 2022 *lmflags &= ~LML_FLG_IGNRELERR; 2023 } 2024 break; 2025 case ENV_FLG_LOADFLTR: 2026 if (s2) { 2027 *lmtflags |= LML_TFLG_LOADFLTR; 2028 if (*s2 == '2') 2029 rtld_flags |= RT_FL_WARNFLTR; 2030 } else { 2031 *lmtflags &= ~LML_TFLG_LOADFLTR; 2032 rtld_flags &= ~RT_FL_WARNFLTR; 2033 } 2034 break; 2035 case ENV_FLG_PROFILE: 2036 profile_name = s2; 2037 if (s2) { 2038 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2039 return; 2040 } 2041 /* BEGIN CSTYLED */ 2042 if (rtld_flags & RT_FL_SECURE) { 2043 profile_lib = 2044 #if defined(_ELF64) 2045 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2046 #else 2047 MSG_ORIG(MSG_PTH_LDPROFSE); 2048 #endif 2049 } else { 2050 profile_lib = 2051 #if defined(_ELF64) 2052 MSG_ORIG(MSG_PTH_LDPROF_64); 2053 #else 2054 MSG_ORIG(MSG_PTH_LDPROF); 2055 #endif 2056 } 2057 /* END CSTYLED */ 2058 } else 2059 profile_lib = NULL; 2060 break; 2061 case ENV_FLG_SIGNAL: 2062 killsig = s2 ? atoi(s2) : SIGKILL; 2063 break; 2064 case ENV_FLG_TRACE_OBJS: 2065 if (s2) { 2066 *lmflags |= LML_FLG_TRC_ENABLE; 2067 if (*s2 == '2') 2068 *lmflags |= LML_FLG_TRC_LDDSTUB; 2069 } else 2070 *lmflags &= 2071 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2072 break; 2073 } 2074 } 2075 } 2076 2077 /* 2078 * Determine whether we have an architecture specific environment variable. 2079 * If we do, and we're the wrong architecture, it'll just get ignored. 2080 * Otherwise the variable is processed in it's architecture neutral form. 2081 */ 2082 static int 2083 ld_arch_env(const char *s1, size_t *len) 2084 { 2085 size_t _len = *len - 3; 2086 2087 if (s1[_len++] == '_') { 2088 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2089 #if defined(_ELF64) 2090 return (ENV_TYP_IGNORE); 2091 #else 2092 *len = *len - 3; 2093 return (ENV_TYP_ISA); 2094 #endif 2095 } 2096 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2097 #if defined(_ELF64) 2098 *len = *len - 3; 2099 return (ENV_TYP_ISA); 2100 #else 2101 return (ENV_TYP_IGNORE); 2102 #endif 2103 } 2104 } 2105 return (0); 2106 } 2107 2108 2109 /* 2110 * Process an LD_FLAGS environment variable. The value can be a comma 2111 * separated set of tokens, which are sent (in upper case) into the generic 2112 * LD_XXXX environment variable engine. For example: 2113 * 2114 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2115 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2116 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2117 * or 2118 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2119 */ 2120 static int 2121 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2122 uint_t env_flags, int aout) 2123 { 2124 char *nstr, *sstr, *estr = NULL; 2125 size_t nlen, len; 2126 2127 if (str == NULL) 2128 return (0); 2129 2130 /* 2131 * Create a new string as we're going to transform the token(s) into 2132 * uppercase and separate tokens with nulls. 2133 */ 2134 len = strlen(str); 2135 if ((nstr = malloc(len + 1)) == NULL) 2136 return (1); 2137 (void) strcpy(nstr, str); 2138 2139 for (sstr = nstr; sstr; sstr++, len--) { 2140 int flags; 2141 2142 if ((*sstr != '\0') && (*sstr != ',')) { 2143 if (estr == NULL) { 2144 if (*sstr == '=') 2145 estr = sstr; 2146 else { 2147 /* 2148 * Translate token to uppercase. Don't 2149 * use toupper(3C) as including this 2150 * code doubles the size of ld.so.1. 2151 */ 2152 if ((*sstr >= 'a') && (*sstr <= 'z')) 2153 *sstr = *sstr - ('a' - 'A'); 2154 } 2155 } 2156 continue; 2157 } 2158 2159 *sstr = '\0'; 2160 if (estr) { 2161 nlen = estr - nstr; 2162 if ((*++estr == '\0') || (*estr == ',')) 2163 estr = NULL; 2164 } else 2165 nlen = sstr - nstr; 2166 2167 /* 2168 * Fabricate a boolean definition for any unqualified variable. 2169 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2170 * The value is sufficient to assert any boolean variables, plus 2171 * the term "(null)" is specifically chosen in case someone 2172 * mistakenly supplies something like LD_FLAGS=library_path. 2173 */ 2174 if (estr == NULL) 2175 estr = (char *)MSG_INTL(MSG_STR_NULL); 2176 2177 /* 2178 * Determine whether the environment variable is 32- or 64-bit 2179 * specific. The length, len, will reflect the architecture 2180 * neutral portion of the string. 2181 */ 2182 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2183 ld_generic_env(nstr, nlen, estr, lmflags, 2184 lmtflags, (env_flags | flags), aout); 2185 } 2186 if (len == 0) 2187 return (0); 2188 2189 nstr = sstr + 1; 2190 estr = NULL; 2191 } 2192 return (0); 2193 } 2194 2195 2196 /* 2197 * Process a single environment string. Only strings starting with `LD_' are 2198 * reserved for our use. By convention, all strings should be of the form 2199 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2200 * functionality is enabled. Also pick off applicable locale variables. 2201 */ 2202 #define LOC_LANG 1 2203 #define LOC_MESG 2 2204 #define LOC_ALL 3 2205 2206 static void 2207 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2208 int aout) 2209 { 2210 const char *s2; 2211 static size_t loc = 0; 2212 2213 if (*s1++ != 'L') 2214 return; 2215 2216 /* 2217 * See if we have any locale environment settings. These environment 2218 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2219 * is higher than LANG. 2220 */ 2221 s2 = s1; 2222 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2223 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2224 s2 += MSG_LC_ALL_SIZE; 2225 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2226 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2227 loc = LOC_ALL; 2228 } 2229 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2230 MSG_LC_MESSAGES_SIZE) == 0) { 2231 s2 += MSG_LC_MESSAGES_SIZE; 2232 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2233 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2234 loc = LOC_MESG; 2235 } 2236 } 2237 return; 2238 } 2239 2240 s2 = s1; 2241 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2242 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2243 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2244 loc = LOC_LANG; 2245 return; 2246 } 2247 2248 /* 2249 * Pick off any LD_XXXX environment variables. 