1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include "_synonyms.h" 37 #include <stdio.h> 38 #include <sys/types.h> 39 #include <sys/mman.h> 40 #include <sys/lwp.h> 41 #include <sys/debug.h> 42 #include <stdarg.h> 43 #include <fcntl.h> 44 #include <string.h> 45 #include <ctype.h> 46 #include <dlfcn.h> 47 #include <unistd.h> 48 #include <stdlib.h> 49 #include <signal.h> 50 #include <sys/auxv.h> 51 #include "_rtld.h" 52 #include "_audit.h" 53 #include "conv.h" 54 #include "msg.h" 55 #include "debug.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * All error messages go through eprintf(). During process initialization these 61 * messages should be directed to the standard error, however once control has 62 * been passed to the applications code these messages should be stored in an 63 * internal buffer for use with dlerror(). Note, fatal error conditions that 64 * may occur while running the application will still cause a standard error 65 * message, see rtldexit() in this file for details. 66 * The `application' flag serves to indicate the transition between process 67 * initialization and when the applications code is running. 68 */ 69 70 /* 71 * Null function used as place where a debugger can set a breakpoint. 72 */ 73 void 74 rtld_db_dlactivity(void) 75 { 76 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a pre .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_preinit(void) 86 { 87 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 92 /* 93 * Null function used as place where debugger can set a post .init 94 * processing breakpoint. 95 */ 96 void 97 rtld_db_postinit(void) 98 { 99 DBG_CALL(Dbg_util_dbnotify(r_debug.rtd_rdebug.r_rdevent, 100 r_debug.rtd_rdebug.r_state)); 101 } 102 103 104 /* 105 * Debugger Event Notification 106 * 107 * This function centralizes all debugger event notification (ala rtld_db). 108 * 109 * There's a simple intent, focused on insuring the primary link-map control 110 * list (or each link-map list) is consistent, and the indication that objects 111 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 112 * event are posted for each of these, most debuggers don't care, as their 113 * view is that these events simply convey an "inconsistent" state. 114 * 115 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 116 * enter ld.so.1. 117 * 118 * With auditors, we may be in the process of relocating a collection of 119 * objects, and will leave() ld.so.1 to call the auditor. At this point we 120 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 121 * object to the debuggers until relocation processing has been completed on it. 122 * To allow for the collection of these objects that are pending relocation, an 123 * RD_ADD event is set after completing a series of relocations on the primary 124 * link-map control list. 125 * 126 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 127 * required later (LML_FLG_DBNOTIF): 128 * 129 * i the first time we add or delete an object to the primary link-map 130 * control list. 131 * ii the first time we move a secondary link-map control list to the primary 132 * link-map control list (effectively, this is like adding a group of 133 * objects to the primary link-map control list). 134 * iii the first time we relocate a series of objects on the primary link-map 135 * control list. 136 * 137 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 138 * 139 * i each time we leave the runtime linker. 140 */ 141 void 142 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 143 { 144 void (*fptr)(); 145 146 switch (event) { 147 case RD_PREINIT: 148 fptr = rtld_db_preinit; 149 break; 150 case RD_POSTINIT: 151 fptr = rtld_db_postinit; 152 break; 153 case RD_DLACTIVITY: 154 switch (state) { 155 case RT_CONSISTENT: 156 lml->lm_flags &= ~LML_FLG_DBNOTIF; 157 158 /* 159 * Do we need to send a notification? 160 */ 161 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 162 return; 163 rtld_flags &= ~RT_FL_DBNOTIF; 164 break; 165 case RT_ADD: 166 case RT_DELETE: 167 lml->lm_flags |= LML_FLG_DBNOTIF; 168 169 /* 170 * If we are already in an inconsistent state, no 171 * notification is required. 172 */ 173 if (rtld_flags & RT_FL_DBNOTIF) 174 return; 175 rtld_flags |= RT_FL_DBNOTIF; 176 break; 177 }; 178 fptr = rtld_db_dlactivity; 179 break; 180 default: 181 /* 182 * RD_NONE - do nothing 183 */ 184 break; 185 }; 186 187 /* 188 * Set event state and call 'notification' function. 189 * 190 * The debugging clients have previously been told about these 191 * notification functions and have set breakpoints on them if they 192 * are interested in the notification. 193 */ 194 r_debug.rtd_rdebug.r_state = state; 195 r_debug.rtd_rdebug.r_rdevent = event; 196 fptr(); 197 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 198 } 199 200 #if defined(sparc) || defined(i386) || defined(__amd64) 201 /* 202 * Stack Cleanup. 203 * 204 * This function is invoked to 'remove' arguments that were passed in on the 205 * stack. This is most likely if ld.so.1 was invoked directly. In that case 206 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 207 * Which means we then need to slide everything above it on the stack down 208 * accordingly. 209 * 210 * While the stack layout is platform specific - it just so happens that x86, 211 * sparc, sparcv9, and amd64 all share the following initial stack layout. 212 * 213 * !_______________________! high addresses 214 * ! ! 215 * ! Information ! 216 * ! Block ! 217 * ! (size varies) ! 218 * !_______________________! 219 * ! 0 word ! 220 * !_______________________! 221 * ! Auxiliary ! 222 * ! vector ! 223 * ! 2 word entries ! 224 * ! ! 225 * !_______________________! 226 * ! 0 word ! 227 * !_______________________! 228 * ! Environment ! 229 * ! pointers ! 230 * ! ... ! 231 * ! (one word each) ! 232 * !_______________________! 233 * ! 0 word ! 234 * !_______________________! 235 * ! Argument ! low addresses 236 * ! pointers ! 237 * ! Argc words ! 238 * !_______________________! 239 * ! ! 240 * ! Argc ! 241 * !_______________________! 242 * ! ... ! 243 * 244 */ 245 static void 246 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 247 { 248 int ndx; 249 long *argc; 250 char **oargv, **nargv; 251 char **oenvp, **nenvp; 252 auxv_t *oauxv, *nauxv; 253 254 /* 255 * Slide ARGV[] and update argc. The argv pointer remains the same, 256 * however slide the applications arguments over the arguments to 257 * ld.so.1. 258 */ 259 nargv = &argv[0]; 260 oargv = &argv[rmcnt]; 261 262 for (ndx = 0; oargv[ndx]; ndx++) 263 nargv[ndx] = oargv[ndx]; 264 nargv[ndx] = oargv[ndx]; 265 266 argc = (long *)((uintptr_t)argv - sizeof (long *)); 267 *argc -= rmcnt; 268 269 /* 270 * Slide ENVP[], and update the environment array pointer. 271 */ 272 ndx++; 273 nenvp = &nargv[ndx]; 274 oenvp = &oargv[ndx]; 275 *envp = nenvp; 276 277 for (ndx = 0; oenvp[ndx]; ndx++) 278 nenvp[ndx] = oenvp[ndx]; 279 nenvp[ndx] = oenvp[ndx]; 280 281 /* 282 * Slide AUXV[], and update the aux vector pointer. 283 */ 284 ndx++; 285 nauxv = (auxv_t *)&nenvp[ndx]; 286 oauxv = (auxv_t *)&oenvp[ndx]; 287 *auxv = nauxv; 288 289 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 290 nauxv[ndx] = oauxv[ndx]; 291 nauxv[ndx] = oauxv[ndx]; 292 } 293 #else 294 /* 295 * Verify that the above routine is appropriate for any new platforms. 296 */ 297 #error unsupported architecture! 298 #endif 299 300 /* 301 * The only command line argument recognized is -e, followed by a runtime 302 * linker environment variable. 303 */ 304 int 305 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 306 Word *lmtflags, int aout) 307 { 308 int ndx; 309 310 for (ndx = 1; argv[ndx]; ndx++) { 311 char *str; 312 313 if (argv[ndx][0] != '-') 314 break; 315 316 if (argv[ndx][1] == '\0') { 317 ndx++; 318 break; 319 } 320 321 if (argv[ndx][1] != 'e') 322 return (1); 323 324 if (argv[ndx][2] == '\0') { 325 ndx++; 326 if (argv[ndx] == NULL) 327 return (1); 328 str = argv[ndx]; 329 } else 330 str = &argv[ndx][2]; 331 332 /* 333 * If the environment variable starts with LD_, strip the LD_. 334 * Otherwise, take things as is. 335 */ 336 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 337 (str[3] != '\0')) 338 str += 3; 339 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 340 return (1); 341 } 342 343 /* 344 * Make sure an object file has been specified. 345 */ 346 if (argv[ndx] == 0) 347 return (1); 348 349 /* 350 * Having gotten the arguments, clean ourselves off of the stack. 351 */ 352 stack_cleanup(argv, envp, auxv, ndx); 353 return (0); 354 } 355 356 /* 357 * Compare function for FullpathNode AVL tree. 358 */ 359 static int 360 fpavl_compare(const void * n1, const void * n2) 361 { 362 uint_t hash1, hash2; 363 const char *st1, *st2; 364 int rc; 365 366 hash1 = ((FullpathNode *)n1)->fpn_hash; 367 hash2 = ((FullpathNode *)n2)->fpn_hash; 368 369 if (hash1 > hash2) 370 return (1); 371 if (hash1 < hash2) 372 return (-1); 373 374 st1 = ((FullpathNode *)n1)->fpn_name; 375 st2 = ((FullpathNode *)n2)->fpn_name; 376 377 rc = strcmp(st1, st2); 378 if (rc > 0) 379 return (1); 380 if (rc < 0) 381 return (-1); 382 return (0); 383 } 384 385 386 /* 387 * Determine if a given pathname has already been loaded in the AVL tree. 388 * If the pathname does not exist in the AVL tree, the next insertion point 389 * is deposited in "where". This value can be used by fpavl_insert() to 390 * expedite the insertion. 391 */ 392 Rt_map * 393 fpavl_loaded(Lm_list *lml, const char *name, avl_index_t *where) 394 { 395 FullpathNode fpn, *fpnp; 396 avl_tree_t *avlt; 397 398 /* 399 * Create the avl tree if required. 400 */ 401 if ((avlt = lml->lm_fpavl) == NULL) { 402 if ((avlt = calloc(sizeof (avl_tree_t), 1)) == 0) 403 return (0); 404 avl_create(avlt, fpavl_compare, sizeof (FullpathNode), 405 SGSOFFSETOF(FullpathNode, fpn_avl)); 406 lml->lm_fpavl = avlt; 407 } 408 409 fpn.fpn_name = name; 410 fpn.fpn_hash = sgs_str_hash(name); 411 412 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 413 return (NULL); 414 415 return (fpnp->fpn_lmp); 416 } 417 418 419 /* 420 * Insert a name into the FullpathNode AVL tree for the link-map list. The 421 * objects NAME() is the path that would have originally been searched for, and 422 * is therefore the name to associate with any "where" value. If the object has 423 * a different PATHNAME(), perhaps because it has resolved to a different file 424 * (see fullpath), then this name is recorded also. See load_file(). 425 */ 426 int 427 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 428 { 429 FullpathNode *fpnp; 430 431 if (where == 0) { 432 /* LINTED */ 433 Rt_map *_lmp = fpavl_loaded(lml, name, &where); 434 435 /* 436 * We better not get a hit now, we do not want duplicates in 437 * the tree. 438 */ 439 ASSERT(_lmp == 0); 440 } 441 442 /* 443 * Insert new node in tree 444 */ 445 if ((fpnp = calloc(sizeof (FullpathNode), 1)) == 0) 446 return (0); 447 448 fpnp->fpn_name = name; 449 fpnp->fpn_hash = sgs_str_hash(name); 450 fpnp->fpn_lmp = lmp; 451 452 if (alist_append(&FPNODE(lmp), &fpnp, sizeof (FullpathNode *), 453 AL_CNT_FPNODE) == 0) { 454 free(fpnp); 455 return (0); 456 } 457 458 ASSERT(lml->lm_fpavl != NULL); 459 avl_insert(lml->lm_fpavl, fpnp, where); 460 return (1); 461 } 462 463 /* 464 * Remove an object from the Fullpath AVL tree. Note, this is called *before* 465 * the objects link-map is torn down (remove_so), which is where any NAME() and 466 * PATHNAME() strings will be deallocated. 467 */ 468 void 469 fpavl_remove(Rt_map *lmp) 470 { 471 FullpathNode **fpnpp; 472 Aliste off; 473 474 for (ALIST_TRAVERSE(FPNODE(lmp), off, fpnpp)) { 475 FullpathNode *fpnp = *fpnpp; 476 477 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 478 free(fpnp); 479 } 480 free(FPNODE(lmp)); 481 FPNODE(lmp) = 0; 482 } 483 484 485 /* 486 * Prior to calling an object, either via a .plt or through dlsym(), make sure 487 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 488 * init's in the correct order, however, this order is typically based on needed 489 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 490 * still occur and result in bindings that were not captured during topological 491 * sorting. This routine compensates for this lack of binding information, and 492 * provides for dynamic .init firing. 