1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * Utility routines for run-time linker. some are duplicated here from libc 33 * (with different names) to avoid name space collisions. 34 */ 35 #include "_synonyms.h" 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <debug.h> 50 #include <conv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "_elf.h" 54 #include "msg.h" 55 56 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 57 58 /* 59 * All error messages go through eprintf(). During process initialization these 60 * messages should be directed to the standard error, however once control has 61 * been passed to the applications code these messages should be stored in an 62 * internal buffer for use with dlerror(). Note, fatal error conditions that 63 * may occur while running the application will still cause a standard error 64 * message, see rtldexit() in this file for details. 65 * The `application' flag serves to indicate the transition between process 66 * initialization and when the applications code is running. 67 */ 68 69 /* 70 * Null function used as place where a debugger can set a breakpoint. 71 */ 72 void 73 rtld_db_dlactivity(Lm_list *lml) 74 { 75 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 76 r_debug.rtd_rdebug.r_state)); 77 } 78 79 /* 80 * Null function used as place where debugger can set a pre .init 81 * processing breakpoint. 82 */ 83 void 84 rtld_db_preinit(Lm_list *lml) 85 { 86 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 87 r_debug.rtd_rdebug.r_state)); 88 } 89 90 /* 91 * Null function used as place where debugger can set a post .init 92 * processing breakpoint. 93 */ 94 void 95 rtld_db_postinit(Lm_list *lml) 96 { 97 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 98 r_debug.rtd_rdebug.r_state)); 99 } 100 101 /* 102 * Debugger Event Notification 103 * 104 * This function centralizes all debugger event notification (ala rtld_db). 105 * 106 * There's a simple intent, focused on insuring the primary link-map control 107 * list (or each link-map list) is consistent, and the indication that objects 108 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 109 * event are posted for each of these, most debuggers don't care, as their 110 * view is that these events simply convey an "inconsistent" state. 111 * 112 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 113 * enter ld.so.1. 114 * 115 * With auditors, we may be in the process of relocating a collection of 116 * objects, and will leave() ld.so.1 to call the auditor. At this point we 117 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 118 * object to the debuggers until relocation processing has been completed on it. 119 * To allow for the collection of these objects that are pending relocation, an 120 * RD_ADD event is set after completing a series of relocations on the primary 121 * link-map control list. 122 * 123 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 124 * required later (LML_FLG_DBNOTIF): 125 * 126 * i the first time we add or delete an object to the primary link-map 127 * control list. 128 * ii the first time we move a secondary link-map control list to the primary 129 * link-map control list (effectively, this is like adding a group of 130 * objects to the primary link-map control list). 131 * 132 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 133 * 134 * i each time we leave the runtime linker. 135 */ 136 void 137 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 138 { 139 void (*fptr)(Lm_list *); 140 141 switch (event) { 142 case RD_PREINIT: 143 fptr = rtld_db_preinit; 144 break; 145 case RD_POSTINIT: 146 fptr = rtld_db_postinit; 147 break; 148 case RD_DLACTIVITY: 149 switch (state) { 150 case RT_CONSISTENT: 151 lml->lm_flags &= ~LML_FLG_DBNOTIF; 152 153 /* 154 * Do we need to send a notification? 155 */ 156 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 157 return; 158 rtld_flags &= ~RT_FL_DBNOTIF; 159 break; 160 case RT_ADD: 161 case RT_DELETE: 162 lml->lm_flags |= LML_FLG_DBNOTIF; 163 164 /* 165 * If we are already in an inconsistent state, no 166 * notification is required. 167 */ 168 if (rtld_flags & RT_FL_DBNOTIF) 169 return; 170 rtld_flags |= RT_FL_DBNOTIF; 171 break; 172 }; 173 fptr = rtld_db_dlactivity; 174 break; 175 default: 176 /* 177 * RD_NONE - do nothing 178 */ 179 break; 180 }; 181 182 /* 183 * Set event state and call 'notification' function. 184 * 185 * The debugging clients have previously been told about these 186 * notification functions and have set breakpoints on them if they 187 * are interested in the notification. 188 */ 189 r_debug.rtd_rdebug.r_state = state; 190 r_debug.rtd_rdebug.r_rdevent = event; 191 fptr(lml); 192 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 193 } 194 195 #if defined(__sparc) || defined(__x86) 196 /* 197 * Stack Cleanup. 198 * 199 * This function is invoked to 'remove' arguments that were passed in on the 200 * stack. This is most likely if ld.so.1 was invoked directly. In that case 201 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 202 * Which means we then need to slide everything above it on the stack down 203 * accordingly. 204 * 205 * While the stack layout is platform specific - it just so happens that __x86, 206 * and __sparc platforms share the following initial stack layout. 207 * 208 * !_______________________! high addresses 209 * ! ! 210 * ! Information ! 211 * ! Block ! 212 * ! (size varies) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Auxiliary ! 217 * ! vector ! 218 * ! 2 word entries ! 219 * ! ! 220 * !_______________________! 221 * ! 0 word ! 222 * !_______________________! 223 * ! Environment ! 224 * ! pointers ! 225 * ! ... ! 226 * ! (one word each) ! 227 * !_______________________! 228 * ! 0 word ! 229 * !_______________________! 230 * ! Argument ! low addresses 231 * ! pointers ! 232 * ! Argc words ! 233 * !_______________________! 234 * ! ! 235 * ! Argc ! 236 * !_______________________! 237 * ! ... ! 238 * 239 */ 240 static void 241 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 242 { 243 int ndx; 244 long *argc; 245 char **oargv, **nargv; 246 char **oenvp, **nenvp; 247 auxv_t *oauxv, *nauxv; 248 249 /* 250 * Slide ARGV[] and update argc. The argv pointer remains the same, 251 * however slide the applications arguments over the arguments to 252 * ld.so.1. 253 */ 254 nargv = &argv[0]; 255 oargv = &argv[rmcnt]; 256 257 for (ndx = 0; oargv[ndx]; ndx++) 258 nargv[ndx] = oargv[ndx]; 259 nargv[ndx] = oargv[ndx]; 260 261 argc = (long *)((uintptr_t)argv - sizeof (long *)); 262 *argc -= rmcnt; 263 264 /* 265 * Slide ENVP[], and update the environment array pointer. 266 */ 267 ndx++; 268 nenvp = &nargv[ndx]; 269 oenvp = &oargv[ndx]; 270 *envp = nenvp; 271 272 for (ndx = 0; oenvp[ndx]; ndx++) 273 nenvp[ndx] = oenvp[ndx]; 274 nenvp[ndx] = oenvp[ndx]; 275 276 /* 277 * Slide AUXV[], and update the aux vector pointer. 278 */ 279 ndx++; 280 nauxv = (auxv_t *)&nenvp[ndx]; 281 oauxv = (auxv_t *)&oenvp[ndx]; 282 *auxv = nauxv; 283 284 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 285 nauxv[ndx] = oauxv[ndx]; 286 nauxv[ndx] = oauxv[ndx]; 287 } 288 #else 289 /* 290 * Verify that the above routine is appropriate for any new platforms. 291 */ 292 #error unsupported architecture! 293 #endif 294 295 /* 296 * The only command line argument recognized is -e, followed by a runtime 297 * linker environment variable. 298 */ 299 int 300 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 301 Word *lmtflags, int aout) 302 { 303 int ndx; 304 305 for (ndx = 1; argv[ndx]; ndx++) { 306 char *str; 307 308 if (argv[ndx][0] != '-') 309 break; 310 311 if (argv[ndx][1] == '\0') { 312 ndx++; 313 break; 314 } 315 316 if (argv[ndx][1] != 'e') 317 return (1); 318 319 if (argv[ndx][2] == '\0') { 320 ndx++; 321 if (argv[ndx] == NULL) 322 return (1); 323 str = argv[ndx]; 324 } else 325 str = &argv[ndx][2]; 326 327 /* 328 * If the environment variable starts with LD_, strip the LD_. 329 * Otherwise, take things as is. 330 */ 331 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 332 (str[3] != '\0')) 333 str += 3; 334 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 335 return (1); 336 } 337 338 /* 339 * Make sure an object file has been specified. 340 */ 341 if (argv[ndx] == 0) 342 return (1); 343 344 /* 345 * Having gotten the arguments, clean ourselves off of the stack. 346 */ 347 stack_cleanup(argv, envp, auxv, ndx); 348 return (0); 349 } 350 351 /* 352 * Compare function for FullpathNode AVL tree. 353 */ 354 static int 355 fpavl_compare(const void * n1, const void * n2) 356 { 357 uint_t hash1, hash2; 358 const char *st1, *st2; 359 int rc; 360 361 hash1 = ((FullpathNode *)n1)->fpn_hash; 362 hash2 = ((FullpathNode *)n2)->fpn_hash; 363 364 if (hash1 > hash2) 365 return (1); 366 if (hash1 < hash2) 367 return (-1); 368 369 st1 = ((FullpathNode *)n1)->fpn_name; 370 st2 = ((FullpathNode *)n2)->fpn_name; 371 372 rc = strcmp(st1, st2); 373 if (rc > 0) 374 return (1); 375 if (rc < 0) 376 return (-1); 377 return (0); 378 } 379 380 381 /* 382 * Determine if a given pathname has already been loaded in the AVL tree. 383 * If the pathname does not exist in the AVL tree, the next insertion point 384 * is deposited in "where". This value can be used by fpavl_insert() to 385 * expedite the insertion. 386 */ 387 Rt_map * 388 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 389 { 390 FullpathNode fpn, *fpnp; 391 avl_tree_t *avlt; 392 393 /* 394 * Create the avl tree if required. 395 */ 396 if ((avlt = lml->lm_fpavl) == NULL) { 397 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 398 return (0); 399 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 400 SGSOFFSETOF(FullpathNode, fpn_avl)); 401 lml->lm_fpavl = avlt; 402 } 403 404 fpn.fpn_name = name; 405 fpn.fpn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 414 /* 415 * Insert a name into the FullpathNode AVL tree for the link-map list. The 416 * objects NAME() is the path that would have originally been searched for, and 417 * is therefore the name to associate with any "where" value. If the object has 418 * a different PATHNAME(), perhaps because it has resolved to a different file 419 * (see fullpath), then this name is recorded also. See load_file(). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullpathNode *fpnp; 425 426 if (where == 0) { 427 /* LINTED */ 428 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 429 430 /* 431 * We better not get a hit now, we do not want duplicates in 432 * the tree. 433 */ 434 ASSERT(_lmp == 0); 435 } 436 437 /* 438 * Insert new node in tree 439 */ 440 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 441 return (0); 442 443 fpnp->fpn_name = name; 444 fpnp->fpn_hash = sgs_str_hash(name); 445 fpnp->fpn_lmp = lmp; 446 447 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 448 AL_CNT_FPNODE) == 0) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 460 * the objects link-map is torn down (remove_so), which is where any NAME() and 461 * PATHNAME() strings will be deallocated. 462 */ 463 void 464 fpavl_remove(Rt_map *lmp) 465 { 466 FullpathNode **fpnpp; 467 Aliste off; 468 469 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 470 FullpathNode *fpnp = *fpnpp; 471 472 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 473 free(fpnp); 474 } 475 free(FPNODE(lmp)); 476 FPNODE(lmp) = 0; 477 } 478 479 480 /* 481 * Prior to calling an object, either via a .plt or through dlsym(), make sure 482 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 483 * init's in the correct order, however, this order is typically based on needed 484 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 485 * still occur and result in bindings that were not captured during topological 486 * sorting. This routine compensates for this lack of binding information, and 487 * provides for dynamic .init firing. 488 */ 489 void 490 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 491 { 492 Rt_map ** tobj; 493 494 /* 495 * If the caller is an auditor, and the destination isn't, then don't 496 * run any .inits (see comments in load_completion()). 