1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Copyright (c) 2014 by Delphix. All rights reserved. 31 */ 32 33 /* 34 * Utility routines for run-time linker. some are duplicated here from libc 35 * (with different names) to avoid name space collisions. 36 */ 37 #include <sys/systeminfo.h> 38 #include <stdio.h> 39 #include <sys/time.h> 40 #include <sys/types.h> 41 #include <sys/mman.h> 42 #include <sys/lwp.h> 43 #include <sys/debug.h> 44 #include <stdarg.h> 45 #include <fcntl.h> 46 #include <string.h> 47 #include <dlfcn.h> 48 #include <unistd.h> 49 #include <stdlib.h> 50 #include <sys/auxv.h> 51 #include <limits.h> 52 #include <debug.h> 53 #include <conv.h> 54 #include "_rtld.h" 55 #include "_audit.h" 56 #include "_elf.h" 57 #include "msg.h" 58 59 /* 60 * Null function used as place where a debugger can set a breakpoint. 61 */ 62 void 63 rtld_db_dlactivity(Lm_list *lml) 64 { 65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 66 r_debug.rtd_rdebug.r_state)); 67 } 68 69 /* 70 * Null function used as place where debugger can set a pre .init 71 * processing breakpoint. 72 */ 73 void 74 rtld_db_preinit(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a post .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_postinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Debugger Event Notification 93 * 94 * This function centralizes all debugger event notification (ala rtld_db). 95 * 96 * There's a simple intent, focused on insuring the primary link-map control 97 * list (or each link-map list) is consistent, and the indication that objects 98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 99 * event are posted for each of these, most debuggers don't care, as their 100 * view is that these events simply convey an "inconsistent" state. 101 * 102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 103 * enter ld.so.1. 104 * 105 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 106 * required later (RT_FL_DBNOTIF): 107 * 108 * i. the first time we add or delete an object to the primary link-map 109 * control list. 110 * ii. the first time we move a secondary link-map control list to the primary 111 * link-map control list (effectively, this is like adding a group of 112 * objects to the primary link-map control list). 113 * 114 * Set an RD_CONSISTENT event when it is required (RT_FL_DBNOTIF is set): 115 * 116 * i. each time we leave the runtime linker. 117 */ 118 void 119 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 120 { 121 void (*fptr)(Lm_list *); 122 123 switch (event) { 124 case RD_PREINIT: 125 fptr = rtld_db_preinit; 126 break; 127 case RD_POSTINIT: 128 fptr = rtld_db_postinit; 129 break; 130 case RD_DLACTIVITY: 131 switch (state) { 132 case RT_CONSISTENT: 133 /* 134 * Do we need to send a notification? 135 */ 136 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 137 return; 138 rtld_flags &= ~RT_FL_DBNOTIF; 139 break; 140 case RT_ADD: 141 case RT_DELETE: 142 /* 143 * If we are already in an inconsistent state, no 144 * notification is required. 145 */ 146 if (rtld_flags & RT_FL_DBNOTIF) 147 return; 148 rtld_flags |= RT_FL_DBNOTIF; 149 break; 150 }; 151 fptr = rtld_db_dlactivity; 152 break; 153 default: 154 /* 155 * RD_NONE - do nothing 156 */ 157 break; 158 }; 159 160 /* 161 * Set event state and call 'notification' function. 162 * 163 * The debugging clients have previously been told about these 164 * notification functions and have set breakpoints on them if they 165 * are interested in the notification. 166 */ 167 r_debug.rtd_rdebug.r_state = state; 168 r_debug.rtd_rdebug.r_rdevent = event; 169 fptr(lml); 170 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 171 } 172 173 #if defined(__sparc) || defined(__x86) 174 /* 175 * Stack Cleanup. 176 * 177 * This function is invoked to 'remove' arguments that were passed in on the 178 * stack. This is most likely if ld.so.1 was invoked directly. In that case 179 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 180 * Which means we then need to slide everything above it on the stack down 181 * accordingly. 182 * 183 * While the stack layout is platform specific - it just so happens that __x86, 184 * and __sparc platforms share the following initial stack layout. 185 * 186 * !_______________________! high addresses 187 * ! ! 188 * ! Information ! 189 * ! Block ! 190 * ! (size varies) ! 191 * !_______________________! 192 * ! 0 word ! 193 * !_______________________! 194 * ! Auxiliary ! 195 * ! vector ! 196 * ! 2 word entries ! 197 * ! ! 198 * !_______________________! 199 * ! 0 word ! 200 * !_______________________! 201 * ! Environment ! 202 * ! pointers ! 203 * ! ... ! 204 * ! (one word each) ! 205 * !_______________________! 206 * ! 0 word ! 207 * !_______________________! 208 * ! Argument ! low addresses 209 * ! pointers ! 210 * ! Argc words ! 211 * !_______________________! 212 * ! ! 213 * ! Argc ! 214 * !_______________________! 215 * ! ... ! 216 * 217 */ 218 static void 219 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 220 { 221 int ndx; 222 long *argc; 223 char **oargv, **nargv; 224 char **oenvp, **nenvp; 225 auxv_t *oauxv, *nauxv; 226 227 /* 228 * Slide ARGV[] and update argc. The argv pointer remains the same, 229 * however slide the applications arguments over the arguments to 230 * ld.so.1. 231 */ 232 nargv = &argv[0]; 233 oargv = &argv[rmcnt]; 234 235 for (ndx = 0; oargv[ndx]; ndx++) 236 nargv[ndx] = oargv[ndx]; 237 nargv[ndx] = oargv[ndx]; 238 239 argc = (long *)((uintptr_t)argv - sizeof (long *)); 240 *argc -= rmcnt; 241 242 /* 243 * Slide ENVP[], and update the environment array pointer. 244 */ 245 ndx++; 246 nenvp = &nargv[ndx]; 247 oenvp = &oargv[ndx]; 248 *envp = nenvp; 249 250 for (ndx = 0; oenvp[ndx]; ndx++) 251 nenvp[ndx] = oenvp[ndx]; 252 nenvp[ndx] = oenvp[ndx]; 253 254 /* 255 * Slide AUXV[], and update the aux vector pointer. 256 */ 257 ndx++; 258 nauxv = (auxv_t *)&nenvp[ndx]; 259 oauxv = (auxv_t *)&oenvp[ndx]; 260 *auxv = nauxv; 261 262 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 263 nauxv[ndx] = oauxv[ndx]; 264 nauxv[ndx] = oauxv[ndx]; 265 } 266 #else 267 /* 268 * Verify that the above routine is appropriate for any new platforms. 269 */ 270 #error unsupported architecture! 271 #endif 272 273 /* 274 * Compare function for PathNode AVL tree. 275 */ 276 static int 277 pnavl_compare(const void *n1, const void *n2) 278 { 279 uint_t hash1, hash2; 280 const char *st1, *st2; 281 int rc; 282 283 hash1 = ((PathNode *)n1)->pn_hash; 284 hash2 = ((PathNode *)n2)->pn_hash; 285 286 if (hash1 > hash2) 287 return (1); 288 if (hash1 < hash2) 289 return (-1); 290 291 st1 = ((PathNode *)n1)->pn_name; 292 st2 = ((PathNode *)n2)->pn_name; 293 294 rc = strcmp(st1, st2); 295 if (rc > 0) 296 return (1); 297 if (rc < 0) 298 return (-1); 299 return (0); 300 } 301 302 /* 303 * Create an AVL tree. 304 */ 305 static avl_tree_t * 306 pnavl_create(size_t size) 307 { 308 avl_tree_t *avlt; 309 310 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 311 return (NULL); 312 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 313 return (avlt); 314 } 315 316 /* 317 * Determine whether a PathNode is recorded. 318 */ 319 int 320 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 321 avl_index_t *where) 322 { 323 PathNode pn; 324 325 /* 326 * Create the avl tree if required. 327 */ 328 if ((*pnavl == NULL) && 329 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 330 return (0); 331 332 pn.pn_name = name; 333 if ((pn.pn_hash = hash) == 0) 334 pn.pn_hash = sgs_str_hash(name); 335 336 if (avl_find(*pnavl, &pn, where) == NULL) 337 return (0); 338 339 return (1); 340 } 341 342 /* 343 * Determine if a pathname has already been recorded on the full path name 344 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 345 * successfully loaded. If the path name does not exist in this AVL tree, then 346 * the next insertion point is deposited in "where". This value can be used by 347 * fpavl_insert() to expedite the insertion. 348 */ 349 Rt_map * 350 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 351 { 352 FullPathNode fpn, *fpnp; 353 354 /* 355 * Create the avl tree if required. 356 */ 357 if ((lml->lm_fpavl == NULL) && 358 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 359 return (NULL); 360 361 fpn.fpn_node.pn_name = name; 362 if ((fpn.fpn_node.pn_hash = hash) == 0) 363 fpn.fpn_node.pn_hash = sgs_str_hash(name); 364 365 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 366 return (NULL); 367 368 return (fpnp->fpn_lmp); 369 } 370 371 /* 372 * Insert a name into the FullPathNode AVL tree for the link-map list. The 373 * objects NAME() is the path that would have originally been searched for, and 374 * is therefore the name to associate with any "where" value. If the object has 375 * a different PATHNAME(), perhaps because it has resolved to a different file 376 * (see fullpath()), then this name will be recorded as a separate FullPathNode 377 * (see load_file()). 378 */ 379 int 380 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 381 { 382 FullPathNode *fpnp; 383 uint_t hash = sgs_str_hash(name); 384 385 if (where == 0) { 386 /* LINTED */ 387 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 388 389 /* 390 * We better not get a hit now, we do not want duplicates in 391 * the tree. 392 */ 393 ASSERT(_lmp == NULL); 394 } 395 396 /* 397 * Insert new node in tree. 398 */ 399 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 400 return (0); 401 402 fpnp->fpn_node.pn_name = name; 403 fpnp->fpn_node.pn_hash = hash; 404 fpnp->fpn_lmp = lmp; 405 406 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 407 free(fpnp); 408 return (0); 409 } 410 411 ASSERT(lml->lm_fpavl != NULL); 412 avl_insert(lml->lm_fpavl, fpnp, where); 413 return (1); 414 } 415 416 /* 417 * Remove an object from the FullPathNode AVL tree. 418 */ 419 void 420 fpavl_remove(Rt_map *lmp) 421 { 422 FullPathNode *fpnp; 423 Aliste idx; 424 425 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 426 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 427 free(fpnp); 428 } 429 free(FPNODE(lmp)); 430 FPNODE(lmp) = NULL; 431 } 432 433 /* 434 * Insert a path name into the not-found AVL tree. 435 * 436 * This tree maintains a node for each path name that ld.so.1 has explicitly 437 * inspected, but has failed to load during a single ld.so.1 operation. If the 438 * path name does not exist in this AVL tree, then the next insertion point is 439 * deposited in "where". This value can be used by nfavl_insert() to expedite 440 * the insertion. 441 */ 442 void 443 nfavl_insert(const char *name, avl_index_t where) 444 { 445 PathNode *pnp; 446 uint_t hash = sgs_str_hash(name); 447 448 if (where == 0) { 449 /* LINTED */ 450 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 451 452 /* 453 * We better not get a hit now, we do not want duplicates in 454 * the tree. 455 */ 456 ASSERT(in_nfavl == 0); 457 } 458 459 /* 460 * Insert new node in tree. 461 */ 462 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 463 pnp->pn_name = name; 464 pnp->pn_hash = hash; 465 avl_insert(nfavl, pnp, where); 466 } 467 } 468 469 /* 470 * Insert the directory name, of a full path name, into the secure path AVL 471 * tree. 472 * 473 * This tree is used to maintain a list of directories in which the dependencies 474 * of a secure process have been found. This list provides a fall-back in the 475 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 476 * in a path name that has already provided dependencies. 477 */ 478 void 479 spavl_insert(const char *name) 480 { 481 char buffer[PATH_MAX], *str; 482 size_t size; 483 avl_index_t where; 484 PathNode *pnp; 485 uint_t hash; 486 487 /* 488 * Separate the directory name from the path name. 489 */ 490 if ((str = strrchr(name, '/')) == name) 491 size = 1; 492 else 493 size = str - name; 494 495 (void) strncpy(buffer, name, size); 496 buffer[size] = '\0'; 497 hash = sgs_str_hash(buffer); 498 499 /* 500 * Determine whether this directory name is already recorded, or if 501 * not, 'where" will provide the insertion point for the new string. 502 */ 503 if (pnavl_recorded(&spavl, buffer, hash, &where)) 504 return; 505 506 /* 507 * Insert new node in tree. 508 */ 509 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 510 pnp->pn_name = strdup(buffer); 511 pnp->pn_hash = hash; 512 avl_insert(spavl, pnp, where); 513 } 514 } 515 516 /* 517 * Inspect the generic string AVL tree for the given string. If the string is 518 * not present, duplicate it, and insert the string in the AVL tree. Return the 519 * duplicated string to the caller. 520 * 521 * These strings are maintained for the life of ld.so.1 and represent path 522 * names, file names, and search paths. All other AVL trees that maintain 523 * FullPathNode and not-found path names use the same string pointer 524 * established for this string. 525 */ 526 static avl_tree_t *stravl = NULL; 527 static char *strbuf = NULL; 528 static PathNode *pnbuf = NULL; 529 static size_t strsize = 0, pnsize = 0; 530 531 const char * 532 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 533 { 534 char str[PATH_MAX]; 535 PathNode *pnp; 536 avl_index_t where; 537 538 /* 539 * Create the avl tree if required. 540 */ 541 if ((stravl == NULL) && 542 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 543 return (NULL); 544 545 /* 546 * Determine the string size if not provided by the caller. 547 */ 548 if (nsize == 0) 549 nsize = strlen(name) + 1; 550 else if (substr) { 551 /* 552 * The string passed to us may be a multiple path string for 553 * which we only need the first component. Using the provided 554 * size, strip out the required string. 