493 */ 494 void 495 is_dep_init(Rt_map * dlmp, Rt_map * clmp) 496 { 497 Rt_map ** tobj; 498 499 /* 500 * If the caller is an auditor, and the destination isn't, then don't 501 * run any .inits (see comments in load_completion()). 502 */ 503 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 504 (LIST(clmp) != LIST(dlmp))) 505 return; 506 507 if ((dlmp == clmp) || (rtld_flags & (RT_FL_BREADTH | RT_FL_INITFIRST))) 508 return; 509 510 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 511 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 512 return; 513 514 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 515 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 516 DBG_CALL(Dbg_util_no_init(NAME(dlmp))); 517 return; 518 } 519 520 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 521 tobj[0] = dlmp; 522 call_init(tobj, DBG_INIT_DYN); 523 } 524 } 525 526 /* 527 * In a threaded environment insure the thread responsible for loading an object 528 * has completed .init processing for that object before any new thread is 529 * allowed to access the object. This check is only valid with libthread 530 * TI_VERSION 2, where ld.so.1 implements locking through low level mutexes. 531 * 532 * When a new link-map is created, the thread that causes it to be loaded is 533 * identified by THREADID(dlmp). Compare this with the current thread to 534 * determine if it must be blocked. 535 * 536 * NOTE, there are a number of instances (typically only for .plt processing) 537 * where we must skip this test: 538 * 539 * . any thread id of 0 - threads that call thr_exit() may be in this state 540 * thus we can't deduce what tid they used to be. Also some of the 541 * lib/libthread worker threads have this id and must bind (to themselves 542 * or libc) for libthread to function. 543 * 544 * . libthread itself binds to libc, and as libthread is INITFIRST 545 * libc's .init can't have fired yet. Luckly libc's .init is not required 546 * by libthreads binding. 547 * 548 * . if the caller is an auditor, and the destination isn't, then don't 549 * block (see comments in load_completion()). 550 */ 551 void 552 is_dep_ready(Rt_map * dlmp, Rt_map * clmp, int what) 553 { 554 thread_t tid; 555 556 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 557 (LIST(clmp) != LIST(dlmp))) 558 return; 559 560 if ((rtld_flags & RT_FL_CONCUR) && 561 ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) && 562 ((FLAGS(clmp) & FLG_RT_INITFRST) == 0) && 563 ((tid = rt_thr_self()) != 0) && (THREADID(dlmp) != tid)) { 564 while ((FLAGS(dlmp) & FLG_RT_INITDONE) == 0) { 565 FLAGS1(dlmp) |= FL1_RT_INITWAIT; 566 DBG_CALL(Dbg_util_wait(what, NAME(clmp), NAME(dlmp))); 567 (void) rt_cond_wait(CONDVAR(dlmp), &rtldlock); 568 } 569 } 570 } 571 572 /* 573 * Execute .{preinit|init|fini}array sections 574 */ 575 void 576 call_array(Addr * array, uint_t arraysz, Rt_map * lmp, uint_t shtype) 577 { 578 int start, stop, incr, i; 579 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 580 581 if (array == NULL) 582 return; 583 584 /* 585 * initarray & preinitarray are walked from beginning to end - while 586 * finiarray is walked from end to beginning. 587 */ 588 if (shtype == SHT_FINI_ARRAY) { 589 start = arraycnt - 1; 590 stop = incr = -1; 591 } else { 592 start = 0; 593 stop = arraycnt; 594 incr = 1; 595 } 596 597 /* 598 * Call the .*array[] entries 599 */ 600 for (i = start; i != stop; i += incr) { 601 void (* fptr)(); 602 603 DBG_CALL(Dbg_util_call_array(NAME(lmp), (void *)array[i], i, 604 shtype)); 605 606 fptr = (void(*)())array[i]; 607 leave(LIST(lmp)); 608 (*fptr)(); 609 (void) enter(); 610 } 611 } 612 613 614 /* 615 * Execute any .init sections. These are passed to us in an lmp array which 616 * (by default) will have been sorted. 617 */ 618 void 619 call_init(Rt_map ** tobj, int flag) 620 { 621 Rt_map ** _tobj, ** _nobj; 622 static List pending = { NULL, NULL }; 623 624 /* 625 * If we're in the middle of an INITFIRST, this must complete before 626 * any new init's are fired. In this case add the object list to the 627 * pending queue and return. We'll pick up the queue after any 628 * INITFIRST objects have their init's fired. 629 */ 630 if (rtld_flags & RT_FL_INITFIRST) { 631 (void) list_append(&pending, tobj); 632 return; 633 } 634 635 /* 636 * If a 'thread initialization' is pending - call it now before any 637 * .init code is fired. Also clear the thrinit() to mark it as done. 638 * Note, this is called for each link-map list, which is what libc 639 * expects. 640 */ 641 if (thrinit) { 642 void (*_thrinit)() = thrinit; 643 644 thrinit = 0; 645 leave((Lm_list *)0); 646 _thrinit(); 647 (void) enter(); 648 } 649 650 /* 651 * Traverse the tobj array firing each objects init. 652 */ 653 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 654 Rt_map * lmp = *_tobj; 655 void (* iptr)() = INIT(lmp); 656 657 if (FLAGS(lmp) & FLG_RT_INITCALL) 658 continue; 659 660 FLAGS(lmp) |= FLG_RT_INITCALL; 661 662 /* 663 * Establish an initfirst state if necessary - no other inits 664 * will be fired (because of additional relocation bindings) 665 * when in this state. 666 */ 667 if (FLAGS(lmp) & FLG_RT_INITFRST) 668 rtld_flags |= RT_FL_INITFIRST; 669 670 if (INITARRAY(lmp) || iptr) { 671 Aliste off; 672 Bnd_desc ** bdpp; 673 674 /* 675 * Make sure that all dependencies that have been 676 * relocated to are initialized before this objects 677 * .init is executed. This insures that a dependency 678 * on an external item that must first be initialized 679 * by its associated object is satisfied. 680 */ 681 for (ALIST_TRAVERSE(DEPENDS(lmp), off, bdpp)) { 682 Bnd_desc * bdp = *bdpp; 683 684 if ((bdp->b_flags & BND_REFER) == 0) 685 continue; 686 is_dep_ready(bdp->b_depend, lmp, DBG_WAIT_INIT); 687 } 688 DBG_CALL(Dbg_util_call_init(NAME(lmp), flag)); 689 } 690 691 if (iptr) { 692 leave(LIST(lmp)); 693 (*iptr)(); 694 (void) enter(); 695 } 696 697 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 698 SHT_INIT_ARRAY); 699 700 if (INITARRAY(lmp) || iptr) 701 DBG_CALL(Dbg_util_call_init(NAME(lmp), DBG_INIT_DONE)); 702 703 /* 704 * Set the initdone flag regardless of whether this object 705 * actually contains an .init section. This flag prevents us 706 * from processing this section again for an .init and also 707 * signifies that a .fini must be called should it exist. 708 * Clear the sort field for use in later .fini processing. 709 */ 710 FLAGS(lmp) |= FLG_RT_INITDONE; 711 SORTVAL(lmp) = -1; 712 713 /* 714 * Wake anyone up who might be waiting on this .init. 715 */ 716 if (FLAGS1(lmp) & FL1_RT_INITWAIT) { 717 DBG_CALL(Dbg_util_broadcast(NAME(lmp))); 718 (void) rt_cond_broadcast(CONDVAR(lmp)); 719 FLAGS1(lmp) &= ~FL1_RT_INITWAIT; 720 } 721 722 /* 723 * If we're firing an INITFIRST object, and other objects must 724 * be fired which are not INITFIRST, make sure we grab any 725 * pending objects that might have been delayed as this 726 * INITFIRST was processed. 727 */ 728 if ((rtld_flags & RT_FL_INITFIRST) && 729 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 730 Listnode * lnp; 731 Rt_map ** pobj; 732 733 rtld_flags &= ~RT_FL_INITFIRST; 734 735 while ((lnp = pending.head) != NULL) { 736 if ((pending.head = lnp->next) == NULL) 737 pending.tail = NULL; 738 pobj = lnp->data; 739 free(lnp); 740 741 call_init(pobj, DBG_INIT_PEND); 742 } 743 } 744 } 745 free(tobj); 746 } 747 748 /* 749 * Function called by atexit(3C). Calls all .fini sections related with the 750 * mains dependent shared libraries in the order in which the shared libraries 751 * have been loaded. Skip any .fini defined in the main executable, as this 752 * will be called by crt0 (main was never marked as initdone). 753 */ 754 void 755 call_fini(Lm_list * lml, Rt_map ** tobj) 756 { 757 Rt_map **_tobj; 758 759 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 760 Rt_map * clmp, * lmp = *_tobj; 761 Aliste off; 762 Bnd_desc ** bdpp; 763 764 /* 765 * If concurrency checking isn't enabled only fire .fini if 766 * .init has completed. We collect all .fini sections of 767 * objects that had their .init collected, but that doesn't 768 * mean at the time that the .init had completed. 769 */ 770 if ((rtld_flags & RT_FL_CONCUR) || 771 (FLAGS(lmp) & FLG_RT_INITDONE)) { 772 void (*fptr)() = FINI(lmp); 773 774 if (FINIARRAY(lmp) || fptr) { 775 /* 776 * If concurrency checking is enabled make sure 777 * this object's .init is completed before 778 * calling any .fini. 779 */ 780 is_dep_ready(lmp, lmp, DBG_WAIT_FINI); 781 DBG_CALL(Dbg_util_call_fini(NAME(lmp))); 782 } 783 784 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), 785 lmp, SHT_FINI_ARRAY); 786 787 if (fptr) { 788 leave(LIST(lmp)); 789 (*fptr)(); 790 (void) enter(); 791 } 792 } 793 794 /* 795 * Skip main, this is explicitly called last in atexit_fini(). 796 */ 797 if (FLAGS(lmp) & FLG_RT_ISMAIN) 798 continue; 799 800 /* 801 * Audit `close' operations at this point. The library has 802 * exercised its last instructions (regardless of whether it 803 * will be unmapped or not). 804 * 805 * First call any global auditing. 806 */ 807 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 808 _audit_objclose(&(auditors->ad_list), lmp); 809 810 /* 811 * Finally determine whether this object has local auditing 812 * requirements by inspecting itself and then its dependencies. 813 */ 814 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 815 continue; 816 817 if (FLAGS1(lmp) & LML_TFLG_AUD_OBJCLOSE) 818 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 819 820 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 821 Bnd_desc * bdp = *bdpp; 822 823 clmp = bdp->b_caller; 824 825 if (FLAGS1(clmp) & LML_TFLG_AUD_OBJCLOSE) { 826 _audit_objclose(&(AUDITORS(clmp)->ad_list), lmp); 827 break; 828 } 829 } 830 } 831 DBG_CALL(Dbg_bind_plt_summary(M_MACH, pltcnt21d, pltcnt24d, 832 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 833 834 free(tobj); 835 } 836 837 void 838 atexit_fini() 839 { 840 Rt_map ** tobj, * lmp; 841 Lm_list * lml; 842 Listnode * lnp; 843 844 (void) enter(); 845 846 rtld_flags |= RT_FL_ATEXIT; 847 848 lml = &lml_main; 849 lml->lm_flags |= LML_FLG_ATEXIT; 850 lmp = (Rt_map *)lml->lm_head; 851 852 /* 853 * Display any objects that haven't been referenced so far. 854 */ 855 unused(lml); 856 857 /* 858 * Reverse topologically sort the main link-map for .fini execution. 859 */ 860 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 861 (tobj != (Rt_map **)S_ERROR)) 862 call_fini(lml, tobj); 863 864 /* 865 * Add an explicit close to main and ld.so.1. Although main's .fini is 866 * collected in call_fini() to provide for FINITARRAY processing, its 867 * audit_objclose is explicitly skipped. This provides for it to be 868 * called last, here. This is the reverse of the explicit calls to 869 * audit_objopen() made in setup(). 870 */ 871 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_MASK) { 872 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 873 audit_objclose(lmp, lmp); 874 } 875 876 /* 877 * Now that all .fini code has been run, see what unreferenced objects 878 * remain. Any difference between this and the above unused() would 879 * indicate an object is only being used for .fini processing, which 880 * might be fine, but might also indicate an overhead whose removal 881 * would be worth considering. 882 */ 883 unused(lml); 884 885 /* 886 * Traverse any alternative link-map lists. 887 */ 888 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 889 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 890 continue; 891 892 if ((lmp = (Rt_map *)lml->lm_head) == 0) 893 continue; 894 895 lml->lm_flags |= LML_FLG_ATEXIT; 896 897 /* 898 * Reverse topologically sort the link-map for .fini execution. 899 */ 900 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 901 (tobj != (Rt_map **)S_ERROR)) 902 call_fini(lml, tobj); 903 904 unused(lml); 905 } 906 907 /* 908 * Finally reverse topologically sort the runtime linkers link-map for 909 * .fini execution. 910 */ 911 lml = &lml_rtld; 912 lml->lm_flags |= LML_FLG_ATEXIT; 913 lmp = (Rt_map *)lml->lm_head; 914 915 dbg_mask = 0; 916 917 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != