xref: /titanic_41/usr/src/cmd/sgs/rtld/common/dlfcns.c (revision c9a6ea2e938727c95af7108c5e00eee4c890c7ae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  *	Copyright (c) 1988 AT&T
24  *	  All Rights Reserved
25  *
26  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
27  */
28 
29 /*
30  * Programmatic interface to the run_time linker.
31  */
32 
33 #include	<sys/debug.h>
34 #include	<stdio.h>
35 #include	<string.h>
36 #include	<dlfcn.h>
37 #include	<synch.h>
38 #include	<limits.h>
39 #include	<debug.h>
40 #include	<conv.h>
41 #include	"_rtld.h"
42 #include	"_audit.h"
43 #include	"_elf.h"
44 #include	"_inline_gen.h"
45 #include	"msg.h"
46 
47 /*
48  * Determine who called us - given a pc determine in which object it resides.
49  *
50  * For dlopen() the link map of the caller must be passed to load_so() so that
51  * the appropriate search rules (4.x or 5.0) are used to locate any
52  * dependencies.  Also, if we've been called from a 4.x module it may be
53  * necessary to fix the specified pathname so that it conforms with the 5.0 elf
54  * rules.
55  *
56  * For dlsym() the link map of the caller is used to determine RTLD_NEXT
57  * requests, together with requests based off of a dlopen(0).
58  * For dladdr() this routines provides a generic means of scanning all loaded
59  * segments.
60  */
61 Rt_map *
62 _caller(caddr_t cpc, int flags)
63 {
64 	Lm_list	*lml;
65 	Aliste	idx1;
66 
67 	for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
68 		Aliste	idx2;
69 		Lm_cntl	*lmc;
70 
71 		for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
72 			Rt_map	*lmp;
73 
74 			for (lmp = lmc->lc_head; lmp;
75 			    lmp = NEXT_RT_MAP(lmp)) {
76 
77 				if (find_segment(cpc, lmp))
78 					return (lmp);
79 			}
80 		}
81 	}
82 
83 	/*
84 	 * No mapping can be determined.  If asked for a default, assume this
85 	 * is from the executable.
86 	 */
87 	if (flags & CL_EXECDEF)
88 		return ((Rt_map *)lml_main.lm_head);
89 
90 	return (0);
91 }
92 
93 #pragma weak _dlerror = dlerror
94 
95 /*
96  * External entry for dlerror(3dl).  Returns a pointer to the string describing
97  * the last occurring error.  The last occurring error is cleared.
98  */
99 char *
100 dlerror()
101 {
102 	char	*error;
103 	Rt_map	*clmp;
104 	int	entry;
105 
106 	entry = enter(0);
107 
108 	clmp = _caller(caller(), CL_EXECDEF);
109 
110 	DBG_CALL(Dbg_dl_dlerror(clmp, lasterr));
111 
112 	error = lasterr;
113 	lasterr = NULL;
114 
115 	if (entry)
116 		leave(LIST(clmp), 0);
117 	return (error);
118 }
119 
120 /*
121  * Add a dependency as a group descriptor to a group handle.  Returns 0 on
122  * failure.  On success, returns the group descriptor, and if alep is non-NULL
123  * the *alep is set to ALE_EXISTS if the dependency already exists, or to
124  * ALE_CREATE if the dependency is newly created.
125  */
126 Grp_desc *
127 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep)
128 {
129 	Grp_desc	*gdp;
130 	Aliste		idx;
131 	int		ale = ALE_CREATE;
132 	uint_t		oflags;
133 
134 	/*
135 	 * Make sure this dependency hasn't already been recorded.
136 	 */
137 	for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
138 		if (gdp->gd_depend == lmp) {
139 			ale = ALE_EXISTS;
140 			break;
141 		}
142 	}
143 
144 	if (ale == ALE_CREATE) {
145 		Grp_desc	gd;
146 
147 		/*
148 		 * Create a new handle descriptor.
149 		 */
150 		gd.gd_depend = lmp;
151 		gd.gd_flags = 0;
152 
153 		/*
154 		 * Indicate this object is a part of this handles group.
155 		 */
156 		if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL)
157 			return (NULL);
158 
159 		/*
160 		 * Append the new dependency to this handle.
161 		 */
162 		if ((gdp = alist_append(&ghp->gh_depends, &gd,
163 		    sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL)
164 			return (NULL);
165 	}
166 
167 	oflags = gdp->gd_flags;
168 	gdp->gd_flags |= dflags;
169 
170 	if (DBG_ENABLED) {
171 		if (ale == ALE_CREATE)
172 			DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD,
173 			    gdp->gd_flags));
174 		else if (gdp->gd_flags != oflags)
175 			DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE,
176 			    gdp->gd_flags));
177 	}
178 
179 	if (alep)
180 		*alep = ale;
181 	return (gdp);
182 }
183 
184 /*
185  * Create a handle.
186  *
187  *   rlmp -	represents the reference link-map for which the handle is being
188  *		created.
189  *   clmp -	represents the caller who is requesting the handle.
190  *   hflags -	provide group handle flags (GPH_*) that affect the use of the
191  *		handle, such as dlopen(0), or use or use of RTLD_FIRST.
192  *   rdflags -	provide group dependency flags for the reference link-map rlmp,
193  *		such as whether the dependency can be used for dlsym(), can be
194  *		relocated against, or whether this objects dependencies should
195  *		be processed.
196  *   cdflags -	provide group dependency flags for the caller.
197  */
198 Grp_hdl *
199 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags,
200     uint_t rdflags, uint_t cdflags)
201 {
202 	Grp_hdl	*ghp = NULL, *aghp;
203 	APlist	**alpp;
204 	Aliste	idx;
205 
206 	/*
207 	 * For dlopen(0) the handle is maintained as part of the link-map list,
208 	 * otherwise the handle is associated with the reference link-map.
209 	 */
210 	if (hflags & GPH_ZERO)
211 		alpp = &(lml->lm_handle);
212 	else
213 		alpp = &(HANDLES(rlmp));
214 
215 	/*
216 	 * Objects can contain multiple handles depending on the handle flags
217 	 * supplied.  Most RTLD flags pertain to the object itself and the
218 	 * bindings that it can achieve.  Multiple handles for these flags
219 	 * don't make sense.  But if the flag determines how the handle might
220 	 * be used, then multiple handles may exist.  Presently this only makes
221 	 * sense for RTLD_FIRST.  Determine if an appropriate handle already
222 	 * exists.
223 	 */
224 	for (APLIST_TRAVERSE(*alpp, idx, aghp)) {
225 		if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) {
226 			ghp = aghp;
227 			break;
228 		}
229 	}
230 
231 	if (ghp == NULL) {
232 		uint_t	ndx;
233 
234 		/*
235 		 * If this is the first request for this handle, allocate and
236 		 * initialize a new handle.
237 		 */
238 		DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE));
239 
240 		if ((ghp = malloc(sizeof (Grp_hdl))) == NULL)
241 			return (NULL);
242 
243 		/*
244 		 * Associate the handle with the link-map list or the reference
245 		 * link-map as appropriate.
246 		 */
247 		if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) {
248 			free(ghp);
249 			return (NULL);
250 		}
251 
252 		/*
253 		 * Record the existence of this handle for future verification.
254 		 */
255 		/* LINTED */
256 		ndx = (uintptr_t)ghp % HDLIST_SZ;
257 
258 		if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) {
259 			(void) aplist_delete_value(*alpp, ghp);
260 			free(ghp);
261 			return (NULL);
262 		}
263 
264 		ghp->gh_depends = NULL;
265 		ghp->gh_refcnt = 1;
266 		ghp->gh_flags = hflags;
267 
268 		/*
269 		 * A dlopen(0) handle is identified by the GPH_ZERO flag, the
270 		 * head of the link-map list is defined as the owner.  There is
271 		 * no need to maintain a list of dependencies, for when this
272 		 * handle is used (for dlsym()) a dynamic search through the
273 		 * entire link-map list provides for searching all objects with
274 		 * GLOBAL visibility.
275 		 */
276 		if (hflags & GPH_ZERO) {
277 			ghp->gh_ownlmp = lml->lm_head;
278 			ghp->gh_ownlml = lml;
279 		} else {
280 			ghp->gh_ownlmp = rlmp;
281 			ghp->gh_ownlml = LIST(rlmp);
282 
283 			if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL)
284 				return (NULL);
285 
286 			/*
287 			 * If this new handle is a private handle, there's no
288 			 * need to track the caller, so we're done.
289 			 */
290 			if (hflags & GPH_PRIVATE)
291 				return (ghp);
292 
293 			/*
294 			 * If this new handle is public, and isn't a special
295 			 * handle representing ld.so.1, indicate that a local
296 			 * group now exists.  This state allows singleton
297 			 * searches to be optimized.
298 			 */
299 			if ((hflags & GPH_LDSO) == 0)
300 				LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST;
301 		}
302 	} else {
303 		/*
304 		 * If a handle already exists, bump its reference count.
305 		 *
306 		 * If the previous reference count was 0, then this is a handle
307 		 * that an earlier call to dlclose() was unable to remove.  Such
308 		 * handles are put on the orphan list.  As this handle is back
309 		 * in use, it must be removed from the orphan list.
310 		 *
311 		 * Note, handles associated with a link-map list itself (i.e.
312 		 * dlopen(0)) can have a reference count of 0.  However, these
313 		 * handles are never deleted, and therefore are never moved to
314 		 * the orphan list.
