1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Utility routines for run-time linker. some are duplicated here from libc 31 * (with different names) to avoid name space collisions. 32 */ 33 #include <sys/systeminfo.h> 34 #include <stdio.h> 35 #include <sys/time.h> 36 #include <sys/types.h> 37 #include <sys/mman.h> 38 #include <sys/lwp.h> 39 #include <sys/debug.h> 40 #include <stdarg.h> 41 #include <fcntl.h> 42 #include <string.h> 43 #include <dlfcn.h> 44 #include <unistd.h> 45 #include <stdlib.h> 46 #include <sys/auxv.h> 47 #include <limits.h> 48 #include <debug.h> 49 #include <conv.h> 50 #include "_rtld.h" 51 #include "_audit.h" 52 #include "_elf.h" 53 #include "msg.h" 54 55 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 56 57 /* 58 * Null function used as place where a debugger can set a breakpoint. 59 */ 60 void 61 rtld_db_dlactivity(Lm_list *lml) 62 { 63 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 64 r_debug.rtd_rdebug.r_state)); 65 } 66 67 /* 68 * Null function used as place where debugger can set a pre .init 69 * processing breakpoint. 70 */ 71 void 72 rtld_db_preinit(Lm_list *lml) 73 { 74 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 75 r_debug.rtd_rdebug.r_state)); 76 } 77 78 /* 79 * Null function used as place where debugger can set a post .init 80 * processing breakpoint. 81 */ 82 void 83 rtld_db_postinit(Lm_list *lml) 84 { 85 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 86 r_debug.rtd_rdebug.r_state)); 87 } 88 89 /* 90 * Debugger Event Notification 91 * 92 * This function centralizes all debugger event notification (ala rtld_db). 93 * 94 * There's a simple intent, focused on insuring the primary link-map control 95 * list (or each link-map list) is consistent, and the indication that objects 96 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 97 * event are posted for each of these, most debuggers don't care, as their 98 * view is that these events simply convey an "inconsistent" state. 99 * 100 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 101 * enter ld.so.1. 102 * 103 * With auditors, we may be in the process of relocating a collection of 104 * objects, and will leave() ld.so.1 to call the auditor. At this point we 105 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 106 * object to the debuggers until relocation processing has been completed on it. 107 * To allow for the collection of these objects that are pending relocation, an 108 * RD_ADD event is set after completing a series of relocations on the primary 109 * link-map control list. 110 * 111 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 112 * required later (LML_FLG_DBNOTIF): 113 * 114 * i the first time we add or delete an object to the primary link-map 115 * control list. 116 * ii the first time we move a secondary link-map control list to the primary 117 * link-map control list (effectively, this is like adding a group of 118 * objects to the primary link-map control list). 119 * 120 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 121 * 122 * i each time we leave the runtime linker. 123 */ 124 void 125 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 126 { 127 void (*fptr)(Lm_list *); 128 129 switch (event) { 130 case RD_PREINIT: 131 fptr = rtld_db_preinit; 132 break; 133 case RD_POSTINIT: 134 fptr = rtld_db_postinit; 135 break; 136 case RD_DLACTIVITY: 137 switch (state) { 138 case RT_CONSISTENT: 139 lml->lm_flags &= ~LML_FLG_DBNOTIF; 140 141 /* 142 * Do we need to send a notification? 143 */ 144 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 145 return; 146 rtld_flags &= ~RT_FL_DBNOTIF; 147 break; 148 case RT_ADD: 149 case RT_DELETE: 150 lml->lm_flags |= LML_FLG_DBNOTIF; 151 152 /* 153 * If we are already in an inconsistent state, no 154 * notification is required. 155 */ 156 if (rtld_flags & RT_FL_DBNOTIF) 157 return; 158 rtld_flags |= RT_FL_DBNOTIF; 159 break; 160 }; 161 fptr = rtld_db_dlactivity; 162 break; 163 default: 164 /* 165 * RD_NONE - do nothing 166 */ 167 break; 168 }; 169 170 /* 171 * Set event state and call 'notification' function. 172 * 173 * The debugging clients have previously been told about these 174 * notification functions and have set breakpoints on them if they 175 * are interested in the notification. 176 */ 177 r_debug.rtd_rdebug.r_state = state; 178 r_debug.rtd_rdebug.r_rdevent = event; 179 fptr(lml); 180 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 181 } 182 183 #if defined(__sparc) || defined(__x86) 184 /* 185 * Stack Cleanup. 186 * 187 * This function is invoked to 'remove' arguments that were passed in on the 188 * stack. This is most likely if ld.so.1 was invoked directly. In that case 189 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 190 * Which means we then need to slide everything above it on the stack down 191 * accordingly. 192 * 193 * While the stack layout is platform specific - it just so happens that __x86, 194 * and __sparc platforms share the following initial stack layout. 195 * 196 * !_______________________! high addresses 197 * ! ! 198 * ! Information ! 199 * ! Block ! 200 * ! (size varies) ! 201 * !_______________________! 202 * ! 0 word ! 203 * !_______________________! 204 * ! Auxiliary ! 205 * ! vector ! 206 * ! 2 word entries ! 207 * ! ! 208 * !_______________________! 209 * ! 0 word ! 210 * !_______________________! 211 * ! Environment ! 212 * ! pointers ! 213 * ! ... ! 214 * ! (one word each) ! 215 * !_______________________! 216 * ! 0 word ! 217 * !_______________________! 218 * ! Argument ! low addresses 219 * ! pointers ! 220 * ! Argc words ! 221 * !_______________________! 222 * ! ! 223 * ! Argc ! 224 * !_______________________! 225 * ! ... ! 226 * 227 */ 228 static void 229 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 230 { 231 int ndx; 232 long *argc; 233 char **oargv, **nargv; 234 char **oenvp, **nenvp; 235 auxv_t *oauxv, *nauxv; 236 237 /* 238 * Slide ARGV[] and update argc. The argv pointer remains the same, 239 * however slide the applications arguments over the arguments to 240 * ld.so.1. 241 */ 242 nargv = &argv[0]; 243 oargv = &argv[rmcnt]; 244 245 for (ndx = 0; oargv[ndx]; ndx++) 246 nargv[ndx] = oargv[ndx]; 247 nargv[ndx] = oargv[ndx]; 248 249 argc = (long *)((uintptr_t)argv - sizeof (long *)); 250 *argc -= rmcnt; 251 252 /* 253 * Slide ENVP[], and update the environment array pointer. 254 */ 255 ndx++; 256 nenvp = &nargv[ndx]; 257 oenvp = &oargv[ndx]; 258 *envp = nenvp; 259 260 for (ndx = 0; oenvp[ndx]; ndx++) 261 nenvp[ndx] = oenvp[ndx]; 262 nenvp[ndx] = oenvp[ndx]; 263 264 /* 265 * Slide AUXV[], and update the aux vector pointer. 266 */ 267 ndx++; 268 nauxv = (auxv_t *)&nenvp[ndx]; 269 oauxv = (auxv_t *)&oenvp[ndx]; 270 *auxv = nauxv; 271 272 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 273 nauxv[ndx] = oauxv[ndx]; 274 nauxv[ndx] = oauxv[ndx]; 275 } 276 #else 277 /* 278 * Verify that the above routine is appropriate for any new platforms. 279 */ 280 #error unsupported architecture! 281 #endif 282 283 /* 284 * The only command line argument recognized is -e, followed by a runtime 285 * linker environment variable. 286 */ 287 int 288 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 289 Word *lmtflags, int aout) 290 { 291 int ndx; 292 293 for (ndx = 1; argv[ndx]; ndx++) { 294 char *str; 295 296 if (argv[ndx][0] != '-') 297 break; 298 299 if (argv[ndx][1] == '\0') { 300 ndx++; 301 break; 302 } 303 304 if (argv[ndx][1] != 'e') 305 return (1); 306 307 if (argv[ndx][2] == '\0') { 308 ndx++; 309 if (argv[ndx] == NULL) 310 return (1); 311 str = argv[ndx]; 312 } else 313 str = &argv[ndx][2]; 314 315 /* 316 * If the environment variable starts with LD_, strip the LD_. 317 * Otherwise, take things as is. 318 */ 319 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 320 (str[3] != '\0')) 321 str += 3; 322 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 323 return (1); 324 } 325 326 /* 327 * Make sure an object file has been specified. 328 */ 329 if (argv[ndx] == NULL) 330 return (1); 331 332 /* 333 * Having gotten the arguments, clean ourselves off of the stack. 334 */ 335 stack_cleanup(argv, envp, auxv, ndx); 336 return (0); 337 } 338 339 /* 340 * Compare function for PathNode AVL tree. 341 */ 342 static int 343 pnavl_compare(const void *n1, const void *n2) 344 { 345 uint_t hash1, hash2; 346 const char *st1, *st2; 347 int rc; 348 349 hash1 = ((PathNode *)n1)->pn_hash; 350 hash2 = ((PathNode *)n2)->pn_hash; 351 352 if (hash1 > hash2) 353 return (1); 354 if (hash1 < hash2) 355 return (-1); 356 357 st1 = ((PathNode *)n1)->pn_name; 358 st2 = ((PathNode *)n2)->pn_name; 359 360 rc = strcmp(st1, st2); 361 if (rc > 0) 362 return (1); 363 if (rc < 0) 364 return (-1); 365 return (0); 366 } 367 368 /* 369 * Create an AVL tree. 370 */ 371 static avl_tree_t * 372 pnavl_create(size_t size) 373 { 374 avl_tree_t *avlt; 375 376 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 377 return (NULL); 378 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 379 return (avlt); 380 } 381 382 /* 383 * Determine whether a PathNode is recorded. 384 */ 385 int 386 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 387 avl_index_t *where) 388 { 389 PathNode pn; 390 391 /* 392 * Create the avl tree if required. 393 */ 394 if ((*pnavl == NULL) && 395 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 396 return (0); 397 398 pn.pn_name = name; 399 if ((pn.pn_hash = hash) == 0) 400 pn.pn_hash = sgs_str_hash(name); 401 402 if (avl_find(*pnavl, &pn, where) == NULL) 403 return (0); 404 405 return (1); 406 } 407 408 /* 409 * Determine if a pathname has already been recorded on the full path name 410 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 411 * successfully loaded. If the path name does not exist in this AVL tree, then 412 * the next insertion point is deposited in "where". This value can be used by 413 * fpavl_insert() to expedite the insertion. 414 */ 415 Rt_map * 416 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 417 { 418 FullPathNode fpn, *fpnp; 419 420 /* 421 * Create the avl tree if required. 422 */ 423 if ((lml->lm_fpavl == NULL) && 424 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 425 return (NULL); 426 427 fpn.fpn_node.pn_name = name; 428 if ((fpn.fpn_node.pn_hash = hash) == 0) 429 fpn.fpn_node.pn_hash = sgs_str_hash(name); 430 431 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 432 return (NULL); 433 434 return (fpnp->fpn_lmp); 435 } 436 437 /* 438 * Insert a name into the FullPathNode AVL tree for the link-map list. The 439 * objects NAME() is the path that would have originally been searched for, and 440 * is therefore the name to associate with any "where" value. If the object has 441 * a different PATHNAME(), perhaps because it has resolved to a different file 442 * (see fullpath()), then this name will be recorded as a separate FullPathNode 443 * (see load_file()). 444 */ 445 int 446 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 447 { 448 FullPathNode *fpnp; 449 uint_t hash = sgs_str_hash(name); 450 451 if (where == 0) { 452 /* LINTED */ 453 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 454 455 /* 456 * We better not get a hit now, we do not want duplicates in 457 * the tree. 458 */ 459 ASSERT(_lmp == NULL); 460 } 461 462 /* 463 * Insert new node in tree. 464 */ 465 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 466 return (0); 467 468 fpnp->fpn_node.pn_name = name; 469 fpnp->fpn_node.pn_hash = hash; 470 fpnp->fpn_lmp = lmp; 471 472 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 473 free(fpnp); 474 return (0); 475 } 476 477 ASSERT(lml->lm_fpavl != NULL); 478 avl_insert(lml->lm_fpavl, fpnp, where); 479 return (1); 480 } 481 482 /* 483 * Remove an object from the FullPathNode AVL tree. 484 */ 485 void 486 fpavl_remove(Rt_map *lmp) 487 { 488 FullPathNode *fpnp; 489 Aliste idx; 490 491 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 492 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 493 free(fpnp); 494 } 495 free(FPNODE(lmp)); 496 FPNODE(lmp) = NULL; 497 } 498 499 /* 500 * Insert a path name into the not-found AVL tree. 501 * 502 * This tree maintains a node for each path name that ld.so.1 has explicitly 503 * inspected, but has failed to load during a single ld.so.1 operation. If the 504 * path name does not exist in this AVL tree, then the next insertion point is 505 * deposited in "where". This value can be used by nfavl_insert() to expedite 506 * the insertion. 507 */ 508 void 509 nfavl_insert(const char *name, avl_index_t where) 510 { 511 PathNode *pnp; 512 uint_t hash = sgs_str_hash(name); 513 514 if (where == 0) { 515 /* LINTED */ 516 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 517 518 /* 519 * We better not get a hit now, we do not want duplicates in 520 * the tree. 521 */ 522 ASSERT(in_nfavl == 0); 523 } 524 525 /* 526 * Insert new node in tree. 527 */ 528 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 529 pnp->pn_name = name; 530 pnp->pn_hash = hash; 531 avl_insert(nfavl, pnp, where); 532 } 533 } 534 535 /* 536 * Insert the directory name, of a full path name, into the secure path AVL 537 * tree. 538 * 539 * This tree is used to maintain a list of directories in which the dependencies 540 * of a secure process have been found. This list provides a fall-back in the 541 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 542 * in a path name that has already provided dependencies. 