1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 /* 30 * Programmatic interface to the run_time linker. 31 */ 32 33 #include <sys/debug.h> 34 #include <stdio.h> 35 #include <string.h> 36 #include <dlfcn.h> 37 #include <synch.h> 38 #include <limits.h> 39 #include <debug.h> 40 #include <conv.h> 41 #include "_rtld.h" 42 #include "_audit.h" 43 #include "_elf.h" 44 #include "_inline_gen.h" 45 #include "msg.h" 46 47 /* 48 * Determine who called us - given a pc determine in which object it resides. 49 * 50 * For dlopen() the link map of the caller must be passed to load_so() so that 51 * the appropriate search rules (4.x or 5.0) are used to locate any 52 * dependencies. Also, if we've been called from a 4.x module it may be 53 * necessary to fix the specified pathname so that it conforms with the 5.0 elf 54 * rules. 55 * 56 * For dlsym() the link map of the caller is used to determine RTLD_NEXT 57 * requests, together with requests based off of a dlopen(0). 58 * For dladdr() this routines provides a generic means of scanning all loaded 59 * segments. 60 */ 61 Rt_map * 62 _caller(caddr_t cpc, int flags) 63 { 64 Lm_list *lml; 65 Aliste idx1; 66 67 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 68 Aliste idx2; 69 Lm_cntl *lmc; 70 71 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 72 Rt_map *lmp; 73 74 for (lmp = lmc->lc_head; lmp; 75 lmp = NEXT_RT_MAP(lmp)) { 76 77 if (find_segment(cpc, lmp)) 78 return (lmp); 79 } 80 } 81 } 82 83 /* 84 * No mapping can be determined. If asked for a default, assume this 85 * is from the executable. 86 */ 87 if (flags & CL_EXECDEF) 88 return ((Rt_map *)lml_main.lm_head); 89 90 return (0); 91 } 92 93 #pragma weak _dlerror = dlerror 94 95 /* 96 * External entry for dlerror(3dl). Returns a pointer to the string describing 97 * the last occurring error. The last occurring error is cleared. 98 */ 99 char * 100 dlerror() 101 { 102 char *error; 103 Rt_map *clmp; 104 int entry; 105 106 entry = enter(0); 107 108 clmp = _caller(caller(), CL_EXECDEF); 109 110 DBG_CALL(Dbg_dl_dlerror(clmp, lasterr)); 111 112 error = lasterr; 113 lasterr = NULL; 114 115 if (entry) 116 leave(LIST(clmp), 0); 117 return (error); 118 } 119 120 /* 121 * Add a dependency as a group descriptor to a group handle. Returns 0 on 122 * failure. On success, returns the group descriptor, and if alep is non-NULL 123 * the *alep is set to ALE_EXISTS if the dependency already exists, or to 124 * ALE_CREATE if the dependency is newly created. 125 */ 126 Grp_desc * 127 hdl_add(Grp_hdl *ghp, Rt_map *lmp, uint_t dflags, int *alep) 128 { 129 Grp_desc *gdp; 130 Aliste idx; 131 int ale = ALE_CREATE; 132 uint_t oflags; 133 134 /* 135 * Make sure this dependency hasn't already been recorded. 136 */ 137 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 138 if (gdp->gd_depend == lmp) { 139 ale = ALE_EXISTS; 140 break; 141 } 142 } 143 144 if (ale == ALE_CREATE) { 145 Grp_desc gd; 146 147 /* 148 * Create a new handle descriptor. 149 */ 150 gd.gd_depend = lmp; 151 gd.gd_flags = 0; 152 153 /* 154 * Indicate this object is a part of this handles group. 155 */ 156 if (aplist_append(&GROUPS(lmp), ghp, AL_CNT_GROUPS) == NULL) 157 return (NULL); 158 159 /* 160 * Append the new dependency to this handle. 