315 		 */
316 		if ((ghp->gh_refcnt++ == 0) &&
317 		    ((ghp->gh_flags & GPH_ZERO) == 0)) {
318 			uint_t	ndx;
319 
320 			/* LINTED */
321 			ndx = (uintptr_t)ghp % HDLIST_SZ;
322 
323 			(void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp);
324 			(void) aplist_append(&hdl_alp[ndx], ghp,
325 			    AL_CNT_HANDLES);
326 
327 			if (DBG_ENABLED) {
328 				Aliste		idx;
329 				Grp_desc	*gdp;
330 
331 				DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST));
332 				for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp))
333 					DBG_CALL(Dbg_file_hdl_action(ghp,
334 					    gdp->gd_depend, DBG_DEP_REINST, 0));
335 			}
336 		}
337 
338 		/*
339 		 * If we've been asked to create a private handle, there's no
340 		 * need to track the caller.
341 		 */
342 		if (hflags & GPH_PRIVATE) {
343 			/*
344 			 * Negate the reference count increment.
345 			 */
346 			ghp->gh_refcnt--;
347 			return (ghp);
348 		} else {
349 			/*
350 			 * If a private handle already exists, promote this
351 			 * handle to public by initializing both the reference
352 			 * count and the handle flags.
353 			 */
354 			if (ghp->gh_flags & GPH_PRIVATE) {
355 				ghp->gh_refcnt = 1;
356 				ghp->gh_flags &= ~GPH_PRIVATE;
357 				ghp->gh_flags |= hflags;
358 			}
359 		}
360 	}
361 
362 	/*
363 	 * Keep track of the parent (caller).  As this object can be referenced
364 	 * by different parents, this processing is carried out every time a
365 	 * handle is requested.
366 	 */
367 	if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL))
368 		return (NULL);
369 
370 	return (ghp);
371 }
372 
373 /*
374  * Initialize a handle that has been created for an object that is already
375  * loaded.  The handle is initialized with the present dependencies of that
376  * object.  Once this initialization has occurred, any new objects that might
377  * be loaded as dependencies (lazy-loading) are added to the handle as each new
378  * object is loaded.
379  */
380 int
381 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote)
382 {
383 	Aliste		idx;
384 	Grp_desc	*gdp;
385 
386 	/*
387 	 * If the handle has already been initialized, and the initial object's
388 	 * mode hasn't been promoted, there's no need to recompute the modes of
389 	 * any dependencies.  If the object we've added has just been opened,
390 	 * the objects dependencies will not yet have been processed.  These
391 	 * dependencies will be added on later calls to load_one().  Otherwise,
392 	 * this object already exists, so add all of its dependencies to the
393 	 * handle were operating on.
394 	 */
395 	if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) ||
396 	    ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) {
397 		ghp->gh_flags |= GPH_INITIAL;
398 		return (1);
399 	}
400 
401 	DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD));
402 	for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
403 		Rt_map		*lmp = gdp->gd_depend;
404 		Aliste		idx1;
405 		Bnd_desc	*bdp;
406 
407 		/*
408 		 * If this dependency doesn't indicate that its dependencies
409 		 * should be added to a handle, ignore it.  This case identifies
410 		 * a parent of a dlopen(RTLD_PARENT) request.
411 		 */
412 		if ((gdp->gd_flags & GPD_ADDEPS) == 0)
413 			continue;
414 
415 		for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) {
416 			Rt_map	*dlmp = bdp->b_depend;
417 
418 			if ((bdp->b_flags & BND_NEEDED) == 0)
419 				continue;
420 
421 			if (hdl_add(ghp, dlmp,
422 			    (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL)
423 				return (0);
424 
425 			(void) update_mode(dlmp, MODE(dlmp), mode);
426 		}
427 	}
428 	ghp->gh_flags |= GPH_INITIAL;
429 	return (1);
430 }
431 
432 /*
433  * Sanity check a program-provided handle.
434  */
435 static int
436 hdl_validate(Grp_hdl *ghp)
437 {
438 	Aliste		idx;
439 	Grp_hdl		*lghp;
440 	uint_t		ndx;
441 
442 	/* LINTED */
443 	ndx = (uintptr_t)ghp % HDLIST_SZ;
444 
445 	for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) {
446 		if ((lghp == ghp) && (ghp->gh_refcnt != 0))
447 			return (1);
448 	}
449 	return (0);
450 }
451 
452 /*
453  * Core dlclose activity.
454  */
455 int
456 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml)
457 {
458 	int	error;
459 	Rt_map	*lmp;
460 
461 	/*
462 	 * If we're already at atexit() there's no point processing further,
463 	 * all objects have already been tsorted for fini processing.
464 	 */
465 	if (rtld_flags & RT_FL_ATEXIT)
466 		return (0);
467 
468 	/*
469 	 * Diagnose what we're up to.
470 	 */
471 	if (ghp->gh_flags & GPH_ZERO) {
472 		DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO),
473 		    DBG_DLCLOSE_IGNORE));
474 	} else {
475 		DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp),
476 		    DBG_DLCLOSE_NULL));
477 	}
478 
479 	/*
480 	 * Decrement reference count of this object.
481 	 */
482 	if (--(ghp->gh_refcnt))
483 		return (0);
484 
485 	/*
486 	 * If this handle is special (dlopen(0)), then leave it around - it
487 	 * has little overhead.
488 	 */
489 	if (ghp->gh_flags & GPH_ZERO)
490 		return (0);
491 
492 	/*
493 	 * If this handle is associated with an object that is not on the base
494 	 * link-map control list, or it has not yet been relocated, then this
495 	 * handle must have originated from an auditors interaction, or some
496 	 * permutation of RTLD_CONFGEN use (crle(1), moe(1), etc.).  User code
497 	 * can only execute and bind to relocated objects on the base link-map
498 	 * control list.  Outside of RTLD_CONFGEN use, a non-relocated object,
499 	 * or an object on a non-base link-map control list, is in the process
500 	 * of being loaded, and therefore we do not attempt to remove the
501 	 * handle.
502 	 */
503 	if (((lmp = ghp->gh_ownlmp) != NULL) &&
504 	    ((MODE(lmp) & RTLD_CONFGEN) == 0) &&
505 	    ((CNTL(lmp) != ALIST_OFF_DATA) ||
506 	    ((FLAGS(lmp) & FLG_RT_RELOCED) == 0)))
507 		return (0);
508 
509 	/*
510 	 * This handle is no longer being referenced, remove it.  If this handle
511 	 * is part of an alternative link-map list, determine if the whole list
512 	 * can be removed also.
513 	 */
514 	error = remove_hdl(ghp, clmp, NULL);
515 
516 	if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)
517 		remove_lml(lml);
518 
519 	return (error);
520 }
521 
522 /*
523  * Internal dlclose activity.  Called from user level or directly for internal
524  * error cleanup.
525  */
526 int
527 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp)
528 {
529 	Rt_map	*nlmp = NULL;
530 	Lm_list	*olml = NULL;
531 	int	error;
532 
533 	/*
534 	 * Although we're deleting object(s) it's quite possible that additional
535 	 * objects get loaded from running the .fini section(s) of the objects
536 	 * being deleted.  These objects will have been added to the same
537 	 * link-map list as those objects being deleted.  Remember this list
538 	 * for later investigation.
539 	 */
540 	olml = ghp->gh_ownlml;
541 
542 	error = dlclose_core(ghp, clmp, olml);
543 
544 	/*
545 	 * Determine whether the original link-map list still exists.  In the
546 	 * case of a dlclose of an alternative (dlmopen) link-map the whole
547 	 * list may have been removed.
548 	 */
549 	if (olml) {
550 		Aliste	idx;
551 		Lm_list	*lml;
552 
553 		for (APLIST_TRAVERSE(dynlm_list, idx, lml)) {
554 			if (olml == lml) {
555 				nlmp = olml->lm_head;
556 				break;
557 			}
558 		}
559 	}
560 	load_completion(nlmp);
561 	return (error);
562 }
563 
564 /*
565  * Argument checking for dlclose.  Only called via external entry.
566  */
567 static int
568 dlclose_check(void *handle, Rt_map *clmp)
569 {
570 	Grp_hdl	*ghp = (Grp_hdl *)handle;
571 
572 	if (hdl_validate(ghp) == 0) {
573 		Conv_inv_buf_t	inv_buf;
574 
575 		(void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0);
576 		DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL));
577 
578 		eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
579 		    EC_NATPTR(handle));
580 		return (1);
581 	}
582 	return (dlclose_intn(ghp, clmp));
583 }
584 
585 #pragma weak _dlclose = dlclose
586 
587 /*
588  * External entry for dlclose(3dl).  Returns 0 for success, non-zero otherwise.
589  */
590 int
591 dlclose(void *handle)
592 {
593 	int		error, entry;
594 	Rt_map		*clmp;
595 
596 	entry = enter(0);
597 
598 	clmp = _caller(caller(), CL_EXECDEF);
599 
600 	error = dlclose_check(handle, clmp);
601 
602 	if (entry)
603 		leave(LIST(clmp), 0);
604 	return (error);
605 }
606 
607 static uint_t	lmid = 0;
608 
609 /*
610  * The addition of new link-map lists is assumed to be in small quantities.
611  * Here, we assign a unique link-map id for diagnostic use.  Simply update the
612  * running link-map count until we max out.
613  */
614 int
615 newlmid(Lm_list *lml)
616 {
617 	char	buffer[MSG_LMID_ALT_SIZE + 12];
618 
619 	if (lmid == UINT_MAX) {
620 		lml->lm_lmid = UINT_MAX;
621 		(void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED),
622 		    MSG_LMID_ALT_SIZE + 12);
623 	} else {
624 		lml->lm_lmid = lmid++;
625 		(void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12,
626 		    MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT),
627 		    lml->lm_lmid);
628 	}
629 	if ((lml->lm_lmidstr = strdup(buffer)) == NULL)
630 		return (0);
631 
632 	return (1);
633 }
634 
635 /*
636  * Core dlopen activity.
637  */
638 static Grp_hdl *
639 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode,
640     Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl)
641 {
642 	Alist		*palp = NULL;
643 	Rt_map		*nlmp;
644 	Grp_hdl		*ghp;
645 	Aliste		olmco, nlmco;
646 
647 	DBG_CALL(Dbg_dl_dlopen(clmp,
648 	    (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode));
649 
650 	/*
651 	 * Having diagnosed the originally defined modes, assign any defaults
652 	 * or corrections.