543 */ 544 void 545 spavl_insert(const char *name) 546 { 547 char buffer[PATH_MAX], *str; 548 size_t size; 549 avl_index_t where; 550 PathNode *pnp; 551 uint_t hash; 552 553 /* 554 * Separate the directory name from the path name. 555 */ 556 if ((str = strrchr(name, '/')) == name) 557 size = 1; 558 else 559 size = str - name; 560 561 (void) strncpy(buffer, name, size); 562 buffer[size] = '\0'; 563 hash = sgs_str_hash(buffer); 564 565 /* 566 * Determine whether this directory name is already recorded, or if 567 * not, 'where" will provide the insertion point for the new string. 568 */ 569 if (pnavl_recorded(&spavl, buffer, hash, &where)) 570 return; 571 572 /* 573 * Insert new node in tree. 574 */ 575 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 576 pnp->pn_name = strdup(buffer); 577 pnp->pn_hash = hash; 578 avl_insert(spavl, pnp, where); 579 } 580 } 581 582 /* 583 * Inspect the generic string AVL tree for the given string. If the string is 584 * not present, duplicate it, and insert the string in the AVL tree. Return the 585 * duplicated string to the caller. 586 * 587 * These strings are maintained for the life of ld.so.1 and represent path 588 * names, file names, and search paths. All other AVL trees that maintain 589 * FullPathNode and not-found path names use the same string pointer 590 * established for this string. 591 */ 592 static avl_tree_t *stravl = NULL; 593 static char *strbuf = NULL; 594 static PathNode *pnbuf = NULL; 595 static size_t strsize = 0, pnsize = 0; 596 597 const char * 598 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 599 { 600 char str[PATH_MAX]; 601 PathNode *pnp; 602 avl_index_t where; 603 604 /* 605 * Create the avl tree if required. 606 */ 607 if ((stravl == NULL) && 608 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 609 return (NULL); 610 611 /* 612 * Determine the string size if not provided by the caller. 613 */ 614 if (nsize == 0) 615 nsize = strlen(name) + 1; 616 else if (substr) { 617 /* 618 * The string passed to us may be a multiple path string for 619 * which we only need the first component. Using the provided 620 * size, strip out the required string. 621 */ 622 (void) strncpy(str, name, nsize); 623 str[nsize - 1] = '\0'; 624 name = str; 625 } 626 627 /* 628 * Allocate a PathNode buffer if one doesn't exist, or any existing 629 * buffer has been used up. 630 */ 631 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 632 pnsize = syspagsz; 633 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 634 MAP_PRIVATE)) == MAP_FAILED) 635 return (NULL); 636 } 637 /* 638 * Determine whether this string already exists. 639 */ 640 pnbuf->pn_name = name; 641 if ((pnbuf->pn_hash = hash) == 0) 642 pnbuf->pn_hash = sgs_str_hash(name); 643 644 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 645 return (pnp->pn_name); 646 647 /* 648 * Allocate a string buffer if one does not exist, or if there is 649 * insufficient space for the new string in any existing buffer. 650 */ 651 if ((strbuf == NULL) || (nsize > strsize)) { 652 strsize = S_ROUND(nsize, syspagsz); 653 654 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 655 MAP_PRIVATE)) == MAP_FAILED) 656 return (NULL); 657 } 658 659 (void) memcpy(strbuf, name, nsize); 660 pnp = pnbuf; 661 pnp->pn_name = strbuf; 662 avl_insert(stravl, pnp, where); 663 664 strbuf += nsize; 665 strsize -= nsize; 666 pnbuf++; 667 pnsize -= sizeof (PathNode); 668 return (pnp->pn_name); 669 } 670 671 /* 672 * Prior to calling an object, either via a .plt or through dlsym(), make sure 673 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 674 * init's in the correct order, however, this order is typically based on needed 675 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 676 * still occur and result in bindings that were not captured during topological 677 * sorting. This routine compensates for this lack of binding information, and 678 * provides for dynamic .init firing. 679 */ 680 void 681 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 682 { 683 Rt_map **tobj; 684 685 /* 686 * If the caller is an auditor, and the destination isn't, then don't 687 * run any .inits (see comments in load_completion()). 688 */ 689 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 690 (LIST(clmp) != LIST(dlmp))) 691 return; 692 693 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 694 return; 695 696 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 697 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 698 return; 699 700 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 701 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 702 DBG_CALL(Dbg_util_no_init(dlmp)); 703 return; 704 } 705 706 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 707 tobj[0] = dlmp; 708 call_init(tobj, DBG_INIT_DYN); 709 } 710 } 711 712 /* 713 * Execute .{preinit|init|fini}array sections 714 */ 715 void 716 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 717 { 718 int start, stop, incr, ndx; 719 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 720 721 if (array == NULL) 722 return; 723 724 /* 725 * initarray & preinitarray are walked from beginning to end - while 726 * finiarray is walked from end to beginning. 727 */ 728 if (shtype == SHT_FINI_ARRAY) { 729 start = arraycnt - 1; 730 stop = incr = -1; 731 } else { 732 start = 0; 733 stop = arraycnt; 734 incr = 1; 735 } 736 737 /* 738 * Call the .*array[] entries 739 */ 740 for (ndx = start; ndx != stop; ndx += incr) { 741 void (*fptr)(void) = (void(*)())array[ndx]; 742 743 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 744 745 leave(LIST(lmp), 0); 746 (*fptr)(); 747 (void) enter(0); 748 } 749 } 750 751 752 /* 753 * Execute any .init sections. These are passed to us in an lmp array which 754 * (by default) will have been sorted. 755 */ 756 void 757 call_init(Rt_map **tobj, int flag) 758 { 759 Rt_map **_tobj, **_nobj; 760 static APlist *pending = NULL; 761 762 /* 763 * If we're in the middle of an INITFIRST, this must complete before 764 * any new init's are fired. In this case add the object list to the 765 * pending queue and return. We'll pick up the queue after any 766 * INITFIRST objects have their init's fired. 767 */ 768 if (rtld_flags & RT_FL_INITFIRST) { 769 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 770 return; 771 } 772 773 /* 774 * Traverse the tobj array firing each objects init. 775 */ 776 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 777 Rt_map *lmp = *_tobj; 778 void (*iptr)() = INIT(lmp); 779 uint_t rtldflags; 780 781 if (FLAGS(lmp) & FLG_RT_INITCALL) 782 continue; 783 784 FLAGS(lmp) |= FLG_RT_INITCALL; 785 786 /* 787 * It is possible, that during the initial handshake with libc, 788 * an interposition object has resolved a symbol binding, and 789 * that this objects .init must be fired. As we're about to 790 * run user code, make sure any dynamic linking errors remain 791 * internal (ie., only obtainable from dlerror()), and are not 792 * flushed to stderr. 793 */ 794 rtldflags = (rtld_flags & RT_FL_APPLIC) ? 0 : RT_FL_APPLIC; 795 rtld_flags |= rtldflags; 796 797 /* 798 * Establish an initfirst state if necessary - no other inits 799 * will be fired (because of additional relocation bindings) 800 * when in this state. 801 */ 802 if (FLAGS(lmp) & FLG_RT_INITFRST) 803 rtld_flags |= RT_FL_INITFIRST; 804 805 if (INITARRAY(lmp) || iptr) 806 DBG_CALL(Dbg_util_call_init(lmp, flag)); 807 808 if (iptr) { 809 leave(LIST(lmp), 0); 810 (*iptr)(); 811 (void) enter(0); 812 } 813 814 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 815 SHT_INIT_ARRAY); 816 817 if (INITARRAY(lmp) || iptr) 818 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 819 820 /* 821 * Return to a non-application setting if necessary. 822 */ 823 rtld_flags &= ~rtldflags; 824 825 /* 826 * Set the initdone flag regardless of whether this object 827 * actually contains an .init section. This flag prevents us 828 * from processing this section again for an .init and also 829 * signifies that a .fini must be called should it exist. 830 * Clear the sort field for use in later .fini processing. 831 */ 832 FLAGS(lmp) |= FLG_RT_INITDONE; 833 SORTVAL(lmp) = -1; 834 835 /* 836 * If we're firing an INITFIRST object, and other objects must 837 * be fired which are not INITFIRST, make sure we grab any 838 * pending objects that might have been delayed as this 839 * INITFIRST was processed. 840 */ 841 if ((rtld_flags & RT_FL_INITFIRST) && 842 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 843 Aliste idx; 844 Rt_map **pobj; 845 846 rtld_flags &= ~RT_FL_INITFIRST; 847 848 for (APLIST_TRAVERSE(pending, idx, pobj)) { 849 aplist_delete(pending, &idx); 850 call_init(pobj, DBG_INIT_PEND); 851 } 852 } 853 } 854 free(tobj); 855 } 856 857 /* 858 * Function called by atexit(3C). Calls all .fini sections related with the 859 * mains dependent shared libraries in the order in which the shared libraries 860 * have been loaded. Skip any .fini defined in the main executable, as this 861 * will be called by crt0 (main was never marked as initdone). 862 */ 863 void 864 call_fini(Lm_list * lml, Rt_map ** tobj) 865 { 866 Rt_map **_tobj; 867 868 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 869 Rt_map *clmp, * lmp = *_tobj; 870 Aliste idx; 871 Bnd_desc *bdp; 872 873 /* 874 * Only fire a .fini if the objects corresponding .init has 875 * completed. We collect all .fini sections of objects that 876 * had their .init collected, but that doesn't mean that at 877 * the time of collection, that the .init had completed. 878 */ 879 if (FLAGS(lmp) & FLG_RT_INITDONE) { 880 void (*fptr)(void) = FINI(lmp); 881 882 if (FINIARRAY(lmp) || fptr) 883 DBG_CALL(Dbg_util_call_fini(lmp)); 884 885 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 886 SHT_FINI_ARRAY); 887 888 if (fptr) { 889 leave(LIST(lmp), 0); 890 (*fptr)(); 891 (void) enter(0); 892 } 893 } 894 895 /* 896 * Skip main, this is explicitly called last in atexit_fini(). 897 */ 898 if (FLAGS(lmp) & FLG_RT_ISMAIN) 899 continue; 900 901 /* 902 * Audit `close' operations at this point. The library has 903 * exercised its last instructions (regardless of whether it 904 * will be unmapped or not). 905 * 906 * First call any global auditing. 907 */ 908 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 909 _audit_objclose(auditors->ad_list, lmp); 910 911 /* 912 * Finally determine whether this object has local auditing 913 * requirements by inspecting itself and then its dependencies. 914 */ 915 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 916 continue; 917 918 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 919 _audit_objclose(AUDITORS(lmp)->ad_list, lmp); 920 921 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 922 clmp = bdp->b_caller; 923 924 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 925 _audit_objclose(AUDITORS(clmp)->ad_list, lmp); 926 break; 927 } 928 } 929 } 930 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 931 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 932 933 free(tobj); 934 } 935 936 void 937 atexit_fini() 938 { 939 Rt_map **tobj, *lmp; 940 Lm_list *lml; 941 Aliste idx; 942 943 (void) enter(0); 944 945 rtld_flags |= RT_FL_ATEXIT; 946 947 lml = &lml_main; 948 lml->lm_flags |= LML_FLG_ATEXIT; 949 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 950 lmp = (Rt_map *)lml->lm_head; 951 952 /* 953 * Reverse topologically sort the main link-map for .fini execution. 954 */ 955 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 956 (tobj != (Rt_map **)S_ERROR)) 957 call_fini(lml, tobj); 958 959 /* 960 * Add an explicit close to main and ld.so.1. Although main's .fini is 961 * collected in call_fini() to provide for FINITARRAY processing, its 962 * audit_objclose is explicitly skipped. This provides for it to be 963 * called last, here. This is the reverse of the explicit calls to 964 * audit_objopen() made in setup(). 965 */ 966 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 967 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 968 audit_objclose(lmp, lmp); 969 } 970 971 /* 972 * Now that all .fini code has been run, see what unreferenced objects 973 * remain. 974 */ 975 unused(lml); 976 977 /* 978 * Traverse any alternative link-map lists. 979 */ 980 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 981 /* 982 * Ignore the base-link-map list, which has already been 983 * processed, and the runtime linkers link-map list, which is 984 * typically processed last. 985 */ 986 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 987 continue; 988 989 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 990 continue; 991 992 lml->lm_flags |= LML_FLG_ATEXIT; 993 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 994 995 /* 996 * Reverse topologically sort the link-map for .fini execution. 997 */ 998 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 999 (tobj != (Rt_map **)S_ERROR)) 1000 call_fini(lml, tobj); 1001 1002 unused(lml); 1003 } 1004 1005 /* 1006 * Finally reverse topologically sort the runtime linkers link-map for 1007 * .fini execution. 1008 */ 1009 lml = &lml_rtld; 1010 lml->lm_flags |= LML_FLG_ATEXIT; 1011 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1012 lmp = (Rt_map *)lml->lm_head; 1013 1014 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1015 (tobj != (Rt_map **)S_ERROR)) 1016 call_fini(lml, tobj); 1017 1018 leave(&lml_main, 0); 1019 } 1020 1021 1022 /* 1023 * This routine is called to complete any runtime linker activity which may have 1024 * resulted in objects being loaded. This is called from all user entry points 1025 * and from any internal dl*() requests. 