497 */ 498 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 499 (LIST(clmp) != LIST(dlmp))) 500 return; 501 502 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 503 return; 504 505 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 506 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 507 return; 508 509 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 510 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 511 DBG_CALL(Dbg_util_no_init(dlmp)); 512 return; 513 } 514 515 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 516 tobj[0] = dlmp; 517 call_init(tobj, DBG_INIT_DYN); 518 } 519 } 520 521 /* 522 * In a threaded environment insure the thread responsible for loading an object 523 * has completed .init processing for that object before any new thread is 524 * allowed to access the object. This check is only valid with libthread 525 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 526 * 527 * When a new link-map is created, the thread that causes it to be loaded is 528 * identified by THREADID(dlmp). Compare this with the current thread to 529 * determine if it must be blocked. 530 * 531 * NOTE, there are a number of instances (typically only for .plt processing) 532 * where we must skip this test: 533 * 534 * . any thread id of 0 - threads that call thr_exit() may be in this state 535 * thus we can't deduce what tid they used to be. Also some of the 536 * lib/libthread worker threads have this id and must bind (to themselves 537 * or libc) for libthread to function. 538 * 539 * . libthread itself binds to libc, and as libthread is INITFIRST 540 * libc's .init can't have fired yet. Luckly libc's .init is not required 541 * by libthreads binding. 542 * 543 * . if the caller is an auditor, and the destination isn't, then don't 544 * block (see comments in load_completion()). 545 */ 546 void 547 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 548 { 549 thread_t tid; 550 551 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 552 (LIST(clmp) != LIST(dlmp))) 553 return; 554 555 if ((rtld_flags & RT_FL_CONCUR) && 556 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 557 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 558 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 559 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 560 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 561 DBG_CALL(Dbg_util_wait(clmp, dlmp, what)); 562 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 563 } 564 } 565 } 566 567 /* 568 * Execute .{preinit|init|fini}array sections 569 */ 570 void 571 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 572 { 573 int start, stop, incr, ndx; 574 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 575 576 if (array == NULL) 577 return; 578 579 /* 580 * initarray & preinitarray are walked from beginning to end - while 581 * finiarray is walked from end to beginning. 582 */ 583 if (shtype == SHT_FINI_ARRAY) { 584 start = arraycnt - 1; 585 stop = incr = -1; 586 } else { 587 start = 0; 588 stop = arraycnt; 589 incr = 1; 590 } 591 592 /* 593 * Call the .*array[] entries 594 */ 595 for (ndx = start; ndx != stop; ndx += incr) { 596 void (*fptr)(void) = (void(*)())array[ndx]; 597 598 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 599 600 leave(LIST(lmp)); 601 (*fptr)(); 602 (void) enter(); 603 } 604 } 605 606 607 /* 608 * Execute any .init sections. These are passed to us in an lmp array which 609 * (by default) will have been sorted. 610 */ 611 void 612 call_init(Rt_map ** tobj, int flag) 613 { 614 Rt_map ** _tobj, ** _nobj; 615 static List pending = { NULL, NULL }; 616 617 /* 618 * If we're in the middle of an INITFIRST, this must complete before 619 * any new init's are fired. In this case add the object list to the 620 * pending queue and return. We'll pick up the queue after any 621 * INITFIRST objects have their init's fired. 622 */ 623 if (rtld_flags & RT_FL_INITFIRST) { 624 (void) list_append(&pending, tobj); 625 return; 626 } 627 628 /* 629 * Traverse the tobj array firing each objects init. 630 */ 631 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 632 Rt_map * lmp = *_tobj; 633 void (* iptr)() = INIT(lmp); 634 635 if (FLAGS(lmp) & FLG_RT_INITCALL) 636 continue; 637 638 FLAGS(lmp) |= FLG_RT_INITCALL; 639 640 /* 641 * Establish an initfirst state if necessary - no other inits 642 * will be fired (because of additional relocation bindings) 643 * when in this state. 644 */ 645 if (FLAGS(lmp) & FLG_RT_INITFRST) 646 rtld_flags |= RT_FL_INITFIRST; 647 648 if (INITARRAY(lmp) || iptr) { 649 Aliste off; 650 Bnd_desc ** bdpp; 651 652 /* 653 * Make sure that all dependencies that have been 654 * relocated to are initialized before this objects 655 * .init is executed. This insures that a dependency 656 * on an external item that must first be initialized 657 * by its associated object is satisfied. 658 */ 659 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 660 Bnd_desc * bdp = *bdpp; 661 662 if ((bdp->b_flags & BND_REFER) == 0) 663 continue; 664 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 665 } 666 DBG_CALL(Dbg_util_call_init(lmp, flag)); 667 } 668 669 if (iptr) { 670 leave(LIST(lmp)); 671 (*iptr)(); 672 (void) enter(); 673 } 674 675 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 676 SHT_INIT_ARRAY); 677 678 if (INITARRAY(lmp) || iptr) 679 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 680 681 /* 682 * Set the initdone flag regardless of whether this object 683 * actually contains an .init section. This flag prevents us 684 * from processing this section again for an .init and also 685 * signifies that a .fini must be called should it exist. 686 * Clear the sort field for use in later .fini processing. 687 */ 688 FLAGS(lmp) |= FLG_RT_INITDONE; 689 SORTVAL(lmp) = -1; 690 691 /* 692 * Wake anyone up who might be waiting on this .init. 693 */ 694 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 695 DBG_CALL(Dbg_util_broadcast(lmp)); 696 (void) rt_cond_broadcast(CONDVAR(lmp)); 697 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 698 } 699 700 /* 701 * If we're firing an INITFIRST object, and other objects must 702 * be fired which are not INITFIRST, make sure we grab any 703 * pending objects that might have been delayed as this 704 * INITFIRST was processed. 705 */ 706 if ((rtld_flags & RT_FL_INITFIRST) && 707 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 708 Listnode * lnp; 709 Rt_map ** pobj; 710 711 rtld_flags &= ~RT_FL_INITFIRST; 712 713 while ((lnp = pending.head) != NULL) { 714 if ((pending.head = lnp->next) == NULL) 715 pending.tail = NULL; 716 pobj = lnp->data; 717 free(lnp); 718 719 call_init(pobj, DBG_INIT_PEND); 720 } 721 } 722 } 723 free(tobj); 724 } 725 726 /* 727 * Function called by atexit(3C). Calls all .fini sections related with the 728 * mains dependent shared libraries in the order in which the shared libraries 729 * have been loaded. Skip any .fini defined in the main executable, as this 730 * will be called by crt0 (main was never marked as initdone). 731 */ 732 void 733 call_fini(Lm_list * lml, Rt_map ** tobj) 734 { 735 Rt_map **_tobj; 736 737 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 738 Rt_map * clmp, * lmp = *_tobj; 739 Aliste off; 740 Bnd_desc ** bdpp; 741 742 /* 743 * If concurrency checking isn't enabled only fire .fini if 744 * .init has completed. We collect all .fini sections of 745 * objects that had their .init collected, but that doesn't 746 * mean at the time that the .init had completed. 747 */ 748 if ((rtld_flags & RT_FL_CONCUR) || 749 (FLAGS(lmp) & FLG_RT_INITDONE)) { 750 void (*fptr)(void) = FINI(lmp); 751 752 if (FINIARRAY(lmp) || fptr) { 753 /* 754 * If concurrency checking is enabled make sure 755 * this object's .init is completed before 756 * calling any .fini. 757 */ 758 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 759 DBG_CALL(Dbg_util_call_fini(lmp)); 760 } 761 762 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 763 SHT_FINI_ARRAY); 764 765 if (fptr) { 766 leave(LIST(lmp)); 767 (*fptr)(); 768 (void) enter(); 769 } 770 } 771 772 /* 773 * Skip main, this is explicitly called last in atexit_fini(). 774 */ 775 if (FLAGS(lmp) & FLG_RT_ISMAIN) 776 continue; 777 778 /* 779 * Audit `close' operations at this point. The library has 780 * exercised its last instructions (regardless of whether it 781 * will be unmapped or not). 782 * 783 * First call any global auditing. 784 */ 785 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 786 _audit_objclose(&(auditors->ad_list), lmp); 787 788 /* 789 * Finally determine whether this object has local auditing 790 * requirements by inspecting itself and then its dependencies. 791 */ 792 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 793 continue; 794 795 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 796 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 797 798 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 799 Bnd_desc * bdp = *bdpp; 800 801 clmp = bdp->b_caller; 802 803 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 804 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 805 break; 806 } 807 } 808 } 809 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 810 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 811 812 free(tobj); 813 } 814 815 void 816 atexit_fini() 817 { 818 Rt_map ** tobj, * lmp; 819 Lm_list * lml; 820 Listnode * lnp; 821 822 (void) enter(); 823 824 rtld_flags |= RT_FL_ATEXIT; 825 826 lml = &lml_main; 827 lml->lm_flags |= LML_FLG_ATEXIT; 828 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 829 lmp = (Rt_map *)lml->lm_head; 830 831 /* 832 * Display any objects that haven't been referenced so far. 833 */ 834 unused(lml); 835 836 /* 837 * Reverse topologically sort the main link-map for .fini execution. 838 */ 839 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 840 (tobj != (Rt_map **)S_ERROR)) 841 call_fini(lml, tobj); 842 843 /* 844 * Add an explicit close to main and ld.so.1. Although main's .fini is 845 * collected in call_fini() to provide for FINITARRAY processing, its 846 * audit_objclose is explicitly skipped. This provides for it to be 847 * called last, here. This is the reverse of the explicit calls to 848 * audit_objopen() made in setup(). 849 */ 850 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 851 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 852 audit_objclose(lmp, lmp); 853 } 854 855 /* 856 * Now that all .fini code has been run, see what unreferenced objects 857 * remain. Any difference between this and the above unused() would 858 * indicate an object is only being used for .fini processing, which 859 * might be fine, but might also indicate an overhead whose removal 860 * would be worth considering. 861 */ 862 unused(lml); 863 864 /* 865 * Traverse any alternative link-map lists. 866 */ 867 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 868 /* 869 * Ignore the base-link-map list, which has already been 870 * processed, and the runtime linkers link-map list, which is 871 * typically processed last. 872 */ 873 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 874 continue; 875 876 if ((lmp = (Rt_map *)lml->lm_head) == 0) 877 continue; 878 879 lml->lm_flags |= LML_FLG_ATEXIT; 880 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 881 882 /* 883 * Reverse topologically sort the link-map for .fini execution. 884 */ 885 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 886 (tobj != (Rt_map **)S_ERROR)) 887 call_fini(lml, tobj); 888 889 unused(lml); 890 } 891 892 /* 893 * Finally reverse topologically sort the runtime linkers link-map for 894 * .fini execution. 895 */ 896 lml = &lml_rtld; 897 lml->lm_flags |= LML_FLG_ATEXIT; 898 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 899 lmp = (Rt_map *)lml->lm_head; 900 901 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 902 (tobj != (Rt_map **)S_ERROR)) 903 call_fini(lml, tobj); 904 905 leave(&lml_main); 906 } 907 908 909 /* 910 * This routine is called to complete any runtime linker activity which may have 911 * resulted in objects being loaded. This is called from all user entry points 912 * and from any internal dl*() requests. 913 */ 914 void 915 load_completion(Rt_map *nlmp, Rt_map *clmp) 916 { 917 Rt_map **tobj = 0; 918 Lm_list *nlml, *clml; 919 920 /* 921 * Establish any .init processing. Note, in a world of lazy loading, 922 * objects may have been loaded regardless of whether the users request 923 * was fulfilled (i.e., a dlsym() request may have failed to find a 924 * symbol but objects might have been loaded during its search). Thus, 925 * any tsorting starts from the nlmp (new link-maps) pointer and not 926 * necessarily from the link-map that may have satisfied the request. 