1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for FullpathNode AVL tree. 353 */ 354 static int 355 fpavl_compare(const void * n1, const void * n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((FullpathNode *)n1)->fpn_hash; 362 hash2 = ((FullpathNode *)n2)->fpn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((FullpathNode *)n1)->fpn_name; 370 st2 = ((FullpathNode *)n2)->fpn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 381 /* 382 * Determine if a given pathname has already been loaded in the AVL tree. 383 * If the pathname does not exist in the AVL tree, the next insertion point 384 * is deposited in "where". This value can be used by fpavl_insert() to 385 * expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullpathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 400 SGSOFFSETOF(FullpathNode, fpn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_name = name; 405 fpn.fpn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 414 /* 415 * Insert a name into the FullpathNode AVL tree for the link-map list. The 416 * objects NAME() is the path that would have originally been searched for, and 417 * is therefore the name to associate with any "where" value. If the object has 418 * a different PATHNAME(), perhaps because it has resolved to a different file 419 * (see fullpath), then this name is recorded also. See load_file(). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullpathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree 439 */ 440 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_name = name; 444 fpnp->fpn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 448 AL_CNT_FPNODE) == 0) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 460 * the objects link-map is torn down (remove_so), which is where any NAME() and 461 * PATHNAME() strings will be deallocated. 462 */ 463 void 464 fpavl_remove(Rt_map *lmp) 465 { 466 FullpathNode **fpnpp; 467 Aliste off; 468 469 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 470 FullpathNode *fpnp = *fpnpp; 471 472 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 473 free(fpnp); 474 } 475 free(FPNODE(lmp)); 476 FPNODE(lmp) = 0; 477 } 478 479 480 /* 481 * Prior to calling an object, either via a .plt or through dlsym(), make sure 482 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 483 * init's in the correct order, however, this order is typically based on needed 484 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 485 * still occur and result in bindings that were not captured during topological 486 * sorting. This routine compensates for this lack of binding information, and 487 * provides for dynamic .init firing. 488 */ 489 void 490 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 491 { 492 Rt_map ** tobj; 493 494 /* 495 * If the caller is an auditor, and the destination isn't, then don't 496 * run any .inits (see comments in load_completion()). 497 */ 498 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 499 (LIST(clmp) != LIST(dlmp))) 500 return; 501 502 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 503 return; 504 505 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 506 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 507 return; 508 509 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 510 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 511 DBG_CALL(Dbg_util_no_init(dlmp)); 512 return; 513 } 514 515 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 516 tobj[0] = dlmp; 517 call_init(tobj, DBG_INIT_DYN); 518 } 519 } 520 521 /* 522 * In a threaded environment insure the thread responsible for loading an object 523 * has completed .init processing for that object before any new thread is 524 * allowed to access the object. This check is only valid with libthread 525 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 526 * 527 * When a new link-map is created, the thread that causes it to be loaded is 528 * identified by THREADID(dlmp). Compare this with the current thread to 529 * determine if it must be blocked. 530 * 531 * NOTE, there are a number of instances (typically only for .plt processing) 532 * where we must skip this test: 533 * 534 * . any thread id of 0 - threads that call thr_exit() may be in this state 535 * thus we can't deduce what tid they used to be. Also some of the 536 * lib/libthread worker threads have this id and must bind (to themselves 537 * or libc) for libthread to function. 538 * 539 * . libthread itself binds to libc, and as libthread is INITFIRST 540 * libc's .init can't have fired yet. Luckly libc's .init is not required 541 * by libthreads binding. 542 * 543 * . if the caller is an auditor, and the destination isn't, then don't 544 * block (see comments in load_completion()). 545 */ 546 void 547 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 548 { 549 thread_t tid; 550 551 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 552 (LIST(clmp) != LIST(dlmp))) 553 return; 554 555 if ((rtld_flags & RT_FL_CONCUR) && 556 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 557 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 558 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 559 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 560 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 561 DBG_CALL(Dbg_util_wait(clmp, dlmp, what)); 562 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 563 } 564 } 565 } 566 567 /* 568 * Execute .{preinit|init|fini}array sections 569 */ 570 void 571 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 572 { 573 int start, stop, incr, ndx; 574 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 575 576 if (array == NULL) 577 return; 578 579 /* 580 * initarray & preinitarray are walked from beginning to end - while 581 * finiarray is walked from end to beginning. 582 */ 583 if (shtype == SHT_FINI_ARRAY) { 584 start = arraycnt - 1; 585 stop = incr = -1; 586 } else { 587 start = 0; 588 stop = arraycnt; 589 incr = 1; 590 } 591 592 /* 593 * Call the .*array[] entries 594 */ 595 for (ndx = start; ndx != stop; ndx += incr) { 596 void (*fptr)(void) = (void(*)())array[ndx]; 597 598 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 599 600 leave(LIST(lmp)); 601 (*fptr)(); 602 (void) enter(); 603 } 604 } 605 606 607 /* 608 * Execute any .init sections. These are passed to us in an lmp array which 609 * (by default) will have been sorted. 610 */ 611 void 612 call_init(Rt_map ** tobj, int flag) 613 { 614 Rt_map ** _tobj, ** _nobj; 615 static List pending = { NULL, NULL }; 616 617 /* 618 * If we're in the middle of an INITFIRST, this must complete before 619 * any new init's are fired. In this case add the object list to the 620 * pending queue and return. We'll pick up the queue after any 621 * INITFIRST objects have their init's fired. 622 */ 623 if (rtld_flags & RT_FL_INITFIRST) { 624 (void) list_append(&pending, tobj); 625 return; 626 } 627 628 /* 629 * Traverse the tobj array firing each objects init. 630 */ 631 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 632 Rt_map * lmp = *_tobj; 633 void (* iptr)() = INIT(lmp); 634 635 if (FLAGS(lmp) & FLG_RT_INITCALL) 636 continue; 637 638 FLAGS(lmp) |= FLG_RT_INITCALL; 639 640 /* 641 * Establish an initfirst state if necessary - no other inits 642 * will be fired (because of additional relocation bindings) 643 * when in this state. 644 */ 645 if (FLAGS(lmp) & FLG_RT_INITFRST) 646 rtld_flags |= RT_FL_INITFIRST; 647 648 if (INITARRAY(lmp) || iptr) { 649 Aliste off; 650 Bnd_desc ** bdpp; 651 652 /* 653 * Make sure that all dependencies that have been 654 * relocated to are initialized before this objects 655 * .init is executed. This insures that a dependency 656 * on an external item that must first be initialized 657 * by its associated object is satisfied. 658 */ 659 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 660 Bnd_desc * bdp = *bdpp; 661 662 if ((bdp->b_flags & BND_REFER) == 0) 663 continue; 664 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 665 } 666 DBG_CALL(Dbg_util_call_init(lmp, flag)); 667 } 668 669 if (iptr) { 670 leave(LIST(lmp)); 671 (*iptr)(); 672 (void) enter(); 673 } 674 675 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 676 SHT_INIT_ARRAY); 677 678 if (INITARRAY(lmp) || iptr) 679 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 680 681 /* 682 * Set the initdone flag regardless of whether this object 683 * actually contains an .init section. This flag prevents us 684 * from processing this section again for an .init and also 685 * signifies that a .fini must be called should it exist. 686 * Clear the sort field for use in later .fini processing. 687 */ 688 FLAGS(lmp) |= FLG_RT_INITDONE; 689 SORTVAL(lmp) = -1; 690 691 /* 692 * Wake anyone up who might be waiting on this .init. 693 */ 694 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 695 DBG_CALL(Dbg_util_broadcast(lmp)); 696 (void) rt_cond_broadcast(CONDVAR(lmp)); 697 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 698 } 699 700 /* 701 * If we're firing an INITFIRST object, and other objects must 702 * be fired which are not INITFIRST, make sure we grab any 703 * pending objects that might have been delayed as this 704 * INITFIRST was processed. 705 */ 706 if ((rtld_flags & RT_FL_INITFIRST) && 707 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 708 Listnode * lnp; 709 Rt_map ** pobj; 710 711 rtld_flags &= ~RT_FL_INITFIRST; 712 713 while ((lnp = pending.head) != NULL) { 714 if ((pending.head = lnp->next) == NULL) 715 pending.tail = NULL; 716 pobj = lnp->data; 717 free(lnp); 718 719 call_init(pobj, DBG_INIT_PEND); 720 } 721 } 722 } 723 free(tobj); 724 } 725 726 /* 727 * Function called by atexit(3C). Calls all .fini sections related with the 728 * mains dependent shared libraries in the order in which the shared libraries 729 * have been loaded. Skip any .fini defined in the main executable, as this 730 * will be called by crt0 (main was never marked as initdone). 731 */ 732 void 733 call_fini(Lm_list * lml, Rt_map ** tobj) 734 { 735 Rt_map **_tobj; 736 737 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 738 Rt_map * clmp, * lmp = *_tobj; 739 Aliste off; 740 Bnd_desc ** bdpp; 741 742 /* 743 * If concurrency checking isn't enabled only fire .fini if 744 * .init has completed. We collect all .fini sections of 745 * objects that had their .init collected, but that doesn't 746 * mean at the time that the .init had completed. 747 */ 748 if ((rtld_flags & RT_FL_CONCUR) || 749 (FLAGS(lmp) & FLG_RT_INITDONE)) { 750 void (*fptr)(void) = FINI(lmp); 751 752 if (FINIARRAY(lmp) || fptr) { 753 /* 754 * If concurrency checking is enabled make sure 755 * this object's .init is completed before 756 * calling any .fini. 757 */ 758 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 759 DBG_CALL(Dbg_util_call_fini(lmp)); 760 } 761 762 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 763 SHT_FINI_ARRAY); 764 765 if (fptr) { 766 leave(LIST(lmp)); 767 (*fptr)(); 768 (void) enter(); 769 } 770 } 771 772 /* 773 * Skip main, this is explicitly called last in atexit_fini(). 774 */ 775 if (FLAGS(lmp) & FLG_RT_ISMAIN) 776 continue; 777 778 /* 779 * Audit `close' operations at this point. The library has 780 * exercised its last instructions (regardless of whether it 781 * will be unmapped or not). 782 * 783 * First call any global auditing. 