1026 */ 1027 void 1028 load_completion(Rt_map *nlmp) 1029 { 1030 Rt_map **tobj = NULL; 1031 Lm_list *nlml; 1032 1033 /* 1034 * Establish any .init processing. Note, in a world of lazy loading, 1035 * objects may have been loaded regardless of whether the users request 1036 * was fulfilled (i.e., a dlsym() request may have failed to find a 1037 * symbol but objects might have been loaded during its search). Thus, 1038 * any tsorting starts from the nlmp (new link-maps) pointer and not 1039 * necessarily from the link-map that may have satisfied the request. 1040 * 1041 * Note, the primary link-map has an initialization phase where dynamic 1042 * .init firing is suppressed. This provides for a simple and clean 1043 * handshake with the primary link-maps libc, which is important for 1044 * establishing uberdata. In addition, auditors often obtain handles 1045 * to primary link-map objects as the objects are loaded, so as to 1046 * inspect the link-map for symbols. This inspection is allowed without 1047 * running any code on the primary link-map, as running this code may 1048 * reenter the auditor, who may not yet have finished its own 1049 * initialization. 1050 */ 1051 if (nlmp) 1052 nlml = LIST(nlmp); 1053 1054 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1055 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1056 if ((tobj = tsort(nlmp, nlml->lm_init, 1057 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1058 tobj = NULL; 1059 } 1060 1061 /* 1062 * Make sure any alternative link-map retrieves any external interfaces 1063 * and initializes threads. 1064 */ 1065 if (nlmp && (nlml != &lml_main)) { 1066 (void) rt_get_extern(nlml, nlmp); 1067 rt_thr_init(nlml); 1068 } 1069 1070 /* 1071 * Traverse the list of new link-maps and register any dynamic TLS. 1072 * This storage is established for any objects not on the primary 1073 * link-map, and for any objects added to the primary link-map after 1074 * static TLS has been registered. 1075 */ 1076 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1077 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1078 Rt_map *lmp; 1079 1080 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1081 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1082 tls_modaddrem(lmp, TM_FLG_MODADD); 1083 } 1084 nlml->lm_tls = 0; 1085 } 1086 1087 /* 1088 * Fire any .init's. 1089 */ 1090 if (tobj) 1091 call_init(tobj, DBG_INIT_SORT); 1092 } 1093 1094 /* 1095 * Append an item to the specified link map control list. 1096 */ 1097 void 1098 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1099 { 1100 Lm_cntl *lmc; 1101 int add = 1; 1102 1103 /* 1104 * Indicate that this link-map list has a new object. 1105 */ 1106 (lml->lm_obj)++; 1107 1108 /* 1109 * If we're about to add a new object to the main link-map control list, 1110 * alert the debuggers that we are about to mess with this list. 1111 * Additions of individual objects to the main link-map control list 1112 * occur during initial setup as the applications immediate dependencies 1113 * are loaded. Individual objects are also loaded on the main link-map 1114 * control list of new alternative link-map control lists. 1115 */ 1116 if ((lmco == ALIST_OFF_DATA) && 1117 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1118 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1119 1120 /* LINTED */ 1121 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1122 1123 /* 1124 * A link-map list header points to one of more link-map control lists 1125 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1126 * the list of relocated objects. Other lists maintain objects that 1127 * are still being analyzed or relocated. This list provides the core 1128 * link-map list information used by all ld.so.1 routines. 1129 */ 1130 if (lmc->lc_head == NULL) { 1131 /* 1132 * If this is the first link-map for the given control list, 1133 * initialize the list. 1134 */ 1135 lmc->lc_head = lmc->lc_tail = lmp; 1136 add = 0; 1137 1138 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1139 Rt_map *tlmp; 1140 1141 /* 1142 * If this is an interposer then append the link-map following 1143 * any other interposers (these are objects that have been 1144 * previously preloaded, or were identified with -z interpose). 1145 * Interposers can only be inserted on the first link-map 1146 * control list, as once relocation has started, interposition 1147 * from new interposers can't be guaranteed. 1148 * 1149 * NOTE: We do not interpose on the head of a list. This model 1150 * evolved because dynamic executables have already been fully 1151 * relocated within themselves and thus can't be interposed on. 1152 * Nowadays it's possible to have shared objects at the head of 1153 * a list, which conceptually means they could be interposed on. 1154 * But, shared objects can be created via dldump() and may only 1155 * be partially relocated (just relatives), in which case they 1156 * are interposable, but are marked as fixed (ET_EXEC). 1157 * 1158 * Thus we really don't have a clear method of deciding when the 1159 * head of a link-map is interposable. So, to be consistent, 1160 * for now only add interposers after the link-map lists head 1161 * object. 1162 */ 1163 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1164 tlmp = NEXT_RT_MAP(tlmp)) { 1165 1166 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1167 continue; 1168 1169 /* 1170 * Insert the new link-map before this non-interposer, 1171 * and indicate an interposer is found. 1172 */ 1173 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1174 PREV(lmp) = PREV(tlmp); 1175 1176 NEXT(lmp) = (Link_map *)tlmp; 1177 PREV(tlmp) = (Link_map *)lmp; 1178 1179 lmc->lc_flags |= LMC_FLG_REANALYZE; 1180 add = 0; 1181 break; 1182 } 1183 } 1184 1185 /* 1186 * Fall through to appending the new link map to the tail of the list. 1187 * If we're processing the initial objects of this link-map list, add 1188 * them to the backward compatibility list. 1189 */ 1190 if (add) { 1191 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1192 PREV(lmp) = (Link_map *)lmc->lc_tail; 1193 lmc->lc_tail = lmp; 1194 } 1195 1196 /* 1197 * Having added this link-map to a control list, indicate which control 1198 * list the link-map belongs to. Note, control list information is 1199 * always maintained as an offset, as the Alist can be reallocated. 1200 */ 1201 CNTL(lmp) = lmco; 1202 1203 /* 1204 * Indicate if an interposer is found. Note that the first object on a 1205 * link-map can be explicitly defined as an interposer so that it can 1206 * provide interposition over direct binding requests. 1207 */ 1208 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1209 lml->lm_flags |= LML_FLG_INTRPOSE; 1210 1211 /* 1212 * For backward compatibility with debuggers, the link-map list contains 1213 * pointers to the main control list. 1214 */ 1215 if (lmco == ALIST_OFF_DATA) { 1216 lml->lm_head = lmc->lc_head; 1217 lml->lm_tail = lmc->lc_tail; 1218 } 1219 } 1220 1221 /* 1222 * Delete an item from the specified link map control list. 1223 */ 1224 void 1225 lm_delete(Lm_list *lml, Rt_map *lmp) 1226 { 1227 Lm_cntl *lmc; 1228 1229 /* 1230 * If the control list pointer hasn't been initialized, this object 1231 * never got added to a link-map list. 1232 */ 1233 if (CNTL(lmp) == 0) 1234 return; 1235 1236 /* 1237 * If we're about to delete an object from the main link-map control 1238 * list, alert the debuggers that we are about to mess with this list. 1239 */ 1240 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1241 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1242 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1243 1244 /* LINTED */ 1245 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1246 1247 if (lmc->lc_head == lmp) 1248 lmc->lc_head = NEXT_RT_MAP(lmp); 1249 else 1250 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1251 1252 if (lmc->lc_tail == lmp) 1253 lmc->lc_tail = PREV_RT_MAP(lmp); 1254 else 1255 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1256 1257 /* 1258 * For backward compatibility with debuggers, the link-map list contains 1259 * pointers to the main control list. 1260 */ 1261 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1262 lml->lm_head = lmc->lc_head; 1263 lml->lm_tail = lmc->lc_tail; 1264 } 1265 1266 /* 1267 * Indicate we have one less object on this control list. 1268 */ 1269 (lml->lm_obj)--; 1270 } 1271 1272 /* 1273 * Move a link-map control list to another. Objects that are being relocated 1274 * are maintained on secondary control lists. Once their relocation is 1275 * complete, the entire list is appended to the previous control list, as this 1276 * list must have been the trigger for generating the new control list. 1277 */ 1278 void 1279 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1280 { 1281 Rt_map *lmp; 1282 1283 /* 1284 * If we're about to add a new family of objects to the main link-map 1285 * control list, alert the debuggers that we are about to mess with this 1286 * list. Additions of object families to the main link-map control 1287 * list occur during lazy loading, filtering and dlopen(). 1288 */ 1289 if ((plmco == ALIST_OFF_DATA) && 1290 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1291 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1292 1293 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1294 1295 /* 1296 * Indicate each new link-map has been moved to the previous link-map 1297 * control list. 1298 */ 1299 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1300 CNTL(lmp) = plmco; 1301 1302 /* 1303 * If these objects are being added to the main link-map 1304 * control list, indicate that there are init's available 1305 * for harvesting. 1306 */ 1307 if (plmco == ALIST_OFF_DATA) { 1308 lml->lm_init++; 1309 lml->lm_flags |= LML_FLG_OBJADDED; 1310 } 1311 } 1312 1313 /* 1314 * Move the new link-map control list, to the callers link-map control 1315 * list. 1316 */ 1317 if (plmc->lc_head == NULL) { 1318 plmc->lc_head = nlmc->lc_head; 1319 PREV(nlmc->lc_head) = NULL; 1320 } else { 1321 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1322 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1323 } 1324 1325 plmc->lc_tail = nlmc->lc_tail; 1326 nlmc->lc_head = nlmc->lc_tail = NULL; 1327 1328 /* 1329 * For backward compatibility with debuggers, the link-map list contains 1330 * pointers to the main control list. 1331 */ 1332 if (plmco == ALIST_OFF_DATA) { 1333 lml->lm_head = plmc->lc_head; 1334 lml->lm_tail = plmc->lc_tail; 1335 } 1336 } 1337 1338 /* 1339 * Create, or assign a link-map control list. Each link-map list contains a 1340 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1341 * description in include/rtld.h). During the initial construction of a 1342 * process, objects are added to this main control list. This control list is 1343 * never deleted, unless an alternate link-map list has been requested (say for 1344 * auditors), and the associated objects could not be loaded or relocated. 1345 * 1346 * Once relocation has started, any lazy loadable objects, or filtees, are 1347 * processed on a new, temporary control list. Only when these objects have 1348 * been fully relocated, are they moved to the main link-map control list. 1349 * Once the objects are moved, this temporary control list is deleted (see 1350 * remove_cntl()). 1351 * 1352 * A dlopen() always requires a new temporary link-map control list. 1353 * Typically, a dlopen() occurs on a link-map list that had already started 1354 * relocation, however, auditors can dlopen() objects on the main link-map 1355 * list while under initial construction, before any relocation has begun. 1356 * Hence, dlopen() requests are explicitly flagged. 1357 */ 1358 Aliste 1359 create_cntl(Lm_list *lml, int dlopen) 1360 { 1361 /* 1362 * If the head link-map object has already been relocated, create a 1363 * new, temporary, control list. 1364 */ 1365 if (dlopen || (lml->lm_head == NULL) || 1366 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1367 Lm_cntl *lmc; 1368 1369 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1370 AL_CNT_LMLISTS)) == NULL) 1371 return (NULL); 1372 1373 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1374 } 1375 1376 return (ALIST_OFF_DATA); 1377 } 1378 1379 /* 1380 * Environment variables can have a variety of defined permutations, and thus 1381 * the following infrastructure exists to allow this variety and to select the 1382 * required definition. 1383 * 1384 * Environment variables can be defined as 32- or 64-bit specific, and if so 1385 * they will take precedence over any instruction set neutral form. Typically 1386 * this is only useful when the environment value is an informational string. 