1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for FullpathNode AVL tree. 353 */ 354 static int 355 fpavl_compare(const void * n1, const void * n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((FullpathNode *)n1)->fpn_hash; 362 hash2 = ((FullpathNode *)n2)->fpn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((FullpathNode *)n1)->fpn_name; 370 st2 = ((FullpathNode *)n2)->fpn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 381 /* 382 * Determine if a given pathname has already been loaded in the AVL tree. 383 * If the pathname does not exist in the AVL tree, the next insertion point 384 * is deposited in "where". This value can be used by fpavl_insert() to 385 * expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullpathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 400 SGSOFFSETOF(FullpathNode, fpn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_name = name; 405 fpn.fpn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 414 /* 415 * Insert a name into the FullpathNode AVL tree for the link-map list. The 416 * objects NAME() is the path that would have originally been searched for, and 417 * is therefore the name to associate with any "where" value. If the object has 418 * a different PATHNAME(), perhaps because it has resolved to a different file 419 * (see fullpath), then this name is recorded also. See load_file(). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullpathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree 439 */ 440 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_name = name; 444 fpnp->fpn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 448 free(fpnp); 449 return (0); 450 } 451 452 ASSERT(lml->lm_fpavl != NULL); 453 avl_insert(lml->lm_fpavl, fpnp, where); 454 return (1); 455 } 456 457 /* 458 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 459 * the objects link-map is torn down (remove_so), which is where any NAME() and 460 * PATHNAME() strings will be deallocated. 461 */ 462 void 463 fpavl_remove(Rt_map *lmp) 464 { 465 FullpathNode *fpnp; 466 Aliste idx; 467 468 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 469 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 470 free(fpnp); 471 } 472 free(FPNODE(lmp)); 473 FPNODE(lmp) = NULL; 474 } 475 476 477 /* 478 * Prior to calling an object, either via a .plt or through dlsym(), make sure 479 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 480 * init's in the correct order, however, this order is typically based on needed 481 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 482 * still occur and result in bindings that were not captured during topological 483 * sorting. This routine compensates for this lack of binding information, and 484 * provides for dynamic .init firing. 485 */ 486 void 487 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 488 { 489 Rt_map ** tobj; 490 491 /* 492 * If the caller is an auditor, and the destination isn't, then don't 493 * run any .inits (see comments in load_completion()). 494 */ 495 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 496 (LIST(clmp) != LIST(dlmp))) 497 return; 498 499 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 500 return; 501 502 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 503 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 504 return; 505 506 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 507 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 508 DBG_CALL(Dbg_util_no_init(dlmp)); 509 return; 510 } 511 512 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 513 tobj[0] = dlmp; 514 call_init(tobj, DBG_INIT_DYN); 515 } 516 } 517 518 /* 519 * In a threaded environment insure the thread responsible for loading an object 520 * has completed .init processing for that object before any new thread is 521 * allowed to access the object. This check is only valid with libthread 522 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 523 * 524 * When a new link-map is created, the thread that causes it to be loaded is 525 * identified by THREADID(dlmp). Compare this with the current thread to 526 * determine if it must be blocked. 527 * 528 * NOTE, there are a number of instances (typically only for .plt processing) 529 * where we must skip this test: 530 * 531 * . any thread id of 0 - threads that call thr_exit() may be in this state 532 * thus we can't deduce what tid they used to be. Also some of the 533 * lib/libthread worker threads have this id and must bind (to themselves 534 * or libc) for libthread to function. 535 * 536 * . libthread itself binds to libc, and as libthread is INITFIRST 537 * libc's .init can't have fired yet. Luckly libc's .init is not required 538 * by libthreads binding. 539 * 540 * . if the caller is an auditor, and the destination isn't, then don't 541 * block (see comments in load_completion()). 542 */ 543 void 544 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 545 { 546 thread_t tid; 547 548 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 549 (LIST(clmp) != LIST(dlmp))) 550 return; 551 552 if ((rtld_flags & RT_FL_CONCUR) && 553 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 554 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 555 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 556 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 557 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 558 DBG_CALL(Dbg_util_wait(clmp, dlmp, what)); 559 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 560 } 561 } 562 } 563 564 /* 565 * Execute .{preinit|init|fini}array sections 566 */ 567 void 568 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 569 { 570 int start, stop, incr, ndx; 571 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 572 573 if (array == NULL) 574 return; 575 576 /* 577 * initarray & preinitarray are walked from beginning to end - while 578 * finiarray is walked from end to beginning. 579 */ 580 if (shtype == SHT_FINI_ARRAY) { 581 start = arraycnt - 1; 582 stop = incr = -1; 583 } else { 584 start = 0; 585 stop = arraycnt; 586 incr = 1; 587 } 588 589 /* 590 * Call the .*array[] entries 591 */ 592 for (ndx = start; ndx != stop; ndx += incr) { 593 void (*fptr)(void) = (void(*)())array[ndx]; 594 595 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 596 597 leave(LIST(lmp)); 598 (*fptr)(); 599 (void) enter(); 600 } 601 } 602 603 604 /* 605 * Execute any .init sections. These are passed to us in an lmp array which 606 * (by default) will have been sorted. 607 */ 608 void 609 call_init(Rt_map ** tobj, int flag) 610 { 611 Rt_map ** _tobj, ** _nobj; 612 static List pending = { NULL, NULL }; 613 614 /* 615 * If we're in the middle of an INITFIRST, this must complete before 616 * any new init's are fired. In this case add the object list to the 617 * pending queue and return. We'll pick up the queue after any 618 * INITFIRST objects have their init's fired. 619 */ 620 if (rtld_flags & RT_FL_INITFIRST) { 621 (void) list_append(&pending, tobj); 622 return; 623 } 624 625 /* 626 * Traverse the tobj array firing each objects init. 627 */ 628 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 629 Rt_map * lmp = *_tobj; 630 void (* iptr)() = INIT(lmp); 631 632 if (FLAGS(lmp) & FLG_RT_INITCALL) 633 continue; 634 635 FLAGS(lmp) |= FLG_RT_INITCALL; 636 637 /* 638 * Establish an initfirst state if necessary - no other inits 639 * will be fired (because of additional relocation bindings) 640 * when in this state. 641 */ 642 if (FLAGS(lmp) & FLG_RT_INITFRST) 643 rtld_flags |= RT_FL_INITFIRST; 644 645 if (INITARRAY(lmp) || iptr) { 646 Aliste idx; 647 Bnd_desc *bdp; 648 649 /* 650 * Make sure that all dependencies that have been 651 * relocated to are initialized before this objects 652 * .init is executed. This insures that a dependency 653 * on an external item that must first be initialized 654 * by its associated object is satisfied. 655 */ 656 for (APLIST_TRAVERSE(DEPENDS(lmp), idx, bdp)) { 657 if ((bdp->b_flags & BND_REFER) == 0) 658 continue; 659 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 660 } 661 DBG_CALL(Dbg_util_call_init(lmp, flag)); 662 } 663 664 if (iptr) { 665 leave(LIST(lmp)); 666 (*iptr)(); 667 (void) enter(); 668 } 669 670 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 671 SHT_INIT_ARRAY); 672 673 if (INITARRAY(lmp) || iptr) 674 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 675 676 /* 677 * Set the initdone flag regardless of whether this object 678 * actually contains an .init section. This flag prevents us 679 * from processing this section again for an .init and also 680 * signifies that a .fini must be called should it exist. 681 * Clear the sort field for use in later .fini processing. 682 */ 683 FLAGS(lmp) |= FLG_RT_INITDONE; 684 SORTVAL(lmp) = -1; 685 686 /* 687 * Wake anyone up who might be waiting on this .init. 688 */ 689 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 690 DBG_CALL(Dbg_util_broadcast(lmp)); 691 (void) rt_cond_broadcast(CONDVAR(lmp)); 692 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 693 } 694 695 /* 696 * If we're firing an INITFIRST object, and other objects must 697 * be fired which are not INITFIRST, make sure we grab any 698 * pending objects that might have been delayed as this 699 * INITFIRST was processed. 700 */ 701 if ((rtld_flags & RT_FL_INITFIRST) && 702 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 703 Listnode * lnp; 704 Rt_map ** pobj; 705 706 rtld_flags &= ~RT_FL_INITFIRST; 707 708 while ((lnp = pending.head) != NULL) { 709 if ((pending.head = lnp->next) == NULL) 710 pending.tail = NULL; 711 pobj = lnp->data; 712 free(lnp); 713 714 call_init(pobj, DBG_INIT_PEND); 715 } 716 } 717 } 718 free(tobj); 719 } 720 721 /* 722 * Function called by atexit(3C). Calls all .fini sections related with the 723 * mains dependent shared libraries in the order in which the shared libraries 724 * have been loaded. Skip any .fini defined in the main executable, as this 725 * will be called by crt0 (main was never marked as initdone). 726 */ 727 void 728 call_fini(Lm_list * lml, Rt_map ** tobj) 729 { 730 Rt_map **_tobj; 731 732 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 733 Rt_map *clmp, * lmp = *_tobj; 734 Aliste idx; 735 Bnd_desc *bdp; 736 737 /* 738 * If concurrency checking isn't enabled only fire .fini if 739 * .init has completed. We collect all .fini sections of 740 * objects that had their .init collected, but that doesn't 741 * mean at the time that the .init had completed. 742 */ 743 if ((rtld_flags & RT_FL_CONCUR) || 744 (FLAGS(lmp) & FLG_RT_INITDONE)) { 745 void (*fptr)(void) = FINI(lmp); 746 747 if (FINIARRAY(lmp) || fptr) { 748 /* 749 * If concurrency checking is enabled make sure 750 * this object's .init is completed before 751 * calling any .fini. 752 */ 753 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 754 DBG_CALL(Dbg_util_call_fini(lmp)); 755 } 756 757 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 758 SHT_FINI_ARRAY); 759 760 if (fptr) { 761 leave(LIST(lmp)); 762 (*fptr)(); 763 (void) enter(); 764 } 765 } 766 767 /* 768 * Skip main, this is explicitly called last in atexit_fini(). 769 */ 770 if (FLAGS(lmp) & FLG_RT_ISMAIN) 771 continue; 772 773 /* 774 * Audit `close' operations at this point. The library has 775 * exercised its last instructions (regardless of whether it 776 * will be unmapped or not). 777 * 778 * First call any global auditing. 779 */ 780 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 781 _audit_objclose(&(auditors->ad_list), lmp); 782 783 /* 784 * Finally determine whether this object has local auditing 785 * requirements by inspecting itself and then its dependencies. 