784 */ 785 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 786 _audit_objclose(&(auditors->ad_list), lmp); 787 788 /* 789 * Finally determine whether this object has local auditing 790 * requirements by inspecting itself and then its dependencies. 791 */ 792 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 793 continue; 794 795 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 796 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 797 798 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 799 Bnd_desc * bdp = *bdpp; 800 801 clmp = bdp->b_caller; 802 803 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 804 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 805 break; 806 } 807 } 808 } 809 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 810 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 811 812 free(tobj); 813 } 814 815 void 816 atexit_fini() 817 { 818 Rt_map ** tobj, * lmp; 819 Lm_list * lml; 820 Listnode * lnp; 821 822 (void) enter(); 823 824 rtld_flags |= RT_FL_ATEXIT; 825 826 lml = &lml_main; 827 lml->lm_flags |= LML_FLG_ATEXIT; 828 lmp = (Rt_map *)lml->lm_head; 829 830 /* 831 * Display any objects that haven't been referenced so far. 832 */ 833 unused(lml); 834 835 /* 836 * Reverse topologically sort the main link-map for .fini execution. 837 */ 838 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 839 (tobj != (Rt_map **)S_ERROR)) 840 call_fini(lml, tobj); 841 842 /* 843 * Add an explicit close to main and ld.so.1. Although main's .fini is 844 * collected in call_fini() to provide for FINITARRAY processing, its 845 * audit_objclose is explicitly skipped. This provides for it to be 846 * called last, here. This is the reverse of the explicit calls to 847 * audit_objopen() made in setup(). 848 */ 849 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 850 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 851 audit_objclose(lmp, lmp); 852 } 853 854 /* 855 * Now that all .fini code has been run, see what unreferenced objects 856 * remain. Any difference between this and the above unused() would 857 * indicate an object is only being used for .fini processing, which 858 * might be fine, but might also indicate an overhead whose removal 859 * would be worth considering. 860 */ 861 unused(lml); 862 863 /* 864 * Traverse any alternative link-map lists. 865 */ 866 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 867 /* 868 * Ignore the base-link-map list, which has already been 869 * processed, and the runtime linkers link-map list, which is 870 * typically processed last. 871 */ 872 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 873 continue; 874 875 if ((lmp = (Rt_map *)lml->lm_head) == 0) 876 continue; 877 878 lml->lm_flags |= LML_FLG_ATEXIT; 879 880 /* 881 * Reverse topologically sort the link-map for .fini execution. 882 */ 883 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 884 (tobj != (Rt_map **)S_ERROR)) 885 call_fini(lml, tobj); 886 887 unused(lml); 888 } 889 890 /* 891 * Finally reverse topologically sort the runtime linkers link-map for 892 * .fini execution. 893 */ 894 lml = &lml_rtld; 895 lml->lm_flags |= LML_FLG_ATEXIT; 896 lmp = (Rt_map *)lml->lm_head; 897 898 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 899 (tobj != (Rt_map **)S_ERROR)) 900 call_fini(lml, tobj); 901 902 leave(&lml_main); 903 } 904 905 906 /* 907 * This routine is called to complete any runtime linker activity which may have 908 * resulted in objects being loaded. This is called from all user entry points 909 * and from any internal dl*() requests. 910 */ 911 void 912 load_completion(Rt_map *nlmp, Rt_map *clmp) 913 { 914 Rt_map **tobj = 0; 915 Lm_list *nlml, *clml; 916 917 /* 918 * Establish any .init processing. Note, in a world of lazy loading, 919 * objects may have been loaded regardless of whether the users request 920 * was fulfilled (i.e., a dlsym() request may have failed to find a 921 * symbol but objects might have been loaded during its search). Thus, 922 * any tsorting starts from the nlmp (new link-maps) pointer and not 923 * necessarily from the link-map that may have satisfied the request. 924 * 925 * Note, the primary link-map has an initialization phase where dynamic 926 * .init firing is suppressed. This provides for a simple and clean 927 * handshake with the primary link-maps libc, which is important for 928 * establishing uberdata. In addition, auditors often obtain handles 929 * to primary link-map objects as the objects are loaded, so as to 930 * inspect the link-map for symbols. This inspection is allowed without 931 * running any code on the primary link-map, as running this code may 932 * reenter the auditor, who may not yet have finished its own 933 * initialization. 934 */ 935 if (nlmp) 936 nlml = LIST(nlmp); 937 if (clmp) 938 clml = LIST(clmp); 939 940 if (nlmp && nlml->lm_init && 941 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 942 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 943 RT_SORT_REV)) == (Rt_map **)S_ERROR) 944 tobj = 0; 945 } 946 947 /* 948 * Make sure any alternative link-map retrieves any external interfaces 949 * and initializes threads. 950 */ 951 if (nlmp && (nlml != &lml_main)) { 952 (void) rt_get_extern(nlml, nlmp); 953 rt_thr_init(nlml); 954 } 955 956 /* 957 * Traverse the list of new link-maps and register any dynamic TLS. 958 * This storage is established for any objects not on the primary 959 * link-map, and for any objects added to the primary link-map after 960 * static TLS has been registered. 961 */ 962 if (nlmp && nlml->lm_tls && 963 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 964 Rt_map *lmp; 965 966 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 967 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 968 tls_modaddrem(lmp, TM_FLG_MODADD); 969 } 970 nlml->lm_tls = 0; 971 } 972 973 /* 974 * Indicate the link-map list is consistent. 975 */ 976 if (clmp && ((clml->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 977 audit_activity(clmp, LA_ACT_CONSISTENT); 978 979 /* 980 * Fire any .init's. 981 */ 982 if (tobj) 983 call_init(tobj, DBG_INIT_SORT); 984 } 985 986 /* 987 * Append an item to the specified list, and return a pointer to the list 988 * node created. 989 */ 990 Listnode * 991 list_append(List *lst, const void *item) 992 { 993 Listnode * _lnp; 994 995 if ((_lnp = malloc(sizeof (Listnode))) == 0) 996 return (0); 997 998 _lnp->data = (void *)item; 999 _lnp->next = NULL; 1000 1001 if (lst->head == NULL) 1002 lst->tail = lst->head = _lnp; 1003 else { 1004 lst->tail->next = _lnp; 1005 lst->tail = lst->tail->next; 1006 } 1007 return (_lnp); 1008 } 1009 1010 1011 /* 1012 * Add an item after specified listnode, and return a pointer to the list 1013 * node created. 1014 */ 1015 Listnode * 1016 list_insert(List *lst, const void *item, Listnode *lnp) 1017 { 1018 Listnode * _lnp; 1019 1020 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1021 return (0); 1022 1023 _lnp->data = (void *)item; 1024 _lnp->next = lnp->next; 1025 if (_lnp->next == NULL) 1026 lst->tail = _lnp; 1027 lnp->next = _lnp; 1028 return (_lnp); 1029 } 1030 1031 /* 1032 * Prepend an item to the specified list, and return a pointer to the 1033 * list node created. 1034 */ 1035 Listnode * 1036 list_prepend(List * lst, const void * item) 1037 { 1038 Listnode * _lnp; 1039 1040 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1041 return (0); 1042 1043 _lnp->data = (void *)item; 1044 1045 if (lst->head == NULL) { 1046 _lnp->next = NULL; 1047 lst->tail = lst->head = _lnp; 1048 } else { 1049 _lnp->next = lst->head; 1050 lst->head = _lnp; 1051 } 1052 return (_lnp); 1053 } 1054 1055 1056 /* 1057 * Delete a 'listnode' from a list. 1058 */ 1059 void 1060 list_delete(List *lst, void *item) 1061 { 1062 Listnode *clnp, *plnp; 1063 1064 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1065 if (item == clnp->data) 1066 break; 1067 plnp = clnp; 1068 } 1069 1070 if (clnp == 0) 1071 return; 1072 1073 if (lst->head == clnp) 1074 lst->head = clnp->next; 1075 if (lst->tail == clnp) 1076 lst->tail = plnp; 1077 1078 if (plnp) 1079 plnp->next = clnp->next; 1080 1081 free(clnp); 1082 } 1083 1084 /* 1085 * Append an item to the specified link map control list. 1086 */ 1087 void 1088 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1089 { 1090 Lm_cntl *lmc; 1091 int add = 1; 1092 1093 /* 1094 * Indicate that this link-map list has a new object. 1095 */ 1096 (lml->lm_obj)++; 1097 1098 /* 1099 * If we're about to add a new object to the main link-map control list, 1100 * alert the debuggers that we are about to mess with this list. 1101 * Additions of individual objects to the main link-map control list 1102 * occur during initial setup as the applications immediate dependencies 1103 * are loaded. Individual objects are also loaded on the main link-map 1104 * control list of new alternative link-map control lists. 1105 */ 1106 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1107 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1108 1109 /* LINTED */ 1110 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1111 1112 /* 1113 * A link-map list header points to one of more link-map control lists 1114 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1115 * the list of relocated objects. Other lists maintain objects that 1116 * are still being analyzed or relocated. This list provides the core 1117 * link-map list information used by all ld.so.1 routines. 1118 */ 1119 if (lmc->lc_head == NULL) { 1120 /* 1121 * If this is the first link-map for the given control list, 1122 * initialize the list. 1123 */ 1124 lmc->lc_head = lmc->lc_tail = lmp; 1125 add = 0; 1126 1127 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1128 Rt_map *tlmp; 1129 1130 /* 1131 * If this is an interposer then append the link-map following 1132 * any other interposers (these are objects that have been 1133 * previously preloaded, or were identified with -z interpose). 1134 * Interposers can only be inserted on the first link-map 1135 * control list, as once relocation has started, interposition 1136 * from new interposers can't be guaranteed. 1137 * 1138 * NOTE: We do not interpose on the head of a list. This model 1139 * evolved because dynamic executables have already been fully 1140 * relocated within themselves and thus can't be interposed on. 1141 * Nowadays it's possible to have shared objects at the head of 1142 * a list, which conceptually means they could be interposed on. 1143 * But, shared objects can be created via dldump() and may only 1144 * be partially relocated (just relatives), in which case they 1145 * are interposable, but are marked as fixed (ET_EXEC). 1146 * 1147 * Thus we really don't have a clear method of deciding when the 1148 * head of a link-map is interposable. So, to be consistent, 1149 * for now only add interposers after the link-map lists head 1150 * object. 1151 */ 1152 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1153 tlmp = (Rt_map *)NEXT(tlmp)) { 1154 1155 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1156 continue; 1157 1158 /* 1159 * Insert the new link-map before this non-interposer, 1160 * and indicate an interposer is found. 