1387 * 1388 * Environment variables may be obtained from the standard user environment or 1389 * from a configuration file. The latter provides a fallback if no user 1390 * environment setting is found, and can take two forms: 1391 * 1392 * - a replaceable definition - this will be used if no user environment 1393 * setting has been seen, or 1394 * 1395 * - an permanent definition - this will be used no matter what user 1396 * environment setting is seen. In the case of list variables it will be 1397 * appended to any process environment setting seen. 1398 * 1399 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1400 * override any replaceable environment variables from a configuration file. 1401 */ 1402 static u_longlong_t rplgen; /* replaceable generic */ 1403 /* variables */ 1404 static u_longlong_t rplisa; /* replaceable ISA specific */ 1405 /* variables */ 1406 static u_longlong_t prmgen; /* permanent generic */ 1407 /* variables */ 1408 static u_longlong_t prmisa; /* permanent ISA specific */ 1409 /* variables */ 1410 1411 /* 1412 * Classify an environment variables type. 1413 */ 1414 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1415 /* the wrong ISA */ 1416 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1417 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1418 /* config file */ 1419 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1420 1421 /* 1422 * Identify all environment variables. 1423 */ 1424 #define ENV_FLG_AUDIT 0x0000000000001ULL 1425 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1426 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1427 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1428 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1429 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1430 #define ENV_FLG_CONFIG 0x0000000000040ULL 1431 #define ENV_FLG_DEBUG 0x0000000000080ULL 1432 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1433 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1434 #define ENV_FLG_FLAGS 0x0000000000400ULL 1435 #define ENV_FLG_INIT 0x0000000000800ULL 1436 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1437 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1438 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1439 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1440 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1441 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1442 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1443 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1444 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1445 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1446 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1447 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1448 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1449 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1450 #define ENV_FLG_PROFILE 0x0000004000000ULL 1451 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1452 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1453 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1454 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1455 #define ENV_FLG_UNREF 0x0000080000000ULL 1456 #define ENV_FLG_UNUSED 0x0000100000000ULL 1457 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1458 #define ENV_FLG_WARN 0x0000400000000ULL 1459 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1460 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1461 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1462 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1463 #define ENV_FLG_HWCAP 0x0008000000000ULL 1464 #define ENV_FLG_SFCAP 0x0010000000000ULL 1465 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1466 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1467 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1468 #define ENV_FLG_DEFERRED 0x0100000000000ULL 1469 1470 #define SEL_REPLACE 0x0001 1471 #define SEL_PERMANT 0x0002 1472 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1473 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1474 #define SEL_ACT_STR 0x0400 /* setting string value */ 1475 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1476 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1477 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1478 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1479 1480 /* 1481 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1482 * and len specifies its length (comparing a strings length before the string 1483 * itself speed things up). s2 points to the token itself which has already 1484 * had any leading white-space removed. 1485 */ 1486 static void 1487 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1488 Word *lmtflags, uint_t env_flags, int aout) 1489 { 1490 u_longlong_t variable = 0; 1491 ushort_t select = 0; 1492 const char **str; 1493 Word val = 0; 1494 1495 /* 1496 * Determine whether we're dealing with a replaceable or permanent 1497 * string. 1498 */ 1499 if (env_flags & ENV_TYP_PERMANT) { 1500 /* 1501 * If the string is from a configuration file and defined as 1502 * permanent, assign it as permanent. 1503 */ 1504 select |= SEL_PERMANT; 1505 } else 1506 select |= SEL_REPLACE; 1507 1508 /* 1509 * Parse the variable given. 1510 * 1511 * The LD_AUDIT family. 1512 */ 1513 if (*s1 == 'A') { 1514 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1515 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1516 /* 1517 * Replaceable and permanent audit objects can exist. 1518 */ 1519 select |= SEL_ACT_STR; 1520 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1521 variable = ENV_FLG_AUDIT; 1522 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1523 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1524 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1525 /* 1526 * A specialized variable for plt_exit() use, not 1527 * documented for general use. 1528 */ 1529 select |= SEL_ACT_SPEC_2; 1530 variable = ENV_FLG_AUDIT_ARGS; 1531 } 1532 } 1533 /* 1534 * The LD_BIND family. 1535 */ 1536 else if (*s1 == 'B') { 1537 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1538 MSG_ORIG(MSG_LD_BIND_LAZY), 1539 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1540 select |= SEL_ACT_RT2; 1541 val = RT_FL2_BINDLAZY; 1542 variable = ENV_FLG_BIND_LAZY; 1543 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1544 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1545 select |= SEL_ACT_RT2; 1546 val = RT_FL2_BINDNOW; 1547 variable = ENV_FLG_BIND_NOW; 1548 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1549 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1550 /* 1551 * Another trick, enabled to help debug AOUT 1552 * applications under BCP, but not documented for 1553 * general use. 1554 */ 1555 select |= SEL_ACT_RT; 1556 val = RT_FL_NOBIND; 1557 variable = ENV_FLG_BIND_NOT; 1558 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1559 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1560 /* 1561 * This variable is simply for backward compatibility. 1562 * If this and LD_DEBUG are both specified, only one of 1563 * the strings is going to get processed. 1564 */ 1565 select |= SEL_ACT_SPEC_2; 1566 variable = ENV_FLG_BINDINGS; 1567 } 1568 } 1569 /* 1570 * LD_CAP_FILES and LD_CONFIG family. 1571 */ 1572 else if (*s1 == 'C') { 1573 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1574 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1575 select |= SEL_ACT_STR; 1576 str = (select & SEL_REPLACE) ? 1577 &rpl_cap_files : &prm_cap_files; 1578 variable = ENV_FLG_CAP_FILES; 1579 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1580 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1581 /* 1582 * Set by crle(1) to indicate it's building a 1583 * configuration file, not documented for general use. 1584 */ 1585 select |= SEL_ACT_SPEC_2; 1586 variable = ENV_FLG_CONFGEN; 1587 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1588 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1589 /* 1590 * Secure applications must use a default configuration 1591 * file. A setting from a configuration file doesn't 1592 * make sense (given we must be reading a configuration 1593 * file to have gotten this). 1594 */ 1595 if ((rtld_flags & RT_FL_SECURE) || 1596 (env_flags & ENV_TYP_CONFIG)) 1597 return; 1598 select |= SEL_ACT_STR; 1599 str = &config->c_name; 1600 variable = ENV_FLG_CONFIG; 1601 } 1602 } 1603 /* 1604 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and 1605 * LD_DEMANGLE. 1606 */ 1607 else if (*s1 == 'D') { 1608 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1609 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1610 select |= SEL_ACT_STR; 1611 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1612 variable = ENV_FLG_DEBUG; 1613 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1614 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1615 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1616 select |= SEL_ACT_STR; 1617 str = &dbg_file; 1618 variable = ENV_FLG_DEBUG_OUTPUT; 1619 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, 1620 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { 1621 select |= SEL_ACT_RT; 1622 val = RT_FL_DEFERRED; 1623 variable = ENV_FLG_DEFERRED; 1624 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1625 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1626 select |= SEL_ACT_RT; 1627 val = RT_FL_DEMANGLE; 1628 variable = ENV_FLG_DEMANGLE; 1629 } 1630 } 1631 /* 1632 * LD_FLAGS - collect the best variable definition. On completion of 1633 * environment variable processing pass the result to ld_flags_env() 1634 * where they'll be decomposed and passed back to this routine. 1635 */ 1636 else if (*s1 == 'F') { 1637 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1638 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1639 select |= SEL_ACT_SPEC_1; 1640 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1641 &prm_ldflags; 1642 variable = ENV_FLG_FLAGS; 1643 } 1644 } 1645 /* 1646 * LD_HWCAP. 1647 */ 1648 else if (*s1 == 'H') { 1649 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1650 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1651 select |= SEL_ACT_STR; 1652 str = (select & SEL_REPLACE) ? 1653 &rpl_hwcap : &prm_hwcap; 1654 variable = ENV_FLG_HWCAP; 1655 } 1656 } 1657 /* 1658 * LD_INIT (internal, used by ldd(1)). 1659 */ 1660 else if (*s1 == 'I') { 1661 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1662 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1663 select |= SEL_ACT_LML; 1664 val = LML_FLG_TRC_INIT; 1665 variable = ENV_FLG_INIT; 1666 } 1667 } 1668 /* 1669 * The LD_LIBRARY_PATH and LD_LOAD families. 1670 */ 1671 else if (*s1 == 'L') { 1672 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1673 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1674 select |= SEL_ACT_SPEC_1; 1675 str = (select & SEL_REPLACE) ? &rpl_libpath : 1676 &prm_libpath; 1677 variable = ENV_FLG_LIBPATH; 1678 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1679 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1680 /* 1681 * Internal use by crle(1), not documented for general 1682 * use. 1683 */ 1684 select |= SEL_ACT_LML; 1685 val = LML_FLG_LOADAVAIL; 1686 variable = ENV_FLG_LOADAVAIL; 1687 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1688 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1689 select |= SEL_ACT_SPEC_2; 1690 variable = ENV_FLG_LOADFLTR; 1691 } 1692 } 1693 /* 1694 * LD_MACHCAP. 1695 */ 1696 else if (*s1 == 'M') { 1697 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1698 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1699 select |= SEL_ACT_STR; 1700 str = (select & SEL_REPLACE) ? 1701 &rpl_machcap : &prm_machcap; 1702 variable = ENV_FLG_MACHCAP; 1703 } 1704 } 1705 /* 1706 * The LD_NO family. 1707 */ 1708 else if (*s1 == 'N') { 1709 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1710 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1711 select |= SEL_ACT_RT; 1712 val = RT_FL_NOAUDIT; 1713 variable = ENV_FLG_NOAUDIT; 1714 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1715 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1716 select |= SEL_ACT_RT; 1717 val = RT_FL_NOAUXFLTR; 1718 variable = ENV_FLG_NOAUXFLTR; 1719 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1720 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1721 select |= SEL_ACT_RT; 1722 val = RT_FL_NOBAPLT; 1723 variable = ENV_FLG_NOBAPLT; 1724 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1725 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1726 select |= SEL_ACT_RT; 1727 val = RT_FL_NOCFG; 1728 variable = ENV_FLG_NOCONFIG; 1729 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1730 MSG_ORIG(MSG_LD_NODIRCONFIG), 1731 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1732 select |= SEL_ACT_RT; 1733 val = RT_FL_NODIRCFG; 1734 variable = ENV_FLG_NODIRCONFIG; 1735 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1736 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1737 select |= SEL_ACT_LMLT; 1738 val = LML_TFLG_NODIRECT; 1739 variable = ENV_FLG_NODIRECT; 1740 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1741 MSG_ORIG(MSG_LD_NOENVCONFIG), 1742 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1743 select |= SEL_ACT_RT; 1744 val = RT_FL_NOENVCFG; 1745 variable = ENV_FLG_NOENVCONFIG; 1746 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1747 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1748 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1749 select |= SEL_ACT_RT2; 1750 val = RT_FL2_NOFLTCFG; 1751 variable = ENV_FLG_NOFLTCONFIG; 1752 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1753 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1754 select |= SEL_ACT_LMLT; 1755 val = LML_TFLG_NOLAZYLD; 1756 variable = ENV_FLG_NOLAZY; 1757 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1758 MSG_ORIG(MSG_LD_NOOBJALTER), 1759 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1760 select |= SEL_ACT_RT; 1761 val = RT_FL_NOOBJALT; 1762 variable = ENV_FLG_NOOBJALTER; 1763 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1764 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1765 select |= SEL_ACT_RT; 1766 val = RT_FL_NOVERSION; 1767 variable = ENV_FLG_NOVERSION; 1768 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1769 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1770 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1771 /* 1772 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1773 */ 1774 select |= SEL_ACT_LML; 1775 val = LML_FLG_TRC_NOUNRESWEAK; 1776 variable = ENV_FLG_NOUNRESWEAK; 1777 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1778 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1779 select |= SEL_ACT_LML; 1780 val = LML_FLG_TRC_NOPAREXT; 1781 variable = ENV_FLG_NOPAREXT; 1782 } 1783 } 1784 /* 1785 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1786 */ 1787 else if (*s1 == 'P') { 1788 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1789 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1790 select |= SEL_ACT_STR; 1791 str = (select & SEL_REPLACE) ? 