786 */ 787 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 788 continue; 789 790 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 791 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 792 793 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 794 clmp = bdp->b_caller; 795 796 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 797 _audit_objclose(&(AUDITORS(clmp)->ad_list), 798 lmp); 799 break; 800 } 801 } 802 } 803 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 804 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 805 806 free(tobj); 807 } 808 809 void 810 atexit_fini() 811 { 812 Rt_map ** tobj, * lmp; 813 Lm_list * lml; 814 Listnode * lnp; 815 816 (void) enter(); 817 818 rtld_flags |= RT_FL_ATEXIT; 819 820 lml = &lml_main; 821 lml->lm_flags |= LML_FLG_ATEXIT; 822 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 823 lmp = (Rt_map *)lml->lm_head; 824 825 /* 826 * Display any objects that haven't been referenced so far. 827 */ 828 unused(lml); 829 830 /* 831 * Reverse topologically sort the main link-map for .fini execution. 832 */ 833 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 834 (tobj != (Rt_map **)S_ERROR)) 835 call_fini(lml, tobj); 836 837 /* 838 * Add an explicit close to main and ld.so.1. Although main's .fini is 839 * collected in call_fini() to provide for FINITARRAY processing, its 840 * audit_objclose is explicitly skipped. This provides for it to be 841 * called last, here. This is the reverse of the explicit calls to 842 * audit_objopen() made in setup(). 843 */ 844 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 845 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 846 audit_objclose(lmp, lmp); 847 } 848 849 /* 850 * Now that all .fini code has been run, see what unreferenced objects 851 * remain. Any difference between this and the above unused() would 852 * indicate an object is only being used for .fini processing, which 853 * might be fine, but might also indicate an overhead whose removal 854 * would be worth considering. 855 */ 856 unused(lml); 857 858 /* 859 * Traverse any alternative link-map lists. 860 */ 861 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 862 /* 863 * Ignore the base-link-map list, which has already been 864 * processed, and the runtime linkers link-map list, which is 865 * typically processed last. 866 */ 867 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 868 continue; 869 870 if ((lmp = (Rt_map *)lml->lm_head) == 0) 871 continue; 872 873 lml->lm_flags |= LML_FLG_ATEXIT; 874 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 875 876 /* 877 * Reverse topologically sort the link-map for .fini execution. 878 */ 879 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 880 (tobj != (Rt_map **)S_ERROR)) 881 call_fini(lml, tobj); 882 883 unused(lml); 884 } 885 886 /* 887 * Finally reverse topologically sort the runtime linkers link-map for 888 * .fini execution. 889 */ 890 lml = &lml_rtld; 891 lml->lm_flags |= LML_FLG_ATEXIT; 892 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 893 lmp = (Rt_map *)lml->lm_head; 894 895 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 896 (tobj != (Rt_map **)S_ERROR)) 897 call_fini(lml, tobj); 898 899 leave(&lml_main); 900 } 901 902 903 /* 904 * This routine is called to complete any runtime linker activity which may have 905 * resulted in objects being loaded. This is called from all user entry points 906 * and from any internal dl*() requests. 907 */ 908 void 909 load_completion(Rt_map *nlmp) 910 { 911 Rt_map **tobj = 0; 912 Lm_list *nlml; 913 914 /* 915 * Establish any .init processing. Note, in a world of lazy loading, 916 * objects may have been loaded regardless of whether the users request 917 * was fulfilled (i.e., a dlsym() request may have failed to find a 918 * symbol but objects might have been loaded during its search). Thus, 919 * any tsorting starts from the nlmp (new link-maps) pointer and not 920 * necessarily from the link-map that may have satisfied the request. 921 * 922 * Note, the primary link-map has an initialization phase where dynamic 923 * .init firing is suppressed. This provides for a simple and clean 924 * handshake with the primary link-maps libc, which is important for 925 * establishing uberdata. In addition, auditors often obtain handles 926 * to primary link-map objects as the objects are loaded, so as to 927 * inspect the link-map for symbols. This inspection is allowed without 928 * running any code on the primary link-map, as running this code may 929 * reenter the auditor, who may not yet have finished its own 930 * initialization. 931 */ 932 if (nlmp) 933 nlml = LIST(nlmp); 934 935 if (nlmp && nlml->lm_init && 936 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 937 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 938 RT_SORT_REV)) == (Rt_map **)S_ERROR) 939 tobj = 0; 940 } 941 942 /* 943 * Make sure any alternative link-map retrieves any external interfaces 944 * and initializes threads. 945 */ 946 if (nlmp && (nlml != &lml_main)) { 947 (void) rt_get_extern(nlml, nlmp); 948 rt_thr_init(nlml); 949 } 950 951 /* 952 * Traverse the list of new link-maps and register any dynamic TLS. 953 * This storage is established for any objects not on the primary 954 * link-map, and for any objects added to the primary link-map after 955 * static TLS has been registered. 956 */ 957 if (nlmp && nlml->lm_tls && 958 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 959 Rt_map *lmp; 960 961 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 962 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 963 tls_modaddrem(lmp, TM_FLG_MODADD); 964 } 965 nlml->lm_tls = 0; 966 } 967 968 /* 969 * Fire any .init's. 970 */ 971 if (tobj) 972 call_init(tobj, DBG_INIT_SORT); 973 } 974 975 /* 976 * Append an item to the specified list, and return a pointer to the list 977 * node created. 978 */ 979 Listnode * 980 list_append(List *lst, const void *item) 981 { 982 Listnode * _lnp; 983 984 if ((_lnp = malloc(sizeof (Listnode))) == 0) 985 return (0); 986 987 _lnp->data = (void *)item; 988 _lnp->next = NULL; 989 990 if (lst->head == NULL) 991 lst->tail = lst->head = _lnp; 992 else { 993 lst->tail->next = _lnp; 994 lst->tail = lst->tail->next; 995 } 996 return (_lnp); 997 } 998 999 1000 /* 1001 * Add an item after specified listnode, and return a pointer to the list 1002 * node created. 1003 */ 1004 Listnode * 1005 list_insert(List *lst, const void *item, Listnode *lnp) 1006 { 1007 Listnode * _lnp; 1008 1009 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1010 return (0); 1011 1012 _lnp->data = (void *)item; 1013 _lnp->next = lnp->next; 1014 if (_lnp->next == NULL) 1015 lst->tail = _lnp; 1016 lnp->next = _lnp; 1017 return (_lnp); 1018 } 1019 1020 /* 1021 * Prepend an item to the specified list, and return a pointer to the 1022 * list node created. 1023 */ 1024 Listnode * 1025 list_prepend(List * lst, const void * item) 1026 { 1027 Listnode * _lnp; 1028 1029 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1030 return (0); 1031 1032 _lnp->data = (void *)item; 1033 1034 if (lst->head == NULL) { 1035 _lnp->next = NULL; 1036 lst->tail = lst->head = _lnp; 1037 } else { 1038 _lnp->next = lst->head; 1039 lst->head = _lnp; 1040 } 1041 return (_lnp); 1042 } 1043 1044 1045 /* 1046 * Delete a 'listnode' from a list. 1047 */ 1048 void 1049 list_delete(List *lst, void *item) 1050 { 1051 Listnode *clnp, *plnp; 1052 1053 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1054 if (item == clnp->data) 1055 break; 1056 plnp = clnp; 1057 } 1058 1059 if (clnp == 0) 1060 return; 1061 1062 if (lst->head == clnp) 1063 lst->head = clnp->next; 1064 if (lst->tail == clnp) 1065 lst->tail = plnp; 1066 1067 if (plnp) 1068 plnp->next = clnp->next; 1069 1070 free(clnp); 1071 } 1072 1073 /* 1074 * Append an item to the specified link map control list. 1075 */ 1076 void 1077 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1078 { 1079 Lm_cntl *lmc; 1080 int add = 1; 1081 1082 /* 1083 * Indicate that this link-map list has a new object. 1084 */ 1085 (lml->lm_obj)++; 1086 1087 /* 1088 * If we're about to add a new object to the main link-map control list, 1089 * alert the debuggers that we are about to mess with this list. 1090 * Additions of individual objects to the main link-map control list 1091 * occur during initial setup as the applications immediate dependencies 1092 * are loaded. Individual objects are also loaded on the main link-map 1093 * control list of new alternative link-map control lists. 1094 */ 1095 if ((lmco == ALIST_OFF_DATA) && 1096 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1097 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1098 1099 /* LINTED */ 1100 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1101 1102 /* 1103 * A link-map list header points to one of more link-map control lists 1104 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1105 * the list of relocated objects. Other lists maintain objects that 1106 * are still being analyzed or relocated. This list provides the core 1107 * link-map list information used by all ld.so.1 routines. 1108 */ 1109 if (lmc->lc_head == NULL) { 1110 /* 1111 * If this is the first link-map for the given control list, 1112 * initialize the list. 1113 */ 1114 lmc->lc_head = lmc->lc_tail = lmp; 1115 add = 0; 1116 1117 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1118 Rt_map *tlmp; 1119 1120 /* 1121 * If this is an interposer then append the link-map following 1122 * any other interposers (these are objects that have been 1123 * previously preloaded, or were identified with -z interpose). 1124 * Interposers can only be inserted on the first link-map 1125 * control list, as once relocation has started, interposition 1126 * from new interposers can't be guaranteed. 1127 * 1128 * NOTE: We do not interpose on the head of a list. This model 1129 * evolved because dynamic executables have already been fully 1130 * relocated within themselves and thus can't be interposed on. 1131 * Nowadays it's possible to have shared objects at the head of 1132 * a list, which conceptually means they could be interposed on. 1133 * But, shared objects can be created via dldump() and may only 1134 * be partially relocated (just relatives), in which case they 1135 * are interposable, but are marked as fixed (ET_EXEC). 1136 * 1137 * Thus we really don't have a clear method of deciding when the 1138 * head of a link-map is interposable. So, to be consistent, 1139 * for now only add interposers after the link-map lists head 1140 * object. 1141 */ 1142 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1143 tlmp = (Rt_map *)NEXT(tlmp)) { 1144 1145 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1146 continue; 1147 1148 /* 1149 * Insert the new link-map before this non-interposer, 1150 * and indicate an interposer is found. 1151 */ 1152 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1153 PREV(lmp) = PREV(tlmp); 1154 1155 NEXT(lmp) = (Link_map *)tlmp; 1156 PREV(tlmp) = (Link_map *)lmp; 1157 1158 lmc->lc_flags |= LMC_FLG_REANALYZE; 1159 add = 0; 1160 break; 1161 } 1162 } 1163 1164 /* 1165 * Fall through to appending the new link map to the tail of the list. 1166 * If we're processing the initial objects of this link-map list, add 1167 * them to the backward compatibility list. 1168 */ 1169 if (add) { 1170 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1171 PREV(lmp) = (Link_map *)lmc->lc_tail; 1172 lmc->lc_tail = lmp; 1173 } 1174 1175 /* 1176 * Having added this link-map to a control list, indicate which control 1177 * list the link-map belongs to. Note, control list information is 1178 * always maintained as an offset, as the Alist can be reallocated. 