1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include "_synonyms.h" 37 #include <stdio.h> 38 #include <sys/types.h> 39 #include <sys/mman.h> 40 #include <sys/lwp.h> 41 #include <sys/debug.h> 42 #include <stdarg.h> 43 #include <fcntl.h> 44 #include <string.h> 45 #include <ctype.h> 46 #include <dlfcn.h> 47 #include <unistd.h> 48 #include <stdlib.h> 49 #include <signal.h> 50 #include <sys/auxv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "conv.h" 54 #include "msg.h" 55 #include "debug.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * All error messages go through eprintf(). During process initialization these 61 * messages should be directed to the standard error, however once control has 62 * been passed to the applications code these messages should be stored in an 63 * internal buffer for use with dlerror(). Note, fatal error conditions that 64 * may occur while running the application will still cause a standard error 65 * message, see rtldexit() in this file for details. 66 * The `application' flag serves to indicate the transition between process 67 * initialization and when the applications code is running. 68 */ 69 70 /* 71 * Null function used as place where a debugger can set a breakpoint. 72 */ 73 void 74 rtld_db_dlactivity(void) 75 { 76 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a pre .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_preinit(void) 86 { 87 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 92 /* 93 * Null function used as place where debugger can set a post .init 94 * processing breakpoint. 95 */ 96 void 97 rtld_db_postinit(void) 98 { 99 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 100 r_debug.rtd_rdebug.r_state)); 101 } 102 103 104 /* 105 * Debugger Event Notification 106 * 107 * This function centralizes all debugger event notification (ala rtld_db). 108 * 109 * There's a simple intent, focused on insuring the primary link-map control 110 * list (or each link-map list) is consistent, and the indication that objects 111 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 112 * event are posted for each of these, most debuggers don't care, as their 113 * view is that these events simply convey an "inconsistent" state. 114 * 115 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 116 * enter ld.so.1. 117 * 118 * With auditors, we may be in the process of relocating a collection of 119 * objects, and will leave() ld.so.1 to call the auditor. At this point we 120 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 121 * object to the debuggers until relocation processing has been completed on it. 122 * To allow for the collection of these objects that are pending relocation, an 123 * RD_ADD event is set after completing a series of relocations on the primary 124 * link-map control list. 125 * 126 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 127 * required later (LML_FLG_DBNOTIF): 128 * 129 * i the first time we add or delete an object to the primary link-map 130 * control list. 131 * ii the first time we move a secondary link-map control list to the primary 132 * link-map control list (effectively, this is like adding a group of 133 * objects to the primary link-map control list). 134 * iii the first time we relocate a series of objects on the primary link-map 135 * control list. 136 * 137 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 138 * 139 * i each time we leave the runtime linker. 140 */ 141 void 142 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 143 { 144 void (*fptr)(); 145 146 switch (event) { 147 case RD_PREINIT: 148 fptr = rtld_db_preinit; 149 break; 150 case RD_POSTINIT: 151 fptr = rtld_db_postinit; 152 break; 153 case RD_DLACTIVITY: 154 switch (state) { 155 case RT_CONSISTENT: 156 lml->lm_flags &= ~LML_FLG_DBNOTIF; 157 158 /* 159 * Do we need to send a notification? 160 */ 161 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 162 return; 163 rtld_flags &= ~RT_FL_DBNOTIF; 164 break; 165 case RT_ADD: 166 case RT_DELETE: 167 lml->lm_flags |= LML_FLG_DBNOTIF; 168 169 /* 170 * If we are already in an inconsistent state, no 171 * notification is required. 172 */ 173 if (rtld_flags & RT_FL_DBNOTIF) 174 return; 175 rtld_flags |= RT_FL_DBNOTIF; 176 break; 177 }; 178 fptr = rtld_db_dlactivity; 179 break; 180 default: 181 /* 182 * RD_NONE - do nothing 183 */ 184 break; 185 }; 186 187 /* 188 * Set event state and call 'notification' function. 189 * 190 * The debugging clients have previously been told about these 191 * notification functions and have set breakpoints on them if they 192 * are interested in the notification. 193 */ 194 r_debug.rtd_rdebug.r_state = state; 195 r_debug.rtd_rdebug.r_rdevent = event; 196 fptr(); 197 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 198 } 199 200 #if defined(sparc) || defined(i386) || defined(__amd64) 201 /* 202 * Stack Cleanup. 203 * 204 * This function is invoked to 'remove' arguments that were passed in on the 205 * stack. This is most likely if ld.so.1 was invoked directly. In that case 206 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 207 * Which means we then need to slide everything above it on the stack down 208 * accordingly. 209 * 210 * While the stack layout is platform specific - it just so happens that x86, 211 * sparc, sparcv9, and amd64 all share the following initial stack layout. 212 * 213 * !_______________________! high addresses 214 * ! ! 215 * ! Information ! 216 * ! Block ! 217 * ! (size varies) ! 218 * !_______________________! 219 * ! 0 word ! 220 * !_______________________! 221 * ! Auxiliary ! 222 * ! vector ! 223 * ! 2 word entries ! 224 * ! ! 225 * !_______________________! 226 * ! 0 word ! 227 * !_______________________! 228 * ! Environment ! 229 * ! pointers ! 230 * ! ... ! 231 * ! (one word each) ! 232 * !_______________________! 233 * ! 0 word ! 234 * !_______________________! 235 * ! Argument ! low addresses 236 * ! pointers ! 237 * ! Argc words ! 238 * !_______________________! 239 * ! ! 240 * ! Argc ! 241 * !_______________________! 242 * ! ... ! 243 * 244 */ 245 static void 246 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 247 { 248 int ndx; 249 long *argc; 250 char **oargv, **nargv; 251 char **oenvp, **nenvp; 252 auxv_t *oauxv, *nauxv; 253 254 /* 255 * Slide ARGV[] and update argc. The argv pointer remains the same, 256 * however slide the applications arguments over the arguments to 257 * ld.so.1. 258 */ 259 nargv = &argv[0]; 260 oargv = &argv[rmcnt]; 261 262 for (ndx = 0; oargv[ndx]; ndx++) 263 nargv[ndx] = oargv[ndx]; 264 nargv[ndx] = oargv[ndx]; 265 266 argc = (long *)((uintptr_t)argv - sizeof (long *)); 267 *argc -= rmcnt; 268 269 /* 270 * Slide ENVP[], and update the environment array pointer. 271 */ 272 ndx++; 273 nenvp = &nargv[ndx]; 274 oenvp = &oargv[ndx]; 275 *envp = nenvp; 276 277 for (ndx = 0; oenvp[ndx]; ndx++) 278 nenvp[ndx] = oenvp[ndx]; 279 nenvp[ndx] = oenvp[ndx]; 280 281 /* 282 * Slide AUXV[], and update the aux vector pointer. 283 */ 284 ndx++; 285 nauxv = (auxv_t *)&nenvp[ndx]; 286 oauxv = (auxv_t *)&oenvp[ndx]; 287 *auxv = nauxv; 288 289 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 290 nauxv[ndx] = oauxv[ndx]; 291 nauxv[ndx] = oauxv[ndx]; 292 } 293 #else 294 /* 295 * Verify that the above routine is appropriate for any new platforms. 296 */ 297 #error unsupported architecture! 298 #endif 299 300 /* 301 * The only command line argument recognized is -e, followed by a runtime 302 * linker environment variable. 303 */ 304 int 305 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 306 Word *lmtflags, int aout) 307 { 308 int ndx; 309 310 for (ndx = 1; argv[ndx]; ndx++) { 311 char *str; 312 313 if (argv[ndx][0] != '-') 314 break; 315 316 if (argv[ndx][1] == '\0') { 317 ndx++; 318 break; 319 } 320 321 if (argv[ndx][1] != 'e') 322 return (1); 323 324 if (argv[ndx][2] == '\0') { 325 ndx++; 326 if (argv[ndx] == NULL) 327 return (1); 328 str = argv[ndx]; 329 } else 330 str = &argv[ndx][2]; 331 332 /* 333 * If the environment variable starts with LD_, strip the LD_. 334 * Otherwise, take things as is. 335 */ 336 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 337 (str[3] != '\0')) 338 str += 3; 339 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 340 return (1); 341 } 342 343 /* 344 * Make sure an object file has been specified. 345 */ 346 if (argv[ndx] == 0) 347 return (1); 348 349 /* 350 * Having gotten the arguments, clean ourselves off of the stack. 351 */ 352 stack_cleanup(argv, envp, auxv, ndx); 353 return (0); 354 } 355 356 /* 357 * Compare function for FullpathNode AVL tree. 358 */ 359 static int 360 fpavl_compare(const void * n1, const void * n2) 361 { 362 uint_t hash1, hash2; 363 const char *st1, *st2; 364 int rc; 365 366 hash1 = ((FullpathNode *)n1)->fpn_hash; 367 hash2 = ((FullpathNode *)n2)->fpn_hash; 368 369 if (hash1 > hash2) 370 return (1); 371 if (hash1 < hash2) 372 return (-1); 373 374 st1 = ((FullpathNode *)n1)->fpn_name; 375 st2 = ((FullpathNode *)n2)->fpn_name; 376 377 rc = strcmp(st1, st2); 378 if (rc > 0) 379 return (1); 380 if (rc < 0) 381 return (-1); 382 return (0); 383 } 384 385 386 /* 387 * Determine if a given pathname is already been loaded in the AVL tree. 388 * If the pathname does not exist in the AVL tree, the next insertion point 389 * is deposited in "where". This value can be used by fpavl_insert() to 390 * expedite the insertion. 391 */ 392 Rt_map * 393 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 394 { 395 FullpathNode fpn, *fpnp; 396 avl_tree_t *avlt; 397 398 /* 399 * Create the avl tree if required. 400 */ 401 if ((avlt = lml->lm_fpavl) == NULL) { 402 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 403 return (0); 404 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 405 SGSOFFSETOF(FullpathNode, fpn_avl)); 406 lml->lm_fpavl = avlt; 407 } 408 409 fpn.fpn_name = name; 410 fpn.fpn_hash = sgs_str_hash(name); 411 412 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 413 return (NULL); 414 415 return (fpnp->fpn_lmp); 416 } 417 418 419 /* 420 * Insert a the name into the FullpathNode AVL tree for the link-map list. 421 * The objects NAME() is the path that would have been searched for, and is 422 * therefore the name to associate with any "where" value. If the object has 423 * a different PATHNAME(), perhaps because it has resolved to a different file 424 * (see fullpath), then this name is recorded also. See load_file(). 425 */ 426 int 427 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 428 { 429 FullpathNode *fpnp; 430 431 if (where == 0) { 432 /* LINTED */ 433 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 434 435 /* 436 * We better not get a hit now, we do not want duplicates in 437 * the tree. 438 */ 439 ASSERT(_lmp == 0); 440 } 441 442 /* 443 * Insert new node in tree 444 */ 445 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 446 return (0); 447 448 fpnp->fpn_name = name; 449 fpnp->fpn_hash = sgs_str_hash(name); 450 fpnp->fpn_lmp = lmp; 451 452 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 453 AL_CNT_FPNODE) == 0) { 454 free(fpnp); 455 return (0); 456 } 457 458 ASSERT(lml->lm_fpavl != NULL); 459 avl_insert(lml->lm_fpavl, fpnp, where); 460 return (1); 461 } 462 463 /* 464 * Remove a object from the Fullpath AVL tree. Note, this is called *before* 465 * the objects link-map is torn down (remove_so), which is where any NAME() and 466 * PATHNAME() strings will be deallocated. 467 */ 468 void 469 fpavl_remove(Rt_map *lmp) 470 { 471 FullpathNode **fpnpp; 472 Aliste off; 473 474 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 475 FullpathNode *fpnp = *fpnpp; 476 477 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 478 free(fpnp); 479 } 480 free(FPNODE(lmp)); 481 FPNODE(lmp) = 0; 482 } 483 484 485 /* 486 * Prior to calling an object, either via a .plt or through dlsym(), make sure 487 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 488 * init's in the correct order, however, this order is typically based on needed 489 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 490 * still occur and result in bindings that were not captured during topological 491 * sorting. This routine compensates for this lack of binding information, and 492 * provides for dynamic .init firing. 