1792 &rpl_platcap : &prm_platcap; 1793 variable = ENV_FLG_PLATCAP; 1794 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1795 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1796 select |= SEL_ACT_STR; 1797 str = (select & SEL_REPLACE) ? &rpl_preload : 1798 &prm_preload; 1799 variable = ENV_FLG_PRELOAD; 1800 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1801 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1802 /* 1803 * Only one user library can be profiled at a time. 1804 */ 1805 select |= SEL_ACT_SPEC_2; 1806 variable = ENV_FLG_PROFILE; 1807 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1808 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1809 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1810 /* 1811 * Only one user library can be profiled at a time. 1812 */ 1813 select |= SEL_ACT_STR; 1814 str = &profile_out; 1815 variable = ENV_FLG_PROFILE_OUTPUT; 1816 } 1817 } 1818 /* 1819 * LD_SFCAP and LD_SIGNAL. 1820 */ 1821 else if (*s1 == 'S') { 1822 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1823 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1824 select |= SEL_ACT_STR; 1825 str = (select & SEL_REPLACE) ? 1826 &rpl_sfcap : &prm_sfcap; 1827 variable = ENV_FLG_SFCAP; 1828 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1829 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1830 MSG_LD_SIGNAL_SIZE) == 0) && 1831 ((rtld_flags & RT_FL_SECURE) == 0)) { 1832 select |= SEL_ACT_SPEC_2; 1833 variable = ENV_FLG_SIGNAL; 1834 } 1835 } 1836 /* 1837 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1838 * the key to enabling all other ldd(1) specific environment variables. 1839 * In case an auditor is called, which in turn might exec(2) a 1840 * subprocess, this variable is disabled, so that any subprocess 1841 * escapes ldd(1) processing. 1842 */ 1843 else if (*s1 == 'T') { 1844 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1845 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1846 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1847 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1848 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1849 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1850 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1851 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1852 char *s0 = (char *)s1; 1853 1854 select |= SEL_ACT_SPEC_2; 1855 variable = ENV_FLG_TRACE_OBJS; 1856 1857 #if defined(__sparc) || defined(__x86) 1858 /* 1859 * The simplest way to "disable" this variable is to 1860 * truncate this string to "LD_'\0'". This string is 1861 * ignored by any ld.so.1 environment processing. 1862 * Use of such interfaces as unsetenv(3c) are overkill, 1863 * and would drag too much libc implementation detail 1864 * into ld.so.1. 1865 */ 1866 *s0 = '\0'; 1867 #else 1868 /* 1869 * Verify that the above write is appropriate for any new platforms. 1870 */ 1871 #error unsupported architecture! 1872 #endif 1873 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1874 MSG_ORIG(MSG_LD_TRACE_PTHS), 1875 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1876 select |= SEL_ACT_LML; 1877 val = LML_FLG_TRC_SEARCH; 1878 variable = ENV_FLG_TRACE_PTHS; 1879 } 1880 } 1881 /* 1882 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1883 */ 1884 else if (*s1 == 'U') { 1885 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1886 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1887 select |= SEL_ACT_LML; 1888 val = LML_FLG_TRC_UNREF; 1889 variable = ENV_FLG_UNREF; 1890 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1891 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1892 select |= SEL_ACT_LML; 1893 val = LML_FLG_TRC_UNUSED; 1894 variable = ENV_FLG_UNUSED; 1895 } 1896 } 1897 /* 1898 * LD_VERBOSE (internal, used by ldd(1)). 1899 */ 1900 else if (*s1 == 'V') { 1901 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1902 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1903 select |= SEL_ACT_LML; 1904 val = LML_FLG_TRC_VERBOSE; 1905 variable = ENV_FLG_VERBOSE; 1906 } 1907 } 1908 /* 1909 * LD_WARN (internal, used by ldd(1)). 1910 */ 1911 else if (*s1 == 'W') { 1912 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1913 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1914 select |= SEL_ACT_LML; 1915 val = LML_FLG_TRC_WARN; 1916 variable = ENV_FLG_WARN; 1917 } 1918 } 1919 1920 if (variable == 0) 1921 return; 1922 1923 /* 1924 * If the variable is already processed with and ISA specific variable, 1925 * no further processing is needed. 1926 */ 1927 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1928 ((select & SEL_PERMANT) && (prmisa & variable))) 1929 return; 1930 1931 /* 1932 * Mark the appropriate variables. 1933 */ 1934 if (env_flags & ENV_TYP_ISA) { 1935 /* 1936 * This is an ISA setting. 1937 */ 1938 if (select & SEL_REPLACE) { 1939 if (rplisa & variable) 1940 return; 1941 rplisa |= variable; 1942 } else { 1943 prmisa |= variable; 1944 } 1945 } else { 1946 /* 1947 * This is a non-ISA setting. 1948 */ 1949 if (select & SEL_REPLACE) { 1950 if (rplgen & variable) 1951 return; 1952 rplgen |= variable; 1953 } else 1954 prmgen |= variable; 1955 } 1956 1957 /* 1958 * Now perform the setting. 1959 */ 1960 if (select & SEL_ACT_RT) { 1961 if (s2) 1962 rtld_flags |= val; 1963 else 1964 rtld_flags &= ~val; 1965 } else if (select & SEL_ACT_RT2) { 1966 if (s2) 1967 rtld_flags2 |= val; 1968 else 1969 rtld_flags2 &= ~val; 1970 } else if (select & SEL_ACT_STR) { 1971 *str = s2; 1972 } else if (select & SEL_ACT_LML) { 1973 if (s2) 1974 *lmflags |= val; 1975 else 1976 *lmflags &= ~val; 1977 } else if (select & SEL_ACT_LMLT) { 1978 if (s2) 1979 *lmtflags |= val; 1980 else 1981 *lmtflags &= ~val; 1982 } else if (select & SEL_ACT_SPEC_1) { 1983 /* 1984 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1985 */ 1986 *str = s2; 1987 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1988 if (s2) { 1989 if (variable == ENV_FLG_FLAGS) 1990 env_info |= ENV_INF_FLAGCFG; 1991 else 1992 env_info |= ENV_INF_PATHCFG; 1993 } else { 1994 if (variable == ENV_FLG_FLAGS) 1995 env_info &= ~ENV_INF_FLAGCFG; 1996 else 1997 env_info &= ~ENV_INF_PATHCFG; 1998 } 1999 } 2000 } else if (select & SEL_ACT_SPEC_2) { 2001 /* 2002 * variables can be: ENV_FLG_ 2003 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 2004 * SIGNAL, TRACE_OBJS 2005 */ 2006 switch (variable) { 2007 case ENV_FLG_AUDIT_ARGS: 2008 if (s2) { 2009 audit_argcnt = atoi(s2); 2010 audit_argcnt += audit_argcnt % 2; 2011 } else 2012 audit_argcnt = 0; 2013 break; 2014 case ENV_FLG_BINDINGS: 2015 if (s2) 2016 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2017 else 2018 rpl_debug = NULL; 2019 break; 2020 case ENV_FLG_CONFGEN: 2021 if (s2) { 2022 rtld_flags |= RT_FL_CONFGEN; 2023 *lmflags |= LML_FLG_IGNRELERR; 2024 } else { 2025 rtld_flags &= ~RT_FL_CONFGEN; 2026 *lmflags &= ~LML_FLG_IGNRELERR; 2027 } 2028 break; 2029 case ENV_FLG_LOADFLTR: 2030 if (s2) { 2031 *lmtflags |= LML_TFLG_LOADFLTR; 2032 if (*s2 == '2') 2033 rtld_flags |= RT_FL_WARNFLTR; 2034 } else { 2035 *lmtflags &= ~LML_TFLG_LOADFLTR; 2036 rtld_flags &= ~RT_FL_WARNFLTR; 2037 } 2038 break; 2039 case ENV_FLG_PROFILE: 2040 profile_name = s2; 2041 if (s2) { 2042 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2043 return; 2044 } 2045 /* BEGIN CSTYLED */ 2046 if (rtld_flags & RT_FL_SECURE) { 2047 profile_lib = 2048 #if defined(_ELF64) 2049 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2050 #else 2051 MSG_ORIG(MSG_PTH_LDPROFSE); 2052 #endif 2053 } else { 2054 profile_lib = 2055 #if defined(_ELF64) 2056 MSG_ORIG(MSG_PTH_LDPROF_64); 2057 #else 2058 MSG_ORIG(MSG_PTH_LDPROF); 2059 #endif 2060 } 2061 /* END CSTYLED */ 2062 } else 2063 profile_lib = NULL; 2064 break; 2065 case ENV_FLG_SIGNAL: 2066 killsig = s2 ? atoi(s2) : SIGKILL; 2067 break; 2068 case ENV_FLG_TRACE_OBJS: 2069 if (s2) { 2070 *lmflags |= LML_FLG_TRC_ENABLE; 2071 if (*s2 == '2') 2072 *lmflags |= LML_FLG_TRC_LDDSTUB; 2073 } else 2074 *lmflags &= 2075 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2076 break; 2077 } 2078 } 2079 } 2080 2081 /* 2082 * Determine whether we have an architecture specific environment variable. 2083 * If we do, and we're the wrong architecture, it'll just get ignored. 2084 * Otherwise the variable is processed in it's architecture neutral form. 2085 */ 2086 static int 2087 ld_arch_env(const char *s1, size_t *len) 2088 { 2089 size_t _len = *len - 3; 2090 2091 if (s1[_len++] == '_') { 2092 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2093 #if defined(_ELF64) 2094 return (ENV_TYP_IGNORE); 2095 #else 2096 *len = *len - 3; 2097 return (ENV_TYP_ISA); 2098 #endif 2099 } 2100 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2101 #if defined(_ELF64) 2102 *len = *len - 3; 2103 return (ENV_TYP_ISA); 2104 #else 2105 return (ENV_TYP_IGNORE); 2106 #endif 2107 } 2108 } 2109 return (0); 2110 } 2111 2112 2113 /* 2114 * Process an LD_FLAGS environment variable. The value can be a comma 2115 * separated set of tokens, which are sent (in upper case) into the generic 2116 * LD_XXXX environment variable engine. For example: 2117 * 2118 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2119 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2120 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2121 * or 2122 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2123 */ 2124 static int 2125 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2126 uint_t env_flags, int aout) 2127 { 2128 char *nstr, *sstr, *estr = NULL; 2129 size_t nlen, len; 2130 2131 if (str == NULL) 2132 return (0); 2133 2134 /* 2135 * Create a new string as we're going to transform the token(s) into 2136 * uppercase and separate tokens with nulls. 2137 */ 2138 len = strlen(str); 2139 if ((nstr = malloc(len + 1)) == NULL) 2140 return (1); 2141 (void) strcpy(nstr, str); 2142 2143 for (sstr = nstr; sstr; sstr++, len--) { 2144 int flags; 2145 2146 if ((*sstr != '\0') && (*sstr != ',')) { 2147 if (estr == NULL) { 2148 if (*sstr == '=') 2149 estr = sstr; 2150 else { 2151 /* 2152 * Translate token to uppercase. Don't 2153 * use toupper(3C) as including this 2154 * code doubles the size of ld.so.1. 2155 */ 2156 if ((*sstr >= 'a') && (*sstr <= 'z')) 2157 *sstr = *sstr - ('a' - 'A'); 2158 } 2159 } 2160 continue; 2161 } 2162 2163 *sstr = '\0'; 2164 if (estr) { 2165 nlen = estr - nstr; 2166 if ((*++estr == '\0') || (*estr == ',')) 2167 estr = NULL; 2168 } else 2169 nlen = sstr - nstr; 2170 2171 /* 2172 * Fabricate a boolean definition for any unqualified variable. 2173 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2174 * The value is sufficient to assert any boolean variables, plus 2175 * the term "(null)" is specifically chosen in case someone 2176 * mistakenly supplies something like LD_FLAGS=library_path. 2177 */ 2178 if (estr == NULL) 2179 estr = (char *)MSG_INTL(MSG_STR_NULL); 2180 2181 /* 2182 * Determine whether the environment variable is 32- or 64-bit 2183 * specific. The length, len, will reflect the architecture 2184 * neutral portion of the string. 2185 */ 2186 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2187 ld_generic_env(nstr, nlen, estr, lmflags, 2188 lmtflags, (env_flags | flags), aout); 2189 } 2190 if (len == 0) 2191 return (0); 2192 2193 nstr = sstr + 1; 2194 estr = NULL; 2195 } 2196 return (0); 2197 } 2198 2199 2200 /* 2201 * Process a single environment string. Only strings starting with `LD_' are 2202 * reserved for our use. By convention, all strings should be of the form 2203 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2204 * functionality is enabled. Also pick off applicable locale variables. 