1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Utility routines for run-time linker. some are duplicated here from libc 31 * (with different names) to avoid name space collisions. 32 */ 33 #include <sys/systeminfo.h> 34 #include <stdio.h> 35 #include <sys/time.h> 36 #include <sys/types.h> 37 #include <sys/mman.h> 38 #include <sys/lwp.h> 39 #include <sys/debug.h> 40 #include <stdarg.h> 41 #include <fcntl.h> 42 #include <string.h> 43 #include <dlfcn.h> 44 #include <unistd.h> 45 #include <stdlib.h> 46 #include <sys/auxv.h> 47 #include <limits.h> 48 #include <debug.h> 49 #include <conv.h> 50 #include "_rtld.h" 51 #include "_audit.h" 52 #include "_elf.h" 53 #include "msg.h" 54 55 /* 56 * Null function used as place where a debugger can set a breakpoint. 57 */ 58 void 59 rtld_db_dlactivity(Lm_list *lml) 60 { 61 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 62 r_debug.rtd_rdebug.r_state)); 63 } 64 65 /* 66 * Null function used as place where debugger can set a pre .init 67 * processing breakpoint. 68 */ 69 void 70 rtld_db_preinit(Lm_list *lml) 71 { 72 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 73 r_debug.rtd_rdebug.r_state)); 74 } 75 76 /* 77 * Null function used as place where debugger can set a post .init 78 * processing breakpoint. 79 */ 80 void 81 rtld_db_postinit(Lm_list *lml) 82 { 83 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 84 r_debug.rtd_rdebug.r_state)); 85 } 86 87 /* 88 * Debugger Event Notification 89 * 90 * This function centralizes all debugger event notification (ala rtld_db). 91 * 92 * There's a simple intent, focused on insuring the primary link-map control 93 * list (or each link-map list) is consistent, and the indication that objects 94 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 95 * event are posted for each of these, most debuggers don't care, as their 96 * view is that these events simply convey an "inconsistent" state. 97 * 98 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 99 * enter ld.so.1. 100 * 101 * With auditors, we may be in the process of relocating a collection of 102 * objects, and will leave() ld.so.1 to call the auditor. At this point we 103 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 104 * object to the debuggers until relocation processing has been completed on it. 105 * To allow for the collection of these objects that are pending relocation, an 106 * RD_ADD event is set after completing a series of relocations on the primary 107 * link-map control list. 108 * 109 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 110 * required later (LML_FLG_DBNOTIF): 111 * 112 * i the first time we add or delete an object to the primary link-map 113 * control list. 114 * ii the first time we move a secondary link-map control list to the primary 115 * link-map control list (effectively, this is like adding a group of 116 * objects to the primary link-map control list). 117 * 118 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 119 * 120 * i each time we leave the runtime linker. 121 */ 122 void 123 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 124 { 125 void (*fptr)(Lm_list *); 126 127 switch (event) { 128 case RD_PREINIT: 129 fptr = rtld_db_preinit; 130 break; 131 case RD_POSTINIT: 132 fptr = rtld_db_postinit; 133 break; 134 case RD_DLACTIVITY: 135 switch (state) { 136 case RT_CONSISTENT: 137 lml->lm_flags &= ~LML_FLG_DBNOTIF; 138 139 /* 140 * Do we need to send a notification? 141 */ 142 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 143 return; 144 rtld_flags &= ~RT_FL_DBNOTIF; 145 break; 146 case RT_ADD: 147 case RT_DELETE: 148 lml->lm_flags |= LML_FLG_DBNOTIF; 149 150 /* 151 * If we are already in an inconsistent state, no 152 * notification is required. 153 */ 154 if (rtld_flags & RT_FL_DBNOTIF) 155 return; 156 rtld_flags |= RT_FL_DBNOTIF; 157 break; 158 }; 159 fptr = rtld_db_dlactivity; 160 break; 161 default: 162 /* 163 * RD_NONE - do nothing 164 */ 165 break; 166 }; 167 168 /* 169 * Set event state and call 'notification' function. 170 * 171 * The debugging clients have previously been told about these 172 * notification functions and have set breakpoints on them if they 173 * are interested in the notification. 174 */ 175 r_debug.rtd_rdebug.r_state = state; 176 r_debug.rtd_rdebug.r_rdevent = event; 177 fptr(lml); 178 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 179 } 180 181 #if defined(__sparc) || defined(__x86) 182 /* 183 * Stack Cleanup. 184 * 185 * This function is invoked to 'remove' arguments that were passed in on the 186 * stack. This is most likely if ld.so.1 was invoked directly. In that case 187 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 188 * Which means we then need to slide everything above it on the stack down 189 * accordingly. 190 * 191 * While the stack layout is platform specific - it just so happens that __x86, 192 * and __sparc platforms share the following initial stack layout. 193 * 194 * !_______________________! high addresses 195 * ! ! 196 * ! Information ! 197 * ! Block ! 198 * ! (size varies) ! 199 * !_______________________! 200 * ! 0 word ! 201 * !_______________________! 202 * ! Auxiliary ! 203 * ! vector ! 204 * ! 2 word entries ! 205 * ! ! 206 * !_______________________! 207 * ! 0 word ! 208 * !_______________________! 209 * ! Environment ! 210 * ! pointers ! 211 * ! ... ! 212 * ! (one word each) ! 213 * !_______________________! 214 * ! 0 word ! 215 * !_______________________! 216 * ! Argument ! low addresses 217 * ! pointers ! 218 * ! Argc words ! 219 * !_______________________! 220 * ! ! 221 * ! Argc ! 222 * !_______________________! 223 * ! ... ! 224 * 225 */ 226 static void 227 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 228 { 229 int ndx; 230 long *argc; 231 char **oargv, **nargv; 232 char **oenvp, **nenvp; 233 auxv_t *oauxv, *nauxv; 234 235 /* 236 * Slide ARGV[] and update argc. The argv pointer remains the same, 237 * however slide the applications arguments over the arguments to 238 * ld.so.1. 239 */ 240 nargv = &argv[0]; 241 oargv = &argv[rmcnt]; 242 243 for (ndx = 0; oargv[ndx]; ndx++) 244 nargv[ndx] = oargv[ndx]; 245 nargv[ndx] = oargv[ndx]; 246 247 argc = (long *)((uintptr_t)argv - sizeof (long *)); 248 *argc -= rmcnt; 249 250 /* 251 * Slide ENVP[], and update the environment array pointer. 252 */ 253 ndx++; 254 nenvp = &nargv[ndx]; 255 oenvp = &oargv[ndx]; 256 *envp = nenvp; 257 258 for (ndx = 0; oenvp[ndx]; ndx++) 259 nenvp[ndx] = oenvp[ndx]; 260 nenvp[ndx] = oenvp[ndx]; 261 262 /* 263 * Slide AUXV[], and update the aux vector pointer. 264 */ 265 ndx++; 266 nauxv = (auxv_t *)&nenvp[ndx]; 267 oauxv = (auxv_t *)&oenvp[ndx]; 268 *auxv = nauxv; 269 270 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 271 nauxv[ndx] = oauxv[ndx]; 272 nauxv[ndx] = oauxv[ndx]; 273 } 274 #else 275 /* 276 * Verify that the above routine is appropriate for any new platforms. 277 */ 278 #error unsupported architecture! 279 #endif 280 281 /* 282 * Compare function for PathNode AVL tree. 283 */ 284 static int 285 pnavl_compare(const void *n1, const void *n2) 286 { 287 uint_t hash1, hash2; 288 const char *st1, *st2; 289 int rc; 290 291 hash1 = ((PathNode *)n1)->pn_hash; 292 hash2 = ((PathNode *)n2)->pn_hash; 293 294 if (hash1 > hash2) 295 return (1); 296 if (hash1 < hash2) 297 return (-1); 298 299 st1 = ((PathNode *)n1)->pn_name; 300 st2 = ((PathNode *)n2)->pn_name; 301 302 rc = strcmp(st1, st2); 303 if (rc > 0) 304 return (1); 305 if (rc < 0) 306 return (-1); 307 return (0); 308 } 309 310 /* 311 * Create an AVL tree. 312 */ 313 static avl_tree_t * 314 pnavl_create(size_t size) 315 { 316 avl_tree_t *avlt; 317 318 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 319 return (NULL); 320 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 321 return (avlt); 322 } 323 324 /* 325 * Determine whether a PathNode is recorded. 326 */ 327 int 328 pnavl_recorded(avl_tree_t **pnavl, const char *name, uint_t hash, 329 avl_index_t *where) 330 { 331 PathNode pn; 332 333 /* 334 * Create the avl tree if required. 335 */ 336 if ((*pnavl == NULL) && 337 ((*pnavl = pnavl_create(sizeof (PathNode))) == NULL)) 338 return (0); 339 340 pn.pn_name = name; 341 if ((pn.pn_hash = hash) == 0) 342 pn.pn_hash = sgs_str_hash(name); 343 344 if (avl_find(*pnavl, &pn, where) == NULL) 345 return (0); 346 347 return (1); 348 } 349 350 /* 351 * Determine if a pathname has already been recorded on the full path name 352 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 353 * successfully loaded. If the path name does not exist in this AVL tree, then 354 * the next insertion point is deposited in "where". This value can be used by 355 * fpavl_insert() to expedite the insertion. 356 */ 357 Rt_map * 358 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 359 { 360 FullPathNode fpn, *fpnp; 361 362 /* 363 * Create the avl tree if required. 364 */ 365 if ((lml->lm_fpavl == NULL) && 366 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 367 return (NULL); 368 369 fpn.fpn_node.pn_name = name; 370 if ((fpn.fpn_node.pn_hash = hash) == 0) 371 fpn.fpn_node.pn_hash = sgs_str_hash(name); 372 373 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 374 return (NULL); 375 376 return (fpnp->fpn_lmp); 377 } 378 379 /* 380 * Insert a name into the FullPathNode AVL tree for the link-map list. The 381 * objects NAME() is the path that would have originally been searched for, and 382 * is therefore the name to associate with any "where" value. If the object has 383 * a different PATHNAME(), perhaps because it has resolved to a different file 384 * (see fullpath()), then this name will be recorded as a separate FullPathNode 385 * (see load_file()). 386 */ 387 int 388 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 389 { 390 FullPathNode *fpnp; 391 uint_t hash = sgs_str_hash(name); 392 393 if (where == 0) { 394 /* LINTED */ 395 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 396 397 /* 398 * We better not get a hit now, we do not want duplicates in 399 * the tree. 400 */ 401 ASSERT(_lmp == NULL); 402 } 403 404 /* 405 * Insert new node in tree. 406 */ 407 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 408 return (0); 409 410 fpnp->fpn_node.pn_name = name; 411 fpnp->fpn_node.pn_hash = hash; 412 fpnp->fpn_lmp = lmp; 413 414 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 415 free(fpnp); 416 return (0); 417 } 418 419 ASSERT(lml->lm_fpavl != NULL); 420 avl_insert(lml->lm_fpavl, fpnp, where); 421 return (1); 422 } 423 424 /* 425 * Remove an object from the FullPathNode AVL tree. 426 */ 427 void 428 fpavl_remove(Rt_map *lmp) 429 { 430 FullPathNode *fpnp; 431 Aliste idx; 432 433 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 434 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 435 free(fpnp); 436 } 437 free(FPNODE(lmp)); 438 FPNODE(lmp) = NULL; 439 } 440 441 /* 442 * Insert a path name into the not-found AVL tree. 443 * 444 * This tree maintains a node for each path name that ld.so.1 has explicitly 445 * inspected, but has failed to load during a single ld.so.1 operation. If the 446 * path name does not exist in this AVL tree, then the next insertion point is 447 * deposited in "where". This value can be used by nfavl_insert() to expedite 448 * the insertion. 449 */ 450 void 451 nfavl_insert(const char *name, avl_index_t where) 452 { 453 PathNode *pnp; 454 uint_t hash = sgs_str_hash(name); 455 456 if (where == 0) { 457 /* LINTED */ 458 int in_nfavl = pnavl_recorded(&nfavl, name, hash, &where); 459 460 /* 461 * We better not get a hit now, we do not want duplicates in 462 * the tree. 463 */ 464 ASSERT(in_nfavl == 0); 465 } 466 467 /* 468 * Insert new node in tree. 469 */ 470 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 471 pnp->pn_name = name; 472 pnp->pn_hash = hash; 473 avl_insert(nfavl, pnp, where); 474 } 475 } 476 477 /* 478 * Insert the directory name, of a full path name, into the secure path AVL 479 * tree. 480 * 481 * This tree is used to maintain a list of directories in which the dependencies 482 * of a secure process have been found. This list provides a fall-back in the 483 * case that a $ORIGIN expansion is deemed insecure, when the expansion results 484 * in a path name that has already provided dependencies. 485 */ 486 void 487 spavl_insert(const char *name) 488 { 489 char buffer[PATH_MAX], *str; 490 size_t size; 491 avl_index_t where; 492 PathNode *pnp; 493 uint_t hash; 494 495 /* 496 * Separate the directory name from the path name. 497 */ 498 if ((str = strrchr(name, '/')) == name) 499 size = 1; 500 else 501 size = str - name; 502 503 (void) strncpy(buffer, name, size); 504 buffer[size] = '\0'; 505 hash = sgs_str_hash(buffer); 506 507 /* 508 * Determine whether this directory name is already recorded, or if 509 * not, 'where" will provide the insertion point for the new string. 510 */ 511 if (pnavl_recorded(&spavl, buffer, hash, &where)) 512 return; 513 514 /* 515 * Insert new node in tree. 516 */ 517 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 518 pnp->pn_name = strdup(buffer); 519 pnp->pn_hash = hash; 520 avl_insert(spavl, pnp, where); 521 } 522 } 523 524 /* 525 * Inspect the generic string AVL tree for the given string. If the string is 526 * not present, duplicate it, and insert the string in the AVL tree. Return the 527 * duplicated string to the caller. 528 * 529 * These strings are maintained for the life of ld.so.1 and represent path 530 * names, file names, and search paths. All other AVL trees that maintain 531 * FullPathNode and not-found path names use the same string pointer 532 * established for this string. 