 0) && 918 (tobj != (Rt_map **)S_ERROR)) 919 call_fini(lml, tobj); 920 921 leave(&lml_main); 922 } 923 924 925 /* 926 * This routine is called to complete any runtime linker activity which may have 927 * resulted in objects being loaded. This is called from all user entry points 928 * and from any internal dl*() requests. 929 */ 930 void 931 load_completion(Rt_map * nlmp, Rt_map * clmp) 932 { 933 Rt_map **tobj = 0; 934 935 /* 936 * Establish any .init processing. Note, in a world of lazy loading, 937 * objects may have been loaded regardless of whether the users request 938 * was fulfilled (i.e., a dlsym() request may have failed to find a 939 * symbol but objects might have been loaded during its search). Thus, 940 * any tsorting starts from the nlmp (new link-maps) pointer and not 941 * necessarily from the link-map that may have satisfied the request. 942 * 943 * Note, if the caller is an auditor, and the destination isn't, then 944 * don't run any .inits. This scenario is typical of an auditor trying 945 * to inspect another link-map for symbols. Allow this inspection 946 * without running any code on the inspected link-map, as running this 947 * code may reenter the auditor, who has not yet finished their own 948 * initialization. 949 */ 950 if (nlmp && ((clmp == 0) || 951 ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) == 0) || 952 (LIST(clmp) == LIST(nlmp)))) { 953 if ((tobj = tsort(nlmp, LIST(nlmp)->lm_init, 954 RT_SORT_REV)) == (Rt_map **)S_ERROR) 955 tobj = 0; 956 } 957 958 /* 959 * Indicate the link-map list is consistent. 960 */ 961 if (clmp && 962 ((LIST(clmp)->lm_tflags | FLAGS1(clmp)) & LML_TFLG_AUD_ACTIVITY)) 963 audit_activity(clmp, LA_ACT_CONSISTENT); 964 965 /* 966 * Fire any .init's. 967 */ 968 if (tobj) 969 call_init(tobj, DBG_INIT_SORT); 970 } 971 972 /* 973 * Append an item to the specified list, and return a pointer to the list 974 * node created. 975 */ 976 Listnode * 977 list_append(List *lst, const void *item) 978 { 979 Listnode * _lnp; 980 981 if ((_lnp = malloc(sizeof (Listnode))) == 0) 982 return (0); 983 984 _lnp->data = (void *)item; 985 _lnp->next = NULL; 986 987 if (lst->head == NULL) 988 lst->tail = lst->head = _lnp; 989 else { 990 lst->tail->next = _lnp; 991 lst->tail = lst->tail->next; 992 } 993 return (_lnp); 994 } 995 996 997 /* 998 * Add an item after specified listnode, and return a pointer to the list 999 * node created. 1000 */ 1001 Listnode * 1002 list_insert(List *lst, const void *item, Listnode *lnp) 1003 { 1004 Listnode * _lnp; 1005 1006 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1007 return (0); 1008 1009 _lnp->data = (void *)item; 1010 _lnp->next = lnp->next; 1011 if (_lnp->next == NULL) 1012 lst->tail = _lnp; 1013 lnp->next = _lnp; 1014 return (_lnp); 1015 } 1016 1017 /* 1018 * Prepend an item to the specified list, and return a pointer to the 1019 * list node created. 1020 */ 1021 Listnode * 1022 list_prepend(List * lst, const void * item) 1023 { 1024 Listnode * _lnp; 1025 1026 if ((_lnp = malloc(sizeof (Listnode))) == (Listnode *)0) 1027 return (0); 1028 1029 _lnp->data = (void *)item; 1030 1031 if (lst->head == NULL) { 1032 _lnp->next = NULL; 1033 lst->tail = lst->head = _lnp; 1034 } else { 1035 _lnp->next = lst->head; 1036 lst->head = _lnp; 1037 } 1038 return (_lnp); 1039 } 1040 1041 1042 /* 1043 * Delete a 'listnode' from a list. 1044 */ 1045 void 1046 list_delete(List * lst, void * item) 1047 { 1048 Listnode * clnp, * plnp; 1049 1050 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1051 if (item == clnp->data) 1052 break; 1053 plnp = clnp; 1054 } 1055 1056 if (clnp == 0) 1057 return; 1058 1059 if (lst->head == clnp) 1060 lst->head = clnp->next; 1061 if (lst->tail == clnp) 1062 lst->tail = plnp; 1063 1064 if (plnp) 1065 plnp->next = clnp->next; 1066 1067 free(clnp); 1068 } 1069 1070 /* 1071 * Append an item to the specified link map control list. 1072 */ 1073 void 1074 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1075 { 1076 Lm_cntl *lmc; 1077 int add = 1; 1078 1079 /* 1080 * Indicate that this link-map list has a new object. 1081 */ 1082 (lml->lm_obj)++; 1083 1084 /* 1085 * Alert the debuggers that we are about to mess with the main link-map 1086 * control list. 1087 */ 1088 if ((lmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1089 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1090 1091 /* LINTED */ 1092 lmc = (Lm_cntl *)((char *)lml->lm_lists + lmco); 1093 1094 /* 1095 * A link-map list header points to one of more link-map control lists 1096 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1097 * the list of relocated objects. Other lists maintain objects that 1098 * are still being analyzed or relocated. This list provides the core 1099 * link-map list information used by all ld.so.1 routines. 1100 */ 1101 if (lmc->lc_head == NULL) { 1102 /* 1103 * If this is the first link-map for the given control list, 1104 * initialize the list. 1105 */ 1106 lmc->lc_head = lmc->lc_tail = lmp; 1107 add = 0; 1108 1109 } else if (FLAGS(lmp) & FLG_RT_INTRPOSE) { 1110 Rt_map *tlmp; 1111 1112 /* 1113 * If this is an interposer then append the link-map following 1114 * any other interposers (these are objects that have been 1115 * previously preloaded, or were identified with -z interpose). 1116 * Interposers can only be inserted on the first link-map 1117 * control list, as once relocation has started, interposition 1118 * from new interposers can't be guaranteed. 1119 * 1120 * NOTE: We do not interpose on the head of a list. This model 1121 * evolved because dynamic executables have already been fully 1122 * relocated within themselves and thus can't be interposed on. 1123 * Nowadays it's possible to have shared objects at the head of 1124 * a list, which conceptually means they could be interposed on. 1125 * But, shared objects can be created via dldump() and may only 1126 * be partially relocated (just relatives), in which case they 1127 * are interposable, but are marked as fixed (ET_EXEC). 1128 * 1129 * Thus we really don't have a clear method of deciding when the 1130 * head of a link-map is interposable. So, to be consistent, 1131 * for now only add interposers after the link-map lists head 1132 * object. 1133 */ 1134 for (tlmp = (Rt_map *)NEXT(lmc->lc_head); tlmp; 1135 tlmp = (Rt_map *)NEXT(tlmp)) { 1136 1137 if (FLAGS(tlmp) & FLG_RT_INTRPOSE) 1138 continue; 1139 1140 /* 1141 * Insert the new link-map before this non-interposer, 1142 * and indicate an interposer is found. 1143 */ 1144 NEXT((Rt_map *)PREV(tlmp)) = (Link_map *)lmp; 1145 PREV(lmp) = PREV(tlmp); 1146 1147 NEXT(lmp) = (Link_map *)tlmp; 1148 PREV(tlmp) = (Link_map *)lmp; 1149 1150 lmc->lc_flags |= LMC_FLG_REANALYZE; 1151 add = 0; 1152 break; 1153 } 1154 } 1155 1156 /* 1157 * Fall through to appending the new link map to the tail of the list. 1158 * If we're processing the initial objects of this link-map list, add 1159 * them to the backward compatibility list. 1160 */ 1161 if (add) { 1162 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1163 PREV(lmp) = (Link_map *)lmc->lc_tail; 1164 lmc->lc_tail = lmp; 1165 } 1166 1167 /* 1168 * Having added this link-map to a control list, indicate which control 1169 * list the link-map belongs to. Note, control list information is 1170 * always maintained as an offset, as the Alist can be reallocated. 1171 */ 1172 CNTL(lmp) = lmco; 1173 1174 /* 1175 * Indicate if an interposer is found. Note that the first object on a 1176 * link-map can be explicitly defined as an interposer so that it can 1177 * provide interposition over direct binding requests. 1178 */ 1179 if (FLAGS(lmp) & FLG_RT_INTRPOSE) 1180 lml->lm_flags |= LML_FLG_INTRPOSE; 1181 1182 /* 1183 * For backward compatibility with debuggers, the link-map list contains 1184 * pointers to the main control list. 1185 */ 1186 if (lmco == ALO_DATA) { 1187 lml->lm_head = lmc->lc_head; 1188 lml->lm_tail = lmc->lc_tail; 1189 } 1190 } 1191 1192 /* 1193 * Delete an item from the specified link map control list. 1194 */ 1195 void 1196 lm_delete(Lm_list *lml, Rt_map *lmp) 1197 { 1198 Lm_cntl *lmc; 1199 1200 /* 1201 * If the control list pointer hasn't been initialized, this object 1202 * never got added to a link-map list. 1203 */ 1204 if (CNTL(lmp) == 0) 1205 return; 1206 1207 /* 1208 * Alert the debuggers that we are about to mess with the main link-map 1209 * control list. 1210 */ 1211 if ((CNTL(lmp) == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1212 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1213 1214 /* LINTED */ 1215 lmc = (Lm_cntl *)((char *)lml->lm_lists + CNTL(lmp)); 1216 1217 if (lmc->lc_head == lmp) 1218 lmc->lc_head = (Rt_map *)NEXT(lmp); 1219 else 1220 NEXT((Rt_map *)PREV(lmp)) = (void *)NEXT(lmp); 1221 1222 if (lmc->lc_tail == lmp) 1223 lmc->lc_tail = (Rt_map *)PREV(lmp); 1224 else 1225 PREV((Rt_map *)NEXT(lmp)) = PREV(lmp); 1226 1227 /* 1228 * For backward compatibility with debuggers, the link-map list contains 1229 * pointers to the main control list. 1230 */ 1231 if (lmc == (Lm_cntl *)&(lml->lm_lists->al_data)) { 1232 lml->lm_head = lmc->lc_head; 1233 lml->lm_tail = lmc->lc_tail; 1234 } 1235 1236 /* 1237 * Indicate we have one less object on this control list. 1238 */ 1239 (lml->lm_obj)--; 1240 } 1241 1242 /* 1243 * Move a link-map control list to another. Objects that are being relocated 1244 * are maintained on secondary control lists. Once their relocation is 1245 * complete, the entire list is appended to the previous control list, as this 1246 * list must have been the trigger for generating the new control list. 1247 */ 1248 void 1249 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1250 { 1251 Rt_map *lmp; 1252 1253 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1254 1255 /* 1256 * Alert the debuggers that we are about to mess with the main link-map 1257 * control list. 1258 */ 1259 if ((plmco == ALO_DATA) && ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1260 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1261 1262 /* 1263 * Indicate each new link-map has been moved to the previous link-map 1264 * control list. 1265 */ 1266 1267 for (lmp = nlmc->lc_head; lmp; lmp = (Rt_map *)NEXT(lmp)) 1268 CNTL(lmp) = plmco; 1269 1270 /* 1271 * Move the new link-map control list, to the callers link-map control 1272 * list. 1273 */ 1274 if (plmc->lc_head == 0) { 1275 plmc->lc_head = nlmc->lc_head; 1276 PREV(nlmc->lc_head) = 0; 1277 } else { 1278 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1279 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1280 } 1281 1282 plmc->lc_tail = nlmc->lc_tail; 1283 nlmc->lc_head = nlmc->lc_tail = 0; 1284 1285 /* 1286 * For backward compatibility with debuggers, the link-map list contains 1287 * pointers to the main control list. 1288 */ 1289 if (plmco == ALO_DATA) { 1290 lml->lm_head = plmc->lc_head; 1291 lml->lm_tail = plmc->lc_tail; 1292 } 1293 } 1294 1295 /* 1296 * Dlopening a family of objects occurs on a new link-map control list. If the 1297 * dlopen fails, then its handle is used to tear down the family (dlclose). 1298 * However, the relocation of this family may have triggered other objects to 1299 * be loaded, and after their relocation they will have been moved to the 1300 * dlopen families control list. After a dlopen() failure, see if there are 1301 * any objects that can be savaged before tearing down this control list. 1302 */ 1303 int 1304 lm_salvage(Lm_list *lml, int test, Aliste nlmco) 1305 { 1306 Lm_cntl *nlmc; 1307 1308 /* 1309 * If a dlopen occurred on a new link-map list, then its dlclose may 1310 * have completely torn down the link-map list. Check that the link-map 1311 * list still exists before proceeding. 1312 */ 1313 if (test) { 1314 Listnode *lnp; 1315 Lm_list *tlml; 1316 int found = 0; 1317 1318 for (LIST_TRAVERSE(&dynlm_list, lnp, tlml)) { 1319 if (tlml == lml) { 1320 found++; 1321 break; 1322 } 1323 } 1324 if (found == 0) 1325 return (0); 1326 } 1327 1328 /* LINTED */ 1329 nlmc = (Lm_cntl *)((char *)lml->lm_lists + nlmco); 1330 1331 /* 1332 * If this link-map control list still contains objects, determine the 1333 * previous control list and move the objects. 