2250 */ 2251 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2252 size_t len; 2253 int flags; 2254 2255 /* 2256 * In a branded process we must ignore all LD_XXXX env vars 2257 * because they are intended for the brand's linker. 2258 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2259 */ 2260 if (rtld_flags2 & RT_FL2_BRANDED) { 2261 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2262 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2263 return; 2264 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2265 } 2266 2267 /* 2268 * Environment variables with no value (ie. LD_XXXX=) typically 2269 * have no impact, however if environment variables are defined 2270 * within a configuration file, these null user settings can be 2271 * used to disable any configuration replaceable definitions. 2272 */ 2273 if ((s2 = strchr(s1, '=')) == NULL) { 2274 len = strlen(s1); 2275 s2 = NULL; 2276 } else if (*++s2 == '\0') { 2277 len = strlen(s1) - 1; 2278 s2 = NULL; 2279 } else { 2280 len = s2 - s1 - 1; 2281 while (conv_strproc_isspace(*s2)) 2282 s2++; 2283 } 2284 2285 /* 2286 * Determine whether the environment variable is 32- or 64-bit 2287 * specific. The length, len, will reflect the architecture 2288 * neutral portion of the string. 2289 */ 2290 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2291 return; 2292 env_flags |= flags; 2293 2294 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2295 } 2296 } 2297 2298 /* 2299 * Internal getenv routine. Called immediately after ld.so.1 initializes 2300 * itself. 2301 */ 2302 int 2303 readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout) 2304 { 2305 char *locale; 2306 2307 if (envp == NULL) 2308 return (0); 2309 2310 while (*envp != NULL) 2311 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2312 2313 /* 2314 * Having collected the best representation of any LD_FLAGS, process 2315 * these strings. 2316 */ 2317 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2318 return (1); 2319 2320 /* 2321 * Don't allow environment controlled auditing when tracing or if 2322 * explicitly disabled. Trigger all tracing modes from 2323 * LML_FLG_TRC_ENABLE. 2324 */ 2325 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2326 rpl_audit = profile_lib = profile_name = NULL; 2327 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2328 *lmflags &= ~LML_MSK_TRC; 2329 2330 /* 2331 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2332 */ 2333 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2334 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2335 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2336 2337 /* 2338 * When using ldd(1) -r or -d against an executable, assert -p. 2339 */ 2340 if ((*lmflags & 2341 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2342 *lmflags |= LML_FLG_TRC_NOPAREXT; 2343 2344 /* 2345 * If we have a locale setting make sure its worth processing further. 2346 * C and POSIX locales don't need any processing. In addition, to 2347 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2348 * the locale to contain a segment that leads upward in the file system 2349 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2350 * the /usr/lib/locale hierarchy, there is no need to extensively 2351 * validate the mode or ownership of any message file (as libc's 2352 * generic handling of message files does). Duplicate the string so 2353 * that new locale setting can generically cleanup any previous locales. 2354 */ 2355 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2356 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2357 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2358 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2359 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2360 else 2361 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2362 } 2363 return (0); 2364 } 2365 2366 /* 2367 * Configuration environment processing. Called after the a.out has been 2368 * processed (as the a.out can specify its own configuration file). 2369 */ 2370 int 2371 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2372 { 2373 Word *lmflags = &(lml_main.lm_flags); 2374 Word *lmtflags = &(lml_main.lm_tflags); 2375 2376 if (envtbl == NULL) 2377 return (0); 2378 2379 while (envtbl->env_str) { 2380 uint_t env_flags = ENV_TYP_CONFIG; 2381 2382 if (envtbl->env_flags & RTC_ENV_PERMANT) 2383 env_flags |= ENV_TYP_PERMANT; 2384 2385 ld_str_env((const char *)(envtbl->env_str + addr), 2386 lmflags, lmtflags, env_flags, 0); 2387 envtbl++; 2388 } 2389 2390 /* 2391 * Having collected the best representation of any LD_FLAGS, process 2392 * these strings. 2393 */ 2394 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2395 return (1); 2396 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2397 aout) == 1) 2398 return (1); 2399 2400 /* 2401 * Don't allow environment controlled auditing when tracing or if 2402 * explicitly disabled. Trigger all tracing modes from 2403 * LML_FLG_TRC_ENABLE. 2404 */ 2405 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2406 prm_audit = profile_lib = profile_name = NULL; 2407 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2408 *lmflags &= ~LML_MSK_TRC; 2409 2410 return (0); 2411 } 2412 2413 int 2414 dowrite(Prfbuf * prf) 2415 { 2416 /* 2417 * We do not have a valid file descriptor, so we are unable 2418 * to flush the buffer. 