533 */ 534 static avl_tree_t *stravl = NULL; 535 static char *strbuf = NULL; 536 static PathNode *pnbuf = NULL; 537 static size_t strsize = 0, pnsize = 0; 538 539 const char * 540 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 541 { 542 char str[PATH_MAX]; 543 PathNode *pnp; 544 avl_index_t where; 545 546 /* 547 * Create the avl tree if required. 548 */ 549 if ((stravl == NULL) && 550 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 551 return (NULL); 552 553 /* 554 * Determine the string size if not provided by the caller. 555 */ 556 if (nsize == 0) 557 nsize = strlen(name) + 1; 558 else if (substr) { 559 /* 560 * The string passed to us may be a multiple path string for 561 * which we only need the first component. Using the provided 562 * size, strip out the required string. 563 */ 564 (void) strncpy(str, name, nsize); 565 str[nsize - 1] = '\0'; 566 name = str; 567 } 568 569 /* 570 * Allocate a PathNode buffer if one doesn't exist, or any existing 571 * buffer has been used up. 572 */ 573 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 574 pnsize = syspagsz; 575 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 576 MAP_PRIVATE)) == MAP_FAILED) 577 return (NULL); 578 } 579 /* 580 * Determine whether this string already exists. 581 */ 582 pnbuf->pn_name = name; 583 if ((pnbuf->pn_hash = hash) == 0) 584 pnbuf->pn_hash = sgs_str_hash(name); 585 586 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 587 return (pnp->pn_name); 588 589 /* 590 * Allocate a string buffer if one does not exist, or if there is 591 * insufficient space for the new string in any existing buffer. 592 */ 593 if ((strbuf == NULL) || (nsize > strsize)) { 594 strsize = S_ROUND(nsize, syspagsz); 595 596 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 597 MAP_PRIVATE)) == MAP_FAILED) 598 return (NULL); 599 } 600 601 (void) memcpy(strbuf, name, nsize); 602 pnp = pnbuf; 603 pnp->pn_name = strbuf; 604 avl_insert(stravl, pnp, where); 605 606 strbuf += nsize; 607 strsize -= nsize; 608 pnbuf++; 609 pnsize -= sizeof (PathNode); 610 return (pnp->pn_name); 611 } 612 613 /* 614 * Prior to calling an object, either via a .plt or through dlsym(), make sure 615 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 616 * init's in the correct order, however, this order is typically based on needed 617 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 618 * still occur and result in bindings that were not captured during topological 619 * sorting. This routine compensates for this lack of binding information, and 620 * provides for dynamic .init firing. 621 */ 622 void 623 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 624 { 625 Rt_map **tobj; 626 627 /* 628 * If the caller is an auditor, and the destination isn't, then don't 629 * run any .inits (see comments in load_completion()). 630 */ 631 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 632 (LIST(clmp) != LIST(dlmp))) 633 return; 634 635 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 636 return; 637 638 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 639 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 640 return; 641 642 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 643 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 644 DBG_CALL(Dbg_util_no_init(dlmp)); 645 return; 646 } 647 648 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 649 tobj[0] = dlmp; 650 call_init(tobj, DBG_INIT_DYN); 651 } 652 } 653 654 /* 655 * Execute .{preinit|init|fini}array sections 656 */ 657 void 658 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 659 { 660 int start, stop, incr, ndx; 661 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 662 663 if (array == NULL) 664 return; 665 666 /* 667 * initarray & preinitarray are walked from beginning to end - while 668 * finiarray is walked from end to beginning. 669 */ 670 if (shtype == SHT_FINI_ARRAY) { 671 start = arraycnt - 1; 672 stop = incr = -1; 673 } else { 674 start = 0; 675 stop = arraycnt; 676 incr = 1; 677 } 678 679 /* 680 * Call the .*array[] entries 681 */ 682 for (ndx = start; ndx != stop; ndx += incr) { 683 void (*fptr)(void) = (void(*)())array[ndx]; 684 685 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 686 687 leave(LIST(lmp), 0); 688 (*fptr)(); 689 (void) enter(0); 690 } 691 } 692 693 /* 694 * Execute any .init sections. These are passed to us in an lmp array which 695 * (by default) will have been sorted. 696 */ 697 void 698 call_init(Rt_map **tobj, int flag) 699 { 700 Rt_map **_tobj, **_nobj; 701 static APlist *pending = NULL; 702 703 /* 704 * If we're in the middle of an INITFIRST, this must complete before 705 * any new init's are fired. In this case add the object list to the 706 * pending queue and return. We'll pick up the queue after any 707 * INITFIRST objects have their init's fired. 708 */ 709 if (rtld_flags & RT_FL_INITFIRST) { 710 (void) aplist_append(&pending, tobj, AL_CNT_PENDING); 711 return; 712 } 713 714 /* 715 * Traverse the tobj array firing each objects init. 716 */ 717 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 718 Rt_map *lmp = *_tobj; 719 void (*iptr)() = INIT(lmp); 720 uint_t rtldflags; 721 722 if (FLAGS(lmp) & FLG_RT_INITCALL) 723 continue; 724 725 FLAGS(lmp) |= FLG_RT_INITCALL; 726 727 /* 728 * It is possible, that during the initial handshake with libc, 729 * an interposition object has resolved a symbol binding, and 730 * that this objects .init must be fired. As we're about to 731 * run user code, make sure any dynamic linking errors remain 732 * internal (ie., only obtainable from dlerror()), and are not 733 * flushed to stderr. 734 */ 735 rtldflags = (rtld_flags & RT_FL_APPLIC) ? 0 : RT_FL_APPLIC; 736 rtld_flags |= rtldflags; 737 738 /* 739 * Establish an initfirst state if necessary - no other inits 740 * will be fired (because of additional relocation bindings) 741 * when in this state. 742 */ 743 if (FLAGS(lmp) & FLG_RT_INITFRST) 744 rtld_flags |= RT_FL_INITFIRST; 745 746 if (INITARRAY(lmp) || iptr) 747 DBG_CALL(Dbg_util_call_init(lmp, flag)); 748 749 if (iptr) { 750 leave(LIST(lmp), 0); 751 (*iptr)(); 752 (void) enter(0); 753 } 754 755 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 756 SHT_INIT_ARRAY); 757 758 if (INITARRAY(lmp) || iptr) 759 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 760 761 /* 762 * Return to a non-application setting if necessary. 763 */ 764 rtld_flags &= ~rtldflags; 765 766 /* 767 * Set the initdone flag regardless of whether this object 768 * actually contains an .init section. This flag prevents us 769 * from processing this section again for an .init and also 770 * signifies that a .fini must be called should it exist. 771 * Clear the sort field for use in later .fini processing. 772 */ 773 FLAGS(lmp) |= FLG_RT_INITDONE; 774 SORTVAL(lmp) = -1; 775 776 /* 777 * If we're firing an INITFIRST object, and other objects must 778 * be fired which are not INITFIRST, make sure we grab any 779 * pending objects that might have been delayed as this 780 * INITFIRST was processed. 781 */ 782 if ((rtld_flags & RT_FL_INITFIRST) && 783 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 784 Aliste idx; 785 Rt_map **pobj; 786 787 rtld_flags &= ~RT_FL_INITFIRST; 788 789 for (APLIST_TRAVERSE(pending, idx, pobj)) { 790 aplist_delete(pending, &idx); 791 call_init(pobj, DBG_INIT_PEND); 792 } 793 } 794 } 795 free(tobj); 796 } 797 798 /* 799 * Function called by atexit(3C). Calls all .fini sections related with the 800 * mains dependent shared libraries in the order in which the shared libraries 801 * have been loaded. Skip any .fini defined in the main executable, as this 802 * will be called by crt0 (main was never marked as initdone). 803 */ 804 void 805 call_fini(Lm_list * lml, Rt_map ** tobj) 806 { 807 Rt_map **_tobj; 808 809 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 810 Rt_map *clmp, * lmp = *_tobj; 811 Aliste idx; 812 Bnd_desc *bdp; 813 814 /* 815 * Only fire a .fini if the objects corresponding .init has 816 * completed. We collect all .fini sections of objects that 817 * had their .init collected, but that doesn't mean that at 818 * the time of collection, that the .init had completed. 819 */ 820 if (FLAGS(lmp) & FLG_RT_INITDONE) { 821 void (*fptr)(void) = FINI(lmp); 822 823 if (FINIARRAY(lmp) || fptr) 824 DBG_CALL(Dbg_util_call_fini(lmp)); 825 826 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 827 SHT_FINI_ARRAY); 828 829 if (fptr) { 830 leave(LIST(lmp), 0); 831 (*fptr)(); 832 (void) enter(0); 833 } 834 } 835 836 /* 837 * Skip main, this is explicitly called last in atexit_fini(). 838 */ 839 if (FLAGS(lmp) & FLG_RT_ISMAIN) 840 continue; 841 842 /* 843 * Audit `close' operations at this point. The library has 844 * exercised its last instructions (regardless of whether it 845 * will be unmapped or not). 846 * 847 * First call any global auditing. 848 */ 849 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 850 _audit_objclose(auditors->ad_list, lmp); 851 852 /* 853 * Finally determine whether this object has local auditing 854 * requirements by inspecting itself and then its dependencies. 855 */ 856 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 857 continue; 858 859 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 860 _audit_objclose(AUDITORS(lmp)->ad_list, lmp); 861 862 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 863 clmp = bdp->b_caller; 864 865 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 866 _audit_objclose(AUDITORS(clmp)->ad_list, lmp); 867 break; 868 } 869 } 870 } 871 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 872 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 873 874 free(tobj); 875 } 876 877 void 878 atexit_fini() 879 { 880 Rt_map **tobj, *lmp; 881 Lm_list *lml; 882 Aliste idx; 883 884 (void) enter(0); 885 886 rtld_flags |= RT_FL_ATEXIT; 887 888 lml = &lml_main; 889 lml->lm_flags |= LML_FLG_ATEXIT; 890 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 891 lmp = (Rt_map *)lml->lm_head; 892 893 /* 894 * Reverse topologically sort the main link-map for .fini execution. 895 */ 896 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 897 (tobj != (Rt_map **)S_ERROR)) 898 call_fini(lml, tobj); 899 900 /* 901 * Add an explicit close to main and ld.so.1. Although main's .fini is 902 * collected in call_fini() to provide for FINITARRAY processing, its 903 * audit_objclose is explicitly skipped. This provides for it to be 904 * called last, here. This is the reverse of the explicit calls to 905 * audit_objopen() made in setup(). 906 */ 907 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 908 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 909 audit_objclose(lmp, lmp); 910 } 911 912 /* 913 * Now that all .fini code has been run, see what unreferenced objects 914 * remain. 915 */ 916 unused(lml); 917 918 /* 919 * Traverse any alternative link-map lists. 920 */ 921 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 922 /* 923 * Ignore the base-link-map list, which has already been 924 * processed, and the runtime linkers link-map list, which is 925 * typically processed last. 926 */ 927 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 928 continue; 929 930 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 931 continue; 932 933 lml->lm_flags |= LML_FLG_ATEXIT; 934 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 935 936 /* 937 * Reverse topologically sort the link-map for .fini execution. 938 */ 939 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 940 (tobj != (Rt_map **)S_ERROR)) 941 call_fini(lml, tobj); 942 943 unused(lml); 944 } 945 946 /* 947 * Finally reverse topologically sort the runtime linkers link-map for 948 * .fini execution. 949 */ 950 lml = &lml_rtld; 951 lml->lm_flags |= LML_FLG_ATEXIT; 952 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 953 lmp = (Rt_map *)lml->lm_head; 954 955 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 956 (tobj != (Rt_map **)S_ERROR)) 957 call_fini(lml, tobj); 958 959 leave(&lml_main, 0); 960 } 961 962 /* 963 * This routine is called to complete any runtime linker activity which may have 964 * resulted in objects being loaded. This is called from all user entry points 965 * and from any internal dl*() requests. 966 */ 967 void 968 load_completion(Rt_map *nlmp) 969 { 970 Rt_map **tobj = NULL; 971 Lm_list *nlml; 972 973 /* 974 * Establish any .init processing. Note, in a world of lazy loading, 975 * objects may have been loaded regardless of whether the users request 976 * was fulfilled (i.e., a dlsym() request may have failed to find a 977 * symbol but objects might have been loaded during its search). Thus, 978 * any tsorting starts from the nlmp (new link-maps) pointer and not 979 * necessarily from the link-map that may have satisfied the request. 980 * 981 * Note, the primary link-map has an initialization phase where dynamic 982 * .init firing is suppressed. This provides for a simple and clean 983 * handshake with the primary link-maps libc, which is important for 984 * establishing uberdata. In addition, auditors often obtain handles 985 * to primary link-map objects as the objects are loaded, so as to 986 * inspect the link-map for symbols. This inspection is allowed without 987 * running any code on the primary link-map, as running this code may 988 * reenter the auditor, who may not yet have finished its own 989 * initialization. 990 */ 991 if (nlmp) 992 nlml = LIST(nlmp); 993 994 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 995 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 996 if ((tobj = tsort(nlmp, nlml->lm_init, 997 RT_SORT_REV)) == (Rt_map **)S_ERROR) 998 tobj = NULL; 999 } 1000 1001 /* 1002 * Make sure any alternative link-map retrieves any external interfaces 1003 * and initializes threads. 