1334 */ 1335 if (nlmc->lc_head) { 1336 Lm_cntl *plmc; 1337 Aliste plmco; 1338 1339 plmco = nlmco - lml->lm_lists->al_size; 1340 /* LINTED */ 1341 plmc = (Lm_cntl *)((char *)lml->lm_lists + plmco); 1342 1343 lm_move(lml, nlmco, plmco, nlmc, plmc); 1344 } 1345 return (1); 1346 } 1347 1348 /* 1349 * Environment variables can have a variety of defined permutations, and thus 1350 * the following infrastructure exists to allow this variety and to select the 1351 * required definition. 1352 * 1353 * Environment variables can be defined as 32- or 64-bit specific, and if so 1354 * they will take precedence over any instruction set neutral form. Typically 1355 * this is only useful when the environment value is an informational string. 1356 * 1357 * Environment variables may be obtained from the standard user environment or 1358 * from a configuration file. The latter provides a fallback if no user 1359 * environment setting is found, and can take two forms: 1360 * 1361 * . a replaceable definition - this will be used if no user environment 1362 * setting has been seen, or 1363 * 1364 * . an permanent definition - this will be used no matter what user 1365 * environment setting is seen. In the case of list variables it will be 1366 * appended to any process environment setting seen. 1367 * 1368 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1369 * override any replaceable environment variables from a configuration file. 1370 */ 1371 static u_longlong_t rplgen; /* replaceable generic */ 1372 /* variables */ 1373 static u_longlong_t rplisa; /* replaceable ISA specific */ 1374 /* variables */ 1375 static u_longlong_t prmgen; /* permanent generic */ 1376 /* variables */ 1377 static u_longlong_t prmisa; /* permanent ISA specific */ 1378 /* variables */ 1379 1380 /* 1381 * Classify an environment variables type. 1382 */ 1383 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1384 /* the wrong ISA */ 1385 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1386 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1387 /* config file */ 1388 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1389 1390 /* 1391 * Identify all environment variables. 1392 */ 1393 #define ENV_FLG_AUDIT 0x0000000001ULL 1394 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1395 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1396 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1397 #define ENV_FLG_BINDINGS 0x0000000010ULL 1398 #define ENV_FLG_CONCURRENCY 0x0000000020ULL 1399 #define ENV_FLG_CONFGEN 0x0000000040ULL 1400 #define ENV_FLG_CONFIG 0x0000000080ULL 1401 #define ENV_FLG_DEBUG 0x0000000100ULL 1402 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1403 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1404 #define ENV_FLG_FLAGS 0x0000000800ULL 1405 #define ENV_FLG_INIT 0x0000001000ULL 1406 #define ENV_FLG_LIBPATH 0x0000002000ULL 1407 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1408 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1409 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1410 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1411 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1412 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1413 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1414 #define ENV_FLG_NODIRECT 0x0000200000ULL 1415 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1416 #define ENV_FLG_NOLAZY 0x0000800000ULL 1417 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1418 #define ENV_FLG_NOVERSION 0x0002000000ULL 1419 #define ENV_FLG_PRELOAD 0x0004000000ULL 1420 #define ENV_FLG_PROFILE 0x0008000000ULL 1421 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1422 #define ENV_FLG_SIGNAL 0x0020000000ULL 1423 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1424 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1425 #define ENV_FLG_UNREF 0x0100000000ULL 1426 #define ENV_FLG_UNUSED 0x0200000000ULL 1427 #define ENV_FLG_VERBOSE 0x0400000000ULL 1428 #define ENV_FLG_WARN 0x0800000000ULL 1429 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1430 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1431 1432 #ifdef SIEBEL_DISABLE 1433 #define ENV_FLG_FIX_1 0x8000000000ULL 1434 #endif 1435 1436 #define SEL_REPLACE 0x0001 1437 #define SEL_PERMANT 0x0002 1438 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1439 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1440 #define SEL_ACT_STR 0x0400 /* setting string value */ 1441 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1442 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1443 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1444 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1445 1446 /* 1447 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1448 * and len specifies its length (comparing a strings length before the string 1449 * itself speed things up). s2 points to the token itself which has already 1450 * had any leading white-space removed. 1451 */ 1452 static void 1453 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1454 Word *lmtflags, uint_t env_flags, int aout) 1455 { 1456 u_longlong_t variable = 0; 1457 unsigned short select = 0; 1458 const char **str; 1459 Word val = 0; 1460 1461 /* 1462 * Determine whether we're dealing with a replaceable or permanent 1463 * string. 1464 */ 1465 if (env_flags & ENV_TYP_PERMANT) { 1466 /* 1467 * If the string is from a configuration file and defined as 1468 * permanent, assign it as permanent. 1469 */ 1470 select |= SEL_PERMANT; 1471 } else 1472 select |= SEL_REPLACE; 1473 1474 /* 1475 * Parse the variable given. 1476 * 1477 * The LD_AUDIT family. 1478 */ 1479 if (*s1 == 'A') { 1480 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1481 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1482 /* 1483 * Replaceable and permanent audit objects can exist. 1484 */ 1485 select |= SEL_ACT_STR; 1486 str = (select & SEL_REPLACE) ? &rpl_audit : &prm_audit; 1487 variable = ENV_FLG_AUDIT; 1488 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1489 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1490 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1491 /* 1492 * A specialized variable for plt_exit() use, not 1493 * documented for general use. 1494 */ 1495 select |= SEL_ACT_SPEC_2; 1496 variable = ENV_FLG_AUDIT_ARGS; 1497 } 1498 } 1499 /* 1500 * The LD_BIND family and LD_BREADTH (historic). 1501 */ 1502 else if (*s1 == 'B') { 1503 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1504 MSG_ORIG(MSG_LD_BIND_LAZY), 1505 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1506 select |= SEL_ACT_RT2; 1507 val = RT_FL2_BINDLAZY; 1508 variable = ENV_FLG_BIND_LAZY; 1509 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1510 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1511 select |= SEL_ACT_RT2; 1512 val = RT_FL2_BINDNOW; 1513 variable = ENV_FLG_BIND_NOW; 1514 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1515 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1516 /* 1517 * Another trick, enabled to help debug AOUT 1518 * applications under BCP, but not documented for 1519 * general use. 1520 */ 1521 select |= SEL_ACT_RT; 1522 val = RT_FL_NOBIND; 1523 variable = ENV_FLG_BIND_NOT; 1524 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1525 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1526 /* 1527 * This variable is simply for backward compatibility. 1528 * If this and LD_DEBUG are both specified, only one of 1529 * the strings is going to get processed. 1530 */ 1531 select |= SEL_ACT_SPEC_2; 1532 variable = ENV_FLG_BINDINGS; 1533 #ifndef LD_BREADTH_DISABLED 1534 } else if ((len == MSG_LD_BREADTH_SIZE) && (strncmp(s1, 1535 MSG_ORIG(MSG_LD_BREADTH), MSG_LD_BREADTH_SIZE) == 0)) { 1536 /* 1537 * Besides some old patches this is no longer available. 1538 */ 1539 rtld_flags |= RT_FL_BREADTH; 1540 return; 1541 #endif 1542 } 1543 } 1544 /* 1545 * LD_CONCURRENCY and LD_CONFIG family. 1546 */ 1547 else if (*s1 == 'C') { 1548 if ((len == MSG_LD_CONCURRENCY_SIZE) && (strncmp(s1, 1549 MSG_ORIG(MSG_LD_CONCURRENCY), 1550 MSG_LD_CONCURRENCY_SIZE) == 0)) { 1551 /* 1552 * Waiting in the wings, as concurrency checking isn't 1553 * yet enabled. 1554 */ 1555 select |= SEL_ACT_SPEC_2; 1556 variable = ENV_FLG_CONCURRENCY; 1557 } else if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1558 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1559 /* 1560 * Set by crle(1) to indicate it's building a 1561 * configuration file, not documented for general use. 1562 */ 1563 select |= SEL_ACT_SPEC_2; 1564 variable = ENV_FLG_CONFGEN; 1565 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1566 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1567 /* 1568 * Secure applications must use a default configuration 1569 * file. A setting from a configuration file doesn't 1570 * make sense (given we must be reading a configuration 1571 * file to have gotten this). 1572 */ 1573 if ((rtld_flags & RT_FL_SECURE) || 1574 (env_flags & ENV_TYP_CONFIG)) 1575 return; 1576 select |= SEL_ACT_STR; 1577 str = &config->c_name; 1578 variable = ENV_FLG_CONFIG; 1579 } 1580 } 1581 /* 1582 * The LD_DEBUG family and LD_DEMANGLE. 1583 */ 1584 else if (*s1 == 'D') { 1585 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1586 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1587 select |= SEL_ACT_STR; 1588 str = (select & SEL_REPLACE) ? &rpl_debug : &prm_debug; 1589 variable = ENV_FLG_DEBUG; 1590 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1591 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1592 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1593 select |= SEL_ACT_STR; 1594 str = &dbg_file; 1595 variable = ENV_FLG_DEBUG_OUTPUT; 1596 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1597 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1598 select |= SEL_ACT_RT; 1599 val = RT_FL_DEMANGLE; 1600 variable = ENV_FLG_DEMANGLE; 1601 } 1602 } 1603 /* 1604 * LD_FLAGS - collect the best variable definition. On completion of 1605 * environment variable processing pass the result to ld_flags_env() 1606 * where they'll be decomposed and passed back to this routine. 1607 */ 1608 else if (*s1 == 'F') { 1609 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1610 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1611 select |= SEL_ACT_SPEC_1; 1612 str = 1613 (select & SEL_REPLACE) ? &rpl_ldflags : &prm_ldflags; 1614 variable = ENV_FLG_FLAGS; 1615 } 1616 } 1617 /* 1618 * LD_INIT (internal, used by ldd(1)). 1619 */ 1620 else if (*s1 == 'I') { 1621 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1622 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1623 select |= SEL_ACT_LML; 1624 val = LML_FLG_TRC_INIT; 1625 variable = ENV_FLG_INIT; 1626 } 1627 } 1628 /* 1629 * The LD_LIBRARY_PATH and LD_LOAD families. 1630 */ 1631 else if (*s1 == 'L') { 1632 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1633 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1634 select |= SEL_ACT_SPEC_1; 1635 str = 1636 (select & SEL_REPLACE) ? &rpl_libpath : &prm_libpath; 1637 variable = ENV_FLG_LIBPATH; 1638 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1639 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1640 /* 1641 * Internal use by crle(1), not documented for general 1642 * use. 1643 */ 1644 select |= SEL_ACT_LML; 1645 val = LML_FLG_LOADAVAIL; 1646 variable = ENV_FLG_LOADAVAIL; 1647 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1648 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1649 select |= SEL_ACT_SPEC_2; 1650 variable = ENV_FLG_LOADFLTR; 1651 } 1652 } 1653 /* 1654 * The LD_NO family. 