555 */ 556 (void) strncpy(str, name, nsize); 557 str[nsize - 1] = '\0'; 558 name = str; 559 } 560 561 /* 562 * Allocate a PathNode buffer if one doesn't exist, or any existing 563 * buffer has been used up. 564 */ 565 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 566 pnsize = syspagsz; 567 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 568 MAP_PRIVATE)) == MAP_FAILED) 569 return (NULL); 570 } 571 /* 572 * Determine whether this string already exists. 573 */ 574 pnbuf->pn_name = name; 575 if ((pnbuf->pn_hash = hash) == 0) 576 pnbuf->pn_hash = sgs_str_hash(name); 577 578 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 579 return (pnp->pn_name); 580 581 /* 582 * Allocate a string buffer if one does not exist, or if there is 583 * insufficient space for the new string in any existing buffer. 584 */ 585 if ((strbuf == NULL) || (nsize > strsize)) { 586 strsize = S_ROUND(nsize, syspagsz); 587 588 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 589 MAP_PRIVATE)) == MAP_FAILED) 590 return (NULL); 591 } 592 593 (void) memcpy(strbuf, name, nsize); 594 pnp = pnbuf; 595 pnp->pn_name = strbuf; 596 avl_insert(stravl, pnp, where); 597 598 strbuf += nsize; 599 strsize -= nsize; 600 pnbuf++; 601 pnsize -= sizeof (PathNode); 602 return (pnp->pn_name); 603 } 604 605 /* 606 * Prior to calling an object, either via a .plt or through dlsym(), make sure 607 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 608 * init's in the correct order, however, this order is typically based on needed 609 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 610 * still occur and result in bindings that were not captured during topological 611 * sorting. This routine compensates for this lack of binding information, and 612 * provides for dynamic .init firing. 613 */ 614 void 615 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 616 { 617 Rt_map **tobj; 618 619 /* 620 * If the caller is an auditor, and the destination isn't, then don't 621 * run any .inits (see comments in load_completion()). 622 */ 623 if ((LIST(clmp)->lm_tflags & LML_TFLG_NOAUDIT) && 624 ((LIST(dlmp)->lm_tflags & LML_TFLG_NOAUDIT) == 0)) 625 return; 626 627 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 628 return; 629 630 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 631 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 632 return; 633 634 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 635 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 636 DBG_CALL(Dbg_util_no_init(dlmp)); 637 return; 638 } 639 640 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 641 tobj[0] = dlmp; 642 call_init(tobj, DBG_INIT_DYN); 643 } 644 } 645 646 /* 647 * Execute .{preinit|init|fini}array sections 648 */ 649 void 650 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 651 { 652 int start, stop, incr, ndx; 653 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 654 655 if (array == NULL) 656 return; 657 658 /* 659 * initarray & preinitarray are walked from beginning to end - while 660 * finiarray is walked from end to beginning. 661 */ 662 if (shtype == SHT_FINI_ARRAY) { 663 start = arraycnt - 1; 664 stop = incr = -1; 665 } else { 666 start = 0; 667 stop = arraycnt; 668 incr = 1; 669 } 670 671 /* 672 * Call the .*array[] entries 673 */ 674 for (ndx = start; ndx != stop; ndx += incr) { 675 uint_t rtldflags; 676 void (*fptr)(void) = (void(*)())array[ndx]; 677 678 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 679 680 APPLICATION_ENTER(rtldflags); 681 leave(LIST(lmp), 0); 682 (*fptr)(); 683 (void) enter(0); 684 APPLICATION_RETURN(rtldflags); 685 } 686 } 687 688 /* 689 * Execute any .init sections. These are passed to us in an lmp array which 690 * (by default) will have been sorted. 691 */ 692 void 693 call_init(Rt_map **tobj, int flag) 694 { 695 Rt_map **_tobj, **_nobj; 696 static APlist *pending = NULL; 697 698 /* 699 * If we're in the middle of an INITFIRST, this must complete before 700 * any new init's are fired. In this case add the object list to the 701 * pending queue and return. We'll pick up the queue after any 702 * INITFIRST objects have their init's fired. 703 */ 704 if (rtld_flags & RT_FL_INITFIRST) { 705 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 706 return; 707 } 708 709 /* 710 * Traverse the tobj array firing each objects init. 711 */ 712 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 713 Rt_map *lmp = *_tobj; 714 void (*iptr)() = INIT(lmp); 715 716 if (FLAGS(lmp) & FLG_RT_INITCALL) 717 continue; 718 719 FLAGS(lmp) |= FLG_RT_INITCALL; 720 721 /* 722 * Establish an initfirst state if necessary - no other inits 723 * will be fired (because of additional relocation bindings) 724 * when in this state. 725 */ 726 if (FLAGS(lmp) & FLG_RT_INITFRST) 727 rtld_flags |= RT_FL_INITFIRST; 728 729 if (INITARRAY(lmp) || iptr) 730 DBG_CALL(Dbg_util_call_init(lmp, flag)); 731 732 if (iptr) { 733 uint_t rtldflags; 734 735 APPLICATION_ENTER(rtldflags); 736 leave(LIST(lmp), 0); 737 (*iptr)(); 738 (void) enter(0); 739 APPLICATION_RETURN(rtldflags); 740 } 741 742 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 743 SHT_INIT_ARRAY); 744 745 if (INITARRAY(lmp) || iptr) 746 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 747 748 /* 749 * Set the initdone flag regardless of whether this object 750 * actually contains an .init section. This flag prevents us 751 * from processing this section again for an .init and also 752 * signifies that a .fini must be called should it exist. 753 * Clear the sort field for use in later .fini processing. 754 */ 755 FLAGS(lmp) |= FLG_RT_INITDONE; 756 SORTVAL(lmp) = -1; 757 758 /* 759 * If we're firing an INITFIRST object, and other objects must 760 * be fired which are not INITFIRST, make sure we grab any 761 * pending objects that might have been delayed as this 762 * INITFIRST was processed. 763 */ 764 if ((rtld_flags & RT_FL_INITFIRST) && 765 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 766 Aliste idx; 767 Rt_map **pobj; 768 769 rtld_flags &= ~RT_FL_INITFIRST; 770 771 for (APLIST_TRAVERSE(pending, idx, pobj)) { 772 aplist_delete(pending, &idx); 773 call_init(pobj, DBG_INIT_PEND); 774 } 775 } 776 } 777 free(tobj); 778 } 779 780 /* 781 * Call .fini sections for the topologically sorted list of objects. This 782 * routine is called from remove_hdl() for any objects being torn down as part 783 * of a dlclose() operation, and from atexit() processing for all the remaining 784 * objects within the process. 785 */ 786 void 787 call_fini(Lm_list *lml, Rt_map **tobj, Rt_map *clmp) 788 { 789 Rt_map **_tobj; 790 791 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 792 Rt_map *lmp = *_tobj; 793 794 /* 795 * Only fire a .fini if the objects corresponding .init has 796 * completed. We collect all .fini sections of objects that 797 * had their .init collected, but that doesn't mean that at 798 * the time of collection, that the .init had completed. 799 */ 800 if (FLAGS(lmp) & FLG_RT_INITDONE) { 801 void (*fptr)(void) = FINI(lmp); 802 803 if (FINIARRAY(lmp) || fptr) 804 DBG_CALL(Dbg_util_call_fini(lmp)); 805 806 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 807 SHT_FINI_ARRAY); 808 809 if (fptr) { 810 uint_t rtldflags; 811 812 APPLICATION_ENTER(rtldflags); 813 leave(lml, 0); 814 (*fptr)(); 815 (void) enter(0); 816 APPLICATION_RETURN(rtldflags); 817 } 818 } 819 820 /* 821 * Skip main, this is explicitly called last in atexit_fini(). 822 */ 823 if (FLAGS(lmp) & FLG_RT_ISMAIN) 824 continue; 825 826 /* 827 * This object has exercised its last instructions (regardless 828 * of whether it will be unmapped or not). Audit this closure. 829 */ 830 if ((lml->lm_tflags & LML_TFLG_NOAUDIT) == 0) 831 audit_objclose(lmp, clmp); 832 } 833 834 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 835 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 836 837 free(tobj); 838 } 839 840 /* 841 * Function called by atexit(3C). Calls all .fini sections within the objects 842 * that make up the process. As .fini processing is the last opportunity for 843 * any new bindings to be established, this is also a convenient location to 844 * check for unused objects. 845 */ 846 void 847 atexit_fini() 848 { 849 Rt_map **tobj, *lmp; 850 Lm_list *lml; 851 Aliste idx; 852 853 (void) enter(0); 854 855 rtld_flags |= RT_FL_ATEXIT; 856 857 lml = &lml_main; 858 lml->lm_flags |= LML_FLG_ATEXIT; 859 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 860 lmp = (Rt_map *)lml->lm_head; 861 862 /* 863 * Reverse topologically sort the main link-map for .fini execution. 864 */ 865 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 866 (tobj != (Rt_map **)S_ERROR)) 867 call_fini(lml, tobj, NULL); 868 869 /* 870 * Now that all .fini code has been run, see what unreferenced objects 871 * remain. 872 */ 873 unused(lml); 874 875 /* 876 * Traverse any alternative link-map lists, looking for non-auditors. 877 */ 878 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 879 /* 880 * Ignore the base-link-map list, which has already been 881 * processed, the runtime linkers link-map list, which is 882 * processed last, and any auditors. 883 */ 884 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 885 (lml->lm_tflags & LML_TFLG_AUD_MASK) || 886 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 887 continue; 888 889 lml->lm_flags |= LML_FLG_ATEXIT; 890 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 891 892 /* 893 * Reverse topologically sort the link-map for .fini execution. 894 */ 895 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 896 (tobj != (Rt_map **)S_ERROR)) 897 call_fini(lml, tobj, NULL); 898 899 unused(lml); 900 } 901 902 /* 903 * Add an explicit close to main and ld.so.1. Although main's .fini is 904 * collected in call_fini() to provide for FINITARRAY processing, its 905 * audit_objclose is explicitly skipped. This provides for it to be 906 * called last, here. This is the reverse of the explicit calls to 907 * audit_objopen() made in setup(). 908 */ 909 lml = &lml_main; 910 lmp = (Rt_map *)lml->lm_head; 911 912 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 913 audit_objclose((Rt_map *)lml_rtld.lm_head, lmp); 914 audit_objclose(lmp, lmp); 915 } 916 917 /* 918 * Traverse any alternative link-map lists, looking for non-auditors. 919 */ 920 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 921 /* 922 * Ignore the base-link-map list, which has already been 923 * processed, the runtime linkers link-map list, which is 924 * processed last, and any non-auditors. 925 */ 926 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) || 927 ((lml->lm_tflags & LML_TFLG_AUD_MASK) == 0) || 928 ((lmp = (Rt_map *)lml->lm_head) == NULL)) 929 continue; 930 931 lml->lm_flags |= LML_FLG_ATEXIT; 932 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 933 934 /* 935 * Reverse topologically sort the link-map for .fini execution. 936 */ 937 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 938 (tobj != (Rt_map **)S_ERROR)) 939 call_fini(lml, tobj, NULL); 940 941 unused(lml); 942 } 943 944 /* 945 * Finally reverse topologically sort the runtime linkers link-map for 946 * .fini execution. 947 */ 948 lml = &lml_rtld; 949 lml->lm_flags |= LML_FLG_ATEXIT; 950 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 951 lmp = (Rt_map *)lml->lm_head; 952 953 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 954 (tobj != (Rt_map **)S_ERROR)) 955 call_fini(lml, tobj, NULL); 956 957 leave(&lml_main, 0); 958 } 959 960 /* 961 * This routine is called to complete any runtime linker activity which may have 962 * resulted in objects being loaded. This is called from all user entry points 963 * and from any internal dl*() requests. 964 */ 965 void 966 load_completion(Rt_map *nlmp) 967 { 968 Rt_map **tobj = NULL; 969 Lm_list *nlml; 970 971 /* 972 * Establish any .init processing. Note, in a world of lazy loading, 973 * objects may have been loaded regardless of whether the users request 974 * was fulfilled (i.e., a dlsym() request may have failed to find a 975 * symbol but objects might have been loaded during its search). Thus, 976 * any tsorting starts from the nlmp (new link-maps) pointer and not 977 * necessarily from the link-map that may have satisfied the request. 978 * 979 * Note, the primary link-map has an initialization phase where dynamic 980 * .init firing is suppressed. This provides for a simple and clean 981 * handshake with the primary link-maps libc, which is important for 982 * establishing uberdata. In addition, auditors often obtain handles 983 * to primary link-map objects as the objects are loaded, so as to 984 * inspect the link-map for symbols. This inspection is allowed without 985 * running any code on the primary link-map, as running this code may 986 * reenter the auditor, who may not yet have finished its own 987 * initialization. 988 */ 989 if (nlmp) 990 nlml = LIST(nlmp); 991 992 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 993 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 994 if ((tobj = tsort(nlmp, nlml->lm_init, 995 RT_SORT_REV)) == (Rt_map **)S_ERROR) 996 tobj = NULL; 997 } 998 999 /* 1000 * Make sure any alternative link-map retrieves any external interfaces 1001 * and initializes threads. 1002 */ 1003 if (nlmp && (nlml != &lml_main)) { 1004 (void) rt_get_extern(nlml, nlmp); 1005 rt_thr_init(nlml); 1006 } 1007 1008 /* 1009 * Traverse the list of new link-maps and register any dynamic TLS. 1010 * This storage is established for any objects not on the primary 1011 * link-map, and for any objects added to the primary link-map after 1012 * static TLS has been registered. 