653 	 */
654 	if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) &&
655 	    ((mode & RTLD_NOLOAD) == 0))
656 		mode |= (RTLD_GROUP | RTLD_WORLD);
657 	if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) {
658 		mode &= ~RTLD_NOW;
659 		mode |= RTLD_LAZY;
660 	}
661 
662 	/*
663 	 * If the path specified is null then we're operating on global
664 	 * objects.  Associate a dummy handle with the link-map list.
665 	 */
666 	if (path == NULL) {
667 		Grp_hdl *ghp;
668 		uint_t	hflags, rdflags, cdflags;
669 		int	promote = 0;
670 
671 		/*
672 		 * Establish any flags for the handle (Grp_hdl).
673 		 *
674 		 *  -	This is a dummy, public, handle (0) that provides for a
675 		 *	dynamic	search of all global objects within the process.
676 		 *  -   Use of the RTLD_FIRST mode indicates that only the first
677 		 *	dependency on the handle (the referenced object) can be
678 		 *	used to satisfy dlsym() requests.
679 		 */
680 		hflags = (GPH_PUBLIC | GPH_ZERO);
681 		if (mode & RTLD_FIRST)
682 			hflags |= GPH_FIRST;
683 
684 		/*
685 		 * Establish the flags for the referenced dependency descriptor
686 		 * (Grp_desc).
687 		 *
688 		 *  -	The referenced object is available for dlsym().
689 		 *  -	The referenced object is available to relocate against.
690 		 *  -	The referenced object should have it's dependencies
691 		 *	added to this handle.
692 		 */
693 		rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS);
694 
695 		/*
696 		 * Establish the flags for this callers dependency descriptor
697 		 * (Grp_desc).
698 		 *
699 		 *  -	The explicit creation of a handle creates a descriptor
700 		 *	for the referenced object and the parent (caller).
701 		 *  -	Use of the RTLD_PARENT flag indicates that the parent
702 		 *	can be relocated against.
703 		 */
704 		cdflags = GPD_PARENT;
705 		if (mode & RTLD_PARENT)
706 			cdflags |= GPD_RELOC;
707 
708 		if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags,
709 		    cdflags)) == NULL)
710 			return (NULL);
711 
712 		/*
713 		 * Traverse the main link-map control list, updating the mode
714 		 * of any objects as necessary.  Call the relocation engine if
715 		 * this mode promotes the existing state of any relocations.
716 		 * crle()'s first pass loads all objects necessary for building
717 		 * a configuration file, however none of them are relocated.
718 		 * crle()'s second pass relocates objects in preparation for
719 		 * dldump()'ing using dlopen(0, RTLD_NOW).
720 		 */
721 		if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN)
722 			return (ghp);
723 
724 		for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
725 			if (((MODE(nlmp) & RTLD_GLOBAL) == 0) ||
726 			    (FLAGS(nlmp) & FLG_RT_DELETE))
727 				continue;
728 
729 			if (update_mode(nlmp, MODE(nlmp), mode))
730 				promote = 1;
731 		}
732 		if (promote)
733 			(void) relocate_lmc(lml, ALIST_OFF_DATA, clmp,
734 			    lml->lm_head, in_nfavl);
735 
736 		return (ghp);
737 	}
738 
739 	/*
740 	 * Fix the pathname.  If this object expands to multiple paths (ie.
741 	 * $ISALIST or $HWCAP have been used), then make sure the user has also
742 	 * furnished the RTLD_FIRST flag.  As yet, we don't support opening
743 	 * more than one object at a time, so enforcing the RTLD_FIRST flag
744 	 * provides flexibility should we be able to support dlopening more
745 	 * than one object in the future.
746 	 */
747 	if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == NULL)
748 		return (NULL);
749 
750 	if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) {
751 		remove_alist(&palp, 1);
752 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5));
753 		return (NULL);
754 	}
755 
756 	/*
757 	 * Establish a link-map control list for this request, and load the
758 	 * associated object.
759 	 */
760 	if ((nlmco = create_cntl(lml, 1)) == NULL) {
761 		remove_alist(&palp, 1);
762 		return (NULL);
763 	}
764 	olmco = nlmco;
765 
766 	nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL),
767 	    &ghp, in_nfavl);
768 
769 	/*
770 	 * Remove any expanded pathname infrastructure, and if the dependency
771 	 * couldn't be loaded, cleanup.
772 	 */
773 	remove_alist(&palp, 1);
774 	if (nlmp == NULL) {
775 		remove_cntl(lml, olmco);
776 		return (NULL);
777 	}
778 
779 	/*
780 	 * If loading an auditor was requested, and the auditor already existed,
781 	 * then the link-map returned will be to the original auditor.  The new
782 	 * link-map list that was initially created, and the associated link-map
783 	 * control list are no longer needed.  As the auditor is already loaded,
784 	 * we're probably done, but fall through in case additional relocations
785 	 * would be triggered by the mode of the caller.
786 	 */
787 	if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) {
788 		remove_cntl(lml, olmco);
789 		lml = LIST(nlmp);
790 		olmco = 0;
791 		nlmco = ALIST_OFF_DATA;
792 	}
793 
794 	/*
795 	 * Finish processing the objects associated with this request.
796 	 */
797 	if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) ||
798 	    (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) {
799 		ghp = NULL;
800 		nlmp = NULL;
801 	}
802 
803 	/*
804 	 * If the dlopen has failed, clean up any objects that might have been
805 	 * loaded successfully on this new link-map control list.
806 	 */
807 	if (olmco && (nlmp == NULL))
808 		remove_lmc(lml, clmp, olmco, path);
809 
810 	/*
811 	 * Finally, remove any temporary link-map control list.  Note, if this
812 	 * operation successfully established a new link-map list, then a base
813 	 * link-map control list will have been created, which must remain.
814 	 */
815 	if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM)))
816 		remove_cntl(lml, olmco);
817 
818 	return (ghp);
819 }
820 
821 /*
822  * dlopen() and dlsym() operations are the means by which a process can
823  * test for the existence of required dependencies.  If the necessary
824  * dependencies don't exist, then associated functionality can't be used.
825  * However, the lack of dependencies can be fixed, and the dlopen() and
826  * dlsym() requests can be repeated.  As we use a "not-found" AVL tree to
827  * cache any failed full path loads, secondary dlopen() and dlsym() requests
828  * will fail, even if the dependencies have been installed.
829  *
830  * dlopen() and dlsym() retry any failures by removing the "not-found" AVL
831  * tree.  Should any dependencies be found, their names are added to the
832  * FullPath AVL tree.  This routine removes any new "not-found" AVL tree,
833  * so that the dlopen() or dlsym() can replace the original "not-found" tree.
834  */
835 inline static void
836 nfavl_remove(avl_tree_t *avlt)
837 {
838 	PathNode	*pnp;
839 	void		*cookie = NULL;
840 
841 	if (avlt) {
842 		while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL)
843 			free(pnp);
844 
845 		avl_destroy(avlt);
846 		free(avlt);
847 	}
848 }
849 
850 /*
851  * Internal dlopen() activity.  Called from user level or directly for internal
852  * opens that require a handle.
853  */
854 Grp_hdl *
855 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp,
856     uint_t flags, uint_t orig)
857 {
858 	Lm_list	*olml = lml;
859 	Rt_map	*dlmp = NULL;
860 	Grp_hdl	*ghp;
861 	int	in_nfavl = 0;
862 
863 	/*
864 	 * Check for magic link-map list values:
865 	 *
866 	 *  LM_ID_BASE:		Operate on the PRIMARY (executables) link map
867 	 *  LM_ID_LDSO:		Operation on ld.so.1's link map
868 	 *  LM_ID_NEWLM: 	Create a new link-map.
869 	 */
870 	if (lml == (Lm_list *)LM_ID_NEWLM) {
871 		if ((lml = calloc(sizeof (Lm_list), 1)) == NULL)
872 			return (NULL);
873 
874 		/*
875 		 * Establish the new link-map flags from the callers and those
876 		 * explicitly provided.
877 		 */
878 		lml->lm_tflags = LIST(clmp)->lm_tflags;
879 		if (flags & FLG_RT_AUDIT) {
880 			/*
881 			 * Unset any auditing flags - an auditor shouldn't be
882 			 * audited.  Insure all audit dependencies are loaded.
883 			 */
884 			lml->lm_tflags &= ~LML_TFLG_AUD_MASK;
885 			lml->lm_tflags |= (LML_TFLG_NOLAZYLD |
886 			    LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT);
887 		}
888 
889 		if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) {
890 			free(lml);
891 			return (NULL);
892 		}
893 		if (newlmid(lml) == 0) {
894 			(void) aplist_delete_value(dynlm_list, lml);
895 			free(lml);
896 			return (NULL);
897 		}
898 	} else if ((uintptr_t)lml < LM_ID_NUM) {
899 		if ((uintptr_t)lml == LM_ID_BASE)
900 			lml = &lml_main;
901 		else if ((uintptr_t)lml == LM_ID_LDSO)
902 			lml = &lml_rtld;
903 	}
904 
905 	/*
906 	 * Open the required object on the associated link-map list.
907 	 */
908 	ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl);
909 
910 	/*
911 	 * If the object could not be found it is possible that the "not-found"
912 	 * AVL tree had indicated that the file does not exist.  In case the
913 	 * file system has changed since this "not-found" recording was made,
914 	 * retry the dlopen() with a clean "not-found" AVL tree.
915 	 */
916 	if ((ghp == NULL) && in_nfavl) {
917 		avl_tree_t	*oavlt = nfavl;
918 
919 		nfavl = NULL;
920 		ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig,
921 		    NULL);
922 
923 		/*
924 		 * If the file is found, then its full path name will have been
925 		 * registered in the FullPath AVL tree.  Remove any new
926 		 * "not-found" AVL information, and restore the former AVL tree.