1179 */ 1180 CNTL(lmp) = lmco; 1181 1182 /* 1183 * Indicate if an interposer is found. Note that the first object on a 1184 * link-map can be explicitly defined as an interposer so that it can 1185 * provide interposition over direct binding requests. 1186 */ 1187 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1188 lml->lm_flags |= LML_FLG_INTRPOSE; 1189 1190 /* 1191 * For backward compatibility with debuggers, the link-map list contains 1192 * pointers to the main control list. 1193 */ 1194 if (lmco == ALIST_OFF_DATA) { 1195 lml->lm_head = lmc->lc_head; 1196 lml->lm_tail = lmc->lc_tail; 1197 } 1198 } 1199 1200 /* 1201 * Delete an item from the specified link map control list. 1202 */ 1203 void 1204 lm_delete(Lm_list *lml, Rt_map *lmp) 1205 { 1206 Lm_cntl *lmc; 1207 1208 /* 1209 * If the control list pointer hasn't been initialized, this object 1210 * never got added to a link-map list. 1211 */ 1212 if (CNTL(lmp) == 0) 1213 return; 1214 1215 /* 1216 * If we're about to delete an object from the main link-map control 1217 * list, alert the debuggers that we are about to mess with this list. 1218 */ 1219 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1220 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1221 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1222 1223 /* LINTED */ 1224 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1225 1226 if (lmc->lc_head == lmp) 1227 lmc->lc_head = (Rt_map *)NEXT(lmp); 1228 else 1229 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1230 1231 if (lmc->lc_tail == lmp) 1232 lmc->lc_tail = (Rt_map *)PREV(lmp); 1233 else 1234 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1235 1236 /* 1237 * For backward compatibility with debuggers, the link-map list contains 1238 * pointers to the main control list. 1239 */ 1240 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1241 lml->lm_head = lmc->lc_head; 1242 lml->lm_tail = lmc->lc_tail; 1243 } 1244 1245 /* 1246 * Indicate we have one less object on this control list. 1247 */ 1248 (lml->lm_obj)--; 1249 } 1250 1251 /* 1252 * Move a link-map control list to another. Objects that are being relocated 1253 * are maintained on secondary control lists. Once their relocation is 1254 * complete, the entire list is appended to the previous control list, as this 1255 * list must have been the trigger for generating the new control list. 1256 */ 1257 void 1258 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1259 { 1260 Rt_map *lmp; 1261 1262 /* 1263 * If we're about to add a new family of objects to the main link-map 1264 * control list, alert the debuggers that we are about to mess with this 1265 * list. Additions of object families to the main link-map control 1266 * list occur during lazy loading, filtering and dlopen(). 1267 */ 1268 if ((plmco == ALIST_OFF_DATA) && 1269 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1270 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1271 1272 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1273 1274 /* 1275 * Indicate each new link-map has been moved to the previous link-map 1276 * control list. 1277 */ 1278 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1279 CNTL(lmp) = plmco; 1280 1281 /* 1282 * Move the new link-map control list, to the callers link-map control 1283 * list. 1284 */ 1285 if (plmc->lc_head == 0) { 1286 plmc->lc_head = nlmc->lc_head; 1287 PREV(nlmc->lc_head) = 0; 1288 } else { 1289 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1290 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1291 } 1292 1293 plmc->lc_tail = nlmc->lc_tail; 1294 nlmc->lc_head = nlmc->lc_tail = 0; 1295 1296 /* 1297 * For backward compatibility with debuggers, the link-map list contains 1298 * pointers to the main control list. 1299 */ 1300 if (plmco == ALIST_OFF_DATA) { 1301 lml->lm_head = plmc->lc_head; 1302 lml->lm_tail = plmc->lc_tail; 1303 } 1304 } 1305 1306 /* 1307 * Environment variables can have a variety of defined permutations, and thus 1308 * the following infrastructure exists to allow this variety and to select the 1309 * required definition. 1310 * 1311 * Environment variables can be defined as 32- or 64-bit specific, and if so 1312 * they will take precedence over any instruction set neutral form. Typically 1313 * this is only useful when the environment value is an informational string. 1314 * 1315 * Environment variables may be obtained from the standard user environment or 1316 * from a configuration file. The latter provides a fallback if no user 1317 * environment setting is found, and can take two forms: 1318 * 1319 * . a replaceable definition - this will be used if no user environment 1320 * setting has been seen, or 1321 * 1322 * . an permanent definition - this will be used no matter what user 1323 * environment setting is seen. In the case of list variables it will be 1324 * appended to any process environment setting seen. 1325 * 1326 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1327 * override any replaceable environment variables from a configuration file. 1328 */ 1329 static u_longlong_t rplgen; /* replaceable generic */ 1330 /* variables */ 1331 static u_longlong_t rplisa; /* replaceable ISA specific */ 1332 /* variables */ 1333 static u_longlong_t prmgen; /* permanent generic */ 1334 /* variables */ 1335 static u_longlong_t prmisa; /* permanent ISA specific */ 1336 /* variables */ 1337 1338 /* 1339 * Classify an environment variables type. 1340 */ 1341 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1342 /* the wrong ISA */ 1343 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1344 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1345 /* config file */ 1346 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1347 1348 /* 1349 * Identify all environment variables. 1350 */ 1351 #define ENV_FLG_AUDIT 0x0000000001ULL 1352 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1353 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1354 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1355 #define ENV_FLG_BINDINGS 0x0000000010ULL 1356 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1357 #define ENV_FLG_CONFGEN 0x0000000040ULL 1358 #define ENV_FLG_CONFIG 0x0000000080ULL 1359 #define ENV_FLG_DEBUG 0x0000000100ULL 1360 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1361 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1362 #define ENV_FLG_FLAGS 0x0000000800ULL 1363 #define ENV_FLG_INIT 0x0000001000ULL 1364 #define ENV_FLG_LIBPATH 0x0000002000ULL 1365 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1366 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1367 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1368 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1369 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1370 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1371 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1372 #define ENV_FLG_NODIRECT 0x0000200000ULL 1373 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1374 #define ENV_FLG_NOLAZY 0x0000800000ULL 1375 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1376 #define ENV_FLG_NOVERSION 0x0002000000ULL 1377 #define ENV_FLG_PRELOAD 0x0004000000ULL 1378 #define ENV_FLG_PROFILE 0x0008000000ULL 1379 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1380 #define ENV_FLG_SIGNAL 0x0020000000ULL 1381 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1382 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1383 #define ENV_FLG_UNREF 0x0100000000ULL 1384 #define ENV_FLG_UNUSED 0x0200000000ULL 1385 #define ENV_FLG_VERBOSE 0x0400000000ULL 1386 #define ENV_FLG_WARN 0x0800000000ULL 1387 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1388 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1389 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1390 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1391 1392 #ifdef SIEBEL_DISABLE 1393 #define ENV_FLG_FIX_1 0x8000000000ULL 1394 #endif 1395 1396 #define SEL_REPLACE 0x0001 1397 #define SEL_PERMANT 0x0002 1398 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1399 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1400 #define SEL_ACT_STR 0x0400 /* setting string value */ 1401 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1402 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1403 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1404 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1405 1406 /* 1407 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1408 * and len specifies its length (comparing a strings length before the string 1409 * itself speed things up). s2 points to the token itself which has already 1410 * had any leading white-space removed. 1411 */ 1412 static void 1413 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1414 Word *lmtflags, uint_t env_flags, int aout) 1415 { 1416 u_longlong_t variable = 0; 1417 ushort_t select = 0; 1418 const char **str; 1419 Word val = 0; 1420 1421 /* 1422 * Determine whether we're dealing with a replaceable or permanent 1423 * string. 1424 */ 1425 if (env_flags & ENV_TYP_PERMANT) { 1426 /* 1427 * If the string is from a configuration file and defined as 1428 * permanent, assign it as permanent. 1429 */ 1430 select |= SEL_PERMANT; 1431 } else 1432 select |= SEL_REPLACE; 1433 1434 /* 1435 * Parse the variable given. 1436 * 1437 * The LD_AUDIT family. 1438 */ 1439 if (*s1 == 'A') { 1440 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1441 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1442 /* 1443 * Replaceable and permanent audit objects can exist. 1444 */ 1445 select |= SEL_ACT_STR; 1446 if (select & SEL_REPLACE) 1447 str = &rpl_audit; 1448 else { 1449 str = &prm_audit; 1450 rpl_audit = 0; 1451 } 1452 variable = ENV_FLG_AUDIT; 1453 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1454 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1455 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1456 /* 1457 * A specialized variable for plt_exit() use, not 1458 * documented for general use. 1459 */ 1460 select |= SEL_ACT_SPEC_2; 1461 variable = ENV_FLG_AUDIT_ARGS; 1462 } 1463 } 1464 /* 1465 * The LD_BIND family and LD_BREADTH (historic). 1466 */ 1467 else if (*s1 == 'B') { 1468 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1469 MSG_ORIG(MSG_LD_BIND_LAZY), 1470 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1471 select |= SEL_ACT_RT2; 1472 val = RT_FL2_BINDLAZY; 1473 variable = ENV_FLG_BIND_LAZY; 1474 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1475 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1476 select |= SEL_ACT_RT2; 1477 val = RT_FL2_BINDNOW; 1478 variable = ENV_FLG_BIND_NOW; 1479 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1480 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1481 /* 1482 * Another trick, enabled to help debug AOUT 1483 * applications under BCP, but not documented for 1484 * general use. 1485 */ 1486 select |= SEL_ACT_RT; 1487 val = RT_FL_NOBIND; 1488 variable = ENV_FLG_BIND_NOT; 1489 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1490 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1491 /* 1492 * This variable is simply for backward compatibility. 1493 * If this and LD_DEBUG are both specified, only one of 1494 * the strings is going to get processed. 1495 */ 1496 select |= SEL_ACT_SPEC_2; 1497 variable = ENV_FLG_BINDINGS; 1498 #ifndef LD_BREADTH_DISABLED 1499 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1500 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1501 /* 1502 * Besides some old patches this is no longer available. 