1013 */ 1014 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1015 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1016 Rt_map *lmp; 1017 1018 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1019 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1020 tls_modaddrem(lmp, TM_FLG_MODADD); 1021 } 1022 nlml->lm_tls = 0; 1023 } 1024 1025 /* 1026 * Fire any .init's. 1027 */ 1028 if (tobj) 1029 call_init(tobj, DBG_INIT_SORT); 1030 } 1031 1032 /* 1033 * Append an item to the specified link map control list. 1034 */ 1035 void 1036 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1037 { 1038 Lm_cntl *lmc; 1039 int add = 1; 1040 1041 /* 1042 * Indicate that this link-map list has a new object. 1043 */ 1044 (lml->lm_obj)++; 1045 1046 /* 1047 * If we're about to add a new object to the main link-map control 1048 * list, alert the debuggers. Additions of individual objects to the 1049 * main link-map control list occur during initial setup as the 1050 * applications immediate dependencies are loaded. Additional objects 1051 * are loaded on the main link-map control list after they have been 1052 * fully initialized on an alternative link-map control list. See 1053 * lm_move(). 1054 */ 1055 if (lmco == ALIST_OFF_DATA) 1056 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1057 1058 /* LINTED */ 1059 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1060 1061 /* 1062 * A link-map list header points to one of more link-map control lists 1063 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1064 * the list of relocated objects. Other lists maintain objects that 1065 * are still being analyzed or relocated. This list provides the core 1066 * link-map list information used by all ld.so.1 routines. 1067 */ 1068 if (lmc->lc_head == NULL) { 1069 /* 1070 * If this is the first link-map for the given control list, 1071 * initialize the list. 1072 */ 1073 lmc->lc_head = lmc->lc_tail = lmp; 1074 add = 0; 1075 1076 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1077 Rt_map *tlmp; 1078 1079 /* 1080 * If this is an interposer then append the link-map following 1081 * any other interposers (these are objects that have been 1082 * previously preloaded, or were identified with -z interpose). 1083 * Interposers can only be inserted on the first link-map 1084 * control list, as once relocation has started, interposition 1085 * from new interposers can't be guaranteed. 1086 * 1087 * NOTE: We do not interpose on the head of a list. This model 1088 * evolved because dynamic executables have already been fully 1089 * relocated within themselves and thus can't be interposed on. 1090 * Nowadays it's possible to have shared objects at the head of 1091 * a list, which conceptually means they could be interposed on. 1092 * But, shared objects can be created via dldump() and may only 1093 * be partially relocated (just relatives), in which case they 1094 * are interposable, but are marked as fixed (ET_EXEC). 1095 * 1096 * Thus we really don't have a clear method of deciding when the 1097 * head of a link-map is interposable. So, to be consistent, 1098 * for now only add interposers after the link-map lists head 1099 * object. 1100 */ 1101 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1102 tlmp = NEXT_RT_MAP(tlmp)) { 1103 1104 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1105 continue; 1106 1107 /* 1108 * Insert the new link-map before this non-interposer, 1109 * and indicate an interposer is found. 1110 */ 1111 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1112 PREV(lmp) = PREV(tlmp); 1113 1114 NEXT(lmp) = (Link_map *)tlmp; 1115 PREV(tlmp) = (Link_map *)lmp; 1116 1117 lmc->lc_flags |= LMC_FLG_REANALYZE; 1118 add = 0; 1119 break; 1120 } 1121 } 1122 1123 /* 1124 * Fall through to appending the new link map to the tail of the list. 1125 * If we're processing the initial objects of this link-map list, add 1126 * them to the backward compatibility list. 1127 */ 1128 if (add) { 1129 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1130 PREV(lmp) = (Link_map *)lmc->lc_tail; 1131 lmc->lc_tail = lmp; 1132 } 1133 1134 /* 1135 * Having added this link-map to a control list, indicate which control 1136 * list the link-map belongs to. Note, control list information is 1137 * always maintained as an offset, as the Alist can be reallocated. 1138 */ 1139 CNTL(lmp) = lmco; 1140 1141 /* 1142 * Indicate if an interposer is found. Note that the first object on a 1143 * link-map can be explicitly defined as an interposer so that it can 1144 * provide interposition over direct binding requests. 1145 */ 1146 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1147 lml->lm_flags |= LML_FLG_INTRPOSE; 1148 1149 /* 1150 * For backward compatibility with debuggers, the link-map list contains 1151 * pointers to the main control list. 1152 */ 1153 if (lmco == ALIST_OFF_DATA) { 1154 lml->lm_head = lmc->lc_head; 1155 lml->lm_tail = lmc->lc_tail; 1156 } 1157 } 1158 1159 /* 1160 * Delete an item from the specified link map control list. 1161 */ 1162 void 1163 lm_delete(Lm_list *lml, Rt_map *lmp, Rt_map *clmp) 1164 { 1165 Lm_cntl *lmc; 1166 1167 /* 1168 * If the control list pointer hasn't been initialized, this object 1169 * never got added to a link-map list. 1170 */ 1171 if (CNTL(lmp) == 0) 1172 return; 1173 1174 /* 1175 * If we're about to delete an object from the main link-map control 1176 * list, alert the debuggers. 1177 */ 1178 if (CNTL(lmp) == ALIST_OFF_DATA) 1179 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1180 1181 /* 1182 * If we're being audited tell the audit library that we're 1183 * about to go deleting dependencies. 1184 */ 1185 if (clmp && (aud_activity || 1186 ((LIST(clmp)->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_ACTIVITY))) 1187 audit_activity(clmp, LA_ACT_DELETE); 1188 1189 /* LINTED */ 1190 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1191 1192 if (lmc->lc_head == lmp) 1193 lmc->lc_head = NEXT_RT_MAP(lmp); 1194 else 1195 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1196 1197 if (lmc->lc_tail == lmp) 1198 lmc->lc_tail = PREV_RT_MAP(lmp); 1199 else 1200 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1201 1202 /* 1203 * For backward compatibility with debuggers, the link-map list contains 1204 * pointers to the main control list. 1205 */ 1206 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1207 lml->lm_head = lmc->lc_head; 1208 lml->lm_tail = lmc->lc_tail; 1209 } 1210 1211 /* 1212 * Indicate we have one less object on this control list. 1213 */ 1214 (lml->lm_obj)--; 1215 } 1216 1217 /* 1218 * Move a link-map control list to another. Objects that are being relocated 1219 * are maintained on secondary control lists. Once their relocation is 1220 * complete, the entire list is appended to the previous control list, as this 1221 * list must have been the trigger for generating the new control list. 1222 */ 1223 void 1224 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1225 { 1226 Rt_map *lmp; 1227 1228 /* 1229 * If we're about to add a new family of objects to the main link-map 1230 * control list, alert the debuggers. Additions of object families to 1231 * the main link-map control list occur during lazy loading, filtering 1232 * and dlopen(). 1233 */ 1234 if (plmco == ALIST_OFF_DATA) 1235 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1236 1237 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1238 1239 /* 1240 * Indicate each new link-map has been moved to the previous link-map 1241 * control list. 1242 */ 1243 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1244 CNTL(lmp) = plmco; 1245 1246 /* 1247 * If these objects are being added to the main link-map 1248 * control list, indicate that there are init's available 1249 * for harvesting. 1250 */ 1251 if (plmco == ALIST_OFF_DATA) { 1252 lml->lm_init++; 1253 lml->lm_flags |= LML_FLG_OBJADDED; 1254 } 1255 } 1256 1257 /* 1258 * Move the new link-map control list, to the callers link-map control 1259 * list. 1260 */ 1261 if (plmc->lc_head == NULL) { 1262 plmc->lc_head = nlmc->lc_head; 1263 PREV(nlmc->lc_head) = NULL; 1264 } else { 1265 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1266 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1267 } 1268 1269 plmc->lc_tail = nlmc->lc_tail; 1270 nlmc->lc_head = nlmc->lc_tail = NULL; 1271 1272 /* 1273 * For backward compatibility with debuggers, the link-map list contains 1274 * pointers to the main control list. 1275 */ 1276 if (plmco == ALIST_OFF_DATA) { 1277 lml->lm_head = plmc->lc_head; 1278 lml->lm_tail = plmc->lc_tail; 1279 } 1280 } 1281 1282 /* 1283 * Create, or assign a link-map control list. Each link-map list contains a 1284 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1285 * description in include/rtld.h). During the initial construction of a 1286 * process, objects are added to this main control list. This control list is 1287 * never deleted, unless an alternate link-map list has been requested (say for 1288 * auditors), and the associated objects could not be loaded or relocated. 1289 * 1290 * Once relocation has started, any lazy loadable objects, or filtees, are 1291 * processed on a new, temporary control list. Only when these objects have 1292 * been fully relocated, are they moved to the main link-map control list. 1293 * Once the objects are moved, this temporary control list is deleted (see 1294 * remove_cntl()). 1295 * 1296 * A dlopen() always requires a new temporary link-map control list. 1297 * Typically, a dlopen() occurs on a link-map list that had already started 1298 * relocation, however, auditors can dlopen() objects on the main link-map 1299 * list while under initial construction, before any relocation has begun. 1300 * Hence, dlopen() requests are explicitly flagged. 1301 */ 1302 Aliste 1303 create_cntl(Lm_list *lml, int dlopen) 1304 { 1305 /* 1306 * If the head link-map object has already been relocated, create a 1307 * new, temporary, control list. 1308 */ 1309 if (dlopen || (lml->lm_head == NULL) || 1310 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1311 Lm_cntl *lmc; 1312 1313 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1314 AL_CNT_LMLISTS)) == NULL) 1315 return (NULL); 1316 1317 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1318 } 1319 1320 return (ALIST_OFF_DATA); 1321 } 1322 1323 /* 1324 * Environment variables can have a variety of defined permutations, and thus 1325 * the following infrastructure exists to allow this variety and to select the 1326 * required definition. 1327 * 1328 * Environment variables can be defined as 32- or 64-bit specific, and if so 1329 * they will take precedence over any instruction set neutral form. Typically 1330 * this is only useful when the environment value is an informational string. 1331 * 1332 * Environment variables may be obtained from the standard user environment or 1333 * from a configuration file. The latter provides a fallback if no user 1334 * environment setting is found, and can take two forms: 1335 * 1336 * - a replaceable definition - this will be used if no user environment 1337 * setting has been seen, or 1338 * 1339 * - an permanent definition - this will be used no matter what user 1340 * environment setting is seen. In the case of list variables it will be 1341 * appended to any process environment setting seen. 1342 * 1343 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1344 * override any replaceable environment variables from a configuration file. 1345 */ 1346 static u_longlong_t rplgen = 0; /* replaceable generic */ 1347 /* variables */ 1348 static u_longlong_t rplisa = 0; /* replaceable ISA specific */ 1349 /* variables */ 1350 static u_longlong_t prmgen = 0; /* permanent generic */ 1351 /* variables */ 1352 static u_longlong_t prmisa = 0; /* permanent ISA specific */ 1353 /* variables */ 1354 static u_longlong_t cmdgen = 0; /* command line (-e) generic */ 1355 /* variables */ 1356 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */ 1357 /* specific variables */ 1358 1359 /* 1360 * Classify an environment variables type. 1361 */ 1362 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */ 1363 /* the wrong ISA */ 1364 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */ 1365 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */ 1366 /* config file */ 1367 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */ 1368 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */ 1369 #define ENV_TYP_NULL 0x20 /* variable is null */ 1370 1371 /* 1372 * Identify all environment variables. 