1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <dlfcn.h> 45 #include <unistd.h> 46 #include <stdlib.h> 47 #include <sys/auxv.h> 48 #include <limits.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * Null function used as place where a debugger can set a breakpoint. 60 */ 61 void 62 rtld_db_dlactivity(Lm_list *lml) 63 { 64 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 65 r_debug.rtd_rdebug.r_state)); 66 } 67 68 /* 69 * Null function used as place where debugger can set a pre .init 70 * processing breakpoint. 71 */ 72 void 73 rtld_db_preinit(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a post .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_postinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Debugger Event Notification 92 * 93 * This function centralizes all debugger event notification (ala rtld_db). 94 * 95 * There's a simple intent, focused on insuring the primary link-map control 96 * list (or each link-map list) is consistent, and the indication that objects 97 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 98 * event are posted for each of these, most debuggers don't care, as their 99 * view is that these events simply convey an "inconsistent" state. 100 * 101 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 102 * enter ld.so.1. 103 * 104 * With auditors, we may be in the process of relocating a collection of 105 * objects, and will leave() ld.so.1 to call the auditor. At this point we 106 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 107 * object to the debuggers until relocation processing has been completed on it. 108 * To allow for the collection of these objects that are pending relocation, an 109 * RD_ADD event is set after completing a series of relocations on the primary 110 * link-map control list. 111 * 112 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 113 * required later (LML_FLG_DBNOTIF): 114 * 115 * i the first time we add or delete an object to the primary link-map 116 * control list. 117 * ii the first time we move a secondary link-map control list to the primary 118 * link-map control list (effectively, this is like adding a group of 119 * objects to the primary link-map control list). 120 * 121 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 122 * 123 * i each time we leave the runtime linker. 124 */ 125 void 126 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 127 { 128 void (*fptr)(Lm_list *); 129 130 switch (event) { 131 case RD_PREINIT: 132 fptr = rtld_db_preinit; 133 break; 134 case RD_POSTINIT: 135 fptr = rtld_db_postinit; 136 break; 137 case RD_DLACTIVITY: 138 switch (state) { 139 case RT_CONSISTENT: 140 lml->lm_flags &= ~LML_FLG_DBNOTIF; 141 142 /* 143 * Do we need to send a notification? 144 */ 145 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 146 return; 147 rtld_flags &= ~RT_FL_DBNOTIF; 148 break; 149 case RT_ADD: 150 case RT_DELETE: 151 lml->lm_flags |= LML_FLG_DBNOTIF; 152 153 /* 154 * If we are already in an inconsistent state, no 155 * notification is required. 156 */ 157 if (rtld_flags & RT_FL_DBNOTIF) 158 return; 159 rtld_flags |= RT_FL_DBNOTIF; 160 break; 161 }; 162 fptr = rtld_db_dlactivity; 163 break; 164 default: 165 /* 166 * RD_NONE - do nothing 167 */ 168 break; 169 }; 170 171 /* 172 * Set event state and call 'notification' function. 173 * 174 * The debugging clients have previously been told about these 175 * notification functions and have set breakpoints on them if they 176 * are interested in the notification. 177 */ 178 r_debug.rtd_rdebug.r_state = state; 179 r_debug.rtd_rdebug.r_rdevent = event; 180 fptr(lml); 181 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 182 } 183 184 #if defined(__sparc) || defined(__x86) 185 /* 186 * Stack Cleanup. 187 * 188 * This function is invoked to 'remove' arguments that were passed in on the 189 * stack. This is most likely if ld.so.1 was invoked directly. In that case 190 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 191 * Which means we then need to slide everything above it on the stack down 192 * accordingly. 193 * 194 * While the stack layout is platform specific - it just so happens that __x86, 195 * and __sparc platforms share the following initial stack layout. 196 * 197 * !_______________________! high addresses 198 * ! ! 199 * ! Information ! 200 * ! Block ! 201 * ! (size varies) ! 202 * !_______________________! 203 * ! 0 word ! 204 * !_______________________! 205 * ! Auxiliary ! 206 * ! vector ! 207 * ! 2 word entries ! 208 * ! ! 209 * !_______________________! 210 * ! 0 word ! 211 * !_______________________! 212 * ! Environment ! 213 * ! pointers ! 214 * ! ... ! 215 * ! (one word each) ! 216 * !_______________________! 217 * ! 0 word ! 218 * !_______________________! 219 * ! Argument ! low addresses 220 * ! pointers ! 221 * ! Argc words ! 222 * !_______________________! 223 * ! ! 224 * ! Argc ! 225 * !_______________________! 226 * ! ... ! 227 * 228 */ 229 static void 230 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 231 { 232 int ndx; 233 long *argc; 234 char **oargv, **nargv; 235 char **oenvp, **nenvp; 236 auxv_t *oauxv, *nauxv; 237 238 /* 239 * Slide ARGV[] and update argc. The argv pointer remains the same, 240 * however slide the applications arguments over the arguments to 241 * ld.so.1. 242 */ 243 nargv = &argv[0]; 244 oargv = &argv[rmcnt]; 245 246 for (ndx = 0; oargv[ndx]; ndx++) 247 nargv[ndx] = oargv[ndx]; 248 nargv[ndx] = oargv[ndx]; 249 250 argc = (long *)((uintptr_t)argv - sizeof (long *)); 251 *argc -= rmcnt; 252 253 /* 254 * Slide ENVP[], and update the environment array pointer. 255 */ 256 ndx++; 257 nenvp = &nargv[ndx]; 258 oenvp = &oargv[ndx]; 259 *envp = nenvp; 260 261 for (ndx = 0; oenvp[ndx]; ndx++) 262 nenvp[ndx] = oenvp[ndx]; 263 nenvp[ndx] = oenvp[ndx]; 264 265 /* 266 * Slide AUXV[], and update the aux vector pointer. 267 */ 268 ndx++; 269 nauxv = (auxv_t *)&nenvp[ndx]; 270 oauxv = (auxv_t *)&oenvp[ndx]; 271 *auxv = nauxv; 272 273 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 274 nauxv[ndx] = oauxv[ndx]; 275 nauxv[ndx] = oauxv[ndx]; 276 } 277 #else 278 /* 279 * Verify that the above routine is appropriate for any new platforms. 280 */ 281 #error unsupported architecture! 282 #endif 283 284 /* 285 * The only command line argument recognized is -e, followed by a runtime 286 * linker environment variable. 287 */ 288 int 289 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 290 Word *lmtflags, int aout) 291 { 292 int ndx; 293 294 for (ndx = 1; argv[ndx]; ndx++) { 295 char *str; 296 297 if (argv[ndx][0] != '-') 298 break; 299 300 if (argv[ndx][1] == '\0') { 301 ndx++; 302 break; 303 } 304 305 if (argv[ndx][1] != 'e') 306 return (1); 307 308 if (argv[ndx][2] == '\0') { 309 ndx++; 310 if (argv[ndx] == NULL) 311 return (1); 312 str = argv[ndx]; 313 } else 314 str = &argv[ndx][2]; 315 316 /* 317 * If the environment variable starts with LD_, strip the LD_. 318 * Otherwise, take things as is. 319 */ 320 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 321 (str[3] != '\0')) 322 str += 3; 323 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 324 return (1); 325 } 326 327 /* 328 * Make sure an object file has been specified. 329 */ 330 if (argv[ndx] == NULL) 331 return (1); 332 333 /* 334 * Having gotten the arguments, clean ourselves off of the stack. 335 */ 336 stack_cleanup(argv, envp, auxv, ndx); 337 return (0); 338 } 339 340 /* 341 * Compare function for PathNode AVL tree. 342 */ 343 static int 344 pnavl_compare(const void *n1, const void *n2) 345 { 346 uint_t hash1, hash2; 347 const char *st1, *st2; 348 int rc; 349 350 hash1 = ((PathNode *)n1)->pn_hash; 351 hash2 = ((PathNode *)n2)->pn_hash; 352 353 if (hash1 > hash2) 354 return (1); 355 if (hash1 < hash2) 356 return (-1); 357 358 st1 = ((PathNode *)n1)->pn_name; 359 st2 = ((PathNode *)n2)->pn_name; 360 361 rc = strcmp(st1, st2); 362 if (rc > 0) 363 return (1); 364 if (rc < 0) 365 return (-1); 366 return (0); 367 } 368 369 /* 370 * Create an AVL tree. 371 */ 372 static avl_tree_t * 373 pnavl_create(size_t size) 374 { 375 avl_tree_t *avlt; 376 377 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 378 return (NULL); 379 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 380 return (avlt); 381 } 382 383 /* 384 * Determine if a pathname has already been recorded on the full path name 385 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 386 * successfully loaded. If the path name does not exist in this AVL tree, then 387 * the next insertion point is deposited in "where". This value can be used by 388 * fpavl_insert() to expedite the insertion. 389 */ 390 Rt_map * 391 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 392 { 393 FullPathNode fpn, *fpnp; 394 395 /* 396 * Create the avl tree if required. 397 */ 398 if ((lml->lm_fpavl == NULL) && 399 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 400 return (NULL); 401 402 fpn.fpn_node.pn_name = name; 403 if ((fpn.fpn_node.pn_hash = hash) == 0) 404 fpn.fpn_node.pn_hash = sgs_str_hash(name); 405 406 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 407 return (NULL); 408 409 return (fpnp->fpn_lmp); 410 } 411 412 /* 413 * Insert a name into the FullPathNode AVL tree for the link-map list. The 414 * objects NAME() is the path that would have originally been searched for, and 415 * is therefore the name to associate with any "where" value. If the object has 416 * a different PATHNAME(), perhaps because it has resolved to a different file 417 * (see fullpath()), then this name will be recorded as a separate FullPathNode 418 * (see load_file()). 419 */ 420 int 421 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 422 { 423 FullPathNode *fpnp; 424 uint_t hash = sgs_str_hash(name); 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == NULL); 435 } 436 437 /* 438 * Insert new node in tree. 439 */ 440 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 441 return (0); 442 443 fpnp->fpn_node.pn_name = name; 444 fpnp->fpn_node.pn_hash = hash; 445 fpnp->fpn_lmp = lmp; 446 447 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 448 free(fpnp); 449 return (0); 450 } 451 452 ASSERT(lml->lm_fpavl != NULL); 453 avl_insert(lml->lm_fpavl, fpnp, where); 454 return (1); 455 } 456 457 /* 458 * Remove an object from the FullPathNode AVL tree. 459 */ 460 void 461 fpavl_remove(Rt_map *lmp) 462 { 463 FullPathNode *fpnp; 464 Aliste idx; 465 466 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 467 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 468 free(fpnp); 469 } 470 free(FPNODE(lmp)); 471 FPNODE(lmp) = NULL; 472 } 473 474 /* 475 * Determine if a pathname has already been recorded on the not-found AVL tree. 476 * This tree maintains a node for each path name that ld.so.1 has explicitly 477 * inspected, but has failed to load during a single ld.so.1 operation. If the 478 * path name does not exist in this AVL tree, then the next insertion point is 479 * deposited in "where". This value can be used by nfavl_insert() to expedite 480 * the insertion. 481 */ 482 int 483 nfavl_recorded(const char *name, uint_t hash, avl_index_t *where) 484 { 485 PathNode pn; 486 487 /* 488 * Create the avl tree if required. 489 */ 490 if ((nfavl == NULL) && 491 ((nfavl = pnavl_create(sizeof (PathNode))) == NULL)) 492 return (NULL); 493 494 pn.pn_name = name; 495 if ((pn.pn_hash = hash) == 0) 496 pn.pn_hash = sgs_str_hash(name); 497 498 if (avl_find(nfavl, &pn, where) == NULL) 499 return (0); 500 501 return (1); 502 } 503 504 /* 505 * Insert a name into the not-found AVL tree. 506 */ 507 void 508 nfavl_insert(const char *name, avl_index_t where) 509 { 510 PathNode *pnp; 511 uint_t hash = sgs_str_hash(name); 512 513 if (where == 0) { 514 /* LINTED */ 515 int in_nfavl = nfavl_recorded(name, hash, &where); 516 517 /* 518 * We better not get a hit now, we do not want duplicates in 519 * the tree. 520 */ 521 ASSERT(in_nfavl == 0); 522 } 523 524 /* 525 * Insert new node in tree. 526 */ 527 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 528 pnp->pn_name = name; 529 pnp->pn_hash = hash; 530 avl_insert(nfavl, pnp, where); 531 } 532 } 533 534 static avl_tree_t *spavl = NULL; 535 536 /* 537 * Search for a path name within the secure path AVL tree. This tree is used 538 * to maintain a list of directories in which the dependencies of a secure 539 * process have been found. This list provides a fall-back in the case that a 540 * $ORIGIN expansion is deemed insecure, when the expansion results in a path 541 * name that has already provided dependencies. 542 */ 543 int 544 spavl_recorded(const char *name, avl_index_t *where) 545 { 546 PathNode pn; 547 548 /* 549 * Create the avl tree if required. 