1503 */ 1504 rtld_flags |= RT_FL_BREADTH; 1505 return; 1506 #endif 1507 } 1508 } 1509 /* 1510 * LD_CONCURRENCY and LD_CONFIG family. 1511 */ 1512 else if (*s1 == 'C') { 1513 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1514 MSG_ORIG(MSG_LD_CONCURRENCY), 1515 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1516 /* 1517 * Waiting in the wings, as concurrency checking isn't 1518 * yet enabled. 1519 */ 1520 select |= SEL_ACT_SPEC_2; 1521 variable = ENV_FLG_CONCURRENCY; 1522 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1523 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1524 /* 1525 * Set by crle(1) to indicate it's building a 1526 * configuration file, not documented for general use. 1527 */ 1528 select |= SEL_ACT_SPEC_2; 1529 variable = ENV_FLG_CONFGEN; 1530 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1531 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1532 /* 1533 * Secure applications must use a default configuration 1534 * file. A setting from a configuration file doesn't 1535 * make sense (given we must be reading a configuration 1536 * file to have gotten this). 1537 */ 1538 if ((rtld_flags & RT_FL_SECURE) || 1539 (env_flags & ENV_TYP_CONFIG)) 1540 return; 1541 select |= SEL_ACT_STR; 1542 str = &config->c_name; 1543 variable = ENV_FLG_CONFIG; 1544 } 1545 } 1546 /* 1547 * The LD_DEBUG family and LD_DEMANGLE. 1548 */ 1549 else if (*s1 == 'D') { 1550 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1551 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1552 select |= SEL_ACT_STR; 1553 if (select & SEL_REPLACE) 1554 str = &rpl_debug; 1555 else { 1556 str = &prm_debug; 1557 rpl_debug = 0; 1558 } 1559 variable = ENV_FLG_DEBUG; 1560 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1561 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1562 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1563 select |= SEL_ACT_STR; 1564 str = &dbg_file; 1565 variable = ENV_FLG_DEBUG_OUTPUT; 1566 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1568 select |= SEL_ACT_RT; 1569 val = RT_FL_DEMANGLE; 1570 variable = ENV_FLG_DEMANGLE; 1571 } 1572 } 1573 /* 1574 * LD_FLAGS - collect the best variable definition. On completion of 1575 * environment variable processing pass the result to ld_flags_env() 1576 * where they'll be decomposed and passed back to this routine. 1577 */ 1578 else if (*s1 == 'F') { 1579 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1580 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1581 select |= SEL_ACT_SPEC_1; 1582 if (select & SEL_REPLACE) 1583 str = &rpl_ldflags; 1584 else { 1585 str = &prm_ldflags; 1586 rpl_ldflags = 0; 1587 } 1588 variable = ENV_FLG_FLAGS; 1589 } 1590 } 1591 /* 1592 * LD_INIT (internal, used by ldd(1)). 1593 */ 1594 else if (*s1 == 'I') { 1595 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1596 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1597 select |= SEL_ACT_LML; 1598 val = LML_FLG_TRC_INIT; 1599 variable = ENV_FLG_INIT; 1600 } 1601 } 1602 /* 1603 * The LD_LIBRARY_PATH and LD_LOAD families. 1604 */ 1605 else if (*s1 == 'L') { 1606 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1607 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1608 select |= SEL_ACT_SPEC_1; 1609 if (select & SEL_REPLACE) 1610 str = &rpl_libpath; 1611 else { 1612 str = &prm_libpath; 1613 rpl_libpath = 0; 1614 } 1615 variable = ENV_FLG_LIBPATH; 1616 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1617 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1618 /* 1619 * Internal use by crle(1), not documented for general 1620 * use. 1621 */ 1622 select |= SEL_ACT_LML; 1623 val = LML_FLG_LOADAVAIL; 1624 variable = ENV_FLG_LOADAVAIL; 1625 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1627 select |= SEL_ACT_SPEC_2; 1628 variable = ENV_FLG_LOADFLTR; 1629 } 1630 } 1631 /* 1632 * The LD_NO family. 1633 */ 1634 else if (*s1 == 'N') { 1635 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1636 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1637 select |= SEL_ACT_RT; 1638 val = RT_FL_NOAUDIT; 1639 variable = ENV_FLG_NOAUDIT; 1640 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1641 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1642 select |= SEL_ACT_RT; 1643 val = RT_FL_NOAUXFLTR; 1644 variable = ENV_FLG_NOAUXFLTR; 1645 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1646 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1647 select |= SEL_ACT_RT; 1648 val = RT_FL_NOBAPLT; 1649 variable = ENV_FLG_NOBAPLT; 1650 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1651 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1652 select |= SEL_ACT_RT; 1653 val = RT_FL_NOCFG; 1654 variable = ENV_FLG_NOCONFIG; 1655 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1656 MSG_ORIG(MSG_LD_NODIRCONFIG), 1657 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1658 select |= SEL_ACT_RT; 1659 val = RT_FL_NODIRCFG; 1660 variable = ENV_FLG_NODIRCONFIG; 1661 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1662 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1663 select |= SEL_ACT_LMLT; 1664 val = LML_TFLG_NODIRECT; 1665 variable = ENV_FLG_NODIRECT; 1666 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1667 MSG_ORIG(MSG_LD_NOENVCONFIG), 1668 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1669 select |= SEL_ACT_RT; 1670 val = RT_FL_NOENVCFG; 1671 variable = ENV_FLG_NOENVCONFIG; 1672 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1673 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1674 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1675 select |= SEL_ACT_RT2; 1676 val = RT_FL2_NOFLTCFG; 1677 variable = ENV_FLG_NOFLTCONFIG; 1678 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1679 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1680 select |= SEL_ACT_LMLT; 1681 val = LML_TFLG_NOLAZYLD; 1682 variable = ENV_FLG_NOLAZY; 1683 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1684 MSG_ORIG(MSG_LD_NOOBJALTER), 1685 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1686 select |= SEL_ACT_RT; 1687 val = RT_FL_NOOBJALT; 1688 variable = ENV_FLG_NOOBJALTER; 1689 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1690 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1691 select |= SEL_ACT_RT; 1692 val = RT_FL_NOVERSION; 1693 variable = ENV_FLG_NOVERSION; 1694 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1695 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1696 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1697 /* 1698 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1699 */ 1700 select |= SEL_ACT_LML; 1701 val = LML_FLG_TRC_NOUNRESWEAK; 1702 variable = ENV_FLG_NOUNRESWEAK; 1703 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1704 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1705 select |= SEL_ACT_LML; 1706 val = LML_FLG_TRC_NOPAREXT; 1707 variable = ENV_FLG_NOPAREXT; 1708 } 1709 } 1710 /* 1711 * LD_ORIGIN. 1712 */ 1713 else if (*s1 == 'O') { 1714 #ifndef EXPAND_RELATIVE 1715 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1716 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1717 /* 1718 * Besides some old patches this is no longer required. 1719 */ 1720 rtld_flags |= RT_FL_RELATIVE; 1721 } 1722 #endif 1723 return; 1724 } 1725 /* 1726 * LD_PRELOAD and LD_PROFILE family. 1727 */ 1728 else if (*s1 == 'P') { 1729 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1730 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1731 select |= SEL_ACT_STR; 1732 if (select & SEL_REPLACE) 1733 str = &rpl_preload; 1734 else { 1735 str = &prm_preload; 1736 rpl_preload = 0; 1737 } 1738 variable = ENV_FLG_PRELOAD; 1739 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1740 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1741 /* 1742 * Only one user library can be profiled at a time. 1743 */ 1744 select |= SEL_ACT_SPEC_2; 1745 variable = ENV_FLG_PROFILE; 1746 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1747 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1748 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1749 /* 1750 * Only one user library can be profiled at a time. 1751 */ 1752 select |= SEL_ACT_STR; 1753 str = &profile_out; 1754 variable = ENV_FLG_PROFILE_OUTPUT; 1755 } 1756 } 1757 /* 1758 * LD_SIGNAL. 1759 */ 1760 else if (*s1 == 'S') { 1761 if (rtld_flags & RT_FL_SECURE) 1762 return; 1763 if ((len == MSG_LD_SIGNAL_SIZE) && 1764 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1765 MSG_LD_SIGNAL_SIZE) == 0)) { 1766 select |= SEL_ACT_SPEC_2; 1767 variable = ENV_FLG_SIGNAL; 1768 } 1769 } 1770 /* 1771 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1772 * the key to enabling all other ldd(1) specific environment variables. 1773 * In case an auditor is called, which in turn might exec(2) a 1774 * subprocess, this variable is disabled, so that any subprocess 1775 * escapes ldd(1) processing. 1776 */ 1777 else if (*s1 == 'T') { 1778 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1779 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1780 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1781 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1782 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1783 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1784 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1785 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1786 char *s0 = (char *)s1; 1787 1788 select |= SEL_ACT_SPEC_2; 1789 variable = ENV_FLG_TRACE_OBJS; 1790 1791 #if defined(__sparc) || defined(__x86) 1792 /* 1793 * The simplest way to "disable" this variable is to 1794 * truncate this string to "LD_'\0'". This string is 1795 * ignored by any ld.so.1 environment processing. 1796 * Use of such interfaces as unsetenv(3c) are overkill, 1797 * and would drag too much libc implementation detail 1798 * into ld.so.1. 1799 */ 1800 *s0 = '\0'; 1801 #else 1802 /* 1803 * Verify that the above write is appropriate for any new platforms. 1804 */ 1805 #error unsupported architecture! 1806 #endif 1807 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1808 MSG_ORIG(MSG_LD_TRACE_PTHS), 1809 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1810 select |= SEL_ACT_LML; 1811 val = LML_FLG_TRC_SEARCH; 1812 variable = ENV_FLG_TRACE_PTHS; 1813 } 1814 } 1815 /* 1816 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1817 */ 1818 else if (*s1 == 'U') { 1819 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1820 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1821 select |= SEL_ACT_LML; 1822 val = LML_FLG_TRC_UNREF; 1823 variable = ENV_FLG_UNREF; 1824 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1825 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1826 select |= SEL_ACT_LML; 1827 val = LML_FLG_TRC_UNUSED; 1828 variable = ENV_FLG_UNUSED; 1829 } 1830 } 1831 /* 1832 * LD_VERBOSE (internal, used by ldd(1)). 1833 */ 1834 else if (*s1 == 'V') { 1835 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1836 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1837 select |= SEL_ACT_LML; 1838 val = LML_FLG_TRC_VERBOSE; 1839 variable = ENV_FLG_VERBOSE; 1840 } 1841 } 1842 /* 1843 * LD_WARN (internal, used by ldd(1)). 1844 */ 1845 else if (*s1 == 'W') { 1846 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1847 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1848 select |= SEL_ACT_LML; 1849 val = LML_FLG_TRC_WARN; 1850 variable = ENV_FLG_WARN; 1851 } 1852 #ifdef SIEBEL_DISABLE 1853 } 1854 /* 1855 * LD__FIX__ (undocumented, enable future technology that can't be 1856 * delivered in a patch release). 