1373 */ 1374 #define ENV_FLG_AUDIT 0x0000000000001ULL 1375 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1376 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1377 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1378 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1379 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1380 #define ENV_FLG_CONFIG 0x0000000000040ULL 1381 #define ENV_FLG_DEBUG 0x0000000000080ULL 1382 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1383 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1384 #define ENV_FLG_FLAGS 0x0000000000400ULL 1385 #define ENV_FLG_INIT 0x0000000000800ULL 1386 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1387 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1388 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1389 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1390 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1391 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1392 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1393 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1394 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1395 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1396 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1397 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1398 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1399 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1400 #define ENV_FLG_PROFILE 0x0000004000000ULL 1401 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1402 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1403 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1404 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1405 #define ENV_FLG_UNREF 0x0000080000000ULL 1406 #define ENV_FLG_UNUSED 0x0000100000000ULL 1407 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1408 #define ENV_FLG_WARN 0x0000400000000ULL 1409 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1410 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1411 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1412 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1413 #define ENV_FLG_HWCAP 0x0008000000000ULL 1414 #define ENV_FLG_SFCAP 0x0010000000000ULL 1415 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1416 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1417 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1418 #define ENV_FLG_DEFERRED 0x0100000000000ULL 1419 #define ENV_FLG_NOENVIRON 0x0200000000000ULL 1420 1421 #define SEL_REPLACE 0x0001 1422 #define SEL_PERMANT 0x0002 1423 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1424 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1425 #define SEL_ACT_STR 0x0400 /* setting string value */ 1426 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1427 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1428 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1429 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1430 1431 /* 1432 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1433 * and len specifies its length (comparing a strings length before the string 1434 * itself speed things up). s2 points to the token itself which has already 1435 * had any leading white-space removed. 1436 */ 1437 static void 1438 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1439 Word *lmtflags, uint_t env_flags, int aout) 1440 { 1441 u_longlong_t variable = 0; 1442 ushort_t select = 0; 1443 const char **str; 1444 Word val = 0; 1445 1446 /* 1447 * Determine whether we're dealing with a replaceable or permanent 1448 * string. 1449 */ 1450 if (env_flags & ENV_TYP_PERMANT) { 1451 /* 1452 * If the string is from a configuration file and defined as 1453 * permanent, assign it as permanent. 1454 */ 1455 select |= SEL_PERMANT; 1456 } else 1457 select |= SEL_REPLACE; 1458 1459 /* 1460 * Parse the variable given. 1461 * 1462 * The LD_AUDIT family. 1463 */ 1464 if (*s1 == 'A') { 1465 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1466 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1467 /* 1468 * Replaceable and permanent audit objects can exist. 1469 */ 1470 select |= SEL_ACT_STR; 1471 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1472 variable = ENV_FLG_AUDIT; 1473 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1474 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1475 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1476 /* 1477 * A specialized variable for plt_exit() use, not 1478 * documented for general use. 1479 */ 1480 select |= SEL_ACT_SPEC_2; 1481 variable = ENV_FLG_AUDIT_ARGS; 1482 } 1483 } 1484 /* 1485 * The LD_BIND family. 1486 */ 1487 else if (*s1 == 'B') { 1488 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1489 MSG_ORIG(MSG_LD_BIND_LAZY), 1490 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1491 select |= SEL_ACT_RT2; 1492 val = RT_FL2_BINDLAZY; 1493 variable = ENV_FLG_BIND_LAZY; 1494 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1495 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1496 select |= SEL_ACT_RT2; 1497 val = RT_FL2_BINDNOW; 1498 variable = ENV_FLG_BIND_NOW; 1499 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1500 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1501 /* 1502 * Another trick, enabled to help debug AOUT 1503 * applications under BCP, but not documented for 1504 * general use. 1505 */ 1506 select |= SEL_ACT_RT; 1507 val = RT_FL_NOBIND; 1508 variable = ENV_FLG_BIND_NOT; 1509 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1510 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1511 /* 1512 * This variable is simply for backward compatibility. 1513 * If this and LD_DEBUG are both specified, only one of 1514 * the strings is going to get processed. 1515 */ 1516 select |= SEL_ACT_SPEC_2; 1517 variable = ENV_FLG_BINDINGS; 1518 } 1519 } 1520 /* 1521 * LD_CAP_FILES and LD_CONFIG family. 1522 */ 1523 else if (*s1 == 'C') { 1524 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1525 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1526 select |= SEL_ACT_STR; 1527 str = (select & SEL_REPLACE) ? 1528 &rpl_cap_files : &prm_cap_files; 1529 variable = ENV_FLG_CAP_FILES; 1530 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1531 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1532 /* 1533 * This variable is not documented for general use. 1534 * Although originaly designed for internal use with 1535 * crle(1), this variable is in use by the Studio 1536 * auditing tools. Hence, it can't be removed. 1537 */ 1538 select |= SEL_ACT_SPEC_2; 1539 variable = ENV_FLG_CONFGEN; 1540 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1541 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1542 /* 1543 * Secure applications must use a default configuration 1544 * file. A setting from a configuration file doesn't 1545 * make sense (given we must be reading a configuration 1546 * file to have gotten this). 1547 */ 1548 if ((rtld_flags & RT_FL_SECURE) || 1549 (env_flags & ENV_TYP_CONFIG)) 1550 return; 1551 select |= SEL_ACT_STR; 1552 str = &config->c_name; 1553 variable = ENV_FLG_CONFIG; 1554 } 1555 } 1556 /* 1557 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and 1558 * LD_DEMANGLE. 1559 */ 1560 else if (*s1 == 'D') { 1561 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1562 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1563 select |= SEL_ACT_STR; 1564 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1565 variable = ENV_FLG_DEBUG; 1566 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1568 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1569 select |= SEL_ACT_STR; 1570 str = &dbg_file; 1571 variable = ENV_FLG_DEBUG_OUTPUT; 1572 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, 1573 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { 1574 select |= SEL_ACT_RT; 1575 val = RT_FL_DEFERRED; 1576 variable = ENV_FLG_DEFERRED; 1577 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1578 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1579 select |= SEL_ACT_RT; 1580 val = RT_FL_DEMANGLE; 1581 variable = ENV_FLG_DEMANGLE; 1582 } 1583 } 1584 /* 1585 * LD_FLAGS - collect the best variable definition. On completion of 1586 * environment variable processing pass the result to ld_flags_env() 1587 * where they'll be decomposed and passed back to this routine. 1588 */ 1589 else if (*s1 == 'F') { 1590 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1591 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1592 select |= SEL_ACT_SPEC_1; 1593 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1594 &prm_ldflags; 1595 variable = ENV_FLG_FLAGS; 1596 } 1597 } 1598 /* 1599 * LD_HWCAP. 1600 */ 1601 else if (*s1 == 'H') { 1602 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1603 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1604 select |= SEL_ACT_STR; 1605 str = (select & SEL_REPLACE) ? 1606 &rpl_hwcap : &prm_hwcap; 1607 variable = ENV_FLG_HWCAP; 1608 } 1609 } 1610 /* 1611 * LD_INIT (internal, used by ldd(1)). 1612 */ 1613 else if (*s1 == 'I') { 1614 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1615 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1616 select |= SEL_ACT_LML; 1617 val = LML_FLG_TRC_INIT; 1618 variable = ENV_FLG_INIT; 1619 } 1620 } 1621 /* 1622 * The LD_LIBRARY_PATH and LD_LOAD families. 1623 */ 1624 else if (*s1 == 'L') { 1625 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1627 select |= SEL_ACT_SPEC_1; 1628 str = (select & SEL_REPLACE) ? &rpl_libpath : 1629 &prm_libpath; 1630 variable = ENV_FLG_LIBPATH; 1631 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1632 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1633 /* 1634 * This variable is not documented for general use. 1635 * Although originaly designed for internal use with 1636 * crle(1), this variable is in use by the Studio 1637 * auditing tools. Hence, it can't be removed. 1638 */ 1639 select |= SEL_ACT_LML; 1640 val = LML_FLG_LOADAVAIL; 1641 variable = ENV_FLG_LOADAVAIL; 1642 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1643 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1644 select |= SEL_ACT_SPEC_2; 1645 variable = ENV_FLG_LOADFLTR; 1646 } 1647 } 1648 /* 1649 * LD_MACHCAP. 1650 */ 1651 else if (*s1 == 'M') { 1652 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1653 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1654 select |= SEL_ACT_STR; 1655 str = (select & SEL_REPLACE) ? 1656 &rpl_machcap : &prm_machcap; 1657 variable = ENV_FLG_MACHCAP; 1658 } 1659 } 1660 /* 1661 * The LD_NO family. 1662 */ 1663 else if (*s1 == 'N') { 1664 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1665 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1666 select |= SEL_ACT_RT; 1667 val = RT_FL_NOAUDIT; 1668 variable = ENV_FLG_NOAUDIT; 1669 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1670 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1671 select |= SEL_ACT_RT; 1672 val = RT_FL_NOAUXFLTR; 1673 variable = ENV_FLG_NOAUXFLTR; 1674 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1675 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1676 select |= SEL_ACT_RT; 1677 val = RT_FL_NOBAPLT; 1678 variable = ENV_FLG_NOBAPLT; 1679 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1680 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1681 select |= SEL_ACT_RT; 1682 val = RT_FL_NOCFG; 1683 variable = ENV_FLG_NOCONFIG; 1684 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1685 MSG_ORIG(MSG_LD_NODIRCONFIG), 1686 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1687 select |= SEL_ACT_RT; 1688 val = RT_FL_NODIRCFG; 1689 variable = ENV_FLG_NODIRCONFIG; 1690 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1691 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1692 select |= SEL_ACT_LMLT; 1693 val = LML_TFLG_NODIRECT; 1694 variable = ENV_FLG_NODIRECT; 1695 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NOENVCONFIG), 1697 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1698 select |= SEL_ACT_RT; 1699 val = RT_FL_NOENVCFG; 1700 variable = ENV_FLG_NOENVCONFIG; 1701 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1703 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1704 select |= SEL_ACT_RT2; 1705 val = RT_FL2_NOFLTCFG; 1706 variable = ENV_FLG_NOFLTCONFIG; 1707 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1708 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1709 select |= SEL_ACT_LMLT; 1710 val = LML_TFLG_NOLAZYLD; 1711 variable = ENV_FLG_NOLAZY; 1712 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1713 MSG_ORIG(MSG_LD_NOOBJALTER), 1714 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1715 select |= SEL_ACT_RT; 1716 val = RT_FL_NOOBJALT; 1717 variable = ENV_FLG_NOOBJALTER; 1718 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1719 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1720 select |= SEL_ACT_RT; 1721 val = RT_FL_NOVERSION; 1722 variable = ENV_FLG_NOVERSION; 1723 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1724 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1725 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1726 /* 1727 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1728 */ 1729 select |= SEL_ACT_LML; 1730 val = LML_FLG_TRC_NOUNRESWEAK; 1731 variable = ENV_FLG_NOUNRESWEAK; 1732 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1733 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1734 select |= SEL_ACT_LML; 1735 val = LML_FLG_TRC_NOPAREXT; 1736 variable = ENV_FLG_NOPAREXT; 1737 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1, 1738 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) { 1739 /* 1740 * LD_NOENVIRON can only be set with ld.so.1 -e. 1741 */ 1742 select |= SEL_ACT_RT; 1743 val = RT_FL_NOENVIRON; 1744 variable = ENV_FLG_NOENVIRON; 1745 } 1746 } 1747 /* 1748 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1749 */ 1750 else if (*s1 == 'P') { 1751 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1752 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1753 select |= SEL_ACT_STR; 1754 str = (select & SEL_REPLACE) ? 1755 &rpl_platcap : &prm_platcap; 1756 variable = ENV_FLG_PLATCAP; 1757 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1758 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1759 select |= SEL_ACT_STR; 1760 str = (select & SEL_REPLACE) ? &rpl_preload : 1761 &prm_preload; 1762 variable = ENV_FLG_PRELOAD; 1763 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1764 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1765 /* 1766 * Only one user library can be profiled at a time. 1767 */ 1768 select |= SEL_ACT_SPEC_2; 1769 variable = ENV_FLG_PROFILE; 1770 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1771 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1772 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1773 /* 1774 * Only one user library can be profiled at a time. 1775 */ 1776 select |= SEL_ACT_STR; 1777 str = &profile_out; 1778 variable = ENV_FLG_PROFILE_OUTPUT; 1779 } 1780 } 1781 /* 1782 * LD_SFCAP and LD_SIGNAL. 