550 */ 551 if ((spavl == NULL) && 552 ((spavl = pnavl_create(sizeof (PathNode))) == NULL)) 553 return (0); 554 555 pn.pn_name = name; 556 pn.pn_hash = sgs_str_hash(name); 557 558 if (avl_find(spavl, &pn, where) == NULL) 559 return (0); 560 561 return (1); 562 } 563 564 /* 565 * Insert the directory name, of a full path name, into the secure path AVL 566 * tree. 567 */ 568 void 569 spavl_insert(const char *name) 570 { 571 char buffer[PATH_MAX], *str; 572 size_t size; 573 avl_index_t where; 574 PathNode *pnp; 575 576 /* 577 * Separate the directory name from the path name. 578 */ 579 if ((str = strrchr(name, '/')) == name) 580 size = 1; 581 else 582 size = str - name; 583 584 (void) strncpy(buffer, name, size); 585 buffer[size] = '\0'; 586 587 /* 588 * Determine whether this directory name is already recorded, or if 589 * not, 'where" will provide the insertion point for the new string. 590 */ 591 if (spavl_recorded(buffer, &where)) 592 return; 593 594 /* 595 * Insert new node in tree. 596 */ 597 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 598 pnp->pn_name = strdup(buffer); 599 pnp->pn_hash = sgs_str_hash(buffer); 600 avl_insert(spavl, pnp, where); 601 } 602 } 603 604 /* 605 * Inspect the generic string AVL tree for the given string. If the string is 606 * not present, duplicate it, and insert the string in the AVL tree. Return the 607 * duplicated string to the caller. 608 * 609 * These strings are maintained for the life of ld.so.1 and represent path 610 * names, file names, and search paths. All other AVL trees that maintain 611 * FullPathNode and not-found path names use the same string pointer 612 * established for this string. 613 */ 614 static avl_tree_t *stravl = NULL; 615 static char *strbuf = NULL; 616 static PathNode *pnbuf = NULL; 617 static size_t strsize = 0, pnsize = 0; 618 619 const char * 620 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 621 { 622 char str[PATH_MAX]; 623 PathNode *pnp; 624 avl_index_t where; 625 626 /* 627 * Create the avl tree if required. 628 */ 629 if ((stravl == NULL) && 630 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 631 return (NULL); 632 633 /* 634 * Determine the string size if not provided by the caller. 635 */ 636 if (nsize == 0) 637 nsize = strlen(name) + 1; 638 else if (substr) { 639 /* 640 * The string passed to us may be a multiple path string for 641 * which we only need the first component. Using the provided 642 * size, strip out the required string. 643 */ 644 (void) strncpy(str, name, nsize); 645 str[nsize - 1] = '\0'; 646 name = str; 647 } 648 649 /* 650 * Allocate a PathNode buffer if one doesn't exist, or any existing 651 * buffer has been used up. 652 */ 653 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 654 pnsize = syspagsz; 655 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 656 MAP_PRIVATE)) == MAP_FAILED) 657 return (NULL); 658 } 659 /* 660 * Determine whether this string already exists. 661 */ 662 pnbuf->pn_name = name; 663 if ((pnbuf->pn_hash = hash) == 0) 664 pnbuf->pn_hash = sgs_str_hash(name); 665 666 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 667 return (pnp->pn_name); 668 669 /* 670 * Allocate a string buffer if one does not exist, or if there is 671 * insufficient space for the new string in any existing buffer. 672 */ 673 if ((strbuf == NULL) || (nsize > strsize)) { 674 strsize = S_ROUND(nsize, syspagsz); 675 676 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 677 MAP_PRIVATE)) == MAP_FAILED) 678 return (NULL); 679 } 680 681 (void) memcpy(strbuf, name, nsize); 682 pnp = pnbuf; 683 pnp->pn_name = strbuf; 684 avl_insert(stravl, pnp, where); 685 686 strbuf += nsize; 687 strsize -= nsize; 688 pnbuf++; 689 pnsize -= sizeof (PathNode); 690 return (pnp->pn_name); 691 } 692 693 /* 694 * Prior to calling an object, either via a .plt or through dlsym(), make sure 695 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 696 * init's in the correct order, however, this order is typically based on needed 697 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 698 * still occur and result in bindings that were not captured during topological 699 * sorting. This routine compensates for this lack of binding information, and 700 * provides for dynamic .init firing. 701 */ 702 void 703 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 704 { 705 Rt_map **tobj; 706 707 /* 708 * If the caller is an auditor, and the destination isn't, then don't 709 * run any .inits (see comments in load_completion()). 710 */ 711 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 712 (LIST(clmp) != LIST(dlmp))) 713 return; 714 715 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 716 return; 717 718 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 719 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 720 return; 721 722 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 723 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 724 DBG_CALL(Dbg_util_no_init(dlmp)); 725 return; 726 } 727 728 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 729 tobj[0] = dlmp; 730 call_init(tobj, DBG_INIT_DYN); 731 } 732 } 733 734 /* 735 * Execute .{preinit|init|fini}array sections 736 */ 737 void 738 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 739 { 740 int start, stop, incr, ndx; 741 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 742 743 if (array == NULL) 744 return; 745 746 /* 747 * initarray & preinitarray are walked from beginning to end - while 748 * finiarray is walked from end to beginning. 749 */ 750 if (shtype == SHT_FINI_ARRAY) { 751 start = arraycnt - 1; 752 stop = incr = -1; 753 } else { 754 start = 0; 755 stop = arraycnt; 756 incr = 1; 757 } 758 759 /* 760 * Call the .*array[] entries 761 */ 762 for (ndx = start; ndx != stop; ndx += incr) { 763 void (*fptr)(void) = (void(*)())array[ndx]; 764 765 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 766 767 leave(LIST(lmp), 0); 768 (*fptr)(); 769 (void) enter(0); 770 } 771 } 772 773 774 /* 775 * Execute any .init sections. These are passed to us in an lmp array which 776 * (by default) will have been sorted. 777 */ 778 void 779 call_init(Rt_map **tobj, int flag) 780 { 781 Rt_map **_tobj, **_nobj; 782 static APlist *pending = NULL; 783 784 /* 785 * If we're in the middle of an INITFIRST, this must complete before 786 * any new init's are fired. In this case add the object list to the 787 * pending queue and return. We'll pick up the queue after any 788 * INITFIRST objects have their init's fired. 789 */ 790 if (rtld_flags & RT_FL_INITFIRST) { 791 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 792 return; 793 } 794 795 /* 796 * Traverse the tobj array firing each objects init. 797 */ 798 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 799 Rt_map *lmp = *_tobj; 800 void (*iptr)() = INIT(lmp); 801 uint_t rtldflags; 802 803 if (FLAGS(lmp) & FLG_RT_INITCALL) 804 continue; 805 806 FLAGS(lmp) |= FLG_RT_INITCALL; 807 808 /* 809 * It is possible, that during the initial handshake with libc, 810 * an interposition object has resolved a symbol binding, and 811 * that this objects .init must be fired. As we're about to 812 * run user code, make sure any dynamic linking errors remain 813 * internal (ie., only obtainable from dlerror()), and are not 814 * flushed to stderr. 815 */ 816 rtldflags = (rtld_flags & RT_FL_APPLIC) ? 0 : RT_FL_APPLIC; 817 rtld_flags |= rtldflags; 818 819 /* 820 * Establish an initfirst state if necessary - no other inits 821 * will be fired (because of additional relocation bindings) 822 * when in this state. 823 */ 824 if (FLAGS(lmp) & FLG_RT_INITFRST) 825 rtld_flags |= RT_FL_INITFIRST; 826 827 if (INITARRAY(lmp) || iptr) 828 DBG_CALL(Dbg_util_call_init(lmp, flag)); 829 830 if (iptr) { 831 leave(LIST(lmp), 0); 832 (*iptr)(); 833 (void) enter(0); 834 } 835 836 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 837 SHT_INIT_ARRAY); 838 839 if (INITARRAY(lmp) || iptr) 840 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 841 842 /* 843 * Return to a non-application setting if necessary. 844 */ 845 rtld_flags &= ~rtldflags; 846 847 /* 848 * Set the initdone flag regardless of whether this object 849 * actually contains an .init section. This flag prevents us 850 * from processing this section again for an .init and also 851 * signifies that a .fini must be called should it exist. 852 * Clear the sort field for use in later .fini processing. 853 */ 854 FLAGS(lmp) |= FLG_RT_INITDONE; 855 SORTVAL(lmp) = -1; 856 857 /* 858 * If we're firing an INITFIRST object, and other objects must 859 * be fired which are not INITFIRST, make sure we grab any 860 * pending objects that might have been delayed as this 861 * INITFIRST was processed. 862 */ 863 if ((rtld_flags & RT_FL_INITFIRST) && 864 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 865 Aliste idx; 866 Rt_map **pobj; 867 868 rtld_flags &= ~RT_FL_INITFIRST; 869 870 for (APLIST_TRAVERSE(pending, idx, pobj)) { 871 aplist_delete(pending, &idx); 872 call_init(pobj, DBG_INIT_PEND); 873 } 874 } 875 } 876 free(tobj); 877 } 878 879 /* 880 * Function called by atexit(3C). Calls all .fini sections related with the 881 * mains dependent shared libraries in the order in which the shared libraries 882 * have been loaded. Skip any .fini defined in the main executable, as this 883 * will be called by crt0 (main was never marked as initdone). 884 */ 885 void 886 call_fini(Lm_list * lml, Rt_map ** tobj) 887 { 888 Rt_map **_tobj; 889 890 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 891 Rt_map *clmp, * lmp = *_tobj; 892 Aliste idx; 893 Bnd_desc *bdp; 894 895 /* 896 * Only fire a .fini if the objects corresponding .init has 897 * completed. We collect all .fini sections of objects that 898 * had their .init collected, but that doesn't mean that at 899 * the time of collection, that the .init had completed. 900 */ 901 if (FLAGS(lmp) & FLG_RT_INITDONE) { 902 void (*fptr)(void) = FINI(lmp); 903 904 if (FINIARRAY(lmp) || fptr) 905 DBG_CALL(Dbg_util_call_fini(lmp)); 906 907 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 908 SHT_FINI_ARRAY); 909 910 if (fptr) { 911 leave(LIST(lmp), 0); 912 (*fptr)(); 913 (void) enter(0); 914 } 915 } 916 917 /* 918 * Skip main, this is explicitly called last in atexit_fini(). 919 */ 920 if (FLAGS(lmp) & FLG_RT_ISMAIN) 921 continue; 922 923 /* 924 * Audit `close' operations at this point. The library has 925 * exercised its last instructions (regardless of whether it 926 * will be unmapped or not). 927 * 928 * First call any global auditing. 929 */ 930 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 931 _audit_objclose(auditors->ad_list, lmp); 932 933 /* 934 * Finally determine whether this object has local auditing 935 * requirements by inspecting itself and then its dependencies. 936 */ 937 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 938 continue; 939 940 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 941 _audit_objclose(AUDITORS(lmp)->ad_list, lmp); 942 943 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 944 clmp = bdp->b_caller; 945 946 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 947 _audit_objclose(AUDITORS(clmp)->ad_list, lmp); 948 break; 949 } 950 } 951 } 952 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 953 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 954 955 free(tobj); 956 } 957 958 void 959 atexit_fini() 960 { 961 Rt_map **tobj, *lmp; 962 Lm_list *lml; 963 Aliste idx; 964 965 (void) enter(0); 966 967 rtld_flags |= RT_FL_ATEXIT; 968 969 lml = &lml_main; 970 lml->lm_flags |= LML_FLG_ATEXIT; 971 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 972 lmp = (Rt_map *)lml->lm_head; 973 974 /* 975 * Reverse topologically sort the main link-map for .fini execution. 976 */ 977 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 978 (tobj != (Rt_map **)S_ERROR)) 979 call_fini(lml, tobj); 980 981 /* 982 * Add an explicit close to main and ld.so.1. Although main's .fini is 983 * collected in call_fini() to provide for FINITARRAY processing, its 984 * audit_objclose is explicitly skipped. This provides for it to be 985 * called last, here. This is the reverse of the explicit calls to 986 * audit_objopen() made in setup(). 987 */ 988 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 989 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 990 audit_objclose(lmp, lmp); 991 } 992 993 /* 994 * Now that all .fini code has been run, see what unreferenced objects 995 * remain. 996 */ 997 unused(lml); 998 999 /* 1000 * Traverse any alternative link-map lists. 1001 */ 1002 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 1003 /* 1004 * Ignore the base-link-map list, which has already been 1005 * processed, and the runtime linkers link-map list, which is 1006 * typically processed last. 1007 */ 1008 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 1009 continue; 1010 1011 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 1012 continue; 1013 1014 lml->lm_flags |= LML_FLG_ATEXIT; 1015 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1016 1017 /* 1018 * Reverse topologically sort the link-map for .fini execution. 