2205 */ 2206 #define LOC_LANG 1 2207 #define LOC_MESG 2 2208 #define LOC_ALL 3 2209 2210 static void 2211 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2212 int aout) 2213 { 2214 const char *s2; 2215 static size_t loc = 0; 2216 2217 if (*s1++ != 'L') 2218 return; 2219 2220 /* 2221 * See if we have any locale environment settings. These environment 2222 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2223 * is higher than LANG. 2224 */ 2225 s2 = s1; 2226 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2227 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2228 s2 += MSG_LC_ALL_SIZE; 2229 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2230 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2231 loc = LOC_ALL; 2232 } 2233 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2234 MSG_LC_MESSAGES_SIZE) == 0) { 2235 s2 += MSG_LC_MESSAGES_SIZE; 2236 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2237 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2238 loc = LOC_MESG; 2239 } 2240 } 2241 return; 2242 } 2243 2244 s2 = s1; 2245 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2246 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2247 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2248 loc = LOC_LANG; 2249 return; 2250 } 2251 2252 /* 2253 * Pick off any LD_XXXX environment variables. 2254 */ 2255 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2256 size_t len; 2257 int flags; 2258 2259 /* 2260 * In a branded process we must ignore all LD_XXXX env vars 2261 * because they are intended for the brand's linker. 2262 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2263 */ 2264 if (rtld_flags2 & RT_FL2_BRANDED) { 2265 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2266 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2267 return; 2268 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2269 } 2270 2271 /* 2272 * Environment variables with no value (ie. LD_XXXX=) typically 2273 * have no impact, however if environment variables are defined 2274 * within a configuration file, these null user settings can be 2275 * used to disable any configuration replaceable definitions. 2276 */ 2277 if ((s2 = strchr(s1, '=')) == NULL) { 2278 len = strlen(s1); 2279 s2 = NULL; 2280 } else if (*++s2 == '\0') { 2281 len = strlen(s1) - 1; 2282 s2 = NULL; 2283 } else { 2284 len = s2 - s1 - 1; 2285 while (conv_strproc_isspace(*s2)) 2286 s2++; 2287 } 2288 2289 /* 2290 * Determine whether the environment variable is 32- or 64-bit 2291 * specific. The length, len, will reflect the architecture 2292 * neutral portion of the string. 2293 */ 2294 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2295 return; 2296 env_flags |= flags; 2297 2298 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2299 } 2300 } 2301 2302 /* 2303 * Internal getenv routine. Called immediately after ld.so.1 initializes 2304 * itself. 2305 */ 2306 int 2307 readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout) 2308 { 2309 char *locale; 2310 2311 if (envp == NULL) 2312 return (0); 2313 2314 while (*envp != NULL) 2315 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2316 2317 /* 2318 * Having collected the best representation of any LD_FLAGS, process 2319 * these strings. 2320 */ 2321 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2322 return (1); 2323 2324 /* 2325 * Don't allow environment controlled auditing when tracing or if 2326 * explicitly disabled. Trigger all tracing modes from 2327 * LML_FLG_TRC_ENABLE. 2328 */ 2329 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2330 rpl_audit = profile_lib = profile_name = NULL; 2331 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2332 *lmflags &= ~LML_MSK_TRC; 2333 2334 /* 2335 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2336 */ 2337 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2338 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2339 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2340 2341 /* 2342 * When using ldd(1) -r or -d against an executable, assert -p. 2343 */ 2344 if ((*lmflags & 2345 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2346 *lmflags |= LML_FLG_TRC_NOPAREXT; 2347 2348 /* 2349 * If we have a locale setting make sure its worth processing further. 2350 * C and POSIX locales don't need any processing. In addition, to 2351 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2352 * the locale to contain a segment that leads upward in the file system 2353 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2354 * the /usr/lib/locale hierarchy, there is no need to extensively 2355 * validate the mode or ownership of any message file (as libc's 2356 * generic handling of message files does). Duplicate the string so 2357 * that new locale setting can generically cleanup any previous locales. 2358 */ 2359 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2360 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2361 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2362 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2363 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2364 else 2365 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2366 } 2367 return (0); 2368 } 2369 2370 /* 2371 * Configuration environment processing. Called after the a.out has been 2372 * processed (as the a.out can specify its own configuration file). 2373 */ 2374 int 2375 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2376 { 2377 Word *lmflags = &(lml_main.lm_flags); 2378 Word *lmtflags = &(lml_main.lm_tflags); 2379 2380 if (envtbl == NULL) 2381 return (0); 2382 2383 while (envtbl->env_str) { 2384 uint_t env_flags = ENV_TYP_CONFIG; 2385 2386 if (envtbl->env_flags & RTC_ENV_PERMANT) 2387 env_flags |= ENV_TYP_PERMANT; 2388 2389 ld_str_env((const char *)(envtbl->env_str + addr), 2390 lmflags, lmtflags, env_flags, 0); 2391 envtbl++; 2392 } 2393 2394 /* 2395 * Having collected the best representation of any LD_FLAGS, process 2396 * these strings. 2397 */ 2398 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2399 return (1); 2400 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2401 aout) == 1) 2402 return (1); 2403 2404 /* 2405 * Don't allow environment controlled auditing when tracing or if 2406 * explicitly disabled. Trigger all tracing modes from 2407 * LML_FLG_TRC_ENABLE. 2408 */ 2409 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2410 prm_audit = profile_lib = profile_name = NULL; 2411 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2412 *lmflags &= ~LML_MSK_TRC; 2413 2414 return (0); 2415 } 2416 2417 int 2418 dowrite(Prfbuf * prf) 2419 { 2420 /* 2421 * We do not have a valid file descriptor, so we are unable 2422 * to flush the buffer. 2423 */ 2424 if (prf->pr_fd == -1) 2425 return (0); 2426 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2427 prf->pr_cur = prf->pr_buf; 2428 return (1); 2429 } 2430 2431 /* 2432 * Simplified printing. The following conversion specifications are supported: 2433 * 2434 * % [#] [-] [min field width] [. precision] s|d|x|c 2435 * 2436 * 2437 * dorprf takes the output buffer in the form of Prfbuf which permits 2438 * the verification of the output buffer size and the concatenation 2439 * of data to an already existing output buffer. The Prfbuf 2440 * structure contains the following: 2441 * 2442 * pr_buf pointer to the beginning of the output buffer. 2443 * pr_cur pointer to the next available byte in the output buffer. By 2444 * setting pr_cur ahead of pr_buf you can append to an already 2445 * existing buffer. 2446 * pr_len the size of the output buffer. By setting pr_len to '0' you 2447 * disable protection from overflows in the output buffer. 2448 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2449 * output to. If pr_fd is set to '-1' then it's assumed there is 2450 * no output buffer, and doprf() will return with an error to 2451 * indicate an output buffer overflow. If pr_fd is > -1 then when 2452 * the output buffer is filled it will be flushed to pr_fd and will 2453 * then be available for additional data. 2454 */ 2455 #define FLG_UT_MINUS 0x0001 /* - */ 2456 #define FLG_UT_SHARP 0x0002 /* # */ 2457 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2458 2459 /* 2460 * This macro is for use from within doprf only. It is to be used for checking 2461 * the output buffer size and placing characters into the buffer. 2462 */ 2463 #define PUTC(c) \ 2464 { \ 2465 char tmpc; \ 2466 \ 2467 tmpc = (c); \ 2468 if (bufsiz && (bp >= bufend)) { \ 2469 prf->pr_cur = bp; \ 2470 if (dowrite(prf) == 0) \ 2471 return (0); \ 2472 bp = prf->pr_cur; \ 2473 } \ 2474 *bp++ = tmpc; \ 2475 } 2476 2477 /* 2478 * Define a local buffer size for building a numeric value - large enough to 2479 * hold a 64-bit value. 2480 */ 2481 #define NUM_SIZE 22 2482 2483 size_t 2484 doprf(const char *format, va_list args, Prfbuf *prf) 2485 { 2486 char c; 2487 char *bp = prf->pr_cur; 2488 char *bufend = prf->pr_buf + prf->pr_len; 2489 size_t bufsiz = prf->pr_len; 2490 2491 while ((c = *format++) != '\0') { 2492 if (c != '%') { 2493 PUTC(c); 2494 } else { 2495 int base = 0, flag = 0, width = 0, prec = 0; 2496 size_t _i; 2497 int _c, _n; 2498 char *_s; 2499 int ls = 0; 2500 again: 2501 c = *format++; 2502 switch (c) { 2503 case '-': 2504 flag |= FLG_UT_MINUS; 2505 goto again; 2506 case '#': 2507 flag |= FLG_UT_SHARP; 2508 goto again; 2509 case '.': 2510 flag |= FLG_UT_DOTSEEN; 2511 goto again; 2512 case '0': 2513 case '1': 2514 case '2': 2515 case '3': 2516 case '4': 2517 case '5': 2518 case '6': 2519 case '7': 2520 case '8': 2521 case '9': 2522 if (flag & FLG_UT_DOTSEEN) 2523 prec = (prec * 10) + c - '0'; 2524 else 2525 width = (width * 10) + c - '0'; 2526 goto again; 2527 case 'x': 2528 case 'X': 2529 base = 16; 2530 break; 2531 case 'd': 2532 case 'D': 2533 case 'u': 2534 base = 10; 2535 flag &= ~FLG_UT_SHARP; 2536 break; 2537 case 'l': 2538 base = 10; 2539 ls++; /* number of l's (long or long long) */ 2540 if ((*format == 'l') || 2541 (*format == 'd') || (*format == 'D') || 2542 (*format == 'x') || (*format == 'X') || 2543 (*format == 'o') || (*format == 'O') || 2544 (*format == 'u') || (*format == 'U')) 2545 goto again; 2546 break; 2547 case 'o': 2548 case 'O': 2549 base = 8; 2550 break; 2551 case 'c': 2552 _c = va_arg(args, int); 2553 2554 for (_i = 24; _i > 0; _i -= 8) { 2555 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2556 PUTC(c); 2557 } 2558 } 2559 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2560 PUTC(c); 2561 } 2562 break; 2563 case 's': 2564 _s = va_arg(args, char *); 2565 _i = strlen(_s); 2566 /* LINTED */ 2567 _n = (int)(width - _i); 2568 if (!prec) 2569 /* LINTED */ 2570 prec = (int)_i; 2571 2572 if (width && !(flag & FLG_UT_MINUS)) { 2573 while (_n-- > 0) 2574 PUTC(' '); 2575 } 2576 while (((c = *_s++) != 0) && prec--) { 2577 PUTC(c); 2578 } 2579 if (width && (flag & FLG_UT_MINUS)) { 2580 while (_n-- > 0) 2581 PUTC(' '); 2582 } 2583 break; 2584 case '%': 2585 PUTC('%'); 2586 break; 2587 default: 2588 break; 2589 } 2590 2591 /* 2592 * Numeric processing 2593 */ 2594 if (base) { 2595 char local[NUM_SIZE]; 2596 size_t ssize = 0, psize = 0; 2597 const char *string = 2598 MSG_ORIG(MSG_STR_HEXNUM); 2599 const char *prefix = 2600 MSG_ORIG(MSG_STR_EMPTY); 2601 u_longlong_t num; 2602 2603 switch (ls) { 2604 case 0: /* int */ 2605 num = (u_longlong_t) 2606 va_arg(args, uint_t); 2607 break; 2608 case 1: /* long */ 2609 num = (u_longlong_t) 2610 va_arg(args, ulong_t); 2611 break; 2612 case 2: /* long long */ 2613 num = va_arg(args, u_longlong_t); 2614 break; 2615 } 2616 2617 if (flag & FLG_UT_SHARP) { 2618 if (base == 16) { 2619 prefix = MSG_ORIG(MSG_STR_HEX); 2620 psize = 2; 2621 } else { 2622 prefix = MSG_ORIG(MSG_STR_ZERO); 2623 psize = 1; 2624 } 2625 } 2626 if ((base == 10) && (long)num < 0) { 2627 prefix = MSG_ORIG(MSG_STR_NEGATE); 2628 psize = MSG_STR_NEGATE_SIZE; 2629 num = (u_longlong_t)(-(longlong_t)num); 2630 } 2631 2632 /* 2633 * Convert the numeric value into a local 2634 * string (stored in reverse order). 2635 */ 2636 _s = local; 2637 do { 2638 *_s++ = string[num % base]; 2639 num /= base; 2640 ssize++; 2641 } while (num); 2642 2643 ASSERT(ssize < sizeof (local)); 2644 2645 /* 2646 * Provide any precision or width padding. 2647 */ 2648 if (prec) { 2649 /* LINTED */ 2650 _n = (int)(prec - ssize); 2651 while ((_n-- > 0) && 2652 (ssize < sizeof (local))) { 2653 *_s++ = '0'; 2654 ssize++; 2655 } 2656 } 2657 if (width && !(flag & FLG_UT_MINUS)) { 2658 /* LINTED */ 2659 _n = (int)(width - ssize - psize); 2660 while (_n-- > 0) { 2661 PUTC(' '); 2662 } 2663 } 2664 2665 /* 2666 * Print any prefix and the numeric string 2667 */ 2668 while (*prefix) 2669 PUTC(*prefix++); 2670 do { 2671 PUTC(*--_s); 2672 } while (_s > local); 2673 2674 /* 2675 * Provide any width padding. 2676 */ 2677 if (width && (flag & FLG_UT_MINUS)) { 2678 /* LINTED */ 2679 _n = (int)(width - ssize - psize); 2680 while (_n-- > 0) 2681 PUTC(' '); 2682 } 2683 } 2684 } 2685 } 2686 2687 PUTC('\0'); 2688 prf->pr_cur = bp; 2689 return (1); 2690 } 2691 2692 static int 2693 doprintf(const char *format, va_list args, Prfbuf *prf) 2694 { 2695 char *ocur = prf->pr_cur; 2696 2697 if (doprf(format, args, prf) == 0) 2698 return (0); 2699 /* LINTED */ 2700 return ((int)(prf->pr_cur - ocur)); 2701 } 2702 2703 /* VARARGS2 */ 2704 int 2705 sprintf(char *buf, const char *format, ...) 2706 { 2707 va_list args; 2708 int len; 2709 Prfbuf prf; 2710 2711 va_start(args, format); 2712 prf.pr_buf = prf.pr_cur = buf; 2713 prf.pr_len = 0; 2714 prf.pr_fd = -1; 2715 len = doprintf(format, args, &prf); 2716 va_end(args); 2717 2718 /* 2719 * sprintf() return value excludes the terminating null byte. 2720 */ 2721 return (len - 1); 2722 } 2723 2724 /* VARARGS3 */ 2725 int 2726 snprintf(char *buf, size_t n, const char *format, ...) 2727 { 2728 va_list args; 2729 int len; 2730 Prfbuf prf; 2731 2732 va_start(args, format); 2733 prf.pr_buf = prf.pr_cur = buf; 2734 prf.pr_len = n; 2735 prf.pr_fd = -1; 2736 len = doprintf(format, args, &prf); 2737 va_end(args); 2738 2739 return (len); 2740 } 2741 2742 /* VARARGS2 */ 2743 int 2744 bufprint(Prfbuf *prf, const char *format, ...) 