161 */ 162 if ((gdp = alist_append(&ghp->gh_depends, &gd, 163 sizeof (Grp_desc), AL_CNT_DEPENDS)) == NULL) 164 return (NULL); 165 } 166 167 oflags = gdp->gd_flags; 168 gdp->gd_flags |= dflags; 169 170 if (DBG_ENABLED) { 171 if (ale == ALE_CREATE) 172 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_ADD, 173 gdp->gd_flags)); 174 else if (gdp->gd_flags != oflags) 175 DBG_CALL(Dbg_file_hdl_action(ghp, lmp, DBG_DEP_UPDATE, 176 gdp->gd_flags)); 177 } 178 179 if (alep) 180 *alep = ale; 181 return (gdp); 182 } 183 184 /* 185 * Create a handle. 186 * 187 * rlmp - represents the reference link-map for which the handle is being 188 * created. 189 * clmp - represents the caller who is requesting the handle. 190 * hflags - provide group handle flags (GPH_*) that affect the use of the 191 * handle, such as dlopen(0), or use or use of RTLD_FIRST. 192 * rdflags - provide group dependency flags for the reference link-map rlmp, 193 * such as whether the dependency can be used for dlsym(), can be 194 * relocated against, or whether this objects dependencies should 195 * be processed. 196 * cdflags - provide group dependency flags for the caller. 197 */ 198 Grp_hdl * 199 hdl_create(Lm_list *lml, Rt_map *rlmp, Rt_map *clmp, uint_t hflags, 200 uint_t rdflags, uint_t cdflags) 201 { 202 Grp_hdl *ghp = NULL, *aghp; 203 APlist **alpp; 204 Aliste idx; 205 206 /* 207 * For dlopen(0) the handle is maintained as part of the link-map list, 208 * otherwise the handle is associated with the reference link-map. 209 */ 210 if (hflags & GPH_ZERO) 211 alpp = &(lml->lm_handle); 212 else 213 alpp = &(HANDLES(rlmp)); 214 215 /* 216 * Objects can contain multiple handles depending on the handle flags 217 * supplied. Most RTLD flags pertain to the object itself and the 218 * bindings that it can achieve. Multiple handles for these flags 219 * don't make sense. But if the flag determines how the handle might 220 * be used, then multiple handles may exist. Presently this only makes 221 * sense for RTLD_FIRST. Determine if an appropriate handle already 222 * exists. 223 */ 224 for (APLIST_TRAVERSE(*alpp, idx, aghp)) { 225 if ((aghp->gh_flags & GPH_FIRST) == (hflags & GPH_FIRST)) { 226 ghp = aghp; 227 break; 228 } 229 } 230 231 if (ghp == NULL) { 232 uint_t ndx; 233 234 /* 235 * If this is the first request for this handle, allocate and 236 * initialize a new handle. 237 */ 238 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_CREATE)); 239 240 if ((ghp = malloc(sizeof (Grp_hdl))) == NULL) 241 return (NULL); 242 243 /* 244 * Associate the handle with the link-map list or the reference 245 * link-map as appropriate. 246 */ 247 if (aplist_append(alpp, ghp, AL_CNT_GROUPS) == NULL) { 248 free(ghp); 249 return (NULL); 250 } 251 252 /* 253 * Record the existence of this handle for future verification. 254 */ 255 /* LINTED */ 256 ndx = (uintptr_t)ghp % HDLIST_SZ; 257 258 if (aplist_append(&hdl_alp[ndx], ghp, AL_CNT_HANDLES) == NULL) { 259 (void) aplist_delete_value(*alpp, ghp); 260 free(ghp); 261 return (NULL); 262 } 263 264 ghp->gh_depends = NULL; 265 ghp->gh_refcnt = 1; 266 ghp->gh_flags = hflags; 267 268 /* 269 * A dlopen(0) handle is identified by the GPH_ZERO flag, the 270 * head of the link-map list is defined as the owner. There is 271 * no need to maintain a list of dependencies, for when this 272 * handle is used (for dlsym()) a dynamic search through the 273 * entire link-map list provides for searching all objects with 274 * GLOBAL visibility. 