1019 */ 1020 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1021 (tobj != (Rt_map **)S_ERROR)) 1022 call_fini(lml, tobj); 1023 1024 unused(lml); 1025 } 1026 1027 /* 1028 * Finally reverse topologically sort the runtime linkers link-map for 1029 * .fini execution. 1030 */ 1031 lml = &lml_rtld; 1032 lml->lm_flags |= LML_FLG_ATEXIT; 1033 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1034 lmp = (Rt_map *)lml->lm_head; 1035 1036 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1037 (tobj != (Rt_map **)S_ERROR)) 1038 call_fini(lml, tobj); 1039 1040 leave(&lml_main, 0); 1041 } 1042 1043 1044 /* 1045 * This routine is called to complete any runtime linker activity which may have 1046 * resulted in objects being loaded. This is called from all user entry points 1047 * and from any internal dl*() requests. 1048 */ 1049 void 1050 load_completion(Rt_map *nlmp) 1051 { 1052 Rt_map **tobj = NULL; 1053 Lm_list *nlml; 1054 1055 /* 1056 * Establish any .init processing. Note, in a world of lazy loading, 1057 * objects may have been loaded regardless of whether the users request 1058 * was fulfilled (i.e., a dlsym() request may have failed to find a 1059 * symbol but objects might have been loaded during its search). Thus, 1060 * any tsorting starts from the nlmp (new link-maps) pointer and not 1061 * necessarily from the link-map that may have satisfied the request. 1062 * 1063 * Note, the primary link-map has an initialization phase where dynamic 1064 * .init firing is suppressed. This provides for a simple and clean 1065 * handshake with the primary link-maps libc, which is important for 1066 * establishing uberdata. In addition, auditors often obtain handles 1067 * to primary link-map objects as the objects are loaded, so as to 1068 * inspect the link-map for symbols. This inspection is allowed without 1069 * running any code on the primary link-map, as running this code may 1070 * reenter the auditor, who may not yet have finished its own 1071 * initialization. 1072 */ 1073 if (nlmp) 1074 nlml = LIST(nlmp); 1075 1076 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1077 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1078 if ((tobj = tsort(nlmp, nlml->lm_init, 1079 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1080 tobj = NULL; 1081 } 1082 1083 /* 1084 * Make sure any alternative link-map retrieves any external interfaces 1085 * and initializes threads. 1086 */ 1087 if (nlmp && (nlml != &lml_main)) { 1088 (void) rt_get_extern(nlml, nlmp); 1089 rt_thr_init(nlml); 1090 } 1091 1092 /* 1093 * Traverse the list of new link-maps and register any dynamic TLS. 1094 * This storage is established for any objects not on the primary 1095 * link-map, and for any objects added to the primary link-map after 1096 * static TLS has been registered. 1097 */ 1098 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1099 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1100 Rt_map *lmp; 1101 1102 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1103 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1104 tls_modaddrem(lmp, TM_FLG_MODADD); 1105 } 1106 nlml->lm_tls = 0; 1107 } 1108 1109 /* 1110 * Fire any .init's. 1111 */ 1112 if (tobj) 1113 call_init(tobj, DBG_INIT_SORT); 1114 } 1115 1116 /* 1117 * Append an item to the specified link map control list. 1118 */ 1119 void 1120 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1121 { 1122 Lm_cntl *lmc; 1123 int add = 1; 1124 1125 /* 1126 * Indicate that this link-map list has a new object. 1127 */ 1128 (lml->lm_obj)++; 1129 1130 /* 1131 * If we're about to add a new object to the main link-map control list, 1132 * alert the debuggers that we are about to mess with this list. 1133 * Additions of individual objects to the main link-map control list 1134 * occur during initial setup as the applications immediate dependencies 1135 * are loaded. Individual objects are also loaded on the main link-map 1136 * control list of new alternative link-map control lists. 1137 */ 1138 if ((lmco == ALIST_OFF_DATA) && 1139 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1140 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1141 1142 /* LINTED */ 1143 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1144 1145 /* 1146 * A link-map list header points to one of more link-map control lists 1147 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1148 * the list of relocated objects. Other lists maintain objects that 1149 * are still being analyzed or relocated. This list provides the core 1150 * link-map list information used by all ld.so.1 routines. 1151 */ 1152 if (lmc->lc_head == NULL) { 1153 /* 1154 * If this is the first link-map for the given control list, 1155 * initialize the list. 1156 */ 1157 lmc->lc_head = lmc->lc_tail = lmp; 1158 add = 0; 1159 1160 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1161 Rt_map *tlmp; 1162 1163 /* 1164 * If this is an interposer then append the link-map following 1165 * any other interposers (these are objects that have been 1166 * previously preloaded, or were identified with -z interpose). 1167 * Interposers can only be inserted on the first link-map 1168 * control list, as once relocation has started, interposition 1169 * from new interposers can't be guaranteed. 1170 * 1171 * NOTE: We do not interpose on the head of a list. This model 1172 * evolved because dynamic executables have already been fully 1173 * relocated within themselves and thus can't be interposed on. 1174 * Nowadays it's possible to have shared objects at the head of 1175 * a list, which conceptually means they could be interposed on. 1176 * But, shared objects can be created via dldump() and may only 1177 * be partially relocated (just relatives), in which case they 1178 * are interposable, but are marked as fixed (ET_EXEC). 1179 * 1180 * Thus we really don't have a clear method of deciding when the 1181 * head of a link-map is interposable. So, to be consistent, 1182 * for now only add interposers after the link-map lists head 1183 * object. 1184 */ 1185 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1186 tlmp = NEXT_RT_MAP(tlmp)) { 1187 1188 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1189 continue; 1190 1191 /* 1192 * Insert the new link-map before this non-interposer, 1193 * and indicate an interposer is found. 1194 */ 1195 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1196 PREV(lmp) = PREV(tlmp); 1197 1198 NEXT(lmp) = (Link_map *)tlmp; 1199 PREV(tlmp) = (Link_map *)lmp; 1200 1201 lmc->lc_flags |= LMC_FLG_REANALYZE; 1202 add = 0; 1203 break; 1204 } 1205 } 1206 1207 /* 1208 * Fall through to appending the new link map to the tail of the list. 1209 * If we're processing the initial objects of this link-map list, add 1210 * them to the backward compatibility list. 1211 */ 1212 if (add) { 1213 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1214 PREV(lmp) = (Link_map *)lmc->lc_tail; 1215 lmc->lc_tail = lmp; 1216 } 1217 1218 /* 1219 * Having added this link-map to a control list, indicate which control 1220 * list the link-map belongs to. Note, control list information is 1221 * always maintained as an offset, as the Alist can be reallocated. 1222 */ 1223 CNTL(lmp) = lmco; 1224 1225 /* 1226 * Indicate if an interposer is found. Note that the first object on a 1227 * link-map can be explicitly defined as an interposer so that it can 1228 * provide interposition over direct binding requests. 1229 */ 1230 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1231 lml->lm_flags |= LML_FLG_INTRPOSE; 1232 1233 /* 1234 * For backward compatibility with debuggers, the link-map list contains 1235 * pointers to the main control list. 1236 */ 1237 if (lmco == ALIST_OFF_DATA) { 1238 lml->lm_head = lmc->lc_head; 1239 lml->lm_tail = lmc->lc_tail; 1240 } 1241 } 1242 1243 /* 1244 * Delete an item from the specified link map control list. 1245 */ 1246 void 1247 lm_delete(Lm_list *lml, Rt_map *lmp) 1248 { 1249 Lm_cntl *lmc; 1250 1251 /* 1252 * If the control list pointer hasn't been initialized, this object 1253 * never got added to a link-map list. 1254 */ 1255 if (CNTL(lmp) == 0) 1256 return; 1257 1258 /* 1259 * If we're about to delete an object from the main link-map control 1260 * list, alert the debuggers that we are about to mess with this list. 1261 */ 1262 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1263 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1264 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1265 1266 /* LINTED */ 1267 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1268 1269 if (lmc->lc_head == lmp) 1270 lmc->lc_head = NEXT_RT_MAP(lmp); 1271 else 1272 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1273 1274 if (lmc->lc_tail == lmp) 1275 lmc->lc_tail = PREV_RT_MAP(lmp); 1276 else 1277 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1278 1279 /* 1280 * For backward compatibility with debuggers, the link-map list contains 1281 * pointers to the main control list. 1282 */ 1283 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1284 lml->lm_head = lmc->lc_head; 1285 lml->lm_tail = lmc->lc_tail; 1286 } 1287 1288 /* 1289 * Indicate we have one less object on this control list. 1290 */ 1291 (lml->lm_obj)--; 1292 } 1293 1294 /* 1295 * Move a link-map control list to another. Objects that are being relocated 1296 * are maintained on secondary control lists. Once their relocation is 1297 * complete, the entire list is appended to the previous control list, as this 1298 * list must have been the trigger for generating the new control list. 1299 */ 1300 void 1301 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1302 { 1303 Rt_map *lmp; 1304 1305 /* 1306 * If we're about to add a new family of objects to the main link-map 1307 * control list, alert the debuggers that we are about to mess with this 1308 * list. Additions of object families to the main link-map control 1309 * list occur during lazy loading, filtering and dlopen(). 1310 */ 1311 if ((plmco == ALIST_OFF_DATA) && 1312 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1313 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1314 1315 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1316 1317 /* 1318 * Indicate each new link-map has been moved to the previous link-map 1319 * control list. 1320 */ 1321 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1322 CNTL(lmp) = plmco; 1323 1324 /* 1325 * If these objects are being added to the main link-map 1326 * control list, indicate that there are init's available 1327 * for harvesting. 1328 */ 1329 if (plmco == ALIST_OFF_DATA) { 1330 lml->lm_init++; 1331 lml->lm_flags |= LML_FLG_OBJADDED; 1332 } 1333 } 1334 1335 /* 1336 * Move the new link-map control list, to the callers link-map control 1337 * list. 1338 */ 1339 if (plmc->lc_head == NULL) { 1340 plmc->lc_head = nlmc->lc_head; 1341 PREV(nlmc->lc_head) = NULL; 1342 } else { 1343 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1344 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1345 } 1346 1347 plmc->lc_tail = nlmc->lc_tail; 1348 nlmc->lc_head = nlmc->lc_tail = NULL; 1349 1350 /* 1351 * For backward compatibility with debuggers, the link-map list contains 1352 * pointers to the main control list. 1353 */ 1354 if (plmco == ALIST_OFF_DATA) { 1355 lml->lm_head = plmc->lc_head; 1356 lml->lm_tail = plmc->lc_tail; 1357 } 1358 } 1359 1360 /* 1361 * Create, or assign a link-map control list. Each link-map list contains a 1362 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1363 * description in include/rtld.h). During the initial construction of a 1364 * process, objects are added to this main control list. This control list is 1365 * never deleted, unless an alternate link-map list has been requested (say for 1366 * auditors), and the associated objects could not be loaded or relocated. 1367 * 1368 * Once relocation has started, any lazy loadable objects, or filtees, are 1369 * processed on a new, temporary control list. Only when these objects have 1370 * been fully relocated, are they moved to the main link-map control list. 1371 * Once the objects are moved, this temporary control list is deleted (see 1372 * remove_cntl()). 1373 * 1374 * A dlopen() always requires a new temporary link-map control list. 1375 * Typically, a dlopen() occurs on a link-map list that had already started 1376 * relocation, however, auditors can dlopen() objects on the main link-map 1377 * list while under initial construction, before any relocation has begun. 1378 * Hence, dlopen() requests are explicitly flagged. 1379 */ 1380 Aliste 1381 create_cntl(Lm_list *lml, int dlopen) 1382 { 1383 /* 1384 * If the head link-map object has already been relocated, create a 1385 * new, temporary, control list. 1386 */ 1387 if (dlopen || (lml->lm_head == NULL) || 1388 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1389 Lm_cntl *lmc; 1390 1391 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1392 AL_CNT_LMLISTS)) == NULL) 1393 return (NULL); 1394 1395 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1396 } 1397 1398 return (ALIST_OFF_DATA); 1399 } 1400 1401 /* 1402 * Environment variables can have a variety of defined permutations, and thus 1403 * the following infrastructure exists to allow this variety and to select the 1404 * required definition. 