1857 */ 1858 else if (*s1 == '_') { 1859 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1860 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1861 select |= SEL_ACT_RT; 1862 val = RT_FL_DISFIX_1; 1863 variable = ENV_FLG_FIX_1; 1864 } 1865 #endif 1866 } 1867 if (variable == 0) 1868 return; 1869 1870 /* 1871 * If the variable is already processed with ISA specific variable, 1872 * no further processing needed. 1873 */ 1874 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1875 ((select & SEL_PERMANT) && (prmisa & variable))) 1876 return; 1877 1878 /* 1879 * Now mark the appropriate variables. 1880 * If the replaceable variable is already set, then the 1881 * process environment variable must be set. Any replaceable 1882 * variable specified in a configuration file can be ignored. 1883 */ 1884 if (env_flags & ENV_TYP_ISA) { 1885 /* 1886 * This is ISA setting. We do the setting 1887 * even if s2 is NULL. 1888 * If s2 is NULL, we might need to undo 1889 * the setting. 1890 */ 1891 if (select & SEL_REPLACE) { 1892 if (rplisa & variable) 1893 return; 1894 rplisa |= variable; 1895 } else { 1896 prmisa |= variable; 1897 } 1898 } else if (s2) { 1899 /* 1900 * This is non0-ISA setting 1901 */ 1902 if (select & SEL_REPLACE) { 1903 if (rplgen & variable) 1904 return; 1905 rplgen |= variable; 1906 } else 1907 prmgen |= variable; 1908 } else 1909 /* 1910 * This is non-ISA setting which 1911 * can be ignored. 1912 */ 1913 return; 1914 1915 /* 1916 * Now perform the setting. 1917 */ 1918 if (select & SEL_ACT_RT) { 1919 if (s2) 1920 rtld_flags |= val; 1921 else 1922 rtld_flags &= ~val; 1923 } else if (select & SEL_ACT_RT2) { 1924 if (s2) 1925 rtld_flags2 |= val; 1926 else 1927 rtld_flags2 &= ~val; 1928 } else if (select & SEL_ACT_STR) 1929 *str = s2; 1930 else if (select & SEL_ACT_LML) { 1931 if (s2) 1932 *lmflags |= val; 1933 else 1934 *lmflags &= ~val; 1935 } else if (select & SEL_ACT_LMLT) { 1936 if (s2) 1937 *lmtflags |= val; 1938 else 1939 *lmtflags &= ~val; 1940 } else if (select & SEL_ACT_SPEC_1) { 1941 /* 1942 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1943 */ 1944 *str = s2; 1945 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1946 if (s2) { 1947 if (variable == ENV_FLG_FLAGS) 1948 env_info |= ENV_INF_FLAGCFG; 1949 else 1950 env_info |= ENV_INF_PATHCFG; 1951 } else { 1952 if (variable == ENV_FLG_FLAGS) 1953 env_info &= ~ENV_INF_FLAGCFG; 1954 else 1955 env_info &= ~ENV_INF_PATHCFG; 1956 } 1957 } 1958 } else if (select & SEL_ACT_SPEC_2) { 1959 /* 1960 * variables can be: ENV_FLG_ 1961 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1962 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1963 */ 1964 if (variable == ENV_FLG_AUDIT_ARGS) { 1965 if (s2) { 1966 audit_argcnt = atoi(s2); 1967 audit_argcnt += audit_argcnt % 2; 1968 } else 1969 audit_argcnt = 0; 1970 } else if (variable == ENV_FLG_BINDINGS) { 1971 if (s2) 1972 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1973 else 1974 rpl_debug = 0; 1975 } else if (variable == ENV_FLG_CONCURRENCY) { 1976 if (s2) 1977 rtld_flags &= ~RT_FL_NOCONCUR; 1978 else 1979 rtld_flags |= RT_FL_NOCONCUR; 1980 } else if (variable == ENV_FLG_CONFGEN) { 1981 if (s2) { 1982 rtld_flags |= RT_FL_CONFGEN; 1983 *lmflags |= LML_FLG_IGNRELERR; 1984 } else { 1985 rtld_flags &= ~RT_FL_CONFGEN; 1986 *lmflags &= ~LML_FLG_IGNRELERR; 1987 } 1988 } else if (variable == ENV_FLG_LOADFLTR) { 1989 if (s2) { 1990 *lmtflags |= LML_TFLG_LOADFLTR; 1991 if (*s2 == '2') 1992 rtld_flags |= RT_FL_WARNFLTR; 1993 } else { 1994 *lmtflags &= ~LML_TFLG_LOADFLTR; 1995 rtld_flags &= ~RT_FL_WARNFLTR; 1996 } 1997 } else if (variable == ENV_FLG_PROFILE) { 1998 profile_name = s2; 1999 if (s2) { 2000 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2001 return; 2002 } 2003 /* BEGIN CSTYLED */ 2004 if (rtld_flags & RT_FL_SECURE) { 2005 profile_lib = 2006 #if defined(_ELF64) 2007 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2008 #else 2009 MSG_ORIG(MSG_PTH_LDPROFSE); 2010 #endif 2011 } else { 2012 profile_lib = 2013 #if defined(_ELF64) 2014 MSG_ORIG(MSG_PTH_LDPROF_64); 2015 #else 2016 MSG_ORIG(MSG_PTH_LDPROF); 2017 #endif 2018 } 2019 /* END CSTYLED */ 2020 } else 2021 profile_lib = 0; 2022 } else if (variable == ENV_FLG_SIGNAL) { 2023 killsig = s2 ? atoi(s2) : SIGKILL; 2024 } else if (variable == ENV_FLG_TRACE_OBJS) { 2025 if (s2) { 2026 *lmflags |= LML_FLG_TRC_ENABLE; 2027 if (*s2 == '2') 2028 *lmflags |= LML_FLG_TRC_LDDSTUB; 2029 } else 2030 *lmflags &= 2031 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2032 } 2033 } 2034 } 2035 2036 /* 2037 * Determine whether we have an architecture specific environment variable. 2038 * If we do, and we're the wrong architecture, it'll just get ignored. 2039 * Otherwise the variable is processed in it's architecture neutral form. 2040 */ 2041 static int 2042 ld_arch_env(const char *s1, size_t *len) 2043 { 2044 size_t _len = *len - 3; 2045 2046 if (s1[_len++] == '_') { 2047 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2048 #if defined(_ELF64) 2049 return (ENV_TYP_IGNORE); 2050 #else 2051 *len = *len - 3; 2052 return (ENV_TYP_ISA); 2053 #endif 2054 } 2055 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2056 #if defined(_ELF64) 2057 *len = *len - 3; 2058 return (ENV_TYP_ISA); 2059 #else 2060 return (ENV_TYP_IGNORE); 2061 #endif 2062 } 2063 } 2064 return (0); 2065 } 2066 2067 2068 /* 2069 * Process an LD_FLAGS environment variable. The value can be a comma 2070 * separated set of tokens, which are sent (in upper case) into the generic 2071 * LD_XXXX environment variable engine. For example: 2072 * 2073 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2074 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2075 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2076 * or 2077 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2078 */ 2079 static int 2080 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2081 uint_t env_flags, int aout) 2082 { 2083 char *nstr, *sstr, *estr = 0; 2084 size_t nlen, len; 2085 2086 if (str == 0) 2087 return (0); 2088 2089 /* 2090 * Create a new string as we're going to transform the token(s) into 2091 * uppercase and separate tokens with nulls. 2092 */ 2093 len = strlen(str); 2094 if ((nstr = malloc(len + 1)) == 0) 2095 return (1); 2096 (void) strcpy(nstr, str); 2097 2098 for (sstr = nstr; sstr; sstr++, len--) { 2099 int flags; 2100 2101 if ((*sstr != '\0') && (*sstr != ',')) { 2102 if (estr == 0) { 2103 if (*sstr == '=') 2104 estr = sstr; 2105 else { 2106 /* 2107 * Translate token to uppercase. Don't 2108 * use toupper(3C) as including this 2109 * code doubles the size of ld.so.1. 2110 */ 2111 if ((*sstr >= 'a') && (*sstr <= 'z')) 2112 *sstr = *sstr - ('a' - 'A'); 2113 } 2114 } 2115 continue; 2116 } 2117 2118 *sstr = '\0'; 2119 if (estr) { 2120 nlen = estr - nstr; 2121 if ((*++estr == '\0') || (*estr == ',')) 2122 estr = 0; 2123 } else 2124 nlen = sstr - nstr; 2125 2126 /* 2127 * Fabricate a boolean definition for any unqualified variable. 2128 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2129 * The value is sufficient to assert any boolean variables, plus 2130 * the term "(null)" is specifically chosen in case someone 2131 * mistakenly supplies something like LD_FLAGS=library_path. 2132 */ 2133 if (estr == 0) 2134 estr = (char *)MSG_INTL(MSG_STR_NULL); 2135 2136 /* 2137 * Determine whether the environment variable is 32- or 64-bit 2138 * specific. The length, len, will reflect the architecture 2139 * neutral portion of the string. 2140 */ 2141 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2142 ld_generic_env(nstr, nlen, estr, lmflags, 2143 lmtflags, (env_flags | flags), aout); 2144 } 2145 if (len == 0) 2146 return (0); 2147 2148 nstr = sstr + 1; 2149 estr = 0; 2150 } 2151 return (0); 2152 } 2153 2154 2155 /* 2156 * Process a single environment string. Only strings starting with `LD_' are 2157 * reserved for our use. By convention, all strings should be of the form 2158 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2159 * functionality is enabled. Also pick off applicable locale variables. 2160 */ 2161 #define LOC_LANG 1 2162 #define LOC_MESG 2 2163 #define LOC_ALL 3 2164 2165 static void 2166 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2167 int aout) 2168 { 2169 const char *s2; 2170 static size_t loc = 0; 2171 2172 if (*s1++ != 'L') 2173 return; 2174 2175 /* 2176 * See if we have any locale environment settings. These environment 2177 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2178 * is higher than LANG. 2179 */ 2180 s2 = s1; 2181 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2182 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2183 s2 += MSG_LC_ALL_SIZE; 2184 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2185 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2186 loc = LOC_ALL; 2187 } 2188 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2189 MSG_LC_MESSAGES_SIZE) == 0) { 2190 s2 += MSG_LC_MESSAGES_SIZE; 2191 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2192 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2193 loc = LOC_MESG; 2194 } 2195 } 2196 return; 2197 } 2198 2199 s2 = s1; 2200 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2201 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2202 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2203 loc = LOC_LANG; 2204 return; 2205 } 2206 2207 /* 2208 * Pick off any LD_XXXX environment variables. 2209 */ 2210 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2211 size_t len; 2212 int flags; 2213 2214 /* 2215 * In a branded process we must ignore all LD_XXXX env vars 2216 * because they are intended for the brand's linker. 2217 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2218 */ 2219 if (rtld_flags2 & RT_FL2_BRANDED) { 2220 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2221 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2222 return; 2223 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2224 } 2225 2226 /* 2227 * Environment variables with no value (ie. LD_XXXX=) typically 2228 * have no impact, however if environment variables are defined 2229 * within a configuration file, these null user settings can be 2230 * used to disable any configuration replaceable definitions. 2231 */ 2232 if ((s2 = strchr(s1, '=')) == 0) { 2233 len = strlen(s1); 2234 s2 = 0; 2235 } else if (*++s2 == '\0') { 2236 len = strlen(s1) - 1; 2237 s2 = 0; 2238 } else { 2239 len = s2 - s1 - 1; 2240 while (isspace(*s2)) 2241 s2++; 2242 } 2243 2244 /* 2245 * Determine whether the environment variable is 32- or 64-bit 2246 * specific. The length, len, will reflect the architecture 2247 * neutral portion of the string. 2248 */ 2249 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2250 return; 2251 env_flags |= flags; 2252 2253 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2254 } 2255 } 2256 2257 /* 2258 * Internal getenv routine. Called immediately after ld.so.1 initializes 2259 * itself. 2260 */ 2261 int 2262 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2263 { 2264 char *locale; 2265 2266 if (envp == (const char **)0) 2267 return (0); 2268 2269 while (*envp != (const char *)0) 2270 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2271 2272 /* 2273 * Having collected the best representation of any LD_FLAGS, process 2274 * these strings. 2275 */ 2276 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2277 return (1); 2278 2279 /* 2280 * Don't allow environment controlled auditing when tracing or if 2281 * explicitly disabled. Trigger all tracing modes from 2282 * LML_FLG_TRC_ENABLE. 