927 		 */
928 		nfavl_remove(nfavl);
929 		nfavl = oavlt;
930 	}
931 
932 	/*
933 	 * Establish the new link-map from which .init processing will begin.
934 	 * Ignore .init firing when constructing a configuration file (crle(1)).
935 	 */
936 	if (ghp && ((mode & RTLD_CONFGEN) == 0))
937 		dlmp = ghp->gh_ownlmp;
938 
939 	/*
940 	 * If loading an auditor was requested, and the auditor already existed,
941 	 * then the link-map returned will be to the original auditor.  Remove
942 	 * the link-map control list that was created for this request.
943 	 */
944 	if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) {
945 		remove_lml(lml);
946 		lml = LIST(dlmp);
947 	}
948 
949 	/*
950 	 * If this load failed, remove any alternative link-map list.
951 	 */
952 	if ((ghp == NULL) &&
953 	    ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) {
954 		remove_lml(lml);
955 		lml = NULL;
956 	}
957 
958 	/*
959 	 * Finish this load request.  If objects were loaded, .init processing
960 	 * is computed.  Finally, the debuggers are informed of the link-map
961 	 * lists being stable.
962 	 */
963 	load_completion(dlmp);
964 
965 	return (ghp);
966 }
967 
968 /*
969  * Argument checking for dlopen.  Only called via external entry.
970  */
971 static Grp_hdl *
972 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp)
973 {
974 	/*
975 	 * Verify that a valid pathname has been supplied.
976 	 */
977 	if (path && (*path == '\0')) {
978 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
979 		return (0);
980 	}
981 
982 	/*
983 	 * Historically we've always verified the mode is either RTLD_NOW or
984 	 * RTLD_LAZY.  RTLD_NOLOAD is valid by itself.  Use of LM_ID_NEWLM
985 	 * requires a specific pathname, and use of RTLD_PARENT is meaningless.
986 	 */
987 	if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) {
988 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1));
989 		return (0);
990 	}
991 	if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) {
992 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2));
993 		return (0);
994 	}
995 	if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) {
996 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3));
997 		return (0);
998 	}
999 	if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) {
1000 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4));
1001 		return (0);
1002 	}
1003 
1004 	return (dlmopen_intn(lml, path, mode, clmp, 0, 0));
1005 }
1006 
1007 #pragma weak _dlopen = dlopen
1008 
1009 /*
1010  * External entry for dlopen(3dl).  On success, returns a pointer (handle) to
1011  * the structure containing information about the newly added object, ie. can
1012  * be used by dlsym(). On failure, returns a null pointer.
1013  */
1014 void *
1015 dlopen(const char *path, int mode)
1016 {
1017 	int	entry;
1018 	Rt_map	*clmp;
1019 	Grp_hdl	*ghp;
1020 	Lm_list	*lml;
1021 
1022 	entry = enter(0);
1023 
1024 	clmp = _caller(caller(), CL_EXECDEF);
1025 	lml = LIST(clmp);
1026 
1027 	ghp = dlmopen_check(lml, path, mode, clmp);
1028 
1029 	if (entry)
1030 		leave(lml, 0);
1031 	return ((void *)ghp);
1032 }
1033 
1034 #pragma weak _dlmopen = dlmopen
1035 
1036 /*
1037  * External entry for dlmopen(3dl).
1038  */
1039 void *
1040 dlmopen(Lmid_t lmid, const char *path, int mode)
1041 {
1042 	int	entry;
1043 	Rt_map	*clmp;
1044 	Grp_hdl	*ghp;
1045 
1046 	entry = enter(0);
1047 
1048 	clmp = _caller(caller(), CL_EXECDEF);
1049 
1050 	ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp);
1051 
1052 	if (entry)
1053 		leave(LIST(clmp), 0);
1054 	return ((void *)ghp);
1055 }
1056 
1057 /*
1058  * Handle processing for dlsym.
1059  */
1060 int
1061 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo,
1062     int *in_nfavl)
1063 {
1064 	Rt_map		*nlmp, * lmp = ghp->gh_ownlmp;
1065 	Rt_map		*clmp = slp->sl_cmap;
1066 	const char	*name = slp->sl_name;
1067 	Slookup		sl = *slp;
1068 
1069 	sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC);
1070 
1071 	/*
1072 	 * Continue processing a dlsym request.  Lookup the required symbol in
1073 	 * each link-map specified by the handle.
1074 	 *
1075 	 * To leverage off of lazy loading, dlsym() requests can result in two
1076 	 * passes.  The first descends the link-maps of any objects already in
1077 	 * the address space.  If the symbol isn't located, and lazy
1078 	 * dependencies still exist, then a second pass is made to load these
1079 	 * dependencies if applicable.  This model means that in the case where
1080 	 * a symbol exists in more than one object, the one located may not be
1081 	 * constant - this is the standard issue with lazy loading. In addition,
1082 	 * attempting to locate a symbol that doesn't exist will result in the
1083 	 * loading of all lazy dependencies on the given handle, which can
1084 	 * defeat some of the advantages of lazy loading (look out JVM).
1085 	 */
1086 	if (ghp->gh_flags & GPH_ZERO) {
1087 		Lm_list	*lml;
1088 		uint_t	lazy = 0;
1089 
1090 		/*
1091 		 * If this symbol lookup is triggered from a dlopen(0) handle,
1092 		 * traverse the present link-map list looking for promiscuous
1093 		 * entries.
1094 		 */
1095 		for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
1096 			/*
1097 			 * If this handle indicates we're only to look in the
1098 			 * first object check whether we're done.
1099 			 */
1100 			if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST))
1101 				return (0);
1102 
1103 			if (!(MODE(nlmp) & RTLD_GLOBAL))
1104 				continue;
1105 			if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
1106 			    ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
1107 				continue;
1108 
1109 			sl.sl_imap = nlmp;
1110 			if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
1111 				return (1);
1112 
1113 			/*
1114 			 * Keep track of any global pending lazy loads.
1115 			 */
1116 			lazy += LAZY(nlmp);
1117 		}
1118 
1119 		/*
1120 		 * If we're unable to locate the symbol and this link-map list
1121 		 * still has pending lazy dependencies, start loading them in an
1122 		 * attempt to exhaust the search.  Note that as we're already
1123 		 * traversing a dynamic linked list of link-maps there's no
1124 		 * need for elf_lazy_find_sym() to descend the link-maps itself.
1125 		 */
1126 		lml = LIST(lmp);
1127 		if (lazy) {
1128 			DBG_CALL(Dbg_syms_lazy_rescan(lml, name));
1129 
1130 			sl.sl_flags |= LKUP_NODESCENT;
1131 
1132 			for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) {
1133 
1134 				if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp))
1135 					continue;
1136 				if ((FLAGS(nlmp) & FLG_RT_DELETE) &&
1137 				    ((FLAGS(clmp) & FLG_RT_DELETE) == 0))
1138 					continue;
1139 
1140 				sl.sl_imap = nlmp;
1141 				if (elf_lazy_find_sym(&sl, srp, binfo,
1142 				    in_nfavl))
1143 					return (1);
1144 			}
1145 		}
1146 	} else {
1147 		/*
1148 		 * Traverse the dlopen() handle searching all presently loaded
1149 		 * link-maps.
1150 		 */
1151 		Grp_desc	*gdp;
1152 		Aliste		idx;
1153 		uint_t		lazy = 0;
1154 
1155 		for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1156 			nlmp = gdp->gd_depend;
1157 
1158 			if ((gdp->gd_flags & GPD_DLSYM) == 0)
1159 				continue;
1160 
1161 			sl.sl_imap = nlmp;
1162 			if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl))
1163 				return (1);
1164 
1165 			if (ghp->gh_flags & GPH_FIRST)
1166 				return (0);
1167 
1168 			/*
1169 			 * Keep track of any pending lazy loads associated
1170 			 * with this handle.
1171 			 */
1172 			lazy += LAZY(nlmp);
1173 		}
1174 
1175 		/*
1176 		 * If we're unable to locate the symbol and this handle still
1177 		 * has pending lazy dependencies, start loading the lazy
1178 		 * dependencies, in an attempt to exhaust the search.
1179 		 */
1180 		if (lazy) {
1181 			DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name));
1182 
1183 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1184 				nlmp = gdp->gd_depend;
1185 
1186 				if (((gdp->gd_flags & GPD_DLSYM) == 0) ||
1187 				    (LAZY(nlmp) == 0))
1188 					continue;
1189 
1190 				sl.sl_imap = nlmp;
1191 				if (elf_lazy_find_sym(&sl, srp, binfo,
1192 				    in_nfavl))
1193 					return (1);
1194 			}
1195 		}
1196 	}
1197 	return (0);
1198 }
1199 
1200 /*
1201  * Determine whether a symbol resides in a caller.  This may be a reference,
1202  * which is associated with a specific dependency.
1203  */
1204 inline static Sym *
1205 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo)
1206 {
1207 	if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) {
1208 		Sym	*sym = srp->sr_sym;
1209 
1210 		slp->sl_rsymndx = (((ulong_t)sym -
1211 		    (ulong_t)SYMTAB(clmp)) / SYMENT(clmp));
1212 		slp->sl_rsym = sym;
1213 		return (sym);
1214 	}
1215 	return (NULL);
1216 }
1217 
1218 /*
1219  * Core dlsym activity.  Selects symbol lookup method from handle.
1220  */
1221 static void *
1222 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp,
1223     int *in_nfavl)
1224 {
1225 	Sym		*sym;
1226 	int		ret = 0;
1227 	Syminfo		*sip;
1228 	Slookup		sl;
1229 	Sresult		sr;
1230 	uint_t		binfo;
1231 
1232 	/*
1233 	 * Initialize the symbol lookup data structure.