1161 */ 1162 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1163 PREV(lmp) = PREV(tlmp); 1164 1165 NEXT(lmp) = (Link_map *)tlmp; 1166 PREV(tlmp) = (Link_map *)lmp; 1167 1168 lmc->lc_flags |= LMC_FLG_REANALYZE; 1169 add = 0; 1170 break; 1171 } 1172 } 1173 1174 /* 1175 * Fall through to appending the new link map to the tail of the list. 1176 * If we're processing the initial objects of this link-map list, add 1177 * them to the backward compatibility list. 1178 */ 1179 if (add) { 1180 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1181 PREV(lmp) = (Link_map *)lmc->lc_tail; 1182 lmc->lc_tail = lmp; 1183 } 1184 1185 /* 1186 * Having added this link-map to a control list, indicate which control 1187 * list the link-map belongs to. Note, control list information is 1188 * always maintained as an offset, as the Alist can be reallocated. 1189 */ 1190 CNTL(lmp) = lmco; 1191 1192 /* 1193 * Indicate if an interposer is found. Note that the first object on a 1194 * link-map can be explicitly defined as an interposer so that it can 1195 * provide interposition over direct binding requests. 1196 */ 1197 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1198 lml->lm_flags |= LML_FLG_INTRPOSE; 1199 1200 /* 1201 * For backward compatibility with debuggers, the link-map list contains 1202 * pointers to the main control list. 1203 */ 1204 if (lmco == ALO_DATA) { 1205 lml->lm_head = lmc->lc_head; 1206 lml->lm_tail = lmc->lc_tail; 1207 } 1208 } 1209 1210 /* 1211 * Delete an item from the specified link map control list. 1212 */ 1213 void 1214 lm_delete(Lm_list *lml, Rt_map *lmp) 1215 { 1216 Lm_cntl *lmc; 1217 1218 /* 1219 * If the control list pointer hasn't been initialized, this object 1220 * never got added to a link-map list. 1221 */ 1222 if (CNTL(lmp) == 0) 1223 return; 1224 1225 /* 1226 * If we're about to delete an object from the main link-map control 1227 * list, alert the debuggers that we are about to mess with this list. 1228 */ 1229 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1230 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1231 1232 /* LINTED */ 1233 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1234 1235 if (lmc->lc_head == lmp) 1236 lmc->lc_head = (Rt_map *)NEXT(lmp); 1237 else 1238 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1239 1240 if (lmc->lc_tail == lmp) 1241 lmc->lc_tail = (Rt_map *)PREV(lmp); 1242 else 1243 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1244 1245 /* 1246 * For backward compatibility with debuggers, the link-map list contains 1247 * pointers to the main control list. 1248 */ 1249 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1250 lml->lm_head = lmc->lc_head; 1251 lml->lm_tail = lmc->lc_tail; 1252 } 1253 1254 /* 1255 * Indicate we have one less object on this control list. 1256 */ 1257 (lml->lm_obj)--; 1258 } 1259 1260 /* 1261 * Move a link-map control list to another. Objects that are being relocated 1262 * are maintained on secondary control lists. Once their relocation is 1263 * complete, the entire list is appended to the previous control list, as this 1264 * list must have been the trigger for generating the new control list. 1265 */ 1266 void 1267 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1268 { 1269 Rt_map *lmp; 1270 1271 /* 1272 * If we're about to add a new family of objects to the main link-map 1273 * control list, alert the debuggers that we are about to mess with this 1274 * list. Additions of object families to the main link-map control 1275 * list occur during lazy loading, filtering and dlopen(). 1276 */ 1277 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1278 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1279 1280 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1281 1282 /* 1283 * Indicate each new link-map has been moved to the previous link-map 1284 * control list. 1285 */ 1286 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1287 CNTL(lmp) = plmco; 1288 1289 /* 1290 * Move the new link-map control list, to the callers link-map control 1291 * list. 1292 */ 1293 if (plmc->lc_head == 0) { 1294 plmc->lc_head = nlmc->lc_head; 1295 PREV(nlmc->lc_head) = 0; 1296 } else { 1297 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1298 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1299 } 1300 1301 plmc->lc_tail = nlmc->lc_tail; 1302 nlmc->lc_head = nlmc->lc_tail = 0; 1303 1304 /* 1305 * For backward compatibility with debuggers, the link-map list contains 1306 * pointers to the main control list. 1307 */ 1308 if (plmco == ALO_DATA) { 1309 lml->lm_head = plmc->lc_head; 1310 lml->lm_tail = plmc->lc_tail; 1311 } 1312 } 1313 1314 /* 1315 * Environment variables can have a variety of defined permutations, and thus 1316 * the following infrastructure exists to allow this variety and to select the 1317 * required definition. 1318 * 1319 * Environment variables can be defined as 32- or 64-bit specific, and if so 1320 * they will take precedence over any instruction set neutral form. Typically 1321 * this is only useful when the environment value is an informational string. 1322 * 1323 * Environment variables may be obtained from the standard user environment or 1324 * from a configuration file. The latter provides a fallback if no user 1325 * environment setting is found, and can take two forms: 1326 * 1327 * . a replaceable definition - this will be used if no user environment 1328 * setting has been seen, or 1329 * 1330 * . an permanent definition - this will be used no matter what user 1331 * environment setting is seen. In the case of list variables it will be 1332 * appended to any process environment setting seen. 1333 * 1334 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1335 * override any replaceable environment variables from a configuration file. 1336 */ 1337 static u_longlong_t rplgen; /* replaceable generic */ 1338 /* variables */ 1339 static u_longlong_t rplisa; /* replaceable ISA specific */ 1340 /* variables */ 1341 static u_longlong_t prmgen; /* permanent generic */ 1342 /* variables */ 1343 static u_longlong_t prmisa; /* permanent ISA specific */ 1344 /* variables */ 1345 1346 /* 1347 * Classify an environment variables type. 1348 */ 1349 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1350 /* the wrong ISA */ 1351 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1352 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1353 /* config file */ 1354 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1355 1356 /* 1357 * Identify all environment variables. 1358 */ 1359 #define ENV_FLG_AUDIT 0x0000000001ULL 1360 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1361 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1362 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1363 #define ENV_FLG_BINDINGS 0x0000000010ULL 1364 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1365 #define ENV_FLG_CONFGEN 0x0000000040ULL 1366 #define ENV_FLG_CONFIG 0x0000000080ULL 1367 #define ENV_FLG_DEBUG 0x0000000100ULL 1368 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1369 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1370 #define ENV_FLG_FLAGS 0x0000000800ULL 1371 #define ENV_FLG_INIT 0x0000001000ULL 1372 #define ENV_FLG_LIBPATH 0x0000002000ULL 1373 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1374 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1375 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1376 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1377 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1378 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1379 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1380 #define ENV_FLG_NODIRECT 0x0000200000ULL 1381 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1382 #define ENV_FLG_NOLAZY 0x0000800000ULL 1383 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1384 #define ENV_FLG_NOVERSION 0x0002000000ULL 1385 #define ENV_FLG_PRELOAD 0x0004000000ULL 1386 #define ENV_FLG_PROFILE 0x0008000000ULL 1387 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1388 #define ENV_FLG_SIGNAL 0x0020000000ULL 1389 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1390 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1391 #define ENV_FLG_UNREF 0x0100000000ULL 1392 #define ENV_FLG_UNUSED 0x0200000000ULL 1393 #define ENV_FLG_VERBOSE 0x0400000000ULL 1394 #define ENV_FLG_WARN 0x0800000000ULL 1395 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1396 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1397 1398 #ifdef SIEBEL_DISABLE 1399 #define ENV_FLG_FIX_1 0x8000000000ULL 1400 #endif 1401 1402 #define SEL_REPLACE 0x0001 1403 #define SEL_PERMANT 0x0002 1404 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1405 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1406 #define SEL_ACT_STR 0x0400 /* setting string value */ 1407 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1408 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1409 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1410 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1411 1412 /* 1413 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1414 * and len specifies its length (comparing a strings length before the string 1415 * itself speed things up). s2 points to the token itself which has already 1416 * had any leading white-space removed. 1417 */ 1418 static void 1419 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1420 Word *lmtflags, uint_t env_flags, int aout) 1421 { 1422 u_longlong_t variable = 0; 1423 ushort_t select = 0; 1424 const char **str; 1425 Word val = 0; 1426 1427 /* 1428 * Determine whether we're dealing with a replaceable or permanent 1429 * string. 1430 */ 1431 if (env_flags & ENV_TYP_PERMANT) { 1432 /* 1433 * If the string is from a configuration file and defined as 1434 * permanent, assign it as permanent. 1435 */ 1436 select |= SEL_PERMANT; 1437 } else 1438 select |= SEL_REPLACE; 1439 1440 /* 1441 * Parse the variable given. 1442 * 1443 * The LD_AUDIT family. 1444 */ 1445 if (*s1 == 'A') { 1446 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1447 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1448 /* 1449 * Replaceable and permanent audit objects can exist. 1450 */ 1451 select |= SEL_ACT_STR; 1452 if (select & SEL_REPLACE) 1453 str = &rpl_audit; 1454 else { 1455 str = &prm_audit; 1456 rpl_audit = 0; 1457 } 1458 variable = ENV_FLG_AUDIT; 1459 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1460 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1461 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1462 /* 1463 * A specialized variable for plt_exit() use, not 1464 * documented for general use. 1465 */ 1466 select |= SEL_ACT_SPEC_2; 1467 variable = ENV_FLG_AUDIT_ARGS; 1468 } 1469 } 1470 /* 1471 * The LD_BIND family and LD_BREADTH (historic). 1472 */ 1473 else if (*s1 == 'B') { 1474 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1475 MSG_ORIG(MSG_LD_BIND_LAZY), 1476 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1477 select |= SEL_ACT_RT2; 1478 val = RT_FL2_BINDLAZY; 1479 variable = ENV_FLG_BIND_LAZY; 1480 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1481 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1482 select |= SEL_ACT_RT2; 1483 val = RT_FL2_BINDNOW; 1484 variable = ENV_FLG_BIND_NOW; 1485 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1486 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1487 /* 1488 * Another trick, enabled to help debug AOUT 1489 * applications under BCP, but not documented for 1490 * general use. 1491 */ 1492 select |= SEL_ACT_RT; 1493 val = RT_FL_NOBIND; 1494 variable = ENV_FLG_BIND_NOT; 1495 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1496 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1497 /* 1498 * This variable is simply for backward compatibility. 