927 * 928 * Note, the primary link-map has an initialization phase where dynamic 929 * .init firing is suppressed. This provides for a simple and clean 930 * handshake with the primary link-maps libc, which is important for 931 * establishing uberdata. In addition, auditors often obtain handles 932 * to primary link-map objects as the objects are loaded, so as to 933 * inspect the link-map for symbols. This inspection is allowed without 934 * running any code on the primary link-map, as running this code may 935 * reenter the auditor, who may not yet have finished its own 936 * initialization. 937 */ 938 if (nlmp) 939 nlml = LIST(nlmp); 940 if (clmp) 941 clml = LIST(clmp); 942 943 if (nlmp && nlml->lm_init && 944 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 945 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 946 RT_SORT_REV)) == (Rt_map **)S_ERROR) 947 tobj = 0; 948 } 949 950 /* 951 * Make sure any alternative link-map retrieves any external interfaces 952 * and initializes threads. 953 */ 954 if (nlmp && (nlml != &lml_main)) { 955 (void) rt_get_extern(nlml, nlmp); 956 rt_thr_init(nlml); 957 } 958 959 /* 960 * Traverse the list of new link-maps and register any dynamic TLS. 961 * This storage is established for any objects not on the primary 962 * link-map, and for any objects added to the primary link-map after 963 * static TLS has been registered. 964 */ 965 if (nlmp && nlml->lm_tls && 966 ((nlml != &lml_main) || (rtld_flags2 & RT_FL2_PLMSETUP))) { 967 Rt_map *lmp; 968 969 for (lmp = nlmp; lmp; lmp = (Rt_map *)NEXT(lmp)) { 970 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 971 tls_modaddrem(lmp, TM_FLG_MODADD); 972 } 973 nlml->lm_tls = 0; 974 } 975 976 /* 977 * Indicate the link-map list is consistent. 978 */ 979 if (clmp && ((clml->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 980 audit_activity(clmp, LA_ACT_CONSISTENT); 981 982 /* 983 * Fire any .init's. 984 */ 985 if (tobj) 986 call_init(tobj, DBG_INIT_SORT); 987 } 988 989 /* 990 * Append an item to the specified list, and return a pointer to the list 991 * node created. 992 */ 993 Listnode * 994 list_append(List *lst, const void *item) 995 { 996 Listnode * _lnp; 997 998 if ((_lnp = malloc(sizeof (Listnode))) == 0) 999 return (0); 1000 1001 _lnp->data = (void *)item; 1002 _lnp->next = NULL; 1003 1004 if (lst->head == NULL) 1005 lst->tail = lst->head = _lnp; 1006 else { 1007 lst->tail->next = _lnp; 1008 lst->tail = lst->tail->next; 1009 } 1010 return (_lnp); 1011 } 1012 1013 1014 /* 1015 * Add an item after specified listnode, and return a pointer to the list 1016 * node created. 1017 */ 1018 Listnode * 1019 list_insert(List *lst, const void *item, Listnode *lnp) 1020 { 1021 Listnode * _lnp; 1022 1023 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1024 return (0); 1025 1026 _lnp->data = (void *)item; 1027 _lnp->next = lnp->next; 1028 if (_lnp->next == NULL) 1029 lst->tail = _lnp; 1030 lnp->next = _lnp; 1031 return (_lnp); 1032 } 1033 1034 /* 1035 * Prepend an item to the specified list, and return a pointer to the 1036 * list node created. 1037 */ 1038 Listnode * 1039 list_prepend(List * lst, const void * item) 1040 { 1041 Listnode * _lnp; 1042 1043 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1044 return (0); 1045 1046 _lnp->data = (void *)item; 1047 1048 if (lst->head == NULL) { 1049 _lnp->next = NULL; 1050 lst->tail = lst->head = _lnp; 1051 } else { 1052 _lnp->next = lst->head; 1053 lst->head = _lnp; 1054 } 1055 return (_lnp); 1056 } 1057 1058 1059 /* 1060 * Delete a 'listnode' from a list. 1061 */ 1062 void 1063 list_delete(List *lst, void *item) 1064 { 1065 Listnode *clnp, *plnp; 1066 1067 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1068 if (item == clnp->data) 1069 break; 1070 plnp = clnp; 1071 } 1072 1073 if (clnp == 0) 1074 return; 1075 1076 if (lst->head == clnp) 1077 lst->head = clnp->next; 1078 if (lst->tail == clnp) 1079 lst->tail = plnp; 1080 1081 if (plnp) 1082 plnp->next = clnp->next; 1083 1084 free(clnp); 1085 } 1086 1087 /* 1088 * Append an item to the specified link map control list. 1089 */ 1090 void 1091 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1092 { 1093 Lm_cntl *lmc; 1094 int add = 1; 1095 1096 /* 1097 * Indicate that this link-map list has a new object. 1098 */ 1099 (lml->lm_obj)++; 1100 1101 /* 1102 * If we're about to add a new object to the main link-map control list, 1103 * alert the debuggers that we are about to mess with this list. 1104 * Additions of individual objects to the main link-map control list 1105 * occur during initial setup as the applications immediate dependencies 1106 * are loaded. Individual objects are also loaded on the main link-map 1107 * control list of new alternative link-map control lists. 1108 */ 1109 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1110 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1111 1112 /* LINTED */ 1113 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1114 1115 /* 1116 * A link-map list header points to one of more link-map control lists 1117 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1118 * the list of relocated objects. Other lists maintain objects that 1119 * are still being analyzed or relocated. This list provides the core 1120 * link-map list information used by all ld.so.1 routines. 1121 */ 1122 if (lmc->lc_head == NULL) { 1123 /* 1124 * If this is the first link-map for the given control list, 1125 * initialize the list. 1126 */ 1127 lmc->lc_head = lmc->lc_tail = lmp; 1128 add = 0; 1129 1130 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1131 Rt_map *tlmp; 1132 1133 /* 1134 * If this is an interposer then append the link-map following 1135 * any other interposers (these are objects that have been 1136 * previously preloaded, or were identified with -z interpose). 1137 * Interposers can only be inserted on the first link-map 1138 * control list, as once relocation has started, interposition 1139 * from new interposers can't be guaranteed. 1140 * 1141 * NOTE: We do not interpose on the head of a list. This model 1142 * evolved because dynamic executables have already been fully 1143 * relocated within themselves and thus can't be interposed on. 1144 * Nowadays it's possible to have shared objects at the head of 1145 * a list, which conceptually means they could be interposed on. 1146 * But, shared objects can be created via dldump() and may only 1147 * be partially relocated (just relatives), in which case they 1148 * are interposable, but are marked as fixed (ET_EXEC). 1149 * 1150 * Thus we really don't have a clear method of deciding when the 1151 * head of a link-map is interposable. So, to be consistent, 1152 * for now only add interposers after the link-map lists head 1153 * object. 1154 */ 1155 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1156 tlmp = (Rt_map *)NEXT(tlmp)) { 1157 1158 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1159 continue; 1160 1161 /* 1162 * Insert the new link-map before this non-interposer, 1163 * and indicate an interposer is found. 1164 */ 1165 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1166 PREV(lmp) = PREV(tlmp); 1167 1168 NEXT(lmp) = (Link_map *)tlmp; 1169 PREV(tlmp) = (Link_map *)lmp; 1170 1171 lmc->lc_flags |= LMC_FLG_REANALYZE; 1172 add = 0; 1173 break; 1174 } 1175 } 1176 1177 /* 1178 * Fall through to appending the new link map to the tail of the list. 1179 * If we're processing the initial objects of this link-map list, add 1180 * them to the backward compatibility list. 1181 */ 1182 if (add) { 1183 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1184 PREV(lmp) = (Link_map *)lmc->lc_tail; 1185 lmc->lc_tail = lmp; 1186 } 1187 1188 /* 1189 * Having added this link-map to a control list, indicate which control 1190 * list the link-map belongs to. Note, control list information is 1191 * always maintained as an offset, as the Alist can be reallocated. 1192 */ 1193 CNTL(lmp) = lmco; 1194 1195 /* 1196 * Indicate if an interposer is found. Note that the first object on a 1197 * link-map can be explicitly defined as an interposer so that it can 1198 * provide interposition over direct binding requests. 1199 */ 1200 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1201 lml->lm_flags |= LML_FLG_INTRPOSE; 1202 1203 /* 1204 * For backward compatibility with debuggers, the link-map list contains 1205 * pointers to the main control list. 1206 */ 1207 if (lmco == ALO_DATA) { 1208 lml->lm_head = lmc->lc_head; 1209 lml->lm_tail = lmc->lc_tail; 1210 } 1211 } 1212 1213 /* 1214 * Delete an item from the specified link map control list. 1215 */ 1216 void 1217 lm_delete(Lm_list *lml, Rt_map *lmp) 1218 { 1219 Lm_cntl *lmc; 1220 1221 /* 1222 * If the control list pointer hasn't been initialized, this object 1223 * never got added to a link-map list. 1224 */ 1225 if (CNTL(lmp) == 0) 1226 return; 1227 1228 /* 1229 * If we're about to delete an object from the main link-map control 1230 * list, alert the debuggers that we are about to mess with this list. 1231 */ 1232 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1233 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1234 1235 /* LINTED */ 1236 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1237 1238 if (lmc->lc_head == lmp) 1239 lmc->lc_head = (Rt_map *)NEXT(lmp); 1240 else 1241 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1242 1243 if (lmc->lc_tail == lmp) 1244 lmc->lc_tail = (Rt_map *)PREV(lmp); 1245 else 1246 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1247 1248 /* 1249 * For backward compatibility with debuggers, the link-map list contains 1250 * pointers to the main control list. 1251 */ 1252 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1253 lml->lm_head = lmc->lc_head; 1254 lml->lm_tail = lmc->lc_tail; 1255 } 1256 1257 /* 1258 * Indicate we have one less object on this control list. 1259 */ 1260 (lml->lm_obj)--; 1261 } 1262 1263 /* 1264 * Move a link-map control list to another. Objects that are being relocated 1265 * are maintained on secondary control lists. Once their relocation is 1266 * complete, the entire list is appended to the previous control list, as this 1267 * list must have been the trigger for generating the new control list. 1268 */ 1269 void 1270 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1271 { 1272 Rt_map *lmp; 1273 1274 /* 1275 * If we're about to add a new family of objects to the main link-map 1276 * control list, alert the debuggers that we are about to mess with this 1277 * list. Additions of object families to the main link-map control 1278 * list occur during lazy loading, filtering and dlopen(). 1279 */ 1280 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1281 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1282 1283 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1284 1285 /* 1286 * Indicate each new link-map has been moved to the previous link-map 1287 * control list. 1288 */ 1289 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1290 CNTL(lmp) = plmco; 1291 1292 /* 1293 * Move the new link-map control list, to the callers link-map control 1294 * list. 1295 */ 1296 if (plmc->lc_head == 0) { 1297 plmc->lc_head = nlmc->lc_head; 1298 PREV(nlmc->lc_head) = 0; 1299 } else { 1300 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1301 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1302 } 1303 1304 plmc->lc_tail = nlmc->lc_tail; 1305 nlmc->lc_head = nlmc->lc_tail = 0; 1306 1307 /* 1308 * For backward compatibility with debuggers, the link-map list contains 1309 * pointers to the main control list. 1310 */ 1311 if (plmco == ALO_DATA) { 1312 lml->lm_head = plmc->lc_head; 1313 lml->lm_tail = plmc->lc_tail; 1314 } 1315 } 1316 1317 /* 1318 * Environment variables can have a variety of defined permutations, and thus 1319 * the following infrastructure exists to allow this variety and to select the 1320 * required definition. 1321 * 1322 * Environment variables can be defined as 32- or 64-bit specific, and if so 1323 * they will take precedence over any instruction set neutral form. Typically 1324 * this is only useful when the environment value is an informational string. 