1783 */ 1784 else if (*s1 == 'S') { 1785 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1786 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1787 select |= SEL_ACT_STR; 1788 str = (select & SEL_REPLACE) ? 1789 &rpl_sfcap : &prm_sfcap; 1790 variable = ENV_FLG_SFCAP; 1791 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1792 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1793 MSG_LD_SIGNAL_SIZE) == 0) && 1794 ((rtld_flags & RT_FL_SECURE) == 0)) { 1795 select |= SEL_ACT_SPEC_2; 1796 variable = ENV_FLG_SIGNAL; 1797 } 1798 } 1799 /* 1800 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1801 * the key to enabling all other ldd(1) specific environment variables. 1802 * In case an auditor is called, which in turn might exec(2) a 1803 * subprocess, this variable is disabled, so that any subprocess 1804 * escapes ldd(1) processing. 1805 */ 1806 else if (*s1 == 'T') { 1807 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1808 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1809 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1810 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1811 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1812 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1813 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1814 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1815 char *s0 = (char *)s1; 1816 1817 select |= SEL_ACT_SPEC_2; 1818 variable = ENV_FLG_TRACE_OBJS; 1819 1820 #if defined(__sparc) || defined(__x86) 1821 /* 1822 * The simplest way to "disable" this variable is to 1823 * truncate this string to "LD_'\0'". This string is 1824 * ignored by any ld.so.1 environment processing. 1825 * Use of such interfaces as unsetenv(3c) are overkill, 1826 * and would drag too much libc implementation detail 1827 * into ld.so.1. 1828 */ 1829 *s0 = '\0'; 1830 #else 1831 /* 1832 * Verify that the above write is appropriate for any new platforms. 1833 */ 1834 #error unsupported architecture! 1835 #endif 1836 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1837 MSG_ORIG(MSG_LD_TRACE_PTHS), 1838 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1839 select |= SEL_ACT_LML; 1840 val = LML_FLG_TRC_SEARCH; 1841 variable = ENV_FLG_TRACE_PTHS; 1842 } 1843 } 1844 /* 1845 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1846 */ 1847 else if (*s1 == 'U') { 1848 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1849 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1850 select |= SEL_ACT_LML; 1851 val = LML_FLG_TRC_UNREF; 1852 variable = ENV_FLG_UNREF; 1853 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1854 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1855 select |= SEL_ACT_LML; 1856 val = LML_FLG_TRC_UNUSED; 1857 variable = ENV_FLG_UNUSED; 1858 } 1859 } 1860 /* 1861 * LD_VERBOSE (internal, used by ldd(1)). 1862 */ 1863 else if (*s1 == 'V') { 1864 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1865 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1866 select |= SEL_ACT_LML; 1867 val = LML_FLG_TRC_VERBOSE; 1868 variable = ENV_FLG_VERBOSE; 1869 } 1870 } 1871 /* 1872 * LD_WARN (internal, used by ldd(1)). 1873 */ 1874 else if (*s1 == 'W') { 1875 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1876 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1877 select |= SEL_ACT_LML; 1878 val = LML_FLG_TRC_WARN; 1879 variable = ENV_FLG_WARN; 1880 } 1881 } 1882 1883 if (variable == 0) 1884 return; 1885 1886 /* 1887 * If the variable is already processed with and ISA specific variable, 1888 * no further processing is needed. 1889 */ 1890 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1891 ((select & SEL_PERMANT) && (prmisa & variable))) 1892 return; 1893 1894 /* 1895 * If this variable has already been set via the command line, then 1896 * ignore this variable. The command line, -e, takes precedence. 1897 */ 1898 if (env_flags & ENV_TYP_ISA) { 1899 if (cmdisa & variable) 1900 return; 1901 if (env_flags & ENV_TYP_CMDLINE) 1902 cmdisa |= variable; 1903 } else { 1904 if (cmdgen & variable) 1905 return; 1906 if (env_flags & ENV_TYP_CMDLINE) 1907 cmdgen |= variable; 1908 } 1909 1910 /* 1911 * Mark the appropriate variables. 1912 */ 1913 if (env_flags & ENV_TYP_ISA) { 1914 /* 1915 * This is an ISA setting. 1916 */ 1917 if (select & SEL_REPLACE) { 1918 if (rplisa & variable) 1919 return; 1920 rplisa |= variable; 1921 } else { 1922 prmisa |= variable; 1923 } 1924 } else { 1925 /* 1926 * This is a non-ISA setting. 1927 */ 1928 if (select & SEL_REPLACE) { 1929 if (rplgen & variable) 1930 return; 1931 rplgen |= variable; 1932 } else 1933 prmgen |= variable; 1934 } 1935 1936 /* 1937 * Now perform the setting. 1938 */ 1939 if (select & SEL_ACT_RT) { 1940 if (s2) 1941 rtld_flags |= val; 1942 else 1943 rtld_flags &= ~val; 1944 } else if (select & SEL_ACT_RT2) { 1945 if (s2) 1946 rtld_flags2 |= val; 1947 else 1948 rtld_flags2 &= ~val; 1949 } else if (select & SEL_ACT_STR) { 1950 if (env_flags & ENV_TYP_NULL) 1951 *str = NULL; 1952 else 1953 *str = s2; 1954 } else if (select & SEL_ACT_LML) { 1955 if (s2) 1956 *lmflags |= val; 1957 else 1958 *lmflags &= ~val; 1959 } else if (select & SEL_ACT_LMLT) { 1960 if (s2) 1961 *lmtflags |= val; 1962 else 1963 *lmtflags &= ~val; 1964 } else if (select & SEL_ACT_SPEC_1) { 1965 /* 1966 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1967 */ 1968 if (env_flags & ENV_TYP_NULL) 1969 *str = NULL; 1970 else 1971 *str = s2; 1972 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1973 if (s2) { 1974 if (variable == ENV_FLG_FLAGS) 1975 env_info |= ENV_INF_FLAGCFG; 1976 else 1977 env_info |= ENV_INF_PATHCFG; 1978 } else { 1979 if (variable == ENV_FLG_FLAGS) 1980 env_info &= ~ENV_INF_FLAGCFG; 1981 else 1982 env_info &= ~ENV_INF_PATHCFG; 1983 } 1984 } 1985 } else if (select & SEL_ACT_SPEC_2) { 1986 /* 1987 * variables can be: ENV_FLG_ 1988 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 1989 * SIGNAL, TRACE_OBJS 1990 */ 1991 switch (variable) { 1992 case ENV_FLG_AUDIT_ARGS: 1993 if (s2) { 1994 audit_argcnt = atoi(s2); 1995 audit_argcnt += audit_argcnt % 2; 1996 } else 1997 audit_argcnt = 0; 1998 break; 1999 case ENV_FLG_BINDINGS: 2000 if (s2) 2001 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2002 else 2003 rpl_debug = NULL; 2004 break; 2005 case ENV_FLG_CONFGEN: 2006 if (s2) { 2007 rtld_flags |= RT_FL_CONFGEN; 2008 *lmflags |= LML_FLG_IGNRELERR; 2009 } else { 2010 rtld_flags &= ~RT_FL_CONFGEN; 2011 *lmflags &= ~LML_FLG_IGNRELERR; 2012 } 2013 break; 2014 case ENV_FLG_LOADFLTR: 2015 if (s2) { 2016 *lmtflags |= LML_TFLG_LOADFLTR; 2017 if (*s2 == '2') 2018 rtld_flags |= RT_FL_WARNFLTR; 2019 } else { 2020 *lmtflags &= ~LML_TFLG_LOADFLTR; 2021 rtld_flags &= ~RT_FL_WARNFLTR; 2022 } 2023 break; 2024 case ENV_FLG_PROFILE: 2025 profile_name = s2; 2026 if (s2) { 2027 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2028 return; 2029 } 2030 /* BEGIN CSTYLED */ 2031 if (rtld_flags & RT_FL_SECURE) { 2032 profile_lib = 2033 #if defined(_ELF64) 2034 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2035 #else 2036 MSG_ORIG(MSG_PTH_LDPROFSE); 2037 #endif 2038 } else { 2039 profile_lib = 2040 #if defined(_ELF64) 2041 MSG_ORIG(MSG_PTH_LDPROF_64); 2042 #else 2043 MSG_ORIG(MSG_PTH_LDPROF); 2044 #endif 2045 } 2046 /* END CSTYLED */ 2047 } else 2048 profile_lib = NULL; 2049 break; 2050 case ENV_FLG_SIGNAL: 2051 killsig = s2 ? atoi(s2) : SIGKILL; 2052 break; 2053 case ENV_FLG_TRACE_OBJS: 2054 if (s2) { 2055 *lmflags |= LML_FLG_TRC_ENABLE; 2056 if (*s2 == '2') 2057 *lmflags |= LML_FLG_TRC_LDDSTUB; 2058 } else 2059 *lmflags &= 2060 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2061 break; 2062 } 2063 } 2064 } 2065 2066 /* 2067 * Determine whether we have an architecture specific environment variable. 2068 * If we do, and we're the wrong architecture, it'll just get ignored. 2069 * Otherwise the variable is processed in it's architecture neutral form. 2070 */ 2071 static int 2072 ld_arch_env(const char *s1, size_t *len) 2073 { 2074 size_t _len = *len - 3; 2075 2076 if (s1[_len++] == '_') { 2077 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2078 #if defined(_ELF64) 2079 return (ENV_TYP_IGNORE); 2080 #else 2081 *len = *len - 3; 2082 return (ENV_TYP_ISA); 2083 #endif 2084 } 2085 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2086 #if defined(_ELF64) 2087 *len = *len - 3; 2088 return (ENV_TYP_ISA); 2089 #else 2090 return (ENV_TYP_IGNORE); 2091 #endif 2092 } 2093 } 2094 return (0); 2095 } 2096 2097 /* 2098 * Process an LD_FLAGS environment variable. The value can be a comma 2099 * separated set of tokens, which are sent (in upper case) into the generic 2100 * LD_XXXX environment variable engine. For example: 2101 * 2102 * LD_FLAGS=bind_now= -> LD_BIND_NOW= 2103 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2104 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH= 2105 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2106 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2107 * or 2108 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2109 */ 2110 static int 2111 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2112 uint_t env_flags, int aout) 2113 { 2114 char *nstr, *sstr, *estr = NULL; 2115 size_t nlen, len; 2116 2117 if (str == NULL) 2118 return (0); 2119 2120 /* 2121 * Create a new string as we're going to transform the token(s) into 2122 * uppercase and separate tokens with nulls. 2123 */ 2124 len = strlen(str); 2125 if ((nstr = malloc(len + 1)) == NULL) 2126 return (1); 2127 (void) strcpy(nstr, str); 2128 2129 for (sstr = nstr; sstr; sstr++, len--) { 2130 int flags = 0; 2131 2132 if ((*sstr != '\0') && (*sstr != ',')) { 2133 if (estr == NULL) { 2134 if (*sstr == '=') 2135 estr = sstr; 2136 else { 2137 /* 2138 * Translate token to uppercase. Don't 2139 * use toupper(3C) as including this 2140 * code doubles the size of ld.so.1. 2141 */ 2142 if ((*sstr >= 'a') && (*sstr <= 'z')) 2143 *sstr = *sstr - ('a' - 'A'); 2144 } 2145 } 2146 continue; 2147 } 2148 2149 *sstr = '\0'; 2150 2151 /* 2152 * Have we discovered an "=" string. 2153 */ 2154 if (estr) { 2155 nlen = estr - nstr; 2156 2157 /* 2158 * If this is an unqualified "=", then this variable 2159 * is intended to ensure a feature is disabled. 2160 */ 2161 if ((*++estr == '\0') || (*estr == ',')) 2162 estr = NULL; 2163 } else { 2164 nlen = sstr - nstr; 2165 2166 /* 2167 * If there is no "=" found, fabricate a boolean 2168 * definition for any unqualified variable. Thus, 2169 * LD_FLAGS=bind_now is represented as BIND_NOW=1. 2170 * The value "1" is sufficient to assert any boolean 2171 * variables. Setting of ENV_TYP_NULL ensures any 2172 * string usage is reset to a NULL string, thus 2173 * LD_FLAGS=library_path is equivalent to 2174 * LIBRARY_PATH='\0'. 2175 */ 2176 flags |= ENV_TYP_NULL; 2177 estr = (char *)MSG_ORIG(MSG_STR_ONE); 2178 } 2179 2180 /* 2181 * Determine whether the environment variable is 32- or 64-bit 2182 * specific. The length, len, will reflect the architecture 2183 * neutral portion of the string. 2184 */ 2185 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2186 ld_generic_env(nstr, nlen, estr, lmflags, 2187 lmtflags, (env_flags | flags), aout); 2188 } 2189 if (len == 0) 2190 break; 2191 2192 nstr = sstr + 1; 2193 estr = NULL; 2194 } 2195 2196 return (0); 2197 } 2198 2199 /* 2200 * Variant of getopt(), intended for use when ld.so.1 is invoked directly 2201 * from the command line. The only command line option allowed is -e followed 2202 * by a runtime linker environment variable. 2203 */ 2204 int 2205 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 2206 Word *lmtflags, int aout) 2207 { 2208 int ndx; 2209 2210 for (ndx = 1; argv[ndx]; ndx++) { 2211 char *str; 2212 2213 if (argv[ndx][0] != '-') 2214 break; 2215 2216 if (argv[ndx][1] == '\0') { 2217 ndx++; 2218 break; 2219 } 2220 2221 if (argv[ndx][1] != 'e') 2222 return (1); 2223 2224 if (argv[ndx][2] == '\0') { 2225 ndx++; 2226 if (argv[ndx] == NULL) 2227 return (1); 2228 str = argv[ndx]; 2229 } else 2230 str = &argv[ndx][2]; 2231 2232 /* 2233 * If the environment variable starts with LD_, strip the LD_. 2234 * Otherwise, take things as is. Indicate that this variable 2235 * originates from the command line, as these variables take 2236 * precedence over any environment variables, or configuration 2237 * file variables. 2238 */ 2239 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 2240 (str[3] != '\0')) 2241 str += 3; 2242 if (ld_flags_env(str, lmflags, lmtflags, 2243 ENV_TYP_CMDLINE, aout) == 1) 2244 return (1); 2245 } 2246 2247 /* 2248 * Make sure an object file has been specified. 2249 */ 2250 if (argv[ndx] == NULL) 2251 return (1); 2252 2253 /* 2254 * Having gotten the arguments, clean ourselves off of the stack. 2255 * This results in a process that looks as if it was executed directly 2256 * from the application. 2257 */ 2258 stack_cleanup(argv, envp, auxv, ndx); 2259 return (0); 2260 } 2261 2262 /* 2263 * Process a single LD_XXXX string. 2264 */ 2265 static void 2266 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2267 int aout) 2268 { 2269 const char *s2; 2270 size_t len; 2271 int flags; 2272 2273 /* 2274 * In a branded process we must ignore all LD_XXXX variables because 2275 * they are intended for the brand's linker. To affect the native 2276 * linker, use LD_BRAND_XXXX instead. 2277 */ 2278 if (rtld_flags2 & RT_FL2_BRANDED) { 2279 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2280 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2281 return; 2282 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2283 } 2284 2285 /* 2286 * Variables with no value (ie. LD_XXXX=) turn a capability off. 2287 */ 2288 if ((s2 = strchr(s1, '=')) == NULL) { 2289 len = strlen(s1); 2290 s2 = NULL; 2291 } else if (*++s2 == '\0') { 2292 len = strlen(s1) - 1; 2293 s2 = NULL; 2294 } else { 2295 len = s2 - s1 - 1; 2296 while (conv_strproc_isspace(*s2)) 2297 s2++; 2298 } 2299 2300 /* 2301 * Determine whether the environment variable is 32-bit or 64-bit 2302 * specific. The length, len, will reflect the architecture neutral 2303 * portion of the string. 