1004 */ 1005 if (nlmp && (nlml != &lml_main)) { 1006 (void) rt_get_extern(nlml, nlmp); 1007 rt_thr_init(nlml); 1008 } 1009 1010 /* 1011 * Traverse the list of new link-maps and register any dynamic TLS. 1012 * This storage is established for any objects not on the primary 1013 * link-map, and for any objects added to the primary link-map after 1014 * static TLS has been registered. 1015 */ 1016 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1017 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1018 Rt_map *lmp; 1019 1020 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1021 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1022 tls_modaddrem(lmp, TM_FLG_MODADD); 1023 } 1024 nlml->lm_tls = 0; 1025 } 1026 1027 /* 1028 * Fire any .init's. 1029 */ 1030 if (tobj) 1031 call_init(tobj, DBG_INIT_SORT); 1032 } 1033 1034 /* 1035 * Append an item to the specified link map control list. 1036 */ 1037 void 1038 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1039 { 1040 Lm_cntl *lmc; 1041 int add = 1; 1042 1043 /* 1044 * Indicate that this link-map list has a new object. 1045 */ 1046 (lml->lm_obj)++; 1047 1048 /* 1049 * If we're about to add a new object to the main link-map control list, 1050 * alert the debuggers that we are about to mess with this list. 1051 * Additions of individual objects to the main link-map control list 1052 * occur during initial setup as the applications immediate dependencies 1053 * are loaded. Individual objects are also loaded on the main link-map 1054 * control list of new alternative link-map control lists. 1055 */ 1056 if ((lmco == ALIST_OFF_DATA) && 1057 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1058 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1059 1060 /* LINTED */ 1061 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1062 1063 /* 1064 * A link-map list header points to one of more link-map control lists 1065 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1066 * the list of relocated objects. Other lists maintain objects that 1067 * are still being analyzed or relocated. This list provides the core 1068 * link-map list information used by all ld.so.1 routines. 1069 */ 1070 if (lmc->lc_head == NULL) { 1071 /* 1072 * If this is the first link-map for the given control list, 1073 * initialize the list. 1074 */ 1075 lmc->lc_head = lmc->lc_tail = lmp; 1076 add = 0; 1077 1078 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1079 Rt_map *tlmp; 1080 1081 /* 1082 * If this is an interposer then append the link-map following 1083 * any other interposers (these are objects that have been 1084 * previously preloaded, or were identified with -z interpose). 1085 * Interposers can only be inserted on the first link-map 1086 * control list, as once relocation has started, interposition 1087 * from new interposers can't be guaranteed. 1088 * 1089 * NOTE: We do not interpose on the head of a list. This model 1090 * evolved because dynamic executables have already been fully 1091 * relocated within themselves and thus can't be interposed on. 1092 * Nowadays it's possible to have shared objects at the head of 1093 * a list, which conceptually means they could be interposed on. 1094 * But, shared objects can be created via dldump() and may only 1095 * be partially relocated (just relatives), in which case they 1096 * are interposable, but are marked as fixed (ET_EXEC). 1097 * 1098 * Thus we really don't have a clear method of deciding when the 1099 * head of a link-map is interposable. So, to be consistent, 1100 * for now only add interposers after the link-map lists head 1101 * object. 1102 */ 1103 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1104 tlmp = NEXT_RT_MAP(tlmp)) { 1105 1106 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1107 continue; 1108 1109 /* 1110 * Insert the new link-map before this non-interposer, 1111 * and indicate an interposer is found. 1112 */ 1113 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1114 PREV(lmp) = PREV(tlmp); 1115 1116 NEXT(lmp) = (Link_map *)tlmp; 1117 PREV(tlmp) = (Link_map *)lmp; 1118 1119 lmc->lc_flags |= LMC_FLG_REANALYZE; 1120 add = 0; 1121 break; 1122 } 1123 } 1124 1125 /* 1126 * Fall through to appending the new link map to the tail of the list. 1127 * If we're processing the initial objects of this link-map list, add 1128 * them to the backward compatibility list. 1129 */ 1130 if (add) { 1131 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1132 PREV(lmp) = (Link_map *)lmc->lc_tail; 1133 lmc->lc_tail = lmp; 1134 } 1135 1136 /* 1137 * Having added this link-map to a control list, indicate which control 1138 * list the link-map belongs to. Note, control list information is 1139 * always maintained as an offset, as the Alist can be reallocated. 1140 */ 1141 CNTL(lmp) = lmco; 1142 1143 /* 1144 * Indicate if an interposer is found. Note that the first object on a 1145 * link-map can be explicitly defined as an interposer so that it can 1146 * provide interposition over direct binding requests. 1147 */ 1148 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1149 lml->lm_flags |= LML_FLG_INTRPOSE; 1150 1151 /* 1152 * For backward compatibility with debuggers, the link-map list contains 1153 * pointers to the main control list. 1154 */ 1155 if (lmco == ALIST_OFF_DATA) { 1156 lml->lm_head = lmc->lc_head; 1157 lml->lm_tail = lmc->lc_tail; 1158 } 1159 } 1160 1161 /* 1162 * Delete an item from the specified link map control list. 1163 */ 1164 void 1165 lm_delete(Lm_list *lml, Rt_map *lmp) 1166 { 1167 Lm_cntl *lmc; 1168 1169 /* 1170 * If the control list pointer hasn't been initialized, this object 1171 * never got added to a link-map list. 1172 */ 1173 if (CNTL(lmp) == 0) 1174 return; 1175 1176 /* 1177 * If we're about to delete an object from the main link-map control 1178 * list, alert the debuggers that we are about to mess with this list. 1179 */ 1180 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1181 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1182 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1183 1184 /* LINTED */ 1185 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1186 1187 if (lmc->lc_head == lmp) 1188 lmc->lc_head = NEXT_RT_MAP(lmp); 1189 else 1190 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1191 1192 if (lmc->lc_tail == lmp) 1193 lmc->lc_tail = PREV_RT_MAP(lmp); 1194 else 1195 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1196 1197 /* 1198 * For backward compatibility with debuggers, the link-map list contains 1199 * pointers to the main control list. 1200 */ 1201 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1202 lml->lm_head = lmc->lc_head; 1203 lml->lm_tail = lmc->lc_tail; 1204 } 1205 1206 /* 1207 * Indicate we have one less object on this control list. 1208 */ 1209 (lml->lm_obj)--; 1210 } 1211 1212 /* 1213 * Move a link-map control list to another. Objects that are being relocated 1214 * are maintained on secondary control lists. Once their relocation is 1215 * complete, the entire list is appended to the previous control list, as this 1216 * list must have been the trigger for generating the new control list. 1217 */ 1218 void 1219 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1220 { 1221 Rt_map *lmp; 1222 1223 /* 1224 * If we're about to add a new family of objects to the main link-map 1225 * control list, alert the debuggers that we are about to mess with this 1226 * list. Additions of object families to the main link-map control 1227 * list occur during lazy loading, filtering and dlopen(). 1228 */ 1229 if ((plmco == ALIST_OFF_DATA) && 1230 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1231 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1232 1233 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1234 1235 /* 1236 * Indicate each new link-map has been moved to the previous link-map 1237 * control list. 1238 */ 1239 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1240 CNTL(lmp) = plmco; 1241 1242 /* 1243 * If these objects are being added to the main link-map 1244 * control list, indicate that there are init's available 1245 * for harvesting. 1246 */ 1247 if (plmco == ALIST_OFF_DATA) { 1248 lml->lm_init++; 1249 lml->lm_flags |= LML_FLG_OBJADDED; 1250 } 1251 } 1252 1253 /* 1254 * Move the new link-map control list, to the callers link-map control 1255 * list. 1256 */ 1257 if (plmc->lc_head == NULL) { 1258 plmc->lc_head = nlmc->lc_head; 1259 PREV(nlmc->lc_head) = NULL; 1260 } else { 1261 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1262 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1263 } 1264 1265 plmc->lc_tail = nlmc->lc_tail; 1266 nlmc->lc_head = nlmc->lc_tail = NULL; 1267 1268 /* 1269 * For backward compatibility with debuggers, the link-map list contains 1270 * pointers to the main control list. 1271 */ 1272 if (plmco == ALIST_OFF_DATA) { 1273 lml->lm_head = plmc->lc_head; 1274 lml->lm_tail = plmc->lc_tail; 1275 } 1276 } 1277 1278 /* 1279 * Create, or assign a link-map control list. Each link-map list contains a 1280 * main control list, which has an Alist offset of ALIST_OFF_DATA (see the 1281 * description in include/rtld.h). During the initial construction of a 1282 * process, objects are added to this main control list. This control list is 1283 * never deleted, unless an alternate link-map list has been requested (say for 1284 * auditors), and the associated objects could not be loaded or relocated. 1285 * 1286 * Once relocation has started, any lazy loadable objects, or filtees, are 1287 * processed on a new, temporary control list. Only when these objects have 1288 * been fully relocated, are they moved to the main link-map control list. 1289 * Once the objects are moved, this temporary control list is deleted (see 1290 * remove_cntl()). 1291 * 1292 * A dlopen() always requires a new temporary link-map control list. 1293 * Typically, a dlopen() occurs on a link-map list that had already started 1294 * relocation, however, auditors can dlopen() objects on the main link-map 1295 * list while under initial construction, before any relocation has begun. 1296 * Hence, dlopen() requests are explicitly flagged. 1297 */ 1298 Aliste 1299 create_cntl(Lm_list *lml, int dlopen) 1300 { 1301 /* 1302 * If the head link-map object has already been relocated, create a 1303 * new, temporary, control list. 1304 */ 1305 if (dlopen || (lml->lm_head == NULL) || 1306 (FLAGS(lml->lm_head) & FLG_RT_RELOCED)) { 1307 Lm_cntl *lmc; 1308 1309 if ((lmc = alist_append(&lml->lm_lists, NULL, sizeof (Lm_cntl), 1310 AL_CNT_LMLISTS)) == NULL) 1311 return (NULL); 1312 1313 return ((Aliste)((char *)lmc - (char *)lml->lm_lists)); 1314 } 1315 1316 return (ALIST_OFF_DATA); 1317 } 1318 1319 /* 1320 * Environment variables can have a variety of defined permutations, and thus 1321 * the following infrastructure exists to allow this variety and to select the 1322 * required definition. 1323 * 1324 * Environment variables can be defined as 32- or 64-bit specific, and if so 1325 * they will take precedence over any instruction set neutral form. Typically 1326 * this is only useful when the environment value is an informational string. 1327 * 1328 * Environment variables may be obtained from the standard user environment or 1329 * from a configuration file. The latter provides a fallback if no user 1330 * environment setting is found, and can take two forms: 1331 * 1332 * - a replaceable definition - this will be used if no user environment 1333 * setting has been seen, or 1334 * 1335 * - an permanent definition - this will be used no matter what user 1336 * environment setting is seen. In the case of list variables it will be 1337 * appended to any process environment setting seen. 1338 * 1339 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1340 * override any replaceable environment variables from a configuration file. 1341 */ 1342 static u_longlong_t rplgen = 0; /* replaceable generic */ 1343 /* variables */ 1344 static u_longlong_t rplisa = 0; /* replaceable ISA specific */ 1345 /* variables */ 1346 static u_longlong_t prmgen = 0; /* permanent generic */ 1347 /* variables */ 1348 static u_longlong_t prmisa = 0; /* permanent ISA specific */ 1349 /* variables */ 1350 static u_longlong_t cmdgen = 0; /* command line (-e) generic */ 1351 /* variables */ 1352 static u_longlong_t cmdisa = 0; /* command line (-e) ISA */ 1353 /* specific variables */ 1354 1355 /* 1356 * Classify an environment variables type. 1357 */ 1358 #define ENV_TYP_IGNORE 0x01 /* ignore - variable is for */ 1359 /* the wrong ISA */ 1360 #define ENV_TYP_ISA 0x02 /* variable is ISA specific */ 1361 #define ENV_TYP_CONFIG 0x04 /* variable obtained from a */ 1362 /* config file */ 1363 #define ENV_TYP_PERMANT 0x08 /* variable is permanent */ 1364 #define ENV_TYP_CMDLINE 0x10 /* variable provide with -e */ 1365 #define ENV_TYP_NULL 0x20 /* variable is null */ 1366 1367 /* 1368 * Identify all environment variables. 