2419 */ 2420 if (prf->pr_fd == -1) 2421 return (0); 2422 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2423 prf->pr_cur = prf->pr_buf; 2424 return (1); 2425 } 2426 2427 /* 2428 * Simplified printing. The following conversion specifications are supported: 2429 * 2430 * % [#] [-] [min field width] [. precision] s|d|x|c 2431 * 2432 * 2433 * dorprf takes the output buffer in the form of Prfbuf which permits 2434 * the verification of the output buffer size and the concatenation 2435 * of data to an already existing output buffer. The Prfbuf 2436 * structure contains the following: 2437 * 2438 * pr_buf pointer to the beginning of the output buffer. 2439 * pr_cur pointer to the next available byte in the output buffer. By 2440 * setting pr_cur ahead of pr_buf you can append to an already 2441 * existing buffer. 2442 * pr_len the size of the output buffer. By setting pr_len to '0' you 2443 * disable protection from overflows in the output buffer. 2444 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2445 * output to. If pr_fd is set to '-1' then it's assumed there is 2446 * no output buffer, and doprf() will return with an error to 2447 * indicate an output buffer overflow. If pr_fd is > -1 then when 2448 * the output buffer is filled it will be flushed to pr_fd and will 2449 * then be available for additional data. 2450 */ 2451 #define FLG_UT_MINUS 0x0001 /* - */ 2452 #define FLG_UT_SHARP 0x0002 /* # */ 2453 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2454 2455 /* 2456 * This macro is for use from within doprf only. It is to be used for checking 2457 * the output buffer size and placing characters into the buffer. 2458 */ 2459 #define PUTC(c) \ 2460 { \ 2461 char tmpc; \ 2462 \ 2463 tmpc = (c); \ 2464 if (bufsiz && (bp >= bufend)) { \ 2465 prf->pr_cur = bp; \ 2466 if (dowrite(prf) == 0) \ 2467 return (0); \ 2468 bp = prf->pr_cur; \ 2469 } \ 2470 *bp++ = tmpc; \ 2471 } 2472 2473 /* 2474 * Define a local buffer size for building a numeric value - large enough to 2475 * hold a 64-bit value. 2476 */ 2477 #define NUM_SIZE 22 2478 2479 size_t 2480 doprf(const char *format, va_list args, Prfbuf *prf) 2481 { 2482 char c; 2483 char *bp = prf->pr_cur; 2484 char *bufend = prf->pr_buf + prf->pr_len; 2485 size_t bufsiz = prf->pr_len; 2486 2487 while ((c = *format++) != '\0') { 2488 if (c != '%') { 2489 PUTC(c); 2490 } else { 2491 int base = 0, flag = 0, width = 0, prec = 0; 2492 size_t _i; 2493 int _c, _n; 2494 char *_s; 2495 int ls = 0; 2496 again: 2497 c = *format++; 2498 switch (c) { 2499 case '-': 2500 flag |= FLG_UT_MINUS; 2501 goto again; 2502 case '#': 2503 flag |= FLG_UT_SHARP; 2504 goto again; 2505 case '.': 2506 flag |= FLG_UT_DOTSEEN; 2507 goto again; 2508 case '0': 2509 case '1': 2510 case '2': 2511 case '3': 2512 case '4': 2513 case '5': 2514 case '6': 2515 case '7': 2516 case '8': 2517 case '9': 2518 if (flag & FLG_UT_DOTSEEN) 2519 prec = (prec * 10) + c - '0'; 2520 else 2521 width = (width * 10) + c - '0'; 2522 goto again; 2523 case 'x': 2524 case 'X': 2525 base = 16; 2526 break; 2527 case 'd': 2528 case 'D': 2529 case 'u': 2530 base = 10; 2531 flag &= ~FLG_UT_SHARP; 2532 break; 2533 case 'l': 2534 base = 10; 2535 ls++; /* number of l's (long or long long) */ 2536 if ((*format == 'l') || 2537 (*format == 'd') || (*format == 'D') || 2538 (*format == 'x') || (*format == 'X') || 2539 (*format == 'o') || (*format == 'O') || 2540 (*format == 'u') || (*format == 'U')) 2541 goto again; 2542 break; 2543 case 'o': 2544 case 'O': 2545 base = 8; 2546 break; 2547 case 'c': 2548 _c = va_arg(args, int); 2549 2550 for (_i = 24; _i > 0; _i -= 8) { 2551 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2552 PUTC(c); 2553 } 2554 } 2555 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2556 PUTC(c); 2557 } 2558 break; 2559 case 's': 2560 _s = va_arg(args, char *); 2561 _i = strlen(_s); 2562 /* LINTED */ 2563 _n = (int)(width - _i); 2564 if (!prec) 2565 /* LINTED */ 2566 prec = (int)_i; 2567 2568 if (width && !(flag & FLG_UT_MINUS)) { 2569 while (_n-- > 0) 2570 PUTC(' '); 2571 } 2572 while (((c = *_s++) != 0) && prec--) { 2573 PUTC(c); 2574 } 2575 if (width && (flag & FLG_UT_MINUS)) { 2576 while (_n-- > 0) 2577 PUTC(' '); 2578 } 2579 break; 2580 case '%': 2581 PUTC('%'); 2582 break; 2583 default: 2584 break; 2585 } 2586 2587 /* 2588 * Numeric processing 2589 */ 2590 if (base) { 2591 char local[NUM_SIZE]; 2592 size_t ssize = 0, psize = 0; 2593 const char *string = 2594 MSG_ORIG(MSG_STR_HEXNUM); 2595 const char *prefix = 2596 MSG_ORIG(MSG_STR_EMPTY); 2597 u_longlong_t num; 2598 2599 switch (ls) { 2600 case 0: /* int */ 2601 num = (u_longlong_t) 2602 va_arg(args, uint_t); 2603 break; 2604 case 1: /* long */ 2605 num = (u_longlong_t) 2606 va_arg(args, ulong_t); 2607 break; 2608 case 2: /* long long */ 2609 num = va_arg(args, u_longlong_t); 2610 break; 2611 } 2612 2613 if (flag & FLG_UT_SHARP) { 2614 if (base == 16) { 2615 prefix = MSG_ORIG(MSG_STR_HEX); 2616 psize = 2; 2617 } else { 2618 prefix = MSG_ORIG(MSG_STR_ZERO); 2619 psize = 1; 2620 } 2621 } 2622 if ((base == 10) && (long)num < 0) { 2623 prefix = MSG_ORIG(MSG_STR_NEGATE); 2624 psize = MSG_STR_NEGATE_SIZE; 2625 num = (u_longlong_t)(-(longlong_t)num); 2626 } 2627 2628 /* 2629 * Convert the numeric value into a local 2630 * string (stored in reverse order). 2631 */ 2632 _s = local; 2633 do { 2634 *_s++ = string[num % base]; 2635 num /= base; 2636 ssize++; 2637 } while (num); 2638 2639 ASSERT(ssize < sizeof (local)); 2640 2641 /* 2642 * Provide any precision or width padding. 