1655 */ 1656 else if (*s1 == 'N') { 1657 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1658 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1659 select |= SEL_ACT_RT; 1660 val = RT_FL_NOAUDIT; 1661 variable = ENV_FLG_NOAUDIT; 1662 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1663 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1664 select |= SEL_ACT_RT; 1665 val = RT_FL_NOAUXFLTR; 1666 variable = ENV_FLG_NOAUXFLTR; 1667 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1668 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1669 select |= SEL_ACT_RT; 1670 val = RT_FL_NOBAPLT; 1671 variable = ENV_FLG_NOBAPLT; 1672 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1673 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1674 select |= SEL_ACT_RT; 1675 val = RT_FL_NOCFG; 1676 variable = ENV_FLG_NOCONFIG; 1677 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1678 MSG_ORIG(MSG_LD_NODIRCONFIG), 1679 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1680 select |= SEL_ACT_RT; 1681 val = RT_FL_NODIRCFG; 1682 variable = ENV_FLG_NODIRCONFIG; 1683 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1684 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1685 select |= SEL_ACT_LMLT; 1686 val = LML_TFLG_NODIRECT; 1687 variable = ENV_FLG_NODIRECT; 1688 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1689 MSG_ORIG(MSG_LD_NOENVCONFIG), 1690 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1691 select |= SEL_ACT_RT; 1692 val = RT_FL_NOENVCFG; 1693 variable = ENV_FLG_NOENVCONFIG; 1694 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1695 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1696 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1697 select |= SEL_ACT_RT2; 1698 val = RT_FL2_NOFLTCFG; 1699 variable = ENV_FLG_NOFLTCONFIG; 1700 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1701 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1702 select |= SEL_ACT_LMLT; 1703 val = LML_TFLG_NOLAZYLD; 1704 variable = ENV_FLG_NOLAZY; 1705 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1706 MSG_ORIG(MSG_LD_NOOBJALTER), 1707 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1708 select |= SEL_ACT_RT; 1709 val = RT_FL_NOOBJALT; 1710 variable = ENV_FLG_NOOBJALTER; 1711 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1712 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1713 select |= SEL_ACT_RT; 1714 val = RT_FL_NOVERSION; 1715 variable = ENV_FLG_NOVERSION; 1716 } 1717 } 1718 /* 1719 * LD_ORIGIN. 1720 */ 1721 else if (*s1 == 'O') { 1722 #ifndef EXPAND_RELATIVE 1723 if ((len == MSG_LD_ORIGIN_SIZE) && (strncmp(s1, 1724 MSG_ORIG(MSG_LD_ORIGIN), MSG_LD_ORIGIN_SIZE) == 0)) { 1725 /* 1726 * Besides some old patches this is no longer required. 1727 */ 1728 rtld_flags |= RT_FL_RELATIVE; 1729 } 1730 #endif 1731 return; 1732 } 1733 /* 1734 * LD_PRELOAD and LD_PROFILE family. 1735 */ 1736 else if (*s1 == 'P') { 1737 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1738 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1739 select |= SEL_ACT_STR; 1740 str = 1741 (select & SEL_REPLACE) ? &rpl_preload : &prm_preload; 1742 variable = ENV_FLG_PRELOAD; 1743 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1744 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1745 /* 1746 * Only one user library can be profiled at a time. 1747 */ 1748 select |= SEL_ACT_SPEC_2; 1749 variable = ENV_FLG_PROFILE; 1750 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1751 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1752 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1753 /* 1754 * Only one user library can be profiled at a time. 1755 */ 1756 select |= SEL_ACT_STR; 1757 str = &profile_out; 1758 variable = ENV_FLG_PROFILE_OUTPUT; 1759 } 1760 } 1761 /* 1762 * LD_SIGNAL. 1763 */ 1764 else if (*s1 == 'S') { 1765 if (rtld_flags & RT_FL_SECURE) 1766 return; 1767 if ((len == MSG_LD_SIGNAL_SIZE) && 1768 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1769 MSG_LD_SIGNAL_SIZE) == 0)) { 1770 select |= SEL_ACT_SPEC_2; 1771 variable = ENV_FLG_SIGNAL; 1772 } 1773 } 1774 /* 1775 * The LD_TRACE family (internal, used by ldd(1)). 1776 */ 1777 else if (*s1 == 'T') { 1778 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1779 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1780 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1781 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1782 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1783 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1784 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1785 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1786 select |= SEL_ACT_SPEC_2; 1787 variable = ENV_FLG_TRACE_OBJS; 1788 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1789 MSG_ORIG(MSG_LD_TRACE_PTHS), 1790 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1791 select |= SEL_ACT_LML; 1792 val = LML_FLG_TRC_SEARCH; 1793 variable = ENV_FLG_TRACE_PTHS; 1794 } 1795 } 1796 /* 1797 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1798 */ 1799 else if (*s1 == 'U') { 1800 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1801 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1802 select |= SEL_ACT_LML; 1803 val = LML_FLG_TRC_UNREF; 1804 variable = ENV_FLG_UNREF; 1805 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1806 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1807 select |= SEL_ACT_LML; 1808 val = LML_FLG_TRC_UNUSED; 1809 variable = ENV_FLG_UNUSED; 1810 } 1811 } 1812 /* 1813 * LD_VERBOSE (internal, used by ldd(1)). 1814 */ 1815 else if (*s1 == 'V') { 1816 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1817 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1818 select |= SEL_ACT_LML; 1819 val = LML_FLG_TRC_VERBOSE; 1820 variable = ENV_FLG_VERBOSE; 1821 } 1822 } 1823 /* 1824 * LD_WARN (internal, used by ldd(1)). 1825 */ 1826 else if (*s1 == 'W') { 1827 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1828 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1829 select |= SEL_ACT_LML; 1830 val = LML_FLG_TRC_WARN; 1831 variable = ENV_FLG_WARN; 1832 } 1833 #ifdef SIEBEL_DISABLE 1834 } 1835 /* 1836 * LD__FIX__ (undocumented, enable future technology that can't be 1837 * delivered in a patch release). 1838 */ 1839 else if (*s1 == '_') { 1840 if ((len == MSG_LD_FIX_1_SIZE) && (strncmp(s1, 1841 MSG_ORIG(MSG_LD_FIX_1), MSG_LD_FIX_1_SIZE) == 0)) { 1842 select |= SEL_ACT_RT; 1843 val = RT_FL_DISFIX_1; 1844 variable = ENV_FLG_FIX_1; 1845 } 1846 #endif 1847 } 1848 if (variable == 0) 1849 return; 1850 1851 /* 1852 * If the variable is already processed with ISA specific variable, 1853 * no further processing needed. 1854 */ 1855 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1856 ((select & SEL_PERMANT) && (prmisa & variable))) 1857 return; 1858 1859 /* 1860 * Now mark the appropriate variables 1861 */ 1862 if (env_flags & ENV_TYP_ISA) { 1863 /* 1864 * This is ISA setting. We do the setting 1865 * even if s2 is NULL. 1866 * If s2 is NULL, we might need to undo 1867 * the setting. 1868 */ 1869 if (select & SEL_REPLACE) { 1870 rplisa |= variable; 1871 } else { 1872 prmisa |= variable; 1873 } 1874 } else if (s2) { 1875 /* 1876 * This is non0-ISA setting 1877 */ 1878 if (select & SEL_REPLACE) { 1879 rplgen |= variable; 1880 } else 1881 prmgen |= variable; 1882 } else 1883 /* 1884 * This is non-ISA setting which 1885 * can be ignored. 1886 */ 1887 return; 1888 1889 /* 1890 * Now perform the setting. 1891 */ 1892 if (select & SEL_ACT_RT) { 1893 if (s2) 1894 rtld_flags |= val; 1895 else 1896 rtld_flags &= ~val; 1897 } else if (select & SEL_ACT_RT2) { 1898 if (s2) 1899 rtld_flags2 |= val; 1900 else 1901 rtld_flags2 &= ~val; 1902 } else if (select & SEL_ACT_STR) 1903 *str = s2; 1904 else if (select & SEL_ACT_LML) { 1905 if (s2) 1906 *lmflags |= val; 1907 else 1908 *lmflags &= ~val; 1909 } else if (select & SEL_ACT_LMLT) { 1910 if (s2) 1911 *lmtflags |= val; 1912 else 1913 *lmtflags &= ~val; 1914 } else if (select & SEL_ACT_SPEC_1) { 1915 /* 1916 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 1917 */ 1918 *str = s2; 1919 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 1920 if (s2) { 1921 if (variable == ENV_FLG_FLAGS) 1922 env_info |= ENV_INF_FLAGCFG; 1923 else 1924 env_info |= ENV_INF_PATHCFG; 1925 } else { 1926 if (variable == ENV_FLG_FLAGS) 1927 env_info &= ~ENV_INF_FLAGCFG; 1928 else 1929 env_info &= ~ENV_INF_PATHCFG; 1930 } 1931 } 1932 } else if (select & SEL_ACT_SPEC_2) { 1933 /* 1934 * variables can be: ENV_FLG_ 1935 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 1936 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 1937 */ 1938 if (variable == ENV_FLG_AUDIT_ARGS) { 1939 if (s2) { 1940 audit_argcnt = atoi(s2); 1941 audit_argcnt += audit_argcnt % 2; 1942 } else 1943 audit_argcnt = 0; 1944 } else if (variable == ENV_FLG_BINDINGS) { 1945 if (s2) 1946 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 1947 else 1948 rpl_debug = 0; 1949 } else if (variable == ENV_FLG_CONCURRENCY) { 1950 if (s2) 1951 rtld_flags &= ~RT_FL_NOCONCUR; 1952 else 1953 rtld_flags |= RT_FL_NOCONCUR; 1954 } else if (variable == ENV_FLG_CONFGEN) { 1955 if (s2) { 1956 rtld_flags |= RT_FL_CONFGEN; 1957 *lmflags |= LML_FLG_IGNRELERR; 1958 } else { 1959 rtld_flags &= ~RT_FL_CONFGEN; 1960 *lmflags &= ~LML_FLG_IGNRELERR; 1961 } 1962 } else if (variable == ENV_FLG_LOADFLTR) { 1963 if (s2) { 1964 *lmtflags |= LML_TFLG_LOADFLTR; 1965 if (*s2 == '2') 1966 rtld_flags |= RT_FL_WARNFLTR; 1967 } else { 1968 *lmtflags &= ~LML_TFLG_LOADFLTR; 1969 rtld_flags &= ~RT_FL_WARNFLTR; 1970 } 1971 } else if (variable == ENV_FLG_PROFILE) { 1972 profile_name = s2; 1973 if (s2) { 1974 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 1975 return; 1976 } 1977 if (rtld_flags & RT_FL_SECURE) { 1978 profile_lib = 1979 #if defined(_ELF64) 1980 MSG_ORIG(MSG_PTH_LDPROFSE_64); 1981 #else 1982 MSG_ORIG(MSG_PTH_LDPROFSE); 1983 #endif 1984 } else { 1985 profile_lib = 1986 #if defined(_ELF64) 1987 MSG_ORIG(MSG_PTH_LDPROF_64); 1988 #else 1989 MSG_ORIG(MSG_PTH_LDPROF); 1990 #endif 1991 } 1992 } else 1993 profile_lib = 0; 1994 } else if (variable == ENV_FLG_SIGNAL) { 1995 killsig = s2 ? atoi(s2) : SIGKILL; 1996 } else if (variable == ENV_FLG_TRACE_OBJS) { 1997 if (s2) { 1998 *lmflags |= LML_FLG_TRC_ENABLE; 1999 if (*s2 == '2') 2000 *lmflags |= LML_FLG_TRC_LDDSTUB; 2001 } else 2002 *lmflags &= 2003 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2004 } 2005 } 2006 } 2007 2008 /* 2009 * Determine whether we have an architecture specific environment variable. 2010 * If we do, and we're the wrong architecture, it'll just get ignored. 2011 * Otherwise the variable is processed in it's architecture neutral form. 2012 */ 2013 static int 2014 ld_arch_env(const char *s1, size_t *len) 2015 { 2016 size_t _len = *len - 3; 2017 2018 if (s1[_len++] == '_') { 2019 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2020 #if defined(_ELF64) 2021 return (ENV_TYP_IGNORE); 2022 #else 2023 *len = *len - 3; 2024 return (ENV_TYP_ISA); 2025 #endif 2026 } 2027 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2028 #if defined(_ELF64) 2029 *len = *len - 3; 2030 return (ENV_TYP_ISA); 2031 #else 2032 return (ENV_TYP_IGNORE); 2033 #endif 2034 } 2035 } 2036 return (0); 2037 } 2038 2039 2040 /* 2041 * Process an LD_FLAGS environment variable. The value can be a comma 2042 * separated set of tokens, which are sent (in upper case) into the generic 2043 * LD_XXXX environment variable engine. For example: 2044 * 2045 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2046 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2047 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2048 * or 2049 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2050 */ 2051 static int 2052 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2053 uint_t env_flags, int aout) 2054 { 2055 char *nstr, *sstr, *estr = 0; 2056 size_t nlen, len; 2057 2058 if (str == 0) 2059 return (0); 2060 2061 /* 2062 * Create a new string as we're going to transform the token(s) into 2063 * uppercase and separate tokens with nulls. 2064 */ 2065 len = strlen(str); 2066 if ((nstr = malloc(len + 1)) == 0) 2067 return (1); 2068 (void) strcpy(nstr, str); 2069 2070 for (sstr = nstr; sstr; sstr++, len--) { 2071 int flags; 2072 2073 if ((*sstr != '\0') && (*sstr != ',')) { 2074 if (estr == 0) { 2075 if (*sstr == '=') 2076 estr = sstr; 2077 else { 2078 /* 2079 * Translate token to uppercase. Don't 2080 * use toupper(3C) as including this 2081 * code doubles the size of ld.so.1. 