493 */ 494 void 495 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 496 { 497 Rt_map ** tobj; 498 499 /* 500 * If the caller is an auditor, and the destination isn't, then don't 501 * run any .inits (see comments in load_completion()). 502 */ 503 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 504 (LIST(clmp) != LIST(dlmp))) 505 return; 506 507 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 508 return; 509 510 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 511 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 512 return; 513 514 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 515 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 516 DBG_CALL(Dbg_util_no_init(NAME(dlmp))); 517 return; 518 } 519 520 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 521 tobj[0] = dlmp; 522 call_init(tobj, DBG_INIT_DYN); 523 } 524 } 525 526 /* 527 * In a threaded environment insure the thread responsible for loading an object 528 * has completed .init processing for that object before any new thread is 529 * allowed to access the object. This check is only valid with libthread 530 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 531 * 532 * When a new link-map is created, the thread that causes it to be loaded is 533 * identified by THREADID(dlmp). Compare this with the current thread to 534 * determine if it must be blocked. 535 * 536 * NOTE, there are a number of instances (typically only for .plt processing) 537 * where we must skip this test: 538 * 539 * . any thread id of 0 - threads that call thr_exit() may be in this state 540 * thus we can't deduce what tid they used to be. Also some of the 541 * lib/libthread worker threads have this id and must bind (to themselves 542 * or libc) for libthread to function. 543 * 544 * . libthread itself binds to libc, and as libthread is INITFIRST 545 * libc's .init can't have fired yet. Luckly libc's .init is not required 546 * by libthreads binding. 547 * 548 * . if the caller is an auditor, and the destination isn't, then don't 549 * block (see comments in load_completion()). 550 */ 551 void 552 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 553 { 554 thread_t tid; 555 556 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 557 (LIST(clmp) != LIST(dlmp))) 558 return; 559 560 if ((rtld_flags & RT_FL_CONCUR) && 561 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 562 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 563 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 564 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 565 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 566 DBG_CALL(Dbg_util_wait(what, NAME(clmp), NAME(dlmp))); 567 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 568 } 569 } 570 } 571 572 /* 573 * Execute .{preinit|init|fini}array sections 574 */ 575 void 576 call_array(Addr * array, uint_t arraysz, Rt_map * lmp, uint_t shtype) 577 { 578 int start, stop, incr, i; 579 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 580 581 if (array == NULL) 582 return; 583 584 /* 585 * initarray & preinitarray are walked from beginning to end - while 586 * finiarray is walked from end to beginning. 587 */ 588 if (shtype == SHT_FINI_ARRAY) { 589 start = arraycnt - 1; 590 stop = incr = -1; 591 } else { 592 start = 0; 593 stop = arraycnt; 594 incr = 1; 595 } 596 597 /* 598 * Call the .*array[] entries 599 */ 600 for (i = start; i != stop; i += incr) { 601 void (* fptr)(); 602 603 DBG_CALL(Dbg_util_call_array(NAME(lmp), (void *)array[i], i, 604 shtype)); 605 606 fptr = (void(*)())array[i]; 607 leave(LIST(lmp)); 608 (*fptr)(); 609 (void) enter(); 610 } 611 } 612 613 614 /* 615 * Execute any .init sections. These are passed to us in an lmp array which 616 * (by default) will have been sorted. 617 */ 618 void 619 call_init(Rt_map ** tobj, int flag) 620 { 621 void (* iptr)(); 622 Rt_map ** _tobj, ** _nobj; 623 static List pending = { NULL, NULL }; 624 625 /* 626 * If we're in the middle of an INITFIRST, this must complete before 627 * any new init's are fired. In this case add the object list to the 628 * pending queue and return. We'll pick up the queue after any 629 * INITFIRST objects have their init's fired. 630 */ 631 if (rtld_flags & RT_FL_INITFIRST) { 632 (void) list_append(&pending, tobj); 633 return; 634 } 635 636 /* 637 * If a 'thread initialization' is pending - call it now before any 638 * .init code is fired. Also clear the thrinit() to mark it as done. 639 * Note, this is called for each link-map list, which is what libc 640 * expects. 641 */ 642 if (thrinit) { 643 void (*_thrinit)() = thrinit; 644 645 thrinit = 0; 646 leave((Lm_list *)0); 647 _thrinit(); 648 (void) enter(); 649 } 650 651 /* 652 * Traverse the tobj array firing each objects init. 653 */ 654 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 655 Rt_map * lmp = *_tobj; 656 657 if (FLAGS(lmp) & FLG_RT_INITCALL) 658 continue; 659 660 FLAGS(lmp) |= FLG_RT_INITCALL; 661 662 /* 663 * Establish an initfirst state if necessary - no other inits 664 * will be fired (because of addition relocation bindings) when 665 * in this state. 666 */ 667 if (FLAGS(lmp) & FLG_RT_INITFRST) 668 rtld_flags |= RT_FL_INITFIRST; 669 670 /* 671 * It's the responsibility of MAIN(crt0) to call it's 672 * _init section. 673 */ 674 if ((FLAGS(lmp) & FLG_RT_ISMAIN) == 0) 675 iptr = INIT(lmp); 676 else 677 iptr = 0; 678 679 if (INITARRAY(lmp) || iptr) { 680 Aliste off; 681 Bnd_desc ** bdpp; 682 683 /* 684 * Make sure that all dependencies that have been 685 * relocated to are initialized before this objects 686 * .init is executed. This insures that a dependency 687 * on an external item that must first be initialized 688 * by its associated object is satisfied. 689 */ 690 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 691 Bnd_desc * bdp = *bdpp; 692 693 if ((bdp->b_flags & BND_REFER) == 0) 694 continue; 695 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 696 } 697 DBG_CALL(Dbg_util_call_init(NAME(lmp), flag)); 698 } 699 700 if (iptr) { 701 leave(LIST(lmp)); 702 (*iptr)(); 703 (void) enter(); 704 } 705 706 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 707 SHT_INIT_ARRAY); 708 709 if (INITARRAY(lmp) || iptr) 710 DBG_CALL(Dbg_util_call_init(NAME(lmp), DBG_INIT_DONE)); 711 712 /* 713 * Set the initdone flag regardless of whether this object 714 * actually contains an .init section. This flag prevents us 715 * from processing this section again for an .init and also 716 * signifies that a .fini must be called should it exist. 717 * Clear the sort field for use in later .fini processing. 718 */ 719 FLAGS(lmp) |= FLG_RT_INITDONE; 720 SORTVAL(lmp) = 0; 721 722 /* 723 * Wake anyone up who might be waiting on this .init. 724 */ 725 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 726 DBG_CALL(Dbg_util_broadcast(NAME(lmp))); 727 (void) rt_cond_broadcast(CONDVAR(lmp)); 728 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 729 } 730 731 /* 732 * Set the initdone flag regardless of whether this object 733 * actually contains an .init section. This flag prevents us 734 * from processing this section again for an .init and also 735 * signifies that a .fini must be called should it exist. 736 * Clear the sort field for use in later .fini processing. 737 */ 738 FLAGS(lmp) |= FLG_RT_INITDONE; 739 SORTVAL(lmp) = 0; 740 741 /* 742 * If we're firing an INITFIRST object, and other objects must 743 * be fired which are not INITFIRST, make sure we grab any 744 * pending objects that might have been delayed as this 745 * INITFIRST was processed. 746 */ 747 if ((rtld_flags & RT_FL_INITFIRST) && 748 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 749 Listnode * lnp; 750 Rt_map ** pobj; 751 752 rtld_flags &= ~RT_FL_INITFIRST; 753 754 while ((lnp = pending.head) != NULL) { 755 if ((pending.head = lnp->next) == NULL) 756 pending.tail = NULL; 757 pobj = lnp->data; 758 free(lnp); 759 760 call_init(pobj, DBG_INIT_PEND); 761 } 762 } 763 } 764 free(tobj); 765 } 766 767 /* 768 * Function called by atexit(3C). Calls all .fini sections related with the 769 * mains dependent shared libraries in the order in which the shared libraries 770 * have been loaded. Skip any .fini defined in the main executable, as this 771 * will be called by crt0 (main was never marked as initdone). 772 */ 773 void 774 call_fini(Lm_list * lml, Rt_map ** tobj) 775 { 776 Rt_map ** _tobj; 777 void (* fptr)(); 778 779 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 780 Rt_map * clmp, * lmp = *_tobj; 781 Aliste off; 782 Bnd_desc ** bdpp; 783 784 /* 785 * If concurrency checking isn't enabled only fire .fini if 786 * .init has completed. We collect all .fini sections of 787 * objects that had their .init collected, but that doesn't 788 * mean at the time that the .init had completed. 789 */ 790 if ((rtld_flags & RT_FL_CONCUR) || 791 (FLAGS(lmp) & FLG_RT_INITDONE)) { 792 /* 793 * It's the responsibility of MAIN(crt0) to call it's 794 * _fini section. 795 */ 796 if ((FLAGS(lmp) & FLG_RT_ISMAIN) == 0) 797 fptr = FINI(lmp); 798 else 799 fptr = 0; 800 801 if (FINIARRAY(lmp) || fptr) { 802 /* 803 * If concurrency checking is enabled make sure 804 * this object's .init is completed before 805 * calling any .fini. 806 */ 807 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 808 DBG_CALL(Dbg_util_call_fini(NAME(lmp))); 809 } 810 811 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), 812 lmp, SHT_FINI_ARRAY); 813 814 if (fptr) { 815 leave(LIST(lmp)); 816 (*fptr)(); 817 (void) enter(); 818 } 819 } 820 821 /* 822 * Audit `close' operations at this point. The library has 823 * exercised its last instructions (regardless of whether it 824 * will be unmapped or not). 825 * 826 * First call any global auditing. 827 */ 828 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 829 _audit_objclose(&(auditors->ad_list), lmp); 830 831 /* 832 * Finally determine whether this object has local auditing 833 * requirements by inspecting itself and then its dependencies. 834 */ 835 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 836 continue; 837 838 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 839 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 840 841 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 842 Bnd_desc * bdp = *bdpp; 843 844 clmp = bdp->b_caller; 845 846 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 847 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 848 break; 849 } 850 } 851 } 852 DBG_CALL(Dbg_bind_plt_summary(M_MACH, pltcnt21d, pltcnt24d, 853 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 854 855 free(tobj); 856 } 857 858 void 859 atexit_fini() 860 { 861 Rt_map ** tobj, * lmp; 862 Lm_list * lml; 863 Listnode * lnp; 864 865 (void) enter(); 866 867 rtld_flags |= RT_FL_ATEXIT; 868 869 lml = &lml_main; 870 lmp = (Rt_map *)lml->lm_head; 871 872 /* 873 * Display any objects that haven't been referenced so far. 874 */ 875 unused(lml); 876 877 /* 878 * Reverse topologically sort the main link-map for .fini execution. 879 */ 880 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 881 (tobj != (Rt_map **)S_ERROR)) 882 call_fini(lml, tobj); 883 884 /* 885 * Add an explicit close to main and ld.so.1 (as their fini doesn't get 886 * processed this auditing will not get caught in call_fini()). This is 887 * the reverse of the explicit calls to audit_objopen() made in setup(). 888 */ 889 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 890 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 891 /* 892 * If the executable has a fini-array, then it was captured 893 * as part of the call_fini() processing. 894 */ 895 if (FINIARRAY(lmp) == 0) 896 audit_objclose(lmp, lmp); 897 } 898 899 /* 900 * Now that all .fini code has been run, see what unreferenced objects 901 * remain. Any difference between this and the above unused() would 902 * indicate an object is only being used for .fini processing, which 903 * might be fine, but might also indicate an overhead whose removal 904 * would be worth considering. 905 */ 906 unused(lml); 907 908 /* 909 * Traverse any alternative link-map lists. 