1234 	 *
1235 	 * Standard relocations are evaluated using the symbol index of the
1236 	 * associated relocation symbol.  This index provides for loading
1237 	 * any lazy dependency and establishing a direct binding if necessary.
1238 	 * If a dlsym() operation originates from an object that contains a
1239 	 * symbol table entry for the same name, then we need to establish the
1240 	 * symbol index so that any dependency requirements can be triggered.
1241 	 *
1242 	 * Therefore, the first symbol lookup that is carried out is for the
1243 	 * symbol name within the calling object.  If this symbol exists, the
1244 	 * symbols index is computed, added to the Slookup data, and thus used
1245 	 * to seed the real symbol lookup.
1246 	 */
1247 	SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name),
1248 	    0, 0, 0, LKUP_SYMNDX);
1249 	SRESULT_INIT(sr, name);
1250 	sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo);
1251 
1252 	SRESULT_INIT(sr, name);
1253 
1254 	if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) {
1255 		Rt_map	*hlmp = LIST(clmp)->lm_head;
1256 
1257 		/*
1258 		 * If a symbol reference is known, and that reference indicates
1259 		 * that the symbol is a singleton, then the search for the
1260 		 * symbol must follow the default search path.
1261 		 */
1262 		DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1263 		    DBG_DLSYM_SINGLETON));
1264 
1265 		sl.sl_imap = hlmp;
1266 		if (handle == RTLD_PROBE)
1267 			sl.sl_flags = LKUP_NOFALLBACK;
1268 		else
1269 			sl.sl_flags = LKUP_SPEC;
1270 		ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1271 
1272 	} else if (handle == RTLD_NEXT) {
1273 		Rt_map	*nlmp;
1274 
1275 		/*
1276 		 * If this handle is RTLD_NEXT determine whether a lazy load
1277 		 * from the caller might provide the next object.  This mimics
1278 		 * the lazy loading initialization normally carried out by
1279 		 * lookup_sym(), however here, we must do this up-front, as
1280 		 * lookup_sym() will be used to inspect the next object.
1281 		 */
1282 		if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) {
1283 			/* LINTED */
1284 			sip = (Syminfo *)((char *)sip +
1285 			    (sl.sl_rsymndx * SYMINENT(clmp)));
1286 
1287 			if ((sip->si_flags & SYMINFO_FLG_DIRECT) &&
1288 			    (sip->si_boundto < SYMINFO_BT_LOWRESERVE))
1289 				(void) elf_lazy_load(clmp, &sl,
1290 				    sip->si_boundto, name, 0, NULL, in_nfavl);
1291 
1292 			/*
1293 			 * Clear the symbol index, so as not to confuse
1294 			 * lookup_sym() of the next object.
1295 			 */
1296 			sl.sl_rsymndx = 0;
1297 			sl.sl_rsym = NULL;
1298 		}
1299 
1300 		/*
1301 		 * If the handle is RTLD_NEXT, start searching in the next link
1302 		 * map from the callers.  Determine permissions from the
1303 		 * present link map.  Indicate to lookup_sym() that we're on an
1304 		 * RTLD_NEXT request so that it will use the callers link map to
1305 		 * start any possible lazy dependency loading.
1306 		 */
1307 		sl.sl_imap = nlmp = NEXT_RT_MAP(clmp);
1308 
1309 		DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl,
1310 		    (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)),
1311 		    DBG_DLSYM_NEXT));
1312 
1313 		if (nlmp == NULL)
1314 			return (0);
1315 
1316 		sl.sl_flags = LKUP_NEXT;
1317 		ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1318 
1319 	} else if (handle == RTLD_SELF) {
1320 		/*
1321 		 * If the handle is RTLD_SELF start searching from the caller.
1322 		 */
1323 		DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp),
1324 		    DBG_DLSYM_SELF));
1325 
1326 		sl.sl_imap = clmp;
1327 		sl.sl_flags = (LKUP_SPEC | LKUP_SELF);
1328 		ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1329 
1330 	} else if (handle == RTLD_DEFAULT) {
1331 		Rt_map	*hlmp = LIST(clmp)->lm_head;
1332 
1333 		/*
1334 		 * If the handle is RTLD_DEFAULT mimic the standard symbol
1335 		 * lookup as would be triggered by a relocation.
1336 		 */
1337 		DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1338 		    DBG_DLSYM_DEFAULT));
1339 
1340 		sl.sl_imap = hlmp;
1341 		sl.sl_flags = LKUP_SPEC;
1342 		ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1343 
1344 	} else if (handle == RTLD_PROBE) {
1345 		Rt_map	*hlmp = LIST(clmp)->lm_head;
1346 
1347 		/*
1348 		 * If the handle is RTLD_PROBE, mimic the standard symbol
1349 		 * lookup as would be triggered by a relocation, however do
1350 		 * not fall back to a lazy loading rescan if the symbol can't be
1351 		 * found within the currently loaded objects.  Note, a lazy
1352 		 * loaded dependency required by the caller might still get
1353 		 * loaded to satisfy this request, but no exhaustive lazy load
1354 		 * rescan is carried out.
1355 		 */
1356 		DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0,
1357 		    DBG_DLSYM_PROBE));
1358 
1359 		sl.sl_imap = hlmp;
1360 		sl.sl_flags = LKUP_NOFALLBACK;
1361 		ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl);
1362 
1363 	} else {
1364 		Grp_hdl *ghp = (Grp_hdl *)handle;
1365 
1366 		/*
1367 		 * Look in the shared object specified by the handle and in all
1368 		 * of its dependencies.
1369 		 */
1370 		DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl,
1371 		    NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF));
1372 
1373 		ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl);
1374 	}
1375 
1376 	if (ret && ((sym = sr.sr_sym) != NULL)) {
1377 		Lm_list	*lml = LIST(clmp);
1378 		Addr	addr = sym->st_value;
1379 
1380 		*dlmp = sr.sr_dmap;
1381 		if (!(FLAGS(*dlmp) & FLG_RT_FIXED))
1382 			addr += ADDR(*dlmp);
1383 
1384 		/*
1385 		 * Indicate that the defining object is now used.
1386 		 */
1387 		if (*dlmp != clmp)
1388 			FLAGS1(*dlmp) |= FL1_RT_USED;
1389 
1390 		DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE,
1391 		    *dlmp, addr, sym->st_value, sr.sr_name, binfo));
1392 
1393 		if ((lml->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_SYMBIND) {
1394 			uint_t	sb_flags = LA_SYMB_DLSYM;
1395 			/* LINTED */
1396 			uint_t	symndx = (uint_t)(((Xword)sym -
1397 			    (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp));
1398 			addr = audit_symbind(clmp, *dlmp, sym, symndx, addr,
1399 			    &sb_flags);
1400 		}
1401 		return ((void *)addr);
1402 	}
1403 
1404 	return (NULL);
1405 }
1406 
1407 /*
1408  * Internal dlsym activity.  Called from user level or directly for internal
1409  * symbol lookup.
1410  */
1411 void *
1412 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
1413 {
1414 	Rt_map		*llmp = NULL;
1415 	void		*error;
1416 	Aliste		idx;
1417 	Grp_desc	*gdp;
1418 	int		in_nfavl = 0;
1419 
1420 	/*
1421 	 * While looking for symbols it's quite possible that additional objects
1422 	 * get loaded from lazy loading.  These objects will have been added to
1423 	 * the same link-map list as those objects on the handle.  Remember this
1424 	 * list for later investigation.
1425 	 */
1426 	if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) ||
1427 	    (handle == RTLD_SELF) || (handle == RTLD_PROBE))
1428 		llmp = LIST(clmp)->lm_tail;
1429 	else {
1430 		Grp_hdl	*ghp = (Grp_hdl *)handle;
1431 
1432 		if (ghp->gh_ownlmp)
1433 			llmp = LIST(ghp->gh_ownlmp)->lm_tail;
1434 		else {
1435 			for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) {
1436 				if ((llmp =
1437 				    LIST(gdp->gd_depend)->lm_tail) != NULL)
1438 					break;
1439 			}
1440 		}
1441 	}
1442 
1443 	error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl);
1444 
1445 	/*
1446 	 * If the symbol could not be found it is possible that the "not-found"
1447 	 * AVL tree had indicated that a required file does not exist.  In case
1448 	 * the file system has changed since this "not-found" recording was
1449 	 * made, retry the dlsym() with a clean "not-found" AVL tree.
1450 	 */
1451 	if ((error == NULL) && in_nfavl) {
1452 		avl_tree_t	*oavlt = nfavl;
1453 
1454 		nfavl = NULL;
1455 		error = dlsym_core(handle, name, clmp, dlmp, NULL);
1456 
1457 		/*
1458 		 * If the symbol is found, then any file that was loaded will
1459 		 * have had its full path name registered in the FullPath AVL
1460 		 * tree.  Remove any new "not-found" AVL information, and
1461 		 * restore the former AVL tree.
1462 		 */
1463 		nfavl_remove(nfavl);
1464 		nfavl = oavlt;
1465 	}
1466 
1467 	if (error == NULL) {
1468 		/*
1469 		 * Cache the error message, as Java tends to fall through this
1470 		 * code many times.
1471 		 */
1472 		if (nosym_str == NULL)
1473 			nosym_str = MSG_INTL(MSG_GEN_NOSYM);
1474 		eprintf(LIST(clmp), ERR_FATAL, nosym_str, name);
1475 	}
1476 
1477 	load_completion(llmp);
1478 	return (error);
1479 }
1480 
1481 /*
1482  * Argument checking for dlsym.  Only called via external entry.
1483  */
1484 static void *
1485 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp)
1486 {
1487 	/*
1488 	 * Verify the arguments.