2304 */ 2305 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2306 return; 2307 env_flags |= flags; 2308 2309 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2310 } 2311 2312 /* 2313 * Internal getenv routine. Called immediately after ld.so.1 initializes 2314 * itself to process any locale specific environment variables, and collect 2315 * any LD_XXXX variables for later processing. 2316 */ 2317 #define LOC_LANG 1 2318 #define LOC_MESG 2 2319 #define LOC_ALL 3 2320 2321 int 2322 readenv_user(const char **envp, APlist **ealpp) 2323 { 2324 char *locale; 2325 const char *s1; 2326 int loc = 0; 2327 2328 for (s1 = *envp; s1; envp++, s1 = *envp) { 2329 const char *s2; 2330 2331 if (*s1++ != 'L') 2332 continue; 2333 2334 /* 2335 * See if we have any locale environment settings. These 2336 * environment variables have a precedence, LC_ALL is higher 2337 * than LC_MESSAGES which is higher than LANG. 2338 */ 2339 s2 = s1; 2340 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2341 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), 2342 MSG_LC_ALL_SIZE) == 0) { 2343 s2 += MSG_LC_ALL_SIZE; 2344 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2345 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2346 (char *)s2; 2347 loc = LOC_ALL; 2348 } 2349 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2350 MSG_LC_MESSAGES_SIZE) == 0) { 2351 s2 += MSG_LC_MESSAGES_SIZE; 2352 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2353 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2354 (char *)s2; 2355 loc = LOC_MESG; 2356 } 2357 } 2358 continue; 2359 } 2360 2361 s2 = s1; 2362 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2363 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2364 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2365 loc = LOC_LANG; 2366 continue; 2367 } 2368 2369 /* 2370 * Pick off any LD_XXXX environment variables. 2371 */ 2372 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2373 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL) 2374 return (1); 2375 } 2376 } 2377 2378 /* 2379 * If we have a locale setting make sure it's worth processing further. 2380 * C and POSIX locales don't need any processing. In addition, to 2381 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2382 * the locale to contain a segment that leads upward in the file system 2383 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2384 * the /usr/lib/locale hierarchy, there is no need to extensively 2385 * validate the mode or ownership of any message file (as libc's 2386 * generic handling of message files does), or be concerned with 2387 * symbolic links that might otherwise send us elsewhere. Duplicate 2388 * the string so that new locale setting can generically cleanup any 2389 * previous locales. 2390 */ 2391 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2392 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2393 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2394 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2395 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2396 else 2397 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2398 } 2399 return (0); 2400 } 2401 2402 /* 2403 * Process any LD_XXXX environment variables collected by readenv_user(). 2404 */ 2405 int 2406 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout) 2407 { 2408 Aliste idx; 2409 const char *s1; 2410 2411 for (APLIST_TRAVERSE(ealp, idx, s1)) 2412 ld_str_env(s1, lmflags, lmtflags, 0, aout); 2413 2414 /* 2415 * Having collected the best representation of any LD_FLAGS, process 2416 * these strings. 2417 */ 2418 if (rpl_ldflags) { 2419 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2420 return (1); 2421 rpl_ldflags = NULL; 2422 } 2423 2424 /* 2425 * Don't allow environment controlled auditing when tracing or if 2426 * explicitly disabled. Trigger all tracing modes from 2427 * LML_FLG_TRC_ENABLE. 2428 */ 2429 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2430 rpl_audit = profile_lib = profile_name = NULL; 2431 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2432 *lmflags &= ~LML_MSK_TRC; 2433 2434 /* 2435 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2436 */ 2437 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2438 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2439 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2440 2441 /* 2442 * When using ldd(1) -r or -d against an executable, assert -p. 2443 */ 2444 if ((*lmflags & 2445 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2446 *lmflags |= LML_FLG_TRC_NOPAREXT; 2447 2448 return (0); 2449 } 2450 2451 /* 2452 * Configuration environment processing. Called after the a.out has been 2453 * processed (as the a.out can specify its own configuration file). 2454 */ 2455 int 2456 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2457 { 2458 Word *lmflags = &(lml_main.lm_flags); 2459 Word *lmtflags = &(lml_main.lm_tflags); 2460 2461 if (envtbl == NULL) 2462 return (0); 2463 2464 while (envtbl->env_str) { 2465 uint_t env_flags = ENV_TYP_CONFIG; 2466 const char *s1 = (const char *)(envtbl->env_str + addr); 2467 2468 if (envtbl->env_flags & RTC_ENV_PERMANT) 2469 env_flags |= ENV_TYP_PERMANT; 2470 2471 if ((*s1++ == 'L') && (*s1++ == 'D') && 2472 (*s1++ == '_') && (*s1 != '\0')) 2473 ld_str_env(s1, lmflags, lmtflags, env_flags, 0); 2474 2475 envtbl++; 2476 } 2477 2478 /* 2479 * Having collected the best representation of any LD_FLAGS, process 2480 * these strings. 2481 */ 2482 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2483 return (1); 2484 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2485 aout) == 1) 2486 return (1); 2487 2488 /* 2489 * Don't allow environment controlled auditing when tracing or if 2490 * explicitly disabled. Trigger all tracing modes from 2491 * LML_FLG_TRC_ENABLE. 2492 */ 2493 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2494 prm_audit = profile_lib = profile_name = NULL; 2495 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2496 *lmflags &= ~LML_MSK_TRC; 2497 2498 return (0); 2499 } 2500 2501 int 2502 dowrite(Prfbuf * prf) 2503 { 2504 /* 2505 * We do not have a valid file descriptor, so we are unable 2506 * to flush the buffer. 2507 */ 2508 if (prf->pr_fd == -1) 2509 return (0); 2510 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2511 prf->pr_cur = prf->pr_buf; 2512 return (1); 2513 } 2514 2515 /* 2516 * Simplified printing. The following conversion specifications are supported: 2517 * 2518 * % [#] [-] [min field width] [. precision] s|d|x|c 2519 * 2520 * 2521 * dorprf takes the output buffer in the form of Prfbuf which permits 2522 * the verification of the output buffer size and the concatenation 2523 * of data to an already existing output buffer. The Prfbuf 2524 * structure contains the following: 2525 * 2526 * pr_buf pointer to the beginning of the output buffer. 2527 * pr_cur pointer to the next available byte in the output buffer. By 2528 * setting pr_cur ahead of pr_buf you can append to an already 2529 * existing buffer. 2530 * pr_len the size of the output buffer. By setting pr_len to '0' you 2531 * disable protection from overflows in the output buffer. 2532 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2533 * output to. If pr_fd is set to '-1' then it's assumed there is 2534 * no output buffer, and doprf() will return with an error to 2535 * indicate an output buffer overflow. If pr_fd is > -1 then when 2536 * the output buffer is filled it will be flushed to pr_fd and will 2537 * then be available for additional data. 2538 */ 2539 #define FLG_UT_MINUS 0x0001 /* - */ 2540 #define FLG_UT_SHARP 0x0002 /* # */ 2541 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2542 2543 /* 2544 * This macro is for use from within doprf only. It is to be used for checking 2545 * the output buffer size and placing characters into the buffer. 2546 */ 2547 #define PUTC(c) \ 2548 { \ 2549 char tmpc; \ 2550 \ 2551 tmpc = (c); \ 2552 if (bufsiz && (bp >= bufend)) { \ 2553 prf->pr_cur = bp; \ 2554 if (dowrite(prf) == 0) \ 2555 return (0); \ 2556 bp = prf->pr_cur; \ 2557 } \ 2558 *bp++ = tmpc; \ 2559 } 2560 2561 /* 2562 * Define a local buffer size for building a numeric value - large enough to 2563 * hold a 64-bit value. 2564 */ 2565 #define NUM_SIZE 22 2566 2567 size_t 2568 doprf(const char *format, va_list args, Prfbuf *prf) 2569 { 2570 char c; 2571 char *bp = prf->pr_cur; 2572 char *bufend = prf->pr_buf + prf->pr_len; 2573 size_t bufsiz = prf->pr_len; 2574 2575 while ((c = *format++) != '\0') { 2576 if (c != '%') { 2577 PUTC(c); 2578 } else { 2579 int base = 0, flag = 0, width = 0, prec = 0; 2580 size_t _i; 2581 int _c, _n; 2582 char *_s; 2583 int ls = 0; 2584 again: 2585 c = *format++; 2586 switch (c) { 2587 case '-': 2588 flag |= FLG_UT_MINUS; 2589 goto again; 2590 case '#': 2591 flag |= FLG_UT_SHARP; 2592 goto again; 2593 case '.': 2594 flag |= FLG_UT_DOTSEEN; 2595 goto again; 2596 case '0': 2597 case '1': 2598 case '2': 2599 case '3': 2600 case '4': 2601 case '5': 2602 case '6': 2603 case '7': 2604 case '8': 2605 case '9': 2606 if (flag & FLG_UT_DOTSEEN) 2607 prec = (prec * 10) + c - '0'; 2608 else 2609 width = (width * 10) + c - '0'; 2610 goto again; 2611 case 'x': 2612 case 'X': 2613 base = 16; 2614 break; 2615 case 'd': 2616 case 'D': 2617 case 'u': 2618 base = 10; 2619 flag &= ~FLG_UT_SHARP; 2620 break; 2621 case 'l': 2622 base = 10; 2623 ls++; /* number of l's (long or long long) */ 2624 if ((*format == 'l') || 2625 (*format == 'd') || (*format == 'D') || 2626 (*format == 'x') || (*format == 'X') || 2627 (*format == 'o') || (*format == 'O') || 2628 (*format == 'u') || (*format == 'U')) 2629 goto again; 2630 break; 2631 case 'o': 2632 case 'O': 2633 base = 8; 2634 break; 2635 case 'c': 2636 _c = va_arg(args, int); 2637 2638 for (_i = 24; _i > 0; _i -= 8) { 2639 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2640 PUTC(c); 2641 } 2642 } 2643 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2644 PUTC(c); 2645 } 2646 break; 2647 case 's': 2648 _s = va_arg(args, char *); 2649 _i = strlen(_s); 2650 /* LINTED */ 2651 _n = (int)(width - _i); 2652 if (!prec) 2653 /* LINTED */ 2654 prec = (int)_i; 2655 2656 if (width && !(flag & FLG_UT_MINUS)) { 2657 while (_n-- > 0) 2658 PUTC(' '); 2659 } 2660 while (((c = *_s++) != 0) && prec--) { 2661 PUTC(c); 2662 } 2663 if (width && (flag & FLG_UT_MINUS)) { 2664 while (_n-- > 0) 2665 PUTC(' '); 2666 } 2667 break; 2668 case '%': 2669 PUTC('%'); 2670 break; 2671 default: 2672 break; 2673 } 2674 2675 /* 2676 * Numeric processing 2677 */ 2678 if (base) { 2679 char local[NUM_SIZE]; 2680 size_t ssize = 0, psize = 0; 2681 const char *string = 2682 MSG_ORIG(MSG_STR_HEXNUM); 2683 const char *prefix = 2684 MSG_ORIG(MSG_STR_EMPTY); 2685 u_longlong_t num; 2686 2687 switch (ls) { 2688 case 0: /* int */ 2689 num = (u_longlong_t) 2690 va_arg(args, uint_t); 2691 break; 2692 case 1: /* long */ 2693 num = (u_longlong_t) 2694 va_arg(args, ulong_t); 2695 break; 2696 case 2: /* long long */ 2697 num = va_arg(args, u_longlong_t); 2698 break; 2699 } 2700 2701 if (flag & FLG_UT_SHARP) { 2702 if (base == 16) { 2703 prefix = MSG_ORIG(MSG_STR_HEX); 2704 psize = 2; 2705 } else { 2706 prefix = MSG_ORIG(MSG_STR_ZERO); 2707 psize = 1; 2708 } 2709 } 2710 if ((base == 10) && (long)num < 0) { 2711 prefix = MSG_ORIG(MSG_STR_NEGATE); 2712 psize = MSG_STR_NEGATE_SIZE; 2713 num = (u_longlong_t)(-(longlong_t)num); 2714 } 2715 2716 /* 2717 * Convert the numeric value into a local 2718 * string (stored in reverse order). 2719 */ 2720 _s = local; 2721 do { 2722 *_s++ = string[num % base]; 2723 num /= base; 2724 ssize++; 2725 } while (num); 2726 2727 ASSERT(ssize < sizeof (local)); 2728 2729 /* 2730 * Provide any precision or width padding. 2731 */ 2732 if (prec) { 2733 /* LINTED */ 2734 _n = (int)(prec - ssize); 2735 while ((_n-- > 0) && 2736 (ssize < sizeof (local))) { 2737 *_s++ = '0'; 2738 ssize++; 2739 } 2740 } 2741 if (width && !(flag & FLG_UT_MINUS)) { 2742 /* LINTED */ 2743 _n = (int)(width - ssize - psize); 2744 while (_n-- > 0) { 2745 PUTC(' '); 2746 } 2747 } 2748 2749 /* 2750 * Print any prefix and the numeric string 2751 */ 2752 while (*prefix) 2753 PUTC(*prefix++); 2754 do { 2755 PUTC(*--_s); 2756 } while (_s > local); 2757 2758 /* 2759 * Provide any width padding. 2760 */ 2761 if (width && (flag & FLG_UT_MINUS)) { 2762 /* LINTED */ 2763 _n = (int)(width - ssize - psize); 2764 while (_n-- > 0) 2765 PUTC(' '); 2766 } 2767 } 2768 } 2769 } 2770 2771 PUTC('\0'); 2772 prf->pr_cur = bp; 2773 return (1); 2774 } 2775 2776 static int 2777 doprintf(const char *format, va_list args, Prfbuf *prf) 2778 { 2779 char *ocur = prf->pr_cur; 2780 2781 if (doprf(format, args, prf) == 0) 2782 return (0); 2783 /* LINTED */ 2784 return ((int)(prf->pr_cur - ocur)); 2785 } 2786 2787 /* VARARGS2 */ 2788 int 2789 sprintf(char *buf, const char *format, ...) 2790 { 2791 va_list args; 2792 int len; 2793 Prfbuf prf; 2794 2795 va_start(args, format); 2796 prf.pr_buf = prf.pr_cur = buf; 2797 prf.pr_len = 0; 2798 prf.pr_fd = -1; 2799 len = doprintf(format, args, &prf); 2800 va_end(args); 2801 2802 /* 2803 * sprintf() return value excludes the terminating null byte. 2804 */ 2805 return (len - 1); 2806 } 2807 2808 /* VARARGS3 */ 2809 int 2810 snprintf(char *buf, size_t n, const char *format, ...) 