1325 * 1326 * Environment variables may be obtained from the standard user environment or 1327 * from a configuration file. The latter provides a fallback if no user 1328 * environment setting is found, and can take two forms: 1329 * 1330 * . a replaceable definition - this will be used if no user environment 1331 * setting has been seen, or 1332 * 1333 * . an permanent definition - this will be used no matter what user 1334 * environment setting is seen. In the case of list variables it will be 1335 * appended to any process environment setting seen. 1336 * 1337 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1338 * override any replaceable environment variables from a configuration file. 1339 */ 1340 static u_longlong_t rplgen; /* replaceable generic */ 1341 /* variables */ 1342 static u_longlong_t rplisa; /* replaceable ISA specific */ 1343 /* variables */ 1344 static u_longlong_t prmgen; /* permanent generic */ 1345 /* variables */ 1346 static u_longlong_t prmisa; /* permanent ISA specific */ 1347 /* variables */ 1348 1349 /* 1350 * Classify an environment variables type. 1351 */ 1352 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1353 /* the wrong ISA */ 1354 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1355 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1356 /* config file */ 1357 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1358 1359 /* 1360 * Identify all environment variables. 1361 */ 1362 #define ENV_FLG_AUDIT 0x0000000001ULL 1363 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1364 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1365 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1366 #define ENV_FLG_BINDINGS 0x0000000010ULL 1367 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1368 #define ENV_FLG_CONFGEN 0x0000000040ULL 1369 #define ENV_FLG_CONFIG 0x0000000080ULL 1370 #define ENV_FLG_DEBUG 0x0000000100ULL 1371 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1372 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1373 #define ENV_FLG_FLAGS 0x0000000800ULL 1374 #define ENV_FLG_INIT 0x0000001000ULL 1375 #define ENV_FLG_LIBPATH 0x0000002000ULL 1376 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1377 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1378 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1379 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1380 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1381 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1382 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1383 #define ENV_FLG_NODIRECT 0x0000200000ULL 1384 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1385 #define ENV_FLG_NOLAZY 0x0000800000ULL 1386 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1387 #define ENV_FLG_NOVERSION 0x0002000000ULL 1388 #define ENV_FLG_PRELOAD 0x0004000000ULL 1389 #define ENV_FLG_PROFILE 0x0008000000ULL 1390 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1391 #define ENV_FLG_SIGNAL 0x0020000000ULL 1392 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1393 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1394 #define ENV_FLG_UNREF 0x0100000000ULL 1395 #define ENV_FLG_UNUSED 0x0200000000ULL 1396 #define ENV_FLG_VERBOSE 0x0400000000ULL 1397 #define ENV_FLG_WARN 0x0800000000ULL 1398 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1399 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1400 1401 #ifdef SIEBEL_DISABLE 1402 #define ENV_FLG_FIX_1 0x8000000000ULL 1403 #endif 1404 1405 #define SEL_REPLACE 0x0001 1406 #define SEL_PERMANT 0x0002 1407 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1408 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1409 #define SEL_ACT_STR 0x0400 /* setting string value */ 1410 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1411 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1412 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1413 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1414 1415 /* 1416 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1417 * and len specifies its length (comparing a strings length before the string 1418 * itself speed things up). s2 points to the token itself which has already 1419 * had any leading white-space removed. 1420 */ 1421 static void 1422 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1423 Word *lmtflags, uint_t env_flags, int aout) 1424 { 1425 u_longlong_t variable = 0; 1426 ushort_t select = 0; 1427 const char **str; 1428 Word val = 0; 1429 1430 /* 1431 * Determine whether we're dealing with a replaceable or permanent 1432 * string. 1433 */ 1434 if (env_flags & ENV_TYP_PERMANT) { 1435 /* 1436 * If the string is from a configuration file and defined as 1437 * permanent, assign it as permanent. 1438 */ 1439 select |= SEL_PERMANT; 1440 } else 1441 select |= SEL_REPLACE; 1442 1443 /* 1444 * Parse the variable given. 1445 * 1446 * The LD_AUDIT family. 1447 */ 1448 if (*s1 == 'A') { 1449 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1450 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1451 /* 1452 * Replaceable and permanent audit objects can exist. 1453 */ 1454 select |= SEL_ACT_STR; 1455 if (select & SEL_REPLACE) 1456 str = &rpl_audit; 1457 else { 1458 str = &prm_audit; 1459 rpl_audit = 0; 1460 } 1461 variable = ENV_FLG_AUDIT; 1462 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1463 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1464 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1465 /* 1466 * A specialized variable for plt_exit() use, not 1467 * documented for general use. 1468 */ 1469 select |= SEL_ACT_SPEC_2; 1470 variable = ENV_FLG_AUDIT_ARGS; 1471 } 1472 } 1473 /* 1474 * The LD_BIND family and LD_BREADTH (historic). 1475 */ 1476 else if (*s1 == 'B') { 1477 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1478 MSG_ORIG(MSG_LD_BIND_LAZY), 1479 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1480 select |= SEL_ACT_RT2; 1481 val = RT_FL2_BINDLAZY; 1482 variable = ENV_FLG_BIND_LAZY; 1483 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1484 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1485 select |= SEL_ACT_RT2; 1486 val = RT_FL2_BINDNOW; 1487 variable = ENV_FLG_BIND_NOW; 1488 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1489 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1490 /* 1491 * Another trick, enabled to help debug AOUT 1492 * applications under BCP, but not documented for 1493 * general use. 1494 */ 1495 select |= SEL_ACT_RT; 1496 val = RT_FL_NOBIND; 1497 variable = ENV_FLG_BIND_NOT; 1498 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1499 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1500 /* 1501 * This variable is simply for backward compatibility. 1502 * If this and LD_DEBUG are both specified, only one of 1503 * the strings is going to get processed. 1504 */ 1505 select |= SEL_ACT_SPEC_2; 1506 variable = ENV_FLG_BINDINGS; 1507 #ifndef LD_BREADTH_DISABLED 1508 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1509 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1510 /* 1511 * Besides some old patches this is no longer available. 1512 */ 1513 rtld_flags |= RT_FL_BREADTH; 1514 return; 1515 #endif 1516 } 1517 } 1518 /* 1519 * LD_CONCURRENCY and LD_CONFIG family. 1520 */ 1521 else if (*s1 == 'C') { 1522 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1523 MSG_ORIG(MSG_LD_CONCURRENCY), 1524 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1525 /* 1526 * Waiting in the wings, as concurrency checking isn't 1527 * yet enabled. 1528 */ 1529 select |= SEL_ACT_SPEC_2; 1530 variable = ENV_FLG_CONCURRENCY; 1531 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1532 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1533 /* 1534 * Set by crle(1) to indicate it's building a 1535 * configuration file, not documented for general use. 1536 */ 1537 select |= SEL_ACT_SPEC_2; 1538 variable = ENV_FLG_CONFGEN; 1539 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1540 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1541 /* 1542 * Secure applications must use a default configuration 1543 * file. A setting from a configuration file doesn't 1544 * make sense (given we must be reading a configuration 1545 * file to have gotten this). 1546 */ 1547 if ((rtld_flags & RT_FL_SECURE) || 1548 (env_flags & ENV_TYP_CONFIG)) 1549 return; 1550 select |= SEL_ACT_STR; 1551 str = &config->c_name; 1552 variable = ENV_FLG_CONFIG; 1553 } 1554 } 1555 /* 1556 * The LD_DEBUG family and LD_DEMANGLE. 1557 */ 1558 else if (*s1 == 'D') { 1559 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1560 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1561 select |= SEL_ACT_STR; 1562 if (select & SEL_REPLACE) 1563 str = &rpl_debug; 1564 else { 1565 str = &prm_debug; 1566 rpl_debug = 0; 1567 } 1568 variable = ENV_FLG_DEBUG; 1569 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1570 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1571 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1572 select |= SEL_ACT_STR; 1573 str = &dbg_file; 1574 variable = ENV_FLG_DEBUG_OUTPUT; 1575 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1576 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1577 select |= SEL_ACT_RT; 1578 val = RT_FL_DEMANGLE; 1579 variable = ENV_FLG_DEMANGLE; 1580 } 1581 } 1582 /* 1583 * LD_FLAGS - collect the best variable definition. On completion of 1584 * environment variable processing pass the result to ld_flags_env() 1585 * where they'll be decomposed and passed back to this routine. 1586 */ 1587 else if (*s1 == 'F') { 1588 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1589 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1590 select |= SEL_ACT_SPEC_1; 1591 if (select & SEL_REPLACE) 1592 str = &rpl_ldflags; 1593 else { 1594 str = &prm_ldflags; 1595 rpl_ldflags = 0; 1596 } 1597 variable = ENV_FLG_FLAGS; 1598 } 1599 } 1600 /* 1601 * LD_INIT (internal, used by ldd(1)). 1602 */ 1603 else if (*s1 == 'I') { 1604 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1605 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1606 select |= SEL_ACT_LML; 1607 val = LML_FLG_TRC_INIT; 1608 variable = ENV_FLG_INIT; 1609 } 1610 } 1611 /* 1612 * The LD_LIBRARY_PATH and LD_LOAD families. 1613 */ 1614 else if (*s1 == 'L') { 1615 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1616 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1617 select |= SEL_ACT_SPEC_1; 1618 if (select & SEL_REPLACE) 1619 str = &rpl_libpath; 1620 else { 1621 str = &prm_libpath; 1622 rpl_libpath = 0; 1623 } 1624 variable = ENV_FLG_LIBPATH; 1625 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1627 /* 1628 * Internal use by crle(1), not documented for general 1629 * use. 1630 */ 1631 select |= SEL_ACT_LML; 1632 val = LML_FLG_LOADAVAIL; 1633 variable = ENV_FLG_LOADAVAIL; 1634 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1635 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1636 select |= SEL_ACT_SPEC_2; 1637 variable = ENV_FLG_LOADFLTR; 1638 } 1639 } 1640 /* 1641 * The LD_NO family. 1642 */ 1643 else if (*s1 == 'N') { 1644 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1645 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1646 select |= SEL_ACT_RT; 1647 val = RT_FL_NOAUDIT; 1648 variable = ENV_FLG_NOAUDIT; 1649 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1650 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1651 select |= SEL_ACT_RT; 1652 val = RT_FL_NOAUXFLTR; 1653 variable = ENV_FLG_NOAUXFLTR; 1654 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1655 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1656 select |= SEL_ACT_RT; 1657 val = RT_FL_NOBAPLT; 1658 variable = ENV_FLG_NOBAPLT; 1659 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1660 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1661 select |= SEL_ACT_RT; 1662 val = RT_FL_NOCFG; 1663 variable = ENV_FLG_NOCONFIG; 1664 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1665 MSG_ORIG(MSG_LD_NODIRCONFIG), 1666 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1667 select |= SEL_ACT_RT; 1668 val = RT_FL_NODIRCFG; 1669 variable = ENV_FLG_NODIRCONFIG; 1670 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1671 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1672 select |= SEL_ACT_LMLT; 1673 val = LML_TFLG_NODIRECT; 1674 variable = ENV_FLG_NODIRECT; 1675 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1676 MSG_ORIG(MSG_LD_NOENVCONFIG), 1677 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1678 select |= SEL_ACT_RT; 1679 val = RT_FL_NOENVCFG; 1680 variable = ENV_FLG_NOENVCONFIG; 1681 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1682 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1683 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1684 select |= SEL_ACT_RT2; 1685 val = RT_FL2_NOFLTCFG; 1686 variable = ENV_FLG_NOFLTCONFIG; 1687 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1688 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1689 select |= SEL_ACT_LMLT; 1690 val = LML_TFLG_NOLAZYLD; 1691 variable = ENV_FLG_NOLAZY; 1692 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1693 MSG_ORIG(MSG_LD_NOOBJALTER), 1694 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1695 select |= SEL_ACT_RT; 1696 val = RT_FL_NOOBJALT; 1697 variable = ENV_FLG_NOOBJALTER; 1698 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1699 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1700 select |= SEL_ACT_RT; 1701 val = RT_FL_NOVERSION; 1702 variable = ENV_FLG_NOVERSION; 1703 } 1704 } 1705 /* 1706 * LD_ORIGIN. 