275 */ 276 if (hflags & GPH_ZERO) { 277 ghp->gh_ownlmp = lml->lm_head; 278 ghp->gh_ownlml = lml; 279 } else { 280 ghp->gh_ownlmp = rlmp; 281 ghp->gh_ownlml = LIST(rlmp); 282 283 if (hdl_add(ghp, rlmp, rdflags, NULL) == NULL) 284 return (NULL); 285 286 /* 287 * If this new handle is a private handle, there's no 288 * need to track the caller, so we're done. 289 */ 290 if (hflags & GPH_PRIVATE) 291 return (ghp); 292 293 /* 294 * If this new handle is public, and isn't a special 295 * handle representing ld.so.1, indicate that a local 296 * group now exists. This state allows singleton 297 * searches to be optimized. 298 */ 299 if ((hflags & GPH_LDSO) == 0) 300 LIST(rlmp)->lm_flags |= LML_FLG_GROUPSEXIST; 301 } 302 } else { 303 /* 304 * If a handle already exists, bump its reference count. 305 * 306 * If the previous reference count was 0, then this is a handle 307 * that an earlier call to dlclose() was unable to remove. Such 308 * handles are put on the orphan list. As this handle is back 309 * in use, it must be removed from the orphan list. 310 * 311 * Note, handles associated with a link-map list itself (i.e. 312 * dlopen(0)) can have a reference count of 0. However, these 313 * handles are never deleted, and therefore are never moved to 314 * the orphan list. 315 */ 316 if ((ghp->gh_refcnt++ == 0) && 317 ((ghp->gh_flags & GPH_ZERO) == 0)) { 318 uint_t ndx; 319 320 /* LINTED */ 321 ndx = (uintptr_t)ghp % HDLIST_SZ; 322 323 (void) aplist_delete_value(hdl_alp[HDLIST_ORP], ghp); 324 (void) aplist_append(&hdl_alp[ndx], ghp, 325 AL_CNT_HANDLES); 326 327 if (DBG_ENABLED) { 328 Aliste idx; 329 Grp_desc *gdp; 330 331 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_REINST)); 332 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) 333 DBG_CALL(Dbg_file_hdl_action(ghp, 334 gdp->gd_depend, DBG_DEP_REINST, 0)); 335 } 336 } 337 338 /* 339 * If we've been asked to create a private handle, there's no 340 * need to track the caller. 341 */ 342 if (hflags & GPH_PRIVATE) { 343 /* 344 * Negate the reference count increment. 345 */ 346 ghp->gh_refcnt--; 347 return (ghp); 348 } else { 349 /* 350 * If a private handle already exists, promote this 351 * handle to public by initializing both the reference 352 * count and the handle flags. 353 */ 354 if (ghp->gh_flags & GPH_PRIVATE) { 355 ghp->gh_refcnt = 1; 356 ghp->gh_flags &= ~GPH_PRIVATE; 357 ghp->gh_flags |= hflags; 358 } 359 } 360 } 361 362 /* 363 * Keep track of the parent (caller). As this object can be referenced 364 * by different parents, this processing is carried out every time a 365 * handle is requested. 366 */ 367 if (clmp && (hdl_add(ghp, clmp, cdflags, NULL) == NULL)) 368 return (NULL); 369 370 return (ghp); 371 } 372 373 /* 374 * Initialize a handle that has been created for an object that is already 375 * loaded. The handle is initialized with the present dependencies of that 376 * object. Once this initialization has occurred, any new objects that might 377 * be loaded as dependencies (lazy-loading) are added to the handle as each new 378 * object is loaded. 