2082 */ 2083 if ((*sstr >= 'a') && (*sstr <= 'z')) 2084 *sstr = *sstr - ('a' - 'A'); 2085 } 2086 } 2087 continue; 2088 } 2089 2090 *sstr = '\0'; 2091 if (estr) { 2092 nlen = estr - nstr; 2093 if ((*++estr == '\0') || (*estr == ',')) 2094 estr = 0; 2095 } else 2096 nlen = sstr - nstr; 2097 2098 /* 2099 * Fabricate a boolean definition for any unqualified variable. 2100 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2101 * The value is sufficient to assert any boolean variables, plus 2102 * the term "(null)" is specifically chosen in case someone 2103 * mistakenly supplies something like LD_FLAGS=library_path. 2104 */ 2105 if (estr == 0) 2106 estr = (char *)MSG_INTL(MSG_STR_NULL); 2107 2108 /* 2109 * Determine whether the environment variable is 32- or 64-bit 2110 * specific. The length, len, will reflect the architecture 2111 * neutral portion of the string. 2112 */ 2113 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2114 ld_generic_env(nstr, nlen, estr, lmflags, 2115 lmtflags, (env_flags | flags), aout); 2116 } 2117 if (len == 0) 2118 return (0); 2119 2120 nstr = sstr + 1; 2121 estr = 0; 2122 } 2123 return (0); 2124 } 2125 2126 2127 /* 2128 * Process a single environment string. Only strings starting with `LD_' are 2129 * reserved for our use. By convention, all strings should be of the form 2130 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2131 * functionality is enabled. Also pick off applicable locale variables. 2132 */ 2133 #define LOC_LANG 1 2134 #define LOC_MESG 2 2135 #define LOC_ALL 3 2136 2137 static void 2138 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2139 int aout) 2140 { 2141 const char *s2; 2142 size_t loc = 0; 2143 2144 if (*s1++ != 'L') 2145 return; 2146 2147 /* 2148 * See if we have any locale environment settings. These environment 2149 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2150 * is higher than LANG. 2151 */ 2152 s2 = s1; 2153 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2154 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2155 s2 += MSG_LC_ALL_SIZE; 2156 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2157 locale = s2; 2158 loc = LOC_ALL; 2159 } 2160 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2161 MSG_LC_MESSAGES_SIZE) == 0) { 2162 s2 += MSG_LC_MESSAGES_SIZE; 2163 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2164 locale = s2; 2165 loc = LOC_MESG; 2166 } 2167 } 2168 return; 2169 } 2170 2171 s2 = s1; 2172 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2173 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2174 locale = s2; 2175 loc = LOC_LANG; 2176 return; 2177 } 2178 2179 /* 2180 * Pick off any LD_XXXX environment variables. 2181 */ 2182 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2183 size_t len; 2184 int flags; 2185 2186 /* 2187 * Environment variables with no value (ie. LD_XXXX=) typically 2188 * have no impact, however if environment variables are defined 2189 * within a configuration file, these null user settings can be 2190 * used to disable any configuration replaceable definitions. 2191 */ 2192 if ((s2 = strchr(s1, '=')) == 0) { 2193 len = strlen(s1); 2194 s2 = 0; 2195 } else if (*++s2 == '\0') { 2196 len = strlen(s1) - 1; 2197 s2 = 0; 2198 } else { 2199 len = s2 - s1 - 1; 2200 while (isspace(*s2)) 2201 s2++; 2202 } 2203 2204 /* 2205 * Determine whether the environment variable is 32- or 64-bit 2206 * specific. The length, len, will reflect the architecture 2207 * neutral portion of the string. 2208 */ 2209 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2210 return; 2211 env_flags |= flags; 2212 2213 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2214 } 2215 } 2216 2217 /* 2218 * Internal getenv routine. Called immediately after ld.so.1 initializes 2219 * itself. 2220 */ 2221 int 2222 readenv_user(const char ** envp, Word *lmflags, Word *lmtflags, int aout) 2223 { 2224 if (envp == (const char **)0) 2225 return (0); 2226 2227 while (*envp != (const char *)0) 2228 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2229 2230 /* 2231 * Having collected the best representation of any LD_FLAGS, process 2232 * these strings. 2233 */ 2234 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2235 return (1); 2236 2237 /* 2238 * Don't allow environment controlled auditing when tracing or if 2239 * explicitly disabled. Trigger all tracing modes from 2240 * LML_FLG_TRC_ENABLE. 2241 */ 2242 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2243 rpl_audit = profile_lib = profile_name = 0; 2244 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2245 *lmflags &= ~LML_MSK_TRC; 2246 2247 /* 2248 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2249 */ 2250 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2251 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2252 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2253 2254 /* 2255 * If we have a locale setting make sure its worth processing further. 2256 * Duplicate the string so that new locale setting can generically 2257 * cleanup any previous locales. 2258 */ 2259 if (locale) { 2260 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2261 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0)) 2262 locale = 0; 2263 else 2264 locale = strdup(locale); 2265 } 2266 return (0); 2267 } 2268 2269 /* 2270 * Configuration environment processing. Called after the a.out has been 2271 * processed (as the a.out can specify its own configuration file). 2272 */ 2273 int 2274 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2275 { 2276 Word * lmflags = &(lml_main.lm_flags); 2277 Word * lmtflags = &(lml_main.lm_tflags); 2278 2279 if (envtbl == (Rtc_env *)0) 2280 return (0); 2281 2282 while (envtbl->env_str) { 2283 uint_t env_flags = ENV_TYP_CONFIG; 2284 2285 if (envtbl->env_flags & RTC_ENV_PERMANT) 2286 env_flags |= ENV_TYP_PERMANT; 2287 2288 ld_str_env((const char *)(envtbl->env_str + addr), 2289 lmflags, lmtflags, env_flags, 0); 2290 envtbl++; 2291 } 2292 2293 /* 2294 * Having collected the best representation of any LD_FLAGS, process 2295 * these strings. 2296 */ 2297 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2298 return (1); 2299 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2300 aout) == 1) 2301 return (1); 2302 2303 /* 2304 * Don't allow environment controlled auditing when tracing or if 2305 * explicitly disabled. Trigger all tracing modes from 2306 * LML_FLG_TRC_ENABLE. 2307 */ 2308 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2309 prm_audit = profile_lib = profile_name = 0; 2310 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2311 *lmflags &= ~LML_MSK_TRC; 2312 2313 return (0); 2314 } 2315 2316 int 2317 dowrite(Prfbuf * prf) 2318 { 2319 /* 2320 * We do not have a valid file descriptor, so we are unable 2321 * to flush the buffer. 2322 */ 2323 if (prf->pr_fd == -1) 2324 return (0); 2325 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2326 prf->pr_cur = prf->pr_buf; 2327 return (1); 2328 } 2329 2330 /* 2331 * Simplified printing. The following conversion specifications are supported: 2332 * 2333 * % [#] [-] [min field width] [. precision] s|d|x|c 2334 * 2335 * 2336 * dorprf takes the output buffer in the form of Prfbuf which permits 2337 * the verification of the output buffer size and the concatenation 2338 * of data to an already existing output buffer. The Prfbuf 2339 * structure contains the following: 2340 * 2341 * pr_buf pointer to the beginning of the output buffer. 2342 * pr_cur pointer to the next available byte in the output buffer. By 2343 * setting pr_cur ahead of pr_buf you can append to an already 2344 * existing buffer. 2345 * pr_len the size of the output buffer. By setting pr_len to '0' you 2346 * disable protection from overflows in the output buffer. 2347 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2348 * output to. If pr_fd is set to '-1' then it's assumed there is 2349 * no output buffer and doprf() will return with an error if the 2350 * output buffer is overflowed. If pr_fd is > -1 then when the 2351 * output buffer is filled it will be flushed to pr_fd and then 2352 * the available for additional data. 2353 */ 2354 #define FLG_UT_MINUS 0x0001 /* - */ 2355 #define FLG_UT_SHARP 0x0002 /* # */ 2356 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2357 2358 /* 2359 * This macro is for use from within doprf only. it's to be used 2360 * for checking the output buffer size and placing characters into 2361 * the buffer. 2362 */ 2363 #define PUTC(c) \ 2364 { \ 2365 register char tmpc; \ 2366 \ 2367 tmpc = (c); \ 2368 if ((bufsiz) && ((bp + 1) >= bufend)) { \ 2369 prf->pr_cur = bp; \ 2370 if (dowrite(prf) == 0) \ 2371 return (0); \ 2372 bp = prf->pr_cur; \ 2373 } \ 2374 *bp++ = tmpc; \ 2375 } 2376 2377 size_t 2378 doprf(const char *format, va_list args, Prfbuf *prf) 2379 { 2380 char c; 2381 char *bp = prf->pr_cur; 2382 char *bufend = prf->pr_buf + prf->pr_len; 2383 size_t bufsiz = prf->pr_len; 2384 2385 while ((c = *format++) != '\0') { 2386 if (c != '%') { 2387 PUTC(c); 2388 } else { 2389 int base = 0, flag = 0, width = 0, prec = 0; 2390 size_t _i; 2391 int _c, _n; 2392 char *_s; 2393 int ls = 0; 2394 again: 2395 c = *format++; 2396 switch (c) { 2397 case '-': 2398 flag |= FLG_UT_MINUS; 2399 goto again; 2400 case '#': 2401 flag |= FLG_UT_SHARP; 2402 goto again; 2403 case '.': 2404 flag |= FLG_UT_DOTSEEN; 2405 goto again; 2406 case '0': 2407 case '1': 2408 case '2': 2409 case '3': 2410 case '4': 2411 case '5': 2412 case '6': 2413 case '7': 2414 case '8': 2415 case '9': 2416 if (flag & FLG_UT_DOTSEEN) 2417 prec = (prec * 10) + c - '0'; 2418 else 2419 width = (width * 10) + c - '0'; 2420 goto again; 2421 case 'x': 2422 case 'X': 2423 base = 16; 2424 break; 2425 case 'd': 2426 case 'D': 2427 case 'u': 2428 base = 10; 2429 flag &= ~FLG_UT_SHARP; 2430 break; 2431 case 'l': 2432 base = 10; 2433 ls++; /* number of l's (long or long long) */ 2434 if ((*format == 'l') || 2435 (*format == 'd') || (*format == 'D') || 2436 (*format == 'x') || (*format == 'X') || 2437 (*format == 'o') || (*format == 'O')) 2438 goto again; 2439 break; 2440 case 'o': 2441 case 'O': 2442 base = 8; 2443 break; 2444 case 'c': 2445 _c = va_arg(args, int); 2446 2447 for (_i = 24; _i > 0; _i -= 8) { 2448 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2449 PUTC(c); 2450 } 2451 } 2452 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2453 PUTC(c); 2454 } 2455 break; 2456 case 's': 2457 _s = va_arg(args, char *); 2458 _i = strlen(_s); 2459 /* LINTED */ 2460 _n = (int)(width - _i); 2461 if (!prec) 2462 /* LINTED */ 2463 prec = (int)_i; 2464 2465 if (width && !(flag & FLG_UT_MINUS)) { 2466 while (_n-- > 0) 2467 PUTC(' '); 2468 } 2469 while (((c = *_s++) != 0) && prec--) { 2470 PUTC(c); 2471 } 2472 if (width && (flag & FLG_UT_MINUS)) { 2473 while (_n-- > 0) 2474 PUTC(' '); 2475 } 2476 break; 2477 case '%': 2478 PUTC('%'); 2479 break; 2480 default: 2481 break; 2482 } 2483 2484 /* 2485 * Numeric processing 2486 */ 2487 if (base) { 2488 char local[20]; 2489 const char *string = 2490 MSG_ORIG(MSG_STR_HEXNUM); 2491 size_t ssize = 0, psize = 0; 2492 const char *prefix = 2493 MSG_ORIG(MSG_STR_EMPTY); 2494 u_longlong_t num; 2495 2496 switch (ls) { 2497 case 0: /* int */ 2498 num = (u_longlong_t) 2499 va_arg(args, uint_t); 2500 break; 2501 case 1: /* long */ 2502 num = (u_longlong_t) 2503 va_arg(args, ulong_t); 2504 break; 2505 case 2: /* long long */ 2506 num = va_arg(args, u_longlong_t); 2507 break; 2508 } 2509 2510 if (flag & FLG_UT_SHARP) { 2511 if (base == 16) { 2512 prefix = MSG_ORIG(MSG_STR_HEX); 2513 psize = 2; 2514 } else { 2515 prefix = MSG_ORIG(MSG_STR_ZERO); 2516 psize = 1; 2517 } 2518 } 2519 if ((base == 10) && (long)num < 0) { 2520 prefix = MSG_ORIG(MSG_STR_NEGATE); 2521 psize = MSG_STR_NEGATE_SIZE; 2522 num = (u_longlong_t)(-(longlong_t)num); 2523 } 2524 2525 /* 2526 * Convert the numeric value into a local 2527 * string (stored in reverse order). 2528 */ 2529 _s = local; 2530 do { 2531 *_s++ = string[num % base]; 2532 num /= base; 2533 ssize++; 2534 } while (num); 2535 2536 /* 2537 * Provide any precision or width padding. 2538 */ 2539 if (prec) { 2540 /* LINTED */ 2541 _n = (int)(prec - ssize); 2542 while (_n-- > 0) { 2543 *_s++ = '0'; 2544 ssize++; 2545 } 2546 } 2547 if (width && !