2283 */ 2284 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2285 rpl_audit = profile_lib = profile_name = 0; 2286 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2287 *lmflags &= ~LML_MSK_TRC; 2288 2289 /* 2290 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2291 */ 2292 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2293 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2294 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2295 2296 /* 2297 * When using ldd(1) -r or -d against an executable, assert -p. 2298 */ 2299 if ((*lmflags & 2300 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2301 *lmflags |= LML_FLG_TRC_NOPAREXT; 2302 2303 /* 2304 * If we have a locale setting make sure its worth processing further. 2305 * C and POSIX locales don't need any processing. In addition, to 2306 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2307 * the locale to contain a segment that leads upward in the file system 2308 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2309 * the /usr/lib/locale hierarchy, there is no need to extensively 2310 * validate the mode or ownership of any message file (as libc's 2311 * generic handling of message files does). Duplicate the string so 2312 * that new locale setting can generically cleanup any previous locales. 2313 */ 2314 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2315 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2316 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2317 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2318 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2319 else 2320 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2321 } 2322 return (0); 2323 } 2324 2325 /* 2326 * Configuration environment processing. Called after the a.out has been 2327 * processed (as the a.out can specify its own configuration file). 2328 */ 2329 int 2330 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2331 { 2332 Word * lmflags = &(lml_main.lm_flags); 2333 Word * lmtflags = &(lml_main.lm_tflags); 2334 2335 if (envtbl == (Rtc_env *)0) 2336 return (0); 2337 2338 while (envtbl->env_str) { 2339 uint_t env_flags = ENV_TYP_CONFIG; 2340 2341 if (envtbl->env_flags & RTC_ENV_PERMANT) 2342 env_flags |= ENV_TYP_PERMANT; 2343 2344 ld_str_env((const char *)(envtbl->env_str + addr), 2345 lmflags, lmtflags, env_flags, 0); 2346 envtbl++; 2347 } 2348 2349 /* 2350 * Having collected the best representation of any LD_FLAGS, process 2351 * these strings. 2352 */ 2353 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2354 return (1); 2355 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2356 aout) == 1) 2357 return (1); 2358 2359 /* 2360 * Don't allow environment controlled auditing when tracing or if 2361 * explicitly disabled. Trigger all tracing modes from 2362 * LML_FLG_TRC_ENABLE. 2363 */ 2364 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2365 prm_audit = profile_lib = profile_name = 0; 2366 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2367 *lmflags &= ~LML_MSK_TRC; 2368 2369 return (0); 2370 } 2371 2372 int 2373 dowrite(Prfbuf * prf) 2374 { 2375 /* 2376 * We do not have a valid file descriptor, so we are unable 2377 * to flush the buffer. 2378 */ 2379 if (prf->pr_fd == -1) 2380 return (0); 2381 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2382 prf->pr_cur = prf->pr_buf; 2383 return (1); 2384 } 2385 2386 /* 2387 * Simplified printing. The following conversion specifications are supported: 2388 * 2389 * % [#] [-] [min field width] [. precision] s|d|x|c 2390 * 2391 * 2392 * dorprf takes the output buffer in the form of Prfbuf which permits 2393 * the verification of the output buffer size and the concatenation 2394 * of data to an already existing output buffer. The Prfbuf 2395 * structure contains the following: 2396 * 2397 * pr_buf pointer to the beginning of the output buffer. 2398 * pr_cur pointer to the next available byte in the output buffer. By 2399 * setting pr_cur ahead of pr_buf you can append to an already 2400 * existing buffer. 2401 * pr_len the size of the output buffer. By setting pr_len to '0' you 2402 * disable protection from overflows in the output buffer. 2403 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2404 * output to. If pr_fd is set to '-1' then it's assumed there is 2405 * no output buffer, and doprf() will return with an error to 2406 * indicate an output buffer overflow. If pr_fd is > -1 then when 2407 * the output buffer is filled it will be flushed to pr_fd and will 2408 * then be available for additional data. 2409 */ 2410 #define FLG_UT_MINUS 0x0001 /* - */ 2411 #define FLG_UT_SHARP 0x0002 /* # */ 2412 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2413 2414 /* 2415 * This macro is for use from within doprf only. It is to be used for checking 2416 * the output buffer size and placing characters into the buffer. 2417 */ 2418 #define PUTC(c) \ 2419 { \ 2420 char tmpc; \ 2421 \ 2422 tmpc = (c); \ 2423 if (bufsiz && (bp >= bufend)) { \ 2424 prf->pr_cur = bp; \ 2425 if (dowrite(prf) == 0) \ 2426 return (0); \ 2427 bp = prf->pr_cur; \ 2428 } \ 2429 *bp++ = tmpc; \ 2430 } 2431 2432 /* 2433 * Define a local buffer size for building a numeric value - large enough to 2434 * hold a 64-bit value. 2435 */ 2436 #define NUM_SIZE 22 2437 2438 size_t 2439 doprf(const char *format, va_list args, Prfbuf *prf) 2440 { 2441 char c; 2442 char *bp = prf->pr_cur; 2443 char *bufend = prf->pr_buf + prf->pr_len; 2444 size_t bufsiz = prf->pr_len; 2445 2446 while ((c = *format++) != '\0') { 2447 if (c != '%') { 2448 PUTC(c); 2449 } else { 2450 int base = 0, flag = 0, width = 0, prec = 0; 2451 size_t _i; 2452 int _c, _n; 2453 char *_s; 2454 int ls = 0; 2455 again: 2456 c = *format++; 2457 switch (c) { 2458 case '-': 2459 flag |= FLG_UT_MINUS; 2460 goto again; 2461 case '#': 2462 flag |= FLG_UT_SHARP; 2463 goto again; 2464 case '.': 2465 flag |= FLG_UT_DOTSEEN; 2466 goto again; 2467 case '0': 2468 case '1': 2469 case '2': 2470 case '3': 2471 case '4': 2472 case '5': 2473 case '6': 2474 case '7': 2475 case '8': 2476 case '9': 2477 if (flag & FLG_UT_DOTSEEN) 2478 prec = (prec * 10) + c - '0'; 2479 else 2480 width = (width * 10) + c - '0'; 2481 goto again; 2482 case 'x': 2483 case 'X': 2484 base = 16; 2485 break; 2486 case 'd': 2487 case 'D': 2488 case 'u': 2489 base = 10; 2490 flag &= ~FLG_UT_SHARP; 2491 break; 2492 case 'l': 2493 base = 10; 2494 ls++; /* number of l's (long or long long) */ 2495 if ((*format == 'l') || 2496 (*format == 'd') || (*format == 'D') || 2497 (*format == 'x') || (*format == 'X') || 2498 (*format == 'o') || (*format == 'O')) 2499 goto again; 2500 break; 2501 case 'o': 2502 case 'O': 2503 base = 8; 2504 break; 2505 case 'c': 2506 _c = va_arg(args, int); 2507 2508 for (_i = 24; _i > 0; _i -= 8) { 2509 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2510 PUTC(c); 2511 } 2512 } 2513 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2514 PUTC(c); 2515 } 2516 break; 2517 case 's': 2518 _s = va_arg(args, char *); 2519 _i = strlen(_s); 2520 /* LINTED */ 2521 _n = (int)(width - _i); 2522 if (!prec) 2523 /* LINTED */ 2524 prec = (int)_i; 2525 2526 if (width && !(flag & FLG_UT_MINUS)) { 2527 while (_n-- > 0) 2528 PUTC(' '); 2529 } 2530 while (((c = *_s++) != 0) && prec--) { 2531 PUTC(c); 2532 } 2533 if (width && (flag & FLG_UT_MINUS)) { 2534 while (_n-- > 0) 2535 PUTC(' '); 2536 } 2537 break; 2538 case '%': 2539 PUTC('%'); 2540 break; 2541 default: 2542 break; 2543 } 2544 2545 /* 2546 * Numeric processing 2547 */ 2548 if (base) { 2549 char local[NUM_SIZE]; 2550 size_t ssize = 0, psize = 0; 2551 const char *string = 2552 MSG_ORIG(MSG_STR_HEXNUM); 2553 const char *prefix = 2554 MSG_ORIG(MSG_STR_EMPTY); 2555 u_longlong_t num; 2556 2557 switch (ls) { 2558 case 0: /* int */ 2559 num = (u_longlong_t) 2560 va_arg(args, uint_t); 2561 break; 2562 case 1: /* long */ 2563 num = (u_longlong_t) 2564 va_arg(args, ulong_t); 2565 break; 2566 case 2: /* long long */ 2567 num = va_arg(args, u_longlong_t); 2568 break; 2569 } 2570 2571 if (flag & FLG_UT_SHARP) { 2572 if (base == 16) { 2573 prefix = MSG_ORIG(MSG_STR_HEX); 2574 psize = 2; 2575 } else { 2576 prefix = MSG_ORIG(MSG_STR_ZERO); 2577 psize = 1; 2578 } 2579 } 2580 if ((base == 10) && (long)num < 0) { 2581 prefix = MSG_ORIG(MSG_STR_NEGATE); 2582 psize = MSG_STR_NEGATE_SIZE; 2583 num = (u_longlong_t)(-(longlong_t)num); 2584 } 2585 2586 /* 2587 * Convert the numeric value into a local 2588 * string (stored in reverse order). 2589 */ 2590 _s = local; 2591 do { 2592 *_s++ = string[num % base]; 2593 num /= base; 2594 ssize++; 2595 } while (num); 2596 2597 ASSERT(ssize < sizeof (local)); 2598 2599 /* 2600 * Provide any precision or width padding. 2601 */ 2602 if (prec) { 2603 /* LINTED */ 2604 _n = (int)(prec - ssize); 2605 while ((_n-- > 0) && 2606 (ssize < sizeof (local))) { 2607 *_s++ = '0'; 2608 ssize++; 2609 } 2610 } 2611 if (width && !(flag & FLG_UT_MINUS)) { 2612 /* LINTED */ 2613 _n = (int)(width - ssize - psize); 2614 while (_n-- > 0) { 2615 PUTC(' '); 2616 } 2617 } 2618 2619 /* 2620 * Print any prefix and the numeric string 2621 */ 2622 while (*prefix) 2623 PUTC(*prefix++); 2624 do { 2625 PUTC(*--_s); 2626 } while (_s > local); 2627 2628 /* 2629 * Provide any width padding. 2630 */ 2631 if (width && (flag & FLG_UT_MINUS)) { 2632 /* LINTED */ 2633 _n = (int)(width - ssize - psize); 2634 while (_n-- > 0) 2635 PUTC(' '); 2636 } 2637 } 2638 } 2639 } 2640 2641 PUTC('\0'); 2642 prf->pr_cur = bp; 2643 return (1); 2644 } 2645 2646 static int 2647 doprintf(const char *format, va_list args, Prfbuf *prf) 2648 { 2649 char *ocur = prf->pr_cur; 2650 2651 if (doprf(format, args, prf) == 0) 2652 return (0); 2653 /* LINTED */ 2654 return ((int)(prf->pr_cur - ocur)); 2655 } 2656 2657 /* VARARGS2 */ 2658 int 2659 sprintf(char *buf, const char *format, ...) 2660 { 2661 va_list args; 2662 int len; 2663 Prfbuf prf; 2664 2665 va_start(args, format); 2666 prf.pr_buf = prf.pr_cur = buf; 2667 prf.pr_len = 0; 2668 prf.pr_fd = -1; 2669 len = doprintf(format, args, &prf); 2670 va_end(args); 2671 2672 /* 2673 * sprintf() return value excludes the terminating null byte. 2674 */ 2675 return (len - 1); 2676 } 2677 2678 /* VARARGS3 */ 2679 int 2680 snprintf(char *buf, size_t n, const char *format, ...) 2681 { 2682 va_list args; 2683 int len; 2684 Prfbuf prf; 2685 2686 va_start(args, format); 2687 prf.pr_buf = prf.pr_cur = buf; 2688 prf.pr_len = n; 2689 prf.pr_fd = -1; 2690 len = doprintf(format, args, &prf); 2691 va_end(args); 2692 2693 return (len); 2694 } 2695 2696 /* VARARGS2 */ 2697 int 2698 bufprint(Prfbuf *prf, const char *format, ...) 2699 { 2700 va_list args; 2701 int len; 2702 2703 va_start(args, format); 2704 len = doprintf(format, args, prf); 2705 va_end(args); 2706 2707 return (len); 2708 } 2709 2710 /*PRINTFLIKE1*/ 2711 int 2712 printf(const char *format, ...) 2713 { 2714 va_list args; 2715 char buffer[ERRSIZE]; 2716 Prfbuf prf; 2717 2718 va_start(args, format); 2719 prf.pr_buf = prf.pr_cur = buffer; 2720 prf.pr_len = ERRSIZE; 2721 prf.pr_fd = 1; 2722 (void) doprf(format, args, &prf); 2723 va_end(args); 2724 /* 2725 * Trim trailing '\0' form buffer 2726 */ 2727 prf.pr_cur--; 2728 return (dowrite(&prf)); 2729 } 2730 2731 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2732 2733 /*PRINTFLIKE3*/ 2734 void 2735 eprintf(Lm_list *lml, Error error, const char *format, ...) 