1405 * 1406 * Environment variables can be defined as 32- or 64-bit specific, and if so 1407 * they will take precedence over any instruction set neutral form. Typically 1408 * this is only useful when the environment value is an informational string. 1409 * 1410 * Environment variables may be obtained from the standard user environment or 1411 * from a configuration file. The latter provides a fallback if no user 1412 * environment setting is found, and can take two forms: 1413 * 1414 * - a replaceable definition - this will be used if no user environment 1415 * setting has been seen, or 1416 * 1417 * - an permanent definition - this will be used no matter what user 1418 * environment setting is seen. In the case of list variables it will be 1419 * appended to any process environment setting seen. 1420 * 1421 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1422 * override any replaceable environment variables from a configuration file. 1423 */ 1424 static u_longlong_t rplgen; /* replaceable generic */ 1425 /* variables */ 1426 static u_longlong_t rplisa; /* replaceable ISA specific */ 1427 /* variables */ 1428 static u_longlong_t prmgen; /* permanent generic */ 1429 /* variables */ 1430 static u_longlong_t prmisa; /* permanent ISA specific */ 1431 /* variables */ 1432 1433 /* 1434 * Classify an environment variables type. 1435 */ 1436 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1437 /* the wrong ISA */ 1438 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1439 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1440 /* config file */ 1441 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1442 1443 /* 1444 * Identify all environment variables. 1445 */ 1446 #define ENV_FLG_AUDIT 0x0000000001ULL 1447 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1448 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1449 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1450 #define ENV_FLG_BINDINGS 0x0000000010ULL 1451 1452 #define ENV_FLG_CONFGEN 0x0000000040ULL 1453 #define ENV_FLG_CONFIG 0x0000000080ULL 1454 #define ENV_FLG_DEBUG 0x0000000100ULL 1455 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1456 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1457 #define ENV_FLG_FLAGS 0x0000000800ULL 1458 #define ENV_FLG_INIT 0x0000001000ULL 1459 #define ENV_FLG_LIBPATH 0x0000002000ULL 1460 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1461 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1462 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1463 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1464 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1465 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1466 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1467 #define ENV_FLG_NODIRECT 0x0000200000ULL 1468 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1469 #define ENV_FLG_NOLAZY 0x0000800000ULL 1470 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1471 #define ENV_FLG_NOVERSION 0x0002000000ULL 1472 #define ENV_FLG_PRELOAD 0x0004000000ULL 1473 #define ENV_FLG_PROFILE 0x0008000000ULL 1474 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1475 #define ENV_FLG_SIGNAL 0x0020000000ULL 1476 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1477 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1478 #define ENV_FLG_UNREF 0x0100000000ULL 1479 #define ENV_FLG_UNUSED 0x0200000000ULL 1480 #define ENV_FLG_VERBOSE 0x0400000000ULL 1481 #define ENV_FLG_WARN 0x0800000000ULL 1482 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1483 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1484 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1485 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1486 1487 #define SEL_REPLACE 0x0001 1488 #define SEL_PERMANT 0x0002 1489 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1490 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1491 #define SEL_ACT_STR 0x0400 /* setting string value */ 1492 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1493 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1494 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1495 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1496 1497 /* 1498 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1499 * and len specifies its length (comparing a strings length before the string 1500 * itself speed things up). s2 points to the token itself which has already 1501 * had any leading white-space removed. 1502 */ 1503 static void 1504 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1505 Word *lmtflags, uint_t env_flags, int aout) 1506 { 1507 u_longlong_t variable = 0; 1508 ushort_t select = 0; 1509 const char **str; 1510 Word val = 0; 1511 1512 /* 1513 * Determine whether we're dealing with a replaceable or permanent 1514 * string. 1515 */ 1516 if (env_flags & ENV_TYP_PERMANT) { 1517 /* 1518 * If the string is from a configuration file and defined as 1519 * permanent, assign it as permanent. 1520 */ 1521 select |= SEL_PERMANT; 1522 } else 1523 select |= SEL_REPLACE; 1524 1525 /* 1526 * Parse the variable given. 1527 * 1528 * The LD_AUDIT family. 1529 */ 1530 if (*s1 == 'A') { 1531 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1532 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1533 /* 1534 * Replaceable and permanent audit objects can exist. 1535 */ 1536 select |= SEL_ACT_STR; 1537 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1538 variable = ENV_FLG_AUDIT; 1539 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1540 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1541 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1542 /* 1543 * A specialized variable for plt_exit() use, not 1544 * documented for general use. 1545 */ 1546 select |= SEL_ACT_SPEC_2; 1547 variable = ENV_FLG_AUDIT_ARGS; 1548 } 1549 } 1550 /* 1551 * The LD_BIND family. 1552 */ 1553 else if (*s1 == 'B') { 1554 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1555 MSG_ORIG(MSG_LD_BIND_LAZY), 1556 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1557 select |= SEL_ACT_RT2; 1558 val = RT_FL2_BINDLAZY; 1559 variable = ENV_FLG_BIND_LAZY; 1560 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1561 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1562 select |= SEL_ACT_RT2; 1563 val = RT_FL2_BINDNOW; 1564 variable = ENV_FLG_BIND_NOW; 1565 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1566 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1567 /* 1568 * Another trick, enabled to help debug AOUT 1569 * applications under BCP, but not documented for 1570 * general use. 1571 */ 1572 select |= SEL_ACT_RT; 1573 val = RT_FL_NOBIND; 1574 variable = ENV_FLG_BIND_NOT; 1575 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1576 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1577 /* 1578 * This variable is simply for backward compatibility. 1579 * If this and LD_DEBUG are both specified, only one of 1580 * the strings is going to get processed. 1581 */ 1582 select |= SEL_ACT_SPEC_2; 1583 variable = ENV_FLG_BINDINGS; 1584 } 1585 } 1586 /* 1587 * LD_CONFIG family. 1588 */ 1589 else if (*s1 == 'C') { 1590 if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1591 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1592 /* 1593 * Set by crle(1) to indicate it's building a 1594 * configuration file, not documented for general use. 1595 */ 1596 select |= SEL_ACT_SPEC_2; 1597 variable = ENV_FLG_CONFGEN; 1598 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1599 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1600 /* 1601 * Secure applications must use a default configuration 1602 * file. A setting from a configuration file doesn't 1603 * make sense (given we must be reading a configuration 1604 * file to have gotten this). 1605 */ 1606 if ((rtld_flags & RT_FL_SECURE) || 1607 (env_flags & ENV_TYP_CONFIG)) 1608 return; 1609 select |= SEL_ACT_STR; 1610 str = &config->c_name; 1611 variable = ENV_FLG_CONFIG; 1612 } 1613 } 1614 /* 1615 * The LD_DEBUG family and LD_DEMANGLE. 1616 */ 1617 else if (*s1 == 'D') { 1618 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1619 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1620 select |= SEL_ACT_STR; 1621 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1622 variable = ENV_FLG_DEBUG; 1623 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1624 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1625 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1626 select |= SEL_ACT_STR; 1627 str = &dbg_file; 1628 variable = ENV_FLG_DEBUG_OUTPUT; 1629 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1630 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1631 select |= SEL_ACT_RT; 1632 val = RT_FL_DEMANGLE; 1633 variable = ENV_FLG_DEMANGLE; 1634 } 1635 } 1636 /* 1637 * LD_FLAGS - collect the best variable definition. On completion of 1638 * environment variable processing pass the result to ld_flags_env() 1639 * where they'll be decomposed and passed back to this routine. 1640 */ 1641 else if (*s1 == 'F') { 1642 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1643 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1644 select |= SEL_ACT_SPEC_1; 1645 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1646 &prm_ldflags; 1647 variable = ENV_FLG_FLAGS; 1648 } 1649 } 1650 /* 1651 * LD_INIT (internal, used by ldd(1)). 1652 */ 1653 else if (*s1 == 'I') { 1654 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1655 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1656 select |= SEL_ACT_LML; 1657 val = LML_FLG_TRC_INIT; 1658 variable = ENV_FLG_INIT; 1659 } 1660 } 1661 /* 1662 * The LD_LIBRARY_PATH and LD_LOAD families. 1663 */ 1664 else if (*s1 == 'L') { 1665 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1666 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1667 select |= SEL_ACT_SPEC_1; 1668 str = (select & SEL_REPLACE) ? &rpl_libpath : 1669 &prm_libpath; 1670 variable = ENV_FLG_LIBPATH; 1671 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1672 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1673 /* 1674 * Internal use by crle(1), not documented for general 1675 * use. 1676 */ 1677 select |= SEL_ACT_LML; 1678 val = LML_FLG_LOADAVAIL; 1679 variable = ENV_FLG_LOADAVAIL; 1680 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1681 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1682 select |= SEL_ACT_SPEC_2; 1683 variable = ENV_FLG_LOADFLTR; 1684 } 1685 } 1686 /* 1687 * The LD_NO family. 1688 */ 1689 else if (*s1 == 'N') { 1690 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1691 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1692 select |= SEL_ACT_RT; 1693 val = RT_FL_NOAUDIT; 1694 variable = ENV_FLG_NOAUDIT; 1695 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1696 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1697 select |= SEL_ACT_RT; 1698 val = RT_FL_NOAUXFLTR; 1699 variable = ENV_FLG_NOAUXFLTR; 1700 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1701 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1702 select |= SEL_ACT_RT; 1703 val = RT_FL_NOBAPLT; 1704 variable = ENV_FLG_NOBAPLT; 1705 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1707 select |= SEL_ACT_RT; 1708 val = RT_FL_NOCFG; 1709 variable = ENV_FLG_NOCONFIG; 1710 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1711 MSG_ORIG(MSG_LD_NODIRCONFIG), 1712 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1713 select |= SEL_ACT_RT; 1714 val = RT_FL_NODIRCFG; 1715 variable = ENV_FLG_NODIRCONFIG; 1716 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1717 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1718 select |= SEL_ACT_LMLT; 1719 val = LML_TFLG_NODIRECT; 1720 variable = ENV_FLG_NODIRECT; 1721 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1722 MSG_ORIG(MSG_LD_NOENVCONFIG), 1723 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1724 select |= SEL_ACT_RT; 1725 val = RT_FL_NOENVCFG; 1726 variable = ENV_FLG_NOENVCONFIG; 1727 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1728 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1729 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1730 select |= SEL_ACT_RT2; 1731 val = RT_FL2_NOFLTCFG; 1732 variable = ENV_FLG_NOFLTCONFIG; 1733 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1734 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1735 select |= SEL_ACT_LMLT; 1736 val = LML_TFLG_NOLAZYLD; 1737 variable = ENV_FLG_NOLAZY; 1738 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1739 MSG_ORIG(MSG_LD_NOOBJALTER), 1740 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1741 select |= SEL_ACT_RT; 1742 val = RT_FL_NOOBJALT; 1743 variable = ENV_FLG_NOOBJALTER; 1744 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1745 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1746 select |= SEL_ACT_RT; 1747 val = RT_FL_NOVERSION; 1748 variable = ENV_FLG_NOVERSION; 1749 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1750 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1751 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1752 /* 1753 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1754 */ 1755 select |= SEL_ACT_LML; 1756 val = LML_FLG_TRC_NOUNRESWEAK; 1757 variable = ENV_FLG_NOUNRESWEAK; 1758 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1759 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1760 select |= SEL_ACT_LML; 1761 val = LML_FLG_TRC_NOPAREXT; 1762 variable = ENV_FLG_NOPAREXT; 1763 } 1764 } 1765 /* 1766 * LD_PRELOAD and LD_PROFILE family. 