1499 * If this and LD_DEBUG are both specified, only one of 1500 * the strings is going to get processed. 1501 */ 1502 select |= SEL_ACT_SPEC_2; 1503 variable = ENV_FLG_BINDINGS; 1504 #ifndef LD_BREADTH_DISABLED 1505 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1506 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1507 /* 1508 * Besides some old patches this is no longer available. 1509 */ 1510 rtld_flags |= RT_FL_BREADTH; 1511 return; 1512 #endif 1513 } 1514 } 1515 /* 1516 * LD_CONCURRENCY and LD_CONFIG family. 1517 */ 1518 else if (*s1 == 'C') { 1519 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1520 MSG_ORIG(MSG_LD_CONCURRENCY), 1521 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1522 /* 1523 * Waiting in the wings, as concurrency checking isn't 1524 * yet enabled. 1525 */ 1526 select |= SEL_ACT_SPEC_2; 1527 variable = ENV_FLG_CONCURRENCY; 1528 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1529 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1530 /* 1531 * Set by crle(1) to indicate it's building a 1532 * configuration file, not documented for general use. 1533 */ 1534 select |= SEL_ACT_SPEC_2; 1535 variable = ENV_FLG_CONFGEN; 1536 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1537 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1538 /* 1539 * Secure applications must use a default configuration 1540 * file. A setting from a configuration file doesn't 1541 * make sense (given we must be reading a configuration 1542 * file to have gotten this). 1543 */ 1544 if ((rtld_flags & RT_FL_SECURE) || 1545 (env_flags & ENV_TYP_CONFIG)) 1546 return; 1547 select |= SEL_ACT_STR; 1548 str = &config->c_name; 1549 variable = ENV_FLG_CONFIG; 1550 } 1551 } 1552 /* 1553 * The LD_DEBUG family and LD_DEMANGLE. 1554 */ 1555 else if (*s1 == 'D') { 1556 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1557 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1558 select |= SEL_ACT_STR; 1559 if (select & SEL_REPLACE) 1560 str = &rpl_debug; 1561 else { 1562 str = &prm_debug; 1563 rpl_debug = 0; 1564 } 1565 variable = ENV_FLG_DEBUG; 1566 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1568 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1569 select |= SEL_ACT_STR; 1570 str = &dbg_file; 1571 variable = ENV_FLG_DEBUG_OUTPUT; 1572 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1573 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1574 select |= SEL_ACT_RT; 1575 val = RT_FL_DEMANGLE; 1576 variable = ENV_FLG_DEMANGLE; 1577 } 1578 } 1579 /* 1580 * LD_FLAGS - collect the best variable definition. On completion of 1581 * environment variable processing pass the result to ld_flags_env() 1582 * where they'll be decomposed and passed back to this routine. 1583 */ 1584 else if (*s1 == 'F') { 1585 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1586 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1587 select |= SEL_ACT_SPEC_1; 1588 if (select & SEL_REPLACE) 1589 str = &rpl_ldflags; 1590 else { 1591 str = &prm_ldflags; 1592 rpl_ldflags = 0; 1593 } 1594 variable = ENV_FLG_FLAGS; 1595 } 1596 } 1597 /* 1598 * LD_INIT (internal, used by ldd(1)). 1599 */ 1600 else if (*s1 == 'I') { 1601 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1602 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1603 select |= SEL_ACT_LML; 1604 val = LML_FLG_TRC_INIT; 1605 variable = ENV_FLG_INIT; 1606 } 1607 } 1608 /* 1609 * The LD_LIBRARY_PATH and LD_LOAD families. 1610 */ 1611 else if (*s1 == 'L') { 1612 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1613 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1614 select |= SEL_ACT_SPEC_1; 1615 if (select & SEL_REPLACE) 1616 str = &rpl_libpath; 1617 else { 1618 str = &prm_libpath; 1619 rpl_libpath = 0; 1620 } 1621 variable = ENV_FLG_LIBPATH; 1622 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1623 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1624 /* 1625 * Internal use by crle(1), not documented for general 1626 * use. 1627 */ 1628 select |= SEL_ACT_LML; 1629 val = LML_FLG_LOADAVAIL; 1630 variable = ENV_FLG_LOADAVAIL; 1631 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1632 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1633 select |= SEL_ACT_SPEC_2; 1634 variable = ENV_FLG_LOADFLTR; 1635 } 1636 } 1637 /* 1638 * The LD_NO family. 1639 */ 1640 else if (*s1 == 'N') { 1641 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1642 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1643 select |= SEL_ACT_RT; 1644 val = RT_FL_NOAUDIT; 1645 variable = ENV_FLG_NOAUDIT; 1646 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1647 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1648 select |= SEL_ACT_RT; 1649 val = RT_FL_NOAUXFLTR; 1650 variable = ENV_FLG_NOAUXFLTR; 1651 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1652 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1653 select |= SEL_ACT_RT; 1654 val = RT_FL_NOBAPLT; 1655 variable = ENV_FLG_NOBAPLT; 1656 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1657 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1658 select |= SEL_ACT_RT; 1659 val = RT_FL_NOCFG; 1660 variable = ENV_FLG_NOCONFIG; 1661 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1662 MSG_ORIG(MSG_LD_NODIRCONFIG), 1663 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1664 select |= SEL_ACT_RT; 1665 val = RT_FL_NODIRCFG; 1666 variable = ENV_FLG_NODIRCONFIG; 1667 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1668 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1669 select |= SEL_ACT_LMLT; 1670 val = LML_TFLG_NODIRECT; 1671 variable = ENV_FLG_NODIRECT; 1672 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1673 MSG_ORIG(MSG_LD_NOENVCONFIG), 1674 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1675 select |= SEL_ACT_RT; 1676 val = RT_FL_NOENVCFG; 1677 variable = ENV_FLG_NOENVCONFIG; 1678 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1679 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1680 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1681 select |= SEL_ACT_RT2; 1682 val = RT_FL2_NOFLTCFG; 1683 variable = ENV_FLG_NOFLTCONFIG; 1684 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1685 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1686 select |= SEL_ACT_LMLT; 1687 val = LML_TFLG_NOLAZYLD; 1688 variable = ENV_FLG_NOLAZY; 1689 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1690 MSG_ORIG(MSG_LD_NOOBJALTER), 1691 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1692 select |= SEL_ACT_RT; 1693 val = RT_FL_NOOBJALT; 1694 variable = ENV_FLG_NOOBJALTER; 1695 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1697 select |= SEL_ACT_RT; 1698 val = RT_FL_NOVERSION; 1699 variable = ENV_FLG_NOVERSION; 1700 } 1701 } 1702 /* 1703 * LD_ORIGIN. 1704 */ 1705 else if (*s1 == 'O') { 1706 #ifndef EXPAND_RELATIVE 1707 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1708 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1709 /* 1710 * Besides some old patches this is no longer required. 1711 */ 1712 rtld_flags |= RT_FL_RELATIVE; 1713 } 1714 #endif 1715 return; 1716 } 1717 /* 1718 * LD_PRELOAD and LD_PROFILE family. 1719 */ 1720 else if (*s1 == 'P') { 1721 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1722 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1723 select |= SEL_ACT_STR; 1724 if (select & SEL_REPLACE) 1725 str = &rpl_preload; 1726 else { 1727 str = &prm_preload; 1728 rpl_preload = 0; 1729 } 1730 variable = ENV_FLG_PRELOAD; 1731 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1732 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1733 /* 1734 * Only one user library can be profiled at a time. 1735 */ 1736 select |= SEL_ACT_SPEC_2; 1737 variable = ENV_FLG_PROFILE; 1738 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1739 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1740 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1741 /* 1742 * Only one user library can be profiled at a time. 1743 */ 1744 select |= SEL_ACT_STR; 1745 str = &profile_out; 1746 variable = ENV_FLG_PROFILE_OUTPUT; 1747 } 1748 } 1749 /* 1750 * LD_SIGNAL. 1751 */ 1752 else if (*s1 == 'S') { 1753 if (rtld_flags & RT_FL_SECURE) 1754 return; 1755 if ((len == MSG_LD_SIGNAL_SIZE) && 1756 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1757 MSG_LD_SIGNAL_SIZE) == 0)) { 1758 select |= SEL_ACT_SPEC_2; 1759 variable = ENV_FLG_SIGNAL; 1760 } 1761 } 1762 /* 1763 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1764 * the key to enabling all other ldd(1) specific environment variables. 1765 * In case an auditor is called, which in turn might exec(2) a 1766 * subprocess, this variable is disabled, so that any subprocess 1767 * escapes ldd(1) processing. 1768 */ 1769 else if (*s1 == 'T') { 1770 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1771 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1772 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1773 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1774 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1775 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1776 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1777 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1778 char *s0 = (char *)s1; 1779 1780 select |= SEL_ACT_SPEC_2; 1781 variable = ENV_FLG_TRACE_OBJS; 1782 1783 #if defined(__sparc) || defined(__x86) 1784 /* 1785 * The simplest way to "disable" this variable is to 1786 * truncate this string to "LD_'\0'". This string is 1787 * ignored by any ld.so.1 environment processing. 1788 * Use of such interfaces as unsetenv(3c) are overkill, 1789 * and would drag too much libc implementation detail 1790 * into ld.so.1. 1791 */ 1792 *s0 = '\0'; 1793 #else 1794 /* 1795 * Verify that the above write is appropriate for any new platforms. 1796 */ 1797 #error unsupported architecture! 1798 #endif 1799 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1800 MSG_ORIG(MSG_LD_TRACE_PTHS), 1801 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1802 select |= SEL_ACT_LML; 1803 val = LML_FLG_TRC_SEARCH; 1804 variable = ENV_FLG_TRACE_PTHS; 1805 } 1806 } 1807 /* 1808 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1809 */ 1810 else if (*s1 == 'U') { 1811 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1812 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1813 select |= SEL_ACT_LML; 1814 val = LML_FLG_TRC_UNREF; 1815 variable = ENV_FLG_UNREF; 1816 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1817 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1818 select |= SEL_ACT_LML; 1819 val = LML_FLG_TRC_UNUSED; 1820 variable = ENV_FLG_UNUSED; 1821 } 1822 } 1823 /* 1824 * LD_VERBOSE (internal, used by ldd(1)). 1825 */ 1826 else if (*s1 == 'V') { 1827 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1828 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1829 select |= SEL_ACT_LML; 1830 val = LML_FLG_TRC_VERBOSE; 1831 variable = ENV_FLG_VERBOSE; 1832 } 1833 } 1834 /* 1835 * LD_WARN (internal, used by ldd(1)). 