2745 { 2746 va_list args; 2747 int len; 2748 2749 va_start(args, format); 2750 len = doprintf(format, args, prf); 2751 va_end(args); 2752 2753 return (len); 2754 } 2755 2756 /*PRINTFLIKE1*/ 2757 int 2758 printf(const char *format, ...) 2759 { 2760 va_list args; 2761 char buffer[ERRSIZE]; 2762 Prfbuf prf; 2763 2764 va_start(args, format); 2765 prf.pr_buf = prf.pr_cur = buffer; 2766 prf.pr_len = ERRSIZE; 2767 prf.pr_fd = 1; 2768 (void) doprf(format, args, &prf); 2769 va_end(args); 2770 /* 2771 * Trim trailing '\0' form buffer 2772 */ 2773 prf.pr_cur--; 2774 return (dowrite(&prf)); 2775 } 2776 2777 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2778 2779 /* 2780 * All error messages go through eprintf(). During process initialization, 2781 * these messages are directed to the standard error, however once control has 2782 * been passed to the applications code these messages are stored in an internal 2783 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2784 * while running the application will still cause a standard error message, see 2785 * rtldexit() in this file for details. 2786 * The RT_FL_APPLIC flag serves to indicate the transition between process 2787 * initialization and when the applications code is running. 2788 */ 2789 /*PRINTFLIKE3*/ 2790 void 2791 eprintf(Lm_list *lml, Error error, const char *format, ...) 2792 { 2793 va_list args; 2794 int overflow = 0; 2795 static int lock = 0; 2796 Prfbuf prf; 2797 2798 if (lock || (nextptr == (errbuf + ERRSIZE))) 2799 return; 2800 2801 /* 2802 * Note: this lock is here to prevent the same thread from recursively 2803 * entering itself during a eprintf. ie: during eprintf malloc() fails 2804 * and we try and call eprintf ... and then malloc() fails .... 2805 */ 2806 lock = 1; 2807 2808 /* 2809 * If we have completed startup initialization, all error messages 2810 * must be saved. These are reported through dlerror(). If we're 2811 * still in the initialization stage, output the error directly and 2812 * add a newline. 2813 */ 2814 va_start(args, format); 2815 2816 prf.pr_buf = prf.pr_cur = nextptr; 2817 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2818 2819 if (!(rtld_flags & RT_FL_APPLIC)) 2820 prf.pr_fd = 2; 2821 else 2822 prf.pr_fd = -1; 2823 2824 if (error > ERR_NONE) { 2825 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2826 error = ERR_WARNING; 2827 if (error == ERR_WARNING) { 2828 if (err_strs[ERR_WARNING] == NULL) 2829 err_strs[ERR_WARNING] = 2830 MSG_INTL(MSG_ERR_WARNING); 2831 } else if (error == ERR_FATAL) { 2832 if (err_strs[ERR_FATAL] == NULL) 2833 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2834 } else if (error == ERR_ELF) { 2835 if (err_strs[ERR_ELF] == NULL) 2836 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2837 } 2838 if (procname) { 2839 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2840 rtldname, procname, err_strs[error]) == 0) 2841 overflow = 1; 2842 } else { 2843 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2844 rtldname, err_strs[error]) == 0) 2845 overflow = 1; 2846 } 2847 if (overflow == 0) { 2848 /* 2849 * Remove the terminating '\0'. 2850 */ 2851 prf.pr_cur--; 2852 } 2853 } 2854 2855 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2856 overflow = 1; 2857 2858 /* 2859 * If this is an ELF error, it will have been generated by a support 2860 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2861 * ELF error messages as it doesn't interact with libelf. Determine the 2862 * ELF error string. 2863 */ 2864 if ((overflow == 0) && (error == ERR_ELF)) { 2865 static int (*elfeno)() = 0; 2866 static const char *(*elfemg)(); 2867 const char *emsg; 2868 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2869 2870 if (NEXT(lmp) && (elfeno == 0)) { 2871 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2872 MSG_ORIG(MSG_SYM_ELFERRMSG), 2873 lmp, &dlmp)) == NULL) || 2874 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2875 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2876 elfeno = 0; 2877 } 2878 2879 /* 2880 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2881 */ 2882 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2883 prf.pr_cur--; 2884 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2885 emsg) == 0) 2886 overflow = 1; 2887 } 2888 } 2889 2890 /* 2891 * Push out any message that's been built. Note, in the case of an 2892 * overflow condition, this message may be incomplete, in which case 2893 * make sure any partial string is null terminated. 2894 */ 2895 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2896 *(prf.pr_cur - 1) = '\n'; 2897 (void) dowrite(&prf); 2898 } 2899 if (overflow) 2900 *(prf.pr_cur - 1) = '\0'; 2901 2902 DBG_CALL(Dbg_util_str(lml, nextptr)); 2903 va_end(args); 2904 2905 /* 2906 * Determine if there was insufficient space left in the buffer to 2907 * complete the message. If so, we'll have printed out as much as had 2908 * been processed if we're not yet executing the application. 2909 * Otherwise, there will be some debugging diagnostic indicating 2910 * as much of the error message as possible. Write out a final buffer 2911 * overflow diagnostic - unlocalized, so we don't chance more errors. 2912 */ 2913 if (overflow) { 2914 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2915 2916 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2917 lasterr = str; 2918 2919 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2920 (void) write(2, str, strlen(str)); 2921 (void) write(2, MSG_ORIG(MSG_STR_NL), 2922 MSG_STR_NL_SIZE); 2923 } 2924 } 2925 DBG_CALL(Dbg_util_str(lml, str)); 2926 2927 lock = 0; 2928 nextptr = errbuf + ERRSIZE; 2929 return; 2930 } 2931 2932 /* 2933 * If the application has started, then error messages are being saved 2934 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2935 * the case of a fatal error. In this case, establish the next error 2936 * pointer. If we haven't started the application, the whole message 2937 * buffer can be reused. 2938 */ 2939 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2940 lasterr = nextptr; 2941 2942 /* 2943 * Note, should we encounter an error such as ENOMEM, there may 2944 * be a number of the same error messages (ie. an operation 2945 * fails with ENOMEM, and then the attempts to construct the 2946 * error message itself, which incurs additional ENOMEM errors). 2947 * Compare any previous error message with the one we've just 2948 * created to prevent any duplication clutter. 2949 */ 2950 if ((rtld_flags & RT_FL_APPLIC) && 2951 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 2952 prevptr = nextptr; 2953 nextptr = prf.pr_cur; 2954 *nextptr = '\0'; 2955 } 2956 } 2957 lock = 0; 2958 } 2959 2960 2961 #if DEBUG 2962 /* 2963 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 2964 * details. 2965 */ 2966 int 2967 assfail(const char *a, const char *f, int l) 2968 { 2969 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2970 (void) _lwp_kill(_lwp_self(), SIGABRT); 2971 return (0); 2972 } 2973 #endif 2974 2975 /* 2976 * Exit. If we arrive here with a non zero status it's because of a fatal 2977 * error condition (most commonly a relocation error). If the application has 2978 * already had control, then the actual fatal error message will have been 2979 * recorded in the dlerror() message buffer. Print the message before really 2980 * exiting. 2981 */ 2982 void 2983 rtldexit(Lm_list * lml, int status) 2984 { 2985 if (status) { 2986 if (rtld_flags & RT_FL_APPLIC) { 2987 /* 2988 * If the error buffer has been used, write out all 2989 * pending messages - lasterr is simply a pointer to 2990 * the last message in this buffer. However, if the 2991 * buffer couldn't be created at all, lasterr points 2992 * to a constant error message string. 2993 */ 2994 if (*errbuf) { 2995 char *errptr = errbuf; 2996 char *errend = errbuf + ERRSIZE; 2997 2998 while ((errptr < errend) && *errptr) { 2999 size_t size = strlen(errptr); 3000 (void) write(2, errptr, size); 3001 (void) write(2, MSG_ORIG(MSG_STR_NL), 3002 MSG_STR_NL_SIZE); 3003 errptr += (size + 1); 3004 } 3005 } 3006 if (lasterr && ((lasterr < errbuf) || 3007 (lasterr > (errbuf + ERRSIZE)))) { 3008 (void) write(2, lasterr, strlen(lasterr)); 3009 (void) write(2, MSG_ORIG(MSG_STR_NL), 3010 MSG_STR_NL_SIZE); 3011 } 3012 } 3013 leave(lml, 0); 3014 (void) _lwp_kill(_lwp_self(), killsig); 3015 } 3016 _exit(status); 3017 } 3018 3019 /* 3020 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3021 */ 3022 void * 3023 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3024 { 3025 caddr_t va; 3026 3027 if ((va = (caddr_t)mmap(addr, len, prot, 3028 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3029 int err = errno; 3030 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3031 strerror(err)); 3032 return (MAP_FAILED); 3033 } 3034 return (va); 3035 } 3036 3037 static int nu_fd = FD_UNAVAIL; 3038 3039 void * 3040 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3041 { 3042 caddr_t va; 3043 int err; 3044 3045 if (nu_fd == FD_UNAVAIL) { 3046 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3047 O_RDONLY)) == FD_UNAVAIL) { 3048 err = errno; 3049 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3050 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3051 return (MAP_FAILED); 3052 } 3053 } 3054 3055 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3056 MAP_FAILED) { 3057 err = errno; 3058 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3059 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3060 } 3061 return (va); 3062 } 3063 3064 /* 3065 * Generic entry point from user code - simply grabs a lock, and bumps the 3066 * entrance count. 3067 */ 3068 int 3069 enter(int flags) 3070 { 3071 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3072 if (!thr_flg_nolock) 3073 (void) rt_mutex_lock(&rtldlock); 3074 if (rtld_flags & RT_FL_OPERATION) { 3075 ld_entry_cnt++; 3076 3077 /* 3078 * Reset the diagnostic time information for each new 3079 * "operation". Thus timing diagnostics are relative 3080 * to entering ld.so.1. 3081 */ 3082 if (DBG_ISTIME() && 3083 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3084 DBG_DELTATIME = DBG_TOTALTIME; 3085 DBG_ONRESET(); 3086 } 3087 } 3088 return (1); 3089 } 3090 return (0); 3091 } 3092 3093 /* 3094 * Determine whether a search path has been used. 3095 */ 3096 static void 3097 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3098 { 3099 Pdesc *pdp; 3100 Aliste idx; 3101 3102 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3103 const char *fmt, *name; 3104 3105 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3106 continue; 3107 3108 /* 3109 * If this pathname originated from an expanded token, use the 3110 * original for any diagnostic output. 3111 */ 3112 if ((name = pdp->pd_oname) == NULL) 3113 name = pdp->pd_pname; 3114 3115 if (unref == 0) { 3116 if ((*nl)++ == 0) 3117 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3118 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3119 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3120 continue; 3121 } 3122 3123 if (pdp->pd_flags & LA_SER_LIBPATH) { 3124 if (pdp->pd_flags & LA_SER_CONFIG) { 3125 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3126 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3127 else 3128 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3129 } else { 3130 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3131 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3132 else 3133 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3134 } 3135 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3136 fmt = MSG_INTL(MSG_USD_RUNPATH); 3137 } else 3138 continue; 3139 3140 if ((*nl)++ == 0) 3141 (void) printf(MSG_ORIG(MSG_STR_NL)); 3142 (void) printf(fmt, name, obj); 3143 } 3144 } 3145 3146 /* 3147 * Generate diagnostics as to whether an object has been used. A symbolic 3148 * reference that gets bound to an object marks it as used. Dependencies that 3149 * are unused when RTLD_NOW is in effect should be removed from future builds 3150 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3151 * candidates for lazy-loading. 3152 * 3153 * Unreferenced objects identify objects that are defined as dependencies but 3154 * are unreferenced by the caller. These unreferenced objects may however be 3155 * referenced by other objects within the process, and therefore don't qualify 3156 * as completely unused. They are still an unnecessary overhead. 3157 * 3158 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3159 * debugging. 3160 */ 3161 void 3162 unused(Lm_list *lml) 3163 { 3164 Rt_map *lmp; 3165 int nl = 0; 3166 Word unref, unuse; 3167 3168 /* 3169 * If we're not tracing unused references or dependencies, or debugging 3170 * there's nothing to do. 3171 */ 3172 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3173 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3174 3175 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3176 return; 3177 3178 /* 3179 * Detect unused global search paths. 