1369 */ 1370 #define ENV_FLG_AUDIT 0x0000000000001ULL 1371 #define ENV_FLG_AUDIT_ARGS 0x0000000000002ULL 1372 #define ENV_FLG_BIND_NOW 0x0000000000004ULL 1373 #define ENV_FLG_BIND_NOT 0x0000000000008ULL 1374 #define ENV_FLG_BINDINGS 0x0000000000010ULL 1375 #define ENV_FLG_CONFGEN 0x0000000000020ULL 1376 #define ENV_FLG_CONFIG 0x0000000000040ULL 1377 #define ENV_FLG_DEBUG 0x0000000000080ULL 1378 #define ENV_FLG_DEBUG_OUTPUT 0x0000000000100ULL 1379 #define ENV_FLG_DEMANGLE 0x0000000000200ULL 1380 #define ENV_FLG_FLAGS 0x0000000000400ULL 1381 #define ENV_FLG_INIT 0x0000000000800ULL 1382 #define ENV_FLG_LIBPATH 0x0000000001000ULL 1383 #define ENV_FLG_LOADAVAIL 0x0000000002000ULL 1384 #define ENV_FLG_LOADFLTR 0x0000000004000ULL 1385 #define ENV_FLG_NOAUDIT 0x0000000008000ULL 1386 #define ENV_FLG_NOAUXFLTR 0x0000000010000ULL 1387 #define ENV_FLG_NOBAPLT 0x0000000020000ULL 1388 #define ENV_FLG_NOCONFIG 0x0000000040000ULL 1389 #define ENV_FLG_NODIRCONFIG 0x0000000080000ULL 1390 #define ENV_FLG_NODIRECT 0x0000000100000ULL 1391 #define ENV_FLG_NOENVCONFIG 0x0000000200000ULL 1392 #define ENV_FLG_NOLAZY 0x0000000400000ULL 1393 #define ENV_FLG_NOOBJALTER 0x0000000800000ULL 1394 #define ENV_FLG_NOVERSION 0x0000001000000ULL 1395 #define ENV_FLG_PRELOAD 0x0000002000000ULL 1396 #define ENV_FLG_PROFILE 0x0000004000000ULL 1397 #define ENV_FLG_PROFILE_OUTPUT 0x0000008000000ULL 1398 #define ENV_FLG_SIGNAL 0x0000010000000ULL 1399 #define ENV_FLG_TRACE_OBJS 0x0000020000000ULL 1400 #define ENV_FLG_TRACE_PTHS 0x0000040000000ULL 1401 #define ENV_FLG_UNREF 0x0000080000000ULL 1402 #define ENV_FLG_UNUSED 0x0000100000000ULL 1403 #define ENV_FLG_VERBOSE 0x0000200000000ULL 1404 #define ENV_FLG_WARN 0x0000400000000ULL 1405 #define ENV_FLG_NOFLTCONFIG 0x0000800000000ULL 1406 #define ENV_FLG_BIND_LAZY 0x0001000000000ULL 1407 #define ENV_FLG_NOUNRESWEAK 0x0002000000000ULL 1408 #define ENV_FLG_NOPAREXT 0x0004000000000ULL 1409 #define ENV_FLG_HWCAP 0x0008000000000ULL 1410 #define ENV_FLG_SFCAP 0x0010000000000ULL 1411 #define ENV_FLG_MACHCAP 0x0020000000000ULL 1412 #define ENV_FLG_PLATCAP 0x0040000000000ULL 1413 #define ENV_FLG_CAP_FILES 0x0080000000000ULL 1414 #define ENV_FLG_DEFERRED 0x0100000000000ULL 1415 #define ENV_FLG_NOENVIRON 0x0200000000000ULL 1416 1417 #define SEL_REPLACE 0x0001 1418 #define SEL_PERMANT 0x0002 1419 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1420 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1421 #define SEL_ACT_STR 0x0400 /* setting string value */ 1422 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1423 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1424 #define SEL_ACT_SPEC_1 0x2000 /* for FLG_{FLAGS, LIBPATH} */ 1425 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1426 1427 /* 1428 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1429 * and len specifies its length (comparing a strings length before the string 1430 * itself speed things up). s2 points to the token itself which has already 1431 * had any leading white-space removed. 1432 */ 1433 static void 1434 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1435 Word *lmtflags, uint_t env_flags, int aout) 1436 { 1437 u_longlong_t variable = 0; 1438 ushort_t select = 0; 1439 const char **str; 1440 Word val = 0; 1441 1442 /* 1443 * Determine whether we're dealing with a replaceable or permanent 1444 * string. 1445 */ 1446 if (env_flags & ENV_TYP_PERMANT) { 1447 /* 1448 * If the string is from a configuration file and defined as 1449 * permanent, assign it as permanent. 1450 */ 1451 select |= SEL_PERMANT; 1452 } else 1453 select |= SEL_REPLACE; 1454 1455 /* 1456 * Parse the variable given. 1457 * 1458 * The LD_AUDIT family. 1459 */ 1460 if (*s1 == 'A') { 1461 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1462 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1463 /* 1464 * Replaceable and permanent audit objects can exist. 1465 */ 1466 select |= SEL_ACT_STR; 1467 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1468 variable = ENV_FLG_AUDIT; 1469 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1470 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1471 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1472 /* 1473 * A specialized variable for plt_exit() use, not 1474 * documented for general use. 1475 */ 1476 select |= SEL_ACT_SPEC_2; 1477 variable = ENV_FLG_AUDIT_ARGS; 1478 } 1479 } 1480 /* 1481 * The LD_BIND family. 1482 */ 1483 else if (*s1 == 'B') { 1484 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1485 MSG_ORIG(MSG_LD_BIND_LAZY), 1486 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1487 select |= SEL_ACT_RT2; 1488 val = RT_FL2_BINDLAZY; 1489 variable = ENV_FLG_BIND_LAZY; 1490 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1491 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1492 select |= SEL_ACT_RT2; 1493 val = RT_FL2_BINDNOW; 1494 variable = ENV_FLG_BIND_NOW; 1495 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1496 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1497 /* 1498 * Another trick, enabled to help debug AOUT 1499 * applications under BCP, but not documented for 1500 * general use. 1501 */ 1502 select |= SEL_ACT_RT; 1503 val = RT_FL_NOBIND; 1504 variable = ENV_FLG_BIND_NOT; 1505 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1506 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1507 /* 1508 * This variable is simply for backward compatibility. 1509 * If this and LD_DEBUG are both specified, only one of 1510 * the strings is going to get processed. 1511 */ 1512 select |= SEL_ACT_SPEC_2; 1513 variable = ENV_FLG_BINDINGS; 1514 } 1515 } 1516 /* 1517 * LD_CAP_FILES and LD_CONFIG family. 1518 */ 1519 else if (*s1 == 'C') { 1520 if ((len == MSG_LD_CAP_FILES_SIZE) && (strncmp(s1, 1521 MSG_ORIG(MSG_LD_CAP_FILES), MSG_LD_CAP_FILES_SIZE) == 0)) { 1522 select |= SEL_ACT_STR; 1523 str = (select & SEL_REPLACE) ? 1524 &rpl_cap_files : &prm_cap_files; 1525 variable = ENV_FLG_CAP_FILES; 1526 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1527 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1528 /* 1529 * Set by crle(1) to indicate it's building a 1530 * configuration file, not documented for general use. 1531 */ 1532 select |= SEL_ACT_SPEC_2; 1533 variable = ENV_FLG_CONFGEN; 1534 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1535 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1536 /* 1537 * Secure applications must use a default configuration 1538 * file. A setting from a configuration file doesn't 1539 * make sense (given we must be reading a configuration 1540 * file to have gotten this). 1541 */ 1542 if ((rtld_flags & RT_FL_SECURE) || 1543 (env_flags & ENV_TYP_CONFIG)) 1544 return; 1545 select |= SEL_ACT_STR; 1546 str = &config->c_name; 1547 variable = ENV_FLG_CONFIG; 1548 } 1549 } 1550 /* 1551 * The LD_DEBUG family, LD_DEFERRED (internal, used by ldd(1)), and 1552 * LD_DEMANGLE. 1553 */ 1554 else if (*s1 == 'D') { 1555 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1556 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1557 select |= SEL_ACT_STR; 1558 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1559 variable = ENV_FLG_DEBUG; 1560 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1561 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1562 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1563 select |= SEL_ACT_STR; 1564 str = &dbg_file; 1565 variable = ENV_FLG_DEBUG_OUTPUT; 1566 } else if ((len == MSG_LD_DEFERRED_SIZE) && (strncmp(s1, 1567 MSG_ORIG(MSG_LD_DEFERRED), MSG_LD_DEFERRED_SIZE) == 0)) { 1568 select |= SEL_ACT_RT; 1569 val = RT_FL_DEFERRED; 1570 variable = ENV_FLG_DEFERRED; 1571 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1572 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1573 select |= SEL_ACT_RT; 1574 val = RT_FL_DEMANGLE; 1575 variable = ENV_FLG_DEMANGLE; 1576 } 1577 } 1578 /* 1579 * LD_FLAGS - collect the best variable definition. On completion of 1580 * environment variable processing pass the result to ld_flags_env() 1581 * where they'll be decomposed and passed back to this routine. 1582 */ 1583 else if (*s1 == 'F') { 1584 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1585 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1586 select |= SEL_ACT_SPEC_1; 1587 str = (select & SEL_REPLACE) ? &rpl_ldflags : 1588 &prm_ldflags; 1589 variable = ENV_FLG_FLAGS; 1590 } 1591 } 1592 /* 1593 * LD_HWCAP. 1594 */ 1595 else if (*s1 == 'H') { 1596 if ((len == MSG_LD_HWCAP_SIZE) && (strncmp(s1, 1597 MSG_ORIG(MSG_LD_HWCAP), MSG_LD_HWCAP_SIZE) == 0)) { 1598 select |= SEL_ACT_STR; 1599 str = (select & SEL_REPLACE) ? 1600 &rpl_hwcap : &prm_hwcap; 1601 variable = ENV_FLG_HWCAP; 1602 } 1603 } 1604 /* 1605 * LD_INIT (internal, used by ldd(1)). 1606 */ 1607 else if (*s1 == 'I') { 1608 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1609 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1610 select |= SEL_ACT_LML; 1611 val = LML_FLG_TRC_INIT; 1612 variable = ENV_FLG_INIT; 1613 } 1614 } 1615 /* 1616 * The LD_LIBRARY_PATH and LD_LOAD families. 1617 */ 1618 else if (*s1 == 'L') { 1619 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1620 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1621 select |= SEL_ACT_SPEC_1; 1622 str = (select & SEL_REPLACE) ? &rpl_libpath : 1623 &prm_libpath; 1624 variable = ENV_FLG_LIBPATH; 1625 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1626 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1627 /* 1628 * Internal use by crle(1), not documented for general 1629 * use. 1630 */ 1631 select |= SEL_ACT_LML; 1632 val = LML_FLG_LOADAVAIL; 1633 variable = ENV_FLG_LOADAVAIL; 1634 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1635 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1636 select |= SEL_ACT_SPEC_2; 1637 variable = ENV_FLG_LOADFLTR; 1638 } 1639 } 1640 /* 1641 * LD_MACHCAP. 1642 */ 1643 else if (*s1 == 'M') { 1644 if ((len == MSG_LD_MACHCAP_SIZE) && (strncmp(s1, 1645 MSG_ORIG(MSG_LD_MACHCAP), MSG_LD_MACHCAP_SIZE) == 0)) { 1646 select |= SEL_ACT_STR; 1647 str = (select & SEL_REPLACE) ? 1648 &rpl_machcap : &prm_machcap; 1649 variable = ENV_FLG_MACHCAP; 1650 } 1651 } 1652 /* 1653 * The LD_NO family. 1654 */ 1655 else if (*s1 == 'N') { 1656 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1657 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1658 select |= SEL_ACT_RT; 1659 val = RT_FL_NOAUDIT; 1660 variable = ENV_FLG_NOAUDIT; 1661 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1662 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1663 select |= SEL_ACT_RT; 1664 val = RT_FL_NOAUXFLTR; 1665 variable = ENV_FLG_NOAUXFLTR; 1666 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1667 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1668 select |= SEL_ACT_RT; 1669 val = RT_FL_NOBAPLT; 1670 variable = ENV_FLG_NOBAPLT; 1671 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1672 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1673 select |= SEL_ACT_RT; 1674 val = RT_FL_NOCFG; 1675 variable = ENV_FLG_NOCONFIG; 1676 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1677 MSG_ORIG(MSG_LD_NODIRCONFIG), 1678 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1679 select |= SEL_ACT_RT; 1680 val = RT_FL_NODIRCFG; 1681 variable = ENV_FLG_NODIRCONFIG; 1682 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1683 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1684 select |= SEL_ACT_LMLT; 1685 val = LML_TFLG_NODIRECT; 1686 variable = ENV_FLG_NODIRECT; 1687 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1688 MSG_ORIG(MSG_LD_NOENVCONFIG), 1689 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1690 select |= SEL_ACT_RT; 1691 val = RT_FL_NOENVCFG; 1692 variable = ENV_FLG_NOENVCONFIG; 1693 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1694 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1695 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1696 select |= SEL_ACT_RT2; 1697 val = RT_FL2_NOFLTCFG; 1698 variable = ENV_FLG_NOFLTCONFIG; 1699 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1700 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1701 select |= SEL_ACT_LMLT; 1702 val = LML_TFLG_NOLAZYLD; 1703 variable = ENV_FLG_NOLAZY; 1704 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1705 MSG_ORIG(MSG_LD_NOOBJALTER), 1706 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1707 select |= SEL_ACT_RT; 1708 val = RT_FL_NOOBJALT; 1709 variable = ENV_FLG_NOOBJALTER; 1710 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1711 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1712 select |= SEL_ACT_RT; 1713 val = RT_FL_NOVERSION; 1714 variable = ENV_FLG_NOVERSION; 1715 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1716 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1717 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1718 /* 1719 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1720 */ 1721 select |= SEL_ACT_LML; 1722 val = LML_FLG_TRC_NOUNRESWEAK; 1723 variable = ENV_FLG_NOUNRESWEAK; 1724 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1725 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1726 select |= SEL_ACT_LML; 1727 val = LML_FLG_TRC_NOPAREXT; 1728 variable = ENV_FLG_NOPAREXT; 1729 } else if ((len == MSG_LD_NOENVIRON_SIZE) && (strncmp(s1, 1730 MSG_ORIG(MSG_LD_NOENVIRON), MSG_LD_NOENVIRON_SIZE) == 0)) { 1731 /* 1732 * LD_NOENVIRON can only be set with ld.so.1 -e. 1733 */ 1734 select |= SEL_ACT_RT; 1735 val = RT_FL_NOENVIRON; 1736 variable = ENV_FLG_NOENVIRON; 1737 } 1738 } 1739 /* 1740 * LD_PLATCAP, LD_PRELOAD and LD_PROFILE family. 1741 */ 1742 else if (*s1 == 'P') { 1743 if ((len == MSG_LD_PLATCAP_SIZE) && (strncmp(s1, 1744 MSG_ORIG(MSG_LD_PLATCAP), MSG_LD_PLATCAP_SIZE) == 0)) { 1745 select |= SEL_ACT_STR; 1746 str = (select & SEL_REPLACE) ? 1747 &rpl_platcap : &prm_platcap; 1748 variable = ENV_FLG_PLATCAP; 1749 } else if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1750 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1751 select |= SEL_ACT_STR; 1752 str = (select & SEL_REPLACE) ? &rpl_preload : 1753 &prm_preload; 1754 variable = ENV_FLG_PRELOAD; 1755 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1756 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1757 /* 1758 * Only one user library can be profiled at a time. 1759 */ 1760 select |= SEL_ACT_SPEC_2; 1761 variable = ENV_FLG_PROFILE; 1762 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1763 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1764 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1765 /* 1766 * Only one user library can be profiled at a time. 1767 */ 1768 select |= SEL_ACT_STR; 1769 str = &profile_out; 1770 variable = ENV_FLG_PROFILE_OUTPUT; 1771 } 1772 } 1773 /* 1774 * LD_SFCAP and LD_SIGNAL. 