1836 */ 1837 else if (*s1 == 'W') { 1838 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1839 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1840 select |= SEL_ACT_LML; 1841 val = LML_FLG_TRC_WARN; 1842 variable = ENV_FLG_WARN; 1843 } 1844 #ifdef SIEBEL_DISABLE 1845 } 1846 /* 1847 * LD__FIX__ (undocumented, enable future technology that can't be 1848 * delivered in a patch release). 1849 */ 1850 else if (*s1 == '_') { 1851 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1852 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1853 select |= SEL_ACT_RT; 1854 val = RT_FL_DISFIX_1; 1855 variable = ENV_FLG_FIX_1; 1856 } 1857 #endif 1858 } 1859 if (variable == 0) 1860 return; 1861 1862 /* 1863 * If the variable is already processed with ISA specific variable, 1864 * no further processing needed. 1865 */ 1866 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1867 ((select & SEL_PERMANT) && (prmisa & variable))) 1868 return; 1869 1870 /* 1871 * Now mark the appropriate variables. 1872 * If the replaceable variable is already set, then the 1873 * process environment variable must be set. Any replaceable 1874 * variable specified in a configuration file can be ignored. 1875 */ 1876 if (env_flags & ENV_TYP_ISA) { 1877 /* 1878 * This is ISA setting. We do the setting 1879 * even if s2 is NULL. 1880 * If s2 is NULL, we might need to undo 1881 * the setting. 1882 */ 1883 if (select & SEL_REPLACE) { 1884 if (rplisa & variable) 1885 return; 1886 rplisa |= variable; 1887 } else { 1888 prmisa |= variable; 1889 } 1890 } else if (s2) { 1891 /* 1892 * This is non0-ISA setting 1893 */ 1894 if (select & SEL_REPLACE) { 1895 if (rplgen & variable) 1896 return; 1897 rplgen |= variable; 1898 } else 1899 prmgen |= variable; 1900 } else 1901 /* 1902 * This is non-ISA setting which 1903 * can be ignored. 1904 */ 1905 return; 1906 1907 /* 1908 * Now perform the setting. 1909 */ 1910 if (select & SEL_ACT_RT) { 1911 if (s2) 1912 rtld_flags |= val; 1913 else 1914 rtld_flags &= ~val; 1915 } else if (select & SEL_ACT_RT2) { 1916 if (s2) 1917 rtld_flags2 |= val; 1918 else 1919 rtld_flags2 &= ~val; 1920 } else if (select & SEL_ACT_STR) 1921 *str = s2; 1922 else if (select & SEL_ACT_LML) { 1923 if (s2) 1924 *lmflags |= val; 1925 else 1926 *lmflags &= ~val; 1927 } else if (select & SEL_ACT_LMLT) { 1928 if (s2) 1929 *lmtflags |= val; 1930 else 1931 *lmtflags &= ~val; 1932 } else if (select & SEL_ACT_SPEC_1) { 1933 /* 1934 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1935 */ 1936 *str = s2; 1937 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1938 if (s2) { 1939 if (variable == ENV_FLG_FLAGS) 1940 env_info |= ENV_INF_FLAGCFG; 1941 else 1942 env_info |= ENV_INF_PATHCFG; 1943 } else { 1944 if (variable == ENV_FLG_FLAGS) 1945 env_info &= ~ENV_INF_FLAGCFG; 1946 else 1947 env_info &= ~ENV_INF_PATHCFG; 1948 } 1949 } 1950 } else if (select & SEL_ACT_SPEC_2) { 1951 /* 1952 * variables can be: ENV_FLG_ 1953 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1954 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1955 */ 1956 if (variable == ENV_FLG_AUDIT_ARGS) { 1957 if (s2) { 1958 audit_argcnt = atoi(s2); 1959 audit_argcnt += audit_argcnt % 2; 1960 } else 1961 audit_argcnt = 0; 1962 } else if (variable == ENV_FLG_BINDINGS) { 1963 if (s2) 1964 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1965 else 1966 rpl_debug = 0; 1967 } else if (variable == ENV_FLG_CONCURRENCY) { 1968 if (s2) 1969 rtld_flags &= ~RT_FL_NOCONCUR; 1970 else 1971 rtld_flags |= RT_FL_NOCONCUR; 1972 } else if (variable == ENV_FLG_CONFGEN) { 1973 if (s2) { 1974 rtld_flags |= RT_FL_CONFGEN; 1975 *lmflags |= LML_FLG_IGNRELERR; 1976 } else { 1977 rtld_flags &= ~RT_FL_CONFGEN; 1978 *lmflags &= ~LML_FLG_IGNRELERR; 1979 } 1980 } else if (variable == ENV_FLG_LOADFLTR) { 1981 if (s2) { 1982 *lmtflags |= LML_TFLG_LOADFLTR; 1983 if (*s2 == '2') 1984 rtld_flags |= RT_FL_WARNFLTR; 1985 } else { 1986 *lmtflags &= ~LML_TFLG_LOADFLTR; 1987 rtld_flags &= ~RT_FL_WARNFLTR; 1988 } 1989 } else if (variable == ENV_FLG_PROFILE) { 1990 profile_name = s2; 1991 if (s2) { 1992 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1993 return; 1994 } 1995 if (rtld_flags & RT_FL_SECURE) { 1996 profile_lib = 1997 #if defined(_ELF64) 1998 MSG_ORIG(MSG_PTH_LDPROFSE_64); 1999 #else 2000 MSG_ORIG(MSG_PTH_LDPROFSE); 2001 #endif 2002 } else { 2003 profile_lib = 2004 #if defined(_ELF64) 2005 MSG_ORIG(MSG_PTH_LDPROF_64); 2006 #else 2007 MSG_ORIG(MSG_PTH_LDPROF); 2008 #endif 2009 } 2010 } else 2011 profile_lib = 0; 2012 } else if (variable == ENV_FLG_SIGNAL) { 2013 killsig = s2 ? atoi(s2) : SIGKILL; 2014 } else if (variable == ENV_FLG_TRACE_OBJS) { 2015 if (s2) { 2016 *lmflags |= LML_FLG_TRC_ENABLE; 2017 if (*s2 == '2') 2018 *lmflags |= LML_FLG_TRC_LDDSTUB; 2019 } else 2020 *lmflags &= 2021 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2022 } 2023 } 2024 } 2025 2026 /* 2027 * Determine whether we have an architecture specific environment variable. 2028 * If we do, and we're the wrong architecture, it'll just get ignored. 2029 * Otherwise the variable is processed in it's architecture neutral form. 2030 */ 2031 static int 2032 ld_arch_env(const char *s1, size_t *len) 2033 { 2034 size_t _len = *len - 3; 2035 2036 if (s1[_len++] == '_') { 2037 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2038 #if defined(_ELF64) 2039 return (ENV_TYP_IGNORE); 2040 #else 2041 *len = *len - 3; 2042 return (ENV_TYP_ISA); 2043 #endif 2044 } 2045 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2046 #if defined(_ELF64) 2047 *len = *len - 3; 2048 return (ENV_TYP_ISA); 2049 #else 2050 return (ENV_TYP_IGNORE); 2051 #endif 2052 } 2053 } 2054 return (0); 2055 } 2056 2057 2058 /* 2059 * Process an LD_FLAGS environment variable. The value can be a comma 2060 * separated set of tokens, which are sent (in upper case) into the generic 2061 * LD_XXXX environment variable engine. For example: 2062 * 2063 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2064 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2065 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2066 * or 2067 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2068 */ 2069 static int 2070 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2071 uint_t env_flags, int aout) 2072 { 2073 char *nstr, *sstr, *estr = 0; 2074 size_t nlen, len; 2075 2076 if (str == 0) 2077 return (0); 2078 2079 /* 2080 * Create a new string as we're going to transform the token(s) into 2081 * uppercase and separate tokens with nulls. 2082 */ 2083 len = strlen(str); 2084 if ((nstr = malloc(len + 1)) == 0) 2085 return (1); 2086 (void) strcpy(nstr, str); 2087 2088 for (sstr = nstr; sstr; sstr++, len--) { 2089 int flags; 2090 2091 if ((*sstr != '\0') && (*sstr != ',')) { 2092 if (estr == 0) { 2093 if (*sstr == '=') 2094 estr = sstr; 2095 else { 2096 /* 2097 * Translate token to uppercase. Don't 2098 * use toupper(3C) as including this 2099 * code doubles the size of ld.so.1. 2100 */ 2101 if ((*sstr >= 'a') && (*sstr <= 'z')) 2102 *sstr = *sstr - ('a' - 'A'); 2103 } 2104 } 2105 continue; 2106 } 2107 2108 *sstr = '\0'; 2109 if (estr) { 2110 nlen = estr - nstr; 2111 if ((*++estr == '\0') || (*estr == ',')) 2112 estr = 0; 2113 } else 2114 nlen = sstr - nstr; 2115 2116 /* 2117 * Fabricate a boolean definition for any unqualified variable. 2118 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2119 * The value is sufficient to assert any boolean variables, plus 2120 * the term "(null)" is specifically chosen in case someone 2121 * mistakenly supplies something like LD_FLAGS=library_path. 2122 */ 2123 if (estr == 0) 2124 estr = (char *)MSG_INTL(MSG_STR_NULL); 2125 2126 /* 2127 * Determine whether the environment variable is 32- or 64-bit 2128 * specific. The length, len, will reflect the architecture 2129 * neutral portion of the string. 2130 */ 2131 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2132 ld_generic_env(nstr, nlen, estr, lmflags, 2133 lmtflags, (env_flags | flags), aout); 2134 } 2135 if (len == 0) 2136 return (0); 2137 2138 nstr = sstr + 1; 2139 estr = 0; 2140 } 2141 return (0); 2142 } 2143 2144 2145 /* 2146 * Process a single environment string. Only strings starting with `LD_' are 2147 * reserved for our use. By convention, all strings should be of the form 2148 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2149 * functionality is enabled. Also pick off applicable locale variables. 2150 */ 2151 #define LOC_LANG 1 2152 #define LOC_MESG 2 2153 #define LOC_ALL 3 2154 2155 static void 2156 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2157 int aout) 2158 { 2159 const char *s2; 2160 static size_t loc = 0; 2161 2162 if (*s1++ != 'L') 2163 return; 2164 2165 /* 2166 * See if we have any locale environment settings. These environment 2167 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2168 * is higher than LANG. 2169 */ 2170 s2 = s1; 2171 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2172 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2173 s2 += MSG_LC_ALL_SIZE; 2174 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2175 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2176 loc = LOC_ALL; 2177 } 2178 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2179 MSG_LC_MESSAGES_SIZE) == 0) { 2180 s2 += MSG_LC_MESSAGES_SIZE; 2181 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2182 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2183 loc = LOC_MESG; 2184 } 2185 } 2186 return; 2187 } 2188 2189 s2 = s1; 2190 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2191 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2192 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2193 loc = LOC_LANG; 2194 return; 2195 } 2196 2197 /* 2198 * Pick off any LD_XXXX environment variables. 2199 */ 2200 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2201 size_t len; 2202 int flags; 2203 2204 /* 2205 * In a branded process we must ignore all LD_XXXX env vars 2206 * because they are intended for the brand's linker. 2207 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2208 */ 2209 if (rtld_flags2 & RT_FL2_BRANDED) { 2210 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2211 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2212 return; 2213 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2214 } 2215 2216 /* 2217 * Environment variables with no value (ie. LD_XXXX=) typically 2218 * have no impact, however if environment variables are defined 2219 * within a configuration file, these null user settings can be 2220 * used to disable any configuration replaceable definitions. 2221 */ 2222 if ((s2 = strchr(s1, '=')) == 0) { 2223 len = strlen(s1); 2224 s2 = 0; 2225 } else if (*++s2 == '\0') { 2226 len = strlen(s1) - 1; 2227 s2 = 0; 2228 } else { 2229 len = s2 - s1 - 1; 2230 while (isspace(*s2)) 2231 s2++; 2232 } 2233 2234 /* 2235 * Determine whether the environment variable is 32- or 64-bit 2236 * specific. The length, len, will reflect the architecture 2237 * neutral portion of the string. 2238 */ 2239 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2240 return; 2241 env_flags |= flags; 2242 2243 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2244 } 2245 } 2246 2247 /* 2248 * Internal getenv routine. Called immediately after ld.so.1 initializes 2249 * itself. 