1489 	 */
1490 	if (name == NULL) {
1491 		eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM));
1492 		return (NULL);
1493 	}
1494 	if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) &&
1495 	    (handle != RTLD_SELF) && (handle != RTLD_PROBE) &&
1496 	    (hdl_validate((Grp_hdl *)handle) == 0)) {
1497 		eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
1498 		    EC_NATPTR(handle));
1499 		return (NULL);
1500 	}
1501 	return (dlsym_intn(handle, name, clmp, dlmp));
1502 }
1503 
1504 
1505 #pragma weak _dlsym = dlsym
1506 
1507 /*
1508  * External entry for dlsym().  On success, returns the address of the specified
1509  * symbol.  On error returns a null.
1510  */
1511 void *
1512 dlsym(void *handle, const char *name)
1513 {
1514 	int	entry;
1515 	Rt_map	*clmp, *dlmp = NULL;
1516 	void	*addr;
1517 
1518 	entry = enter(0);
1519 
1520 	clmp = _caller(caller(), CL_EXECDEF);
1521 
1522 	addr = dlsym_check(handle, name, clmp, &dlmp);
1523 
1524 	if (entry) {
1525 		if (dlmp)
1526 			is_dep_init(dlmp, clmp);
1527 		leave(LIST(clmp), 0);
1528 	}
1529 	return (addr);
1530 }
1531 
1532 /*
1533  * Core dladdr activity.
1534  */
1535 static void
1536 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags)
1537 {
1538 	/*
1539 	 * Set up generic information and any defaults.
1540 	 */
1541 	dlip->dli_fname = PATHNAME(almp);
1542 
1543 	dlip->dli_fbase = (void *)ADDR(almp);
1544 	dlip->dli_sname = NULL;
1545 	dlip->dli_saddr = NULL;
1546 
1547 	/*
1548 	 * Determine the nearest symbol to this address.
1549 	 */
1550 	LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags);
1551 }
1552 
1553 #pragma weak _dladdr = dladdr
1554 
1555 /*
1556  * External entry for dladdr(3dl) and dladdr1(3dl).  Returns an information
1557  * structure that reflects the symbol closest to the address specified.
1558  */
1559 int
1560 dladdr(void *addr, Dl_info_t *dlip)
1561 {
1562 	int	entry, ret;
1563 	Rt_map	*clmp, *almp;
1564 	Lm_list	*clml;
1565 
1566 	entry = enter(0);
1567 
1568 	clmp = _caller(caller(), CL_EXECDEF);
1569 	clml = LIST(clmp);
1570 
1571 	DBG_CALL(Dbg_dl_dladdr(clmp, addr));
1572 
1573 	/*
1574 	 * Use our calling technique to determine what object is associated
1575 	 * with the supplied address.  If a caller can't be determined,
1576 	 * indicate the failure.
1577 	 */
1578 	if ((almp = _caller(addr, CL_NONE)) == NULL) {
1579 		eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
1580 		    EC_NATPTR(addr));
1581 		ret = 0;
1582 	} else {
1583 		dladdr_core(almp, addr, dlip, 0, 0);
1584 		ret = 1;
1585 	}
1586 
1587 	if (entry)
1588 		leave(clml, 0);
1589 	return (ret);
1590 }
1591 
1592 #pragma weak _dladdr1 = dladdr1
1593 
1594 int
1595 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags)
1596 {
1597 	int	entry, ret = 1;
1598 	Rt_map	*clmp, *almp;
1599 	Lm_list	*clml;
1600 
1601 	entry = enter(0);
1602 
1603 	clmp = _caller(caller(), CL_EXECDEF);
1604 	clml = LIST(clmp);
1605 
1606 	DBG_CALL(Dbg_dl_dladdr(clmp, addr));
1607 
1608 	/*
1609 	 * Validate any flags.
1610 	 */
1611 	if (flags) {
1612 		int	request;
1613 
1614 		if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) &&
1615 		    (request != RTLD_DL_LINKMAP)) {
1616 			eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS),
1617 			    flags);
1618 			ret = 0;
1619 
1620 		} else if (info == NULL) {
1621 			eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO),
1622 			    flags);
1623 			ret = 0;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * Use our calling technique to determine what object is associated
1629 	 * with the supplied address.  If a caller can't be determined,
1630 	 * indicate the failure.
1631 	 */
1632 	if (ret) {
1633 		if ((almp = _caller(addr, CL_NONE)) == NULL) {
1634 			eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR),
1635 			    EC_NATPTR(addr));
1636 			ret = 0;
1637 		} else
1638 			dladdr_core(almp, addr, dlip, info, flags);
1639 	}
1640 
1641 	if (entry)
1642 		leave(clml, 0);
1643 	return (ret);
1644 }
1645 
1646 /*
1647  * Core dldump activity.
1648  */
1649 static int
1650 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath,
1651     int flags)
1652 {
1653 	Lm_list	*lml = LIST(clmp);
1654 	Addr	addr = 0;
1655 
1656 	/*
1657 	 * Verify any arguments first.
1658 	 */
1659 	if ((opath == NULL) || (opath[0] == '\0') ||
1660 	    ((lmp == NULL) && (ipath[0] == '\0'))) {
1661 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH));
1662 		return (1);
1663 	}
1664 
1665 	/*
1666 	 * If an input file is specified make sure its one of our dependencies
1667 	 * on the main link-map list.  Note, this has really all evolved for
1668 	 * crle(), which uses libcrle.so on an alternative link-map to trigger
1669 	 * dumping objects from the main link-map list.   If we ever want to
1670 	 * dump objects from alternative link-maps, this model is going to
1671 	 * have to be revisited.
1672 	 */
1673 	if (lmp == NULL) {
1674 		if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) {
1675 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE),
1676 			    ipath);
1677 			return (1);
1678 		}
1679 		if (FLAGS(lmp) & FLG_RT_ALTER) {
1680 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath);
1681 			return (1);
1682 		}
1683 		if (FLAGS(lmp) & FLG_RT_NODUMP) {
1684 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP),
1685 			    ipath);
1686 			return (1);
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * If the object being dump'ed isn't fixed identify its mapping.
1692 	 */
1693 	if (!(FLAGS(lmp) & FLG_RT_FIXED))
1694 		addr = ADDR(lmp);
1695 
1696 	/*
1697 	 * As rt_dldump() will effectively lazy load the necessary support
1698 	 * libraries, make sure ld.so.1 is initialized for plt relocations.
1699 	 */
1700 	if (elf_rtld_load() == 0)
1701 		return (0);
1702 
1703 	/*
1704 	 * Dump the required image.
1705 	 */
1706 	return (rt_dldump(lmp, opath, flags, addr));
1707 }
1708 
1709 #pragma weak _dldump = dldump
1710 
1711 /*
1712  * External entry for dldump(3c).  Returns 0 on success, non-zero otherwise.
1713  */
1714 int
1715 dldump(const char *ipath, const char *opath, int flags)
1716 {
1717 	int	error, entry;
1718 	Rt_map	*clmp, *lmp;
1719 
1720 	entry = enter(0);
1721 
1722 	clmp = _caller(caller(), CL_EXECDEF);
1723 
1724 	if (ipath) {
1725 		lmp = NULL;
1726 	} else {
1727 		lmp = lml_main.lm_head;
1728 		ipath = NAME(lmp);
1729 	}
1730 
1731 	DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags));
1732 
1733 	error = dldump_core(clmp, lmp, ipath, opath, flags);
1734 
1735 	if (entry)
1736 		leave(LIST(clmp), 0);
1737 	return (error);
1738 }
1739 
1740 /*
1741  * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by
1742  * the rtld_db and dlmopen() interfaces.  It checks to see if the Link_map is
1743  * one of the primary ones and if so returns it's special token:
1744  *		LM_ID_BASE
1745  *		LM_ID_LDSO
1746  *
1747  * If it's not one of the primary link_map id's it will instead returns a
1748  * pointer to the Lm_list structure which uniquely identifies the Link_map.
1749  */
1750 Lmid_t
1751 get_linkmap_id(Lm_list *lml)
1752 {
1753 	if (lml->lm_flags & LML_FLG_BASELM)
1754 		return (LM_ID_BASE);
1755 	if (lml->lm_flags & LML_FLG_RTLDLM)
1756 		return (LM_ID_LDSO);
1757 
1758 	return ((Lmid_t)lml);
1759 }
1760 
1761 /*
1762  * Set a new deferred dependency name.
1763  */
1764 static int
1765 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name)
1766 {
1767 	/*
1768 	 * If this dependency has already been established, then this dlinfo()
1769 	 * call is too late.
1770 	 */
1771 	if (dyip->di_info) {
1772 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED),
1773 		    dyip->di_name);
1774 		return (-1);
1775 	}
1776 
1777 	/*
1778 	 * Assign the new dependency name.
1779 	 */
1780 	DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name));
1781 	dyip->di_flags |= FLG_DI_DEF_DONE;
1782 	dyip->di_name = name;
1783 	return (0);
1784 }
1785 
1786 /*
1787  * Extract information for a dlopen() handle.
1788  */
1789 static int
1790 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp)
1791 {
1792 	Conv_inv_buf_t	inv_buf;
1793 	char		*handlename;
1794 	Lm_list		*lml = LIST(clmp);
1795 	Rt_map		*lmp = NULL;
1796 
1797 	/*
1798 	 * Determine whether a handle is provided.  A handle isn't needed for
1799 	 * all operations, but it is validated here for the initial diagnostic.
1800 	 */
1801 	if (handle == RTLD_SELF) {
1802 		lmp = clmp;
1803 	} else {
1804 		Grp_hdl	*ghp = (Grp_hdl *)handle;
1805 
1806 		if (hdl_validate(ghp))
1807 			lmp = ghp->gh_ownlmp;
1808 	}
1809 	if (lmp) {
1810 		handlename = NAME(lmp);
1811 	} else {
1812 		(void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0);
1813 		handlename = inv_buf.buf;
1814 	}
1815 
1816 	DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p));
1817 
1818 	/*
1819 	 * Validate the request and return buffer.