1767 */ 1768 else if (*s1 == 'P') { 1769 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1770 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1771 select |= SEL_ACT_STR; 1772 str = (select & SEL_REPLACE) ? &rpl_preload : 1773 &prm_preload; 1774 variable = ENV_FLG_PRELOAD; 1775 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1776 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1777 /* 1778 * Only one user library can be profiled at a time. 1779 */ 1780 select |= SEL_ACT_SPEC_2; 1781 variable = ENV_FLG_PROFILE; 1782 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1783 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1784 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1785 /* 1786 * Only one user library can be profiled at a time. 1787 */ 1788 select |= SEL_ACT_STR; 1789 str = &profile_out; 1790 variable = ENV_FLG_PROFILE_OUTPUT; 1791 } 1792 } 1793 /* 1794 * LD_SIGNAL. 1795 */ 1796 else if (*s1 == 'S') { 1797 if (rtld_flags & RT_FL_SECURE) 1798 return; 1799 if ((len == MSG_LD_SIGNAL_SIZE) && 1800 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1801 MSG_LD_SIGNAL_SIZE) == 0)) { 1802 select |= SEL_ACT_SPEC_2; 1803 variable = ENV_FLG_SIGNAL; 1804 } 1805 } 1806 /* 1807 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1808 * the key to enabling all other ldd(1) specific environment variables. 1809 * In case an auditor is called, which in turn might exec(2) a 1810 * subprocess, this variable is disabled, so that any subprocess 1811 * escapes ldd(1) processing. 1812 */ 1813 else if (*s1 == 'T') { 1814 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1815 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1816 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1817 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1818 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1819 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1820 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1821 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1822 char *s0 = (char *)s1; 1823 1824 select |= SEL_ACT_SPEC_2; 1825 variable = ENV_FLG_TRACE_OBJS; 1826 1827 #if defined(__sparc) || defined(__x86) 1828 /* 1829 * The simplest way to "disable" this variable is to 1830 * truncate this string to "LD_'\0'". This string is 1831 * ignored by any ld.so.1 environment processing. 1832 * Use of such interfaces as unsetenv(3c) are overkill, 1833 * and would drag too much libc implementation detail 1834 * into ld.so.1. 1835 */ 1836 *s0 = '\0'; 1837 #else 1838 /* 1839 * Verify that the above write is appropriate for any new platforms. 1840 */ 1841 #error unsupported architecture! 1842 #endif 1843 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1844 MSG_ORIG(MSG_LD_TRACE_PTHS), 1845 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1846 select |= SEL_ACT_LML; 1847 val = LML_FLG_TRC_SEARCH; 1848 variable = ENV_FLG_TRACE_PTHS; 1849 } 1850 } 1851 /* 1852 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1853 */ 1854 else if (*s1 == 'U') { 1855 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1856 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1857 select |= SEL_ACT_LML; 1858 val = LML_FLG_TRC_UNREF; 1859 variable = ENV_FLG_UNREF; 1860 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1861 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1862 select |= SEL_ACT_LML; 1863 val = LML_FLG_TRC_UNUSED; 1864 variable = ENV_FLG_UNUSED; 1865 } 1866 } 1867 /* 1868 * LD_VERBOSE (internal, used by ldd(1)). 1869 */ 1870 else if (*s1 == 'V') { 1871 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1872 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1873 select |= SEL_ACT_LML; 1874 val = LML_FLG_TRC_VERBOSE; 1875 variable = ENV_FLG_VERBOSE; 1876 } 1877 } 1878 /* 1879 * LD_WARN (internal, used by ldd(1)). 1880 */ 1881 else if (*s1 == 'W') { 1882 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1883 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1884 select |= SEL_ACT_LML; 1885 val = LML_FLG_TRC_WARN; 1886 variable = ENV_FLG_WARN; 1887 } 1888 } 1889 1890 if (variable == 0) 1891 return; 1892 1893 /* 1894 * If the variable is already processed with ISA specific variable, 1895 * no further processing needed. 1896 */ 1897 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1898 ((select & SEL_PERMANT) && (prmisa & variable))) 1899 return; 1900 1901 /* 1902 * Now mark the appropriate variables. 1903 * If the replaceable variable is already set, then the 1904 * process environment variable must be set. Any replaceable 1905 * variable specified in a configuration file can be ignored. 1906 */ 1907 if (env_flags & ENV_TYP_ISA) { 1908 /* 1909 * This is an ISA setting. We do the setting even if s2 is 1910 * NULL. If s2 is NULL, we might need to undo the setting. 1911 */ 1912 if (select & SEL_REPLACE) { 1913 if (rplisa & variable) 1914 return; 1915 rplisa |= variable; 1916 } else { 1917 prmisa |= variable; 1918 } 1919 } else if (s2) { 1920 /* 1921 * This is a non-ISA setting. 1922 */ 1923 if (select & SEL_REPLACE) { 1924 if (rplgen & variable) 1925 return; 1926 rplgen |= variable; 1927 } else 1928 prmgen |= variable; 1929 } else 1930 /* 1931 * This is a non-ISA setting which can be ignored. 1932 */ 1933 return; 1934 1935 /* 1936 * Now perform the setting. 1937 */ 1938 if (select & SEL_ACT_RT) { 1939 if (s2) 1940 rtld_flags |= val; 1941 else 1942 rtld_flags &= ~val; 1943 } else if (select & SEL_ACT_RT2) { 1944 if (s2) 1945 rtld_flags2 |= val; 1946 else 1947 rtld_flags2 &= ~val; 1948 } else if (select & SEL_ACT_STR) 1949 *str = s2; 1950 else if (select & SEL_ACT_LML) { 1951 if (s2) 1952 *lmflags |= val; 1953 else 1954 *lmflags &= ~val; 1955 } else if (select & SEL_ACT_LMLT) { 1956 if (s2) 1957 *lmtflags |= val; 1958 else 1959 *lmtflags &= ~val; 1960 } else if (select & SEL_ACT_SPEC_1) { 1961 /* 1962 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1963 */ 1964 *str = s2; 1965 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1966 if (s2) { 1967 if (variable == ENV_FLG_FLAGS) 1968 env_info |= ENV_INF_FLAGCFG; 1969 else 1970 env_info |= ENV_INF_PATHCFG; 1971 } else { 1972 if (variable == ENV_FLG_FLAGS) 1973 env_info &= ~ENV_INF_FLAGCFG; 1974 else 1975 env_info &= ~ENV_INF_PATHCFG; 1976 } 1977 } 1978 } else if (select & SEL_ACT_SPEC_2) { 1979 /* 1980 * variables can be: ENV_FLG_ 1981 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1982 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1983 */ 1984 if (variable == ENV_FLG_AUDIT_ARGS) { 1985 if (s2) { 1986 audit_argcnt = atoi(s2); 1987 audit_argcnt += audit_argcnt % 2; 1988 } else 1989 audit_argcnt = 0; 1990 } else if (variable == ENV_FLG_BINDINGS) { 1991 if (s2) 1992 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1993 else 1994 rpl_debug = NULL; 1995 } else if (variable == ENV_FLG_CONFGEN) { 1996 if (s2) { 1997 rtld_flags |= RT_FL_CONFGEN; 1998 *lmflags |= LML_FLG_IGNRELERR; 1999 } else { 2000 rtld_flags &= ~RT_FL_CONFGEN; 2001 *lmflags &= ~LML_FLG_IGNRELERR; 2002 } 2003 } else if (variable == ENV_FLG_LOADFLTR) { 2004 if (s2) { 2005 *lmtflags |= LML_TFLG_LOADFLTR; 2006 if (*s2 == '2') 2007 rtld_flags |= RT_FL_WARNFLTR; 2008 } else { 2009 *lmtflags &= ~LML_TFLG_LOADFLTR; 2010 rtld_flags &= ~RT_FL_WARNFLTR; 2011 } 2012 } else if (variable == ENV_FLG_PROFILE) { 2013 profile_name = s2; 2014 if (s2) { 2015 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2016 return; 2017 } 2018 /* BEGIN CSTYLED */ 2019 if (rtld_flags & RT_FL_SECURE) { 2020 profile_lib = 2021 #if defined(_ELF64) 2022 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2023 #else 2024 MSG_ORIG(MSG_PTH_LDPROFSE); 2025 #endif 2026 } else { 2027 profile_lib = 2028 #if defined(_ELF64) 2029 MSG_ORIG(MSG_PTH_LDPROF_64); 2030 #else 2031 MSG_ORIG(MSG_PTH_LDPROF); 2032 #endif 2033 } 2034 /* END CSTYLED */ 2035 } else 2036 profile_lib = NULL; 2037 } else if (variable == ENV_FLG_SIGNAL) { 2038 killsig = s2 ? atoi(s2) : SIGKILL; 2039 } else if (variable == ENV_FLG_TRACE_OBJS) { 2040 if (s2) { 2041 *lmflags |= LML_FLG_TRC_ENABLE; 2042 if (*s2 == '2') 2043 *lmflags |= LML_FLG_TRC_LDDSTUB; 2044 } else 2045 *lmflags &= 2046 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2047 } 2048 } 2049 } 2050 2051 /* 2052 * Determine whether we have an architecture specific environment variable. 2053 * If we do, and we're the wrong architecture, it'll just get ignored. 2054 * Otherwise the variable is processed in it's architecture neutral form. 2055 */ 2056 static int 2057 ld_arch_env(const char *s1, size_t *len) 2058 { 2059 size_t _len = *len - 3; 2060 2061 if (s1[_len++] == '_') { 2062 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2063 #if defined(_ELF64) 2064 return (ENV_TYP_IGNORE); 2065 #else 2066 *len = *len - 3; 2067 return (ENV_TYP_ISA); 2068 #endif 2069 } 2070 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2071 #if defined(_ELF64) 2072 *len = *len - 3; 2073 return (ENV_TYP_ISA); 2074 #else 2075 return (ENV_TYP_IGNORE); 2076 #endif 2077 } 2078 } 2079 return (0); 2080 } 2081 2082 2083 /* 2084 * Process an LD_FLAGS environment variable. The value can be a comma 2085 * separated set of tokens, which are sent (in upper case) into the generic 2086 * LD_XXXX environment variable engine. For example: 2087 * 2088 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2089 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2090 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2091 * or 2092 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2093 */ 2094 static int 2095 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2096 uint_t env_flags, int aout) 2097 { 2098 char *nstr, *sstr, *estr = NULL; 2099 size_t nlen, len; 2100 2101 if (str == NULL) 2102 return (0); 2103 2104 /* 2105 * Create a new string as we're going to transform the token(s) into 2106 * uppercase and separate tokens with nulls. 2107 */ 2108 len = strlen(str); 2109 if ((nstr = malloc(len + 1)) == NULL) 2110 return (1); 2111 (void) strcpy(nstr, str); 2112 2113 for (sstr = nstr; sstr; sstr++, len--) { 2114 int flags; 2115 2116 if ((*sstr != '\0') && (*sstr != ',')) { 2117 if (estr == NULL) { 2118 if (*sstr == '=') 2119 estr = sstr; 2120 else { 2121 /* 2122 * Translate token to uppercase. Don't 2123 * use toupper(3C) as including this 2124 * code doubles the size of ld.so.1. 2125 */ 2126 if ((*sstr >= 'a') && (*sstr <= 'z')) 2127 *sstr = *sstr - ('a' - 'A'); 2128 } 2129 } 2130 continue; 2131 } 2132 2133 *sstr = '\0'; 2134 if (estr) { 2135 nlen = estr - nstr; 2136 if ((*++estr == '\0') || (*estr == ',')) 2137 estr = NULL; 2138 } else 2139 nlen = sstr - nstr; 2140 2141 /* 2142 * Fabricate a boolean definition for any unqualified variable. 2143 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2144 * The value is sufficient to assert any boolean variables, plus 2145 * the term "(null)" is specifically chosen in case someone 2146 * mistakenly supplies something like LD_FLAGS=library_path. 2147 */ 2148 if (estr == NULL) 2149 estr = (char *)MSG_INTL(MSG_STR_NULL); 2150 2151 /* 2152 * Determine whether the environment variable is 32- or 64-bit 2153 * specific. The length, len, will reflect the architecture 2154 * neutral portion of the string. 2155 */ 2156 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2157 ld_generic_env(nstr, nlen, estr, lmflags, 2158 lmtflags, (env_flags | flags), aout); 2159 } 2160 if (len == 0) 2161 return (0); 2162 2163 nstr = sstr + 1; 2164 estr = NULL; 2165 } 2166 return (0); 2167 } 2168 2169 2170 /* 2171 * Process a single environment string. Only strings starting with `LD_' are 2172 * reserved for our use. By convention, all strings should be of the form 2173 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2174 * functionality is enabled. Also pick off applicable locale variables. 