2250 */ 2251 int 2252 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2253 { 2254 char *locale; 2255 2256 if (envp == (const char **)0) 2257 return (0); 2258 2259 while (*envp != (const char *)0) 2260 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2261 2262 /* 2263 * Having collected the best representation of any LD_FLAGS, process 2264 * these strings. 2265 */ 2266 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2267 return (1); 2268 2269 /* 2270 * Don't allow environment controlled auditing when tracing or if 2271 * explicitly disabled. Trigger all tracing modes from 2272 * LML_FLG_TRC_ENABLE. 2273 */ 2274 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2275 rpl_audit = profile_lib = profile_name = 0; 2276 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2277 *lmflags &= ~LML_MSK_TRC; 2278 2279 /* 2280 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2281 */ 2282 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2283 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2284 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2285 2286 /* 2287 * If we have a locale setting make sure its worth processing further. 2288 * C and POSIX locales don't need any processing. In addition, to 2289 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2290 * the locale to contain a segment that leads upward in the file system 2291 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2292 * the /usr/lib/locale hierarchy, there is no need to extensively 2293 * validate the mode or ownership of any message file (as libc's 2294 * generic handling of message files does). Duplicate the string so 2295 * that new locale setting can generically cleanup any previous locales. 2296 */ 2297 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2298 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2299 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2300 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2301 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2302 else 2303 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2304 } 2305 return (0); 2306 } 2307 2308 /* 2309 * Configuration environment processing. Called after the a.out has been 2310 * processed (as the a.out can specify its own configuration file). 2311 */ 2312 int 2313 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2314 { 2315 Word * lmflags = &(lml_main.lm_flags); 2316 Word * lmtflags = &(lml_main.lm_tflags); 2317 2318 if (envtbl == (Rtc_env *)0) 2319 return (0); 2320 2321 while (envtbl->env_str) { 2322 uint_t env_flags = ENV_TYP_CONFIG; 2323 2324 if (envtbl->env_flags & RTC_ENV_PERMANT) 2325 env_flags |= ENV_TYP_PERMANT; 2326 2327 ld_str_env((const char *)(envtbl->env_str + addr), 2328 lmflags, lmtflags, env_flags, 0); 2329 envtbl++; 2330 } 2331 2332 /* 2333 * Having collected the best representation of any LD_FLAGS, process 2334 * these strings. 2335 */ 2336 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2337 return (1); 2338 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2339 aout) == 1) 2340 return (1); 2341 2342 /* 2343 * Don't allow environment controlled auditing when tracing or if 2344 * explicitly disabled. Trigger all tracing modes from 2345 * LML_FLG_TRC_ENABLE. 2346 */ 2347 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2348 prm_audit = profile_lib = profile_name = 0; 2349 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2350 *lmflags &= ~LML_MSK_TRC; 2351 2352 return (0); 2353 } 2354 2355 int 2356 dowrite(Prfbuf * prf) 2357 { 2358 /* 2359 * We do not have a valid file descriptor, so we are unable 2360 * to flush the buffer. 2361 */ 2362 if (prf->pr_fd == -1) 2363 return (0); 2364 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2365 prf->pr_cur = prf->pr_buf; 2366 return (1); 2367 } 2368 2369 /* 2370 * Simplified printing. The following conversion specifications are supported: 2371 * 2372 * % [#] [-] [min field width] [. precision] s|d|x|c 2373 * 2374 * 2375 * dorprf takes the output buffer in the form of Prfbuf which permits 2376 * the verification of the output buffer size and the concatenation 2377 * of data to an already existing output buffer. The Prfbuf 2378 * structure contains the following: 2379 * 2380 * pr_buf pointer to the beginning of the output buffer. 2381 * pr_cur pointer to the next available byte in the output buffer. By 2382 * setting pr_cur ahead of pr_buf you can append to an already 2383 * existing buffer. 2384 * pr_len the size of the output buffer. By setting pr_len to '0' you 2385 * disable protection from overflows in the output buffer. 2386 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2387 * output to. If pr_fd is set to '-1' then it's assumed there is 2388 * no output buffer, and doprf() will return with an error to 2389 * indicate an output buffer overflow. If pr_fd is > -1 then when 2390 * the output buffer is filled it will be flushed to pr_fd and will 2391 * then be available for additional data. 2392 */ 2393 #define FLG_UT_MINUS 0x0001 /* - */ 2394 #define FLG_UT_SHARP 0x0002 /* # */ 2395 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2396 2397 /* 2398 * This macro is for use from within doprf only. It is to be used for checking 2399 * the output buffer size and placing characters into the buffer. 2400 */ 2401 #define PUTC(c) \ 2402 { \ 2403 char tmpc; \ 2404 \ 2405 tmpc = (c); \ 2406 if (bufsiz && (bp >= bufend)) { \ 2407 prf->pr_cur = bp; \ 2408 if (dowrite(prf) == 0) \ 2409 return (0); \ 2410 bp = prf->pr_cur; \ 2411 } \ 2412 *bp++ = tmpc; \ 2413 } 2414 2415 /* 2416 * Define a local buffer size for building a numeric value - large enough to 2417 * hold a 64-bit value. 2418 */ 2419 #define NUM_SIZE 22 2420 2421 size_t 2422 doprf(const char *format, va_list args, Prfbuf *prf) 2423 { 2424 char c; 2425 char *bp = prf->pr_cur; 2426 char *bufend = prf->pr_buf + prf->pr_len; 2427 size_t bufsiz = prf->pr_len; 2428 2429 while ((c = *format++) != '\0') { 2430 if (c != '%') { 2431 PUTC(c); 2432 } else { 2433 int base = 0, flag = 0, width = 0, prec = 0; 2434 size_t _i; 2435 int _c, _n; 2436 char *_s; 2437 int ls = 0; 2438 again: 2439 c = *format++; 2440 switch (c) { 2441 case '-': 2442 flag |= FLG_UT_MINUS; 2443 goto again; 2444 case '#': 2445 flag |= FLG_UT_SHARP; 2446 goto again; 2447 case '.': 2448 flag |= FLG_UT_DOTSEEN; 2449 goto again; 2450 case '0': 2451 case '1': 2452 case '2': 2453 case '3': 2454 case '4': 2455 case '5': 2456 case '6': 2457 case '7': 2458 case '8': 2459 case '9': 2460 if (flag & FLG_UT_DOTSEEN) 2461 prec = (prec * 10) + c - '0'; 2462 else 2463 width = (width * 10) + c - '0'; 2464 goto again; 2465 case 'x': 2466 case 'X': 2467 base = 16; 2468 break; 2469 case 'd': 2470 case 'D': 2471 case 'u': 2472 base = 10; 2473 flag &= ~FLG_UT_SHARP; 2474 break; 2475 case 'l': 2476 base = 10; 2477 ls++; /* number of l's (long or long long) */ 2478 if ((*format == 'l') || 2479 (*format == 'd') || (*format == 'D') || 2480 (*format == 'x') || (*format == 'X') || 2481 (*format == 'o') || (*format == 'O')) 2482 goto again; 2483 break; 2484 case 'o': 2485 case 'O': 2486 base = 8; 2487 break; 2488 case 'c': 2489 _c = va_arg(args, int); 2490 2491 for (_i = 24; _i > 0; _i -= 8) { 2492 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2493 PUTC(c); 2494 } 2495 } 2496 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2497 PUTC(c); 2498 } 2499 break; 2500 case 's': 2501 _s = va_arg(args, char *); 2502 _i = strlen(_s); 2503 /* LINTED */ 2504 _n = (int)(width - _i); 2505 if (!prec) 2506 /* LINTED */ 2507 prec = (int)_i; 2508 2509 if (width && !(flag & FLG_UT_MINUS)) { 2510 while (_n-- > 0) 2511 PUTC(' '); 2512 } 2513 while (((c = *_s++) != 0) && prec--) { 2514 PUTC(c); 2515 } 2516 if (width && (flag & FLG_UT_MINUS)) { 2517 while (_n-- > 0) 2518 PUTC(' '); 2519 } 2520 break; 2521 case '%': 2522 PUTC('%'); 2523 break; 2524 default: 2525 break; 2526 } 2527 2528 /* 2529 * Numeric processing 2530 */ 2531 if (base) { 2532 char local[NUM_SIZE]; 2533 size_t ssize = 0, psize = 0; 2534 const char *string = 2535 MSG_ORIG(MSG_STR_HEXNUM); 2536 const char *prefix = 2537 MSG_ORIG(MSG_STR_EMPTY); 2538 u_longlong_t num; 2539 2540 switch (ls) { 2541 case 0: /* int */ 2542 num = (u_longlong_t) 2543 va_arg(args, uint_t); 2544 break; 2545 case 1: /* long */ 2546 num = (u_longlong_t) 2547 va_arg(args, ulong_t); 2548 break; 2549 case 2: /* long long */ 2550 num = va_arg(args, u_longlong_t); 2551 break; 2552 } 2553 2554 if (flag & FLG_UT_SHARP) { 2555 if (base == 16) { 2556 prefix = MSG_ORIG(MSG_STR_HEX); 2557 psize = 2; 2558 } else { 2559 prefix = MSG_ORIG(MSG_STR_ZERO); 2560 psize = 1; 2561 } 2562 } 2563 if ((base == 10) && (long)num < 0) { 2564 prefix = MSG_ORIG(MSG_STR_NEGATE); 2565 psize = MSG_STR_NEGATE_SIZE; 2566 num = (u_longlong_t)(-(longlong_t)num); 2567 } 2568 2569 /* 2570 * Convert the numeric value into a local 2571 * string (stored in reverse order). 2572 */ 2573 _s = local; 2574 do { 2575 *_s++ = string[num % base]; 2576 num /= base; 2577 ssize++; 2578 } while (num); 2579 2580 ASSERT(ssize < sizeof (local)); 2581 2582 /* 2583 * Provide any precision or width padding. 2584 */ 2585 if (prec) { 2586 /* LINTED */ 2587 _n = (int)(prec - ssize); 2588 while ((_n-- > 0) && 2589 (ssize < sizeof (local))) { 2590 *_s++ = '0'; 2591 ssize++; 2592 } 2593 } 2594 if (width && !(flag & FLG_UT_MINUS)) { 2595 /* LINTED */ 2596 _n = (int)(width - ssize - psize); 2597 while (_n-- > 0) { 2598 PUTC(' '); 2599 } 2600 } 2601 2602 /* 2603 * Print any prefix and the numeric string 2604 */ 2605 while (*prefix) 2606 PUTC(*prefix++); 2607 do { 2608 PUTC(*--_s); 2609 } while (_s > local); 2610 2611 /* 2612 * Provide any width padding. 2613 */ 2614 if (width && (flag & FLG_UT_MINUS)) { 2615 /* LINTED */ 2616 _n = (int)(width - ssize - psize); 2617 while (_n-- > 0) 2618 PUTC(' '); 2619 } 2620 } 2621 } 2622 } 2623 2624 PUTC('\0'); 2625 prf->pr_cur = bp; 2626 return (1); 2627 } 2628 2629 static int 2630 doprintf(const char *format, va_list args, Prfbuf *prf) 2631 { 2632 char *ocur = prf->pr_cur; 2633 2634 if (doprf(format, args, prf) == 0) 2635 return (0); 2636 /* LINTED */ 2637 return ((int)(prf->pr_cur - ocur)); 2638 } 2639 2640 /* VARARGS2 */ 2641 int 2642 sprintf(char *buf, const char *format, ...) 2643 { 2644 va_list args; 2645 int len; 2646 Prfbuf prf; 2647 2648 va_start(args, format); 2649 prf.pr_buf = prf.pr_cur = buf; 2650 prf.pr_len = 0; 2651 prf.pr_fd = -1; 2652 len = doprintf(format, args, &prf); 2653 va_end(args); 2654 2655 /* 2656 * sprintf() return value excludes the terminating null byte. 2657 */ 2658 return (len - 1); 2659 } 2660 2661 /* VARARGS3 */ 2662 int 2663 snprintf(char *buf, size_t n, const char *format, ...) 2664 { 2665 va_list args; 2666 int len; 2667 Prfbuf prf; 2668 2669 va_start(args, format); 2670 prf.pr_buf = prf.pr_cur = buf; 2671 prf.pr_len = n; 2672 prf.pr_fd = -1; 2673 len = doprintf(format, args, &prf); 2674 va_end(args); 2675 2676 return (len); 2677 } 2678 2679 /* VARARGS2 */ 2680 int 2681 bufprint(Prfbuf *prf, const char *format, ...) 2682 { 2683 va_list args; 2684 int len; 2685 2686 va_start(args, format); 2687 len = doprintf(format, args, prf); 2688 va_end(args); 2689 2690 return (len); 2691 } 2692 2693 /*PRINTFLIKE1*/ 2694 int 2695 printf(const char *format, ...) 