3180 */ 3181 if (rpl_libdirs) 3182 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3183 if (prm_libdirs) 3184 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3185 3186 nl = 0; 3187 lmp = lml->lm_head; 3188 if (RLIST(lmp)) 3189 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3190 3191 /* 3192 * Traverse the link-maps looking for unreferenced or unused 3193 * dependencies. Ignore the first object on a link-map list, as this 3194 * is always used. 3195 */ 3196 nl = 0; 3197 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3198 /* 3199 * Determine if this object contains any runpaths that have 3200 * not been used. 3201 */ 3202 if (RLIST(lmp)) 3203 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3204 3205 /* 3206 * If tracing unreferenced objects, or under debugging, 3207 * determine whether any of this objects callers haven't 3208 * referenced it. 3209 */ 3210 if (unref || DBG_ENABLED) { 3211 Bnd_desc *bdp; 3212 Aliste idx; 3213 3214 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3215 Rt_map *clmp; 3216 3217 if (bdp->b_flags & BND_REFER) 3218 continue; 3219 3220 clmp = bdp->b_caller; 3221 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3222 continue; 3223 3224 /* BEGIN CSTYLED */ 3225 if (nl++ == 0) { 3226 if (unref) 3227 (void) printf(MSG_ORIG(MSG_STR_NL)); 3228 else 3229 DBG_CALL(Dbg_util_nl(lml, 3230 DBG_NL_STD)); 3231 } 3232 3233 if (unref) 3234 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3235 NAME(lmp), NAME(clmp)); 3236 else 3237 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3238 /* END CSTYLED */ 3239 } 3240 } 3241 3242 /* 3243 * If tracing unused objects simply display those objects that 3244 * haven't been referenced by anyone. 3245 */ 3246 if (FLAGS1(lmp) & FL1_RT_USED) 3247 continue; 3248 3249 if (nl++ == 0) { 3250 if (unref || unuse) 3251 (void) printf(MSG_ORIG(MSG_STR_NL)); 3252 else 3253 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3254 } 3255 if (CYCGROUP(lmp)) { 3256 if (unref || unuse) 3257 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3258 NAME(lmp), CYCGROUP(lmp)); 3259 else 3260 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3261 CYCGROUP(lmp))); 3262 } else { 3263 if (unref || unuse) 3264 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3265 NAME(lmp)); 3266 else 3267 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3268 } 3269 } 3270 3271 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3272 } 3273 3274 /* 3275 * Generic cleanup routine called prior to returning control to the user. 3276 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3277 * released, and any locks dropped. 3278 */ 3279 void 3280 leave(Lm_list *lml, int flags) 3281 { 3282 Lm_list *elml = lml; 3283 Rt_map *clmp; 3284 Aliste idx; 3285 3286 /* 3287 * Alert the debuggers that the link-maps are consistent. Note, in the 3288 * case of tearing down a whole link-map list, lml will be null. In 3289 * this case use the main link-map list to test for a notification. 3290 */ 3291 if (elml == NULL) 3292 elml = &lml_main; 3293 if (elml->lm_flags & LML_FLG_DBNOTIF) 3294 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3295 3296 /* 3297 * Alert any auditors that the link-maps are consistent. 3298 */ 3299 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3300 audit_activity(clmp, LA_ACT_CONSISTENT); 3301 3302 aplist_delete(elml->lm_actaudit, &idx); 3303 } 3304 3305 if (nu_fd != FD_UNAVAIL) { 3306 (void) close(nu_fd); 3307 nu_fd = FD_UNAVAIL; 3308 } 3309 3310 /* 3311 * Reinitialize error message pointer, and any overflow indication. 3312 */ 3313 nextptr = errbuf; 3314 prevptr = NULL; 3315 3316 /* 3317 * Defragment any freed memory. 3318 */ 3319 if (aplist_nitems(free_alp)) 3320 defrag(); 3321 3322 /* 3323 * Don't drop our lock if we are running on our link-map list as 3324 * there's little point in doing so since we are single-threaded. 3325 * 3326 * LML_FLG_HOLDLOCK is set for: 3327 * - The ld.so.1's link-map list. 3328 * - The auditor's link-map if the environment is pre-UPM. 3329 */ 3330 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3331 return; 3332 3333 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3334 if (!thr_flg_nolock) 3335 (void) rt_mutex_unlock(&rtldlock); 3336 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3337 } 3338 } 3339 3340 int 3341 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3342 { 3343 APlist *calp, *dalp; 3344 Aliste idx1, idx2; 3345 Grp_hdl *ghp1, *ghp2; 3346 3347 /* 3348 * An object can always find symbols within itself. 3349 */ 3350 if (clmp == dlmp) 3351 return (1); 3352 3353 /* 3354 * The search for a singleton must look in every loaded object. 3355 */ 3356 if (slflags & LKUP_SINGLETON) 3357 return (1); 3358 3359 /* 3360 * Don't allow an object to bind to an object that is being deleted 3361 * unless the binder is also being deleted. 3362 */ 3363 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3364 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3365 return (0); 3366 3367 /* 3368 * An object with world access can always bind to an object with global 3369 * visibility. 3370 */ 3371 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3372 (MODE(dlmp) & RTLD_GLOBAL)) 3373 return (1); 3374 3375 /* 3376 * An object with local access can only bind to an object that is a 3377 * member of the same group. 3378 */ 3379 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3380 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3381 return (0); 3382 3383 /* 3384 * Traverse the list of groups the caller is a part of. 3385 */ 3386 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3387 /* 3388 * If we're testing for the ability of two objects to bind to 3389 * each other regardless of a specific group, ignore that group. 3390 */ 3391 if (ghp && (ghp1 == ghp)) 3392 continue; 3393 3394 /* 3395 * Traverse the list of groups the destination is a part of. 3396 */ 3397 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3398 Grp_desc *gdp; 3399 Aliste idx3; 3400 3401 if (ghp1 != ghp2) 3402 continue; 3403 3404 /* 3405 * Make sure the relationship between the destination 3406 * and the caller provide symbols for relocation. 3407 * Parents are maintained as callers, but unless the 3408 * destination object was opened with RTLD_PARENT, the 3409 * parent doesn't provide symbols for the destination 3410 * to relocate against. 3411 */ 3412 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3413 if (dlmp != gdp->gd_depend) 3414 continue; 3415 3416 if (gdp->gd_flags & GPD_RELOC) 3417 return (1); 3418 } 3419 } 3420 } 3421 return (0); 3422 } 3423 3424 /* 3425 * Initialize the environ symbol. Traditionally this is carried out by the crt 3426 * code prior to jumping to main. However, init sections get fired before this 3427 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3428 * information. In addition, a process may have multiple link-maps (ld.so.1's 3429 * debugging and preloading objects), and link auditing, and each may need an 3430 * environ variable set. 3431 * 3432 * This routine is called after a relocation() pass, and thus provides for: 3433 * 3434 * - setting environ on the main link-map after the initial application and 3435 * its dependencies have been established. Typically environ lives in the 3436 * application (provided by its crt), but in older applications it might 3437 * be in libc. Who knows what's expected of applications not built on 3438 * Solaris. 3439 * 3440 * - after loading a new shared object. We can add shared objects to various 3441 * link-maps, and any link-map dependencies requiring getopt() require 3442 * their own environ. In addition, lazy loading might bring in the 3443 * supplier of environ (libc used to be a lazy loading candidate) after 3444 * the link-map has been established and other objects are present. 3445 * 3446 * This routine handles all these scenarios, without adding unnecessary overhead 3447 * to ld.so.1. 3448 */ 3449 void 3450 set_environ(Lm_list *lml) 3451 { 3452 Slookup sl; 3453 Sresult sr; 3454 uint_t binfo; 3455 3456 /* 3457 * Initialize the symbol lookup, and symbol result, data structures. 3458 */ 3459 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3460 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3461 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3462 3463 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3464 Rt_map *dlmp = sr.sr_dmap; 3465 3466 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3467 3468 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3469 lml->lm_environ = 3470 (char ***)((uintptr_t)lml->lm_environ + 3471 (uintptr_t)ADDR(dlmp)); 3472 *(lml->lm_environ) = (char **)environ; 3473 lml->lm_flags |= LML_FLG_ENVIRON; 3474 } 3475 } 3476 3477 /* 3478 * Determine whether we have a secure executable. Uid and gid information 3479 * can be passed to us via the aux vector, however if these values are -1 3480 * then use the appropriate system call to obtain them. 3481 * 3482 * - If the user is the root they can do anything 3483 * 3484 * - If the real and effective uid's don't match, or the real and 3485 * effective gid's don't match then this is determined to be a `secure' 3486 * application. 3487 * 3488 * This function is called prior to any dependency processing (see _setup.c). 3489 * Any secure setting will remain in effect for the life of the process. 3490 */ 3491 void 3492 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3493 { 3494 if (auxflags != -1) { 3495 if ((auxflags & AF_SUN_SETUGID) != 0) 3496 rtld_flags |= RT_FL_SECURE; 3497 return; 3498 } 3499 3500 if (uid == (uid_t)-1) 3501 uid = getuid(); 3502 if (uid) { 3503 if (euid == (uid_t)-1) 3504 euid = geteuid(); 3505 if (uid != euid) 3506 rtld_flags |= RT_FL_SECURE; 3507 else { 3508 if (gid == (gid_t)-1) 3509 gid = getgid(); 3510 if (egid == (gid_t)-1) 3511 egid = getegid(); 3512 if (gid != egid) 3513 rtld_flags |= RT_FL_SECURE; 3514 } 3515 } 3516 } 3517 3518 /* 3519 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3520 */ 3521 int 3522 is_rtld_setuid() 3523 { 3524 rtld_stat_t status; 3525 3526 if ((rtld_flags2 & RT_FL2_SETUID) || 3527 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3528 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3529 rtld_flags2 |= RT_FL2_SETUID; 3530 return (1); 3531 } 3532 return (0); 3533 } 3534 3535 /* 3536 * Determine that systems platform name. Normally, this name is provided from 3537 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3538 * fall back. 3539 */ 3540 void 3541 platform_name(Syscapset *scapset) 3542 { 3543 char info[SYS_NMLN]; 3544 size_t size; 3545 3546 if ((scapset->sc_platsz = size = 3547 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3548 return; 3549 3550 if ((scapset->sc_plat = malloc(size)) == NULL) { 3551 scapset->sc_platsz = (size_t)-1; 3552 return; 3553 } 3554 (void) strcpy(scapset->sc_plat, info); 3555 } 3556 3557 /* 3558 * Determine that systems machine name. Normally, this name is provided from 3559 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3560 * fall back. 3561 */ 3562 void 3563 machine_name(Syscapset *scapset) 3564 { 3565 char info[SYS_NMLN]; 3566 size_t size; 3567 3568 if ((scapset->sc_machsz = size = 3569 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3570 return; 3571 3572 if ((scapset->sc_mach = malloc(size)) == NULL) { 3573 scapset->sc_machsz = (size_t)-1; 3574 return; 3575 } 3576 (void) strcpy(scapset->sc_mach, info); 3577 } 3578 3579 /* 3580 * _REENTRANT code gets errno redefined to a function so provide for return 3581 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3582 * is basically singled threaded. Provide the interface for our dependencies. 3583 */ 3584 #undef errno 3585 int * 3586 ___errno() 3587 { 3588 extern int errno; 3589 3590 return (&errno); 3591 } 3592 3593 /* 3594 * Determine whether a symbol name should be demangled. 3595 */ 3596 const char * 3597 demangle(const char *name) 3598 { 3599 if (rtld_flags & RT_FL_DEMANGLE) 3600 return (conv_demangle_name(name)); 3601 else 3602 return (name); 3603 } 3604 3605 #ifndef _LP64 3606 /* 3607 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3608 * underneath while preserving the object size limits of a non-largefile 3609 * enabled 32-bit process. The purpose of this is to prevent large inode 3610 * values from causing stat() to fail. 3611 */ 3612 inline static int 3613 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3614 { 3615 extern int errno; 3616 3617 /* 3618 * Although we used a 64-bit capable stat(), the 32-bit rtld 3619 * can only handle objects < 2GB in size. If this object is 3620 * too big, turn the success into an overflow error. 3621 */ 3622 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3623 errno = EOVERFLOW; 3624 return (-1); 3625 } 3626 3627 /* 3628 * Transfer the information needed by rtld into a rtld_stat_t 3629 * structure that preserves the non-largile types for everything 3630 * except inode. 3631 */ 3632 buf->st_dev = lbuf->st_dev; 3633 buf->st_ino = lbuf->st_ino; 3634 buf->st_mode = lbuf->st_mode; 3635 buf->st_uid = lbuf->st_uid; 3636 buf->st_size = (off_t)lbuf->st_size; 3637 buf->st_mtim = lbuf->st_mtim; 3638 #ifdef sparc 3639 buf->st_blksize = lbuf->st_blksize; 3640 #endif 3641 3642 return (r); 3643 } 3644 3645 int 3646 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3647 { 3648 struct stat64 lbuf; 3649 int r; 3650 3651 r = stat64(path, &lbuf); 3652 if (r != -1) 3653 r = rtld_stat_process(r, &lbuf, buf); 3654 return (r); 3655 } 3656 3657 int 3658 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3659 { 3660 struct stat64 lbuf; 3661 int r; 3662 3663 r = fstat64(fildes, &lbuf); 3664 if (r != -1) 3665 r = rtld_stat_process(r, &lbuf, buf); 3666 return (r); 3667 } 3668 #endif 3669