2643 */ 2644 if (prec) { 2645 /* LINTED */ 2646 _n = (int)(prec - ssize); 2647 while ((_n-- > 0) && 2648 (ssize < sizeof (local))) { 2649 *_s++ = '0'; 2650 ssize++; 2651 } 2652 } 2653 if (width && !(flag & FLG_UT_MINUS)) { 2654 /* LINTED */ 2655 _n = (int)(width - ssize - psize); 2656 while (_n-- > 0) { 2657 PUTC(' '); 2658 } 2659 } 2660 2661 /* 2662 * Print any prefix and the numeric string 2663 */ 2664 while (*prefix) 2665 PUTC(*prefix++); 2666 do { 2667 PUTC(*--_s); 2668 } while (_s > local); 2669 2670 /* 2671 * Provide any width padding. 2672 */ 2673 if (width && (flag & FLG_UT_MINUS)) { 2674 /* LINTED */ 2675 _n = (int)(width - ssize - psize); 2676 while (_n-- > 0) 2677 PUTC(' '); 2678 } 2679 } 2680 } 2681 } 2682 2683 PUTC('\0'); 2684 prf->pr_cur = bp; 2685 return (1); 2686 } 2687 2688 static int 2689 doprintf(const char *format, va_list args, Prfbuf *prf) 2690 { 2691 char *ocur = prf->pr_cur; 2692 2693 if (doprf(format, args, prf) == 0) 2694 return (0); 2695 /* LINTED */ 2696 return ((int)(prf->pr_cur - ocur)); 2697 } 2698 2699 /* VARARGS2 */ 2700 int 2701 sprintf(char *buf, const char *format, ...) 2702 { 2703 va_list args; 2704 int len; 2705 Prfbuf prf; 2706 2707 va_start(args, format); 2708 prf.pr_buf = prf.pr_cur = buf; 2709 prf.pr_len = 0; 2710 prf.pr_fd = -1; 2711 len = doprintf(format, args, &prf); 2712 va_end(args); 2713 2714 /* 2715 * sprintf() return value excludes the terminating null byte. 2716 */ 2717 return (len - 1); 2718 } 2719 2720 /* VARARGS3 */ 2721 int 2722 snprintf(char *buf, size_t n, const char *format, ...) 2723 { 2724 va_list args; 2725 int len; 2726 Prfbuf prf; 2727 2728 va_start(args, format); 2729 prf.pr_buf = prf.pr_cur = buf; 2730 prf.pr_len = n; 2731 prf.pr_fd = -1; 2732 len = doprintf(format, args, &prf); 2733 va_end(args); 2734 2735 return (len); 2736 } 2737 2738 /* VARARGS2 */ 2739 int 2740 bufprint(Prfbuf *prf, const char *format, ...) 2741 { 2742 va_list args; 2743 int len; 2744 2745 va_start(args, format); 2746 len = doprintf(format, args, prf); 2747 va_end(args); 2748 2749 return (len); 2750 } 2751 2752 /*PRINTFLIKE1*/ 2753 int 2754 printf(const char *format, ...) 2755 { 2756 va_list args; 2757 char buffer[ERRSIZE]; 2758 Prfbuf prf; 2759 2760 va_start(args, format); 2761 prf.pr_buf = prf.pr_cur = buffer; 2762 prf.pr_len = ERRSIZE; 2763 prf.pr_fd = 1; 2764 (void) doprf(format, args, &prf); 2765 va_end(args); 2766 /* 2767 * Trim trailing '\0' form buffer 2768 */ 2769 prf.pr_cur--; 2770 return (dowrite(&prf)); 2771 } 2772 2773 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2774 2775 /* 2776 * All error messages go through eprintf(). During process initialization, 2777 * these messages are directed to the standard error, however once control has 2778 * been passed to the applications code these messages are stored in an internal 2779 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2780 * while running the application will still cause a standard error message, see 2781 * rtldexit() in this file for details. 2782 * The RT_FL_APPLIC flag serves to indicate the transition between process 2783 * initialization and when the applications code is running. 2784 */ 2785 /*PRINTFLIKE3*/ 2786 void 2787 eprintf(Lm_list *lml, Error error, const char *format, ...) 2788 { 2789 va_list args; 2790 int overflow = 0; 2791 static int lock = 0; 2792 Prfbuf prf; 2793 2794 if (lock || (nextptr == (errbuf + ERRSIZE))) 2795 return; 2796 2797 /* 2798 * Note: this lock is here to prevent the same thread from recursively 2799 * entering itself during a eprintf. ie: during eprintf malloc() fails 2800 * and we try and call eprintf ... and then malloc() fails .... 2801 */ 2802 lock = 1; 2803 2804 /* 2805 * If we have completed startup initialization, all error messages 2806 * must be saved. These are reported through dlerror(). If we're 2807 * still in the initialization stage, output the error directly and 2808 * add a newline. 2809 */ 2810 va_start(args, format); 2811 2812 prf.pr_buf = prf.pr_cur = nextptr; 2813 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2814 2815 if (!(rtld_flags & RT_FL_APPLIC)) 2816 prf.pr_fd = 2; 2817 else 2818 prf.pr_fd = -1; 2819 2820 if (error > ERR_NONE) { 2821 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2822 error = ERR_WARNING; 2823 if (error == ERR_WARNING) { 2824 if (err_strs[ERR_WARNING] == NULL) 2825 err_strs[ERR_WARNING] = 2826 MSG_INTL(MSG_ERR_WARNING); 2827 } else if (error == ERR_FATAL) { 2828 if (err_strs[ERR_FATAL] == NULL) 2829 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2830 } else if (error == ERR_ELF) { 2831 if (err_strs[ERR_ELF] == NULL) 2832 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2833 } 2834 if (procname) { 2835 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2836 rtldname, procname, err_strs[error]) == 0) 2837 overflow = 1; 2838 } else { 2839 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2840 rtldname, err_strs[error]) == 0) 2841 overflow = 1; 2842 } 2843 if (overflow == 0) { 2844 /* 2845 * Remove the terminating '\0'. 2846 */ 2847 prf.pr_cur--; 2848 } 2849 } 2850 2851 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2852 overflow = 1; 2853 2854 /* 2855 * If this is an ELF error, it will have been generated by a support 2856 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2857 * ELF error messages as it doesn't interact with libelf. Determine the 2858 * ELF error string. 