2736 { 2737 va_list args; 2738 int overflow = 0; 2739 static int lock = 0; 2740 Prfbuf prf; 2741 2742 if (lock || (nextptr == (errbuf + ERRSIZE))) 2743 return; 2744 2745 /* 2746 * Note: this lock is here to prevent the same thread from recursively 2747 * entering itself during a eprintf. ie: during eprintf malloc() fails 2748 * and we try and call eprintf ... and then malloc() fails .... 2749 */ 2750 lock = 1; 2751 2752 /* 2753 * If we have completed startup initialization, all error messages 2754 * must be saved. These are reported through dlerror(). If we're 2755 * still in the initialization stage, output the error directly and 2756 * add a newline. 2757 */ 2758 va_start(args, format); 2759 2760 prf.pr_buf = prf.pr_cur = nextptr; 2761 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2762 2763 if (!(rtld_flags & RT_FL_APPLIC)) 2764 prf.pr_fd = 2; 2765 else 2766 prf.pr_fd = -1; 2767 2768 if (error > ERR_NONE) { 2769 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2770 error = ERR_WARNING; 2771 if (error == ERR_WARNING) { 2772 if (err_strs[ERR_WARNING] == 0) 2773 err_strs[ERR_WARNING] = 2774 MSG_INTL(MSG_ERR_WARNING); 2775 } else if (error == ERR_FATAL) { 2776 if (err_strs[ERR_FATAL] == 0) 2777 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2778 } else if (error == ERR_ELF) { 2779 if (err_strs[ERR_ELF] == 0) 2780 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2781 } 2782 if (procname) { 2783 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2784 rtldname, procname, err_strs[error]) == 0) 2785 overflow = 1; 2786 } else { 2787 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2788 rtldname, err_strs[error]) == 0) 2789 overflow = 1; 2790 } 2791 if (overflow == 0) { 2792 /* 2793 * Remove the terminating '\0'. 2794 */ 2795 prf.pr_cur--; 2796 } 2797 } 2798 2799 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2800 overflow = 1; 2801 2802 /* 2803 * If this is an ELF error, it will have been generated by a support 2804 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2805 * ELF error messages as it doesn't interact with libelf. Determine the 2806 * ELF error string. 2807 */ 2808 if ((overflow == 0) && (error == ERR_ELF)) { 2809 static int (*elfeno)() = 0; 2810 static const char *(*elfemg)(); 2811 const char *emsg; 2812 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2813 2814 if (NEXT(lmp) && (elfeno == 0)) { 2815 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2816 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2817 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2818 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2819 elfeno = 0; 2820 } 2821 2822 /* 2823 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2824 */ 2825 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2826 prf.pr_cur--; 2827 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2828 emsg) == 0) 2829 overflow = 1; 2830 } 2831 } 2832 2833 /* 2834 * Push out any message that's been built. Note, in the case of an 2835 * overflow condition, this message may be incomplete, in which case 2836 * make sure any partial string is null terminated. 2837 */ 2838 if (overflow) 2839 *(prf.pr_cur) = '\0'; 2840 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2841 *(prf.pr_cur - 1) = '\n'; 2842 (void) dowrite(&prf); 2843 } 2844 2845 DBG_CALL(Dbg_util_str(lml, nextptr)); 2846 va_end(args); 2847 2848 /* 2849 * Determine if there was insufficient space left in the buffer to 2850 * complete the message. If so, we'll have printed out as much as had 2851 * been processed if we're not yet executing the application. 2852 * Otherwise, there will be some debugging diagnostic indicating 2853 * as much of the error message as possible. Write out a final buffer 2854 * overflow diagnostic - unlocalized, so we don't chance more errors. 2855 */ 2856 if (overflow) { 2857 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2858 2859 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2860 lasterr = str; 2861 2862 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2863 (void) write(2, str, strlen(str)); 2864 (void) write(2, MSG_ORIG(MSG_STR_NL), 2865 MSG_STR_NL_SIZE); 2866 } 2867 } 2868 DBG_CALL(Dbg_util_str(lml, str)); 2869 2870 lock = 0; 2871 nextptr = errbuf + ERRSIZE; 2872 return; 2873 } 2874 2875 /* 2876 * If the application has started, then error messages are being saved 2877 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2878 * the case of a fatal error. In this case, establish the next error 2879 * pointer. If we haven't started the application, the whole message 2880 * buffer can be reused. 2881 */ 2882 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2883 lasterr = nextptr; 2884 2885 /* 2886 * Note, should we encounter an error such as ENOMEM, there may 2887 * be a number of the same error messages (ie. an operation 2888 * fails with ENOMEM, and then the attempts to construct the 2889 * error message itself, which incurs additional ENOMEM errors). 2890 * Compare any previous error message with the one we've just 2891 * created to prevent any duplication clutter. 2892 */ 2893 if ((rtld_flags & RT_FL_APPLIC) && 2894 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2895 prevptr = nextptr; 2896 nextptr = prf.pr_cur; 2897 *nextptr = '\0'; 2898 } 2899 } 2900 lock = 0; 2901 } 2902 2903 2904 #if DEBUG 2905 /* 2906 * Provide assfail() for ASSERT() statements, 2907 * see <sys/debug.h> for further details. 2908 */ 2909 int 2910 assfail(const char *a, const char *f, int l) 2911 { 2912 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2913 (void) _lwp_kill(_lwp_self(), SIGABRT); 2914 return (0); 2915 } 2916 #endif 2917 2918 /* 2919 * Exit. If we arrive here with a non zero status it's because of a fatal 2920 * error condition (most commonly a relocation error). If the application has 2921 * already had control, then the actual fatal error message will have been 2922 * recorded in the dlerror() message buffer. Print the message before really 2923 * exiting. 2924 */ 2925 void 2926 rtldexit(Lm_list * lml, int status) 2927 { 2928 if (status) { 2929 if (rtld_flags & RT_FL_APPLIC) { 2930 /* 2931 * If the error buffer has been used, write out all 2932 * pending messages - lasterr is simply a pointer to 2933 * the last message in this buffer. However, if the 2934 * buffer couldn't be created at all, lasterr points 2935 * to a constant error message string. 2936 */ 2937 if (*errbuf) { 2938 char *errptr = errbuf; 2939 char *errend = errbuf + ERRSIZE; 2940 2941 while ((errptr < errend) && *errptr) { 2942 size_t size = strlen(errptr); 2943 (void) write(2, errptr, size); 2944 (void) write(2, MSG_ORIG(MSG_STR_NL), 2945 MSG_STR_NL_SIZE); 2946 errptr += (size + 1); 2947 } 2948 } 2949 if (lasterr && ((lasterr < errbuf) || 2950 (lasterr > (errbuf + ERRSIZE)))) { 2951 (void) write(2, lasterr, strlen(lasterr)); 2952 (void) write(2, MSG_ORIG(MSG_STR_NL), 2953 MSG_STR_NL_SIZE); 2954 } 2955 } 2956 leave(lml); 2957 (void) _lwp_kill(_lwp_self(), killsig); 2958 } 2959 _exit(status); 2960 } 2961 2962 /* 2963 * Routines to co-ordinate the opening of /dev/zero and /proc. 2964 * dz_fd is exported for possible use by libld.so, and to insure it gets 2965 * closed on leaving ld.so.1. 2966 */ 2967 int dz_fd = FD_UNAVAIL; 2968 2969 void 2970 dz_init(int fd) 2971 { 2972 dz_fd = fd; 2973 } 2974 2975 2976 /* 2977 * mmap() a page from MAP_ANON 2978 * 2979 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2980 * not only mmap(MAP_ANON) but to also probe if it is available 2981 * on the current OS. 2982 */ 2983 Am_ret 2984 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 2985 { 2986 #if defined(MAP_ANON) 2987 static int noanon = 0; 2988 caddr_t va; 2989 2990 if (noanon == 0) { 2991 if ((va = (caddr_t)mmap(*addr, len, prot, 2992 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2993 *addr = va; 2994 return (AM_OK); 2995 } 2996 2997 if ((errno != EBADF) && (errno != EINVAL)) { 2998 int err = errno; 2999 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3000 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3001 return (AM_ERROR); 3002 } else 3003 noanon = 1; 3004 } 3005 #endif 3006 return (AM_NOSUP); 3007 } 3008 3009 /* 3010 * Map anonymous memory from /dev/zero, or via MAP_ANON. 3011 * 3012 * (MAP_ANON only appears on Solaris 8, so we need fall-back 3013 * behavior for older systems.) 3014 */ 3015 caddr_t 3016 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3017 { 3018 caddr_t va; 3019 int err; 3020 Am_ret amret; 3021 3022 amret = anon_map(lml, &addr, len, prot, flags); 3023 3024 if (amret == AM_OK) 3025 return (addr); 3026 if (amret == AM_ERROR) 3027 return (MAP_FAILED); 3028 3029 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3030 3031 if (dz_fd == FD_UNAVAIL) { 3032 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3033 O_RDONLY)) == FD_UNAVAIL) { 3034 err = errno; 3035 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3036 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3037 return (MAP_FAILED); 3038 } 3039 } 3040 3041 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3042 err = errno; 3043 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3044 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3045 } 3046 return (va); 3047 } 3048 3049 static int pr_fd = FD_UNAVAIL; 3050 3051 int 3052 pr_open(Lm_list *lml) 3053 { 3054 char proc[16]; 3055 3056 if (pr_fd == FD_UNAVAIL) { 3057 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3058 (int)getpid()); 3059 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3060 int err = errno; 3061 3062 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3063 strerror(err)); 3064 } 3065 } 3066 return (pr_fd); 3067 } 3068 3069 static int nu_fd = FD_UNAVAIL; 3070 3071 caddr_t 3072 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3073 { 3074 caddr_t va; 3075 int err; 3076 3077 if (nu_fd == FD_UNAVAIL) { 3078 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3079 O_RDONLY)) == FD_UNAVAIL) { 3080 err = errno; 3081 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3082 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3083 return (MAP_FAILED); 3084 } 3085 } 3086 3087 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3088 MAP_FAILED) { 3089 err = errno; 3090 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3091 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3092 } 3093 return (va); 3094 } 3095 3096 /* 3097 * Generic entry point from user code - simply grabs a lock, and bumps the 3098 * entrance count. 3099 */ 3100 int 3101 enter(void) 3102 { 3103 if (rt_bind_guard(THR_FLG_RTLD)) { 3104 (void) rt_mutex_lock(&rtldlock); 3105 ld_entry_cnt++; 3106 return (1); 3107 } 3108 return (0); 3109 } 3110 3111 /* 3112 * Generate diagnostics as to whether an object has been used. A symbolic 3113 * reference that gets bound to an object marks it as used. Dependencies that 3114 * are unused when RTLD_NOW is in effect should be removed from future builds 3115 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3116 * candidates for lazy-loading. 3117 * Unreferenced objects identify objects that are defined as dependencies but 3118 * are unreferenced by the caller (they may however be referenced by other 3119 * objects within the process, and therefore don't qualify as completely unused. 