1820 	 */
1821 	if ((request > RTLD_DI_MAX) || (p == NULL)) {
1822 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL));
1823 		return (-1);
1824 	}
1825 
1826 	/*
1827 	 * Return configuration cache name and address.
1828 	 */
1829 	if (request == RTLD_DI_CONFIGADDR) {
1830 		Dl_info_t	*dlip = (Dl_info_t *)p;
1831 
1832 		if ((config->c_name == NULL) || (config->c_bgn == 0) ||
1833 		    (config->c_end == 0)) {
1834 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG));
1835 			return (-1);
1836 		}
1837 		dlip->dli_fname = config->c_name;
1838 		dlip->dli_fbase = (void *)config->c_bgn;
1839 		return (0);
1840 	}
1841 
1842 	/*
1843 	 * Return profiled object name (used by ldprof audit library).
1844 	 */
1845 	if (request == RTLD_DI_PROFILENAME) {
1846 		if (profile_name == NULL) {
1847 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME));
1848 			return (-1);
1849 		}
1850 
1851 		*(const char **)p = profile_name;
1852 		return (0);
1853 	}
1854 	if (request == RTLD_DI_PROFILEOUT) {
1855 		/*
1856 		 * If a profile destination directory hasn't been specified
1857 		 * provide a default.
1858 		 */
1859 		if (profile_out == NULL)
1860 			profile_out = MSG_ORIG(MSG_PTH_VARTMP);
1861 
1862 		*(const char **)p = profile_out;
1863 		return (0);
1864 	}
1865 
1866 	/*
1867 	 * Obtain or establish a termination signal.
1868 	 */
1869 	if (request == RTLD_DI_GETSIGNAL) {
1870 		*(int *)p = killsig;
1871 		return (0);
1872 	}
1873 
1874 	if (request == RTLD_DI_SETSIGNAL) {
1875 		sigset_t	set;
1876 		int		sig = *(int *)p;
1877 
1878 		/*
1879 		 * Determine whether the signal is in range.
1880 		 */
1881 		(void) sigfillset(&set);
1882 		if (sigismember(&set, sig) != 1) {
1883 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig);
1884 			return (-1);
1885 		}
1886 
1887 		killsig = sig;
1888 		return (0);
1889 	}
1890 
1891 	/*
1892 	 * For any other request a link-map is required.  Verify the handle.
1893 	 */
1894 	if (lmp == NULL) {
1895 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL),
1896 		    EC_NATPTR(handle));
1897 		return (-1);
1898 	}
1899 
1900 	/*
1901 	 * Obtain the process arguments, environment and auxv.  Note, as the
1902 	 * environment can be modified by the user (putenv(3c)), reinitialize
1903 	 * the environment pointer on each request.
1904 	 */
1905 	if (request == RTLD_DI_ARGSINFO) {
1906 		Dl_argsinfo_t	*aip = (Dl_argsinfo_t *)p;
1907 		Lm_list		*lml = LIST(lmp);
1908 
1909 		*aip = argsinfo;
1910 		if (lml->lm_flags & LML_FLG_ENVIRON)
1911 			aip->dla_envp = *(lml->lm_environ);
1912 
1913 		return (0);
1914 	}
1915 
1916 	/*
1917 	 * Return Lmid_t of the Link-Map list that the specified object is
1918 	 * loaded on.
1919 	 */
1920 	if (request == RTLD_DI_LMID) {
1921 		*(Lmid_t *)p = get_linkmap_id(LIST(lmp));
1922 		return (0);
1923 	}
1924 
1925 	/*
1926 	 * Return a pointer to the Link-Map structure associated with the
1927 	 * specified object.
1928 	 */
1929 	if (request == RTLD_DI_LINKMAP) {
1930 		*(Link_map **)p = (Link_map *)lmp;
1931 		return (0);
1932 	}
1933 
1934 	/*
1935 	 * Return search path information, or the size of the buffer required
1936 	 * to store the information.
1937 	 */
1938 	if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) {
1939 		Spath_desc	sd = { search_rules, NULL, 0 };
1940 		Pdesc		*pdp;
1941 		Dl_serinfo_t	*info;
1942 		Dl_serpath_t	*path;
1943 		char		*strs;
1944 		size_t		size = sizeof (Dl_serinfo_t);
1945 		uint_t		cnt = 0;
1946 
1947 		info = (Dl_serinfo_t *)p;
1948 		path = &info->dls_serpath[0];
1949 		strs = (char *)&info->dls_serpath[info->dls_cnt];
1950 
1951 		/*
1952 		 * Traverse search path entries for this object.
1953 		 */
1954 		while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) {
1955 			size_t	_size;
1956 
1957 			if (pdp->pd_pname == NULL)
1958 				continue;
1959 
1960 			/*
1961 			 * If configuration information exists, it's possible
1962 			 * this path has been identified as non-existent, if so
1963 			 * ignore it.
1964 			 */
1965 			if (pdp->pd_info) {
1966 				Rtc_obj	*dobj = (Rtc_obj *)pdp->pd_info;
1967 				if (dobj->co_flags & RTC_OBJ_NOEXIST)
1968 					continue;
1969 			}
1970 
1971 			/*
1972 			 * Keep track of search path count and total info size.
1973 			 */
1974 			if (cnt++)
1975 				size += sizeof (Dl_serpath_t);
1976 			_size = pdp->pd_plen + 1;
1977 			size += _size;
1978 
1979 			if (request == RTLD_DI_SERINFOSIZE)
1980 				continue;
1981 
1982 			/*
1983 			 * If we're filling in search path information, confirm
1984 			 * there's sufficient space.
1985 			 */
1986 			if (size > info->dls_size) {
1987 				eprintf(lml, ERR_FATAL,
1988 				    MSG_INTL(MSG_ARG_SERSIZE),
1989 				    EC_OFF(info->dls_size));
1990 				return (-1);
1991 			}
1992 			if (cnt > info->dls_cnt) {
1993 				eprintf(lml, ERR_FATAL,
1994 				    MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt);
1995 				return (-1);
1996 			}
1997 
1998 			/*
1999 			 * Append the path to the information buffer.
2000 			 */
2001 			(void) strcpy(strs, pdp->pd_pname);
2002 			path->dls_name = strs;
2003 			path->dls_flags = (pdp->pd_flags & LA_SER_MASK);
2004 
2005 			strs = strs + _size;
2006 			path++;
2007 		}
2008 
2009 		/*
2010 		 * If we're here to size the search buffer fill it in.
2011 		 */
2012 		if (request == RTLD_DI_SERINFOSIZE) {
2013 			info->dls_size = size;
2014 			info->dls_cnt = cnt;
2015 		}
2016 
2017 		return (0);
2018 	}
2019 
2020 	/*
2021 	 * Return the origin of the object associated with this link-map.
2022 	 * Basically return the dirname(1) of the objects fullpath.
2023 	 */
2024 	if (request == RTLD_DI_ORIGIN) {
2025 		char	*str = (char *)p;
2026 
2027 		(void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp));
2028 		str += DIRSZ(lmp);
2029 		*str = '\0';
2030 
2031 		return (0);
2032 	}
2033 
2034 	/*
2035 	 * Return the number of object mappings, or the mapping information for
2036 	 * this object.
2037 	 */
2038 	if (request == RTLD_DI_MMAPCNT) {
2039 		uint_t	*cnt = (uint_t *)p;
2040 
2041 		*cnt = MMAPCNT(lmp);
2042 		return (0);
2043 	}
2044 	if (request == RTLD_DI_MMAPS) {
2045 		Dl_mapinfo_t	*mip = (Dl_mapinfo_t *)p;
2046 
2047 		if (mip->dlm_acnt && mip->dlm_maps) {
2048 			uint_t	cnt = 0;
2049 
2050 			while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) {
2051 				mip->dlm_maps[cnt] = MMAPS(lmp)[cnt];
2052 				cnt++;
2053 			}
2054 			mip->dlm_rcnt = cnt;
2055 		}
2056 		return (0);
2057 	}
2058 
2059 	/*
2060 	 * Assign a new dependency name to a deferred dependency.
2061 	 */
2062 	if ((request == RTLD_DI_DEFERRED) ||
2063 	    (request == RTLD_DI_DEFERRED_SYM)) {
2064 		Dl_definfo_t	*dfip = (Dl_definfo_t *)p;
2065 		Dyninfo		*dyip;
2066 		const char	*dname, *rname;
2067 
2068 		/*
2069 		 * Verify the names.
2070 		 */
2071 		if ((dfip->dld_refname == NULL) ||
2072 		    (dfip->dld_depname == NULL)) {
2073 			eprintf(LIST(clmp), ERR_FATAL,
2074 			    MSG_INTL(MSG_ARG_ILLNAME));
2075 			return (-1);
2076 		}
2077 
2078 		dname = dfip->dld_depname;
2079 		rname = dfip->dld_refname;
2080 
2081 		/*
2082 		 * A deferred dependency can be determined by referencing a
2083 		 * symbol family member that is associated to the dependency,
2084 		 * or by looking for the dependency by its name.
2085 		 */
2086 		if (request == RTLD_DI_DEFERRED_SYM) {
2087 			Slookup		sl;
2088 			Sresult		sr;
2089 			uint_t		binfo;
2090 			Syminfo		*sip;
2091 
2092 			/*
2093 			 * Lookup the symbol in the associated object.
2094 			 */
2095 			SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt,
2096 			    elf_hash(rname), 0, 0, 0, LKUP_SYMNDX);
2097 			SRESULT_INIT(sr, rname);
2098 			if (sym_lookup_in_caller(clmp, &sl, &sr,
2099 			    &binfo) == NULL) {
2100 				eprintf(LIST(clmp), ERR_FATAL,
2101 				    MSG_INTL(MSG_DEF_NOSYMFOUND), rname);
2102 				return (-1);
2103 			}
2104 
2105 			/*
2106 			 * Use the symbols index to reference the Syminfo entry
2107 			 * and thus find the associated dependency.