910 */ 911 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 912 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 913 continue; 914 915 if ((lmp = (Rt_map *)lml->lm_head) == 0) 916 continue; 917 918 /* 919 * Reverse topologically sort the link-map for .fini execution. 920 */ 921 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 922 (tobj != (Rt_map **)S_ERROR)) 923 call_fini(lml, tobj); 924 925 unused(lml); 926 } 927 928 /* 929 * Finally reverse topologically sort the runtime linkers link-map for 930 * .fini execution. 931 */ 932 lml = &lml_rtld; 933 lmp = (Rt_map *)lml->lm_head; 934 935 dbg_mask = 0; 936 937 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 938 (tobj != (Rt_map **)S_ERROR)) 939 call_fini(lml, tobj); 940 941 leave(&lml_main); 942 } 943 944 945 /* 946 * This routine is called to complete any runtime linker activity which may have 947 * resulted in objects being loaded. This is called from all user entry points 948 * and from any internal dl*() requests. 949 */ 950 void 951 load_completion(Rt_map * nlmp, Rt_map * clmp) 952 { 953 Rt_map **tobj = 0; 954 955 /* 956 * Establish any .init processing. Note, in a world of lazy loading, 957 * objects may have been loaded regardless of whether the users request 958 * was fulfilled (i.e., a dlsym() request may have failed to find a 959 * symbol but objects might have been loaded during its search). Thus, 960 * any tsorting starts from the nlmp (new link-maps) pointer and not 961 * necessarily from the link-map that may have satisfied the request. 962 * 963 * Note, if the caller is an auditor, and the destination isn't, then 964 * don't run any .inits. This scenario is typical of an auditor trying 965 * to inspect another link-map for symbols. Allow this inspection 966 * without running any code on the inspected link-map, as running this 967 * code may reenter the auditor, who has not yet finished their own 968 * initialization. 969 */ 970 if (nlmp && ((clmp == 0) || 971 ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) == 0) || 972 (LIST(clmp) == LIST(nlmp)))) { 973 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, RT_SORT_REV)) == 974 (Rt_map **)S_ERROR) 975 tobj = 0; 976 } 977 978 /* 979 * Indicate the link-map list is consistent. 980 */ 981 if (clmp && 982 ((LIST(clmp)->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 983 audit_activity(clmp, LA_ACT_CONSISTENT); 984 985 /* 986 * Fire any .init's. 987 */ 988 if (tobj) 989 call_init(tobj, DBG_INIT_SORT); 990 } 991 992 /* 993 * Append an item to the specified list, and return a pointer to the list 994 * node created. 995 */ 996 Listnode * 997 list_append(List *lst, const void *item) 998 { 999 Listnode * _lnp; 1000 1001 if ((_lnp = malloc(sizeof (Listnode))) == 0) 1002 return (0); 1003 1004 _lnp->data = (void *)item; 1005 _lnp->next = NULL; 1006 1007 if (lst->head == NULL) 1008 lst->tail = lst->head = _lnp; 1009 else { 1010 lst->tail->next = _lnp; 1011 lst->tail = lst->tail->next; 1012 } 1013 return (_lnp); 1014 } 1015 1016 1017 /* 1018 * Add an item after specified listnode, and return a pointer to the list 1019 * node created. 1020 */ 1021 Listnode * 1022 list_insert(List *lst, const void *item, Listnode *lnp) 1023 { 1024 Listnode * _lnp; 1025 1026 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1027 return (0); 1028 1029 _lnp->data = (void *)item; 1030 _lnp->next = lnp->next; 1031 if (_lnp->next == NULL) 1032 lst->tail = _lnp; 1033 lnp->next = _lnp; 1034 return (_lnp); 1035 } 1036 1037 /* 1038 * Prepend an item to the specified list, and return a pointer to the 1039 * list node created. 1040 */ 1041 Listnode * 1042 list_prepend(List * lst, const void * item) 1043 { 1044 Listnode * _lnp; 1045 1046 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1047 return (0); 1048 1049 _lnp->data = (void *)item; 1050 1051 if (lst->head == NULL) { 1052 _lnp->next = NULL; 1053 lst->tail = lst->head = _lnp; 1054 } else { 1055 _lnp->next = lst->head; 1056 lst->head = _lnp; 1057 } 1058 return (_lnp); 1059 } 1060 1061 1062 /* 1063 * Delete a 'listnode' from a list. 1064 */ 1065 void 1066 list_delete(List * lst, void * item) 1067 { 1068 Listnode * clnp, * plnp; 1069 1070 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1071 if (item == clnp->data) 1072 break; 1073 plnp = clnp; 1074 } 1075 1076 if (clnp == 0) 1077 return; 1078 1079 if (lst->head == clnp) 1080 lst->head = clnp->next; 1081 if (lst->tail == clnp) 1082 lst->tail = plnp; 1083 1084 if (plnp) 1085 plnp->next = clnp->next; 1086 1087 free(clnp); 1088 } 1089 1090 /* 1091 * Append an item to the specified link map control list. 1092 */ 1093 void 1094 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1095 { 1096 Lm_cntl *lmc; 1097 int add = 1; 1098 1099 /* 1100 * Indicate that this link-map list has a new object. 1101 */ 1102 (lml->lm_obj)++; 1103 1104 /* 1105 * Alert the debuggers that we are about to mess with the main link-map 1106 * control list. 1107 */ 1108 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1109 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1110 1111 /* LINTED */ 1112 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1113 1114 /* 1115 * A link-map list header points to one of more link-map control lists 1116 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1117 * the list of relocated objects. Other lists maintain objects that 1118 * are still being analyzed or relocated. This list provides the core 1119 * link-map list information used by all ld.so.1 routines. 1120 */ 1121 if (lmc->lc_head == NULL) { 1122 /* 1123 * If this is the first link-map for the given control list, 1124 * initialize the list. 1125 */ 1126 lmc->lc_head = lmc->lc_tail = lmp; 1127 add = 0; 1128 1129 } else if (FLAGS(lmp) & FLG_RT_INTRPOSE) { 1130 Rt_map *tlmp; 1131 1132 /* 1133 * If this is an interposer then append the link-map following 1134 * any other interposers (these are objects that have been 1135 * previously preloaded, or were identified with -z interpose). 1136 * Interposers can only be inserted on the first link-map 1137 * control list, as once relocation has started, interposition 1138 * from new interposers can't be guaranteed. 1139 * 1140 * NOTE: We do not interpose on the head of a list. This model 1141 * evolved because dynamic executables have already been fully 1142 * relocated within themselves and thus can't be interposed on. 1143 * Nowadays it's possible to have shared objects at the head of 1144 * a list, which conceptually means they could be interposed on. 1145 * But, shared objects can be created via dldump() and may only 1146 * be partially relocated (just relatives), in which case they 1147 * are interposable, but are marked as fixed (ET_EXEC). 1148 * 1149 * Thus we really don't have a clear method of deciding when the 1150 * head of a link-map is interposable. So, to be consistent, 1151 * for now only add interposers after the link-map lists head 1152 * object. 1153 */ 1154 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1155 tlmp = (Rt_map *)NEXT(tlmp)) { 1156 1157 if (FLAGS(tlmp) & FLG_RT_INTRPOSE) 1158 continue; 1159 1160 /* 1161 * Insert the new link-map before this non-interposer, 1162 * and indicate an interposer is found. 1163 */ 1164 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1165 PREV(lmp) = PREV(tlmp); 1166 1167 NEXT(lmp) = (Link_map *)tlmp; 1168 PREV(tlmp) = (Link_map *)lmp; 1169 1170 lmc->lc_flags |= LMC_FLG_REANALYZE; 1171 add = 0; 1172 break; 1173 } 1174 } 1175 1176 /* 1177 * Fall through to appending the new link map to the tail of the list. 1178 * If we're processing the initial objects of this link-map list, add 1179 * them to the backward compatibility list. 1180 */ 1181 if (add) { 1182 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1183 PREV(lmp) = (Link_map *)lmc->lc_tail; 1184 lmc->lc_tail = lmp; 1185 } 1186 1187 /* 1188 * Having added this link-map to a control list, indicate which control 1189 * list the link-map belongs to. Note, control list information is 1190 * always maintained as an offset, as the Alist can be reallocated. 1191 */ 1192 CNTL(lmp) = lmco; 1193 1194 /* 1195 * Indicate if an interposer is found. Note that the first object on a 1196 * link-map can be explicitly defined as an interposer so that it can 1197 * provide interposition over direct binding requests. 1198 */ 1199 if (FLAGS(lmp) & FLG_RT_INTRPOSE) 1200 lml->lm_flags |= LML_FLG_INTRPOSE; 1201 1202 /* 1203 * For backward compatibility with debuggers, the link-map list contains 1204 * pointers to the main control list. 1205 */ 1206 if (lmco == ALO_DATA) { 1207 lml->lm_head = lmc->lc_head; 1208 lml->lm_tail = lmc->lc_tail; 1209 } 1210 } 1211 1212 /* 1213 * Delete an item from the specified link map control list. 1214 */ 1215 void 1216 lm_delete(Lm_list *lml, Rt_map *lmp) 1217 { 1218 Lm_cntl *lmc; 1219 1220 /* 1221 * If the control list pointer hasn't been initialized, this object 1222 * never got added to a link-map list. 1223 */ 1224 if (CNTL(lmp) == 0) 1225 return; 1226 1227 /* 1228 * Alert the debuggers that we are about to mess with the main link-map 1229 * control list. 1230 */ 1231 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1232 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1233 1234 /* LINTED */ 1235 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1236 1237 if (lmc->lc_head == lmp) 1238 lmc->lc_head = (Rt_map *)NEXT(lmp); 1239 else 1240 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1241 1242 if (lmc->lc_tail == lmp) 1243 lmc->lc_tail = (Rt_map *)PREV(lmp); 1244 else 1245 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1246 1247 /* 1248 * For backward compatibility with debuggers, the link-map list contains 1249 * pointers to the main control list. 1250 */ 1251 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1252 lml->lm_head = lmc->lc_head; 1253 lml->lm_tail = lmc->lc_tail; 1254 } 1255 1256 /* 1257 * Indicate we have one less object on this control list. 1258 */ 1259 (lml->lm_obj)--; 1260 } 1261 1262 /* 1263 * Move a link-map control list to another. Objects that are being relocated 1264 * are maintained on secondary control lists. Once their relocation is 1265 * complete, the entire list is appended to the previous control list, as this 1266 * list must have been the trigger for generating the new control list. 1267 */ 1268 void 1269 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1270 { 1271 Rt_map *lmp; 1272 1273 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1274 1275 /* 1276 * Alert the debuggers that we are about to mess with the main link-map 1277 * control list. 1278 */ 1279 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1280 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1281 1282 /* 1283 * Indicate each new link-map has been moved to the previous link-map 1284 * control list. 1285 */ 1286 1287 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1288 CNTL(lmp) = plmco; 1289 1290 /* 1291 * Move the new link-map control list, to the callers link-map control 1292 * list. 1293 */ 1294 if (plmc->lc_head == 0) { 1295 plmc->lc_head = nlmc->lc_head; 1296 PREV(nlmc->lc_head) = 0; 1297 } else { 1298 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1299 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1300 } 1301 1302 plmc->lc_tail = nlmc->lc_tail; 1303 nlmc->lc_head = nlmc->lc_tail = 0; 1304 1305 /* 1306 * For backward compatibility with debuggers, the link-map list contains 1307 * pointers to the main control list. 1308 */ 1309 if (plmco == ALO_DATA) { 1310 lml->lm_head = plmc->lc_head; 1311 lml->lm_tail = plmc->lc_tail; 1312 } 1313 } 1314 1315 /* 1316 * Dlopening a family of objects occurs on a new link-map control list. If the 1317 * dlopen fails, then its handle is used to tear down the family (dlclose). 1318 * However, the relocation of this family may have triggered other objects to 1319 * be loaded, and after their relocation they will have been moved to the 1320 * dlopen families control list. After a dlopen() failure, see if there are 1321 * any objects that can be savaged before tearing down this control list. 1322 */ 1323 int 1324 lm_salvage(Lm_list *lml, int test, Aliste nlmco) 1325 { 1326 Lm_cntl *nlmc; 1327 1328 /* 1329 * If a dlopen occurred on a new link-map list, then its dlclose may 1330 * have completely torn down the link-map list. Check that the link-map 1331 * list still exists before proceeding. 