379 */ 380 int 381 hdl_initialize(Grp_hdl *ghp, Rt_map *nlmp, int mode, int promote) 382 { 383 Aliste idx; 384 Grp_desc *gdp; 385 386 /* 387 * If the handle has already been initialized, and the initial object's 388 * mode hasn't been promoted, there's no need to recompute the modes of 389 * any dependencies. If the object we've added has just been opened, 390 * the objects dependencies will not yet have been processed. These 391 * dependencies will be added on later calls to load_one(). Otherwise, 392 * this object already exists, so add all of its dependencies to the 393 * handle were operating on. 394 */ 395 if (((ghp->gh_flags & GPH_INITIAL) && (promote == 0)) || 396 ((FLAGS(nlmp) & FLG_RT_ANALYZED) == 0)) { 397 ghp->gh_flags |= GPH_INITIAL; 398 return (1); 399 } 400 401 DBG_CALL(Dbg_file_hdl_title(DBG_HDL_ADD)); 402 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 403 Rt_map *lmp = gdp->gd_depend; 404 Aliste idx1; 405 Bnd_desc *bdp; 406 407 /* 408 * If this dependency doesn't indicate that its dependencies 409 * should be added to a handle, ignore it. This case identifies 410 * a parent of a dlopen(RTLD_PARENT) request. 411 */ 412 if ((gdp->gd_flags & GPD_ADDEPS) == 0) 413 continue; 414 415 for (APLIST_TRAVERSE(DEPENDS(lmp), idx1, bdp)) { 416 Rt_map *dlmp = bdp->b_depend; 417 418 if ((bdp->b_flags & BND_NEEDED) == 0) 419 continue; 420 421 if (hdl_add(ghp, dlmp, 422 (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS), NULL) == NULL) 423 return (0); 424 425 (void) update_mode(dlmp, MODE(dlmp), mode); 426 } 427 } 428 ghp->gh_flags |= GPH_INITIAL; 429 return (1); 430 } 431 432 /* 433 * Sanity check a program-provided handle. 434 */ 435 static int 436 hdl_validate(Grp_hdl *ghp) 437 { 438 Aliste idx; 439 Grp_hdl *lghp; 440 uint_t ndx; 441 442 /* LINTED */ 443 ndx = (uintptr_t)ghp % HDLIST_SZ; 444 445 for (APLIST_TRAVERSE(hdl_alp[ndx], idx, lghp)) { 446 if ((lghp == ghp) && (ghp->gh_refcnt != 0)) 447 return (1); 448 } 449 return (0); 450 } 451 452 /* 453 * Core dlclose activity. 454 */ 455 int 456 dlclose_core(Grp_hdl *ghp, Rt_map *clmp, Lm_list *lml) 457 { 458 int error; 459 Rt_map *lmp; 460 461 /* 462 * If we're already at atexit() there's no point processing further, 463 * all objects have already been tsorted for fini processing. 464 */ 465 if (rtld_flags & RT_FL_ATEXIT) 466 return (0); 467 468 /* 469 * Diagnose what we're up to. 470 */ 471 if (ghp->gh_flags & GPH_ZERO) { 472 DBG_CALL(Dbg_dl_dlclose(clmp, MSG_ORIG(MSG_STR_ZERO), 473 DBG_DLCLOSE_IGNORE)); 474 } else { 475 DBG_CALL(Dbg_dl_dlclose(clmp, NAME(ghp->gh_ownlmp), 476 DBG_DLCLOSE_NULL)); 477 } 478 479 /* 480 * Decrement reference count of this object. 481 */ 482 if (--(ghp->gh_refcnt)) 483 return (0); 484 485 /* 486 * If this handle is special (dlopen(0)), then leave it around - it 487 * has little overhead. 488 */ 489 if (ghp->gh_flags & GPH_ZERO) 490 return (0); 491 492 /* 493 * If this handle is associated with an object that is not on the base 494 * link-map control list, or it has not yet been relocated, then this 495 * handle must have originated from an auditors interaction, or some 496 * permutation of RTLD_CONFGEN use (crle(1), moe(1), etc.). User code 497 * can only execute and bind to relocated objects on the base link-map 498 * control list. Outside of RTLD_CONFGEN use, a non-relocated object, 499 * or an object on a non-base link-map control list, is in the process 500 * of being loaded, and therefore we do not attempt to remove the 501 * handle. 