2696 { 2697 va_list args; 2698 char buffer[ERRSIZE]; 2699 Prfbuf prf; 2700 2701 va_start(args, format); 2702 prf.pr_buf = prf.pr_cur = buffer; 2703 prf.pr_len = ERRSIZE; 2704 prf.pr_fd = 1; 2705 (void) doprf(format, args, &prf); 2706 va_end(args); 2707 /* 2708 * Trim trailing '\0' form buffer 2709 */ 2710 prf.pr_cur--; 2711 return (dowrite(&prf)); 2712 } 2713 2714 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2715 2716 /*PRINTFLIKE3*/ 2717 void 2718 eprintf(Lm_list *lml, Error error, const char *format, ...) 2719 { 2720 va_list args; 2721 int overflow = 0; 2722 static int lock = 0; 2723 Prfbuf prf; 2724 2725 if (lock || (nextptr == (errbuf + ERRSIZE))) 2726 return; 2727 2728 /* 2729 * Note: this lock is here to prevent the same thread from recursively 2730 * entering itself during a eprintf. ie: during eprintf malloc() fails 2731 * and we try and call eprintf ... and then malloc() fails .... 2732 */ 2733 lock = 1; 2734 2735 /* 2736 * If we have completed startup initialization, all error messages 2737 * must be saved. These are reported through dlerror(). If we're 2738 * still in the initialization stage, output the error directly and 2739 * add a newline. 2740 */ 2741 va_start(args, format); 2742 2743 prf.pr_buf = prf.pr_cur = nextptr; 2744 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2745 2746 if (!(rtld_flags & RT_FL_APPLIC)) 2747 prf.pr_fd = 2; 2748 else 2749 prf.pr_fd = -1; 2750 2751 if (error > ERR_NONE) { 2752 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2753 error = ERR_WARNING; 2754 if (error == ERR_WARNING) { 2755 if (err_strs[ERR_WARNING] == 0) 2756 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2757 } else if (error == ERR_FATAL) { 2758 if (err_strs[ERR_FATAL] == 0) 2759 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2760 } else if (error == ERR_ELF) { 2761 if (err_strs[ERR_ELF] == 0) 2762 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2763 } 2764 if (procname) { 2765 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2766 rtldname, procname, err_strs[error]) == 0) 2767 overflow = 1; 2768 } else { 2769 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2770 rtldname, err_strs[error]) == 0) 2771 overflow = 1; 2772 } 2773 if (overflow == 0) { 2774 /* 2775 * Remove the terminating '\0'. 2776 */ 2777 prf.pr_cur--; 2778 } 2779 } 2780 2781 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2782 overflow = 1; 2783 2784 /* 2785 * If this is an ELF error, it will have been generated by a support 2786 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2787 * ELF error messages as it doesn't interact with libelf. Determine the 2788 * ELF error string. 2789 */ 2790 if ((overflow == 0) && (error == ERR_ELF)) { 2791 static int (*elfeno)() = 0; 2792 static const char *(*elfemg)(); 2793 const char *emsg; 2794 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2795 2796 if (NEXT(lmp) && (elfeno == 0)) { 2797 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2798 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2799 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2800 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2801 elfeno = 0; 2802 } 2803 2804 /* 2805 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2806 */ 2807 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2808 prf.pr_cur--; 2809 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2810 emsg) == 0) 2811 overflow = 1; 2812 } 2813 } 2814 2815 /* 2816 * Push out any message that's been built. Note, in the case of an 2817 * overflow condition, this message may be incomplete, in which case 2818 * make sure any partial string is null terminated. 2819 */ 2820 if (overflow) 2821 *(prf.pr_cur) = '\0'; 2822 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2823 *(prf.pr_cur - 1) = '\n'; 2824 (void) dowrite(&prf); 2825 } 2826 2827 DBG_CALL(Dbg_util_str(lml, nextptr)); 2828 va_end(args); 2829 2830 /* 2831 * Determine if there was insufficient space left in the buffer to 2832 * complete the message. If so, we'll have printed out as much as had 2833 * been processed if we're not yet executing the application. 2834 * Otherwise, there will be some debugging diagnostic indicating 2835 * as much of the error message as possible. Write out a final buffer 2836 * overflow diagnostic - unlocalized, so we don't chance more errors. 2837 */ 2838 if (overflow) { 2839 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2840 2841 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2842 lasterr = str; 2843 2844 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2845 (void) write(2, str, strlen(str)); 2846 (void) write(2, MSG_ORIG(MSG_STR_NL), 2847 MSG_STR_NL_SIZE); 2848 } 2849 } 2850 DBG_CALL(Dbg_util_str(lml, str)); 2851 2852 lock = 0; 2853 nextptr = errbuf + ERRSIZE; 2854 return; 2855 } 2856 2857 /* 2858 * If the application has started, then error messages are being saved 2859 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2860 * the case of a fatal error. In this case, establish the next error 2861 * pointer. If we haven't started the application, the whole message 2862 * buffer can be reused. 2863 */ 2864 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2865 lasterr = nextptr; 2866 2867 /* 2868 * Note, should we encounter an error such as ENOMEM, there may 2869 * be a number of the same error messages (ie. an operation 2870 * fails with ENOMEM, and then the attempts to construct the 2871 * error message itself, which incurs additional ENOMEM errors). 2872 * Compare any previous error message with the one we've just 2873 * created to prevent any duplication clutter. 2874 */ 2875 if ((rtld_flags & RT_FL_APPLIC) && 2876 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2877 prevptr = nextptr; 2878 nextptr = prf.pr_cur; 2879 *nextptr = '\0'; 2880 } 2881 } 2882 lock = 0; 2883 } 2884 2885 2886 #if DEBUG 2887 /* 2888 * Provide assfail() for ASSERT() statements, 2889 * see <sys/debug.h> for further details. 2890 */ 2891 int 2892 assfail(const char *a, const char *f, int l) 2893 { 2894 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2895 (void) _lwp_kill(_lwp_self(), SIGABRT); 2896 return (0); 2897 } 2898 #endif 2899 2900 /* 2901 * Exit. If we arrive here with a non zero status it's because of a fatal 2902 * error condition (most commonly a relocation error). If the application has 2903 * already had control, then the actual fatal error message will have been 2904 * recorded in the dlerror() message buffer. Print the message before really 2905 * exiting. 2906 */ 2907 void 2908 rtldexit(Lm_list * lml, int status) 2909 { 2910 if (status) { 2911 if (rtld_flags & RT_FL_APPLIC) { 2912 /* 2913 * If the error buffer has been used, write out all 2914 * pending messages - lasterr is simply a pointer to 2915 * the last message in this buffer. However, if the 2916 * buffer couldn't be created at all, lasterr points 2917 * to a constant error message string. 2918 */ 2919 if (*errbuf) { 2920 char *errptr = errbuf; 2921 char *errend = errbuf + ERRSIZE; 2922 2923 while ((errptr < errend) && *errptr) { 2924 size_t size = strlen(errptr); 2925 (void) write(2, errptr, size); 2926 (void) write(2, MSG_ORIG(MSG_STR_NL), 2927 MSG_STR_NL_SIZE); 2928 errptr += (size + 1); 2929 } 2930 } 2931 if (lasterr && ((lasterr < errbuf) || 2932 (lasterr > (errbuf + ERRSIZE)))) { 2933 (void) write(2, lasterr, strlen(lasterr)); 2934 (void) write(2, MSG_ORIG(MSG_STR_NL), 2935 MSG_STR_NL_SIZE); 2936 } 2937 } 2938 leave(lml); 2939 (void) _lwp_kill(_lwp_self(), killsig); 2940 } 2941 _exit(status); 2942 } 2943 2944 /* 2945 * Routines to co-ordinate the opening of /dev/zero and /proc. 2946 * dz_fd is exported for possible use by libld.so, and to insure it gets 2947 * closed on leaving ld.so.1. 2948 */ 2949 int dz_fd = FD_UNAVAIL; 2950 2951 void 2952 dz_init(int fd) 2953 { 2954 dz_fd = fd; 2955 } 2956 2957 2958 /* 2959 * mmap() a page from MAP_ANON 2960 * 2961 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2962 * not only mmap(MAP_ANON) but to also probe if it is available 2963 * on the current OS. 2964 */ 2965 Am_ret 2966 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 2967 { 2968 #if defined(MAP_ANON) 2969 static int noanon = 0; 2970 caddr_t va; 2971 2972 if (noanon == 0) { 2973 if ((va = (caddr_t)mmap(*addr, len, prot, 2974 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2975 *addr = va; 2976 return (AM_OK); 2977 } 2978 2979 if ((errno != EBADF) && (errno != EINVAL)) { 2980 int err = errno; 2981 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2982 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2983 return (AM_ERROR); 2984 } else 2985 noanon = 1; 2986 } 2987 #endif 2988 return (AM_NOSUP); 2989 } 2990 2991 /* 2992 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2993 * 2994 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2995 * behavior for older systems.) 2996 */ 2997 caddr_t 2998 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 2999 { 3000 caddr_t va; 3001 int err; 3002 Am_ret amret; 3003 3004 amret = anon_map(lml, &addr, len, prot, flags); 3005 3006 if (amret == AM_OK) 3007 return (addr); 3008 if (amret == AM_ERROR) 3009 return (MAP_FAILED); 3010 3011 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3012 3013 if (dz_fd == FD_UNAVAIL) { 3014 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3015 O_RDONLY)) == FD_UNAVAIL) { 3016 err = errno; 3017 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3018 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3019 return (MAP_FAILED); 3020 } 3021 } 3022 3023 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3024 err = errno; 3025 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3026 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3027 } 3028 return (va); 3029 } 3030 3031 static int pr_fd = FD_UNAVAIL; 3032 3033 int 3034 pr_open(Lm_list *lml) 3035 { 3036 char proc[16]; 3037 3038 if (pr_fd == FD_UNAVAIL) { 3039 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3040 (int)getpid()); 3041 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3042 int err = errno; 3043 3044 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3045 strerror(err)); 3046 } 3047 } 3048 return (pr_fd); 3049 } 3050 3051 static int nu_fd = FD_UNAVAIL; 3052 3053 caddr_t 3054 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3055 { 3056 caddr_t va; 3057 int err; 3058 3059 if (nu_fd == FD_UNAVAIL) { 3060 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3061 O_RDONLY)) == FD_UNAVAIL) { 3062 err = errno; 3063 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3064 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3065 return (MAP_FAILED); 3066 } 3067 } 3068 3069 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3070 MAP_FAILED) { 3071 err = errno; 3072 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3073 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3074 } 3075 return (va); 3076 } 3077 3078 /* 3079 * Generic entry point from user code - simply grabs a lock. 3080 */ 3081 int 3082 enter(void) 3083 { 3084 if (rt_bind_guard(THR_FLG_RTLD)) { 3085 (void) rt_mutex_lock(&rtldlock); 3086 return (1); 3087 } 3088 return (0); 3089 } 3090 3091 /* 3092 * Generate diagnostics as to whether an object has been used. A symbolic 3093 * reference that gets bound to an object marks it as used. Dependencies that 3094 * are unused when RTLD_NOW is in effect should be removed from future builds 3095 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3096 * candidates for lazy-loading. 