1332 */ 1333 if (test) { 1334 Listnode *lnp; 1335 Lm_list *tlml; 1336 int found = 0; 1337 1338 for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) { 1339 if (tlml == lml) { 1340 found++; 1341 break; 1342 } 1343 } 1344 if (found == 0) 1345 return (0); 1346 } 1347 1348 /* LINTED */ 1349 nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco); 1350 1351 /* 1352 * If this link-map control list still contains objects, determine the 1353 * previous control list and move the objects. 1354 */ 1355 if (nlmc->lc_head) { 1356 Lm_cntl *plmc; 1357 Aliste plmco; 1358 1359 plmco = nlmco - lml->lm_lists->al_size; 1360 /* LINTED */ 1361 plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco); 1362 1363 lm_move(lml, nlmco, plmco, nlmc, plmc); 1364 } 1365 return (1); 1366 } 1367 1368 /* 1369 * Environment variables can have a variety of defined permutations, and thus 1370 * the following infrastructure exists to allow this variety and to select the 1371 * required definition. 1372 * 1373 * Environment variables can be defined as 32- or 64-bit specific, and if so 1374 * they will take precedence over any instruction set neutral form. Typically 1375 * this is only useful when the environment value is an informational string. 1376 * 1377 * Environment variables may be obtained from the standard user environment or 1378 * from a configuration file. The latter provides a fallback if no user 1379 * environment setting is found, and can take two forms: 1380 * 1381 * . a replaceable definition - this will be used if no user environment 1382 * setting has been seen, or 1383 * 1384 * . an permanent definition - this will be used no matter what user 1385 * environment setting is seen. In the case of list variables it will be 1386 * appended to any process environment setting seen. 1387 * 1388 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1389 * override any replaceable environment variables from a configuration file. 1390 */ 1391 static u_longlong_t rplgen; /* replaceable generic */ 1392 /* variables */ 1393 static u_longlong_t rplisa; /* replaceable ISA specific */ 1394 /* variables */ 1395 static u_longlong_t prmgen; /* permanent generic */ 1396 /* variables */ 1397 static u_longlong_t prmisa; /* permanent ISA specific */ 1398 /* variables */ 1399 1400 /* 1401 * Classify an environment variables type. 1402 */ 1403 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1404 /* the wrong ISA */ 1405 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1406 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1407 /* config file */ 1408 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1409 1410 /* 1411 * Identify all environment variables. 1412 */ 1413 #define ENV_FLG_AUDIT 0x0000000001ULL 1414 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1415 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1416 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1417 #define ENV_FLG_BINDINGS 0x0000000010ULL 1418 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1419 #define ENV_FLG_CONFGEN 0x0000000040ULL 1420 #define ENV_FLG_CONFIG 0x0000000080ULL 1421 #define ENV_FLG_DEBUG 0x0000000100ULL 1422 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1423 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1424 #define ENV_FLG_FLAGS 0x0000000800ULL 1425 #define ENV_FLG_INIT 0x0000001000ULL 1426 #define ENV_FLG_LIBPATH 0x0000002000ULL 1427 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1428 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1429 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1430 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1431 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1432 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1433 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1434 #define ENV_FLG_NODIRECT 0x0000200000ULL 1435 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1436 #define ENV_FLG_NOLAZY 0x0000800000ULL 1437 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1438 #define ENV_FLG_NOVERSION 0x0002000000ULL 1439 #define ENV_FLG_PRELOAD 0x0004000000ULL 1440 #define ENV_FLG_PROFILE 0x0008000000ULL 1441 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1442 #define ENV_FLG_SIGNAL 0x0020000000ULL 1443 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1444 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1445 #define ENV_FLG_UNREF 0x0100000000ULL 1446 #define ENV_FLG_UNUSED 0x0200000000ULL 1447 #define ENV_FLG_VERBOSE 0x0400000000ULL 1448 #define ENV_FLG_WARN 0x0800000000ULL 1449 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1450 1451 #ifdef SIEBEL_DISABLE 1452 #define ENV_FLG_FIX_1 0x8000000000ULL 1453 #endif 1454 1455 #define SEL_REPLACE 0x0001 1456 #define SEL_PERMANT 0x0002 1457 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1458 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1459 #define SEL_ACT_STR 0x0400 /* setting string value */ 1460 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1461 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1462 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1463 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1464 1465 /* 1466 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1467 * and len specifies its length (comparing a strings length before the string 1468 * itself speed things up). s2 points to the token itself which has already 1469 * had any leading white-space removed. 1470 */ 1471 static void 1472 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1473 Word *lmtflags, uint_t env_flags, int aout) 1474 { 1475 u_longlong_t variable = 0; 1476 unsigned short select = 0; 1477 const char **str; 1478 Word val = 0; 1479 1480 /* 1481 * Determine whether we're dealing with a replaceable or permanent 1482 * string. 1483 */ 1484 if (env_flags & ENV_TYP_PERMANT) { 1485 /* 1486 * If the string is from a configuration file and defined as 1487 * permanent, assign it as permanent. 1488 */ 1489 select |= SEL_PERMANT; 1490 } else 1491 select |= SEL_REPLACE; 1492 1493 /* 1494 * Parse the variable given. 1495 * 1496 * The LD_AUDIT family. 1497 */ 1498 if (*s1 == 'A') { 1499 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1500 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1501 /* 1502 * Replaceable and permanent audit objects can exist. 1503 */ 1504 select |= SEL_ACT_STR; 1505 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1506 variable = ENV_FLG_AUDIT; 1507 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1508 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1509 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1510 /* 1511 * A specialized variable for plt_exit() use, not 1512 * documented for general use. 1513 */ 1514 select |= SEL_ACT_SPEC_2; 1515 variable = ENV_FLG_AUDIT_ARGS; 1516 } 1517 } 1518 /* 1519 * The LD_BIND family and LD_BREADTH (historic). 1520 */ 1521 else if (*s1 == 'B') { 1522 if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1523 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1524 select |= SEL_ACT_RT2; 1525 val = RT_FL2_BINDNOW; 1526 variable = ENV_FLG_BIND_NOW; 1527 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1528 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1529 /* 1530 * Another trick, enabled to help debug AOUT 1531 * applications under BCP, but not documented for 1532 * general use. 1533 */ 1534 select |= SEL_ACT_RT; 1535 val = RT_FL_NOBIND; 1536 variable = ENV_FLG_BIND_NOT; 1537 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1538 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1539 /* 1540 * This variable is simply for backward compatibility. 1541 * If this and LD_DEBUG are both specified, only one of 1542 * the strings is going to get processed. 1543 */ 1544 select |= SEL_ACT_SPEC_2; 1545 variable = ENV_FLG_BINDINGS; 1546 #ifndef LD_BREADTH_DISABLED 1547 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1548 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1549 /* 1550 * Besides some old patches this is no longer available. 1551 */ 1552 rtld_flags |= RT_FL_BREADTH; 1553 return; 1554 #endif 1555 } 1556 } 1557 /* 1558 * LD_CONCURRENCY and LD_CONFIG family. 1559 */ 1560 else if (*s1 == 'C') { 1561 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1562 MSG_ORIG(MSG_LD_CONCURRENCY), 1563 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1564 /* 1565 * Waiting in the wings, as concurrency checking isn't 1566 * yet enabled. 1567 */ 1568 select |= SEL_ACT_SPEC_2; 1569 variable = ENV_FLG_CONCURRENCY; 1570 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1571 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1572 /* 1573 * Set by crle(1) to indicate it's building a 1574 * configuration file, not documented for general use. 1575 */ 1576 select |= SEL_ACT_SPEC_2; 1577 variable = ENV_FLG_CONFGEN; 1578 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1579 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1580 /* 1581 * Secure applications must use a default configuration 1582 * file. A setting from a configuration file doesn't 1583 * make sense (given we must be reading a configuration 1584 * file to have gotten this). 1585 */ 1586 if ((rtld_flags & RT_FL_SECURE) || 1587 (env_flags & ENV_TYP_CONFIG)) 1588 return; 1589 select |= SEL_ACT_STR; 1590 str = &config->c_name; 1591 variable = ENV_FLG_CONFIG; 1592 } 1593 } 1594 /* 1595 * The LD_DEBUG family and LD_DEMANGLE. 1596 */ 1597 else if (*s1 == 'D') { 1598 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1599 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1600 select |= SEL_ACT_STR; 1601 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1602 variable = ENV_FLG_DEBUG; 1603 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1604 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1605 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1606 select |= SEL_ACT_STR; 1607 str = &dbg_file; 1608 variable = ENV_FLG_DEBUG_OUTPUT; 1609 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1610 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1611 select |= SEL_ACT_RT; 1612 val = RT_FL_DEMANGLE; 1613 variable = ENV_FLG_DEMANGLE; 1614 } 1615 } 1616 /* 1617 * LD_FLAGS - collect the best variable definition. On completion of 1618 * environment variable processing pass the result to ld_flags_env() 1619 * where they'll be decomposed and passed back to this routine. 1620 */ 1621 else if (*s1 == 'F') { 1622 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1623 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1624 select |= SEL_ACT_SPEC_1; 1625 str = 1626 (select & SEL_REPLACE) ? &rpl_ldflags : &prm_ldflags; 1627 variable = ENV_FLG_FLAGS; 1628 } 1629 } 1630 /* 1631 * LD_INIT (internal, used by ldd(1)). 1632 */ 1633 else if (*s1 == 'I') { 1634 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1635 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1636 select |= SEL_ACT_LML; 1637 val = LML_FLG_TRC_INIT; 1638 variable = ENV_FLG_INIT; 1639 } 1640 } 1641 /* 1642 * The LD_LIBRARY_PATH and LD_LOAD families. 1643 */ 1644 else if (*s1 == 'L') { 1645 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1646 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1647 select |= SEL_ACT_SPEC_1; 1648 str = 1649 (select & SEL_REPLACE) ? &rpl_libpath : &prm_libpath; 1650 variable = ENV_FLG_LIBPATH; 1651 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1652 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1653 /* 1654 * Internal use by crle(1), not documented for general 1655 * use. 1656 */ 1657 select |= SEL_ACT_LML; 1658 val = LML_FLG_LOADAVAIL; 1659 variable = ENV_FLG_LOADAVAIL; 1660 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1661 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1662 select |= SEL_ACT_SPEC_2; 1663 variable = ENV_FLG_LOADFLTR; 1664 } 1665 } 1666 /* 1667 * The LD_NO family. 