1707 */ 1708 else if (*s1 == 'O') { 1709 #ifndef EXPAND_RELATIVE 1710 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1711 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1712 /* 1713 * Besides some old patches this is no longer required. 1714 */ 1715 rtld_flags |= RT_FL_RELATIVE; 1716 } 1717 #endif 1718 return; 1719 } 1720 /* 1721 * LD_PRELOAD and LD_PROFILE family. 1722 */ 1723 else if (*s1 == 'P') { 1724 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1725 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1726 select |= SEL_ACT_STR; 1727 if (select & SEL_REPLACE) 1728 str = &rpl_preload; 1729 else { 1730 str = &prm_preload; 1731 rpl_preload = 0; 1732 } 1733 variable = ENV_FLG_PRELOAD; 1734 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1735 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1736 /* 1737 * Only one user library can be profiled at a time. 1738 */ 1739 select |= SEL_ACT_SPEC_2; 1740 variable = ENV_FLG_PROFILE; 1741 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1742 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1743 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1744 /* 1745 * Only one user library can be profiled at a time. 1746 */ 1747 select |= SEL_ACT_STR; 1748 str = &profile_out; 1749 variable = ENV_FLG_PROFILE_OUTPUT; 1750 } 1751 } 1752 /* 1753 * LD_SIGNAL. 1754 */ 1755 else if (*s1 == 'S') { 1756 if (rtld_flags & RT_FL_SECURE) 1757 return; 1758 if ((len == MSG_LD_SIGNAL_SIZE) && 1759 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1760 MSG_LD_SIGNAL_SIZE) == 0)) { 1761 select |= SEL_ACT_SPEC_2; 1762 variable = ENV_FLG_SIGNAL; 1763 } 1764 } 1765 /* 1766 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1767 * the key to enabling all other ldd(1) specific environment variables. 1768 * In case an auditor is called, which in turn might exec(2) a 1769 * subprocess, this variable is disabled, so that any subprocess 1770 * escapes ldd(1) processing. 1771 */ 1772 else if (*s1 == 'T') { 1773 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1774 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1775 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1776 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1777 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1778 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1779 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1780 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1781 char *s0 = (char *)s1; 1782 1783 select |= SEL_ACT_SPEC_2; 1784 variable = ENV_FLG_TRACE_OBJS; 1785 1786 #if defined(__sparc) || defined(__x86) 1787 /* 1788 * The simplest way to "disable" this variable is to 1789 * truncate this string to "LD_'\0'". This string is 1790 * ignored by any ld.so.1 environment processing. 1791 * Use of such interfaces as unsetenv(3c) are overkill, 1792 * and would drag too much libc implementation detail 1793 * into ld.so.1. 1794 */ 1795 *s0 = '\0'; 1796 #else 1797 /* 1798 * Verify that the above write is appropriate for any new platforms. 1799 */ 1800 #error unsupported architecture! 1801 #endif 1802 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1803 MSG_ORIG(MSG_LD_TRACE_PTHS), 1804 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1805 select |= SEL_ACT_LML; 1806 val = LML_FLG_TRC_SEARCH; 1807 variable = ENV_FLG_TRACE_PTHS; 1808 } 1809 } 1810 /* 1811 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1812 */ 1813 else if (*s1 == 'U') { 1814 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1815 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1816 select |= SEL_ACT_LML; 1817 val = LML_FLG_TRC_UNREF; 1818 variable = ENV_FLG_UNREF; 1819 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1820 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1821 select |= SEL_ACT_LML; 1822 val = LML_FLG_TRC_UNUSED; 1823 variable = ENV_FLG_UNUSED; 1824 } 1825 } 1826 /* 1827 * LD_VERBOSE (internal, used by ldd(1)). 1828 */ 1829 else if (*s1 == 'V') { 1830 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1831 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1832 select |= SEL_ACT_LML; 1833 val = LML_FLG_TRC_VERBOSE; 1834 variable = ENV_FLG_VERBOSE; 1835 } 1836 } 1837 /* 1838 * LD_WARN (internal, used by ldd(1)). 1839 */ 1840 else if (*s1 == 'W') { 1841 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1842 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1843 select |= SEL_ACT_LML; 1844 val = LML_FLG_TRC_WARN; 1845 variable = ENV_FLG_WARN; 1846 } 1847 #ifdef SIEBEL_DISABLE 1848 } 1849 /* 1850 * LD__FIX__ (undocumented, enable future technology that can't be 1851 * delivered in a patch release). 1852 */ 1853 else if (*s1 == '_') { 1854 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1855 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1856 select |= SEL_ACT_RT; 1857 val = RT_FL_DISFIX_1; 1858 variable = ENV_FLG_FIX_1; 1859 } 1860 #endif 1861 } 1862 if (variable == 0) 1863 return; 1864 1865 /* 1866 * If the variable is already processed with ISA specific variable, 1867 * no further processing needed. 1868 */ 1869 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1870 ((select & SEL_PERMANT) && (prmisa & variable))) 1871 return; 1872 1873 /* 1874 * Now mark the appropriate variables. 1875 * If the replaceable variable is already set, then the 1876 * process environment variable must be set. Any replaceable 1877 * variable specified in a configuration file can be ignored. 1878 */ 1879 if (env_flags & ENV_TYP_ISA) { 1880 /* 1881 * This is ISA setting. We do the setting 1882 * even if s2 is NULL. 1883 * If s2 is NULL, we might need to undo 1884 * the setting. 1885 */ 1886 if (select & SEL_REPLACE) { 1887 if (rplisa & variable) 1888 return; 1889 rplisa |= variable; 1890 } else { 1891 prmisa |= variable; 1892 } 1893 } else if (s2) { 1894 /* 1895 * This is non0-ISA setting 1896 */ 1897 if (select & SEL_REPLACE) { 1898 if (rplgen & variable) 1899 return; 1900 rplgen |= variable; 1901 } else 1902 prmgen |= variable; 1903 } else 1904 /* 1905 * This is non-ISA setting which 1906 * can be ignored. 1907 */ 1908 return; 1909 1910 /* 1911 * Now perform the setting. 1912 */ 1913 if (select & SEL_ACT_RT) { 1914 if (s2) 1915 rtld_flags |= val; 1916 else 1917 rtld_flags &= ~val; 1918 } else if (select & SEL_ACT_RT2) { 1919 if (s2) 1920 rtld_flags2 |= val; 1921 else 1922 rtld_flags2 &= ~val; 1923 } else if (select & SEL_ACT_STR) 1924 *str = s2; 1925 else if (select & SEL_ACT_LML) { 1926 if (s2) 1927 *lmflags |= val; 1928 else 1929 *lmflags &= ~val; 1930 } else if (select & SEL_ACT_LMLT) { 1931 if (s2) 1932 *lmtflags |= val; 1933 else 1934 *lmtflags &= ~val; 1935 } else if (select & SEL_ACT_SPEC_1) { 1936 /* 1937 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1938 */ 1939 *str = s2; 1940 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1941 if (s2) { 1942 if (variable == ENV_FLG_FLAGS) 1943 env_info |= ENV_INF_FLAGCFG; 1944 else 1945 env_info |= ENV_INF_PATHCFG; 1946 } else { 1947 if (variable == ENV_FLG_FLAGS) 1948 env_info &= ~ENV_INF_FLAGCFG; 1949 else 1950 env_info &= ~ENV_INF_PATHCFG; 1951 } 1952 } 1953 } else if (select & SEL_ACT_SPEC_2) { 1954 /* 1955 * variables can be: ENV_FLG_ 1956 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1957 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1958 */ 1959 if (variable == ENV_FLG_AUDIT_ARGS) { 1960 if (s2) { 1961 audit_argcnt = atoi(s2); 1962 audit_argcnt += audit_argcnt % 2; 1963 } else 1964 audit_argcnt = 0; 1965 } else if (variable == ENV_FLG_BINDINGS) { 1966 if (s2) 1967 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1968 else 1969 rpl_debug = 0; 1970 } else if (variable == ENV_FLG_CONCURRENCY) { 1971 if (s2) 1972 rtld_flags &= ~RT_FL_NOCONCUR; 1973 else 1974 rtld_flags |= RT_FL_NOCONCUR; 1975 } else if (variable == ENV_FLG_CONFGEN) { 1976 if (s2) { 1977 rtld_flags |= RT_FL_CONFGEN; 1978 *lmflags |= LML_FLG_IGNRELERR; 1979 } else { 1980 rtld_flags &= ~RT_FL_CONFGEN; 1981 *lmflags &= ~LML_FLG_IGNRELERR; 1982 } 1983 } else if (variable == ENV_FLG_LOADFLTR) { 1984 if (s2) { 1985 *lmtflags |= LML_TFLG_LOADFLTR; 1986 if (*s2 == '2') 1987 rtld_flags |= RT_FL_WARNFLTR; 1988 } else { 1989 *lmtflags &= ~LML_TFLG_LOADFLTR; 1990 rtld_flags &= ~RT_FL_WARNFLTR; 1991 } 1992 } else if (variable == ENV_FLG_PROFILE) { 1993 profile_name = s2; 1994 if (s2) { 1995 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1996 return; 1997 } 1998 if (rtld_flags & RT_FL_SECURE) { 1999 profile_lib = 2000 #if defined(_ELF64) 2001 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2002 #else 2003 MSG_ORIG(MSG_PTH_LDPROFSE); 2004 #endif 2005 } else { 2006 profile_lib = 2007 #if defined(_ELF64) 2008 MSG_ORIG(MSG_PTH_LDPROF_64); 2009 #else 2010 MSG_ORIG(MSG_PTH_LDPROF); 2011 #endif 2012 } 2013 } else 2014 profile_lib = 0; 2015 } else if (variable == ENV_FLG_SIGNAL) { 2016 killsig = s2 ? atoi(s2) : SIGKILL; 2017 } else if (variable == ENV_FLG_TRACE_OBJS) { 2018 if (s2) { 2019 *lmflags |= LML_FLG_TRC_ENABLE; 2020 if (*s2 == '2') 2021 *lmflags |= LML_FLG_TRC_LDDSTUB; 2022 } else 2023 *lmflags &= 2024 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2025 } 2026 } 2027 } 2028 2029 /* 2030 * Determine whether we have an architecture specific environment variable. 2031 * If we do, and we're the wrong architecture, it'll just get ignored. 2032 * Otherwise the variable is processed in it's architecture neutral form. 2033 */ 2034 static int 2035 ld_arch_env(const char *s1, size_t *len) 2036 { 2037 size_t _len = *len - 3; 2038 2039 if (s1[_len++] == '_') { 2040 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2041 #if defined(_ELF64) 2042 return (ENV_TYP_IGNORE); 2043 #else 2044 *len = *len - 3; 2045 return (ENV_TYP_ISA); 2046 #endif 2047 } 2048 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2049 #if defined(_ELF64) 2050 *len = *len - 3; 2051 return (ENV_TYP_ISA); 2052 #else 2053 return (ENV_TYP_IGNORE); 2054 #endif 2055 } 2056 } 2057 return (0); 2058 } 2059 2060 2061 /* 2062 * Process an LD_FLAGS environment variable. The value can be a comma 2063 * separated set of tokens, which are sent (in upper case) into the generic 2064 * LD_XXXX environment variable engine. For example: 2065 * 2066 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2067 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2068 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2069 * or 2070 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2071 */ 2072 static int 2073 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2074 uint_t env_flags, int aout) 2075 { 2076 char *nstr, *sstr, *estr = 0; 2077 size_t nlen, len; 2078 2079 if (str == 0) 2080 return (0); 2081 2082 /* 2083 * Create a new string as we're going to transform the token(s) into 2084 * uppercase and separate tokens with nulls. 2085 */ 2086 len = strlen(str); 2087 if ((nstr = malloc(len + 1)) == 0) 2088 return (1); 2089 (void) strcpy(nstr, str); 2090 2091 for (sstr = nstr; sstr; sstr++, len--) { 2092 int flags; 2093 2094 if ((*sstr != '\0') && (*sstr != ',')) { 2095 if (estr == 0) { 2096 if (*sstr == '=') 2097 estr = sstr; 2098 else { 2099 /* 2100 * Translate token to uppercase. Don't 2101 * use toupper(3C) as including this 2102 * code doubles the size of ld.so.1. 2103 */ 2104 if ((*sstr >= 'a') && (*sstr <= 'z')) 2105 *sstr = *sstr - ('a' - 'A'); 2106 } 2107 } 2108 continue; 2109 } 2110 2111 *sstr = '\0'; 2112 if (estr) { 2113 nlen = estr - nstr; 2114 if ((*++estr == '\0') || (*estr == ',')) 2115 estr = 0; 2116 } else 2117 nlen = sstr - nstr; 2118 2119 /* 2120 * Fabricate a boolean definition for any unqualified variable. 2121 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2122 * The value is sufficient to assert any boolean variables, plus 2123 * the term "(null)" is specifically chosen in case someone 2124 * mistakenly supplies something like LD_FLAGS=library_path. 2125 */ 2126 if (estr == 0) 2127 estr = (char *)MSG_INTL(MSG_STR_NULL); 2128 2129 /* 2130 * Determine whether the environment variable is 32- or 64-bit 2131 * specific. The length, len, will reflect the architecture 2132 * neutral portion of the string. 