2811 { 2812 va_list args; 2813 int len; 2814 Prfbuf prf; 2815 2816 va_start(args, format); 2817 prf.pr_buf = prf.pr_cur = buf; 2818 prf.pr_len = n; 2819 prf.pr_fd = -1; 2820 len = doprintf(format, args, &prf); 2821 va_end(args); 2822 2823 return (len); 2824 } 2825 2826 /* VARARGS2 */ 2827 int 2828 bufprint(Prfbuf *prf, const char *format, ...) 2829 { 2830 va_list args; 2831 int len; 2832 2833 va_start(args, format); 2834 len = doprintf(format, args, prf); 2835 va_end(args); 2836 2837 return (len); 2838 } 2839 2840 /*PRINTFLIKE1*/ 2841 int 2842 printf(const char *format, ...) 2843 { 2844 va_list args; 2845 char buffer[ERRSIZE]; 2846 Prfbuf prf; 2847 2848 va_start(args, format); 2849 prf.pr_buf = prf.pr_cur = buffer; 2850 prf.pr_len = ERRSIZE; 2851 prf.pr_fd = 1; 2852 (void) doprf(format, args, &prf); 2853 va_end(args); 2854 /* 2855 * Trim trailing '\0' form buffer 2856 */ 2857 prf.pr_cur--; 2858 return (dowrite(&prf)); 2859 } 2860 2861 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2862 2863 /* 2864 * All error messages go through eprintf(). During process initialization, 2865 * these messages are directed to the standard error, however once control has 2866 * been passed to the applications code these messages are stored in an internal 2867 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2868 * while running the application will still cause a standard error message, see 2869 * rtldexit() in this file for details. 2870 * The RT_FL_APPLIC flag serves to indicate the transition between process 2871 * initialization and when the applications code is running. 2872 */ 2873 void 2874 veprintf(Lm_list *lml, Error error, const char *format, va_list args) 2875 { 2876 int overflow = 0; 2877 static int lock = 0; 2878 Prfbuf prf; 2879 2880 if (lock || (nextptr == (errbuf + ERRSIZE))) 2881 return; 2882 2883 /* 2884 * Note: this lock is here to prevent the same thread from recursively 2885 * entering itself during a eprintf. ie: during eprintf malloc() fails 2886 * and we try and call eprintf ... and then malloc() fails .... 2887 */ 2888 lock = 1; 2889 2890 /* 2891 * If we have completed startup initialization, all error messages 2892 * must be saved. These are reported through dlerror(). If we're 2893 * still in the initialization stage, output the error directly and 2894 * add a newline. 2895 */ 2896 prf.pr_buf = prf.pr_cur = nextptr; 2897 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2898 2899 if ((rtld_flags & RT_FL_APPLIC) == 0) 2900 prf.pr_fd = 2; 2901 else 2902 prf.pr_fd = -1; 2903 2904 if (error > ERR_NONE) { 2905 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2906 error = ERR_WARNING; 2907 switch (error) { 2908 case ERR_WARNING_NF: 2909 if (err_strs[ERR_WARNING_NF] == NULL) 2910 err_strs[ERR_WARNING_NF] = 2911 MSG_INTL(MSG_ERR_WARNING); 2912 break; 2913 case ERR_WARNING: 2914 if (err_strs[ERR_WARNING] == NULL) 2915 err_strs[ERR_WARNING] = 2916 MSG_INTL(MSG_ERR_WARNING); 2917 break; 2918 case ERR_GUIDANCE: 2919 if (err_strs[ERR_GUIDANCE] == NULL) 2920 err_strs[ERR_GUIDANCE] = 2921 MSG_INTL(MSG_ERR_GUIDANCE); 2922 break; 2923 case ERR_FATAL: 2924 if (err_strs[ERR_FATAL] == NULL) 2925 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2926 break; 2927 case ERR_ELF: 2928 if (err_strs[ERR_ELF] == NULL) 2929 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2930 break; 2931 } 2932 if (procname) { 2933 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2934 rtldname, procname, err_strs[error]) == 0) 2935 overflow = 1; 2936 } else { 2937 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2938 rtldname, err_strs[error]) == 0) 2939 overflow = 1; 2940 } 2941 if (overflow == 0) { 2942 /* 2943 * Remove the terminating '\0'. 2944 */ 2945 prf.pr_cur--; 2946 } 2947 } 2948 2949 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2950 overflow = 1; 2951 2952 /* 2953 * If this is an ELF error, it will have been generated by a support 2954 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2955 * ELF error messages as it doesn't interact with libelf. Determine the 2956 * ELF error string. 2957 */ 2958 if ((overflow == 0) && (error == ERR_ELF)) { 2959 static int (*elfeno)() = 0; 2960 static const char *(*elfemg)(); 2961 const char *emsg; 2962 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2963 2964 if (NEXT(lmp) && (elfeno == 0)) { 2965 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2966 MSG_ORIG(MSG_SYM_ELFERRMSG), 2967 lmp, &dlmp)) == NULL) || 2968 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2969 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2970 elfeno = 0; 2971 } 2972 2973 /* 2974 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2975 */ 2976 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2977 prf.pr_cur--; 2978 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2979 emsg) == 0) 2980 overflow = 1; 2981 } 2982 } 2983 2984 /* 2985 * Push out any message that's been built. Note, in the case of an 2986 * overflow condition, this message may be incomplete, in which case 2987 * make sure any partial string is null terminated. 2988 */ 2989 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2990 *(prf.pr_cur - 1) = '\n'; 2991 (void) dowrite(&prf); 2992 } 2993 if (overflow) 2994 *(prf.pr_cur - 1) = '\0'; 2995 2996 DBG_CALL(Dbg_util_str(lml, nextptr)); 2997 2998 /* 2999 * Determine if there was insufficient space left in the buffer to 3000 * complete the message. If so, we'll have printed out as much as had 3001 * been processed if we're not yet executing the application. 3002 * Otherwise, there will be some debugging diagnostic indicating 3003 * as much of the error message as possible. Write out a final buffer 3004 * overflow diagnostic - unlocalized, so we don't chance more errors. 3005 */ 3006 if (overflow) { 3007 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 3008 3009 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3010 lasterr = str; 3011 3012 if ((rtld_flags & RT_FL_APPLIC) == 0) { 3013 (void) write(2, str, strlen(str)); 3014 (void) write(2, MSG_ORIG(MSG_STR_NL), 3015 MSG_STR_NL_SIZE); 3016 } 3017 } 3018 DBG_CALL(Dbg_util_str(lml, str)); 3019 3020 lock = 0; 3021 nextptr = errbuf + ERRSIZE; 3022 return; 3023 } 3024 3025 /* 3026 * If the application has started, then error messages are being saved 3027 * for retrieval by dlerror(), or possible flushing from rtldexit() in 3028 * the case of a fatal error. In this case, establish the next error 3029 * pointer. If we haven't started the application, the whole message 3030 * buffer can be reused. 3031 */ 3032 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3033 lasterr = nextptr; 3034 3035 /* 3036 * Note, should we encounter an error such as ENOMEM, there may 3037 * be a number of the same error messages (ie. an operation 3038 * fails with ENOMEM, and then the attempts to construct the 3039 * error message itself, which incurs additional ENOMEM errors). 3040 * Compare any previous error message with the one we've just 3041 * created to prevent any duplication clutter. 3042 */ 3043 if ((rtld_flags & RT_FL_APPLIC) && 3044 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 3045 prevptr = nextptr; 3046 nextptr = prf.pr_cur; 3047 *nextptr = '\0'; 3048 } 3049 } 3050 lock = 0; 3051 } 3052 3053 /*PRINTFLIKE3*/ 3054 void 3055 eprintf(Lm_list *lml, Error error, const char *format, ...) 3056 { 3057 va_list args; 3058 3059 va_start(args, format); 3060 veprintf(lml, error, format, args); 3061 va_end(args); 3062 } 3063 3064 #if DEBUG 3065 /* 3066 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 3067 * details. 3068 */ 3069 int 3070 assfail(const char *a, const char *f, int l) 3071 { 3072 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3073 (void) _lwp_kill(_lwp_self(), SIGABRT); 3074 return (0); 3075 } 3076 3077 void 3078 assfail3(const char *msg, uintmax_t a, const char *op, uintmax_t b, 3079 const char *f, int l) 3080 { 3081 (void) printf("assertion failed: %s (%llu %s %llu), " 3082 "file: %s, line: %d\n", msg, a, op, b, f, l); 3083 (void) _lwp_kill(_lwp_self(), SIGABRT); 3084 } 3085 #endif 3086 3087 /* 3088 * Exit. If we arrive here with a non zero status it's because of a fatal 3089 * error condition (most commonly a relocation error). If the application has 3090 * already had control, then the actual fatal error message will have been 3091 * recorded in the dlerror() message buffer. Print the message before really 3092 * exiting. 3093 */ 3094 void 3095 rtldexit(Lm_list * lml, int status) 3096 { 3097 if (status) { 3098 if (rtld_flags & RT_FL_APPLIC) { 3099 /* 3100 * If the error buffer has been used, write out all 3101 * pending messages - lasterr is simply a pointer to 3102 * the last message in this buffer. However, if the 3103 * buffer couldn't be created at all, lasterr points 3104 * to a constant error message string. 3105 */ 3106 if (*errbuf) { 3107 char *errptr = errbuf; 3108 char *errend = errbuf + ERRSIZE; 3109 3110 while ((errptr < errend) && *errptr) { 3111 size_t size = strlen(errptr); 3112 (void) write(2, errptr, size); 3113 (void) write(2, MSG_ORIG(MSG_STR_NL), 3114 MSG_STR_NL_SIZE); 3115 errptr += (size + 1); 3116 } 3117 } 3118 if (lasterr && ((lasterr < errbuf) || 3119 (lasterr > (errbuf + ERRSIZE)))) { 3120 (void) write(2, lasterr, strlen(lasterr)); 3121 (void) write(2, MSG_ORIG(MSG_STR_NL), 3122 MSG_STR_NL_SIZE); 3123 } 3124 } 3125 leave(lml, 0); 3126 (void) _lwp_kill(_lwp_self(), killsig); 3127 } 3128 _exit(status); 3129 } 3130 3131 /* 3132 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3133 */ 3134 void * 3135 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3136 { 3137 caddr_t va; 3138 3139 if ((va = (caddr_t)mmap(addr, len, prot, 3140 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3141 int err = errno; 3142 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3143 strerror(err)); 3144 return (MAP_FAILED); 3145 } 3146 return (va); 3147 } 3148 3149 static int nu_fd = FD_UNAVAIL; 3150 3151 void * 3152 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3153 { 3154 caddr_t va; 3155 int err; 3156 3157 if (nu_fd == FD_UNAVAIL) { 3158 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3159 O_RDONLY)) == FD_UNAVAIL) { 3160 err = errno; 3161 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3162 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3163 return (MAP_FAILED); 3164 } 3165 } 3166 3167 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3168 MAP_FAILED) { 3169 err = errno; 3170 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3171 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3172 } 3173 return (va); 3174 } 3175 3176 /* 3177 * Generic entry point from user code - simply grabs a lock, and bumps the 3178 * entrance count. 3179 */ 3180 int 3181 enter(int flags) 3182 { 3183 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3184 if (!thr_flg_nolock) 3185 (void) rt_mutex_lock(&rtldlock); 3186 if (rtld_flags & RT_FL_OPERATION) { 3187 ld_entry_cnt++; 3188 3189 /* 3190 * Reset the diagnostic time information for each new 3191 * "operation". Thus timing diagnostics are relative 3192 * to entering ld.so.1. 3193 */ 3194 if (DBG_ISTIME() && 3195 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3196 DBG_DELTATIME = DBG_TOTALTIME; 3197 DBG_ONRESET(); 3198 } 3199 } 3200 return (1); 3201 } 3202 return (0); 3203 } 3204 3205 /* 3206 * Determine whether a search path has been used. 3207 */ 3208 static void 3209 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3210 { 3211 Pdesc *pdp; 3212 Aliste idx; 3213 3214 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3215 const char *fmt, *name; 3216 3217 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3218 continue; 3219 3220 /* 3221 * If this pathname originated from an expanded token, use the 3222 * original for any diagnostic output. 3223 */ 3224 if ((name = pdp->pd_oname) == NULL) 3225 name = pdp->pd_pname; 3226 3227 if (unref == 0) { 3228 if ((*nl)++ == 0) 3229 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3230 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3231 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3232 continue; 3233 } 3234 3235 if (pdp->pd_flags & LA_SER_LIBPATH) { 3236 if (pdp->pd_flags & LA_SER_CONFIG) { 3237 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3238 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3239 else 3240 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3241 } else { 3242 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3243 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3244 else 3245 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3246 } 3247 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3248 fmt = MSG_INTL(MSG_USD_RUNPATH); 3249 } else 3250 continue; 3251 3252 if ((*nl)++ == 0) 3253 (void) printf(MSG_ORIG(MSG_STR_NL)); 3254 (void) printf(fmt, name, obj); 3255 } 3256 } 3257 3258 /* 3259 * Generate diagnostics as to whether an object has been used. A symbolic 3260 * reference that gets bound to an object marks it as used. Dependencies that 3261 * are unused when RTLD_NOW is in effect should be removed from future builds 3262 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3263 * candidates for lazy-loading. 3264 * 3265 * Unreferenced objects identify objects that are defined as dependencies but 3266 * are unreferenced by the caller. These unreferenced objects may however be 3267 * referenced by other objects within the process, and therefore don't qualify 3268 * as completely unused. They are still an unnecessary overhead. 3269 * 3270 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3271 * debugging. 3272 */ 3273 void 3274 unused(Lm_list *lml) 3275 { 3276 Rt_map *lmp; 3277 int nl = 0; 3278 Word unref, unuse; 3279 3280 /* 3281 * If we're not tracing unused references or dependencies, or debugging 3282 * there's nothing to do. 3283 */ 3284 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3285 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3286 3287 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3288 return; 3289 3290 /* 3291 * Detect unused global search paths. 