1775 */ 1776 else if (*s1 == 'S') { 1777 if ((len == MSG_LD_SFCAP_SIZE) && (strncmp(s1, 1778 MSG_ORIG(MSG_LD_SFCAP), MSG_LD_SFCAP_SIZE) == 0)) { 1779 select |= SEL_ACT_STR; 1780 str = (select & SEL_REPLACE) ? 1781 &rpl_sfcap : &prm_sfcap; 1782 variable = ENV_FLG_SFCAP; 1783 } else if ((len == MSG_LD_SIGNAL_SIZE) && 1784 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1785 MSG_LD_SIGNAL_SIZE) == 0) && 1786 ((rtld_flags & RT_FL_SECURE) == 0)) { 1787 select |= SEL_ACT_SPEC_2; 1788 variable = ENV_FLG_SIGNAL; 1789 } 1790 } 1791 /* 1792 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1793 * the key to enabling all other ldd(1) specific environment variables. 1794 * In case an auditor is called, which in turn might exec(2) a 1795 * subprocess, this variable is disabled, so that any subprocess 1796 * escapes ldd(1) processing. 1797 */ 1798 else if (*s1 == 'T') { 1799 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1800 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1801 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1802 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1803 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1804 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1805 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1806 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1807 char *s0 = (char *)s1; 1808 1809 select |= SEL_ACT_SPEC_2; 1810 variable = ENV_FLG_TRACE_OBJS; 1811 1812 #if defined(__sparc) || defined(__x86) 1813 /* 1814 * The simplest way to "disable" this variable is to 1815 * truncate this string to "LD_'\0'". This string is 1816 * ignored by any ld.so.1 environment processing. 1817 * Use of such interfaces as unsetenv(3c) are overkill, 1818 * and would drag too much libc implementation detail 1819 * into ld.so.1. 1820 */ 1821 *s0 = '\0'; 1822 #else 1823 /* 1824 * Verify that the above write is appropriate for any new platforms. 1825 */ 1826 #error unsupported architecture! 1827 #endif 1828 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1829 MSG_ORIG(MSG_LD_TRACE_PTHS), 1830 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1831 select |= SEL_ACT_LML; 1832 val = LML_FLG_TRC_SEARCH; 1833 variable = ENV_FLG_TRACE_PTHS; 1834 } 1835 } 1836 /* 1837 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1838 */ 1839 else if (*s1 == 'U') { 1840 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1841 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1842 select |= SEL_ACT_LML; 1843 val = LML_FLG_TRC_UNREF; 1844 variable = ENV_FLG_UNREF; 1845 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1846 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1847 select |= SEL_ACT_LML; 1848 val = LML_FLG_TRC_UNUSED; 1849 variable = ENV_FLG_UNUSED; 1850 } 1851 } 1852 /* 1853 * LD_VERBOSE (internal, used by ldd(1)). 1854 */ 1855 else if (*s1 == 'V') { 1856 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1857 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1858 select |= SEL_ACT_LML; 1859 val = LML_FLG_TRC_VERBOSE; 1860 variable = ENV_FLG_VERBOSE; 1861 } 1862 } 1863 /* 1864 * LD_WARN (internal, used by ldd(1)). 1865 */ 1866 else if (*s1 == 'W') { 1867 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1868 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1869 select |= SEL_ACT_LML; 1870 val = LML_FLG_TRC_WARN; 1871 variable = ENV_FLG_WARN; 1872 } 1873 } 1874 1875 if (variable == 0) 1876 return; 1877 1878 /* 1879 * If the variable is already processed with and ISA specific variable, 1880 * no further processing is needed. 1881 */ 1882 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1883 ((select & SEL_PERMANT) && (prmisa & variable))) 1884 return; 1885 1886 /* 1887 * If this variable has already been set via the command line, then 1888 * ignore this variable. The command line, -e, takes precedence. 1889 */ 1890 if (env_flags & ENV_TYP_ISA) { 1891 if (cmdisa & variable) 1892 return; 1893 if (env_flags & ENV_TYP_CMDLINE) 1894 cmdisa |= variable; 1895 } else { 1896 if (cmdgen & variable) 1897 return; 1898 if (env_flags & ENV_TYP_CMDLINE) 1899 cmdgen |= variable; 1900 } 1901 1902 /* 1903 * Mark the appropriate variables. 1904 */ 1905 if (env_flags & ENV_TYP_ISA) { 1906 /* 1907 * This is an ISA setting. 1908 */ 1909 if (select & SEL_REPLACE) { 1910 if (rplisa & variable) 1911 return; 1912 rplisa |= variable; 1913 } else { 1914 prmisa |= variable; 1915 } 1916 } else { 1917 /* 1918 * This is a non-ISA setting. 1919 */ 1920 if (select & SEL_REPLACE) { 1921 if (rplgen & variable) 1922 return; 1923 rplgen |= variable; 1924 } else 1925 prmgen |= variable; 1926 } 1927 1928 /* 1929 * Now perform the setting. 1930 */ 1931 if (select & SEL_ACT_RT) { 1932 if (s2) 1933 rtld_flags |= val; 1934 else 1935 rtld_flags &= ~val; 1936 } else if (select & SEL_ACT_RT2) { 1937 if (s2) 1938 rtld_flags2 |= val; 1939 else 1940 rtld_flags2 &= ~val; 1941 } else if (select & SEL_ACT_STR) { 1942 if (env_flags & ENV_TYP_NULL) 1943 *str = NULL; 1944 else 1945 *str = s2; 1946 } else if (select & SEL_ACT_LML) { 1947 if (s2) 1948 *lmflags |= val; 1949 else 1950 *lmflags &= ~val; 1951 } else if (select & SEL_ACT_LMLT) { 1952 if (s2) 1953 *lmtflags |= val; 1954 else 1955 *lmtflags &= ~val; 1956 } else if (select & SEL_ACT_SPEC_1) { 1957 /* 1958 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1959 */ 1960 if (env_flags & ENV_TYP_NULL) 1961 *str = NULL; 1962 else 1963 *str = s2; 1964 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1965 if (s2) { 1966 if (variable == ENV_FLG_FLAGS) 1967 env_info |= ENV_INF_FLAGCFG; 1968 else 1969 env_info |= ENV_INF_PATHCFG; 1970 } else { 1971 if (variable == ENV_FLG_FLAGS) 1972 env_info &= ~ENV_INF_FLAGCFG; 1973 else 1974 env_info &= ~ENV_INF_PATHCFG; 1975 } 1976 } 1977 } else if (select & SEL_ACT_SPEC_2) { 1978 /* 1979 * variables can be: ENV_FLG_ 1980 * AUDIT_ARGS, BINDING, CONFGEN, LOADFLTR, PROFILE, 1981 * SIGNAL, TRACE_OBJS 1982 */ 1983 switch (variable) { 1984 case ENV_FLG_AUDIT_ARGS: 1985 if (s2) { 1986 audit_argcnt = atoi(s2); 1987 audit_argcnt += audit_argcnt % 2; 1988 } else 1989 audit_argcnt = 0; 1990 break; 1991 case ENV_FLG_BINDINGS: 1992 if (s2) 1993 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1994 else 1995 rpl_debug = NULL; 1996 break; 1997 case ENV_FLG_CONFGEN: 1998 if (s2) { 1999 rtld_flags |= RT_FL_CONFGEN; 2000 *lmflags |= LML_FLG_IGNRELERR; 2001 } else { 2002 rtld_flags &= ~RT_FL_CONFGEN; 2003 *lmflags &= ~LML_FLG_IGNRELERR; 2004 } 2005 break; 2006 case ENV_FLG_LOADFLTR: 2007 if (s2) { 2008 *lmtflags |= LML_TFLG_LOADFLTR; 2009 if (*s2 == '2') 2010 rtld_flags |= RT_FL_WARNFLTR; 2011 } else { 2012 *lmtflags &= ~LML_TFLG_LOADFLTR; 2013 rtld_flags &= ~RT_FL_WARNFLTR; 2014 } 2015 break; 2016 case ENV_FLG_PROFILE: 2017 profile_name = s2; 2018 if (s2) { 2019 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2020 return; 2021 } 2022 /* BEGIN CSTYLED */ 2023 if (rtld_flags & RT_FL_SECURE) { 2024 profile_lib = 2025 #if defined(_ELF64) 2026 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2027 #else 2028 MSG_ORIG(MSG_PTH_LDPROFSE); 2029 #endif 2030 } else { 2031 profile_lib = 2032 #if defined(_ELF64) 2033 MSG_ORIG(MSG_PTH_LDPROF_64); 2034 #else 2035 MSG_ORIG(MSG_PTH_LDPROF); 2036 #endif 2037 } 2038 /* END CSTYLED */ 2039 } else 2040 profile_lib = NULL; 2041 break; 2042 case ENV_FLG_SIGNAL: 2043 killsig = s2 ? atoi(s2) : SIGKILL; 2044 break; 2045 case ENV_FLG_TRACE_OBJS: 2046 if (s2) { 2047 *lmflags |= LML_FLG_TRC_ENABLE; 2048 if (*s2 == '2') 2049 *lmflags |= LML_FLG_TRC_LDDSTUB; 2050 } else 2051 *lmflags &= 2052 ~(LML_FLG_TRC_ENABLE | LML_FLG_TRC_LDDSTUB); 2053 break; 2054 } 2055 } 2056 } 2057 2058 /* 2059 * Determine whether we have an architecture specific environment variable. 2060 * If we do, and we're the wrong architecture, it'll just get ignored. 2061 * Otherwise the variable is processed in it's architecture neutral form. 2062 */ 2063 static int 2064 ld_arch_env(const char *s1, size_t *len) 2065 { 2066 size_t _len = *len - 3; 2067 2068 if (s1[_len++] == '_') { 2069 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2070 #if defined(_ELF64) 2071 return (ENV_TYP_IGNORE); 2072 #else 2073 *len = *len - 3; 2074 return (ENV_TYP_ISA); 2075 #endif 2076 } 2077 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2078 #if defined(_ELF64) 2079 *len = *len - 3; 2080 return (ENV_TYP_ISA); 2081 #else 2082 return (ENV_TYP_IGNORE); 2083 #endif 2084 } 2085 } 2086 return (0); 2087 } 2088 2089 /* 2090 * Process an LD_FLAGS environment variable. The value can be a comma 2091 * separated set of tokens, which are sent (in upper case) into the generic 2092 * LD_XXXX environment variable engine. For example: 2093 * 2094 * LD_FLAGS=bind_now= -> LD_BIND_NOW= 2095 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2096 * LD_FLAGS=library_path= -> LD_LIBRARY_PATH= 2097 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2098 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2099 * or 2100 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2101 */ 2102 static int 2103 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2104 uint_t env_flags, int aout) 2105 { 2106 char *nstr, *sstr, *estr = NULL; 2107 size_t nlen, len; 2108 2109 if (str == NULL) 2110 return (0); 2111 2112 /* 2113 * Create a new string as we're going to transform the token(s) into 2114 * uppercase and separate tokens with nulls. 2115 */ 2116 len = strlen(str); 2117 if ((nstr = malloc(len + 1)) == NULL) 2118 return (1); 2119 (void) strcpy(nstr, str); 2120 2121 for (sstr = nstr; sstr; sstr++, len--) { 2122 int flags = 0; 2123 2124 if ((*sstr != '\0') && (*sstr != ',')) { 2125 if (estr == NULL) { 2126 if (*sstr == '=') 2127 estr = sstr; 2128 else { 2129 /* 2130 * Translate token to uppercase. Don't 2131 * use toupper(3C) as including this 2132 * code doubles the size of ld.so.1. 2133 */ 2134 if ((*sstr >= 'a') && (*sstr <= 'z')) 2135 *sstr = *sstr - ('a' - 'A'); 2136 } 2137 } 2138 continue; 2139 } 2140 2141 *sstr = '\0'; 2142 2143 /* 2144 * Have we discovered an "=" string. 2145 */ 2146 if (estr) { 2147 nlen = estr - nstr; 2148 2149 /* 2150 * If this is an unqualified "=", then this variable 2151 * is intended to ensure a feature is disabled. 2152 */ 2153 if ((*++estr == '\0') || (*estr == ',')) 2154 estr = NULL; 2155 } else { 2156 nlen = sstr - nstr; 2157 2158 /* 2159 * If there is no "=" found, fabricate a boolean 2160 * definition for any unqualified variable. Thus, 2161 * LD_FLAGS=bind_now is represented as BIND_NOW=1. 2162 * The value "1" is sufficient to assert any boolean 2163 * variables. Setting of ENV_TYP_NULL ensures any 2164 * string usage is reset to a NULL string, thus 2165 * LD_FLAGS=library_path is equivalent to 2166 * LIBRARY_PATH='\0'. 2167 */ 2168 flags |= ENV_TYP_NULL; 2169 estr = (char *)MSG_ORIG(MSG_STR_ONE); 2170 } 2171 2172 /* 2173 * Determine whether the environment variable is 32- or 64-bit 2174 * specific. The length, len, will reflect the architecture 2175 * neutral portion of the string. 2176 */ 2177 if ((flags |= ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2178 ld_generic_env(nstr, nlen, estr, lmflags, 2179 lmtflags, (env_flags | flags), aout); 2180 } 2181 if (len == 0) 2182 break; 2183 2184 nstr = sstr + 1; 2185 estr = NULL; 2186 } 2187 2188 return (0); 2189 } 2190 2191 /* 2192 * Variant of getopt(), intended for use when ld.so.1 is invoked directly 2193 * from the command line. The only command line option allowed is -e followed 2194 * by a runtime linker environment variable. 2195 */ 2196 int 2197 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 2198 Word *lmtflags, int aout) 2199 { 2200 int ndx; 2201 2202 for (ndx = 1; argv[ndx]; ndx++) { 2203 char *str; 2204 2205 if (argv[ndx][0] != '-') 2206 break; 2207 2208 if (argv[ndx][1] == '\0') { 2209 ndx++; 2210 break; 2211 } 2212 2213 if (argv[ndx][1] != 'e') 2214 return (1); 2215 2216 if (argv[ndx][2] == '\0') { 2217 ndx++; 2218 if (argv[ndx] == NULL) 2219 return (1); 2220 str = argv[ndx]; 2221 } else 2222 str = &argv[ndx][2]; 2223 2224 /* 2225 * If the environment variable starts with LD_, strip the LD_. 2226 * Otherwise, take things as is. Indicate that this variable 2227 * originates from the command line, as these variables take 2228 * precedence over any environment variables, or configuration 2229 * file variables. 2230 */ 2231 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 2232 (str[3] != '\0')) 2233 str += 3; 2234 if (ld_flags_env(str, lmflags, lmtflags, 2235 ENV_TYP_CMDLINE, aout) == 1) 2236 return (1); 2237 } 2238 2239 /* 2240 * Make sure an object file has been specified. 2241 */ 2242 if (argv[ndx] == NULL) 2243 return (1); 2244 2245 /* 2246 * Having gotten the arguments, clean ourselves off of the stack. 2247 * This results in a process that looks as if it was executed directly 2248 * from the application. 2249 */ 2250 stack_cleanup(argv, envp, auxv, ndx); 2251 return (0); 2252 } 2253 2254 /* 2255 * Process a single LD_XXXX string. 2256 */ 2257 static void 2258 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2259 int aout) 2260 { 2261 const char *s2; 2262 size_t len; 2263 int flags; 2264 2265 /* 2266 * In a branded process we must ignore all LD_XXXX variables because 2267 * they are intended for the brand's linker. To affect the native 2268 * linker, use LD_BRAND_XXXX instead. 