502 */ 503 if (((lmp = ghp->gh_ownlmp) != NULL) && 504 ((MODE(lmp) & RTLD_CONFGEN) == 0) && 505 ((CNTL(lmp) != ALIST_OFF_DATA) || 506 ((FLAGS(lmp) & FLG_RT_RELOCED) == 0))) 507 return (0); 508 509 /* 510 * This handle is no longer being referenced, remove it. If this handle 511 * is part of an alternative link-map list, determine if the whole list 512 * can be removed also. 513 */ 514 error = remove_hdl(ghp, clmp, NULL); 515 516 if ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0) 517 remove_lml(lml); 518 519 return (error); 520 } 521 522 /* 523 * Internal dlclose activity. Called from user level or directly for internal 524 * error cleanup. 525 */ 526 int 527 dlclose_intn(Grp_hdl *ghp, Rt_map *clmp) 528 { 529 Rt_map *nlmp = NULL; 530 Lm_list *olml = NULL; 531 int error; 532 533 /* 534 * Although we're deleting object(s) it's quite possible that additional 535 * objects get loaded from running the .fini section(s) of the objects 536 * being deleted. These objects will have been added to the same 537 * link-map list as those objects being deleted. Remember this list 538 * for later investigation. 539 */ 540 olml = ghp->gh_ownlml; 541 542 error = dlclose_core(ghp, clmp, olml); 543 544 /* 545 * Determine whether the original link-map list still exists. In the 546 * case of a dlclose of an alternative (dlmopen) link-map the whole 547 * list may have been removed. 548 */ 549 if (olml) { 550 Aliste idx; 551 Lm_list *lml; 552 553 for (APLIST_TRAVERSE(dynlm_list, idx, lml)) { 554 if (olml == lml) { 555 nlmp = olml->lm_head; 556 break; 557 } 558 } 559 } 560 load_completion(nlmp); 561 return (error); 562 } 563 564 /* 565 * Argument checking for dlclose. Only called via external entry. 566 */ 567 static int 568 dlclose_check(void *handle, Rt_map *clmp) 569 { 570 Grp_hdl *ghp = (Grp_hdl *)handle; 571 572 if (hdl_validate(ghp) == 0) { 573 Conv_inv_buf_t inv_buf; 574 575 (void) conv_invalid_val(&inv_buf, EC_NATPTR(ghp), 0); 576 DBG_CALL(Dbg_dl_dlclose(clmp, inv_buf.buf, DBG_DLCLOSE_NULL)); 577 578 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 579 EC_NATPTR(handle)); 580 return (1); 581 } 582 return (dlclose_intn(ghp, clmp)); 583 } 584 585 #pragma weak _dlclose = dlclose 586 587 /* 588 * External entry for dlclose(3dl). Returns 0 for success, non-zero otherwise. 589 */ 590 int 591 dlclose(void *handle) 592 { 593 int error, entry; 594 Rt_map *clmp; 595 596 entry = enter(0); 597 598 clmp = _caller(caller(), CL_EXECDEF); 599 600 error = dlclose_check(handle, clmp); 601 602 if (entry) 603 leave(LIST(clmp), 0); 604 return (error); 605 } 606 607 static uint_t lmid = 0; 608 609 /* 610 * The addition of new link-map lists is assumed to be in small quantities. 611 * Here, we assign a unique link-map id for diagnostic use. Simply update the 612 * running link-map count until we max out. 613 */ 614 int 615 newlmid(Lm_list *lml) 616 { 617 char buffer[MSG_LMID_ALT_SIZE + 12]; 618 619 if (lmid == UINT_MAX) { 620 lml->lm_lmid = UINT_MAX; 621 (void) strncpy(buffer, MSG_ORIG(MSG_LMID_MAXED), 622 MSG_LMID_ALT_SIZE + 12); 623 } else { 624 lml->lm_lmid = lmid++; 625 (void) snprintf(buffer, MSG_LMID_ALT_SIZE + 12, 626 MSG_ORIG(MSG_LMID_FMT), MSG_ORIG(MSG_LMID_ALT), 627 lml->lm_lmid); 628 } 629 if ((lml->lm_lmidstr = strdup(buffer)) == NULL) 630 return (0); 631 632 return (1); 633 } 634 635 /* 636 * Core dlopen activity. 