2859 */ 2860 if ((overflow == 0) && (error == ERR_ELF)) { 2861 static int (*elfeno)() = 0; 2862 static const char *(*elfemg)(); 2863 const char *emsg; 2864 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2865 2866 if (NEXT(lmp) && (elfeno == 0)) { 2867 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2868 MSG_ORIG(MSG_SYM_ELFERRMSG), 2869 lmp, &dlmp)) == NULL) || 2870 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2871 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2872 elfeno = 0; 2873 } 2874 2875 /* 2876 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2877 */ 2878 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2879 prf.pr_cur--; 2880 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2881 emsg) == 0) 2882 overflow = 1; 2883 } 2884 } 2885 2886 /* 2887 * Push out any message that's been built. Note, in the case of an 2888 * overflow condition, this message may be incomplete, in which case 2889 * make sure any partial string is null terminated. 2890 */ 2891 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2892 *(prf.pr_cur - 1) = '\n'; 2893 (void) dowrite(&prf); 2894 } 2895 if (overflow) 2896 *(prf.pr_cur - 1) = '\0'; 2897 2898 DBG_CALL(Dbg_util_str(lml, nextptr)); 2899 va_end(args); 2900 2901 /* 2902 * Determine if there was insufficient space left in the buffer to 2903 * complete the message. If so, we'll have printed out as much as had 2904 * been processed if we're not yet executing the application. 2905 * Otherwise, there will be some debugging diagnostic indicating 2906 * as much of the error message as possible. Write out a final buffer 2907 * overflow diagnostic - unlocalized, so we don't chance more errors. 2908 */ 2909 if (overflow) { 2910 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2911 2912 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2913 lasterr = str; 2914 2915 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2916 (void) write(2, str, strlen(str)); 2917 (void) write(2, MSG_ORIG(MSG_STR_NL), 2918 MSG_STR_NL_SIZE); 2919 } 2920 } 2921 DBG_CALL(Dbg_util_str(lml, str)); 2922 2923 lock = 0; 2924 nextptr = errbuf + ERRSIZE; 2925 return; 2926 } 2927 2928 /* 2929 * If the application has started, then error messages are being saved 2930 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2931 * the case of a fatal error. In this case, establish the next error 2932 * pointer. If we haven't started the application, the whole message 2933 * buffer can be reused. 2934 */ 2935 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2936 lasterr = nextptr; 2937 2938 /* 2939 * Note, should we encounter an error such as ENOMEM, there may 2940 * be a number of the same error messages (ie. an operation 2941 * fails with ENOMEM, and then the attempts to construct the 2942 * error message itself, which incurs additional ENOMEM errors). 2943 * Compare any previous error message with the one we've just 2944 * created to prevent any duplication clutter. 2945 */ 2946 if ((rtld_flags & RT_FL_APPLIC) && 2947 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 2948 prevptr = nextptr; 2949 nextptr = prf.pr_cur; 2950 *nextptr = '\0'; 2951 } 2952 } 2953 lock = 0; 2954 } 2955 2956 2957 #if DEBUG 2958 /* 2959 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 2960 * details. 2961 */ 2962 int 2963 assfail(const char *a, const char *f, int l) 2964 { 2965 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2966 (void) _lwp_kill(_lwp_self(), SIGABRT); 2967 return (0); 2968 } 2969 #endif 2970 2971 /* 2972 * Exit. If we arrive here with a non zero status it's because of a fatal 2973 * error condition (most commonly a relocation error). If the application has 2974 * already had control, then the actual fatal error message will have been 2975 * recorded in the dlerror() message buffer. Print the message before really 2976 * exiting. 2977 */ 2978 void 2979 rtldexit(Lm_list * lml, int status) 2980 { 2981 if (status) { 2982 if (rtld_flags & RT_FL_APPLIC) { 2983 /* 2984 * If the error buffer has been used, write out all 2985 * pending messages - lasterr is simply a pointer to 2986 * the last message in this buffer. However, if the 2987 * buffer couldn't be created at all, lasterr points 2988 * to a constant error message string. 2989 */ 2990 if (*errbuf) { 2991 char *errptr = errbuf; 2992 char *errend = errbuf + ERRSIZE; 2993 2994 while ((errptr < errend) && *errptr) { 2995 size_t size = strlen(errptr); 2996 (void) write(2, errptr, size); 2997 (void) write(2, MSG_ORIG(MSG_STR_NL), 2998 MSG_STR_NL_SIZE); 2999 errptr += (size + 1); 3000 } 3001 } 3002 if (lasterr && ((lasterr < errbuf) || 3003 (lasterr > (errbuf + ERRSIZE)))) { 3004 (void) write(2, lasterr, strlen(lasterr)); 3005 (void) write(2, MSG_ORIG(MSG_STR_NL), 3006 MSG_STR_NL_SIZE); 3007 } 3008 } 3009 leave(lml, 0); 3010 (void) _lwp_kill(_lwp_self(), killsig); 3011 } 3012 _exit(status); 3013 } 3014 3015 /* 3016 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3017 */ 3018 void * 3019 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3020 { 3021 caddr_t va; 3022 3023 if ((va = (caddr_t)mmap(addr, len, prot, 3024 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3025 int err = errno; 3026 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3027 strerror(err)); 3028 return (MAP_FAILED); 3029 } 3030 return (va); 3031 } 3032 3033 static int nu_fd = FD_UNAVAIL; 3034 3035 void * 3036 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3037 { 3038 caddr_t va; 3039 int err; 3040 3041 if (nu_fd == FD_UNAVAIL) { 3042 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3043 O_RDONLY)) == FD_UNAVAIL) { 3044 err = errno; 3045 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3046 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3047 return (MAP_FAILED); 3048 } 3049 } 3050 3051 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3052 MAP_FAILED) { 3053 err = errno; 3054 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3055 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3056 } 3057 return (va); 3058 } 3059 3060 /* 3061 * Generic entry point from user code - simply grabs a lock, and bumps the 3062 * entrance count. 