1668 */ 1669 else if (*s1 == 'N') { 1670 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1671 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1672 select |= SEL_ACT_RT; 1673 val = RT_FL_NOAUDIT; 1674 variable = ENV_FLG_NOAUDIT; 1675 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1677 select |= SEL_ACT_RT; 1678 val = RT_FL_NOAUXFLTR; 1679 variable = ENV_FLG_NOAUXFLTR; 1680 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1681 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1682 select |= SEL_ACT_RT; 1683 val = RT_FL_NOBAPLT; 1684 variable = ENV_FLG_NOBAPLT; 1685 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1686 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1687 select |= SEL_ACT_RT; 1688 val = RT_FL_NOCFG; 1689 variable = ENV_FLG_NOCONFIG; 1690 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1691 MSG_ORIG(MSG_LD_NODIRCONFIG), 1692 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1693 select |= SEL_ACT_RT; 1694 val = RT_FL_NODIRCFG; 1695 variable = ENV_FLG_NODIRCONFIG; 1696 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1697 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1698 select |= SEL_ACT_LMLT; 1699 val = LML_TFLG_NODIRECT; 1700 variable = ENV_FLG_NODIRECT; 1701 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1702 MSG_ORIG(MSG_LD_NOENVCONFIG), 1703 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1704 select |= SEL_ACT_RT; 1705 val = RT_FL_NOENVCFG; 1706 variable = ENV_FLG_NOENVCONFIG; 1707 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1708 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1709 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1710 select |= SEL_ACT_RT2; 1711 val = RT_FL2_NOFLTCFG; 1712 variable = ENV_FLG_NOFLTCONFIG; 1713 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1714 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1715 select |= SEL_ACT_LMLT; 1716 val = LML_TFLG_NOLAZYLD; 1717 variable = ENV_FLG_NOLAZY; 1718 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1719 MSG_ORIG(MSG_LD_NOOBJALTER), 1720 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1721 select |= SEL_ACT_RT; 1722 val = RT_FL_NOOBJALT; 1723 variable = ENV_FLG_NOOBJALTER; 1724 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1725 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1726 select |= SEL_ACT_RT; 1727 val = RT_FL_NOVERSION; 1728 variable = ENV_FLG_NOVERSION; 1729 } 1730 } 1731 /* 1732 * LD_ORIGIN. 1733 */ 1734 else if (*s1 == 'O') { 1735 #ifndef EXPAND_RELATIVE 1736 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1737 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1738 /* 1739 * Besides some old patches this is no longer required. 1740 */ 1741 rtld_flags |= RT_FL_RELATIVE; 1742 } 1743 #endif 1744 return; 1745 } 1746 /* 1747 * LD_PRELOAD and LD_PROFILE family. 1748 */ 1749 else if (*s1 == 'P') { 1750 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1751 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1752 select |= SEL_ACT_STR; 1753 str = 1754 (select & SEL_REPLACE) ? &rpl_preload : &prm_preload; 1755 variable = ENV_FLG_PRELOAD; 1756 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1757 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1758 /* 1759 * Only one user library can be profiled at a time. 1760 */ 1761 select |= SEL_ACT_SPEC_2; 1762 variable = ENV_FLG_PROFILE; 1763 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1764 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1765 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1766 /* 1767 * Only one user library can be profiled at a time. 1768 */ 1769 select |= SEL_ACT_STR; 1770 str = &profile_out; 1771 variable = ENV_FLG_PROFILE_OUTPUT; 1772 } 1773 } 1774 /* 1775 * LD_SIGNAL. 1776 */ 1777 else if (*s1 == 'S') { 1778 if (rtld_flags & RT_FL_SECURE) 1779 return; 1780 if ((len == MSG_LD_SIGNAL_SIZE) && 1781 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1782 MSG_LD_SIGNAL_SIZE) == 0)) { 1783 select |= SEL_ACT_SPEC_2; 1784 variable = ENV_FLG_SIGNAL; 1785 } 1786 } 1787 /* 1788 * The LD_TRACE family (internal, used by ldd(1)). 1789 */ 1790 else if (*s1 == 'T') { 1791 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1792 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1793 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1794 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1795 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1796 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1797 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1798 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1799 select |= SEL_ACT_SPEC_2; 1800 variable = ENV_FLG_TRACE_OBJS; 1801 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1802 MSG_ORIG(MSG_LD_TRACE_PTHS), 1803 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1804 select |= SEL_ACT_LML; 1805 val = LML_FLG_TRC_SEARCH; 1806 variable = ENV_FLG_TRACE_PTHS; 1807 } 1808 } 1809 /* 1810 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1811 */ 1812 else if (*s1 == 'U') { 1813 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1814 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1815 select |= SEL_ACT_LML; 1816 val = LML_FLG_TRC_UNREF; 1817 variable = ENV_FLG_UNREF; 1818 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1819 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1820 select |= SEL_ACT_LML; 1821 val = LML_FLG_TRC_UNUSED; 1822 variable = ENV_FLG_UNUSED; 1823 } 1824 } 1825 /* 1826 * LD_VERBOSE (internal, used by ldd(1)). 1827 */ 1828 else if (*s1 == 'V') { 1829 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1830 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1831 select |= SEL_ACT_LML; 1832 val = LML_FLG_TRC_VERBOSE; 1833 variable = ENV_FLG_VERBOSE; 1834 } 1835 } 1836 /* 1837 * LD_WARN (internal, used by ldd(1)). 1838 */ 1839 else if (*s1 == 'W') { 1840 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1841 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1842 select |= SEL_ACT_LML; 1843 val = LML_FLG_TRC_WARN; 1844 variable = ENV_FLG_WARN; 1845 } 1846 #ifdef SIEBEL_DISABLE 1847 } 1848 /* 1849 * LD__FIX__ (undocumented, enable future technology that can't be 1850 * delivered in a patch release). 1851 */ 1852 else if (*s1 == '_') { 1853 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1854 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1855 select |= SEL_ACT_RT; 1856 val = RT_FL_DISFIX_1; 1857 variable = ENV_FLG_FIX_1; 1858 } 1859 #endif 1860 } 1861 if (variable == 0) 1862 return; 1863 1864 /* 1865 * If the variable is already processed with ISA specific variable, 1866 * no further processing needed. 1867 */ 1868 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1869 ((select & SEL_PERMANT) && (prmisa & variable))) 1870 return; 1871 1872 /* 1873 * Now mark the appropriate variables 1874 */ 1875 if (env_flags & ENV_TYP_ISA) { 1876 /* 1877 * This is ISA setting. We do the setting 1878 * even if s2 is NULL. 1879 * If s2 is NULL, we might need to undo 1880 * the setting. 1881 */ 1882 if (select & SEL_REPLACE) { 1883 rplisa |= variable; 1884 } else { 1885 prmisa |= variable; 1886 } 1887 } else if (s2) { 1888 /* 1889 * This is non0-ISA setting 1890 */ 1891 if (select & SEL_REPLACE) { 1892 rplgen |= variable; 1893 } else 1894 prmgen |= variable; 1895 } else 1896 /* 1897 * This is non-ISA setting which 1898 * can be ignored. 1899 */ 1900 return; 1901 1902 /* 1903 * Now perform the setting. 1904 */ 1905 if (select & SEL_ACT_RT) { 1906 if (s2) 1907 rtld_flags |= val; 1908 else 1909 rtld_flags &= ~val; 1910 } else if (select & SEL_ACT_RT2) { 1911 if (s2) 1912 rtld_flags2 |= val; 1913 else 1914 rtld_flags2 &= ~val; 1915 } else if (select & SEL_ACT_STR) 1916 *str = s2; 1917 else if (select & SEL_ACT_LML) { 1918 if (s2) 1919 *lmflags |= val; 1920 else 1921 *lmflags &= ~val; 1922 } else if (select & SEL_ACT_LMLT) { 1923 if (s2) 1924 *lmtflags |= val; 1925 else 1926 *lmtflags &= ~val; 1927 } else if (select & SEL_ACT_SPEC_1) { 1928 /* 1929 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1930 */ 1931 *str = s2; 1932 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1933 if (s2) { 1934 if (variable == ENV_FLG_FLAGS) 1935 env_info |= ENV_INF_FLAGCFG; 1936 else 1937 env_info |= ENV_INF_PATHCFG; 1938 } else { 1939 if (variable == ENV_FLG_FLAGS) 1940 env_info &= ~ENV_INF_FLAGCFG; 1941 else 1942 env_info &= ~ENV_INF_PATHCFG; 1943 } 1944 } 1945 } else if (select & SEL_ACT_SPEC_2) { 1946 /* 1947 * variables can be: ENV_FLG_ 1948 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1949 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1950 */ 1951 if (variable == ENV_FLG_AUDIT_ARGS) { 1952 if (s2) { 1953 audit_argcnt = atoi(s2); 1954 audit_argcnt += audit_argcnt % 2; 1955 } else 1956 audit_argcnt = 0; 1957 } else if (variable == ENV_FLG_BINDINGS) { 1958 if (s2) 1959 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1960 else 1961 rpl_debug = 0; 1962 } else if (variable == ENV_FLG_CONCURRENCY) { 1963 if (s2) 1964 rtld_flags &= ~RT_FL_NOCONCUR; 1965 else 1966 rtld_flags |= RT_FL_NOCONCUR; 1967 } else if (variable == ENV_FLG_CONFGEN) { 1968 if (s2) { 1969 rtld_flags |= RT_FL_CONFGEN; 1970 *lmflags |= LML_FLG_IGNRELERR; 1971 } else { 1972 rtld_flags &= ~RT_FL_CONFGEN; 1973 *lmflags &= ~LML_FLG_IGNRELERR; 1974 } 1975 } else if (variable == ENV_FLG_LOADFLTR) { 1976 if (s2) { 1977 *lmtflags |= LML_TFLG_LOADFLTR; 1978 if (*s2 == '2') 1979 rtld_flags |= RT_FL_WARNFLTR; 1980 } else { 1981 *lmtflags &= ~LML_TFLG_LOADFLTR; 1982 rtld_flags &= ~RT_FL_WARNFLTR; 1983 } 1984 } else if (variable == ENV_FLG_PROFILE) { 1985 profile_name = s2; 1986 if (s2) { 1987 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1988 return; 1989 } 1990 if (rtld_flags & RT_FL_SECURE) { 1991 profile_lib = 1992 #if defined(_ELF64) 1993 MSG_ORIG(MSG_PTH_LDPROFSE_64); 1994 #else 1995 MSG_ORIG(MSG_PTH_LDPROFSE); 1996 #endif 1997 } else { 1998 profile_lib = 1999 #if defined(_ELF64) 2000 MSG_ORIG(MSG_PTH_LDPROF_64); 2001 #else 2002 MSG_ORIG(MSG_PTH_LDPROF); 2003 #endif 2004 } 2005 } else 2006 profile_lib = 0; 2007 } else if (variable == ENV_FLG_SIGNAL) { 2008 killsig = s2 ? atoi(s2) : SIGKILL; 2009 } else if (variable == ENV_FLG_TRACE_OBJS) { 2010 if (s2) { 2011 *lmflags |= LML_FLG_TRC_ENABLE; 2012 if (*s2 == '2') 2013 *lmflags |= LML_FLG_TRC_LDDSTUB; 2014 } else 2015 *lmflags &= 2016 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2017 } 2018 } 2019 } 2020 2021 /* 2022 * Determine whether we have an architecture specific environment variable. 2023 * If we do, and we're the wrong architecture, it'll just get ignored. 2024 * Otherwise the variable is processed in it's architecture neutral form. 2025 */ 2026 static int 2027 ld_arch_env(const char *s1, size_t *len) 2028 { 2029 size_t _len = *len - 3; 2030 2031 if (s1[_len++] == '_') { 2032 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2033 #if defined(_ELF64) 2034 return (ENV_TYP_IGNORE); 2035 #else 2036 *len = *len - 3; 2037 return (ENV_TYP_ISA); 2038 #endif 2039 } 2040 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2041 #if defined(_ELF64) 2042 *len = *len - 3; 2043 return (ENV_TYP_ISA); 2044 #else 2045 return (ENV_TYP_IGNORE); 2046 #endif 2047 } 2048 } 2049 return (0); 2050 } 2051 2052 2053 /* 2054 * Process an LD_FLAGS environment variable. The value can be a comma 2055 * separated set of tokens, which are sent (in upper case) into the generic 2056 * LD_XXXX environment variable engine. For example: 2057 * 2058 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2059 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2060 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2061 * or 2062 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2063 */ 2064 static int 2065 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2066 uint_t env_flags, int aout) 2067 { 2068 char *nstr, *sstr, *estr = 0; 2069 size_t nlen, len; 2070 2071 if (str == 0) 2072 return (0); 2073 2074 /* 2075 * Create a new string as we're going to transform the token(s) into 2076 * uppercase and separate tokens with nulls. 2077 */ 2078 len = strlen(str); 2079 if ((nstr = malloc(len + 1)) == 0) 2080 return (1); 2081 (void) strcpy(nstr, str); 2082 2083 for (sstr = nstr; sstr; sstr++, len--) { 2084 int flags; 2085 2086 if ((*sstr != '\0') && (*sstr != ',')) { 2087 if (estr == 0) { 2088 if (*sstr == '=') 2089 estr = sstr; 2090 else { 2091 /* 2092 * Translate token to uppercase. Don't 2093 * use toupper(3C) as including this 2094 * code doubles the size of ld.so.1. 