2269 */ 2270 if (rtld_flags2 & RT_FL2_BRANDED) { 2271 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2272 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2273 return; 2274 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2275 } 2276 2277 /* 2278 * Variables with no value (ie. LD_XXXX=) turn a capability off. 2279 */ 2280 if ((s2 = strchr(s1, '=')) == NULL) { 2281 len = strlen(s1); 2282 s2 = NULL; 2283 } else if (*++s2 == '\0') { 2284 len = strlen(s1) - 1; 2285 s2 = NULL; 2286 } else { 2287 len = s2 - s1 - 1; 2288 while (conv_strproc_isspace(*s2)) 2289 s2++; 2290 } 2291 2292 /* 2293 * Determine whether the environment variable is 32-bit or 64-bit 2294 * specific. The length, len, will reflect the architecture neutral 2295 * portion of the string. 2296 */ 2297 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2298 return; 2299 env_flags |= flags; 2300 2301 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2302 } 2303 2304 /* 2305 * Internal getenv routine. Called immediately after ld.so.1 initializes 2306 * itself to process any locale specific environment variables, and collect 2307 * any LD_XXXX variables for later processing. 2308 */ 2309 #define LOC_LANG 1 2310 #define LOC_MESG 2 2311 #define LOC_ALL 3 2312 2313 int 2314 readenv_user(const char **envp, APlist **ealpp) 2315 { 2316 char *locale; 2317 const char *s1; 2318 int loc = 0; 2319 2320 for (s1 = *envp; s1; envp++, s1 = *envp) { 2321 const char *s2; 2322 2323 if (*s1++ != 'L') 2324 continue; 2325 2326 /* 2327 * See if we have any locale environment settings. These 2328 * environment variables have a precedence, LC_ALL is higher 2329 * than LC_MESSAGES which is higher than LANG. 2330 */ 2331 s2 = s1; 2332 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2333 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), 2334 MSG_LC_ALL_SIZE) == 0) { 2335 s2 += MSG_LC_ALL_SIZE; 2336 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2337 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2338 (char *)s2; 2339 loc = LOC_ALL; 2340 } 2341 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2342 MSG_LC_MESSAGES_SIZE) == 0) { 2343 s2 += MSG_LC_MESSAGES_SIZE; 2344 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2345 glcs[CI_LCMESSAGES].lc_un.lc_ptr = 2346 (char *)s2; 2347 loc = LOC_MESG; 2348 } 2349 } 2350 continue; 2351 } 2352 2353 s2 = s1; 2354 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2355 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2356 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2357 loc = LOC_LANG; 2358 continue; 2359 } 2360 2361 /* 2362 * Pick off any LD_XXXX environment variables. 2363 */ 2364 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2365 if (aplist_append(ealpp, s1, AL_CNT_ENVIRON) == NULL) 2366 return (1); 2367 } 2368 } 2369 2370 /* 2371 * If we have a locale setting make sure it's worth processing further. 2372 * C and POSIX locales don't need any processing. In addition, to 2373 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2374 * the locale to contain a segment that leads upward in the file system 2375 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2376 * the /usr/lib/locale hierarchy, there is no need to extensively 2377 * validate the mode or ownership of any message file (as libc's 2378 * generic handling of message files does), or be concerned with 2379 * symbolic links that might otherwise send us elsewhere. Duplicate 2380 * the string so that new locale setting can generically cleanup any 2381 * previous locales. 2382 */ 2383 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2384 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2385 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2386 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2387 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2388 else 2389 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2390 } 2391 return (0); 2392 } 2393 2394 /* 2395 * Process any LD_XXXX environment variables collected by readenv_user(). 2396 */ 2397 int 2398 procenv_user(APlist *ealp, Word *lmflags, Word *lmtflags, int aout) 2399 { 2400 Aliste idx; 2401 const char *s1; 2402 2403 for (APLIST_TRAVERSE(ealp, idx, s1)) 2404 ld_str_env(s1, lmflags, lmtflags, 0, aout); 2405 2406 /* 2407 * Having collected the best representation of any LD_FLAGS, process 2408 * these strings. 2409 */ 2410 if (rpl_ldflags) { 2411 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2412 return (1); 2413 rpl_ldflags = NULL; 2414 } 2415 2416 /* 2417 * Don't allow environment controlled auditing when tracing or if 2418 * explicitly disabled. Trigger all tracing modes from 2419 * LML_FLG_TRC_ENABLE. 2420 */ 2421 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2422 rpl_audit = profile_lib = profile_name = NULL; 2423 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2424 *lmflags &= ~LML_MSK_TRC; 2425 2426 /* 2427 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2428 */ 2429 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2430 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2431 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2432 2433 /* 2434 * When using ldd(1) -r or -d against an executable, assert -p. 2435 */ 2436 if ((*lmflags & 2437 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2438 *lmflags |= LML_FLG_TRC_NOPAREXT; 2439 2440 return (0); 2441 } 2442 2443 /* 2444 * Configuration environment processing. Called after the a.out has been 2445 * processed (as the a.out can specify its own configuration file). 2446 */ 2447 int 2448 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2449 { 2450 Word *lmflags = &(lml_main.lm_flags); 2451 Word *lmtflags = &(lml_main.lm_tflags); 2452 2453 if (envtbl == NULL) 2454 return (0); 2455 2456 while (envtbl->env_str) { 2457 uint_t env_flags = ENV_TYP_CONFIG; 2458 const char *s1 = (const char *)(envtbl->env_str + addr); 2459 2460 if (envtbl->env_flags & RTC_ENV_PERMANT) 2461 env_flags |= ENV_TYP_PERMANT; 2462 2463 if ((*s1++ == 'L') && (*s1++ == 'D') && 2464 (*s1++ == '_') && (*s1 != '\0')) 2465 ld_str_env(s1, lmflags, lmtflags, env_flags, 0); 2466 2467 envtbl++; 2468 } 2469 2470 /* 2471 * Having collected the best representation of any LD_FLAGS, process 2472 * these strings. 2473 */ 2474 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2475 return (1); 2476 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2477 aout) == 1) 2478 return (1); 2479 2480 /* 2481 * Don't allow environment controlled auditing when tracing or if 2482 * explicitly disabled. Trigger all tracing modes from 2483 * LML_FLG_TRC_ENABLE. 2484 */ 2485 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2486 prm_audit = profile_lib = profile_name = NULL; 2487 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2488 *lmflags &= ~LML_MSK_TRC; 2489 2490 return (0); 2491 } 2492 2493 int 2494 dowrite(Prfbuf * prf) 2495 { 2496 /* 2497 * We do not have a valid file descriptor, so we are unable 2498 * to flush the buffer. 2499 */ 2500 if (prf->pr_fd == -1) 2501 return (0); 2502 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2503 prf->pr_cur = prf->pr_buf; 2504 return (1); 2505 } 2506 2507 /* 2508 * Simplified printing. The following conversion specifications are supported: 2509 * 2510 * % [#] [-] [min field width] [. precision] s|d|x|c 2511 * 2512 * 2513 * dorprf takes the output buffer in the form of Prfbuf which permits 2514 * the verification of the output buffer size and the concatenation 2515 * of data to an already existing output buffer. The Prfbuf 2516 * structure contains the following: 2517 * 2518 * pr_buf pointer to the beginning of the output buffer. 2519 * pr_cur pointer to the next available byte in the output buffer. By 2520 * setting pr_cur ahead of pr_buf you can append to an already 2521 * existing buffer. 2522 * pr_len the size of the output buffer. By setting pr_len to '0' you 2523 * disable protection from overflows in the output buffer. 2524 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2525 * output to. If pr_fd is set to '-1' then it's assumed there is 2526 * no output buffer, and doprf() will return with an error to 2527 * indicate an output buffer overflow. If pr_fd is > -1 then when 2528 * the output buffer is filled it will be flushed to pr_fd and will 2529 * then be available for additional data. 2530 */ 2531 #define FLG_UT_MINUS 0x0001 /* - */ 2532 #define FLG_UT_SHARP 0x0002 /* # */ 2533 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2534 2535 /* 2536 * This macro is for use from within doprf only. It is to be used for checking 2537 * the output buffer size and placing characters into the buffer. 2538 */ 2539 #define PUTC(c) \ 2540 { \ 2541 char tmpc; \ 2542 \ 2543 tmpc = (c); \ 2544 if (bufsiz && (bp >= bufend)) { \ 2545 prf->pr_cur = bp; \ 2546 if (dowrite(prf) == 0) \ 2547 return (0); \ 2548 bp = prf->pr_cur; \ 2549 } \ 2550 *bp++ = tmpc; \ 2551 } 2552 2553 /* 2554 * Define a local buffer size for building a numeric value - large enough to 2555 * hold a 64-bit value. 2556 */ 2557 #define NUM_SIZE 22 2558 2559 size_t 2560 doprf(const char *format, va_list args, Prfbuf *prf) 2561 { 2562 char c; 2563 char *bp = prf->pr_cur; 2564 char *bufend = prf->pr_buf + prf->pr_len; 2565 size_t bufsiz = prf->pr_len; 2566 2567 while ((c = *format++) != '\0') { 2568 if (c != '%') { 2569 PUTC(c); 2570 } else { 2571 int base = 0, flag = 0, width = 0, prec = 0; 2572 size_t _i; 2573 int _c, _n; 2574 char *_s; 2575 int ls = 0; 2576 again: 2577 c = *format++; 2578 switch (c) { 2579 case '-': 2580 flag |= FLG_UT_MINUS; 2581 goto again; 2582 case '#': 2583 flag |= FLG_UT_SHARP; 2584 goto again; 2585 case '.': 2586 flag |= FLG_UT_DOTSEEN; 2587 goto again; 2588 case '0': 2589 case '1': 2590 case '2': 2591 case '3': 2592 case '4': 2593 case '5': 2594 case '6': 2595 case '7': 2596 case '8': 2597 case '9': 2598 if (flag & FLG_UT_DOTSEEN) 2599 prec = (prec * 10) + c - '0'; 2600 else 2601 width = (width * 10) + c - '0'; 2602 goto again; 2603 case 'x': 2604 case 'X': 2605 base = 16; 2606 break; 2607 case 'd': 2608 case 'D': 2609 case 'u': 2610 base = 10; 2611 flag &= ~FLG_UT_SHARP; 2612 break; 2613 case 'l': 2614 base = 10; 2615 ls++; /* number of l's (long or long long) */ 2616 if ((*format == 'l') || 2617 (*format == 'd') || (*format == 'D') || 2618 (*format == 'x') || (*format == 'X') || 2619 (*format == 'o') || (*format == 'O') || 2620 (*format == 'u') || (*format == 'U')) 2621 goto again; 2622 break; 2623 case 'o': 2624 case 'O': 2625 base = 8; 2626 break; 2627 case 'c': 2628 _c = va_arg(args, int); 2629 2630 for (_i = 24; _i > 0; _i -= 8) { 2631 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2632 PUTC(c); 2633 } 2634 } 2635 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2636 PUTC(c); 2637 } 2638 break; 2639 case 's': 2640 _s = va_arg(args, char *); 2641 _i = strlen(_s); 2642 /* LINTED */ 2643 _n = (int)(width - _i); 2644 if (!prec) 2645 /* LINTED */ 2646 prec = (int)_i; 2647 2648 if (width && !(flag & FLG_UT_MINUS)) { 2649 while (_n-- > 0) 2650 PUTC(' '); 2651 } 2652 while (((c = *_s++) != 0) && prec--) { 2653 PUTC(c); 2654 } 2655 if (width && (flag & FLG_UT_MINUS)) { 2656 while (_n-- > 0) 2657 PUTC(' '); 2658 } 2659 break; 2660 case '%': 2661 PUTC('%'); 2662 break; 2663 default: 2664 break; 2665 } 2666 2667 /* 2668 * Numeric processing 2669 */ 2670 if (base) { 2671 char local[NUM_SIZE]; 2672 size_t ssize = 0, psize = 0; 2673 const char *string = 2674 MSG_ORIG(MSG_STR_HEXNUM); 2675 const char *prefix = 2676 MSG_ORIG(MSG_STR_EMPTY); 2677 u_longlong_t num; 2678 2679 switch (ls) { 2680 case 0: /* int */ 2681 num = (u_longlong_t) 2682 va_arg(args, uint_t); 2683 break; 2684 case 1: /* long */ 2685 num = (u_longlong_t) 2686 va_arg(args, ulong_t); 2687 break; 2688 case 2: /* long long */ 2689 num = va_arg(args, u_longlong_t); 2690 break; 2691 } 2692 2693 if (flag & FLG_UT_SHARP) { 2694 if (base == 16) { 2695 prefix = MSG_ORIG(MSG_STR_HEX); 2696 psize = 2; 2697 } else { 2698 prefix = MSG_ORIG(MSG_STR_ZERO); 2699 psize = 1; 2700 } 2701 } 2702 if ((base == 10) && (long)num < 0) { 2703 prefix = MSG_ORIG(MSG_STR_NEGATE); 2704 psize = MSG_STR_NEGATE_SIZE; 2705 num = (u_longlong_t)(-(longlong_t)num); 2706 } 2707 2708 /* 2709 * Convert the numeric value into a local 2710 * string (stored in reverse order). 2711 */ 2712 _s = local; 2713 do { 2714 *_s++ = string[num % base]; 2715 num /= base; 2716 ssize++; 2717 } while (num); 2718 2719 ASSERT(ssize < sizeof (local)); 2720 2721 /* 2722 * Provide any precision or width padding. 2723 */ 2724 if (prec) { 2725 /* LINTED */ 2726 _n = (int)(prec - ssize); 2727 while ((_n-- > 0) && 2728 (ssize < sizeof (local))) { 2729 *_s++ = '0'; 2730 ssize++; 2731 } 2732 } 2733 if (width && !(flag & FLG_UT_MINUS)) { 2734 /* LINTED */ 2735 _n = (int)(width - ssize - psize); 2736 while (_n-- > 0) { 2737 PUTC(' '); 2738 } 2739 } 2740 2741 /* 2742 * Print any prefix and the numeric string 2743 */ 2744 while (*prefix) 2745 PUTC(*prefix++); 2746 do { 2747 PUTC(*--_s); 2748 } while (_s > local); 2749 2750 /* 2751 * Provide any width padding. 2752 */ 2753 if (width && (flag & FLG_UT_MINUS)) { 2754 /* LINTED */ 2755 _n = (int)(width - ssize - psize); 2756 while (_n-- > 0) 2757 PUTC(' '); 2758 } 2759 } 2760 } 2761 } 2762 2763 PUTC('\0'); 2764 prf->pr_cur = bp; 2765 return (1); 2766 } 2767 2768 static int 2769 doprintf(const char *format, va_list args, Prfbuf *prf) 2770 { 2771 char *ocur = prf->pr_cur; 2772 2773 if (doprf(format, args, prf) == 0) 2774 return (0); 2775 /* LINTED */ 2776 return ((int)(prf->pr_cur - ocur)); 2777 } 2778 2779 /* VARARGS2 */ 2780 int 2781 sprintf(char *buf, const char *format, ...) 2782 { 2783 va_list args; 2784 int len; 2785 Prfbuf prf; 2786 2787 va_start(args, format); 2788 prf.pr_buf = prf.pr_cur = buf; 2789 prf.pr_len = 0; 2790 prf.pr_fd = -1; 2791 len = doprintf(format, args, &prf); 2792 va_end(args); 2793 2794 /* 2795 * sprintf() return value excludes the terminating null byte. 2796 */ 2797 return (len - 1); 2798 } 2799 2800 /* VARARGS3 */ 2801 int 2802 snprintf(char *buf, size_t n, const char *format, ...) 