3120 */ 3121 void 3122 unused(Lm_list *lml) 3123 { 3124 Rt_map *lmp; 3125 int nl = 0; 3126 Word tracing; 3127 3128 /* 3129 * If we're not tracing unused references or dependencies, or debugging 3130 * there's nothing to do. 3131 */ 3132 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3133 3134 if ((tracing == 0) && (DBG_ENABLED == 0)) 3135 return; 3136 3137 /* 3138 * Traverse the link-maps looking for unreferenced or unused 3139 * dependencies. Ignore the first object on a link-map list, as this 3140 * is effectively always used. 3141 */ 3142 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3143 lmp = (Rt_map *)NEXT(lmp)) { 3144 /* 3145 * If tracing unreferenced objects, or under debugging, 3146 * determine whether any of this objects callers haven't 3147 * referenced it. 3148 */ 3149 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 3150 Bnd_desc *bdp; 3151 Aliste idx; 3152 3153 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3154 Rt_map * clmp; 3155 3156 if (bdp->b_flags & BND_REFER) 3157 continue; 3158 3159 clmp = bdp->b_caller; 3160 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3161 continue; 3162 3163 /* BEGIN CSTYLED */ 3164 if (nl++ == 0) { 3165 if (tracing & LML_FLG_TRC_UNREF) 3166 (void) printf(MSG_ORIG(MSG_STR_NL)); 3167 else 3168 DBG_CALL(Dbg_util_nl(lml, 3169 DBG_NL_STD)); 3170 } 3171 3172 if (tracing & LML_FLG_TRC_UNREF) 3173 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3174 NAME(lmp), NAME(clmp)); 3175 else 3176 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3177 /* END CSTYLED */ 3178 } 3179 } 3180 3181 /* 3182 * If tracing unused objects simply display those objects that 3183 * haven't been referenced by anyone. 3184 */ 3185 if (FLAGS1(lmp) & FL1_RT_USED) 3186 continue; 3187 3188 if (nl++ == 0) { 3189 if (tracing) 3190 (void) printf(MSG_ORIG(MSG_STR_NL)); 3191 else 3192 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3193 } 3194 if (CYCGROUP(lmp)) { 3195 if (tracing) 3196 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3197 NAME(lmp), CYCGROUP(lmp)); 3198 else 3199 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3200 CYCGROUP(lmp))); 3201 } else { 3202 if (tracing) 3203 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3204 NAME(lmp)); 3205 else 3206 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3207 } 3208 } 3209 3210 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3211 } 3212 3213 /* 3214 * Initialization routine for the Fmap structure. If the fmap structure is 3215 * already in use, any mapping is released. The structure is then initialized 3216 * in preparation for further use. 3217 */ 3218 void 3219 fmap_setup() 3220 { 3221 #if defined(MAP_ALIGN) 3222 /* 3223 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3224 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3225 * should now be freed. 3226 */ 3227 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3228 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3229 3230 /* 3231 * Providing we haven't determined that this system doesn't support 3232 * MAP_ALIGN, initialize the mapping address with the default segment 3233 * alignment. 3234 */ 3235 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3236 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3237 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3238 } else { 3239 fmap->fm_maddr = 0; 3240 fmap->fm_mflags = MAP_PRIVATE; 3241 } 3242 #else 3243 if (fmap->fm_maddr) 3244 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3245 3246 fmap->fm_maddr = 0; 3247 fmap->fm_mflags = MAP_PRIVATE; 3248 #endif 3249 3250 fmap->fm_msize = FMAP_SIZE; 3251 fmap->fm_hwptr = 0; 3252 } 3253 3254 /* 3255 * Generic cleanup routine called prior to returning control to the user. 3256 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3257 * released, and any locks dropped. 3258 */ 3259 void 3260 leave(Lm_list *lml) 3261 { 3262 Lm_list *elml = lml; 3263 Rt_map *clmp; 3264 Aliste idx; 3265 3266 /* 3267 * Alert the debuggers that the link-maps are consistent. Note, in the 3268 * case of tearing down a whole link-map list, lml will be null. In 3269 * this case use the main link-map list to test for a notification. 3270 */ 3271 if (elml == 0) 3272 elml = &lml_main; 3273 if (elml->lm_flags & LML_FLG_DBNOTIF) 3274 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3275 3276 /* 3277 * Alert any auditors that the link-maps are consistent. 3278 */ 3279 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3280 audit_activity(clmp, LA_ACT_CONSISTENT); 3281 3282 aplist_delete(elml->lm_actaudit, &idx); 3283 } 3284 3285 if (dz_fd != FD_UNAVAIL) { 3286 (void) close(dz_fd); 3287 dz_fd = FD_UNAVAIL; 3288 } 3289 3290 if (pr_fd != FD_UNAVAIL) { 3291 (void) close(pr_fd); 3292 pr_fd = FD_UNAVAIL; 3293 } 3294 3295 if (nu_fd != FD_UNAVAIL) { 3296 (void) close(nu_fd); 3297 nu_fd = FD_UNAVAIL; 3298 } 3299 3300 fmap_setup(); 3301 3302 /* 3303 * Reinitialize error message pointer, and any overflow indication. 3304 */ 3305 nextptr = errbuf; 3306 prevptr = 0; 3307 3308 /* 3309 * Don't drop our lock if we are running on our link-map list as 3310 * there's little point in doing so since we are single-threaded. 3311 * 3312 * LML_FLG_HOLDLOCK is set for: 3313 * *) The ld.so.1's link-map list. 3314 * *) The auditor's link-map if the environment is 3315 * libc/libthread un-unified. 3316 */ 3317 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3318 return; 3319 3320 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3321 (void) rt_mutex_unlock(&rtldlock); 3322 (void) rt_bind_clear(THR_FLG_RTLD); 3323 } 3324 } 3325 3326 int 3327 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3328 { 3329 APlist *calp, *dalp; 3330 Aliste idx1, idx2; 3331 Grp_hdl *ghp1, *ghp2; 3332 3333 /* 3334 * An object can always find symbols within itself. 3335 */ 3336 if (clmp == dlmp) 3337 return (1); 3338 3339 /* 3340 * The search for a singleton must look in every loaded object. 3341 */ 3342 if (slflags & LKUP_SINGLETON) 3343 return (1); 3344 3345 /* 3346 * Don't allow an object to bind to an object that is being deleted 3347 * unless the binder is also being deleted. 3348 */ 3349 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3350 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3351 return (0); 3352 3353 /* 3354 * An object with world access can always bind to an object with global 3355 * visibility. 3356 */ 3357 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3358 return (1); 3359 3360 /* 3361 * An object with local access can only bind to an object that is a 3362 * member of the same group. 3363 */ 3364 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3365 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3366 return (0); 3367 3368 /* 3369 * Traverse the list of groups the caller is a part of. 3370 */ 3371 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3372 /* 3373 * If we're testing for the ability of two objects to bind to 3374 * each other regardless of a specific group, ignore that group. 3375 */ 3376 if (ghp && (ghp1 == ghp)) 3377 continue; 3378 3379 /* 3380 * Traverse the list of groups the destination is a part of. 3381 */ 3382 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3383 Grp_desc *gdp; 3384 Aliste idx3; 3385 3386 if (ghp1 != ghp2) 3387 continue; 3388 3389 /* 3390 * Make sure the relationship between the destination 3391 * and the caller provide symbols for relocation. 3392 * Parents are maintained as callers, but unless the 3393 * destination object was opened with RTLD_PARENT, the 3394 * parent doesn't provide symbols for the destination 3395 * to relocate against. 3396 */ 3397 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3398 if (dlmp != gdp->gd_depend) 3399 continue; 3400 3401 if (gdp->gd_flags & GPD_RELOC) 3402 return (1); 3403 } 3404 } 3405 } 3406 return (0); 3407 } 3408 3409 /* 3410 * Initialize the environ symbol. Traditionally this is carried out by the crt 3411 * code prior to jumping to main. However, init sections get fired before this 3412 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3413 * information. In addition, a process may have multiple link-maps (ld.so.1's 3414 * debugging and preloading objects), and link auditing, and each may need an 3415 * environ variable set. 3416 * 3417 * This routine is called after a relocation() pass, and thus provides for: 3418 * 3419 * o setting environ on the main link-map after the initial application and 3420 * its dependencies have been established. Typically environ lives in the 3421 * application (provided by its crt), but in older applications it might 3422 * be in libc. Who knows what's expected of applications not built on 3423 * Solaris. 3424 * 3425 * o after loading a new shared object. We can add shared objects to various 3426 * link-maps, and any link-map dependencies requiring getopt() require 3427 * their own environ. In addition, lazy loading might bring in the 3428 * supplier of environ (libc used to be a lazy loading candidate) after 3429 * the link-map has been established and other objects are present. 3430 * 3431 * This routine handles all these scenarios, without adding unnecessary overhead 3432 * to ld.so.1. 3433 */ 3434 void 3435 set_environ(Lm_list *lml) 3436 { 3437 Rt_map *dlmp; 3438 Sym *sym; 3439 Slookup sl; 3440 uint_t binfo; 3441 3442 /* 3443 * Initialize the symbol lookup data structure. 3444 */ 3445 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3446 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3447 3448 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3449 lml->lm_environ = (char ***)sym->st_value; 3450 3451 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3452 lml->lm_environ = 3453 (char ***)((uintptr_t)lml->lm_environ + 3454 (uintptr_t)ADDR(dlmp)); 3455 *(lml->lm_environ) = (char **)environ; 3456 lml->lm_flags |= LML_FLG_ENVIRON; 3457 } 3458 } 3459 3460 /* 3461 * Determine whether we have a secure executable. Uid and gid information 3462 * can be passed to us via the aux vector, however if these values are -1 3463 * then use the appropriate system call to obtain them. 3464 * 3465 * o If the user is the root they can do anything 3466 * 3467 * o If the real and effective uid's don't match, or the real and 3468 * effective gid's don't match then this is determined to be a `secure' 3469 * application. 3470 * 3471 * This function is called prior to any dependency processing (see _setup.c). 3472 * Any secure setting will remain in effect for the life of the process. 3473 */ 3474 void 3475 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3476 { 3477 #ifdef AT_SUN_AUXFLAGS 3478 if (auxflags != -1) { 3479 if ((auxflags & AF_SUN_SETUGID) != 0) 3480 rtld_flags |= RT_FL_SECURE; 3481 return; 3482 } 3483 #endif 3484 if (uid == (uid_t)-1) 3485 uid = getuid(); 3486 if (uid) { 3487 if (euid == (uid_t)-1) 3488 euid = geteuid(); 3489 if (uid != euid) 3490 rtld_flags |= RT_FL_SECURE; 3491 else { 3492 if (gid == (gid_t)-1) 3493 gid = getgid(); 3494 if (egid == (gid_t)-1) 3495 egid = getegid(); 3496 if (gid != egid) 3497 rtld_flags |= RT_FL_SECURE; 3498 } 3499 } 3500 } 3501 3502 /* 3503 * _REENTRANT code gets errno redefined to a function so provide for return 3504 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3505 * is basically singled threaded. Provide the interface for our dependencies. 3506 */ 3507 #undef errno 3508 #pragma weak _private___errno = ___errno 3509 int * 3510 ___errno() 3511 { 3512 extern int errno; 3513 3514 return (&errno); 3515 } 3516 3517 /* 3518 * The interface with the c library which is supplied through libdl.so.1. 3519 * A non-null argument allows a function pointer array to be passed to us which 3520 * is used to re-initialize the linker libc table. 3521 */ 3522 void 3523 _ld_libc(void * ptr) 3524 { 3525 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3526 } 3527 3528 /* 3529 * Determine whether a symbol name should be demangled. 3530 */ 3531 const char * 3532 demangle(const char *name) 3533 { 3534 if (rtld_flags & RT_FL_DEMANGLE) 3535 return (conv_demangle_name(name)); 3536 else 3537 return (name); 3538 } 3539