(flag & FLG_UT_MINUS)) { 2548 /* LINTED */ 2549 _n = (int)(width - ssize - psize); 2550 while (_n-- > 0) { 2551 PUTC(' '); 2552 } 2553 } 2554 2555 /* 2556 * Print any prefix and the numeric string 2557 */ 2558 while (*prefix) 2559 PUTC(*prefix++); 2560 do { 2561 PUTC(*--_s); 2562 } while (_s > local); 2563 2564 /* 2565 * Provide any width padding. 2566 */ 2567 if (width && (flag & FLG_UT_MINUS)) { 2568 /* LINTED */ 2569 _n = (int)(width - ssize - psize); 2570 while (_n-- > 0) 2571 PUTC(' '); 2572 } 2573 } 2574 } 2575 } 2576 PUTC('\0'); 2577 prf->pr_cur = bp; 2578 return (1); 2579 } 2580 2581 static int 2582 doprintf(const char *format, va_list args, Prfbuf *prf) 2583 { 2584 char *ocur = prf->pr_cur; 2585 2586 if (doprf(format, args, prf) == 0) 2587 return (0); 2588 /* LINTED */ 2589 return ((int)(prf->pr_cur - ocur)); 2590 } 2591 2592 /* VARARGS2 */ 2593 int 2594 sprintf(char *buf, const char *format, ...) 2595 { 2596 va_list args; 2597 int len; 2598 Prfbuf prf; 2599 2600 va_start(args, format); 2601 prf.pr_buf = prf.pr_cur = buf; 2602 prf.pr_len = 0; 2603 prf.pr_fd = -1; 2604 len = doprintf(format, args, &prf); 2605 va_end(args); 2606 2607 /* 2608 * sprintf() return value excludes the terminating null byte. 2609 */ 2610 return (len - 1); 2611 } 2612 2613 /* VARARGS3 */ 2614 int 2615 snprintf(char *buf, size_t n, const char *format, ...) 2616 { 2617 va_list args; 2618 int len; 2619 Prfbuf prf; 2620 2621 va_start(args, format); 2622 prf.pr_buf = prf.pr_cur = buf; 2623 prf.pr_len = n; 2624 prf.pr_fd = -1; 2625 len = doprintf(format, args, &prf); 2626 va_end(args); 2627 2628 return (len); 2629 } 2630 2631 /* VARARGS2 */ 2632 int 2633 bufprint(Prfbuf *prf, const char *format, ...) 2634 { 2635 va_list args; 2636 int len; 2637 2638 va_start(args, format); 2639 len = doprintf(format, args, prf); 2640 va_end(args); 2641 2642 return (len); 2643 } 2644 2645 /*PRINTFLIKE1*/ 2646 int 2647 printf(const char *format, ...) 2648 { 2649 va_list args; 2650 char buffer[ERRSIZE]; 2651 Prfbuf prf; 2652 2653 va_start(args, format); 2654 prf.pr_buf = prf.pr_cur = buffer; 2655 prf.pr_len = ERRSIZE; 2656 prf.pr_fd = 1; 2657 (void) doprf(format, args, &prf); 2658 va_end(args); 2659 /* 2660 * Trim trailing '\0' form buffer 2661 */ 2662 prf.pr_cur--; 2663 return (dowrite(&prf)); 2664 } 2665 2666 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = 0; 2667 2668 /*PRINTFLIKE2*/ 2669 void 2670 eprintf(Error error, const char *format, ...) 2671 { 2672 va_list args; 2673 int overflow = 0; 2674 static int lock = 0; 2675 Prfbuf prf; 2676 2677 if (lock || (nextptr == (errbuf + ERRSIZE))) 2678 return; 2679 2680 /* 2681 * Note: this lock is here to prevent the same thread from recursively 2682 * entering itself during a eprintf. ie: during eprintf malloc() fails 2683 * and we try and call eprintf ... and then malloc() fails .... 2684 */ 2685 lock = 1; 2686 2687 /* 2688 * If we have completed startup initialization, all error messages 2689 * must be saved. These are reported through dlerror(). If we're 2690 * still in the initialization stage, output the error directly and 2691 * add a newline. 2692 */ 2693 va_start(args, format); 2694 2695 prf.pr_buf = prf.pr_cur = nextptr; 2696 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2697 2698 if (!(rtld_flags & RT_FL_APPLIC)) 2699 prf.pr_fd = 2; 2700 else 2701 prf.pr_fd = -1; 2702 2703 if (error > ERR_NONE) { 2704 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2705 error = ERR_WARNING; 2706 if (error == ERR_WARNING) { 2707 if (err_strs[ERR_WARNING] == 0) 2708 err_strs[ERR_WARNING] = MSG_INTL(MSG_ERR_WARNING); 2709 } else if (error == ERR_FATAL) { 2710 if (err_strs[ERR_FATAL] == 0) 2711 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2712 } else if (error == ERR_ELF) { 2713 if (err_strs[ERR_ELF] == 0) 2714 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2715 } 2716 if (procname) { 2717 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2718 rtldname, procname, err_strs[error]) == 0) 2719 overflow = 1; 2720 } else { 2721 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2722 rtldname, err_strs[error]) == 0) 2723 overflow = 1; 2724 } 2725 if (overflow == 0) { 2726 /* 2727 * Remove the terminating '\0'. 2728 */ 2729 prf.pr_cur--; 2730 } 2731 } 2732 2733 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2734 overflow = 1; 2735 2736 /* 2737 * If this is an ELF error, it will have been generated by a support 2738 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2739 * ELF error messages as it doesn't interact with libelf. Determine the 2740 * ELF error string. 2741 */ 2742 if ((overflow == 0) && (error == ERR_ELF)) { 2743 static int (*elfeno)() = 0; 2744 static const char *(*elfemg)(); 2745 const char *emsg; 2746 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2747 2748 if (NEXT(lmp) && (elfeno == 0)) { 2749 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2750 MSG_ORIG(MSG_SYM_ELFERRMSG), lmp, &dlmp)) == 0) || 2751 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2752 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == 0)) 2753 elfeno = 0; 2754 } 2755 2756 /* 2757 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2758 */ 2759 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != 0)) { 2760 prf.pr_cur--; 2761 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2762 emsg) == 0) 2763 overflow = 1; 2764 } 2765 } 2766 2767 /* 2768 * Push out any message that's been built. Note, in the case of an 2769 * overflow condition, this message may be incomplete, in which case 2770 * make sure any partial string is null terminated. 2771 */ 2772 if (overflow) 2773 *(prf.pr_cur) = '\0'; 2774 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2775 *(prf.pr_cur - 1) = '\n'; 2776 (void) dowrite(&prf); 2777 } 2778 2779 DBG_CALL(Dbg_util_str(nextptr)); 2780 va_end(args); 2781 2782 /* 2783 * Determine if there was insufficient space left in the buffer to 2784 * complete the message. If so, we'll have printed out as much as had 2785 * been processed if we're not yet executing the application. 2786 * Otherwise, there will be some debugging diagnostic indicating 2787 * as much of the error message as possible. Write out a final buffer 2788 * overflow diagnostic - unlocalized, so we don't chance more errors. 2789 */ 2790 if (overflow) { 2791 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2792 2793 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2794 lasterr = str; 2795 2796 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2797 (void) write(2, str, strlen(str)); 2798 (void) write(2, MSG_ORIG(MSG_STR_NL), 2799 MSG_STR_NL_SIZE); 2800 } 2801 } 2802 DBG_CALL(Dbg_util_str(str)); 2803 2804 lock = 0; 2805 nextptr = errbuf + ERRSIZE; 2806 return; 2807 } 2808 2809 /* 2810 * If the application has started, then error messages are being saved 2811 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2812 * the case of a fatal error. In this case, establish the next error 2813 * pointer. If we haven't started the application, the whole message 2814 * buffer can be reused. 2815 */ 2816 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2817 lasterr = nextptr; 2818 2819 /* 2820 * Note, should we encounter an error such as ENOMEM, there may 2821 * be a number of the same error messages (ie. an operation 2822 * fails with ENOMEM, and then the attempts to construct the 2823 * error message itself, which incurs additional ENOMEM errors). 2824 * Compare any previous error message with the one we've just 2825 * created to prevent any duplication clutter. 2826 */ 2827 if ((rtld_flags & RT_FL_APPLIC) && 2828 ((prevptr == 0) || (strcmp(prevptr, nextptr) != 0))) { 2829 prevptr = nextptr; 2830 nextptr = prf.pr_cur; 2831 *nextptr = '\0'; 2832 } 2833 } 2834 lock = 0; 2835 } 2836 2837 2838 #if DEBUG 2839 /* 2840 * Provide assfail() for ASSERT() statements, 2841 * see <sys/debug.h> for further details. 2842 */ 2843 int 2844 assfail(const char *a, const char *f, int l) 2845 { 2846 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 2847 (void) _lwp_kill(_lwp_self(), SIGABRT); 2848 return (0); 2849 } 2850 #endif 2851 2852 /* 2853 * Exit. If we arrive here with a non zero status it's because of a fatal 2854 * error condition (most commonly a relocation error). If the application has 2855 * already had control, then the actual fatal error message will have been 2856 * recorded in the dlerror() message buffer. Print the message before really 2857 * exiting. 2858 */ 2859 void 2860 rtldexit(Lm_list * lml, int status) 2861 { 2862 if (status) { 2863 if (rtld_flags & RT_FL_APPLIC) { 2864 /* 2865 * If the error buffer has been used, write out all 2866 * pending messages - lasterr is simply a pointer to 2867 * the last message in this buffer. However, if the 2868 * buffer couldn't be created at all, lasterr points 2869 * to a constant error message string. 2870 */ 2871 if (*errbuf) { 2872 char *errptr = errbuf; 2873 char *errend = errbuf + ERRSIZE; 2874 2875 while ((errptr < errend) && *errptr) { 2876 size_t size = strlen(errptr); 2877 (void) write(2, errptr, size); 2878 (void) write(2, MSG_ORIG(MSG_STR_NL), 2879 MSG_STR_NL_SIZE); 2880 errptr += (size + 1); 2881 } 2882 } 2883 if (lasterr && ((lasterr < errbuf) || 2884 (lasterr > (errbuf + ERRSIZE)))) { 2885 (void) write(2, lasterr, strlen(lasterr)); 2886 (void) write(2, MSG_ORIG(MSG_STR_NL), 2887 MSG_STR_NL_SIZE); 2888 } 2889 } 2890 leave(lml); 2891 (void) _lwp_kill(_lwp_self(), killsig); 2892 } 2893 _exit(status); 2894 } 2895 2896 /* 2897 * Routines to co-ordinate the opening of /dev/zero and /proc. 2898 * dz_fd is exported for possible use by libld.so, and to insure it gets 2899 * closed on leaving ld.so.1. 2900 */ 2901 int dz_fd = FD_UNAVAIL; 2902 2903 void 2904 dz_init(int fd) 2905 { 2906 dz_fd = fd; 2907 } 2908 2909 2910 /* 2911 * mmap() a page from MAP_ANON 2912 * 2913 * Note: MAP_ANON is only on Solaris8++, we use this routine to 2914 * not only mmap(MAP_ANON) but to also probe if it is available 2915 * on the current OS. 2916 */ 2917 Am_ret 2918 anon_map(caddr_t *addr, size_t len, int prot, int flags) 2919 { 2920 #if defined(MAP_ANON) 2921 static int noanon = 0; 2922 caddr_t va; 2923 2924 if (noanon == 0) { 2925 if ((va = (caddr_t)mmap(*addr, len, prot, 2926 (flags | MAP_ANON), -1, 0)) != MAP_FAILED) { 2927 *addr = va; 2928 return (AM_OK); 2929 } 2930 2931 if ((errno != EBADF) && (errno != EINVAL)) { 2932 int err = errno; 2933 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 2934 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2935 return (AM_ERROR); 2936 } else 2937 noanon = 1; 2938 } 2939 #endif 2940 return (AM_NOSUP); 2941 } 2942 2943 /* 2944 * Map anonymous memory from /dev/zero, or via MAP_ANON. 2945 * 2946 * (MAP_ANON only appears on Solaris 8, so we need fall-back 2947 * behavior for older systems.) 2948 */ 2949 caddr_t 2950 dz_map(caddr_t addr, size_t len, int prot, int flags) 2951 { 2952 caddr_t va; 2953 int err; 2954 Am_ret amret; 2955 2956 amret = anon_map(&addr, len, prot, flags); 2957 2958 if (amret == AM_OK) 2959 return (addr); 2960 if (amret == AM_ERROR) 2961 return (MAP_FAILED); 2962 2963 /* amret == AM_NOSUP -> fallback to a devzero mmaping */ 2964 2965 if (dz_fd == FD_UNAVAIL) { 2966 if ((dz_fd = open(MSG_ORIG(MSG_PTH_DEVZERO), 2967 O_RDONLY)) == FD_UNAVAIL) { 2968 err = errno; 2969 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 2970 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2971 return (MAP_FAILED); 2972 } 2973 } 2974 2975 if ((va = mmap(addr, len, prot, flags, dz_fd, 0)) == MAP_FAILED) { 2976 err = errno; 2977 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 2978 MSG_ORIG(MSG_PTH_DEVZERO), strerror(err)); 2979 } 2980 return (va); 2981 } 2982 2983 static int pr_fd = FD_UNAVAIL; 2984 2985 int 2986 pr_open() 2987 { 2988 char proc[16]; 2989 2990 if (pr_fd == FD_UNAVAIL) { 2991 (void) snprintf(proc, 16, MSG_ORIG(MSG_FMT_PROC), 2992 (int)getpid()); 2993 if ((pr_fd = open(proc, O_RDONLY)) == FD_UNAVAIL) { 2994 int err = errno; 2995 2996 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), proc, 2997 strerror(err)); 2998 } 2999 } 3000 return (pr_fd); 3001 } 3002 3003 static int nu_fd = FD_UNAVAIL; 3004 3005 caddr_t 3006 nu_map(caddr_t addr, size_t len, int prot, int flags) 3007 { 3008 caddr_t va; 3009 int err; 3010 3011 if (nu_fd == FD_UNAVAIL) { 3012 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3013 O_RDONLY)) == FD_UNAVAIL) { 3014 err = errno; 3015 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3016 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3017 return (MAP_FAILED); 3018 } 3019 } 3020 3021 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3022 MAP_FAILED) { 3023 err = errno; 3024 eprintf(ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3025 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3026 } 3027 return (va); 3028 } 3029 3030 /* 3031 * Generic entry point from user code - simply grabs a lock. 3032 */ 3033 int 3034 enter(void) 3035 { 3036 if (rt_bind_guard(THR_FLG_RTLD)) { 3037 (void) rt_mutex_lock(&rtldlock); 3038 return (1); 3039 } 3040 return (0); 3041 } 3042 3043 /* 3044 * Generate diagnostics as to whether an object has been used. A symbolic 3045 * reference that gets bound to an object marks it as used. Dependencies that 3046 * are unused when RTLD_NOW is in effect should be removed from future builds 3047 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3048 * candidates for lazy-loading. 