3063 */ 3064 int 3065 enter(int flags) 3066 { 3067 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3068 if (!thr_flg_nolock) 3069 (void) rt_mutex_lock(&rtldlock); 3070 if (rtld_flags & RT_FL_OPERATION) { 3071 ld_entry_cnt++; 3072 3073 /* 3074 * Reset the diagnostic time information for each new 3075 * "operation". Thus timing diagnostics are relative 3076 * to entering ld.so.1. 3077 */ 3078 if (DBG_ISTIME() && 3079 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3080 DBG_DELTATIME = DBG_TOTALTIME; 3081 DBG_ONRESET(); 3082 } 3083 } 3084 return (1); 3085 } 3086 return (0); 3087 } 3088 3089 /* 3090 * Determine whether a search path has been used. 3091 */ 3092 static void 3093 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3094 { 3095 Pdesc *pdp; 3096 Aliste idx; 3097 3098 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3099 const char *fmt, *name; 3100 3101 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3102 continue; 3103 3104 /* 3105 * If this pathname originated from an expanded token, use the 3106 * original for any diagnostic output. 3107 */ 3108 if ((name = pdp->pd_oname) == NULL) 3109 name = pdp->pd_pname; 3110 3111 if (unref == 0) { 3112 if ((*nl)++ == 0) 3113 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3114 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3115 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3116 continue; 3117 } 3118 3119 if (pdp->pd_flags & LA_SER_LIBPATH) { 3120 if (pdp->pd_flags & LA_SER_CONFIG) { 3121 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3122 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3123 else 3124 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3125 } else { 3126 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3127 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3128 else 3129 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3130 } 3131 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3132 fmt = MSG_INTL(MSG_USD_RUNPATH); 3133 } else 3134 continue; 3135 3136 if ((*nl)++ == 0) 3137 (void) printf(MSG_ORIG(MSG_STR_NL)); 3138 (void) printf(fmt, name, obj); 3139 } 3140 } 3141 3142 /* 3143 * Generate diagnostics as to whether an object has been used. A symbolic 3144 * reference that gets bound to an object marks it as used. Dependencies that 3145 * are unused when RTLD_NOW is in effect should be removed from future builds 3146 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3147 * candidates for lazy-loading. 3148 * 3149 * Unreferenced objects identify objects that are defined as dependencies but 3150 * are unreferenced by the caller. These unreferenced objects may however be 3151 * referenced by other objects within the process, and therefore don't qualify 3152 * as completely unused. They are still an unnecessary overhead. 3153 * 3154 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3155 * debugging. 3156 */ 3157 void 3158 unused(Lm_list *lml) 3159 { 3160 Rt_map *lmp; 3161 int nl = 0; 3162 Word unref, unuse; 3163 3164 /* 3165 * If we're not tracing unused references or dependencies, or debugging 3166 * there's nothing to do. 3167 */ 3168 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3169 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3170 3171 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3172 return; 3173 3174 /* 3175 * Detect unused global search paths. 3176 */ 3177 if (rpl_libdirs) 3178 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3179 if (prm_libdirs) 3180 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3181 3182 nl = 0; 3183 lmp = lml->lm_head; 3184 if (RLIST(lmp)) 3185 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3186 3187 /* 3188 * Traverse the link-maps looking for unreferenced or unused 3189 * dependencies. Ignore the first object on a link-map list, as this 3190 * is always used. 3191 */ 3192 nl = 0; 3193 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3194 /* 3195 * Determine if this object contains any runpaths that have 3196 * not been used. 3197 */ 3198 if (RLIST(lmp)) 3199 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3200 3201 /* 3202 * If tracing unreferenced objects, or under debugging, 3203 * determine whether any of this objects callers haven't 3204 * referenced it. 3205 */ 3206 if (unref || DBG_ENABLED) { 3207 Bnd_desc *bdp; 3208 Aliste idx; 3209 3210 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3211 Rt_map *clmp; 3212 3213 if (bdp->b_flags & BND_REFER) 3214 continue; 3215 3216 clmp = bdp->b_caller; 3217 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3218 continue; 3219 3220 /* BEGIN CSTYLED */ 3221 if (nl++ == 0) { 3222 if (unref) 3223 (void) printf(MSG_ORIG(MSG_STR_NL)); 3224 else 3225 DBG_CALL(Dbg_util_nl(lml, 3226 DBG_NL_STD)); 3227 } 3228 3229 if (unref) 3230 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3231 NAME(lmp), NAME(clmp)); 3232 else 3233 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3234 /* END CSTYLED */ 3235 } 3236 } 3237 3238 /* 3239 * If tracing unused objects simply display those objects that 3240 * haven't been referenced by anyone. 3241 */ 3242 if (FLAGS1(lmp) & FL1_RT_USED) 3243 continue; 3244 3245 if (nl++ == 0) { 3246 if (unref || unuse) 3247 (void) printf(MSG_ORIG(MSG_STR_NL)); 3248 else 3249 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3250 } 3251 if (CYCGROUP(lmp)) { 3252 if (unref || unuse) 3253 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3254 NAME(lmp), CYCGROUP(lmp)); 3255 else 3256 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3257 CYCGROUP(lmp))); 3258 } else { 3259 if (unref || unuse) 3260 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3261 NAME(lmp)); 3262 else 3263 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3264 } 3265 } 3266 3267 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3268 } 3269 3270 /* 3271 * Generic cleanup routine called prior to returning control to the user. 3272 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3273 * released, and any locks dropped. 