2175 */ 2176 #define LOC_LANG 1 2177 #define LOC_MESG 2 2178 #define LOC_ALL 3 2179 2180 static void 2181 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2182 int aout) 2183 { 2184 const char *s2; 2185 static size_t loc = 0; 2186 2187 if (*s1++ != 'L') 2188 return; 2189 2190 /* 2191 * See if we have any locale environment settings. These environment 2192 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2193 * is higher than LANG. 2194 */ 2195 s2 = s1; 2196 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2197 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2198 s2 += MSG_LC_ALL_SIZE; 2199 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2200 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2201 loc = LOC_ALL; 2202 } 2203 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2204 MSG_LC_MESSAGES_SIZE) == 0) { 2205 s2 += MSG_LC_MESSAGES_SIZE; 2206 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2207 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2208 loc = LOC_MESG; 2209 } 2210 } 2211 return; 2212 } 2213 2214 s2 = s1; 2215 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2216 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2217 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2218 loc = LOC_LANG; 2219 return; 2220 } 2221 2222 /* 2223 * Pick off any LD_XXXX environment variables. 2224 */ 2225 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2226 size_t len; 2227 int flags; 2228 2229 /* 2230 * In a branded process we must ignore all LD_XXXX env vars 2231 * because they are intended for the brand's linker. 2232 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2233 */ 2234 if (rtld_flags2 & RT_FL2_BRANDED) { 2235 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2236 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2237 return; 2238 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2239 } 2240 2241 /* 2242 * Environment variables with no value (ie. LD_XXXX=) typically 2243 * have no impact, however if environment variables are defined 2244 * within a configuration file, these null user settings can be 2245 * used to disable any configuration replaceable definitions. 2246 */ 2247 if ((s2 = strchr(s1, '=')) == NULL) { 2248 len = strlen(s1); 2249 s2 = NULL; 2250 } else if (*++s2 == '\0') { 2251 len = strlen(s1) - 1; 2252 s2 = NULL; 2253 } else { 2254 len = s2 - s1 - 1; 2255 while (conv_strproc_isspace(*s2)) 2256 s2++; 2257 } 2258 2259 /* 2260 * Determine whether the environment variable is 32- or 64-bit 2261 * specific. The length, len, will reflect the architecture 2262 * neutral portion of the string. 2263 */ 2264 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2265 return; 2266 env_flags |= flags; 2267 2268 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2269 } 2270 } 2271 2272 /* 2273 * Internal getenv routine. Called immediately after ld.so.1 initializes 2274 * itself. 2275 */ 2276 int 2277 readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout) 2278 { 2279 char *locale; 2280 2281 if (envp == NULL) 2282 return (0); 2283 2284 while (*envp != NULL) 2285 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2286 2287 /* 2288 * Having collected the best representation of any LD_FLAGS, process 2289 * these strings. 2290 */ 2291 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2292 return (1); 2293 2294 /* 2295 * Don't allow environment controlled auditing when tracing or if 2296 * explicitly disabled. Trigger all tracing modes from 2297 * LML_FLG_TRC_ENABLE. 2298 */ 2299 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2300 rpl_audit = profile_lib = profile_name = NULL; 2301 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2302 *lmflags &= ~LML_MSK_TRC; 2303 2304 /* 2305 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2306 */ 2307 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2308 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2309 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2310 2311 /* 2312 * When using ldd(1) -r or -d against an executable, assert -p. 2313 */ 2314 if ((*lmflags & 2315 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2316 *lmflags |= LML_FLG_TRC_NOPAREXT; 2317 2318 /* 2319 * If we have a locale setting make sure its worth processing further. 2320 * C and POSIX locales don't need any processing. In addition, to 2321 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2322 * the locale to contain a segment that leads upward in the file system 2323 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2324 * the /usr/lib/locale hierarchy, there is no need to extensively 2325 * validate the mode or ownership of any message file (as libc's 2326 * generic handling of message files does). Duplicate the string so 2327 * that new locale setting can generically cleanup any previous locales. 2328 */ 2329 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2330 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2331 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2332 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2333 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2334 else 2335 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2336 } 2337 return (0); 2338 } 2339 2340 /* 2341 * Configuration environment processing. Called after the a.out has been 2342 * processed (as the a.out can specify its own configuration file). 2343 */ 2344 int 2345 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2346 { 2347 Word *lmflags = &(lml_main.lm_flags); 2348 Word *lmtflags = &(lml_main.lm_tflags); 2349 2350 if (envtbl == NULL) 2351 return (0); 2352 2353 while (envtbl->env_str) { 2354 uint_t env_flags = ENV_TYP_CONFIG; 2355 2356 if (envtbl->env_flags & RTC_ENV_PERMANT) 2357 env_flags |= ENV_TYP_PERMANT; 2358 2359 ld_str_env((const char *)(envtbl->env_str + addr), 2360 lmflags, lmtflags, env_flags, 0); 2361 envtbl++; 2362 } 2363 2364 /* 2365 * Having collected the best representation of any LD_FLAGS, process 2366 * these strings. 2367 */ 2368 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2369 return (1); 2370 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2371 aout) == 1) 2372 return (1); 2373 2374 /* 2375 * Don't allow environment controlled auditing when tracing or if 2376 * explicitly disabled. Trigger all tracing modes from 2377 * LML_FLG_TRC_ENABLE. 2378 */ 2379 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2380 prm_audit = profile_lib = profile_name = NULL; 2381 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2382 *lmflags &= ~LML_MSK_TRC; 2383 2384 return (0); 2385 } 2386 2387 int 2388 dowrite(Prfbuf * prf) 2389 { 2390 /* 2391 * We do not have a valid file descriptor, so we are unable 2392 * to flush the buffer. 2393 */ 2394 if (prf->pr_fd == -1) 2395 return (0); 2396 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2397 prf->pr_cur = prf->pr_buf; 2398 return (1); 2399 } 2400 2401 /* 2402 * Simplified printing. The following conversion specifications are supported: 2403 * 2404 * % [#] [-] [min field width] [. precision] s|d|x|c 2405 * 2406 * 2407 * dorprf takes the output buffer in the form of Prfbuf which permits 2408 * the verification of the output buffer size and the concatenation 2409 * of data to an already existing output buffer. The Prfbuf 2410 * structure contains the following: 2411 * 2412 * pr_buf pointer to the beginning of the output buffer. 2413 * pr_cur pointer to the next available byte in the output buffer. By 2414 * setting pr_cur ahead of pr_buf you can append to an already 2415 * existing buffer. 2416 * pr_len the size of the output buffer. By setting pr_len to '0' you 2417 * disable protection from overflows in the output buffer. 2418 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2419 * output to. If pr_fd is set to '-1' then it's assumed there is 2420 * no output buffer, and doprf() will return with an error to 2421 * indicate an output buffer overflow. If pr_fd is > -1 then when 2422 * the output buffer is filled it will be flushed to pr_fd and will 2423 * then be available for additional data. 2424 */ 2425 #define FLG_UT_MINUS 0x0001 /* - */ 2426 #define FLG_UT_SHARP 0x0002 /* # */ 2427 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2428 2429 /* 2430 * This macro is for use from within doprf only. It is to be used for checking 2431 * the output buffer size and placing characters into the buffer. 2432 */ 2433 #define PUTC(c) \ 2434 { \ 2435 char tmpc; \ 2436 \ 2437 tmpc = (c); \ 2438 if (bufsiz && (bp >= bufend)) { \ 2439 prf->pr_cur = bp; \ 2440 if (dowrite(prf) == 0) \ 2441 return (0); \ 2442 bp = prf->pr_cur; \ 2443 } \ 2444 *bp++ = tmpc; \ 2445 } 2446 2447 /* 2448 * Define a local buffer size for building a numeric value - large enough to 2449 * hold a 64-bit value. 2450 */ 2451 #define NUM_SIZE 22 2452 2453 size_t 2454 doprf(const char *format, va_list args, Prfbuf *prf) 2455 { 2456 char c; 2457 char *bp = prf->pr_cur; 2458 char *bufend = prf->pr_buf + prf->pr_len; 2459 size_t bufsiz = prf->pr_len; 2460 2461 while ((c = *format++) != '\0') { 2462 if (c != '%') { 2463 PUTC(c); 2464 } else { 2465 int base = 0, flag = 0, width = 0, prec = 0; 2466 size_t _i; 2467 int _c, _n; 2468 char *_s; 2469 int ls = 0; 2470 again: 2471 c = *format++; 2472 switch (c) { 2473 case '-': 2474 flag |= FLG_UT_MINUS; 2475 goto again; 2476 case '#': 2477 flag |= FLG_UT_SHARP; 2478 goto again; 2479 case '.': 2480 flag |= FLG_UT_DOTSEEN; 2481 goto again; 2482 case '0': 2483 case '1': 2484 case '2': 2485 case '3': 2486 case '4': 2487 case '5': 2488 case '6': 2489 case '7': 2490 case '8': 2491 case '9': 2492 if (flag & FLG_UT_DOTSEEN) 2493 prec = (prec * 10) + c - '0'; 2494 else 2495 width = (width * 10) + c - '0'; 2496 goto again; 2497 case 'x': 2498 case 'X': 2499 base = 16; 2500 break; 2501 case 'd': 2502 case 'D': 2503 case 'u': 2504 base = 10; 2505 flag &= ~FLG_UT_SHARP; 2506 break; 2507 case 'l': 2508 base = 10; 2509 ls++; /* number of l's (long or long long) */ 2510 if ((*format == 'l') || 2511 (*format == 'd') || (*format == 'D') || 2512 (*format == 'x') || (*format == 'X') || 2513 (*format == 'o') || (*format == 'O')) 2514 goto again; 2515 break; 2516 case 'o': 2517 case 'O': 2518 base = 8; 2519 break; 2520 case 'c': 2521 _c = va_arg(args, int); 2522 2523 for (_i = 24; _i > 0; _i -= 8) { 2524 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2525 PUTC(c); 2526 } 2527 } 2528 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2529 PUTC(c); 2530 } 2531 break; 2532 case 's': 2533 _s = va_arg(args, char *); 2534 _i = strlen(_s); 2535 /* LINTED */ 2536 _n = (int)(width - _i); 2537 if (!prec) 2538 /* LINTED */ 2539 prec = (int)_i; 2540 2541 if (width && !(flag & FLG_UT_MINUS)) { 2542 while (_n-- > 0) 2543 PUTC(' '); 2544 } 2545 while (((c = *_s++) != 0) && prec--) { 2546 PUTC(c); 2547 } 2548 if (width && (flag & FLG_UT_MINUS)) { 2549 while (_n-- > 0) 2550 PUTC(' '); 2551 } 2552 break; 2553 case '%': 2554 PUTC('%'); 2555 break; 2556 default: 2557 break; 2558 } 2559 2560 /* 2561 * Numeric processing 2562 */ 2563 if (base) { 2564 char local[NUM_SIZE]; 2565 size_t ssize = 0, psize = 0; 2566 const char *string = 2567 MSG_ORIG(MSG_STR_HEXNUM); 2568 const char *prefix = 2569 MSG_ORIG(MSG_STR_EMPTY); 2570 u_longlong_t num; 2571 2572 switch (ls) { 2573 case 0: /* int */ 2574 num = (u_longlong_t) 2575 va_arg(args, uint_t); 2576 break; 2577 case 1: /* long */ 2578 num = (u_longlong_t) 2579 va_arg(args, ulong_t); 2580 break; 2581 case 2: /* long long */ 2582 num = va_arg(args, u_longlong_t); 2583 break; 2584 } 2585 2586 if (flag & FLG_UT_SHARP) { 2587 if (base == 16) { 2588 prefix = MSG_ORIG(MSG_STR_HEX); 2589 psize = 2; 2590 } else { 2591 prefix = MSG_ORIG(MSG_STR_ZERO); 2592 psize = 1; 2593 } 2594 } 2595 if ((base == 10) && (long)num < 0) { 2596 prefix = MSG_ORIG(MSG_STR_NEGATE); 2597 psize = MSG_STR_NEGATE_SIZE; 2598 num = (u_longlong_t)(-(longlong_t)num); 2599 } 2600 2601 /* 2602 * Convert the numeric value into a local 2603 * string (stored in reverse order). 2604 */ 2605 _s = local; 2606 do { 2607 *_s++ = string[num % base]; 2608 num /= base; 2609 ssize++; 2610 } while (num); 2611 2612 ASSERT(ssize < sizeof (local)); 2613 2614 /* 2615 * Provide any precision or width padding. 2616 */ 2617 if (prec) { 2618 /* LINTED */ 2619 _n = (int)(prec - ssize); 2620 while ((_n-- > 0) && 2621 (ssize < sizeof (local))) { 2622 *_s++ = '0'; 2623 ssize++; 2624 } 2625 } 2626 if (width && !(flag & FLG_UT_MINUS)) { 2627 /* LINTED */ 2628 _n = (int)(width - ssize - psize); 2629 while (_n-- > 0) { 2630 PUTC(' '); 2631 } 2632 } 2633 2634 /* 2635 * Print any prefix and the numeric string 2636 */ 2637 while (*prefix) 2638 PUTC(*prefix++); 2639 do { 2640 PUTC(*--_s); 2641 } while (_s > local); 2642 2643 /* 2644 * Provide any width padding. 2645 */ 2646 if (width && (flag & FLG_UT_MINUS)) { 2647 /* LINTED */ 2648 _n = (int)(width - ssize - psize); 2649 while (_n-- > 0) 2650 PUTC(' '); 2651 } 2652 } 2653 } 2654 } 2655 2656 PUTC('\0'); 2657 prf->pr_cur = bp; 2658 return (1); 2659 } 2660 2661 static int 2662 doprintf(const char *format, va_list args, Prfbuf *prf) 2663 { 2664 char *ocur = prf->pr_cur; 2665 2666 if (doprf(format, args, prf) == 0) 2667 return (0); 2668 /* LINTED */ 2669 return ((int)(prf->pr_cur - ocur)); 2670 } 2671 2672 /* VARARGS2 */ 2673 int 2674 sprintf(char *buf, const char *format, ...) 