3049 * Unreferenced objects identify objects that are defined as dependencies but 3050 * are unreferenced by the caller (they may however be referenced by other 3051 * objects within the process, and therefore don't qualify as completely unused. 3052 */ 3053 void 3054 unused(Lm_list *lml) 3055 { 3056 Rt_map *lmp; 3057 int nl = 0; 3058 Word tracing; 3059 3060 /* 3061 * If we're not tracing unused references or dependencies, or debugging 3062 * there's nothing to do. 3063 */ 3064 tracing = lml->lm_flags & (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED); 3065 3066 if ((tracing == 0) && (dbg_mask == 0)) 3067 return; 3068 3069 /* 3070 * Traverse the link-maps looking for unreferenced or unused 3071 * dependencies. Ignore the first object on a link-map list, as this 3072 * is effectively always used. 3073 */ 3074 for (lmp = (Rt_map *)NEXT(lml->lm_head); lmp; 3075 lmp = (Rt_map *)NEXT(lmp)) { 3076 /* 3077 * If tracing unreferenced objects, or under debugging, 3078 * determine whether any of this objects callers haven't 3079 * referenced it. 3080 */ 3081 if ((tracing & LML_FLG_TRC_UNREF) || dbg_mask) { 3082 Bnd_desc ** bdpp; 3083 Aliste off; 3084 3085 for (ALIST_TRAVERSE(CALLERS(lmp), off, bdpp)) { 3086 Bnd_desc * bdp = *bdpp; 3087 Rt_map * clmp; 3088 3089 if (bdp->b_flags & BND_REFER) 3090 continue; 3091 3092 clmp = bdp->b_caller; 3093 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3094 continue; 3095 3096 if (nl++ == 0) { 3097 if (tracing & LML_FLG_TRC_UNREF) 3098 (void) printf(MSG_ORIG(MSG_STR_NL)); 3099 else 3100 DBG_CALL(Dbg_util_nl()); 3101 } 3102 3103 if (tracing & LML_FLG_TRC_UNREF) 3104 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3105 NAME(lmp), NAME(clmp)); 3106 else 3107 DBG_CALL(Dbg_unused_unref(NAME(lmp), 3108 NAME(clmp))); 3109 } 3110 } 3111 3112 /* 3113 * If tracing unused objects simply display those objects that 3114 * haven't been referenced by anyone. 3115 */ 3116 if (FLAGS1(lmp) & FL1_RT_USED) 3117 continue; 3118 3119 if (nl++ == 0) { 3120 if (tracing) 3121 (void) printf(MSG_ORIG(MSG_STR_NL)); 3122 else 3123 DBG_CALL(Dbg_util_nl()); 3124 } 3125 if (CYCGROUP(lmp)) { 3126 if (tracing) 3127 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3128 NAME(lmp), CYCGROUP(lmp)); 3129 else 3130 DBG_CALL(Dbg_unused_file(NAME(lmp), 3131 CYCGROUP(lmp))); 3132 } else { 3133 if (tracing) 3134 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3135 NAME(lmp)); 3136 else 3137 DBG_CALL(Dbg_unused_file(NAME(lmp), 0)); 3138 } 3139 } 3140 3141 if (dbg_mask) 3142 DBG_CALL(Dbg_util_nl()); 3143 } 3144 3145 /* 3146 * Initialization routine for the Fmap structure. If the fmap structure is 3147 * already in use, any mapping is released. The structure is then initialized 3148 * in preparation for further use. 3149 */ 3150 void 3151 fmap_setup() 3152 { 3153 #if defined(MAP_ALIGN) 3154 /* 3155 * If MAP_ALIGN is set, the fm_addr has been seeded with an alignment 3156 * value. Otherwise, if fm_addr is non-null it indicates a mapping that 3157 * should now be freed. 3158 */ 3159 if (fmap->fm_maddr && ((fmap->fm_mflags & MAP_ALIGN) == 0)) 3160 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3161 3162 /* 3163 * Providing we haven't determined that this system doesn't support 3164 * MAP_ALIGN, initialize the mapping address with the default segment 3165 * alignment. 3166 */ 3167 if ((rtld_flags2 & RT_FL2_NOMALIGN) == 0) { 3168 fmap->fm_maddr = (char *)M_SEGM_ALIGN; 3169 fmap->fm_mflags = MAP_PRIVATE | MAP_ALIGN; 3170 } else { 3171 fmap->fm_maddr = 0; 3172 fmap->fm_mflags = MAP_PRIVATE; 3173 } 3174 #else 3175 if (fmap->fm_maddr) 3176 (void) munmap((caddr_t)fmap->fm_maddr, fmap->fm_msize); 3177 fmap->fm_maddr = 0; 3178 fmap->fm_mflags = MAP_PRIVATE; 3179 #endif 3180 3181 fmap->fm_msize = syspagsz; 3182 fmap->fm_hwptr = 0; 3183 } 3184 3185 /* 3186 * Generic cleanup routine called prior to returning control to the user. 3187 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3188 * released, and any locks dropped. 3189 */ 3190 void 3191 leave(Lm_list * lml) 3192 { 3193 /* 3194 * Alert the debuggers that the link-maps are consistent. 3195 */ 3196 if (lml) 3197 rd_event(lml, RD_DLACTIVITY, RT_CONSISTENT); 3198 3199 if (dz_fd != FD_UNAVAIL) { 3200 (void) close(dz_fd); 3201 dz_fd = FD_UNAVAIL; 3202 } 3203 3204 if (pr_fd != FD_UNAVAIL) { 3205 (void) close(pr_fd); 3206 pr_fd = FD_UNAVAIL; 3207 } 3208 3209 if (nu_fd != FD_UNAVAIL) { 3210 (void) close(nu_fd); 3211 nu_fd = FD_UNAVAIL; 3212 } 3213 3214 fmap_setup(); 3215 3216 /* 3217 * Reinitialize error message pointer, and any overflow indication. 3218 */ 3219 nextptr = errbuf; 3220 prevptr = 0; 3221 3222 /* 3223 * Don't drop our lock if we are running on our link-map list as 3224 * there's little point in doing so since we are single-threaded. 3225 * 3226 * LML_FLG_HOLDLOCK is set for: 3227 * *) The ld.so.1's link-map list. 3228 * *) The auditor's link-map if the environment is 3229 * libc/libthread un-unified. 3230 */ 3231 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3232 return; 3233 3234 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3235 (void) rt_mutex_unlock(&rtldlock); 3236 (void) rt_bind_clear(THR_FLG_RTLD); 3237 } 3238 } 3239 3240 int 3241 callable(Rt_map * clmp, Rt_map * dlmp, Grp_hdl * ghp) 3242 { 3243 Alist * calp, * dalp; 3244 Aliste cnt1, cnt2; 3245 Grp_hdl ** ghpp1, ** ghpp2; 3246 3247 /* 3248 * An object can always find symbols within itself. 3249 */ 3250 if (clmp == dlmp) 3251 return (1); 3252 3253 /* 3254 * Don't allow an object to bind to an object that is being deleted 3255 * unless the binder is also being deleted. 3256 */ 3257 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3258 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3259 return (0); 3260 3261 /* 3262 * An object with world access can always bind to an object with global 3263 * visibility. 3264 */ 3265 if ((MODE(clmp) & RTLD_WORLD) && (MODE(dlmp) & RTLD_GLOBAL)) 3266 return (1); 3267 3268 /* 3269 * An object with local access can only bind to an object that is a 3270 * member of the same group. 3271 */ 3272 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3273 ((calp = GROUPS(clmp)) == 0) || ((dalp = GROUPS(dlmp)) == 0)) 3274 return (0); 3275 3276 /* 3277 * Traverse the list of groups the caller is a part of. 3278 */ 3279 for (ALIST_TRAVERSE(calp, cnt1, ghpp1)) { 3280 /* 3281 * If we're testing for the ability of two objects to bind to 3282 * each other regardless of a specific group, ignore that group. 3283 */ 3284 if (ghp && (*ghpp1 == ghp)) 3285 continue; 3286 3287 /* 3288 * Traverse the list of groups the destination is a part of. 3289 */ 3290 for (ALIST_TRAVERSE(dalp, cnt2, ghpp2)) { 3291 if (*ghpp1 == *ghpp2) 3292 return (1); 3293 } 3294 } 3295 return (0); 3296 } 3297 3298 /* 3299 * Initialize the environ symbol. Traditionally this is carried out by the crt 3300 * code prior to jumping to main. However, init sections get fired before this 3301 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3302 * information. In addition, a process may have multiple link-maps (ld.so.1's 3303 * debugging and preloading objects), and link auditing, and each may need an 3304 * environ variable set. 3305 * 3306 * This routine is called after a relocation() pass, and thus provides for: 3307 * 3308 * o setting environ on the main link-map after the initial application and 3309 * its dependencies have been established. Typically environ lives in the 3310 * application (provided by its crt), but in older applications it might 3311 * be in libc. Who knows what's expected of applications not built on 3312 * Solaris. 3313 * 3314 * o after loading a new shared object. We can add shared objects to various 3315 * link-maps, and any link-map dependencies requiring getopt() require 3316 * their own environ. In addition, lazy loading might bring in the 3317 * supplier of environ (libc used to be a lazy loading candidate) after 3318 * the link-map has been established and other objects are present. 3319 * 3320 * This routine handles all these scenarios, without adding unnecessary overhead 3321 * to ld.so.1. 3322 */ 3323 void 3324 set_environ(Lm_list *lml) 3325 { 3326 Rt_map * dlmp; 3327 Sym * sym; 3328 Slookup sl; 3329 uint_t binfo; 3330 3331 sl.sl_name = MSG_ORIG(MSG_SYM_ENVIRON); 3332 sl.sl_cmap = lml->lm_head; 3333 sl.sl_imap = lml->lm_head; 3334 sl.sl_hash = 0; 3335 sl.sl_rsymndx = 0; 3336 sl.sl_flags = LKUP_WEAK; 3337 3338 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo)) { 3339 lml->lm_environ = (char ***)sym->st_value; 3340 3341 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3342 lml->lm_environ = 3343 (char ***)((uintptr_t)lml->lm_environ + 3344 (uintptr_t)ADDR(dlmp)); 3345 *(lml->lm_environ) = (char **)environ; 3346 lml->lm_flags |= LML_FLG_ENVIRON; 3347 } 3348 } 3349 3350 /* 3351 * Determine whether we have a secure executable. Uid and gid information 3352 * can be passed to us via the aux vector, however if these values are -1 3353 * then use the appropriate system call to obtain them. 3354 * 3355 * o If the user is the root they can do anything 3356 * 3357 * o If the real and effective uid's don't match, or the real and 3358 * effective gid's don't match then this is determined to be a `secure' 3359 * application. 3360 * 3361 * This function is called prior to any dependency processing (see _setup.c). 3362 * Any secure setting will remain in effect for the life of the process. 3363 */ 3364 void 3365 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3366 { 3367 #ifdef AT_SUN_AUXFLAGS 3368 if (auxflags != -1) { 3369 if ((auxflags & AF_SUN_SETUGID) != 0) 3370 rtld_flags |= RT_FL_SECURE; 3371 return; 3372 } 3373 #endif 3374 if (uid == -1) 3375 uid = getuid(); 3376 if (uid) { 3377 if (euid == -1) 3378 euid = geteuid(); 3379 if (uid != euid) 3380 rtld_flags |= RT_FL_SECURE; 3381 else { 3382 if (gid == -1) 3383 gid = getgid(); 3384 if (egid == -1) 3385 egid = getegid(); 3386 if (gid != egid) 3387 rtld_flags |= RT_FL_SECURE; 3388 } 3389 } 3390 } 3391 3392 /* 3393 * _REENTRANT code gets errno redefined to a function so provide for return 3394 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3395 * is basically singled threaded. Provide the interface for our dependencies. 3396 */ 3397 #undef errno 3398 #pragma weak _private___errno = ___errno 3399 int * 3400 ___errno() 3401 { 3402 extern int errno; 3403 3404 return (&errno); 3405 } 3406 3407 /* 3408 * The interface with the c library which is supplied through libdl.so.1. 3409 * A non-null argument allows a function pointer array to be passed to us which 3410 * is used to re-initialize the linker libc table. 3411 */ 3412 void 3413 _ld_libc(void * ptr) 3414 { 3415 get_lcinterface(_caller(caller(), CL_EXECDEF), (Lc_interface *)ptr); 3416 } 3417 3418 /* 3419 * Determine whether a symbol name should be demangled. 3420 */ 3421 const char * 3422 demangle(const char *name) 3423 { 3424 if (rtld_flags & RT_FL_DEMANGLE) 3425 return (conv_sym_dem(name)); 3426 else 3427 return (name); 3428 } 3429