3292 */ 3293 if (rpl_libdirs) 3294 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3295 if (prm_libdirs) 3296 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3297 3298 nl = 0; 3299 lmp = lml->lm_head; 3300 if (RLIST(lmp)) 3301 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3302 3303 /* 3304 * Traverse the link-maps looking for unreferenced or unused 3305 * dependencies. Ignore the first object on a link-map list, as this 3306 * is always used. 3307 */ 3308 nl = 0; 3309 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3310 /* 3311 * Determine if this object contains any runpaths that have 3312 * not been used. 3313 */ 3314 if (RLIST(lmp)) 3315 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3316 3317 /* 3318 * If tracing unreferenced objects, or under debugging, 3319 * determine whether any of this objects callers haven't 3320 * referenced it. 3321 */ 3322 if (unref || DBG_ENABLED) { 3323 Bnd_desc *bdp; 3324 Aliste idx; 3325 3326 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3327 Rt_map *clmp; 3328 3329 if (bdp->b_flags & BND_REFER) 3330 continue; 3331 3332 clmp = bdp->b_caller; 3333 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3334 continue; 3335 3336 /* BEGIN CSTYLED */ 3337 if (nl++ == 0) { 3338 if (unref) 3339 (void) printf(MSG_ORIG(MSG_STR_NL)); 3340 else 3341 DBG_CALL(Dbg_util_nl(lml, 3342 DBG_NL_STD)); 3343 } 3344 3345 if (unref) 3346 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3347 NAME(lmp), NAME(clmp)); 3348 else 3349 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3350 /* END CSTYLED */ 3351 } 3352 } 3353 3354 /* 3355 * If tracing unused objects simply display those objects that 3356 * haven't been referenced by anyone. 3357 */ 3358 if (FLAGS1(lmp) & FL1_RT_USED) 3359 continue; 3360 3361 if (nl++ == 0) { 3362 if (unref || unuse) 3363 (void) printf(MSG_ORIG(MSG_STR_NL)); 3364 else 3365 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3366 } 3367 if (CYCGROUP(lmp)) { 3368 if (unref || unuse) 3369 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3370 NAME(lmp), CYCGROUP(lmp)); 3371 else 3372 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3373 CYCGROUP(lmp))); 3374 } else { 3375 if (unref || unuse) 3376 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3377 NAME(lmp)); 3378 else 3379 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3380 } 3381 } 3382 3383 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3384 } 3385 3386 /* 3387 * Generic cleanup routine called prior to returning control to the user. 3388 * Ensures that any ld.so.1 specific file descriptors or temporary mapping are 3389 * released, and any locks dropped. 3390 */ 3391 void 3392 leave(Lm_list *lml, int flags) 3393 { 3394 /* 3395 * Alert the debuggers that the link-maps are consistent. 3396 */ 3397 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3398 3399 /* 3400 * Alert any auditors that the link-maps are consistent. 3401 */ 3402 if (lml->lm_flags & LML_FLG_ACTAUDIT) { 3403 audit_activity(lml->lm_head, LA_ACT_CONSISTENT); 3404 lml->lm_flags &= ~LML_FLG_ACTAUDIT; 3405 } 3406 3407 if (nu_fd != FD_UNAVAIL) { 3408 (void) close(nu_fd); 3409 nu_fd = FD_UNAVAIL; 3410 } 3411 3412 /* 3413 * Reinitialize error message pointer, and any overflow indication. 3414 */ 3415 nextptr = errbuf; 3416 prevptr = NULL; 3417 3418 /* 3419 * Defragment any freed memory. 3420 */ 3421 if (aplist_nitems(free_alp)) 3422 defrag(); 3423 3424 /* 3425 * Don't drop our lock if we are running on our link-map list as 3426 * there's little point in doing so since we are single-threaded. 3427 * 3428 * LML_FLG_HOLDLOCK is set for: 3429 * - The ld.so.1's link-map list. 3430 * - The auditor's link-map if the environment is pre-UPM. 3431 */ 3432 if (lml->lm_flags & LML_FLG_HOLDLOCK) 3433 return; 3434 3435 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3436 if (!thr_flg_nolock) 3437 (void) rt_mutex_unlock(&rtldlock); 3438 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3439 } 3440 } 3441 3442 int 3443 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3444 { 3445 APlist *calp, *dalp; 3446 Aliste idx1, idx2; 3447 Grp_hdl *ghp1, *ghp2; 3448 3449 /* 3450 * An object can always find symbols within itself. 3451 */ 3452 if (clmp == dlmp) 3453 return (1); 3454 3455 /* 3456 * The search for a singleton must look in every loaded object. 3457 */ 3458 if (slflags & LKUP_SINGLETON) 3459 return (1); 3460 3461 /* 3462 * Don't allow an object to bind to an object that is being deleted 3463 * unless the binder is also being deleted. 3464 */ 3465 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3466 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3467 return (0); 3468 3469 /* 3470 * An object with world access can always bind to an object with global 3471 * visibility. 3472 */ 3473 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3474 (MODE(dlmp) & RTLD_GLOBAL)) 3475 return (1); 3476 3477 /* 3478 * An object with local access can only bind to an object that is a 3479 * member of the same group. 3480 */ 3481 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3482 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3483 return (0); 3484 3485 /* 3486 * Traverse the list of groups the caller is a part of. 3487 */ 3488 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3489 /* 3490 * If we're testing for the ability of two objects to bind to 3491 * each other regardless of a specific group, ignore that group. 3492 */ 3493 if (ghp && (ghp1 == ghp)) 3494 continue; 3495 3496 /* 3497 * Traverse the list of groups the destination is a part of. 3498 */ 3499 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3500 Grp_desc *gdp; 3501 Aliste idx3; 3502 3503 if (ghp1 != ghp2) 3504 continue; 3505 3506 /* 3507 * Make sure the relationship between the destination 3508 * and the caller provide symbols for relocation. 3509 * Parents are maintained as callers, but unless the 3510 * destination object was opened with RTLD_PARENT, the 3511 * parent doesn't provide symbols for the destination 3512 * to relocate against. 3513 */ 3514 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3515 if (dlmp != gdp->gd_depend) 3516 continue; 3517 3518 if (gdp->gd_flags & GPD_RELOC) 3519 return (1); 3520 } 3521 } 3522 } 3523 return (0); 3524 } 3525 3526 /* 3527 * Initialize the environ symbol. Traditionally this is carried out by the crt 3528 * code prior to jumping to main. However, init sections get fired before this 3529 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3530 * information. In addition, a process may have multiple link-maps (ld.so.1's 3531 * debugging and preloading objects), and link auditing, and each may need an 3532 * environ variable set. 3533 * 3534 * This routine is called after a relocation() pass, and thus provides for: 3535 * 3536 * - setting environ on the main link-map after the initial application and 3537 * its dependencies have been established. Typically environ lives in the 3538 * application (provided by its crt), but in older applications it might 3539 * be in libc. Who knows what's expected of applications not built on 3540 * Solaris. 3541 * 3542 * - after loading a new shared object. We can add shared objects to various 3543 * link-maps, and any link-map dependencies requiring getopt() require 3544 * their own environ. In addition, lazy loading might bring in the 3545 * supplier of environ (libc used to be a lazy loading candidate) after 3546 * the link-map has been established and other objects are present. 3547 * 3548 * This routine handles all these scenarios, without adding unnecessary overhead 3549 * to ld.so.1. 3550 */ 3551 void 3552 set_environ(Lm_list *lml) 3553 { 3554 Slookup sl; 3555 Sresult sr; 3556 uint_t binfo; 3557 3558 /* 3559 * Initialize the symbol lookup, and symbol result, data structures. 3560 */ 3561 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3562 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3563 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3564 3565 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3566 Rt_map *dlmp = sr.sr_dmap; 3567 3568 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3569 3570 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3571 lml->lm_environ = 3572 (char ***)((uintptr_t)lml->lm_environ + 3573 (uintptr_t)ADDR(dlmp)); 3574 *(lml->lm_environ) = (char **)environ; 3575 lml->lm_flags |= LML_FLG_ENVIRON; 3576 } 3577 } 3578 3579 /* 3580 * Determine whether we have a secure executable. Uid and gid information 3581 * can be passed to us via the aux vector, however if these values are -1 3582 * then use the appropriate system call to obtain them. 3583 * 3584 * - If the user is the root they can do anything 3585 * 3586 * - If the real and effective uid's don't match, or the real and 3587 * effective gid's don't match then this is determined to be a `secure' 3588 * application. 3589 * 3590 * This function is called prior to any dependency processing (see _setup.c). 3591 * Any secure setting will remain in effect for the life of the process. 3592 */ 3593 void 3594 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3595 { 3596 if (auxflags != -1) { 3597 if ((auxflags & AF_SUN_SETUGID) != 0) 3598 rtld_flags |= RT_FL_SECURE; 3599 return; 3600 } 3601 3602 if (uid == (uid_t)-1) 3603 uid = getuid(); 3604 if (uid) { 3605 if (euid == (uid_t)-1) 3606 euid = geteuid(); 3607 if (uid != euid) 3608 rtld_flags |= RT_FL_SECURE; 3609 else { 3610 if (gid == (gid_t)-1) 3611 gid = getgid(); 3612 if (egid == (gid_t)-1) 3613 egid = getegid(); 3614 if (gid != egid) 3615 rtld_flags |= RT_FL_SECURE; 3616 } 3617 } 3618 } 3619 3620 /* 3621 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3622 */ 3623 int 3624 is_rtld_setuid() 3625 { 3626 rtld_stat_t status; 3627 const char *name; 3628 3629 if (rtld_flags2 & RT_FL2_SETUID) 3630 return (1); 3631 3632 if (interp && interp->i_name) 3633 name = interp->i_name; 3634 else 3635 name = NAME(lml_rtld.lm_head); 3636 3637 if (((rtld_stat(name, &status) == 0) && 3638 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3639 rtld_flags2 |= RT_FL2_SETUID; 3640 return (1); 3641 } 3642 return (0); 3643 } 3644 3645 /* 3646 * Determine that systems platform name. Normally, this name is provided from 3647 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3648 * fall back. 3649 */ 3650 void 3651 platform_name(Syscapset *scapset) 3652 { 3653 char info[SYS_NMLN]; 3654 size_t size; 3655 3656 if ((scapset->sc_platsz = size = 3657 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3658 return; 3659 3660 if ((scapset->sc_plat = malloc(size)) == NULL) { 3661 scapset->sc_platsz = (size_t)-1; 3662 return; 3663 } 3664 (void) strcpy(scapset->sc_plat, info); 3665 } 3666 3667 /* 3668 * Determine that systems machine name. Normally, this name is provided from 3669 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3670 * fall back. 3671 */ 3672 void 3673 machine_name(Syscapset *scapset) 3674 { 3675 char info[SYS_NMLN]; 3676 size_t size; 3677 3678 if ((scapset->sc_machsz = size = 3679 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3680 return; 3681 3682 if ((scapset->sc_mach = malloc(size)) == NULL) { 3683 scapset->sc_machsz = (size_t)-1; 3684 return; 3685 } 3686 (void) strcpy(scapset->sc_mach, info); 3687 } 3688 3689 /* 3690 * _REENTRANT code gets errno redefined to a function so provide for return 3691 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3692 * is basically singled threaded. Provide the interface for our dependencies. 3693 */ 3694 #undef errno 3695 int * 3696 ___errno() 3697 { 3698 extern int errno; 3699 3700 return (&errno); 3701 } 3702 3703 /* 3704 * Determine whether a symbol name should be demangled. 3705 */ 3706 const char * 3707 demangle(const char *name) 3708 { 3709 if (rtld_flags & RT_FL_DEMANGLE) 3710 return (conv_demangle_name(name)); 3711 else 3712 return (name); 3713 } 3714 3715 #ifndef _LP64 3716 /* 3717 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3718 * underneath while preserving the object size limits of a non-largefile 3719 * enabled 32-bit process. The purpose of this is to prevent large inode 3720 * values from causing stat() to fail. 3721 */ 3722 inline static int 3723 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3724 { 3725 extern int errno; 3726 3727 /* 3728 * Although we used a 64-bit capable stat(), the 32-bit rtld 3729 * can only handle objects < 2GB in size. If this object is 3730 * too big, turn the success into an overflow error. 3731 */ 3732 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3733 errno = EOVERFLOW; 3734 return (-1); 3735 } 3736 3737 /* 3738 * Transfer the information needed by rtld into a rtld_stat_t 3739 * structure that preserves the non-largile types for everything 3740 * except inode. 3741 */ 3742 buf->st_dev = lbuf->st_dev; 3743 buf->st_ino = lbuf->st_ino; 3744 buf->st_mode = lbuf->st_mode; 3745 buf->st_uid = lbuf->st_uid; 3746 buf->st_size = (off_t)lbuf->st_size; 3747 buf->st_mtim = lbuf->st_mtim; 3748 #ifdef sparc 3749 buf->st_blksize = lbuf->st_blksize; 3750 #endif 3751 3752 return (r); 3753 } 3754 3755 int 3756 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3757 { 3758 struct stat64 lbuf; 3759 int r; 3760 3761 r = stat64(path, &lbuf); 3762 if (r != -1) 3763 r = rtld_stat_process(r, &lbuf, buf); 3764 return (r); 3765 } 3766 3767 int 3768 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3769 { 3770 struct stat64 lbuf; 3771 int r; 3772 3773 r = fstat64(fildes, &lbuf); 3774 if (r != -1) 3775 r = rtld_stat_process(r, &lbuf, buf); 3776 return (r); 3777 } 3778 #endif 3779