3274 */ 3275 void 3276 leave(Lm_list *lml, int flags) 3277 { 3278 Lm_list *elml = lml; 3279 Rt_map *clmp; 3280 Aliste idx; 3281 3282 /* 3283 * Alert the debuggers that the link-maps are consistent. Note, in the 3284 * case of tearing down a whole link-map list, lml will be null. In 3285 * this case use the main link-map list to test for a notification. 3286 */ 3287 if (elml == NULL) 3288 elml = &lml_main; 3289 if (elml->lm_flags & LML_FLG_DBNOTIF) 3290 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3291 3292 /* 3293 * Alert any auditors that the link-maps are consistent. 3294 */ 3295 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3296 audit_activity(clmp, LA_ACT_CONSISTENT); 3297 3298 aplist_delete(elml->lm_actaudit, &idx); 3299 } 3300 3301 if (nu_fd != FD_UNAVAIL) { 3302 (void) close(nu_fd); 3303 nu_fd = FD_UNAVAIL; 3304 } 3305 3306 /* 3307 * Reinitialize error message pointer, and any overflow indication. 3308 */ 3309 nextptr = errbuf; 3310 prevptr = NULL; 3311 3312 /* 3313 * Defragment any freed memory. 3314 */ 3315 if (aplist_nitems(free_alp)) 3316 defrag(); 3317 3318 /* 3319 * Don't drop our lock if we are running on our link-map list as 3320 * there's little point in doing so since we are single-threaded. 3321 * 3322 * LML_FLG_HOLDLOCK is set for: 3323 * - The ld.so.1's link-map list. 3324 * - The auditor's link-map if the environment is pre-UPM. 3325 */ 3326 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3327 return; 3328 3329 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3330 if (!thr_flg_nolock) 3331 (void) rt_mutex_unlock(&rtldlock); 3332 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3333 } 3334 } 3335 3336 int 3337 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3338 { 3339 APlist *calp, *dalp; 3340 Aliste idx1, idx2; 3341 Grp_hdl *ghp1, *ghp2; 3342 3343 /* 3344 * An object can always find symbols within itself. 3345 */ 3346 if (clmp == dlmp) 3347 return (1); 3348 3349 /* 3350 * The search for a singleton must look in every loaded object. 3351 */ 3352 if (slflags & LKUP_SINGLETON) 3353 return (1); 3354 3355 /* 3356 * Don't allow an object to bind to an object that is being deleted 3357 * unless the binder is also being deleted. 3358 */ 3359 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3360 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3361 return (0); 3362 3363 /* 3364 * An object with world access can always bind to an object with global 3365 * visibility. 3366 */ 3367 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3368 (MODE(dlmp) & RTLD_GLOBAL)) 3369 return (1); 3370 3371 /* 3372 * An object with local access can only bind to an object that is a 3373 * member of the same group. 3374 */ 3375 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3376 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3377 return (0); 3378 3379 /* 3380 * Traverse the list of groups the caller is a part of. 3381 */ 3382 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3383 /* 3384 * If we're testing for the ability of two objects to bind to 3385 * each other regardless of a specific group, ignore that group. 3386 */ 3387 if (ghp && (ghp1 == ghp)) 3388 continue; 3389 3390 /* 3391 * Traverse the list of groups the destination is a part of. 3392 */ 3393 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3394 Grp_desc *gdp; 3395 Aliste idx3; 3396 3397 if (ghp1 != ghp2) 3398 continue; 3399 3400 /* 3401 * Make sure the relationship between the destination 3402 * and the caller provide symbols for relocation. 3403 * Parents are maintained as callers, but unless the 3404 * destination object was opened with RTLD_PARENT, the 3405 * parent doesn't provide symbols for the destination 3406 * to relocate against. 3407 */ 3408 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3409 if (dlmp != gdp->gd_depend) 3410 continue; 3411 3412 if (gdp->gd_flags & GPD_RELOC) 3413 return (1); 3414 } 3415 } 3416 } 3417 return (0); 3418 } 3419 3420 /* 3421 * Initialize the environ symbol. Traditionally this is carried out by the crt 3422 * code prior to jumping to main. However, init sections get fired before this 3423 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3424 * information. In addition, a process may have multiple link-maps (ld.so.1's 3425 * debugging and preloading objects), and link auditing, and each may need an 3426 * environ variable set. 3427 * 3428 * This routine is called after a relocation() pass, and thus provides for: 3429 * 3430 * - setting environ on the main link-map after the initial application and 3431 * its dependencies have been established. Typically environ lives in the 3432 * application (provided by its crt), but in older applications it might 3433 * be in libc. Who knows what's expected of applications not built on 3434 * Solaris. 3435 * 3436 * - after loading a new shared object. We can add shared objects to various 3437 * link-maps, and any link-map dependencies requiring getopt() require 3438 * their own environ. In addition, lazy loading might bring in the 3439 * supplier of environ (libc used to be a lazy loading candidate) after 3440 * the link-map has been established and other objects are present. 3441 * 3442 * This routine handles all these scenarios, without adding unnecessary overhead 3443 * to ld.so.1. 