2095 */ 2096 if ((*sstr >= 'a') && (*sstr <= 'z')) 2097 *sstr = *sstr - ('a' - 'A'); 2098 } 2099 } 2100 continue; 2101 } 2102 2103 *sstr = '\0'; 2104 if (estr) { 2105 nlen = estr - nstr; 2106 if ((*++estr == '\0') || (*estr == ',')) 2107 estr = 0; 2108 } else 2109 nlen = sstr - nstr; 2110 2111 /* 2112 * Fabricate a boolean definition for any unqualified variable. 2113 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2114 * The value is sufficient to assert any boolean variables, plus 2115 * the term "(null)" is specifically chosen in case someone 2116 * mistakenly supplies something like LD_FLAGS=library_path. 2117 */ 2118 if (estr == 0) 2119 estr = (char *)MSG_INTL(MSG_STR_NULL); 2120 2121 /* 2122 * Determine whether the environment variable is 32- or 64-bit 2123 * specific. The length, len, will reflect the architecture 2124 * neutral portion of the string. 2125 */ 2126 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2127 ld_generic_env(nstr, nlen, estr, lmflags, 2128 lmtflags, (env_flags | flags), aout); 2129 } 2130 if (len == 0) 2131 return (0); 2132 2133 nstr = sstr + 1; 2134 estr = 0; 2135 } 2136 return (0); 2137 } 2138 2139 2140 /* 2141 * Process a single environment string. Only strings starting with `LD_' are 2142 * reserved for our use. By convention, all strings should be of the form 2143 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2144 * functionality is enabled. Also pick off applicable locale variables. 2145 */ 2146 #define LOC_LANG 1 2147 #define LOC_MESG 2 2148 #define LOC_ALL 3 2149 2150 static void 2151 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2152 int aout) 2153 { 2154 const char *s2; 2155 size_t loc = 0; 2156 2157 if (*s1++ != 'L') 2158 return; 2159 2160 /* 2161 * See if we have any locale environment settings. These environment 2162 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2163 * is higher than LANG. 2164 */ 2165 s2 = s1; 2166 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2167 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2168 s2 += MSG_LC_ALL_SIZE; 2169 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2170 locale = s2; 2171 loc = LOC_ALL; 2172 } 2173 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2174 MSG_LC_MESSAGES_SIZE) == 0) { 2175 s2 += MSG_LC_MESSAGES_SIZE; 2176 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2177 locale = s2; 2178 loc = LOC_MESG; 2179 } 2180 } 2181 return; 2182 } 2183 2184 s2 = s1; 2185 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2186 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2187 locale = s2; 2188 loc = LOC_LANG; 2189 return; 2190 } 2191 2192 /* 2193 * Pick off any LD_XXXX environment variables. 2194 */ 2195 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2196 size_t len; 2197 int flags; 2198 2199 /* 2200 * Environment variables with no value (ie. LD_XXXX=) typically 2201 * have no impact, however if environment variables are defined 2202 * within a configuration file, these null user settings can be 2203 * used to disable any configuration replaceable definitions. 2204 */ 2205 if ((s2 = strchr(s1, '=')) == 0) { 2206 len = strlen(s1); 2207 s2 = 0; 2208 } else if (*++s2 == '\0') { 2209 len = strlen(s1) - 1; 2210 s2 = 0; 2211 } else { 2212 len = s2 - s1 - 1; 2213 while (isspace(*s2)) 2214 s2++; 2215 } 2216 2217 /* 2218 * Determine whether the environment variable is 32- or 64-bit 2219 * specific. The length, len, will reflect the architecture 2220 * neutral portion of the string. 2221 */ 2222 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2223 return; 2224 env_flags |= flags; 2225 2226 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2227 } 2228 } 2229 2230 /* 2231 * Internal getenv routine. Called immediately after ld.so.1 initializes 2232 * itself. 2233 */ 2234 int 2235 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2236 { 2237 if (envp == (const char **)0) 2238 return (0); 2239 2240 while (*envp != (const char *)0) 2241 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2242 2243 /* 2244 * Having collected the best representation of any LD_FLAGS, process 2245 * these strings. 2246 */ 2247 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2248 return (1); 2249 2250 /* 2251 * Don't allow environment controlled auditing when tracing or if 2252 * explicitly disabled. Trigger all tracing modes from 2253 * LML_FLG_TRC_ENABLE. 2254 */ 2255 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2256 rpl_audit = profile_lib = profile_name = 0; 2257 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2258 *lmflags &= ~LML_MSK_TRC; 2259 2260 /* 2261 * If we have a locale setting make sure its worth processing further. 2262 * Duplicate the string so that new locale setting can generically 2263 * cleanup any previous locales. 2264 */ 2265 if (locale) { 2266 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2267 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0)) 2268 locale = 0; 2269 else 2270 locale = strdup(locale); 2271 } 2272 return (0); 2273 } 2274 2275 /* 2276 * Configuration environment processing. Called after the a.out has been 2277 * processed (as the a.out can specify its own configuration file). 2278 */ 2279 int 2280 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2281 { 2282 Word * lmflags = &(lml_main.lm_flags); 2283 Word * lmtflags = &(lml_main.lm_tflags); 2284 2285 if (envtbl == (Rtc_env *)0) 2286 return (0); 2287 2288 while (envtbl->env_str) { 2289 uint_t env_flags = ENV_TYP_CONFIG; 2290 2291 if (envtbl->env_flags & RTC_ENV_PERMANT) 2292 env_flags |= ENV_TYP_PERMANT; 2293 2294 ld_str_env((const char *)(envtbl->env_str + addr), 2295 lmflags, lmtflags, env_flags, 0); 2296 envtbl++; 2297 } 2298 2299 /* 2300 * Having collected the best representation of any LD_FLAGS, process 2301 * these strings. 2302 */ 2303 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2304 return (1); 2305 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2306 aout) == 1) 2307 return (1); 2308 2309 /* 2310 * Don't allow environment controlled auditing when tracing or if 2311 * explicitly disabled. Trigger all tracing modes from 2312 * LML_FLG_TRC_ENABLE. 2313 */ 2314 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2315 prm_audit = profile_lib = profile_name = 0; 2316 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2317 *lmflags &= ~LML_MSK_TRC; 2318 2319 return (0); 2320 } 2321 2322 int 2323 dowrite(Prfbuf * prf) 2324 { 2325 /* 2326 * We do not have a valid file descriptor, so we are unable 2327 * to flush the buffer. 2328 */ 2329 if (prf->pr_fd == -1) 2330 return (0); 2331 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2332 prf->pr_cur = prf->pr_buf; 2333 return (1); 2334 } 2335 2336 /* 2337 * Simplified printing. The following conversion specifications are supported: 2338 * 2339 * % [#] [-] [min field width] [. precision] s|d|x|c 2340 * 2341 * 2342 * dorprf takes the output buffer in the form of Prfbuf which permits 2343 * the verification of the output buffer size and the concatenation 2344 * of data to an already existing output buffer. The Prfbuf 2345 * structure contains the following: 2346 * 2347 * pr_buf pointer to the beginning of the output buffer. 2348 * pr_cur pointer to the next available byte in the output buffer. By 2349 * setting pr_cur ahead of pr_buf you can append to an already 2350 * existing buffer. 2351 * pr_len the size of the output buffer. By setting pr_len to '0' you 2352 * disable protection from overflows in the output buffer. 2353 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2354 * output to. If pr_fd is set to '-1' then it's assumed there is 2355 * no output buffer and doprf() will return with an error if the 2356 * output buffer is overflowed. If pr_fd is > -1 then when the 2357 * output buffer is filled it will be flushed to pr_fd and then 2358 * the available for additional data. 2359 */ 2360 #define FLG_UT_MINUS 0x0001 /* - */ 2361 #define FLG_UT_SHARP 0x0002 /* # */ 2362 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2363 2364 /* 2365 * This macro is for use from within doprf only. it's to be used 2366 * for checking the output buffer size and placing characters into 2367 * the buffer. 2368 */ 2369 #define PUTC(c) \ 2370 { \ 2371 register char tmpc; \ 2372 \ 2373 tmpc = (c); \ 2374 if ((bufsiz) && ((bp + 1) >= bufend)) { \ 2375 prf->pr_cur = bp; \ 2376 if (dowrite(prf) == 0) \ 2377 return (0); \ 2378 bp = prf->pr_cur; \ 2379 } \ 2380 *bp++ = tmpc; \ 2381 } 2382 2383 size_t 2384 doprf(const char *format, va_list args, Prfbuf *prf) 2385 { 2386 char c; 2387 char *bp = prf->pr_cur; 2388 char *bufend = prf->pr_buf + prf->pr_len; 2389 size_t bufsiz = prf->pr_len; 2390 2391 while ((c = *format++) != '\0') { 2392 if (c != '%') { 2393 PUTC(c); 2394 } else { 2395 int base = 0, flag = 0, width = 0, prec = 0; 2396 size_t _i; 2397 int _c, _n; 2398 char *_s; 2399 int ls = 0; 2400 again: 2401 c = *format++; 2402 switch (c) { 2403 case '-': 2404 flag |= FLG_UT_MINUS; 2405 goto again; 2406 case '#': 2407 flag |= FLG_UT_SHARP; 2408 goto again; 2409 case '.': 2410 flag |= FLG_UT_DOTSEEN; 2411 goto again; 2412 case '0': 2413 case '1': 2414 case '2': 2415 case '3': 2416 case '4': 2417 case '5': 2418 case '6': 2419 case '7': 2420 case '8': 2421 case '9': 2422 if (flag & FLG_UT_DOTSEEN) 2423 prec = (prec * 10) + c - '0'; 2424 else 2425 width = (width * 10) + c - '0'; 2426 goto again; 2427 case 'x': 2428 case 'X': 2429 base = 16; 2430 break; 2431 case 'd': 2432 case 'D': 2433 case 'u': 2434 base = 10; 2435 flag &= ~FLG_UT_SHARP; 2436 break; 2437 case 'l': 2438 base = 10; 2439 ls++; /* number of l's (long or long long) */ 2440 if ((*format == 'l') || 2441 (*format == 'd') || (*format == 'D') || 2442 (*format == 'x') || (*format == 'X') || 2443 (*format == 'o') || (*format == 'O')) 2444 goto again; 2445 break; 2446 case 'o': 2447 case 'O': 2448 base = 8; 2449 break; 2450 case 'c': 2451 _c = va_arg(args, int); 2452 2453 for (_i = 24; _i > 0; _i -= 8) { 2454 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2455 PUTC(c); 2456 } 2457 } 2458 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2459 PUTC(c); 2460 } 2461 break; 2462 case 's': 2463 _s = va_arg(args, char *); 2464 _i = strlen(_s); 2465 /* LINTED */ 2466 _n = (int)(width - _i); 2467 if (!prec) 2468 /* LINTED */ 2469 prec = (int)_i; 2470 2471 if (width && !(flag & FLG_UT_MINUS)) { 2472 while (_n-- > 0) 2473 PUTC(' '); 2474 } 2475 while (((c = *_s++) != 0) && prec--) { 2476 PUTC(c); 2477 } 2478 if (width && (flag & FLG_UT_MINUS)) { 2479 while (_n-- > 0) 2480 PUTC(' '); 2481 } 2482 break; 2483 case '%': 2484 PUTC('%'); 2485 break; 2486 default: 2487 break; 2488 } 2489 2490 /* 2491 * Numeric processing 2492 */ 2493 if (base) { 2494 char local[20]; 2495 const char *string = 2496 MSG_ORIG(MSG_STR_HEXNUM); 2497 size_t ssize = 0, psize = 0; 2498 const char *prefix = 2499 MSG_ORIG(MSG_STR_EMPTY); 2500 u_longlong_t num; 2501 2502 switch (ls) { 2503 case 0: /* int */ 2504 num = (u_longlong_t) 2505 va_arg(args, uint_t); 2506 break; 2507 case 1: /* long */ 2508 num = (u_longlong_t) 2509 va_arg(args, ulong_t); 2510 break; 2511 case 2: /* long long */ 2512 num = va_arg(args, u_longlong_t); 2513 break; 2514 } 2515 2516 if (flag & FLG_UT_SHARP) { 2517 if (base == 16) { 2518 prefix = MSG_ORIG(MSG_STR_HEX); 2519 psize = 2; 2520 } else { 2521 prefix = MSG_ORIG(MSG_STR_ZERO); 2522 psize = 1; 2523 } 2524 } 2525 if ((base == 10) && (long)num < 0) { 2526 prefix = MSG_ORIG(MSG_STR_NEGATE); 2527 psize = MSG_STR_NEGATE_SIZE; 2528 num = (u_longlong_t)(-(longlong_t)num); 2529 } 2530 2531 /* 2532 * Convert the numeric value into a local 2533 * string (stored in reverse order). 2534 */ 2535 _s = local; 2536 do { 2537 *_s++ = string[num % base]; 2538 num /= base; 2539 ssize++; 2540 } while (num); 2541 2542 /* 2543 * Provide any precision or width padding. 2544 */ 2545 if (prec) { 2546 /* LINTED */ 2547 _n = (int)(prec - ssize); 2548 while (_n-- > 0) { 2549 *_s++ = '0'; 2550 ssize++; 2551 } 2552 } 2553 if (width && !