3097 * Unreferenced objects identify objects that are defined as dependencies but 3098 * are unreferenced by the caller (they may however be referenced by other 3099 * objects within the process, and therefore don't qualify as completely unused. 3100 */ 3101 void 3102 unused(Lm_list *lml) 3103 { 3104 Rt_map *lmp; 3105 int nl = 0; 3106 Word tracing; 3107 3108 /* 3109 * If we're not tracing unused references or dependencies, or debugging 3110 * there's nothing to do. 3111 */ 3112 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3113 3114 if ((tracing == 0) && (DBG_ENABLED == 0)) 3115 return; 3116 3117 /* 3118 * Traverse the link-maps looking for unreferenced or unused 3119 * dependencies. Ignore the first object on a link-map list, as this 3120 * is effectively always used. 3121 */ 3122 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3123 lmp = (Rt_map *)NEXT(lmp)) { 3124 /* 3125 * If tracing unreferenced objects, or under debugging, 3126 * determine whether any of this objects callers haven't 3127 * referenced it. 3128 */ 3129 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 3130 Bnd_desc ** bdpp; 3131 Aliste off; 3132 3133 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3134 Bnd_desc * bdp = *bdpp; 3135 Rt_map * clmp; 3136 3137 if (bdp->b_flags & BND_REFER) 3138 continue; 3139 3140 clmp = bdp->b_caller; 3141 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3142 continue; 3143 3144 if (nl++ == 0) { 3145 if (tracing & LML_FLG_TRC_UNREF) 3146 (void) printf(MSG_ORIG(MSG_STR_NL)); 3147 else 3148 DBG_CALL(Dbg_util_nl(lml, 3149 DBG_NL_STD)); 3150 } 3151 3152 if (tracing & LML_FLG_TRC_UNREF) 3153 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3154 NAME(lmp), NAME(clmp)); 3155 else 3156 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3157 } 3158 } 3159 3160 /* 3161 * If tracing unused objects simply display those objects that 3162 * haven't been referenced by anyone. 3163 */ 3164 if (FLAGS1(lmp) & FL1_RT_USED) 3165 continue; 3166 3167 if (nl++ == 0) { 3168 if (tracing) 3169 (void) printf(MSG_ORIG(MSG_STR_NL)); 3170 else 3171 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3172 } 3173 if (CYCGROUP(lmp)) { 3174 if (tracing) 3175 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3176 NAME(lmp), CYCGROUP(lmp)); 3177 else 3178 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3179 CYCGROUP(lmp))); 3180 } else { 3181 if (tracing) 3182 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3183 NAME(lmp)); 3184 else 3185 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3186 } 3187 } 3188 3189 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3190 } 3191 3192 /* 3193 * Initialization routine for the Fmap structure. If the fmap structure is 3194 * already in use, any mapping is released. The structure is then initialized 3195 * in preparation for further use. 3196 */ 3197 void 3198 fmap_setup() 3199 { 3200 #if defined(MAP_ALIGN) 3201 /* 3202 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3203 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3204 * should now be freed. 3205 */ 3206 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3207 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3208 3209 /* 3210 * Providing we haven't determined that this system doesn't support 3211 * MAP_ALIGN, initialize the mapping address with the default segment 3212 * alignment. 3213 */ 3214 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3215 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3216 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3217 } else { 3218 fmap->fm_maddr = 0; 3219 fmap->fm_mflags = MAP_PRIVATE; 3220 } 3221 #else 3222 if (fmap->fm_maddr) 3223 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3224 3225 fmap->fm_maddr = 0; 3226 fmap->fm_mflags = MAP_PRIVATE; 3227 #endif 3228 3229 fmap->fm_msize = syspagsz; 3230 fmap->fm_hwptr = 0; 3231 } 3232 3233 /* 3234 * Generic cleanup routine called prior to returning control to the user. 3235 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3236 * released, and any locks dropped. 3237 */ 3238 void 3239 leave(Lm_list *lml) 3240 { 3241 Lm_list *elml = lml; 3242 3243 /* 3244 * Alert the debuggers that the link-maps are consistent. Note, in the 3245 * case of tearing down a whole link-map list, lml will be null. In 3246 * this case use the main link-map list to test for a notification. 3247 */ 3248 if (elml == 0) 3249 elml = &lml_main; 3250 if (elml->lm_flags & LML_FLG_DBNOTIF) 3251 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3252 3253 if (dz_fd != FD_UNAVAIL) { 3254 (void) close(dz_fd); 3255 dz_fd = FD_UNAVAIL; 3256 } 3257 3258 if (pr_fd != FD_UNAVAIL) { 3259 (void) close(pr_fd); 3260 pr_fd = FD_UNAVAIL; 3261 } 3262 3263 if (nu_fd != FD_UNAVAIL) { 3264 (void) close(nu_fd); 3265 nu_fd = FD_UNAVAIL; 3266 } 3267 3268 fmap_setup(); 3269 3270 /* 3271 * Reinitialize error message pointer, and any overflow indication. 3272 */ 3273 nextptr = errbuf; 3274 prevptr = 0; 3275 3276 /* 3277 * Don't drop our lock if we are running on our link-map list as 3278 * there's little point in doing so since we are single-threaded. 3279 * 3280 * LML_FLG_HOLDLOCK is set for: 3281 * *) The ld.so.1's link-map list. 3282 * *) The auditor's link-map if the environment is 3283 * libc/libthread un-unified. 3284 */ 3285 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3286 return; 3287 3288 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3289 (void) rt_mutex_unlock(&rtldlock); 3290 (void) rt_bind_clear(THR_FLG_RTLD); 3291 } 3292 } 3293 3294 int 3295 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3296 { 3297 Alist * calp, * dalp; 3298 Aliste cnt1, cnt2; 3299 Grp_hdl ** ghpp1, ** ghpp2; 3300 3301 /* 3302 * An object can always find symbols within itself. 3303 */ 3304 if (clmp == dlmp) 3305 return (1); 3306 3307 /* 3308 * Don't allow an object to bind to an object that is being deleted 3309 * unless the binder is also being deleted. 3310 */ 3311 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3312 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3313 return (0); 3314 3315 /* 3316 * An object with world access can always bind to an object with global 3317 * visibility. 3318 */ 3319 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3320 return (1); 3321 3322 /* 3323 * An object with local access can only bind to an object that is a 3324 * member of the same group. 3325 */ 3326 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3327 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3328 return (0); 3329 3330 /* 3331 * Traverse the list of groups the caller is a part of. 3332 */ 3333 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3334 /* 3335 * If we're testing for the ability of two objects to bind to 3336 * each other regardless of a specific group, ignore that group. 3337 */ 3338 if (ghp && (*ghpp1 == ghp)) 3339 continue; 3340 3341 /* 3342 * Traverse the list of groups the destination is a part of. 3343 */ 3344 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3345 if (*ghpp1 == *ghpp2) 3346 return (1); 3347 } 3348 } 3349 return (0); 3350 } 3351 3352 /* 3353 * Initialize the environ symbol. Traditionally this is carried out by the crt 3354 * code prior to jumping to main. However, init sections get fired before this 3355 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3356 * information. In addition, a process may have multiple link-maps (ld.so.1's 3357 * debugging and preloading objects), and link auditing, and each may need an 3358 * environ variable set. 3359 * 3360 * This routine is called after a relocation() pass, and thus provides for: 3361 * 3362 * o setting environ on the main link-map after the initial application and 3363 * its dependencies have been established. Typically environ lives in the 3364 * application (provided by its crt), but in older applications it might 3365 * be in libc. Who knows what's expected of applications not built on 3366 * Solaris. 3367 * 3368 * o after loading a new shared object. We can add shared objects to various 3369 * link-maps, and any link-map dependencies requiring getopt() require 3370 * their own environ. In addition, lazy loading might bring in the 3371 * supplier of environ (libc used to be a lazy loading candidate) after 3372 * the link-map has been established and other objects are present. 3373 * 3374 * This routine handles all these scenarios, without adding unnecessary overhead 3375 * to ld.so.1. 3376 */ 3377 void 3378 set_environ(Lm_list *lml) 3379 { 3380 Rt_map * dlmp; 3381 Sym * sym; 3382 Slookup sl; 3383 uint_t binfo; 3384 3385 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3386 sl.sl_cmap = lml->lm_head; 3387 sl.sl_imap = lml->lm_head; 3388 sl.sl_hash = 0; 3389 sl.sl_rsymndx = 0; 3390 sl.sl_flags = LKUP_WEAK; 3391 3392 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3393 lml->lm_environ = (char ***)sym->st_value; 3394 3395 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3396 lml->lm_environ = 3397 (char ***)((uintptr_t)lml->lm_environ + 3398 (uintptr_t)ADDR(dlmp)); 3399 *(lml->lm_environ) = (char **)environ; 3400 lml->lm_flags |= LML_FLG_ENVIRON; 3401 } 3402 } 3403 3404 /* 3405 * Determine whether we have a secure executable. Uid and gid information 3406 * can be passed to us via the aux vector, however if these values are -1 3407 * then use the appropriate system call to obtain them. 3408 * 3409 * o If the user is the root they can do anything 3410 * 3411 * o If the real and effective uid's don't match, or the real and 3412 * effective gid's don't match then this is determined to be a `secure' 3413 * application. 3414 * 3415 * This function is called prior to any dependency processing (see _setup.c). 3416 * Any secure setting will remain in effect for the life of the process. 3417 */ 3418 void 3419 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3420 { 3421 #ifdef AT_SUN_AUXFLAGS 3422 if (auxflags != -1) { 3423 if ((auxflags & AF_SUN_SETUGID) != 0) 3424 rtld_flags |= RT_FL_SECURE; 3425 return; 3426 } 3427 #endif 3428 if (uid == -1) 3429 uid = getuid(); 3430 if (uid) { 3431 if (euid == -1) 3432 euid = geteuid(); 3433 if (uid != euid) 3434 rtld_flags |= RT_FL_SECURE; 3435 else { 3436 if (gid == -1) 3437 gid = getgid(); 3438 if (egid == -1) 3439 egid = getegid(); 3440 if (gid != egid) 3441 rtld_flags |= RT_FL_SECURE; 3442 } 3443 } 3444 } 3445 3446 /* 3447 * _REENTRANT code gets errno redefined to a function so provide for return 3448 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3449 * is basically singled threaded. Provide the interface for our dependencies. 3450 */ 3451 #undef errno 3452 #pragma weak _private___errno = ___errno 3453 int * 3454 ___errno() 3455 { 3456 extern int errno; 3457 3458 return (&errno); 3459 } 3460 3461 /* 3462 * The interface with the c library which is supplied through libdl.so.1. 3463 * A non-null argument allows a function pointer array to be passed to us which 3464 * is used to re-initialize the linker libc table. 3465 */ 3466 void 3467 _ld_libc(void * ptr) 3468 { 3469 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3470 } 3471 3472 /* 3473 * Determine whether a symbol name should be demangled. 3474 */ 3475 const char * 3476 demangle(const char *name) 3477 { 3478 if (rtld_flags & RT_FL_DEMANGLE) 3479 return (conv_demangle_name(name)); 3480 else 3481 return (name); 3482 } 3483