2675 { 2676 va_list args; 2677 int len; 2678 Prfbuf prf; 2679 2680 va_start(args, format); 2681 prf.pr_buf = prf.pr_cur = buf; 2682 prf.pr_len = 0; 2683 prf.pr_fd = -1; 2684 len = doprintf(format, args, &prf); 2685 va_end(args); 2686 2687 /* 2688 * sprintf() return value excludes the terminating null byte. 2689 */ 2690 return (len - 1); 2691 } 2692 2693 /* VARARGS3 */ 2694 int 2695 snprintf(char *buf, size_t n, const char *format, ...) 2696 { 2697 va_list args; 2698 int len; 2699 Prfbuf prf; 2700 2701 va_start(args, format); 2702 prf.pr_buf = prf.pr_cur = buf; 2703 prf.pr_len = n; 2704 prf.pr_fd = -1; 2705 len = doprintf(format, args, &prf); 2706 va_end(args); 2707 2708 return (len); 2709 } 2710 2711 /* VARARGS2 */ 2712 int 2713 bufprint(Prfbuf *prf, const char *format, ...) 2714 { 2715 va_list args; 2716 int len; 2717 2718 va_start(args, format); 2719 len = doprintf(format, args, prf); 2720 va_end(args); 2721 2722 return (len); 2723 } 2724 2725 /*PRINTFLIKE1*/ 2726 int 2727 printf(const char *format, ...) 2728 { 2729 va_list args; 2730 char buffer[ERRSIZE]; 2731 Prfbuf prf; 2732 2733 va_start(args, format); 2734 prf.pr_buf = prf.pr_cur = buffer; 2735 prf.pr_len = ERRSIZE; 2736 prf.pr_fd = 1; 2737 (void) doprf(format, args, &prf); 2738 va_end(args); 2739 /* 2740 * Trim trailing '\0' form buffer 2741 */ 2742 prf.pr_cur--; 2743 return (dowrite(&prf)); 2744 } 2745 2746 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2747 2748 /* 2749 * All error messages go through eprintf(). During process initialization, 2750 * these messages are directed to the standard error, however once control has 2751 * been passed to the applications code these messages are stored in an internal 2752 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2753 * while running the application will still cause a standard error message, see 2754 * rtldexit() in this file for details. 2755 * The RT_FL_APPLIC flag serves to indicate the transition between process 2756 * initialization and when the applications code is running. 2757 */ 2758 /*PRINTFLIKE3*/ 2759 void 2760 eprintf(Lm_list *lml, Error error, const char *format, ...) 2761 { 2762 va_list args; 2763 int overflow = 0; 2764 static int lock = 0; 2765 Prfbuf prf; 2766 2767 if (lock || (nextptr == (errbuf + ERRSIZE))) 2768 return; 2769 2770 /* 2771 * Note: this lock is here to prevent the same thread from recursively 2772 * entering itself during a eprintf. ie: during eprintf malloc() fails 2773 * and we try and call eprintf ... and then malloc() fails .... 2774 */ 2775 lock = 1; 2776 2777 /* 2778 * If we have completed startup initialization, all error messages 2779 * must be saved. These are reported through dlerror(). If we're 2780 * still in the initialization stage, output the error directly and 2781 * add a newline. 2782 */ 2783 va_start(args, format); 2784 2785 prf.pr_buf = prf.pr_cur = nextptr; 2786 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2787 2788 if (!(rtld_flags & RT_FL_APPLIC)) 2789 prf.pr_fd = 2; 2790 else 2791 prf.pr_fd = -1; 2792 2793 if (error > ERR_NONE) { 2794 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2795 error = ERR_WARNING; 2796 if (error == ERR_WARNING) { 2797 if (err_strs[ERR_WARNING] == NULL) 2798 err_strs[ERR_WARNING] = 2799 MSG_INTL(MSG_ERR_WARNING); 2800 } else if (error == ERR_FATAL) { 2801 if (err_strs[ERR_FATAL] == NULL) 2802 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2803 } else if (error == ERR_ELF) { 2804 if (err_strs[ERR_ELF] == NULL) 2805 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2806 } 2807 if (procname) { 2808 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2809 rtldname, procname, err_strs[error]) == 0) 2810 overflow = 1; 2811 } else { 2812 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2813 rtldname, err_strs[error]) == 0) 2814 overflow = 1; 2815 } 2816 if (overflow == 0) { 2817 /* 2818 * Remove the terminating '\0'. 2819 */ 2820 prf.pr_cur--; 2821 } 2822 } 2823 2824 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2825 overflow = 1; 2826 2827 /* 2828 * If this is an ELF error, it will have been generated by a support 2829 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2830 * ELF error messages as it doesn't interact with libelf. Determine the 2831 * ELF error string. 2832 */ 2833 if ((overflow == 0) && (error == ERR_ELF)) { 2834 static int (*elfeno)() = 0; 2835 static const char *(*elfemg)(); 2836 const char *emsg; 2837 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2838 2839 if (NEXT(lmp) && (elfeno == 0)) { 2840 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2841 MSG_ORIG(MSG_SYM_ELFERRMSG), 2842 lmp, &dlmp)) == NULL) || 2843 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2844 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2845 elfeno = 0; 2846 } 2847 2848 /* 2849 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2850 */ 2851 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2852 prf.pr_cur--; 2853 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2854 emsg) == 0) 2855 overflow = 1; 2856 } 2857 } 2858 2859 /* 2860 * Push out any message that's been built. Note, in the case of an 2861 * overflow condition, this message may be incomplete, in which case 2862 * make sure any partial string is null terminated. 2863 */ 2864 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2865 *(prf.pr_cur - 1) = '\n'; 2866 (void) dowrite(&prf); 2867 } 2868 if (overflow) 2869 *(prf.pr_cur - 1) = '\0'; 2870 2871 DBG_CALL(Dbg_util_str(lml, nextptr)); 2872 va_end(args); 2873 2874 /* 2875 * Determine if there was insufficient space left in the buffer to 2876 * complete the message. If so, we'll have printed out as much as had 2877 * been processed if we're not yet executing the application. 2878 * Otherwise, there will be some debugging diagnostic indicating 2879 * as much of the error message as possible. Write out a final buffer 2880 * overflow diagnostic - unlocalized, so we don't chance more errors. 2881 */ 2882 if (overflow) { 2883 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2884 2885 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2886 lasterr = str; 2887 2888 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2889 (void) write(2, str, strlen(str)); 2890 (void) write(2, MSG_ORIG(MSG_STR_NL), 2891 MSG_STR_NL_SIZE); 2892 } 2893 } 2894 DBG_CALL(Dbg_util_str(lml, str)); 2895 2896 lock = 0; 2897 nextptr = errbuf + ERRSIZE; 2898 return; 2899 } 2900 2901 /* 2902 * If the application has started, then error messages are being saved 2903 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2904 * the case of a fatal error. In this case, establish the next error 2905 * pointer. If we haven't started the application, the whole message 2906 * buffer can be reused. 2907 */ 2908 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2909 lasterr = nextptr; 2910 2911 /* 2912 * Note, should we encounter an error such as ENOMEM, there may 2913 * be a number of the same error messages (ie. an operation 2914 * fails with ENOMEM, and then the attempts to construct the 2915 * error message itself, which incurs additional ENOMEM errors). 2916 * Compare any previous error message with the one we've just 2917 * created to prevent any duplication clutter. 2918 */ 2919 if ((rtld_flags & RT_FL_APPLIC) && 2920 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 2921 prevptr = nextptr; 2922 nextptr = prf.pr_cur; 2923 *nextptr = '\0'; 2924 } 2925 } 2926 lock = 0; 2927 } 2928 2929 2930 #if DEBUG 2931 /* 2932 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 2933 * details. 2934 */ 2935 int 2936 assfail(const char *a, const char *f, int l) 2937 { 2938 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2939 (void) _lwp_kill(_lwp_self(), SIGABRT); 2940 return (0); 2941 } 2942 #endif 2943 2944 /* 2945 * Exit. If we arrive here with a non zero status it's because of a fatal 2946 * error condition (most commonly a relocation error). If the application has 2947 * already had control, then the actual fatal error message will have been 2948 * recorded in the dlerror() message buffer. Print the message before really 2949 * exiting. 2950 */ 2951 void 2952 rtldexit(Lm_list * lml, int status) 2953 { 2954 if (status) { 2955 if (rtld_flags & RT_FL_APPLIC) { 2956 /* 2957 * If the error buffer has been used, write out all 2958 * pending messages - lasterr is simply a pointer to 2959 * the last message in this buffer. However, if the 2960 * buffer couldn't be created at all, lasterr points 2961 * to a constant error message string. 2962 */ 2963 if (*errbuf) { 2964 char *errptr = errbuf; 2965 char *errend = errbuf + ERRSIZE; 2966 2967 while ((errptr < errend) && *errptr) { 2968 size_t size = strlen(errptr); 2969 (void) write(2, errptr, size); 2970 (void) write(2, MSG_ORIG(MSG_STR_NL), 2971 MSG_STR_NL_SIZE); 2972 errptr += (size + 1); 2973 } 2974 } 2975 if (lasterr && ((lasterr < errbuf) || 2976 (lasterr > (errbuf + ERRSIZE)))) { 2977 (void) write(2, lasterr, strlen(lasterr)); 2978 (void) write(2, MSG_ORIG(MSG_STR_NL), 2979 MSG_STR_NL_SIZE); 2980 } 2981 } 2982 leave(lml, 0); 2983 (void) _lwp_kill(_lwp_self(), killsig); 2984 } 2985 _exit(status); 2986 } 2987 2988 /* 2989 * Map anonymous memory via MAP_ANON (added in Solaris 8). 2990 */ 2991 void * 2992 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 2993 { 2994 caddr_t va; 2995 2996 if ((va = (caddr_t)mmap(addr, len, prot, 2997 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 2998 int err = errno; 2999 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3000 strerror(err)); 3001 return (MAP_FAILED); 3002 } 3003 return (va); 3004 } 3005 3006 static int nu_fd = FD_UNAVAIL; 3007 3008 void * 3009 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3010 { 3011 caddr_t va; 3012 int err; 3013 3014 if (nu_fd == FD_UNAVAIL) { 3015 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3016 O_RDONLY)) == FD_UNAVAIL) { 3017 err = errno; 3018 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3019 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3020 return (MAP_FAILED); 3021 } 3022 } 3023 3024 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3025 MAP_FAILED) { 3026 err = errno; 3027 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3028 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3029 } 3030 return (va); 3031 } 3032 3033 /* 3034 * Generic entry point from user code - simply grabs a lock, and bumps the 3035 * entrance count. 3036 */ 3037 int 3038 enter(int flags) 3039 { 3040 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3041 if (!thr_flg_nolock) 3042 (void) rt_mutex_lock(&rtldlock); 3043 if (rtld_flags & RT_FL_OPERATION) 3044 ld_entry_cnt++; 3045 return (1); 3046 } 3047 return (0); 3048 } 3049 3050 /* 3051 * Determine whether a search path has been used. 3052 */ 3053 static void 3054 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3055 { 3056 Pdesc *pdp; 3057 Aliste idx; 3058 3059 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3060 const char *fmt, *name; 3061 3062 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3063 continue; 3064 3065 /* 3066 * If this pathname originated from an expanded token, use the 3067 * original for any diagnostic output. 3068 */ 3069 if ((name = pdp->pd_oname) == NULL) 3070 name = pdp->pd_pname; 3071 3072 if (unref == 0) { 3073 if ((*nl)++ == 0) 3074 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3075 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3076 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3077 continue; 3078 } 3079 3080 if (pdp->pd_flags & LA_SER_LIBPATH) { 3081 if (pdp->pd_flags & LA_SER_CONFIG) { 3082 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3083 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3084 else 3085 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3086 } else { 3087 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3088 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3089 else 3090 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3091 } 3092 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3093 fmt = MSG_INTL(MSG_USD_RUNPATH); 3094 } else 3095 continue; 3096 3097 if ((*nl)++ == 0) 3098 (void) printf(MSG_ORIG(MSG_STR_NL)); 3099 (void) printf(fmt, name, obj); 3100 } 3101 } 3102 3103 /* 3104 * Generate diagnostics as to whether an object has been used. A symbolic 3105 * reference that gets bound to an object marks it as used. Dependencies that 3106 * are unused when RTLD_NOW is in effect should be removed from future builds 3107 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3108 * candidates for lazy-loading. 3109 * 3110 * Unreferenced objects identify objects that are defined as dependencies but 3111 * are unreferenced by the caller. These unreferenced objects may however be 3112 * referenced by other objects within the process, and therefore don't qualify 3113 * as completely unused. They are still an unnecessary overhead. 3114 * 3115 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3116 * debugging. 