2803 { 2804 va_list args; 2805 int len; 2806 Prfbuf prf; 2807 2808 va_start(args, format); 2809 prf.pr_buf = prf.pr_cur = buf; 2810 prf.pr_len = n; 2811 prf.pr_fd = -1; 2812 len = doprintf(format, args, &prf); 2813 va_end(args); 2814 2815 return (len); 2816 } 2817 2818 /* VARARGS2 */ 2819 int 2820 bufprint(Prfbuf *prf, const char *format, ...) 2821 { 2822 va_list args; 2823 int len; 2824 2825 va_start(args, format); 2826 len = doprintf(format, args, prf); 2827 va_end(args); 2828 2829 return (len); 2830 } 2831 2832 /*PRINTFLIKE1*/ 2833 int 2834 printf(const char *format, ...) 2835 { 2836 va_list args; 2837 char buffer[ERRSIZE]; 2838 Prfbuf prf; 2839 2840 va_start(args, format); 2841 prf.pr_buf = prf.pr_cur = buffer; 2842 prf.pr_len = ERRSIZE; 2843 prf.pr_fd = 1; 2844 (void) doprf(format, args, &prf); 2845 va_end(args); 2846 /* 2847 * Trim trailing '\0' form buffer 2848 */ 2849 prf.pr_cur--; 2850 return (dowrite(&prf)); 2851 } 2852 2853 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2854 2855 /* 2856 * All error messages go through eprintf(). During process initialization, 2857 * these messages are directed to the standard error, however once control has 2858 * been passed to the applications code these messages are stored in an internal 2859 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2860 * while running the application will still cause a standard error message, see 2861 * rtldexit() in this file for details. 2862 * The RT_FL_APPLIC flag serves to indicate the transition between process 2863 * initialization and when the applications code is running. 2864 */ 2865 /*PRINTFLIKE3*/ 2866 void 2867 eprintf(Lm_list *lml, Error error, const char *format, ...) 2868 { 2869 va_list args; 2870 int overflow = 0; 2871 static int lock = 0; 2872 Prfbuf prf; 2873 2874 if (lock || (nextptr == (errbuf + ERRSIZE))) 2875 return; 2876 2877 /* 2878 * Note: this lock is here to prevent the same thread from recursively 2879 * entering itself during a eprintf. ie: during eprintf malloc() fails 2880 * and we try and call eprintf ... and then malloc() fails .... 2881 */ 2882 lock = 1; 2883 2884 /* 2885 * If we have completed startup initialization, all error messages 2886 * must be saved. These are reported through dlerror(). If we're 2887 * still in the initialization stage, output the error directly and 2888 * add a newline. 2889 */ 2890 va_start(args, format); 2891 2892 prf.pr_buf = prf.pr_cur = nextptr; 2893 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2894 2895 if (!(rtld_flags & RT_FL_APPLIC)) 2896 prf.pr_fd = 2; 2897 else 2898 prf.pr_fd = -1; 2899 2900 if (error > ERR_NONE) { 2901 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2902 error = ERR_WARNING; 2903 if (error == ERR_WARNING) { 2904 if (err_strs[ERR_WARNING] == NULL) 2905 err_strs[ERR_WARNING] = 2906 MSG_INTL(MSG_ERR_WARNING); 2907 } else if (error == ERR_FATAL) { 2908 if (err_strs[ERR_FATAL] == NULL) 2909 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2910 } else if (error == ERR_ELF) { 2911 if (err_strs[ERR_ELF] == NULL) 2912 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2913 } 2914 if (procname) { 2915 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2916 rtldname, procname, err_strs[error]) == 0) 2917 overflow = 1; 2918 } else { 2919 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2920 rtldname, err_strs[error]) == 0) 2921 overflow = 1; 2922 } 2923 if (overflow == 0) { 2924 /* 2925 * Remove the terminating '\0'. 2926 */ 2927 prf.pr_cur--; 2928 } 2929 } 2930 2931 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2932 overflow = 1; 2933 2934 /* 2935 * If this is an ELF error, it will have been generated by a support 2936 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2937 * ELF error messages as it doesn't interact with libelf. Determine the 2938 * ELF error string. 2939 */ 2940 if ((overflow == 0) && (error == ERR_ELF)) { 2941 static int (*elfeno)() = 0; 2942 static const char *(*elfemg)(); 2943 const char *emsg; 2944 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2945 2946 if (NEXT(lmp) && (elfeno == 0)) { 2947 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2948 MSG_ORIG(MSG_SYM_ELFERRMSG), 2949 lmp, &dlmp)) == NULL) || 2950 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2951 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2952 elfeno = 0; 2953 } 2954 2955 /* 2956 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2957 */ 2958 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2959 prf.pr_cur--; 2960 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2961 emsg) == 0) 2962 overflow = 1; 2963 } 2964 } 2965 2966 /* 2967 * Push out any message that's been built. Note, in the case of an 2968 * overflow condition, this message may be incomplete, in which case 2969 * make sure any partial string is null terminated. 2970 */ 2971 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2972 *(prf.pr_cur - 1) = '\n'; 2973 (void) dowrite(&prf); 2974 } 2975 if (overflow) 2976 *(prf.pr_cur - 1) = '\0'; 2977 2978 DBG_CALL(Dbg_util_str(lml, nextptr)); 2979 va_end(args); 2980 2981 /* 2982 * Determine if there was insufficient space left in the buffer to 2983 * complete the message. If so, we'll have printed out as much as had 2984 * been processed if we're not yet executing the application. 2985 * Otherwise, there will be some debugging diagnostic indicating 2986 * as much of the error message as possible. Write out a final buffer 2987 * overflow diagnostic - unlocalized, so we don't chance more errors. 2988 */ 2989 if (overflow) { 2990 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2991 2992 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2993 lasterr = str; 2994 2995 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2996 (void) write(2, str, strlen(str)); 2997 (void) write(2, MSG_ORIG(MSG_STR_NL), 2998 MSG_STR_NL_SIZE); 2999 } 3000 } 3001 DBG_CALL(Dbg_util_str(lml, str)); 3002 3003 lock = 0; 3004 nextptr = errbuf + ERRSIZE; 3005 return; 3006 } 3007 3008 /* 3009 * If the application has started, then error messages are being saved 3010 * for retrieval by dlerror(), or possible flushing from rtldexit() in 3011 * the case of a fatal error. In this case, establish the next error 3012 * pointer. If we haven't started the application, the whole message 3013 * buffer can be reused. 3014 */ 3015 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 3016 lasterr = nextptr; 3017 3018 /* 3019 * Note, should we encounter an error such as ENOMEM, there may 3020 * be a number of the same error messages (ie. an operation 3021 * fails with ENOMEM, and then the attempts to construct the 3022 * error message itself, which incurs additional ENOMEM errors). 3023 * Compare any previous error message with the one we've just 3024 * created to prevent any duplication clutter. 3025 */ 3026 if ((rtld_flags & RT_FL_APPLIC) && 3027 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 3028 prevptr = nextptr; 3029 nextptr = prf.pr_cur; 3030 *nextptr = '\0'; 3031 } 3032 } 3033 lock = 0; 3034 } 3035 3036 #if DEBUG 3037 /* 3038 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 3039 * details. 3040 */ 3041 int 3042 assfail(const char *a, const char *f, int l) 3043 { 3044 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3045 (void) _lwp_kill(_lwp_self(), SIGABRT); 3046 return (0); 3047 } 3048 #endif 3049 3050 /* 3051 * Exit. If we arrive here with a non zero status it's because of a fatal 3052 * error condition (most commonly a relocation error). If the application has 3053 * already had control, then the actual fatal error message will have been 3054 * recorded in the dlerror() message buffer. Print the message before really 3055 * exiting. 3056 */ 3057 void 3058 rtldexit(Lm_list * lml, int status) 3059 { 3060 if (status) { 3061 if (rtld_flags & RT_FL_APPLIC) { 3062 /* 3063 * If the error buffer has been used, write out all 3064 * pending messages - lasterr is simply a pointer to 3065 * the last message in this buffer. However, if the 3066 * buffer couldn't be created at all, lasterr points 3067 * to a constant error message string. 3068 */ 3069 if (*errbuf) { 3070 char *errptr = errbuf; 3071 char *errend = errbuf + ERRSIZE; 3072 3073 while ((errptr < errend) && *errptr) { 3074 size_t size = strlen(errptr); 3075 (void) write(2, errptr, size); 3076 (void) write(2, MSG_ORIG(MSG_STR_NL), 3077 MSG_STR_NL_SIZE); 3078 errptr += (size + 1); 3079 } 3080 } 3081 if (lasterr && ((lasterr < errbuf) || 3082 (lasterr > (errbuf + ERRSIZE)))) { 3083 (void) write(2, lasterr, strlen(lasterr)); 3084 (void) write(2, MSG_ORIG(MSG_STR_NL), 3085 MSG_STR_NL_SIZE); 3086 } 3087 } 3088 leave(lml, 0); 3089 (void) _lwp_kill(_lwp_self(), killsig); 3090 } 3091 _exit(status); 3092 } 3093 3094 /* 3095 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3096 */ 3097 void * 3098 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3099 { 3100 caddr_t va; 3101 3102 if ((va = (caddr_t)mmap(addr, len, prot, 3103 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3104 int err = errno; 3105 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3106 strerror(err)); 3107 return (MAP_FAILED); 3108 } 3109 return (va); 3110 } 3111 3112 static int nu_fd = FD_UNAVAIL; 3113 3114 void * 3115 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3116 { 3117 caddr_t va; 3118 int err; 3119 3120 if (nu_fd == FD_UNAVAIL) { 3121 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3122 O_RDONLY)) == FD_UNAVAIL) { 3123 err = errno; 3124 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3125 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3126 return (MAP_FAILED); 3127 } 3128 } 3129 3130 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3131 MAP_FAILED) { 3132 err = errno; 3133 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3134 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3135 } 3136 return (va); 3137 } 3138 3139 /* 3140 * Generic entry point from user code - simply grabs a lock, and bumps the 3141 * entrance count. 3142 */ 3143 int 3144 enter(int flags) 3145 { 3146 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3147 if (!thr_flg_nolock) 3148 (void) rt_mutex_lock(&rtldlock); 3149 if (rtld_flags & RT_FL_OPERATION) { 3150 ld_entry_cnt++; 3151 3152 /* 3153 * Reset the diagnostic time information for each new 3154 * "operation". Thus timing diagnostics are relative 3155 * to entering ld.so.1. 3156 */ 3157 if (DBG_ISTIME() && 3158 (gettimeofday(&DBG_TOTALTIME, NULL) == 0)) { 3159 DBG_DELTATIME = DBG_TOTALTIME; 3160 DBG_ONRESET(); 3161 } 3162 } 3163 return (1); 3164 } 3165 return (0); 3166 } 3167 3168 /* 3169 * Determine whether a search path has been used. 3170 */ 3171 static void 3172 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3173 { 3174 Pdesc *pdp; 3175 Aliste idx; 3176 3177 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3178 const char *fmt, *name; 3179 3180 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3181 continue; 3182 3183 /* 3184 * If this pathname originated from an expanded token, use the 3185 * original for any diagnostic output. 3186 */ 3187 if ((name = pdp->pd_oname) == NULL) 3188 name = pdp->pd_pname; 3189 3190 if (unref == 0) { 3191 if ((*nl)++ == 0) 3192 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3193 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3194 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3195 continue; 3196 } 3197 3198 if (pdp->pd_flags & LA_SER_LIBPATH) { 3199 if (pdp->pd_flags & LA_SER_CONFIG) { 3200 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3201 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3202 else 3203 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3204 } else { 3205 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3206 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3207 else 3208 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3209 } 3210 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3211 fmt = MSG_INTL(MSG_USD_RUNPATH); 3212 } else 3213 continue; 3214 3215 if ((*nl)++ == 0) 3216 (void) printf(MSG_ORIG(MSG_STR_NL)); 3217 (void) printf(fmt, name, obj); 3218 } 3219 } 3220 3221 /* 3222 * Generate diagnostics as to whether an object has been used. A symbolic 3223 * reference that gets bound to an object marks it as used. Dependencies that 3224 * are unused when RTLD_NOW is in effect should be removed from future builds 3225 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3226 * candidates for lazy-loading. 3227 * 3228 * Unreferenced objects identify objects that are defined as dependencies but 3229 * are unreferenced by the caller. These unreferenced objects may however be 3230 * referenced by other objects within the process, and therefore don't qualify 3231 * as completely unused. They are still an unnecessary overhead. 3232 * 3233 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3234 * debugging. 3235 */ 3236 void 3237 unused(Lm_list *lml) 3238 { 3239 Rt_map *lmp; 3240 int nl = 0; 3241 Word unref, unuse; 3242 3243 /* 3244 * If we're not tracing unused references or dependencies, or debugging 3245 * there's nothing to do. 3246 */ 3247 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3248 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3249 3250 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3251 return; 3252 3253 /* 3254 * Detect unused global search paths. 