2108 			 */
2109 			if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) {
2110 				/* LINTED */
2111 				sip = (Syminfo *)((char *)sip +
2112 				    (sl.sl_rsymndx * SYMINENT(lmp)));
2113 
2114 				if ((sip->si_flags & SYMINFO_FLG_DEFERRED) &&
2115 				    (sip->si_boundto < SYMINFO_BT_LOWRESERVE) &&
2116 				    ((dyip = DYNINFO(lmp)) != NULL)) {
2117 					dyip += sip->si_boundto;
2118 
2119 					if (!(dyip->di_flags & FLG_DI_IGNORE))
2120 						return (set_def_need(lml,
2121 						    dyip, dname));
2122 				}
2123 			}
2124 
2125 			/*
2126 			 * No deferred symbol found.
2127 			 */
2128 			eprintf(LIST(clmp), ERR_FATAL,
2129 			    MSG_INTL(MSG_DEF_NOSYMFOUND), rname);
2130 			return (-1);
2131 
2132 		} else {
2133 			Dyn	*dyn;
2134 
2135 			/*
2136 			 * Using the target objects dependency information, find
2137 			 * the associated deferred dependency.
2138 			 */
2139 			for (dyn = DYN(lmp), dyip = DYNINFO(lmp);
2140 			    !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) {
2141 				const char	*oname;
2142 
2143 				if ((dyip->di_flags & FLG_DI_DEFERRED) == 0)
2144 					continue;
2145 
2146 				if (strcmp(rname, dyip->di_name) == 0)
2147 					return (set_def_need(lml, dyip, dname));
2148 
2149 				/*
2150 				 * If this dependency name has been changed by
2151 				 * a previous dlinfo(), check the original
2152 				 * dynamic entry string.  The user might be
2153 				 * attempting to re-change an entry using the
2154 				 * original name as the reference.
2155 				 */
2156 				if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0)
2157 					continue;
2158 
2159 				oname = STRTAB(lmp) + dyn->d_un.d_val;
2160 				if (strcmp(rname, oname) == 0)
2161 					return (set_def_need(lml, dyip, dname));
2162 			}
2163 
2164 			/*
2165 			 * No deferred dependency found.
2166 			 */
2167 			eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND),
2168 			    rname);
2169 			return (-1);
2170 		}
2171 	}
2172 	return (0);
2173 }
2174 
2175 #pragma weak _dlinfo = dlinfo
2176 
2177 /*
2178  * External entry for dlinfo(3dl).
2179  */
2180 int
2181 dlinfo(void *handle, int request, void *p)
2182 {
2183 	int	error, entry;
2184 	Rt_map	*clmp;
2185 
2186 	entry = enter(0);
2187 
2188 	clmp = _caller(caller(), CL_EXECDEF);
2189 
2190 	error = dlinfo_core(handle, request, p, clmp);
2191 
2192 	if (entry)
2193 		leave(LIST(clmp), 0);
2194 	return (error);
2195 }
2196 
2197 /*
2198  * GNU defined function to iterate through the program headers for all
2199  * currently loaded dynamic objects. The caller supplies a callback function
2200  * which is called for each object.
2201  *
2202  * entry:
2203  *	callback - Callback function to call. The arguments to the callback
2204  *		function are:
2205  *		info - Address of dl_phdr_info structure
2206  *		size - sizeof (struct dl_phdr_info)
2207  *		data - Caller supplied value.
2208  *	data - Value supplied by caller, which is passed to callback without
2209  *		examination.
2210  *
2211  * exit:
2212  *	callback is called for each dynamic ELF object in the process address
2213  *	space, halting when a non-zero value is returned, or when the last
2214  *	object has been processed. The return value from the last call
2215  *	to callback is returned.
2216  *
2217  * note:
2218  *	The Linux implementation has added additional fields to the
2219  *	dl_phdr_info structure over time. The callback function is
2220  *	supposed to use the size field to determine which fields are
2221  *	present, and to avoid attempts to access non-existent fields.
2222  *	We have added those fields that are compatible with Solaris, and
2223  *	which are used by GNU C++ (g++) runtime exception handling support.
2224  *
2225  * note:
2226  *	We issue a callback for every ELF object mapped into the process
2227  *	address space at the time this routine is entered. These callbacks
2228  *	are arbitrary functions that can do anything, including possibly
2229  *	causing new objects to be mapped into the process, or unmapped.
2230  *	This complicates matters:
2231  *
2232  *	-	Adding new objects can cause the alists to be reallocated
2233  *		or for contents to move. This can happen explicitly via
2234  *		dlopen(), or implicitly via lazy loading. One might consider
2235  *		simply banning dlopen from a callback, but lazy loading must
2236  *		be allowed, in which case there's no reason to ban dlopen().
2237  *
2238  *	-	Removing objects can leave us holding references to freed
2239  *		memory that must not be accessed, and can cause the list
2240  *		items to move in a way that would cause us to miss reporting
2241  *		one, or double report others.
2242  *
2243  *	-	We cannot allocate memory to build a separate data structure,
2244  *		because the interface to dl_iterate_phdr() does not have a
2245  *		way to communicate allocation errors back to the caller.
2246  *		Even if we could, it would be difficult to do so efficiently.
2247  *
2248  *	-	It is possible for dl_iterate_phdr() to be called recursively
2249  *		from a callback, and there is no way for us to detect or manage
2250  *		this effectively, particularly as the user might use longjmp()
2251  *		to skip past us on return. Hence, we must be reentrant
2252  *		(stateless), further precluding the option of building a
2253  *		separate data structure.
2254  *
2255  *	Despite these constraints, we are able to traverse the link-map
2256  *	lists safely:
2257  *
2258  *	-	Once interposer (preload) objects have been processed at
2259  *		startup, we know that new objects are always placed at the
2260  *		end of the list. Hence, if we are reading a list when that
2261  *		happens, the new object will not alter the part of the list
2262  *		that we've already processed.
2263  *
2264  *	-	The alist _TRAVERSE macros recalculate the address of the
2265  *		current item from scratch on each iteration, rather than
2266  *		incrementing a pointer. Hence, alist additions that occur
2267  *		in mid-traverse will not cause confusion.
2268  *
2269  * 	There is one limitation: We cannot continue operation if an object
2270  *	is removed from the process from within a callback. We detect when
2271  *	this happens and return immediately with a -1 return value.
2272  *
2273  * note:
2274  *	As currently implemented, if a callback causes an object to be loaded,
2275  *	that object may or may not be reported by the current invocation of
2276  *	dl_iterate_phdr(), based on whether or not we have already processed
2277  *	the link-map list that receives it. If we want to prevent this, it
2278  *	can be done efficiently by associating the current value of cnt_map
2279  *	with each new Rt_map entered into the system. Then this function can
2280  *	use that to detect and skip new objects that enter the system in
2281  *	mid-iteration. However, the Linux documentation is ambiguous on whether
2282  *	this is necessary, and it does not appear to matter in practice.
2283  *	We have therefore chosen not to do so at this time.
2284  */
2285 int
2286 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *),
2287     void *data)
2288 {
2289 	struct dl_phdr_info	info;
2290 	u_longlong_t		l_cnt_map = cnt_map;
2291 	u_longlong_t		l_cnt_unmap = cnt_unmap;
2292 	Lm_list			*lml, *clml;
2293 	Lm_cntl			*lmc;
2294 	Rt_map			*lmp, *clmp;
2295 	Aliste			idx1, idx2;
2296 	Ehdr			*ehdr;
2297 	int			ret = 0;
2298 	int			entry;
2299 
2300 	entry = enter(0);
2301 	clmp = _caller(caller(), CL_EXECDEF);
2302 	clml = LIST(clmp);
2303 
2304 	DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap));
2305 
2306 	/* Issue a callback for each ELF object in the process */
2307 	for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) {
2308 		for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) {
2309 			for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) {
2310 #if defined(_sparc) && !defined(_LP64)
2311 				/*
2312 				 * On 32-bit sparc, the possibility exists that
2313 				 * this object is not ELF.
2314 				 */
2315 				if (THIS_IS_NOT_ELF(lmp))
2316 					continue;
2317 #endif
2318 				/* Prepare the object information structure */
2319 				ehdr = (Ehdr *) ADDR(lmp);
2320 				info.dlpi_addr = (ehdr->e_type == ET_EXEC) ?
2321 				    0 : ADDR(lmp);
2322 				info.dlpi_name = lmp->rt_pathname;
2323 				info.dlpi_phdr = (Phdr *)
2324 				    (ADDR(lmp) + ehdr->e_phoff);
2325 				info.dlpi_phnum = ehdr->e_phnum;
2326 				info.dlpi_adds = cnt_map;
2327 				info.dlpi_subs = cnt_unmap;
2328 
2329 				/* Issue the callback */
2330 				DBG_CALL(Dbg_dl_iphdr_callback(clml, &info));
2331 				leave(clml, thr_flg_reenter);
2332 				ret = (* callback)(&info, sizeof (info), data);
2333 				(void) enter(thr_flg_reenter);
2334 
2335 				/* Return immediately on non-zero result */
2336 				if (ret != 0)
2337 					goto done;
2338 
2339 				/* Adapt to object mapping changes */
2340 				if ((cnt_map == l_cnt_map) &&
2341 				    (cnt_unmap == l_cnt_unmap))
2342 					continue;
2343 
2344 				DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map,
2345 				    cnt_unmap));
2346 
2347 				/* Stop if an object was unmapped */
2348 				if (cnt_unmap == l_cnt_unmap) {
2349 					l_cnt_map = cnt_map;
2350 					continue;
2351 				}
2352 
2353 				ret = -1;
2354 				DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml));
2355 				goto done;
2356 			}
2357 		}
2358 	}
2359 
2360 done:
2361 	if (entry)
2362 		leave(LIST(clmp), 0);
2363 	return (ret);
2364 }
2365