2133 */ 2134 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2135 ld_generic_env(nstr, nlen, estr, lmflags, 2136 lmtflags, (env_flags | flags), aout); 2137 } 2138 if (len == 0) 2139 return (0); 2140 2141 nstr = sstr + 1; 2142 estr = 0; 2143 } 2144 return (0); 2145 } 2146 2147 2148 /* 2149 * Process a single environment string. Only strings starting with `LD_' are 2150 * reserved for our use. By convention, all strings should be of the form 2151 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2152 * functionality is enabled. Also pick off applicable locale variables. 2153 */ 2154 #define LOC_LANG 1 2155 #define LOC_MESG 2 2156 #define LOC_ALL 3 2157 2158 static void 2159 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2160 int aout) 2161 { 2162 const char *s2; 2163 static size_t loc = 0; 2164 2165 if (*s1++ != 'L') 2166 return; 2167 2168 /* 2169 * See if we have any locale environment settings. These environment 2170 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2171 * is higher than LANG. 2172 */ 2173 s2 = s1; 2174 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2175 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2176 s2 += MSG_LC_ALL_SIZE; 2177 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2178 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2179 loc = LOC_ALL; 2180 } 2181 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2182 MSG_LC_MESSAGES_SIZE) == 0) { 2183 s2 += MSG_LC_MESSAGES_SIZE; 2184 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2185 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2186 loc = LOC_MESG; 2187 } 2188 } 2189 return; 2190 } 2191 2192 s2 = s1; 2193 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2194 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2195 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2196 loc = LOC_LANG; 2197 return; 2198 } 2199 2200 /* 2201 * Pick off any LD_XXXX environment variables. 2202 */ 2203 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2204 size_t len; 2205 int flags; 2206 2207 /* 2208 * In a branded process we must ignore all LD_XXXX env vars 2209 * because they are intended for the brand's linker. 2210 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2211 */ 2212 if (rtld_flags2 & RT_FL2_BRANDED) { 2213 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2214 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2215 return; 2216 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2217 } 2218 2219 /* 2220 * Environment variables with no value (ie. LD_XXXX=) typically 2221 * have no impact, however if environment variables are defined 2222 * within a configuration file, these null user settings can be 2223 * used to disable any configuration replaceable definitions. 2224 */ 2225 if ((s2 = strchr(s1, '=')) == 0) { 2226 len = strlen(s1); 2227 s2 = 0; 2228 } else if (*++s2 == '\0') { 2229 len = strlen(s1) - 1; 2230 s2 = 0; 2231 } else { 2232 len = s2 - s1 - 1; 2233 while (isspace(*s2)) 2234 s2++; 2235 } 2236 2237 /* 2238 * Determine whether the environment variable is 32- or 64-bit 2239 * specific. The length, len, will reflect the architecture 2240 * neutral portion of the string. 2241 */ 2242 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2243 return; 2244 env_flags |= flags; 2245 2246 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2247 } 2248 } 2249 2250 /* 2251 * Internal getenv routine. Called immediately after ld.so.1 initializes 2252 * itself. 2253 */ 2254 int 2255 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2256 { 2257 char *locale; 2258 2259 if (envp == (const char **)0) 2260 return (0); 2261 2262 while (*envp != (const char *)0) 2263 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2264 2265 /* 2266 * Having collected the best representation of any LD_FLAGS, process 2267 * these strings. 2268 */ 2269 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2270 return (1); 2271 2272 /* 2273 * Don't allow environment controlled auditing when tracing or if 2274 * explicitly disabled. Trigger all tracing modes from 2275 * LML_FLG_TRC_ENABLE. 2276 */ 2277 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2278 rpl_audit = profile_lib = profile_name = 0; 2279 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2280 *lmflags &= ~LML_MSK_TRC; 2281 2282 /* 2283 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2284 */ 2285 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2286 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2287 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2288 2289 /* 2290 * If we have a locale setting make sure its worth processing further. 2291 * C and POSIX locales don't need any processing. In addition, to 2292 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2293 * the locale to contain a segment that leads upward in the file system 2294 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2295 * the /usr/lib/locale hierarchy, there is no need to extensively 2296 * validate the mode or ownership of any message file (as libc's 2297 * generic handling of message files does). Duplicate the string so 2298 * that new locale setting can generically cleanup any previous locales. 2299 */ 2300 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != 0) { 2301 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2302 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2303 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2304 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 0; 2305 else 2306 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2307 } 2308 return (0); 2309 } 2310 2311 /* 2312 * Configuration environment processing. Called after the a.out has been 2313 * processed (as the a.out can specify its own configuration file). 2314 */ 2315 int 2316 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2317 { 2318 Word * lmflags = &(lml_main.lm_flags); 2319 Word * lmtflags = &(lml_main.lm_tflags); 2320 2321 if (envtbl == (Rtc_env *)0) 2322 return (0); 2323 2324 while (envtbl->env_str) { 2325 uint_t env_flags = ENV_TYP_CONFIG; 2326 2327 if (envtbl->env_flags & RTC_ENV_PERMANT) 2328 env_flags |= ENV_TYP_PERMANT; 2329 2330 ld_str_env((const char *)(envtbl->env_str + addr), 2331 lmflags, lmtflags, env_flags, 0); 2332 envtbl++; 2333 } 2334 2335 /* 2336 * Having collected the best representation of any LD_FLAGS, process 2337 * these strings. 2338 */ 2339 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2340 return (1); 2341 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2342 aout) == 1) 2343 return (1); 2344 2345 /* 2346 * Don't allow environment controlled auditing when tracing or if 2347 * explicitly disabled. Trigger all tracing modes from 2348 * LML_FLG_TRC_ENABLE. 2349 */ 2350 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2351 prm_audit = profile_lib = profile_name = 0; 2352 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2353 *lmflags &= ~LML_MSK_TRC; 2354 2355 return (0); 2356 } 2357 2358 int 2359 dowrite(Prfbuf * prf) 2360 { 2361 /* 2362 * We do not have a valid file descriptor, so we are unable 2363 * to flush the buffer. 2364 */ 2365 if (prf->pr_fd == -1) 2366 return (0); 2367 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2368 prf->pr_cur = prf->pr_buf; 2369 return (1); 2370 } 2371 2372 /* 2373 * Simplified printing. The following conversion specifications are supported: 2374 * 2375 * % [#] [-] [min field width] [. precision] s|d|x|c 2376 * 2377 * 2378 * dorprf takes the output buffer in the form of Prfbuf which permits 2379 * the verification of the output buffer size and the concatenation 2380 * of data to an already existing output buffer. The Prfbuf 2381 * structure contains the following: 2382 * 2383 * pr_buf pointer to the beginning of the output buffer. 2384 * pr_cur pointer to the next available byte in the output buffer. By 2385 * setting pr_cur ahead of pr_buf you can append to an already 2386 * existing buffer. 2387 * pr_len the size of the output buffer. By setting pr_len to '0' you 2388 * disable protection from overflows in the output buffer. 2389 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2390 * output to. If pr_fd is set to '-1' then it's assumed there is 2391 * no output buffer, and doprf() will return with an error to 2392 * indicate an output buffer overflow. If pr_fd is > -1 then when 2393 * the output buffer is filled it will be flushed to pr_fd and will 2394 * then be available for additional data. 2395 */ 2396 #define FLG_UT_MINUS 0x0001 /* - */ 2397 #define FLG_UT_SHARP 0x0002 /* # */ 2398 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2399 2400 /* 2401 * This macro is for use from within doprf only. It is to be used for checking 2402 * the output buffer size and placing characters into the buffer. 2403 */ 2404 #define PUTC(c) \ 2405 { \ 2406 char tmpc; \ 2407 \ 2408 tmpc = (c); \ 2409 if (bufsiz && (bp >= bufend)) { \ 2410 prf->pr_cur = bp; \ 2411 if (dowrite(prf) == 0) \ 2412 return (0); \ 2413 bp = prf->pr_cur; \ 2414 } \ 2415 *bp++ = tmpc; \ 2416 } 2417 2418 /* 2419 * Define a local buffer size for building a numeric value - large enough to 2420 * hold a 64-bit value. 2421 */ 2422 #define NUM_SIZE 22 2423 2424 size_t 2425 doprf(const char *format, va_list args, Prfbuf *prf) 2426 { 2427 char c; 2428 char *bp = prf->pr_cur; 2429 char *bufend = prf->pr_buf + prf->pr_len; 2430 size_t bufsiz = prf->pr_len; 2431 2432 while ((c = *format++) != '\0') { 2433 if (c != '%') { 2434 PUTC(c); 2435 } else { 2436 int base = 0, flag = 0, width = 0, prec = 0; 2437 size_t _i; 2438 int _c, _n; 2439 char *_s; 2440 int ls = 0; 2441 again: 2442 c = *format++; 2443 switch (c) { 2444 case '-': 2445 flag |= FLG_UT_MINUS; 2446 goto again; 2447 case '#': 2448 flag |= FLG_UT_SHARP; 2449 goto again; 2450 case '.': 2451 flag |= FLG_UT_DOTSEEN; 2452 goto again; 2453 case '0': 2454 case '1': 2455 case '2': 2456 case '3': 2457 case '4': 2458 case '5': 2459 case '6': 2460 case '7': 2461 case '8': 2462 case '9': 2463 if (flag & FLG_UT_DOTSEEN) 2464 prec = (prec * 10) + c - '0'; 2465 else 2466 width = (width * 10) + c - '0'; 2467 goto again; 2468 case 'x': 2469 case 'X': 2470 base = 16; 2471 break; 2472 case 'd': 2473 case 'D': 2474 case 'u': 2475 base = 10; 2476 flag &= ~FLG_UT_SHARP; 2477 break; 2478 case 'l': 2479 base = 10; 2480 ls++; /* number of l's (long or long long) */ 2481 if ((*format == 'l') || 2482 (*format == 'd') || (*format == 'D') || 2483 (*format == 'x') || (*format == 'X') || 2484 (*format == 'o') || (*format == 'O')) 2485 goto again; 2486 break; 2487 case 'o': 2488 case 'O': 2489 base = 8; 2490 break; 2491 case 'c': 2492 _c = va_arg(args, int); 2493 2494 for (_i = 24; _i > 0; _i -= 8) { 2495 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2496 PUTC(c); 2497 } 2498 } 2499 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2500 PUTC(c); 2501 } 2502 break; 2503 case 's': 2504 _s = va_arg(args, char *); 2505 _i = strlen(_s); 2506 /* LINTED */ 2507 _n = (int)(width - _i); 2508 if (!prec) 2509 /* LINTED */ 2510 prec = (int)_i; 2511 2512 if (width && !(flag & FLG_UT_MINUS)) { 2513 while (_n-- > 0) 2514 PUTC(' '); 2515 } 2516 while (((c = *_s++) != 0) && prec--) { 2517 PUTC(c); 2518 } 2519 if (width && (flag & FLG_UT_MINUS)) { 2520 while (_n-- > 0) 2521 PUTC(' '); 2522 } 2523 break; 2524 case '%': 2525 PUTC('%'); 2526 break; 2527 default: 2528 break; 2529 } 2530 2531 /* 2532 * Numeric processing 2533 */ 2534 if (base) { 2535 char local[NUM_SIZE]; 2536 size_t ssize = 0, psize = 0; 2537 const char *string = 2538 MSG_ORIG(MSG_STR_HEXNUM); 2539 const char *prefix = 2540 MSG_ORIG(MSG_STR_EMPTY); 2541 u_longlong_t num; 2542 2543 switch (ls) { 2544 case 0: /* int */ 2545 num = (u_longlong_t) 2546 va_arg(args, uint_t); 2547 break; 2548 case 1: /* long */ 2549 num = (u_longlong_t) 2550 va_arg(args, ulong_t); 2551 break; 2552 case 2: /* long long */ 2553 num = va_arg(args, u_longlong_t); 2554 break; 2555 } 2556 2557 if (flag & FLG_UT_SHARP) { 2558 if (base == 16) { 2559 prefix = MSG_ORIG(MSG_STR_HEX); 2560 psize = 2; 2561 } else { 2562 prefix = MSG_ORIG(MSG_STR_ZERO); 2563 psize = 1; 2564 } 2565 } 2566 if ((base == 10) && (long)num < 0) { 2567 prefix = MSG_ORIG(MSG_STR_NEGATE); 2568 psize = MSG_STR_NEGATE_SIZE; 2569 num = (u_longlong_t)(-(longlong_t)num); 2570 } 2571 2572 /* 2573 * Convert the numeric value into a local 2574 * string (stored in reverse order). 2575 */ 2576 _s = local; 2577 do { 2578 *_s++ = string[num % base]; 2579 num /= base; 2580 ssize++; 2581 } while (num); 2582 2583 ASSERT(ssize < sizeof (local)); 2584 2585 /* 2586 * Provide any precision or width padding. 