(flag & FLG_UT_MINUS)) { 2554 /* LINTED */ 2555 _n = (int)(width - ssize - psize); 2556 while (_n-- > 0) { 2557 PUTC(' '); 2558 } 2559 } 2560 2561 /* 2562 * Print any prefix and the numeric string 2563 */ 2564 while (*prefix) 2565 PUTC(*prefix++); 2566 do { 2567 PUTC(*--_s); 2568 } while (_s > local); 2569 2570 /* 2571 * Provide any width padding. 2572 */ 2573 if (width && (flag & FLG_UT_MINUS)) { 2574 /* LINTED */ 2575 _n = (int)(width - ssize - psize); 2576 while (_n-- > 0) 2577 PUTC(' '); 2578 } 2579 } 2580 } 2581 } 2582 PUTC('\0'); 2583 prf->pr_cur = bp; 2584 return (1); 2585 } 2586 2587 static int 2588 doprintf(const char *format, va_list args, Prfbuf *prf) 2589 { 2590 char *ocur = prf->pr_cur; 2591 2592 if (doprf(format, args, prf) == 0) 2593 return (0); 2594 /* LINTED */ 2595 return ((int)(prf->pr_cur - ocur)); 2596 } 2597 2598 /* VARARGS2 */ 2599 int 2600 sprintf(char *buf, const char *format, ...) 2601 { 2602 va_list args; 2603 int len; 2604 Prfbuf prf; 2605 2606 va_start(args, format); 2607 prf.pr_buf = prf.pr_cur = buf; 2608 prf.pr_len = 0; 2609 prf.pr_fd = -1; 2610 len = doprintf(format, args, &prf); 2611 va_end(args); 2612 2613 /* 2614 * sprintf() return value excludes the terminating null byte. 2615 */ 2616 return (len - 1); 2617 } 2618 2619 /* VARARGS3 */ 2620 int 2621 snprintf(char *buf, size_t n, const char *format, ...) 2622 { 2623 va_list args; 2624 int len; 2625 Prfbuf prf; 2626 2627 va_start(args, format); 2628 prf.pr_buf = prf.pr_cur = buf; 2629 prf.pr_len = n; 2630 prf.pr_fd = -1; 2631 len = doprintf(format, args, &prf); 2632 va_end(args); 2633 2634 return (len); 2635 } 2636 2637 /* VARARGS2 */ 2638 int 2639 bufprint(Prfbuf *prf, const char *format, ...) 2640 { 2641 va_list args; 2642 int len; 2643 2644 va_start(args, format); 2645 len = doprintf(format, args, prf); 2646 va_end(args); 2647 2648 return (len); 2649 } 2650 2651 /*PRINTFLIKE1*/ 2652 int 2653 printf(const char *format, ...) 2654 { 2655 va_list args; 2656 char buffer[ERRSIZE]; 2657 Prfbuf prf; 2658 2659 va_start(args, format); 2660 prf.pr_buf = prf.pr_cur = buffer; 2661 prf.pr_len = ERRSIZE; 2662 prf.pr_fd = 1; 2663 (void) doprf(format, args, &prf); 2664 va_end(args); 2665 /* 2666 * Trim trailing '\0' form buffer 2667 */ 2668 prf.pr_cur--; 2669 return (dowrite(&prf)); 2670 } 2671 2672 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2673 2674 /*PRINTFLIKE2*/ 2675 void 2676 eprintf(Error error, const char *format, ...) 2677 { 2678 va_list args; 2679 int overflow = 0; 2680 static int lock = 0; 2681 Prfbuf prf; 2682 2683 if (lock || (nextptr == (errbuf + ERRSIZE))) 2684 return; 2685 2686 /* 2687 * Note: this lock is here to prevent the same thread from recursively 2688 * entering itself during a eprintf. ie: during eprintf malloc() fails 2689 * and we try and call eprintf ... and then malloc() fails .... 2690 */ 2691 lock = 1; 2692 2693 /* 2694 * If we have completed startup initialization, all error messages 2695 * must be saved. These are reported through dlerror(). If we're 2696 * still in the initialization stage, output the error directly and 2697 * add a newline. 2698 */ 2699 va_start(args, format); 2700 2701 prf.pr_buf = prf.pr_cur = nextptr; 2702 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2703 2704 if (!(rtld_flags & RT_FL_APPLIC)) 2705 prf.pr_fd = 2; 2706 else 2707 prf.pr_fd = -1; 2708 2709 if (error > ERR_NONE) { 2710 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2711 error = ERR_WARNING; 2712 if (error == ERR_WARNING) { 2713 if (err_strs[ERR_WARNING] == 0) 2714 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2715 } else if (error == ERR_FATAL) { 2716 if (err_strs[ERR_FATAL] == 0) 2717 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2718 } else if (error == ERR_ELF) { 2719 if (err_strs[ERR_ELF] == 0) 2720 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2721 } 2722 if (procname) { 2723 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2724 rtldname, procname, err_strs[error]) == 0) 2725 overflow = 1; 2726 } else { 2727 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2728 rtldname, err_strs[error]) == 0) 2729 overflow = 1; 2730 } 2731 if (overflow == 0) { 2732 /* 2733 * Remove the terminating '\0'. 2734 */ 2735 prf.pr_cur--; 2736 } 2737 } 2738 2739 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2740 overflow = 1; 2741 2742 /* 2743 * If this is an ELF error, it will have been generated by a support 2744 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2745 * ELF error messages as it doesn't interact with libelf. Determine the 2746 * ELF error string. 2747 */ 2748 if ((overflow == 0) && (error == ERR_ELF)) { 2749 static int (*elfeno)() = 0; 2750 static const char *(*elfemg)(); 2751 const char *emsg; 2752 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2753 2754 if (NEXT(lmp) && (elfeno == 0)) { 2755 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2756 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2757 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2758 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2759 elfeno = 0; 2760 } 2761 2762 /* 2763 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2764 */ 2765 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2766 prf.pr_cur--; 2767 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2768 emsg) == 0) 2769 overflow = 1; 2770 } 2771 } 2772 2773 /* 2774 * Push out any message that's been built. Note, in the case of an 2775 * overflow condition, this message may be incomplete, in which case 2776 * make sure any partial string is null terminated. 2777 */ 2778 if (overflow) 2779 *(prf.pr_cur) = '\0'; 2780 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2781 *(prf.pr_cur - 1) = '\n'; 2782 (void) dowrite(&prf); 2783 } 2784 2785 DBG_CALL(Dbg_util_str(nextptr)); 2786 va_end(args); 2787 2788 /* 2789 * Determine if there was insufficient space left in the buffer to 2790 * complete the message. If so, we'll have printed out as much as had 2791 * been processed if we're not yet executing the application. 2792 * Otherwise, there will be some debugging diagnostic indicating 2793 * as much of the error message as possible. Write out a final buffer 2794 * overflow diagnostic - unlocalized, so we don't chance more errors. 2795 */ 2796 if (overflow) { 2797 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2798 2799 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2800 lasterr = str; 2801 2802 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2803 (void) write(2, str, strlen(str)); 2804 (void) write(2, MSG_ORIG(MSG_STR_NL), 2805 MSG_STR_NL_SIZE); 2806 } 2807 } 2808 DBG_CALL(Dbg_util_str(str)); 2809 2810 lock = 0; 2811 nextptr = errbuf + ERRSIZE; 2812 return; 2813 } 2814 2815 /* 2816 * If the application has started, then error messages are being saved 2817 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2818 * the case of a fatal error. In this case, establish the next error 2819 * pointer. If we haven't started the application, the whole message 2820 * buffer can be reused. 2821 */ 2822 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2823 lasterr = nextptr; 2824 2825 /* 2826 * Note, should we encounter an error such as ENOMEM, there may 2827 * be a number of the same error messages (ie. an operation 2828 * fails with ENOMEM, and then the attempts to construct the 2829 * error message itself, which incurs additional ENOMEM errors). 2830 * Compare any previous error message with the one we've just 2831 * created to prevent any duplication clutter. 2832 */ 2833 if ((rtld_flags & RT_FL_APPLIC) && 2834 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2835 prevptr = nextptr; 2836 nextptr = prf.pr_cur; 2837 *nextptr = '\0'; 2838 } 2839 } 2840 lock = 0; 2841 } 2842 2843 2844 #if DEBUG 2845 /* 2846 * Provide assfail() for ASSERT() statements, 2847 * see <sys/debug.h> for further details. 2848 */ 2849 int 2850 assfail(const char *a, const char *f, int l) 2851 { 2852 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2853 (void) _lwp_kill(_lwp_self(), SIGABRT); 2854 return (0); 2855 } 2856 #endif 2857 2858 /* 2859 * Exit. If we arrive here with a non zero status it's because of a fatal 2860 * error condition (most commonly a relocation error). If the application has 2861 * already had control, then the actual fatal error message will have been 2862 * recorded in the dlerror() message buffer. Print the message before really 2863 * exiting. 2864 */ 2865 void 2866 rtldexit(Lm_list * lml, int status) 2867 { 2868 if (status) { 2869 if (rtld_flags & RT_FL_APPLIC) { 2870 /* 2871 * If the error buffer has been used, write out all 2872 * pending messages - lasterr is simply a pointer to 2873 * the last message in this buffer. However, if the 2874 * buffer couldn't be created at all, lasterr points 2875 * to a constant error message string. 2876 */ 2877 if (*errbuf) { 2878 char *errptr = errbuf; 2879 char *errend = errbuf + ERRSIZE; 2880 2881 while ((errptr < errend) && *errptr) { 2882 size_t size = strlen(errptr); 2883 (void) write(2, errptr, size); 2884 (void) write(2, MSG_ORIG(MSG_STR_NL), 2885 MSG_STR_NL_SIZE); 2886 errptr += (size + 1); 2887 } 2888 } 2889 if (lasterr && ((lasterr < errbuf) || 2890 (lasterr > (errbuf + ERRSIZE)))) { 2891 (void) write(2, lasterr, strlen(lasterr)); 2892 (void) write(2, MSG_ORIG(MSG_STR_NL), 2893 MSG_STR_NL_SIZE); 2894 } 2895 } 2896 leave(lml); 2897 (void) _lwp_kill(_lwp_self(), killsig); 2898 } 2899 _exit(status); 2900 } 2901 2902 /* 2903 * Routines to co-ordinate the opening of /dev/zero and /proc. 2904 * dz_fd is exported for possible use by libld.so, and to insure it gets 2905 * closed on leaving ld.so.1. 2906 */ 2907 int dz_fd = FD_UNAVAIL; 2908 2909 void 2910 dz_init(int fd) 2911 { 2912 dz_fd = fd; 2913 } 2914 2915 2916 /* 2917 * mmap() a page from MAP_ANON 2918 * 2919 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2920 * not only mmap(MAP_ANON) but to also probe if it is available 2921 * on the current OS. 2922 */ 2923 Am_ret 2924 anon_map(caddr_t *addr, size_t len, int prot, int flags) 2925 { 2926 #if defined(MAP_ANON) 2927 static int noanon = 0; 2928 caddr_t va; 2929 2930 if (noanon == 0) { 2931 if ((va = (caddr_t)mmap(*addr, len, prot, 2932 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2933 *addr = va; 2934 return (AM_OK); 2935 } 2936 2937 if ((errno != EBADF) && (errno != EINVAL)) { 2938 int err = errno; 2939 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2940 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2941 return (AM_ERROR); 2942 } else 2943 noanon = 1; 2944 } 2945 #endif 2946 return (AM_NOSUP); 2947 } 2948 2949 /* 2950 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2951 * 2952 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2953 * behavior for older systems.) 2954 */ 2955 caddr_t 2956 dz_map(caddr_t addr, size_t len, int prot, int flags) 2957 { 2958 caddr_t va; 2959 int err; 2960 Am_ret amret; 2961 2962 amret = anon_map(&addr, len, prot, flags); 2963 2964 if (amret == AM_OK) 2965 return (addr); 2966 if (amret == AM_ERROR) 2967 return (MAP_FAILED); 2968 2969 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 2970 2971 if (dz_fd == FD_UNAVAIL) { 2972 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 2973 O_RDONLY)) == FD_UNAVAIL) { 2974 err = errno; 2975 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 2976 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2977 return (MAP_FAILED); 2978 } 2979 } 2980 2981 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 2982 err = errno; 2983 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 2984 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2985 } 2986 return (va); 2987 } 2988 2989 static int pr_fd = FD_UNAVAIL; 2990 2991 int 2992 pr_open() 2993 { 2994 char proc[16]; 2995 2996 if (pr_fd == FD_UNAVAIL) { 2997 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 2998 (int)getpid()); 2999 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3000 int err = errno; 3001 3002 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3003 strerror(err)); 3004 } 3005 } 3006 return (pr_fd); 3007 } 3008 3009 static int nu_fd = FD_UNAVAIL; 3010 3011 caddr_t 3012 nu_map(caddr_t addr, size_t len, int prot, int flags) 3013 { 3014 caddr_t va; 3015 int err; 3016 3017 if (nu_fd == FD_UNAVAIL) { 3018 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3019 O_RDONLY)) == FD_UNAVAIL) { 3020 err = errno; 3021 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3022 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3023 return (MAP_FAILED); 3024 } 3025 } 3026 3027 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3028 MAP_FAILED) { 3029 err = errno; 3030 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3031 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3032 } 3033 return (va); 3034 } 3035 3036 /* 3037 * Generic entry point from user code - simply grabs a lock. 3038 */ 3039 int 3040 enter(void) 3041 { 3042 if (rt_bind_guard(THR_FLG_RTLD)) { 3043 (void) rt_mutex_lock(&rtldlock); 3044 return (1); 3045 } 3046 return (0); 3047 } 3048 3049 /* 3050 * Generate diagnostics as to whether an object has been used. A symbolic 3051 * reference that gets bound to an object marks it as used. Dependencies that 3052 * are unused when RTLD_NOW is in effect should be removed from future builds 3053 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3054 * candidates for lazy-loading. 