3444 */ 3445 void 3446 set_environ(Lm_list *lml) 3447 { 3448 Slookup sl; 3449 Sresult sr; 3450 uint_t binfo; 3451 3452 /* 3453 * Initialize the symbol lookup, and symbol result, data structures. 3454 */ 3455 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3456 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3457 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3458 3459 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3460 Rt_map *dlmp = sr.sr_dmap; 3461 3462 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3463 3464 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3465 lml->lm_environ = 3466 (char ***)((uintptr_t)lml->lm_environ + 3467 (uintptr_t)ADDR(dlmp)); 3468 *(lml->lm_environ) = (char **)environ; 3469 lml->lm_flags |= LML_FLG_ENVIRON; 3470 } 3471 } 3472 3473 /* 3474 * Determine whether we have a secure executable. Uid and gid information 3475 * can be passed to us via the aux vector, however if these values are -1 3476 * then use the appropriate system call to obtain them. 3477 * 3478 * - If the user is the root they can do anything 3479 * 3480 * - If the real and effective uid's don't match, or the real and 3481 * effective gid's don't match then this is determined to be a `secure' 3482 * application. 3483 * 3484 * This function is called prior to any dependency processing (see _setup.c). 3485 * Any secure setting will remain in effect for the life of the process. 3486 */ 3487 void 3488 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3489 { 3490 if (auxflags != -1) { 3491 if ((auxflags & AF_SUN_SETUGID) != 0) 3492 rtld_flags |= RT_FL_SECURE; 3493 return; 3494 } 3495 3496 if (uid == (uid_t)-1) 3497 uid = getuid(); 3498 if (uid) { 3499 if (euid == (uid_t)-1) 3500 euid = geteuid(); 3501 if (uid != euid) 3502 rtld_flags |= RT_FL_SECURE; 3503 else { 3504 if (gid == (gid_t)-1) 3505 gid = getgid(); 3506 if (egid == (gid_t)-1) 3507 egid = getegid(); 3508 if (gid != egid) 3509 rtld_flags |= RT_FL_SECURE; 3510 } 3511 } 3512 } 3513 3514 /* 3515 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3516 */ 3517 int 3518 is_rtld_setuid() 3519 { 3520 rtld_stat_t status; 3521 3522 if ((rtld_flags2 & RT_FL2_SETUID) || 3523 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3524 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3525 rtld_flags2 |= RT_FL2_SETUID; 3526 return (1); 3527 } 3528 return (0); 3529 } 3530 3531 /* 3532 * Determine that systems platform name. Normally, this name is provided from 3533 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3534 * fall back. 3535 */ 3536 void 3537 platform_name(Syscapset *scapset) 3538 { 3539 char info[SYS_NMLN]; 3540 size_t size; 3541 3542 if ((scapset->sc_platsz = size = 3543 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3544 return; 3545 3546 if ((scapset->sc_plat = malloc(size)) == NULL) { 3547 scapset->sc_platsz = (size_t)-1; 3548 return; 3549 } 3550 (void) strcpy(scapset->sc_plat, info); 3551 } 3552 3553 /* 3554 * Determine that systems machine name. Normally, this name is provided from 3555 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3556 * fall back. 3557 */ 3558 void 3559 machine_name(Syscapset *scapset) 3560 { 3561 char info[SYS_NMLN]; 3562 size_t size; 3563 3564 if ((scapset->sc_machsz = size = 3565 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3566 return; 3567 3568 if ((scapset->sc_mach = malloc(size)) == NULL) { 3569 scapset->sc_machsz = (size_t)-1; 3570 return; 3571 } 3572 (void) strcpy(scapset->sc_mach, info); 3573 } 3574 3575 /* 3576 * _REENTRANT code gets errno redefined to a function so provide for return 3577 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3578 * is basically singled threaded. Provide the interface for our dependencies. 3579 */ 3580 #undef errno 3581 int * 3582 ___errno() 3583 { 3584 extern int errno; 3585 3586 return (&errno); 3587 } 3588 3589 /* 3590 * Determine whether a symbol name should be demangled. 3591 */ 3592 const char * 3593 demangle(const char *name) 3594 { 3595 if (rtld_flags & RT_FL_DEMANGLE) 3596 return (conv_demangle_name(name)); 3597 else 3598 return (name); 3599 } 3600 3601 #ifndef _LP64 3602 /* 3603 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3604 * underneath while preserving the object size limits of a non-largefile 3605 * enabled 32-bit process. The purpose of this is to prevent large inode 3606 * values from causing stat() to fail. 3607 */ 3608 inline static int 3609 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3610 { 3611 extern int errno; 3612 3613 /* 3614 * Although we used a 64-bit capable stat(), the 32-bit rtld 3615 * can only handle objects < 2GB in size. If this object is 3616 * too big, turn the success into an overflow error. 3617 */ 3618 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3619 errno = EOVERFLOW; 3620 return (-1); 3621 } 3622 3623 /* 3624 * Transfer the information needed by rtld into a rtld_stat_t 3625 * structure that preserves the non-largile types for everything 3626 * except inode. 3627 */ 3628 buf->st_dev = lbuf->st_dev; 3629 buf->st_ino = lbuf->st_ino; 3630 buf->st_mode = lbuf->st_mode; 3631 buf->st_uid = lbuf->st_uid; 3632 buf->st_size = (off_t)lbuf->st_size; 3633 buf->st_mtim = lbuf->st_mtim; 3634 #ifdef sparc 3635 buf->st_blksize = lbuf->st_blksize; 3636 #endif 3637 3638 return (r); 3639 } 3640 3641 int 3642 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3643 { 3644 struct stat64 lbuf; 3645 int r; 3646 3647 r = stat64(path, &lbuf); 3648 if (r != -1) 3649 r = rtld_stat_process(r, &lbuf, buf); 3650 return (r); 3651 } 3652 3653 int 3654 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3655 { 3656 struct stat64 lbuf; 3657 int r; 3658 3659 r = fstat64(fildes, &lbuf); 3660 if (r != -1) 3661 r = rtld_stat_process(r, &lbuf, buf); 3662 return (r); 3663 } 3664 #endif 3665