3255 */ 3256 if (rpl_libdirs) 3257 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3258 if (prm_libdirs) 3259 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3260 3261 nl = 0; 3262 lmp = lml->lm_head; 3263 if (RLIST(lmp)) 3264 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3265 3266 /* 3267 * Traverse the link-maps looking for unreferenced or unused 3268 * dependencies. Ignore the first object on a link-map list, as this 3269 * is always used. 3270 */ 3271 nl = 0; 3272 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3273 /* 3274 * Determine if this object contains any runpaths that have 3275 * not been used. 3276 */ 3277 if (RLIST(lmp)) 3278 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3279 3280 /* 3281 * If tracing unreferenced objects, or under debugging, 3282 * determine whether any of this objects callers haven't 3283 * referenced it. 3284 */ 3285 if (unref || DBG_ENABLED) { 3286 Bnd_desc *bdp; 3287 Aliste idx; 3288 3289 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3290 Rt_map *clmp; 3291 3292 if (bdp->b_flags & BND_REFER) 3293 continue; 3294 3295 clmp = bdp->b_caller; 3296 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3297 continue; 3298 3299 /* BEGIN CSTYLED */ 3300 if (nl++ == 0) { 3301 if (unref) 3302 (void) printf(MSG_ORIG(MSG_STR_NL)); 3303 else 3304 DBG_CALL(Dbg_util_nl(lml, 3305 DBG_NL_STD)); 3306 } 3307 3308 if (unref) 3309 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3310 NAME(lmp), NAME(clmp)); 3311 else 3312 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3313 /* END CSTYLED */ 3314 } 3315 } 3316 3317 /* 3318 * If tracing unused objects simply display those objects that 3319 * haven't been referenced by anyone. 3320 */ 3321 if (FLAGS1(lmp) & FL1_RT_USED) 3322 continue; 3323 3324 if (nl++ == 0) { 3325 if (unref || unuse) 3326 (void) printf(MSG_ORIG(MSG_STR_NL)); 3327 else 3328 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3329 } 3330 if (CYCGROUP(lmp)) { 3331 if (unref || unuse) 3332 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3333 NAME(lmp), CYCGROUP(lmp)); 3334 else 3335 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3336 CYCGROUP(lmp))); 3337 } else { 3338 if (unref || unuse) 3339 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3340 NAME(lmp)); 3341 else 3342 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3343 } 3344 } 3345 3346 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3347 } 3348 3349 /* 3350 * Generic cleanup routine called prior to returning control to the user. 3351 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3352 * released, and any locks dropped. 3353 */ 3354 void 3355 leave(Lm_list *lml, int flags) 3356 { 3357 Lm_list *elml = lml; 3358 Rt_map *clmp; 3359 Aliste idx; 3360 3361 /* 3362 * Alert the debuggers that the link-maps are consistent. Note, in the 3363 * case of tearing down a whole link-map list, lml will be null. In 3364 * this case use the main link-map list to test for a notification. 3365 */ 3366 if (elml == NULL) 3367 elml = &lml_main; 3368 if (elml->lm_flags & LML_FLG_DBNOTIF) 3369 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3370 3371 /* 3372 * Alert any auditors that the link-maps are consistent. 3373 */ 3374 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3375 audit_activity(clmp, LA_ACT_CONSISTENT); 3376 3377 aplist_delete(elml->lm_actaudit, &idx); 3378 } 3379 3380 if (nu_fd != FD_UNAVAIL) { 3381 (void) close(nu_fd); 3382 nu_fd = FD_UNAVAIL; 3383 } 3384 3385 /* 3386 * Reinitialize error message pointer, and any overflow indication. 3387 */ 3388 nextptr = errbuf; 3389 prevptr = NULL; 3390 3391 /* 3392 * Defragment any freed memory. 3393 */ 3394 if (aplist_nitems(free_alp)) 3395 defrag(); 3396 3397 /* 3398 * Don't drop our lock if we are running on our link-map list as 3399 * there's little point in doing so since we are single-threaded. 3400 * 3401 * LML_FLG_HOLDLOCK is set for: 3402 * - The ld.so.1's link-map list. 3403 * - The auditor's link-map if the environment is pre-UPM. 3404 */ 3405 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3406 return; 3407 3408 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3409 if (!thr_flg_nolock) 3410 (void) rt_mutex_unlock(&rtldlock); 3411 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3412 } 3413 } 3414 3415 int 3416 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3417 { 3418 APlist *calp, *dalp; 3419 Aliste idx1, idx2; 3420 Grp_hdl *ghp1, *ghp2; 3421 3422 /* 3423 * An object can always find symbols within itself. 3424 */ 3425 if (clmp == dlmp) 3426 return (1); 3427 3428 /* 3429 * The search for a singleton must look in every loaded object. 3430 */ 3431 if (slflags & LKUP_SINGLETON) 3432 return (1); 3433 3434 /* 3435 * Don't allow an object to bind to an object that is being deleted 3436 * unless the binder is also being deleted. 3437 */ 3438 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3439 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3440 return (0); 3441 3442 /* 3443 * An object with world access can always bind to an object with global 3444 * visibility. 3445 */ 3446 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3447 (MODE(dlmp) & RTLD_GLOBAL)) 3448 return (1); 3449 3450 /* 3451 * An object with local access can only bind to an object that is a 3452 * member of the same group. 3453 */ 3454 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3455 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3456 return (0); 3457 3458 /* 3459 * Traverse the list of groups the caller is a part of. 3460 */ 3461 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3462 /* 3463 * If we're testing for the ability of two objects to bind to 3464 * each other regardless of a specific group, ignore that group. 3465 */ 3466 if (ghp && (ghp1 == ghp)) 3467 continue; 3468 3469 /* 3470 * Traverse the list of groups the destination is a part of. 3471 */ 3472 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3473 Grp_desc *gdp; 3474 Aliste idx3; 3475 3476 if (ghp1 != ghp2) 3477 continue; 3478 3479 /* 3480 * Make sure the relationship between the destination 3481 * and the caller provide symbols for relocation. 3482 * Parents are maintained as callers, but unless the 3483 * destination object was opened with RTLD_PARENT, the 3484 * parent doesn't provide symbols for the destination 3485 * to relocate against. 3486 */ 3487 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3488 if (dlmp != gdp->gd_depend) 3489 continue; 3490 3491 if (gdp->gd_flags & GPD_RELOC) 3492 return (1); 3493 } 3494 } 3495 } 3496 return (0); 3497 } 3498 3499 /* 3500 * Initialize the environ symbol. Traditionally this is carried out by the crt 3501 * code prior to jumping to main. However, init sections get fired before this 3502 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3503 * information. In addition, a process may have multiple link-maps (ld.so.1's 3504 * debugging and preloading objects), and link auditing, and each may need an 3505 * environ variable set. 3506 * 3507 * This routine is called after a relocation() pass, and thus provides for: 3508 * 3509 * - setting environ on the main link-map after the initial application and 3510 * its dependencies have been established. Typically environ lives in the 3511 * application (provided by its crt), but in older applications it might 3512 * be in libc. Who knows what's expected of applications not built on 3513 * Solaris. 3514 * 3515 * - after loading a new shared object. We can add shared objects to various 3516 * link-maps, and any link-map dependencies requiring getopt() require 3517 * their own environ. In addition, lazy loading might bring in the 3518 * supplier of environ (libc used to be a lazy loading candidate) after 3519 * the link-map has been established and other objects are present. 3520 * 3521 * This routine handles all these scenarios, without adding unnecessary overhead 3522 * to ld.so.1. 3523 */ 3524 void 3525 set_environ(Lm_list *lml) 3526 { 3527 Slookup sl; 3528 Sresult sr; 3529 uint_t binfo; 3530 3531 /* 3532 * Initialize the symbol lookup, and symbol result, data structures. 3533 */ 3534 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3535 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3536 SRESULT_INIT(sr, MSG_ORIG(MSG_SYM_ENVIRON)); 3537 3538 if (LM_LOOKUP_SYM(lml->lm_head)(&sl, &sr, &binfo, 0)) { 3539 Rt_map *dlmp = sr.sr_dmap; 3540 3541 lml->lm_environ = (char ***)sr.sr_sym->st_value; 3542 3543 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3544 lml->lm_environ = 3545 (char ***)((uintptr_t)lml->lm_environ + 3546 (uintptr_t)ADDR(dlmp)); 3547 *(lml->lm_environ) = (char **)environ; 3548 lml->lm_flags |= LML_FLG_ENVIRON; 3549 } 3550 } 3551 3552 /* 3553 * Determine whether we have a secure executable. Uid and gid information 3554 * can be passed to us via the aux vector, however if these values are -1 3555 * then use the appropriate system call to obtain them. 3556 * 3557 * - If the user is the root they can do anything 3558 * 3559 * - If the real and effective uid's don't match, or the real and 3560 * effective gid's don't match then this is determined to be a `secure' 3561 * application. 3562 * 3563 * This function is called prior to any dependency processing (see _setup.c). 3564 * Any secure setting will remain in effect for the life of the process. 3565 */ 3566 void 3567 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3568 { 3569 if (auxflags != -1) { 3570 if ((auxflags & AF_SUN_SETUGID) != 0) 3571 rtld_flags |= RT_FL_SECURE; 3572 return; 3573 } 3574 3575 if (uid == (uid_t)-1) 3576 uid = getuid(); 3577 if (uid) { 3578 if (euid == (uid_t)-1) 3579 euid = geteuid(); 3580 if (uid != euid) 3581 rtld_flags |= RT_FL_SECURE; 3582 else { 3583 if (gid == (gid_t)-1) 3584 gid = getgid(); 3585 if (egid == (gid_t)-1) 3586 egid = getegid(); 3587 if (gid != egid) 3588 rtld_flags |= RT_FL_SECURE; 3589 } 3590 } 3591 } 3592 3593 /* 3594 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3595 */ 3596 int 3597 is_rtld_setuid() 3598 { 3599 rtld_stat_t status; 3600 const char *name; 3601 3602 if (rtld_flags2 & RT_FL2_SETUID) 3603 return (1); 3604 3605 if (interp && interp->i_name) 3606 name = interp->i_name; 3607 else 3608 name = NAME(lml_rtld.lm_head); 3609 3610 if (((rtld_stat(name, &status) == 0) && 3611 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3612 rtld_flags2 |= RT_FL2_SETUID; 3613 return (1); 3614 } 3615 return (0); 3616 } 3617 3618 /* 3619 * Determine that systems platform name. Normally, this name is provided from 3620 * the AT_SUN_PLATFORM aux vector from the kernel. This routine provides a 3621 * fall back. 3622 */ 3623 void 3624 platform_name(Syscapset *scapset) 3625 { 3626 char info[SYS_NMLN]; 3627 size_t size; 3628 3629 if ((scapset->sc_platsz = size = 3630 sysinfo(SI_PLATFORM, info, SYS_NMLN)) == (size_t)-1) 3631 return; 3632 3633 if ((scapset->sc_plat = malloc(size)) == NULL) { 3634 scapset->sc_platsz = (size_t)-1; 3635 return; 3636 } 3637 (void) strcpy(scapset->sc_plat, info); 3638 } 3639 3640 /* 3641 * Determine that systems machine name. Normally, this name is provided from 3642 * the AT_SUN_MACHINE aux vector from the kernel. This routine provides a 3643 * fall back. 3644 */ 3645 void 3646 machine_name(Syscapset *scapset) 3647 { 3648 char info[SYS_NMLN]; 3649 size_t size; 3650 3651 if ((scapset->sc_machsz = size = 3652 sysinfo(SI_MACHINE, info, SYS_NMLN)) == (size_t)-1) 3653 return; 3654 3655 if ((scapset->sc_mach = malloc(size)) == NULL) { 3656 scapset->sc_machsz = (size_t)-1; 3657 return; 3658 } 3659 (void) strcpy(scapset->sc_mach, info); 3660 } 3661 3662 /* 3663 * _REENTRANT code gets errno redefined to a function so provide for return 3664 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3665 * is basically singled threaded. Provide the interface for our dependencies. 3666 */ 3667 #undef errno 3668 int * 3669 ___errno() 3670 { 3671 extern int errno; 3672 3673 return (&errno); 3674 } 3675 3676 /* 3677 * Determine whether a symbol name should be demangled. 3678 */ 3679 const char * 3680 demangle(const char *name) 3681 { 3682 if (rtld_flags & RT_FL_DEMANGLE) 3683 return (conv_demangle_name(name)); 3684 else 3685 return (name); 3686 } 3687 3688 #ifndef _LP64 3689 /* 3690 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3691 * underneath while preserving the object size limits of a non-largefile 3692 * enabled 32-bit process. The purpose of this is to prevent large inode 3693 * values from causing stat() to fail. 3694 */ 3695 inline static int 3696 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3697 { 3698 extern int errno; 3699 3700 /* 3701 * Although we used a 64-bit capable stat(), the 32-bit rtld 3702 * can only handle objects < 2GB in size. If this object is 3703 * too big, turn the success into an overflow error. 3704 */ 3705 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3706 errno = EOVERFLOW; 3707 return (-1); 3708 } 3709 3710 /* 3711 * Transfer the information needed by rtld into a rtld_stat_t 3712 * structure that preserves the non-largile types for everything 3713 * except inode. 3714 */ 3715 buf->st_dev = lbuf->st_dev; 3716 buf->st_ino = lbuf->st_ino; 3717 buf->st_mode = lbuf->st_mode; 3718 buf->st_uid = lbuf->st_uid; 3719 buf->st_size = (off_t)lbuf->st_size; 3720 buf->st_mtim = lbuf->st_mtim; 3721 #ifdef sparc 3722 buf->st_blksize = lbuf->st_blksize; 3723 #endif 3724 3725 return (r); 3726 } 3727 3728 int 3729 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3730 { 3731 struct stat64 lbuf; 3732 int r; 3733 3734 r = stat64(path, &lbuf); 3735 if (r != -1) 3736 r = rtld_stat_process(r, &lbuf, buf); 3737 return (r); 3738 } 3739 3740 int 3741 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3742 { 3743 struct stat64 lbuf; 3744 int r; 3745 3746 r = fstat64(fildes, &lbuf); 3747 if (r != -1) 3748 r = rtld_stat_process(r, &lbuf, buf); 3749 return (r); 3750 } 3751 #endif 3752