3117 */ 3118 void 3119 unused(Lm_list *lml) 3120 { 3121 Rt_map *lmp; 3122 int nl = 0; 3123 Word unref, unuse; 3124 3125 /* 3126 * If we're not tracing unused references or dependencies, or debugging 3127 * there's nothing to do. 3128 */ 3129 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3130 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3131 3132 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3133 return; 3134 3135 /* 3136 * Detect unused global search paths. 3137 */ 3138 if (rpl_libdirs) 3139 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3140 if (prm_libdirs) 3141 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3142 3143 nl = 0; 3144 lmp = lml->lm_head; 3145 if (RLIST(lmp)) 3146 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3147 3148 /* 3149 * Traverse the link-maps looking for unreferenced or unused 3150 * dependencies. Ignore the first object on a link-map list, as this 3151 * is always used. 3152 */ 3153 nl = 0; 3154 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3155 /* 3156 * Determine if this object contains any runpaths that have 3157 * not been used. 3158 */ 3159 if (RLIST(lmp)) 3160 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3161 3162 /* 3163 * If tracing unreferenced objects, or under debugging, 3164 * determine whether any of this objects callers haven't 3165 * referenced it. 3166 */ 3167 if (unref || DBG_ENABLED) { 3168 Bnd_desc *bdp; 3169 Aliste idx; 3170 3171 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3172 Rt_map *clmp; 3173 3174 if (bdp->b_flags & BND_REFER) 3175 continue; 3176 3177 clmp = bdp->b_caller; 3178 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3179 continue; 3180 3181 /* BEGIN CSTYLED */ 3182 if (nl++ == 0) { 3183 if (unref) 3184 (void) printf(MSG_ORIG(MSG_STR_NL)); 3185 else 3186 DBG_CALL(Dbg_util_nl(lml, 3187 DBG_NL_STD)); 3188 } 3189 3190 if (unref) 3191 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3192 NAME(lmp), NAME(clmp)); 3193 else 3194 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3195 /* END CSTYLED */ 3196 } 3197 } 3198 3199 /* 3200 * If tracing unused objects simply display those objects that 3201 * haven't been referenced by anyone. 3202 */ 3203 if (FLAGS1(lmp) & FL1_RT_USED) 3204 continue; 3205 3206 if (nl++ == 0) { 3207 if (unref || unuse) 3208 (void) printf(MSG_ORIG(MSG_STR_NL)); 3209 else 3210 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3211 } 3212 if (CYCGROUP(lmp)) { 3213 if (unref || unuse) 3214 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3215 NAME(lmp), CYCGROUP(lmp)); 3216 else 3217 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3218 CYCGROUP(lmp))); 3219 } else { 3220 if (unref || unuse) 3221 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3222 NAME(lmp)); 3223 else 3224 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3225 } 3226 } 3227 3228 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3229 } 3230 3231 /* 3232 * Generic cleanup routine called prior to returning control to the user. 3233 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3234 * released, and any locks dropped. 3235 */ 3236 void 3237 leave(Lm_list *lml, int flags) 3238 { 3239 Lm_list *elml = lml; 3240 Rt_map *clmp; 3241 Aliste idx; 3242 3243 /* 3244 * Alert the debuggers that the link-maps are consistent. Note, in the 3245 * case of tearing down a whole link-map list, lml will be null. In 3246 * this case use the main link-map list to test for a notification. 3247 */ 3248 if (elml == NULL) 3249 elml = &lml_main; 3250 if (elml->lm_flags & LML_FLG_DBNOTIF) 3251 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3252 3253 /* 3254 * Alert any auditors that the link-maps are consistent. 3255 */ 3256 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3257 audit_activity(clmp, LA_ACT_CONSISTENT); 3258 3259 aplist_delete(elml->lm_actaudit, &idx); 3260 } 3261 3262 if (nu_fd != FD_UNAVAIL) { 3263 (void) close(nu_fd); 3264 nu_fd = FD_UNAVAIL; 3265 } 3266 3267 /* 3268 * Reinitialize error message pointer, and any overflow indication. 3269 */ 3270 nextptr = errbuf; 3271 prevptr = NULL; 3272 3273 /* 3274 * Defragment any freed memory. 3275 */ 3276 if (aplist_nitems(free_alp)) 3277 defrag(); 3278 3279 /* 3280 * Don't drop our lock if we are running on our link-map list as 3281 * there's little point in doing so since we are single-threaded. 3282 * 3283 * LML_FLG_HOLDLOCK is set for: 3284 * - The ld.so.1's link-map list. 3285 * - The auditor's link-map if the environment is pre-UPM. 3286 */ 3287 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3288 return; 3289 3290 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3291 if (!thr_flg_nolock) 3292 (void) rt_mutex_unlock(&rtldlock); 3293 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3294 } 3295 } 3296 3297 int 3298 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3299 { 3300 APlist *calp, *dalp; 3301 Aliste idx1, idx2; 3302 Grp_hdl *ghp1, *ghp2; 3303 3304 /* 3305 * An object can always find symbols within itself. 3306 */ 3307 if (clmp == dlmp) 3308 return (1); 3309 3310 /* 3311 * The search for a singleton must look in every loaded object. 3312 */ 3313 if (slflags & LKUP_SINGLETON) 3314 return (1); 3315 3316 /* 3317 * Don't allow an object to bind to an object that is being deleted 3318 * unless the binder is also being deleted. 3319 */ 3320 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3321 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3322 return (0); 3323 3324 /* 3325 * An object with world access can always bind to an object with global 3326 * visibility. 3327 */ 3328 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3329 (MODE(dlmp) & RTLD_GLOBAL)) 3330 return (1); 3331 3332 /* 3333 * An object with local access can only bind to an object that is a 3334 * member of the same group. 3335 */ 3336 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3337 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3338 return (0); 3339 3340 /* 3341 * Traverse the list of groups the caller is a part of. 3342 */ 3343 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3344 /* 3345 * If we're testing for the ability of two objects to bind to 3346 * each other regardless of a specific group, ignore that group. 3347 */ 3348 if (ghp && (ghp1 == ghp)) 3349 continue; 3350 3351 /* 3352 * Traverse the list of groups the destination is a part of. 3353 */ 3354 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3355 Grp_desc *gdp; 3356 Aliste idx3; 3357 3358 if (ghp1 != ghp2) 3359 continue; 3360 3361 /* 3362 * Make sure the relationship between the destination 3363 * and the caller provide symbols for relocation. 3364 * Parents are maintained as callers, but unless the 3365 * destination object was opened with RTLD_PARENT, the 3366 * parent doesn't provide symbols for the destination 3367 * to relocate against. 3368 */ 3369 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3370 if (dlmp != gdp->gd_depend) 3371 continue; 3372 3373 if (gdp->gd_flags & GPD_RELOC) 3374 return (1); 3375 } 3376 } 3377 } 3378 return (0); 3379 } 3380 3381 /* 3382 * Initialize the environ symbol. Traditionally this is carried out by the crt 3383 * code prior to jumping to main. However, init sections get fired before this 3384 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3385 * information. In addition, a process may have multiple link-maps (ld.so.1's 3386 * debugging and preloading objects), and link auditing, and each may need an 3387 * environ variable set. 3388 * 3389 * This routine is called after a relocation() pass, and thus provides for: 3390 * 3391 * - setting environ on the main link-map after the initial application and 3392 * its dependencies have been established. Typically environ lives in the 3393 * application (provided by its crt), but in older applications it might 3394 * be in libc. Who knows what's expected of applications not built on 3395 * Solaris. 3396 * 3397 * - after loading a new shared object. We can add shared objects to various 3398 * link-maps, and any link-map dependencies requiring getopt() require 3399 * their own environ. In addition, lazy loading might bring in the 3400 * supplier of environ (libc used to be a lazy loading candidate) after 3401 * the link-map has been established and other objects are present. 3402 * 3403 * This routine handles all these scenarios, without adding unnecessary overhead 3404 * to ld.so.1. 3405 */ 3406 void 3407 set_environ(Lm_list *lml) 3408 { 3409 Rt_map *dlmp; 3410 Sym *sym; 3411 Slookup sl; 3412 uint_t binfo; 3413 3414 /* 3415 * Initialize the symbol lookup data structure. 3416 */ 3417 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3418 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3419 3420 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3421 lml->lm_environ = (char ***)sym->st_value; 3422 3423 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3424 lml->lm_environ = 3425 (char ***)((uintptr_t)lml->lm_environ + 3426 (uintptr_t)ADDR(dlmp)); 3427 *(lml->lm_environ) = (char **)environ; 3428 lml->lm_flags |= LML_FLG_ENVIRON; 3429 } 3430 } 3431 3432 /* 3433 * Determine whether we have a secure executable. Uid and gid information 3434 * can be passed to us via the aux vector, however if these values are -1 3435 * then use the appropriate system call to obtain them. 3436 * 3437 * - If the user is the root they can do anything 3438 * 3439 * - If the real and effective uid's don't match, or the real and 3440 * effective gid's don't match then this is determined to be a `secure' 3441 * application. 3442 * 3443 * This function is called prior to any dependency processing (see _setup.c). 3444 * Any secure setting will remain in effect for the life of the process. 3445 */ 3446 void 3447 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3448 { 3449 if (auxflags != -1) { 3450 if ((auxflags & AF_SUN_SETUGID) != 0) 3451 rtld_flags |= RT_FL_SECURE; 3452 return; 3453 } 3454 3455 if (uid == (uid_t)-1) 3456 uid = getuid(); 3457 if (uid) { 3458 if (euid == (uid_t)-1) 3459 euid = geteuid(); 3460 if (uid != euid) 3461 rtld_flags |= RT_FL_SECURE; 3462 else { 3463 if (gid == (gid_t)-1) 3464 gid = getgid(); 3465 if (egid == (gid_t)-1) 3466 egid = getegid(); 3467 if (gid != egid) 3468 rtld_flags |= RT_FL_SECURE; 3469 } 3470 } 3471 } 3472 3473 /* 3474 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3475 */ 3476 int 3477 is_rtld_setuid() 3478 { 3479 rtld_stat_t status; 3480 3481 if ((rtld_flags2 & RT_FL2_SETUID) || 3482 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3483 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3484 rtld_flags2 |= RT_FL2_SETUID; 3485 return (1); 3486 } 3487 return (0); 3488 } 3489 3490 /* 3491 * _REENTRANT code gets errno redefined to a function so provide for return 3492 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3493 * is basically singled threaded. Provide the interface for our dependencies. 3494 */ 3495 #undef errno 3496 int * 3497 ___errno() 3498 { 3499 extern int errno; 3500 3501 return (&errno); 3502 } 3503 3504 /* 3505 * Determine whether a symbol name should be demangled. 3506 */ 3507 const char * 3508 demangle(const char *name) 3509 { 3510 if (rtld_flags & RT_FL_DEMANGLE) 3511 return (conv_demangle_name(name)); 3512 else 3513 return (name); 3514 } 3515 3516 #ifndef _LP64 3517 /* 3518 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3519 * underneath while preserving the object size limits of a non-largefile 3520 * enabled 32-bit process. The purpose of this is to prevent large inode 3521 * values from causing stat() to fail. 3522 */ 3523 inline static int 3524 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3525 { 3526 extern int errno; 3527 3528 /* 3529 * Although we used a 64-bit capable stat(), the 32-bit rtld 3530 * can only handle objects < 2GB in size. If this object is 3531 * too big, turn the success into an overflow error. 3532 */ 3533 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3534 errno = EOVERFLOW; 3535 return (-1); 3536 } 3537 3538 /* 3539 * Transfer the information needed by rtld into a rtld_stat_t 3540 * structure that preserves the non-largile types for everything 3541 * except inode. 3542 */ 3543 buf->st_dev = lbuf->st_dev; 3544 buf->st_ino = lbuf->st_ino; 3545 buf->st_mode = lbuf->st_mode; 3546 buf->st_uid = lbuf->st_uid; 3547 buf->st_size = (off_t)lbuf->st_size; 3548 buf->st_mtim = lbuf->st_mtim; 3549 #ifdef sparc 3550 buf->st_blksize = lbuf->st_blksize; 3551 #endif 3552 3553 return (r); 3554 } 3555 3556 int 3557 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3558 { 3559 struct stat64 lbuf; 3560 int r; 3561 3562 r = stat64(path, &lbuf); 3563 if (r != -1) 3564 r = rtld_stat_process(r, &lbuf, buf); 3565 return (r); 3566 } 3567 3568 int 3569 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3570 { 3571 struct stat64 lbuf; 3572 int r; 3573 3574 r = fstat64(fildes, &lbuf); 3575 if (r != -1) 3576 r = rtld_stat_process(r, &lbuf, buf); 3577 return (r); 3578 } 3579 #endif 3580