2587 */ 2588 if (prec) { 2589 /* LINTED */ 2590 _n = (int)(prec - ssize); 2591 while ((_n-- > 0) && 2592 (ssize < sizeof (local))) { 2593 *_s++ = '0'; 2594 ssize++; 2595 } 2596 } 2597 if (width && !(flag & FLG_UT_MINUS)) { 2598 /* LINTED */ 2599 _n = (int)(width - ssize - psize); 2600 while (_n-- > 0) { 2601 PUTC(' '); 2602 } 2603 } 2604 2605 /* 2606 * Print any prefix and the numeric string 2607 */ 2608 while (*prefix) 2609 PUTC(*prefix++); 2610 do { 2611 PUTC(*--_s); 2612 } while (_s > local); 2613 2614 /* 2615 * Provide any width padding. 2616 */ 2617 if (width && (flag & FLG_UT_MINUS)) { 2618 /* LINTED */ 2619 _n = (int)(width - ssize - psize); 2620 while (_n-- > 0) 2621 PUTC(' '); 2622 } 2623 } 2624 } 2625 } 2626 2627 PUTC('\0'); 2628 prf->pr_cur = bp; 2629 return (1); 2630 } 2631 2632 static int 2633 doprintf(const char *format, va_list args, Prfbuf *prf) 2634 { 2635 char *ocur = prf->pr_cur; 2636 2637 if (doprf(format, args, prf) == 0) 2638 return (0); 2639 /* LINTED */ 2640 return ((int)(prf->pr_cur - ocur)); 2641 } 2642 2643 /* VARARGS2 */ 2644 int 2645 sprintf(char *buf, const char *format, ...) 2646 { 2647 va_list args; 2648 int len; 2649 Prfbuf prf; 2650 2651 va_start(args, format); 2652 prf.pr_buf = prf.pr_cur = buf; 2653 prf.pr_len = 0; 2654 prf.pr_fd = -1; 2655 len = doprintf(format, args, &prf); 2656 va_end(args); 2657 2658 /* 2659 * sprintf() return value excludes the terminating null byte. 2660 */ 2661 return (len - 1); 2662 } 2663 2664 /* VARARGS3 */ 2665 int 2666 snprintf(char *buf, size_t n, const char *format, ...) 2667 { 2668 va_list args; 2669 int len; 2670 Prfbuf prf; 2671 2672 va_start(args, format); 2673 prf.pr_buf = prf.pr_cur = buf; 2674 prf.pr_len = n; 2675 prf.pr_fd = -1; 2676 len = doprintf(format, args, &prf); 2677 va_end(args); 2678 2679 return (len); 2680 } 2681 2682 /* VARARGS2 */ 2683 int 2684 bufprint(Prfbuf *prf, const char *format, ...) 2685 { 2686 va_list args; 2687 int len; 2688 2689 va_start(args, format); 2690 len = doprintf(format, args, prf); 2691 va_end(args); 2692 2693 return (len); 2694 } 2695 2696 /*PRINTFLIKE1*/ 2697 int 2698 printf(const char *format, ...) 2699 { 2700 va_list args; 2701 char buffer[ERRSIZE]; 2702 Prfbuf prf; 2703 2704 va_start(args, format); 2705 prf.pr_buf = prf.pr_cur = buffer; 2706 prf.pr_len = ERRSIZE; 2707 prf.pr_fd = 1; 2708 (void) doprf(format, args, &prf); 2709 va_end(args); 2710 /* 2711 * Trim trailing '\0' form buffer 2712 */ 2713 prf.pr_cur--; 2714 return (dowrite(&prf)); 2715 } 2716 2717 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2718 2719 /*PRINTFLIKE3*/ 2720 void 2721 eprintf(Lm_list *lml, Error error, const char *format, ...) 2722 { 2723 va_list args; 2724 int overflow = 0; 2725 static int lock = 0; 2726 Prfbuf prf; 2727 2728 if (lock || (nextptr == (errbuf + ERRSIZE))) 2729 return; 2730 2731 /* 2732 * Note: this lock is here to prevent the same thread from recursively 2733 * entering itself during a eprintf. ie: during eprintf malloc() fails 2734 * and we try and call eprintf ... and then malloc() fails .... 2735 */ 2736 lock = 1; 2737 2738 /* 2739 * If we have completed startup initialization, all error messages 2740 * must be saved. These are reported through dlerror(). If we're 2741 * still in the initialization stage, output the error directly and 2742 * add a newline. 2743 */ 2744 va_start(args, format); 2745 2746 prf.pr_buf = prf.pr_cur = nextptr; 2747 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2748 2749 if (!(rtld_flags & RT_FL_APPLIC)) 2750 prf.pr_fd = 2; 2751 else 2752 prf.pr_fd = -1; 2753 2754 if (error > ERR_NONE) { 2755 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2756 error = ERR_WARNING; 2757 if (error == ERR_WARNING) { 2758 if (err_strs[ERR_WARNING] == 0) 2759 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2760 } else if (error == ERR_FATAL) { 2761 if (err_strs[ERR_FATAL] == 0) 2762 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2763 } else if (error == ERR_ELF) { 2764 if (err_strs[ERR_ELF] == 0) 2765 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2766 } 2767 if (procname) { 2768 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2769 rtldname, procname, err_strs[error]) == 0) 2770 overflow = 1; 2771 } else { 2772 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2773 rtldname, err_strs[error]) == 0) 2774 overflow = 1; 2775 } 2776 if (overflow == 0) { 2777 /* 2778 * Remove the terminating '\0'. 2779 */ 2780 prf.pr_cur--; 2781 } 2782 } 2783 2784 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2785 overflow = 1; 2786 2787 /* 2788 * If this is an ELF error, it will have been generated by a support 2789 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2790 * ELF error messages as it doesn't interact with libelf. Determine the 2791 * ELF error string. 2792 */ 2793 if ((overflow == 0) && (error == ERR_ELF)) { 2794 static int (*elfeno)() = 0; 2795 static const char *(*elfemg)(); 2796 const char *emsg; 2797 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2798 2799 if (NEXT(lmp) && (elfeno == 0)) { 2800 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2801 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2802 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2803 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2804 elfeno = 0; 2805 } 2806 2807 /* 2808 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2809 */ 2810 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2811 prf.pr_cur--; 2812 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2813 emsg) == 0) 2814 overflow = 1; 2815 } 2816 } 2817 2818 /* 2819 * Push out any message that's been built. Note, in the case of an 2820 * overflow condition, this message may be incomplete, in which case 2821 * make sure any partial string is null terminated. 2822 */ 2823 if (overflow) 2824 *(prf.pr_cur) = '\0'; 2825 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2826 *(prf.pr_cur - 1) = '\n'; 2827 (void) dowrite(&prf); 2828 } 2829 2830 DBG_CALL(Dbg_util_str(lml, nextptr)); 2831 va_end(args); 2832 2833 /* 2834 * Determine if there was insufficient space left in the buffer to 2835 * complete the message. If so, we'll have printed out as much as had 2836 * been processed if we're not yet executing the application. 2837 * Otherwise, there will be some debugging diagnostic indicating 2838 * as much of the error message as possible. Write out a final buffer 2839 * overflow diagnostic - unlocalized, so we don't chance more errors. 2840 */ 2841 if (overflow) { 2842 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2843 2844 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2845 lasterr = str; 2846 2847 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2848 (void) write(2, str, strlen(str)); 2849 (void) write(2, MSG_ORIG(MSG_STR_NL), 2850 MSG_STR_NL_SIZE); 2851 } 2852 } 2853 DBG_CALL(Dbg_util_str(lml, str)); 2854 2855 lock = 0; 2856 nextptr = errbuf + ERRSIZE; 2857 return; 2858 } 2859 2860 /* 2861 * If the application has started, then error messages are being saved 2862 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2863 * the case of a fatal error. In this case, establish the next error 2864 * pointer. If we haven't started the application, the whole message 2865 * buffer can be reused. 2866 */ 2867 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2868 lasterr = nextptr; 2869 2870 /* 2871 * Note, should we encounter an error such as ENOMEM, there may 2872 * be a number of the same error messages (ie. an operation 2873 * fails with ENOMEM, and then the attempts to construct the 2874 * error message itself, which incurs additional ENOMEM errors). 2875 * Compare any previous error message with the one we've just 2876 * created to prevent any duplication clutter. 2877 */ 2878 if ((rtld_flags & RT_FL_APPLIC) && 2879 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2880 prevptr = nextptr; 2881 nextptr = prf.pr_cur; 2882 *nextptr = '\0'; 2883 } 2884 } 2885 lock = 0; 2886 } 2887 2888 2889 #if DEBUG 2890 /* 2891 * Provide assfail() for ASSERT() statements, 2892 * see <sys/debug.h> for further details. 2893 */ 2894 int 2895 assfail(const char *a, const char *f, int l) 2896 { 2897 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2898 (void) _lwp_kill(_lwp_self(), SIGABRT); 2899 return (0); 2900 } 2901 #endif 2902 2903 /* 2904 * Exit. If we arrive here with a non zero status it's because of a fatal 2905 * error condition (most commonly a relocation error). If the application has 2906 * already had control, then the actual fatal error message will have been 2907 * recorded in the dlerror() message buffer. Print the message before really 2908 * exiting. 2909 */ 2910 void 2911 rtldexit(Lm_list * lml, int status) 2912 { 2913 if (status) { 2914 if (rtld_flags & RT_FL_APPLIC) { 2915 /* 2916 * If the error buffer has been used, write out all 2917 * pending messages - lasterr is simply a pointer to 2918 * the last message in this buffer. However, if the 2919 * buffer couldn't be created at all, lasterr points 2920 * to a constant error message string. 2921 */ 2922 if (*errbuf) { 2923 char *errptr = errbuf; 2924 char *errend = errbuf + ERRSIZE; 2925 2926 while ((errptr < errend) && *errptr) { 2927 size_t size = strlen(errptr); 2928 (void) write(2, errptr, size); 2929 (void) write(2, MSG_ORIG(MSG_STR_NL), 2930 MSG_STR_NL_SIZE); 2931 errptr += (size + 1); 2932 } 2933 } 2934 if (lasterr && ((lasterr < errbuf) || 2935 (lasterr > (errbuf + ERRSIZE)))) { 2936 (void) write(2, lasterr, strlen(lasterr)); 2937 (void) write(2, MSG_ORIG(MSG_STR_NL), 2938 MSG_STR_NL_SIZE); 2939 } 2940 } 2941 leave(lml); 2942 (void) _lwp_kill(_lwp_self(), killsig); 2943 } 2944 _exit(status); 2945 } 2946 2947 /* 2948 * Routines to co-ordinate the opening of /dev/zero and /proc. 2949 * dz_fd is exported for possible use by libld.so, and to insure it gets 2950 * closed on leaving ld.so.1. 2951 */ 2952 int dz_fd = FD_UNAVAIL; 2953 2954 void 2955 dz_init(int fd) 2956 { 2957 dz_fd = fd; 2958 } 2959 2960 2961 /* 2962 * mmap() a page from MAP_ANON 2963 * 2964 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2965 * not only mmap(MAP_ANON) but to also probe if it is available 2966 * on the current OS. 2967 */ 2968 Am_ret 2969 anon_map(Lm_list *lml, caddr_t *addr, size_t len, int prot, int flags) 2970 { 2971 #if defined(MAP_ANON) 2972 static int noanon = 0; 2973 caddr_t va; 2974 2975 if (noanon == 0) { 2976 if ((va = (caddr_t)mmap(*addr, len, prot, 2977 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2978 *addr = va; 2979 return (AM_OK); 2980 } 2981 2982 if ((errno != EBADF) && (errno != EINVAL)) { 2983 int err = errno; 2984 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2985 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2986 return (AM_ERROR); 2987 } else 2988 noanon = 1; 2989 } 2990 #endif 2991 return (AM_NOSUP); 2992 } 2993 2994 /* 2995 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2996 * 2997 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2998 * behavior for older systems.) 2999 */ 3000 caddr_t 3001 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3002 { 3003 caddr_t va; 3004 int err; 3005 Am_ret amret; 3006 3007 amret = anon_map(lml, &addr, len, prot, flags); 3008 3009 if (amret == AM_OK) 3010 return (addr); 3011 if (amret == AM_ERROR) 3012 return (MAP_FAILED); 3013 3014 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 3015 3016 if (dz_fd == FD_UNAVAIL) { 3017 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 3018 O_RDONLY)) == FD_UNAVAIL) { 3019 err = errno; 3020 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3021 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3022 return (MAP_FAILED); 3023 } 3024 } 3025 3026 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 3027 err = errno; 3028 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3029 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 3030 } 3031 return (va); 3032 } 3033 3034 static int pr_fd = FD_UNAVAIL; 3035 3036 int 3037 pr_open(Lm_list *lml) 3038 { 3039 char proc[16]; 3040 3041 if (pr_fd == FD_UNAVAIL) { 3042 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 3043 (int)getpid()); 3044 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 3045 int err = errno; 3046 3047 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 3048 strerror(err)); 3049 } 3050 } 3051 return (pr_fd); 3052 } 3053 3054 static int nu_fd = FD_UNAVAIL; 3055 3056 caddr_t 3057 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3058 { 3059 caddr_t va; 3060 int err; 3061 3062 if (nu_fd == FD_UNAVAIL) { 3063 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3064 O_RDONLY)) == FD_UNAVAIL) { 3065 err = errno; 3066 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3067 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3068 return (MAP_FAILED); 3069 } 3070 } 3071 3072 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3073 MAP_FAILED) { 3074 err = errno; 3075 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3076 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3077 } 3078 return (va); 3079 } 3080 3081 /* 3082 * Generic entry point from user code - simply grabs a lock. 3083 */ 3084 int 3085 enter(void) 3086 { 3087 if (rt_bind_guard(THR_FLG_RTLD)) { 3088 (void) rt_mutex_lock(&rtldlock); 3089 return (1); 3090 } 3091 return (0); 3092 } 3093 3094 /* 3095 * Generate diagnostics as to whether an object has been used. A symbolic 3096 * reference that gets bound to an object marks it as used. Dependencies that 3097 * are unused when RTLD_NOW is in effect should be removed from future builds 3098 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3099 * candidates for lazy-loading. 