3055 * Unreferenced objects identify objects that are defined as dependencies but 3056 * are unreferenced by the caller (they may however be referenced by other 3057 * objects within the process, and therefore don't qualify as completely unused. 3058 */ 3059 void 3060 unused(Lm_list *lml) 3061 { 3062 Rt_map *lmp; 3063 int nl = 0; 3064 Word tracing; 3065 3066 /* 3067 * If we're not tracing unused references or dependencies, or debugging 3068 * there's nothing to do. 3069 */ 3070 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3071 3072 if ((tracing == 0) && (dbg_mask == 0)) 3073 return; 3074 3075 /* 3076 * Traverse the link-maps looking for unreferenced or unused 3077 * dependencies. Ignore the first object on a link-map list, as this 3078 * is effectively always used. 3079 */ 3080 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3081 lmp = (Rt_map *)NEXT(lmp)) { 3082 /* 3083 * If tracing unreferenced objects, or under debugging, 3084 * determine whether any of this objects callers haven't 3085 * referenced it. 3086 */ 3087 if ((tracing & LML_FLG_TRC_UNREF) || dbg_mask) { 3088 Bnd_desc ** bdpp; 3089 Aliste off; 3090 3091 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3092 Bnd_desc * bdp = *bdpp; 3093 Rt_map * clmp; 3094 3095 if (bdp->b_flags & BND_REFER) 3096 continue; 3097 3098 clmp = bdp->b_caller; 3099 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3100 continue; 3101 3102 if (nl++ == 0) { 3103 if (tracing & LML_FLG_TRC_UNREF) 3104 (void) printf(MSG_ORIG(MSG_STR_NL)); 3105 else 3106 DBG_CALL(Dbg_util_nl()); 3107 } 3108 3109 if (tracing & LML_FLG_TRC_UNREF) 3110 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3111 NAME(lmp), NAME(clmp)); 3112 else 3113 DBG_CALL(Dbg_unused_unref(NAME(lmp), 3114 NAME(clmp))); 3115 } 3116 } 3117 3118 /* 3119 * If tracing unused objects simply display those objects that 3120 * haven't been referenced by anyone. 3121 */ 3122 if (FLAGS1(lmp) & FL1_RT_USED) 3123 continue; 3124 3125 if (nl++ == 0) { 3126 if (tracing) 3127 (void) printf(MSG_ORIG(MSG_STR_NL)); 3128 else 3129 DBG_CALL(Dbg_util_nl()); 3130 } 3131 if (CYCGROUP(lmp)) { 3132 if (tracing) 3133 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3134 NAME(lmp), CYCGROUP(lmp)); 3135 else 3136 DBG_CALL(Dbg_unused_file(NAME(lmp), 3137 CYCGROUP(lmp))); 3138 } else { 3139 if (tracing) 3140 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3141 NAME(lmp)); 3142 else 3143 DBG_CALL(Dbg_unused_file(NAME(lmp), 0)); 3144 } 3145 } 3146 3147 if (dbg_mask) 3148 DBG_CALL(Dbg_util_nl()); 3149 } 3150 3151 /* 3152 * Initialization routine for the Fmap structure. If the fmap structure is 3153 * already in use, any mapping is released. The structure is then initialized 3154 * in preparation for further use. 3155 */ 3156 void 3157 fmap_setup() 3158 { 3159 #if defined(MAP_ALIGN) 3160 /* 3161 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3162 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3163 * should now be freed. 3164 */ 3165 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3166 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3167 3168 /* 3169 * Providing we haven't determined that this system doesn't support 3170 * MAP_ALIGN, initialize the mapping address with the default segment 3171 * alignment. 3172 */ 3173 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3174 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3175 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3176 } else { 3177 fmap->fm_maddr = 0; 3178 fmap->fm_mflags = MAP_PRIVATE; 3179 } 3180 #else 3181 if (fmap->fm_maddr) 3182 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3183 fmap->fm_maddr = 0; 3184 fmap->fm_mflags = MAP_PRIVATE; 3185 #endif 3186 3187 fmap->fm_msize = syspagsz; 3188 fmap->fm_hwptr = 0; 3189 } 3190 3191 /* 3192 * Generic cleanup routine called prior to returning control to the user. 3193 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3194 * released, and any locks dropped. 3195 */ 3196 void 3197 leave(Lm_list * lml) 3198 { 3199 /* 3200 * Alert the debuggers that the link-maps are consistent. 3201 */ 3202 if (lml) 3203 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3204 3205 if (dz_fd != FD_UNAVAIL) { 3206 (void) close(dz_fd); 3207 dz_fd = FD_UNAVAIL; 3208 } 3209 3210 if (pr_fd != FD_UNAVAIL) { 3211 (void) close(pr_fd); 3212 pr_fd = FD_UNAVAIL; 3213 } 3214 3215 if (nu_fd != FD_UNAVAIL) { 3216 (void) close(nu_fd); 3217 nu_fd = FD_UNAVAIL; 3218 } 3219 3220 fmap_setup(); 3221 3222 /* 3223 * Reinitialize error message pointer, and any overflow indication. 3224 */ 3225 nextptr = errbuf; 3226 prevptr = 0; 3227 3228 /* 3229 * Don't drop our lock if we are running on our link-map list as 3230 * there's little point in doing so since we are single-threaded. 3231 * 3232 * LML_FLG_HOLDLOCK is set for: 3233 * *) The ld.so.1's link-map list. 3234 * *) The auditor's link-map if the environment is 3235 * libc/libthread un-unified. 3236 */ 3237 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3238 return; 3239 3240 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3241 (void) rt_mutex_unlock(&rtldlock); 3242 (void) rt_bind_clear(THR_FLG_RTLD); 3243 } 3244 } 3245 3246 int 3247 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3248 { 3249 Alist * calp, * dalp; 3250 Aliste cnt1, cnt2; 3251 Grp_hdl ** ghpp1, ** ghpp2; 3252 3253 /* 3254 * An object can always find symbols within itself. 3255 */ 3256 if (clmp == dlmp) 3257 return (1); 3258 3259 /* 3260 * Don't allow an object to bind to an object that is being deleted 3261 * unless the binder is also being deleted. 3262 */ 3263 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3264 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3265 return (0); 3266 3267 /* 3268 * An object with world access can always bind to an object with global 3269 * visibility. 3270 */ 3271 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3272 return (1); 3273 3274 /* 3275 * An object with local access can only bind to an object that is a 3276 * member of the same group. 3277 */ 3278 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3279 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3280 return (0); 3281 3282 /* 3283 * Traverse the list of groups the caller is a part of. 3284 */ 3285 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3286 /* 3287 * If we're testing for the ability of two objects to bind to 3288 * each other regardless of a specific group, ignore that group. 3289 */ 3290 if (ghp && (*ghpp1 == ghp)) 3291 continue; 3292 3293 /* 3294 * Traverse the list of groups the destination is a part of. 3295 */ 3296 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3297 if (*ghpp1 == *ghpp2) 3298 return (1); 3299 } 3300 } 3301 return (0); 3302 } 3303 3304 /* 3305 * Initialize the environ symbol. Traditionally this is carried out by the crt 3306 * code prior to jumping to main. However, init sections get fired before this 3307 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3308 * information. In addition, a process may have multiple link-maps (ld.so.1's 3309 * debugging and preloading objects), and link auditing, and each may need an 3310 * environ variable set. 3311 * 3312 * This routine is called after a relocation() pass, and thus provides for: 3313 * 3314 * o setting environ on the main link-map after the initial application and 3315 * its dependencies have been established. Typically environ lives in the 3316 * application (provided by its crt), but in older applications it might 3317 * be in libc. Who knows what's expected of applications not built on 3318 * Solaris. 3319 * 3320 * o after loading a new shared object. We can add shared objects to various 3321 * link-maps, and any link-map dependencies requiring getopt() require 3322 * their own environ. In addition, lazy loading might bring in the 3323 * supplier of environ (libc used to be a lazy loading candidate) after 3324 * the link-map has been established and other objects are present. 3325 * 3326 * This routine handles all these scenarios, without adding unnecessary overhead 3327 * to ld.so.1. 3328 */ 3329 void 3330 set_environ(Lm_list *lml) 3331 { 3332 Rt_map * dlmp; 3333 Sym * sym; 3334 Slookup sl; 3335 uint_t binfo; 3336 3337 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3338 sl.sl_cmap = lml->lm_head; 3339 sl.sl_imap = lml->lm_head; 3340 sl.sl_hash = 0; 3341 sl.sl_rsymndx = 0; 3342 sl.sl_flags = LKUP_WEAK; 3343 3344 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3345 lml->lm_environ = (char ***)sym->st_value; 3346 3347 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3348 lml->lm_environ = 3349 (char ***)((uintptr_t)lml->lm_environ + 3350 (uintptr_t)ADDR(dlmp)); 3351 *(lml->lm_environ) = (char **)environ; 3352 lml->lm_flags |= LML_FLG_ENVIRON; 3353 } 3354 } 3355 3356 /* 3357 * Determine whether we have a secure executable. Uid and gid information 3358 * can be passed to us via the aux vector, however if these values are -1 3359 * then use the appropriate system call to obtain them. 3360 * 3361 * o If the user is the root they can do anything 3362 * 3363 * o If the real and effective uid's don't match, or the real and 3364 * effective gid's don't match then this is determined to be a `secure' 3365 * application. 3366 * 3367 * This function is called prior to any dependency processing (see _setup.c). 3368 * Any secure setting will remain in effect for the life of the process. 3369 */ 3370 void 3371 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3372 { 3373 #ifdef AT_SUN_AUXFLAGS 3374 if (auxflags != -1) { 3375 if ((auxflags & AF_SUN_SETUGID) != 0) 3376 rtld_flags |= RT_FL_SECURE; 3377 return; 3378 } 3379 #endif 3380 if (uid == -1) 3381 uid = getuid(); 3382 if (uid) { 3383 if (euid == -1) 3384 euid = geteuid(); 3385 if (uid != euid) 3386 rtld_flags |= RT_FL_SECURE; 3387 else { 3388 if (gid == -1) 3389 gid = getgid(); 3390 if (egid == -1) 3391 egid = getegid(); 3392 if (gid != egid) 3393 rtld_flags |= RT_FL_SECURE; 3394 } 3395 } 3396 } 3397 3398 /* 3399 * _REENTRANT code gets errno redefined to a function so provide for return 3400 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3401 * is basically singled threaded. Provide the interface for our dependencies. 3402 */ 3403 #undef errno 3404 #pragma weak _private___errno = ___errno 3405 int * 3406 ___errno() 3407 { 3408 extern int errno; 3409 3410 return (&errno); 3411 } 3412 3413 /* 3414 * The interface with the c library which is supplied through libdl.so.1. 3415 * A non-null argument allows a function pointer array to be passed to us which 3416 * is used to re-initialize the linker libc table. 3417 */ 3418 void 3419 _ld_libc(void * ptr) 3420 { 3421 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3422 } 3423 3424 /* 3425 * Determine whether a symbol name should be demangled. 3426 */ 3427 const char * 3428 demangle(const char *name) 3429 { 3430 if (rtld_flags & RT_FL_DEMANGLE) 3431 return (conv_sym_dem(name)); 3432 else 3433 return (name); 3434 } 3435