3100 * Unreferenced objects identify objects that are defined as dependencies but 3101 * are unreferenced by the caller (they may however be referenced by other 3102 * objects within the process, and therefore don't qualify as completely unused. 3103 */ 3104 void 3105 unused(Lm_list *lml) 3106 { 3107 Rt_map *lmp; 3108 int nl = 0; 3109 Word tracing; 3110 3111 /* 3112 * If we're not tracing unused references or dependencies, or debugging 3113 * there's nothing to do. 3114 */ 3115 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3116 3117 if ((tracing == 0) && (DBG_ENABLED == 0)) 3118 return; 3119 3120 /* 3121 * Traverse the link-maps looking for unreferenced or unused 3122 * dependencies. Ignore the first object on a link-map list, as this 3123 * is effectively always used. 3124 */ 3125 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3126 lmp = (Rt_map *)NEXT(lmp)) { 3127 /* 3128 * If tracing unreferenced objects, or under debugging, 3129 * determine whether any of this objects callers haven't 3130 * referenced it. 3131 */ 3132 if ((tracing & LML_FLG_TRC_UNREF) || DBG_ENABLED) { 3133 Bnd_desc ** bdpp; 3134 Aliste off; 3135 3136 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3137 Bnd_desc * bdp = *bdpp; 3138 Rt_map * clmp; 3139 3140 if (bdp->b_flags & BND_REFER) 3141 continue; 3142 3143 clmp = bdp->b_caller; 3144 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3145 continue; 3146 3147 if (nl++ == 0) { 3148 if (tracing & LML_FLG_TRC_UNREF) 3149 (void) printf(MSG_ORIG(MSG_STR_NL)); 3150 else 3151 DBG_CALL(Dbg_util_nl(lml, 3152 DBG_NL_STD)); 3153 } 3154 3155 if (tracing & LML_FLG_TRC_UNREF) 3156 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3157 NAME(lmp), NAME(clmp)); 3158 else 3159 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3160 } 3161 } 3162 3163 /* 3164 * If tracing unused objects simply display those objects that 3165 * haven't been referenced by anyone. 3166 */ 3167 if (FLAGS1(lmp) & FL1_RT_USED) 3168 continue; 3169 3170 if (nl++ == 0) { 3171 if (tracing) 3172 (void) printf(MSG_ORIG(MSG_STR_NL)); 3173 else 3174 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3175 } 3176 if (CYCGROUP(lmp)) { 3177 if (tracing) 3178 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3179 NAME(lmp), CYCGROUP(lmp)); 3180 else 3181 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3182 CYCGROUP(lmp))); 3183 } else { 3184 if (tracing) 3185 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3186 NAME(lmp)); 3187 else 3188 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3189 } 3190 } 3191 3192 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3193 } 3194 3195 /* 3196 * Initialization routine for the Fmap structure. If the fmap structure is 3197 * already in use, any mapping is released. The structure is then initialized 3198 * in preparation for further use. 3199 */ 3200 void 3201 fmap_setup() 3202 { 3203 #if defined(MAP_ALIGN) 3204 /* 3205 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3206 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3207 * should now be freed. 3208 */ 3209 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3210 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3211 3212 /* 3213 * Providing we haven't determined that this system doesn't support 3214 * MAP_ALIGN, initialize the mapping address with the default segment 3215 * alignment. 3216 */ 3217 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3218 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3219 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3220 } else { 3221 fmap->fm_maddr = 0; 3222 fmap->fm_mflags = MAP_PRIVATE; 3223 } 3224 #else 3225 if (fmap->fm_maddr) 3226 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3227 3228 fmap->fm_maddr = 0; 3229 fmap->fm_mflags = MAP_PRIVATE; 3230 #endif 3231 3232 fmap->fm_msize = syspagsz; 3233 fmap->fm_hwptr = 0; 3234 } 3235 3236 /* 3237 * Generic cleanup routine called prior to returning control to the user. 3238 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3239 * released, and any locks dropped. 3240 */ 3241 void 3242 leave(Lm_list *lml) 3243 { 3244 Lm_list *elml = lml; 3245 3246 /* 3247 * Alert the debuggers that the link-maps are consistent. Note, in the 3248 * case of tearing down a whole link-map list, lml will be null. In 3249 * this case use the main link-map list to test for a notification. 3250 */ 3251 if (elml == 0) 3252 elml = &lml_main; 3253 if (elml->lm_flags & LML_FLG_DBNOTIF) 3254 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3255 3256 if (dz_fd != FD_UNAVAIL) { 3257 (void) close(dz_fd); 3258 dz_fd = FD_UNAVAIL; 3259 } 3260 3261 if (pr_fd != FD_UNAVAIL) { 3262 (void) close(pr_fd); 3263 pr_fd = FD_UNAVAIL; 3264 } 3265 3266 if (nu_fd != FD_UNAVAIL) { 3267 (void) close(nu_fd); 3268 nu_fd = FD_UNAVAIL; 3269 } 3270 3271 fmap_setup(); 3272 3273 /* 3274 * Reinitialize error message pointer, and any overflow indication. 3275 */ 3276 nextptr = errbuf; 3277 prevptr = 0; 3278 3279 /* 3280 * Don't drop our lock if we are running on our link-map list as 3281 * there's little point in doing so since we are single-threaded. 3282 * 3283 * LML_FLG_HOLDLOCK is set for: 3284 * *) The ld.so.1's link-map list. 3285 * *) The auditor's link-map if the environment is 3286 * libc/libthread un-unified. 3287 */ 3288 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3289 return; 3290 3291 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3292 (void) rt_mutex_unlock(&rtldlock); 3293 (void) rt_bind_clear(THR_FLG_RTLD); 3294 } 3295 } 3296 3297 int 3298 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3299 { 3300 Alist * calp, * dalp; 3301 Aliste cnt1, cnt2; 3302 Grp_hdl ** ghpp1, ** ghpp2; 3303 3304 /* 3305 * An object can always find symbols within itself. 3306 */ 3307 if (clmp == dlmp) 3308 return (1); 3309 3310 /* 3311 * Don't allow an object to bind to an object that is being deleted 3312 * unless the binder is also being deleted. 3313 */ 3314 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3315 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3316 return (0); 3317 3318 /* 3319 * An object with world access can always bind to an object with global 3320 * visibility. 3321 */ 3322 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3323 return (1); 3324 3325 /* 3326 * An object with local access can only bind to an object that is a 3327 * member of the same group. 3328 */ 3329 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3330 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3331 return (0); 3332 3333 /* 3334 * Traverse the list of groups the caller is a part of. 3335 */ 3336 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3337 /* 3338 * If we're testing for the ability of two objects to bind to 3339 * each other regardless of a specific group, ignore that group. 3340 */ 3341 if (ghp && (*ghpp1 == ghp)) 3342 continue; 3343 3344 /* 3345 * Traverse the list of groups the destination is a part of. 3346 */ 3347 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3348 if (*ghpp1 == *ghpp2) 3349 return (1); 3350 } 3351 } 3352 return (0); 3353 } 3354 3355 /* 3356 * Initialize the environ symbol. Traditionally this is carried out by the crt 3357 * code prior to jumping to main. However, init sections get fired before this 3358 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3359 * information. In addition, a process may have multiple link-maps (ld.so.1's 3360 * debugging and preloading objects), and link auditing, and each may need an 3361 * environ variable set. 3362 * 3363 * This routine is called after a relocation() pass, and thus provides for: 3364 * 3365 * o setting environ on the main link-map after the initial application and 3366 * its dependencies have been established. Typically environ lives in the 3367 * application (provided by its crt), but in older applications it might 3368 * be in libc. Who knows what's expected of applications not built on 3369 * Solaris. 3370 * 3371 * o after loading a new shared object. We can add shared objects to various 3372 * link-maps, and any link-map dependencies requiring getopt() require 3373 * their own environ. In addition, lazy loading might bring in the 3374 * supplier of environ (libc used to be a lazy loading candidate) after 3375 * the link-map has been established and other objects are present. 3376 * 3377 * This routine handles all these scenarios, without adding unnecessary overhead 3378 * to ld.so.1. 3379 */ 3380 void 3381 set_environ(Lm_list *lml) 3382 { 3383 Rt_map * dlmp; 3384 Sym * sym; 3385 Slookup sl; 3386 uint_t binfo; 3387 3388 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3389 sl.sl_cmap = lml->lm_head; 3390 sl.sl_imap = lml->lm_head; 3391 sl.sl_hash = 0; 3392 sl.sl_rsymndx = 0; 3393 sl.sl_flags = LKUP_WEAK; 3394 3395 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3396 lml->lm_environ = (char ***)sym->st_value; 3397 3398 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3399 lml->lm_environ = 3400 (char ***)((uintptr_t)lml->lm_environ + 3401 (uintptr_t)ADDR(dlmp)); 3402 *(lml->lm_environ) = (char **)environ; 3403 lml->lm_flags |= LML_FLG_ENVIRON; 3404 } 3405 } 3406 3407 /* 3408 * Determine whether we have a secure executable. Uid and gid information 3409 * can be passed to us via the aux vector, however if these values are -1 3410 * then use the appropriate system call to obtain them. 3411 * 3412 * o If the user is the root they can do anything 3413 * 3414 * o If the real and effective uid's don't match, or the real and 3415 * effective gid's don't match then this is determined to be a `secure' 3416 * application. 3417 * 3418 * This function is called prior to any dependency processing (see _setup.c). 3419 * Any secure setting will remain in effect for the life of the process. 3420 */ 3421 void 3422 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3423 { 3424 #ifdef AT_SUN_AUXFLAGS 3425 if (auxflags != -1) { 3426 if ((auxflags & AF_SUN_SETUGID) != 0) 3427 rtld_flags |= RT_FL_SECURE; 3428 return; 3429 } 3430 #endif 3431 if (uid == -1) 3432 uid = getuid(); 3433 if (uid) { 3434 if (euid == -1) 3435 euid = geteuid(); 3436 if (uid != euid) 3437 rtld_flags |= RT_FL_SECURE; 3438 else { 3439 if (gid == -1) 3440 gid = getgid(); 3441 if (egid == -1) 3442 egid = getegid(); 3443 if (gid != egid) 3444 rtld_flags |= RT_FL_SECURE; 3445 } 3446 } 3447 } 3448 3449 /* 3450 * _REENTRANT code gets errno redefined to a function so provide for return 3451 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3452 * is basically singled threaded. Provide the interface for our dependencies. 3453 */ 3454 #undef errno 3455 #pragma weak _private___errno = ___errno 3456 int * 3457 ___errno() 3458 { 3459 extern int errno; 3460 3461 return (&errno); 3462 } 3463 3464 /* 3465 * The interface with the c library which is supplied through libdl.so.1. 3466 * A non-null argument allows a function pointer array to be passed to us which 3467 * is used to re-initialize the linker libc table. 3468 */ 3469 void 3470 _ld_libc(void * ptr) 3471 { 3472 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3473 } 3474 3475 /* 3476 * Determine whether a symbol name should be demangled. 3477 */ 3478 const char * 3479 demangle(const char *name) 3480 { 3481 if (rtld_flags & RT_FL_DEMANGLE) 3482 return (conv_demangle_name(name)); 3483 else 3484 return (name); 3485 } 3486