637 */ 638 static Grp_hdl * 639 dlmopen_core(Lm_list *lml, Lm_list *olml, const char *path, int mode, 640 Rt_map *clmp, uint_t flags, uint_t orig, int *in_nfavl) 641 { 642 Alist *palp = NULL; 643 Rt_map *nlmp; 644 Grp_hdl *ghp; 645 Aliste olmco, nlmco; 646 647 DBG_CALL(Dbg_dl_dlopen(clmp, 648 (path ? path : MSG_ORIG(MSG_STR_ZERO)), in_nfavl, mode)); 649 650 /* 651 * Having diagnosed the originally defined modes, assign any defaults 652 * or corrections. 653 */ 654 if (((mode & (RTLD_GROUP | RTLD_WORLD)) == 0) && 655 ((mode & RTLD_NOLOAD) == 0)) 656 mode |= (RTLD_GROUP | RTLD_WORLD); 657 if ((mode & RTLD_NOW) && (rtld_flags2 & RT_FL2_BINDLAZY)) { 658 mode &= ~RTLD_NOW; 659 mode |= RTLD_LAZY; 660 } 661 662 /* 663 * If the path specified is null then we're operating on global 664 * objects. Associate a dummy handle with the link-map list. 665 */ 666 if (path == NULL) { 667 Grp_hdl *ghp; 668 uint_t hflags, rdflags, cdflags; 669 int promote = 0; 670 671 /* 672 * Establish any flags for the handle (Grp_hdl). 673 * 674 * - This is a dummy, public, handle (0) that provides for a 675 * dynamic search of all global objects within the process. 676 * - Use of the RTLD_FIRST mode indicates that only the first 677 * dependency on the handle (the referenced object) can be 678 * used to satisfy dlsym() requests. 679 */ 680 hflags = (GPH_PUBLIC | GPH_ZERO); 681 if (mode & RTLD_FIRST) 682 hflags |= GPH_FIRST; 683 684 /* 685 * Establish the flags for the referenced dependency descriptor 686 * (Grp_desc). 687 * 688 * - The referenced object is available for dlsym(). 689 * - The referenced object is available to relocate against. 690 * - The referenced object should have it's dependencies 691 * added to this handle. 692 */ 693 rdflags = (GPD_DLSYM | GPD_RELOC | GPD_ADDEPS); 694 695 /* 696 * Establish the flags for this callers dependency descriptor 697 * (Grp_desc). 698 * 699 * - The explicit creation of a handle creates a descriptor 700 * for the referenced object and the parent (caller). 701 * - Use of the RTLD_PARENT flag indicates that the parent 702 * can be relocated against. 703 */ 704 cdflags = GPD_PARENT; 705 if (mode & RTLD_PARENT) 706 cdflags |= GPD_RELOC; 707 708 if ((ghp = hdl_create(lml, 0, clmp, hflags, rdflags, 709 cdflags)) == NULL) 710 return (NULL); 711 712 /* 713 * Traverse the main link-map control list, updating the mode 714 * of any objects as necessary. Call the relocation engine if 715 * this mode promotes the existing state of any relocations. 716 * crle()'s first pass loads all objects necessary for building 717 * a configuration file, however none of them are relocated. 718 * crle()'s second pass relocates objects in preparation for 719 * dldump()'ing using dlopen(0, RTLD_NOW). 720 */ 721 if ((mode & (RTLD_NOW | RTLD_CONFGEN)) == RTLD_CONFGEN) 722 return (ghp); 723 724 for (nlmp = lml->lm_head; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 725 if (((MODE(nlmp) & RTLD_GLOBAL) == 0) || 726 (FLAGS(nlmp) & FLG_RT_DELETE)) 727 continue; 728 729 if (update_mode(nlmp, MODE(nlmp), mode)) 730 promote = 1; 731 } 732 if (promote) 733 (void) relocate_lmc(lml, ALIST_OFF_DATA, clmp, 734 lml->lm_head, in_nfavl); 735 736 return (ghp); 737 } 738 739 /* 740 * Fix the pathname. If this object expands to multiple paths (ie. 741 * $ISALIST or $HWCAP have been used), then make sure the user has also 742 * furnished the RTLD_FIRST flag. As yet, we don't support opening 743 * more than one object at a time, so enforcing the RTLD_FIRST flag 744 * provides flexibility should we be able to support dlopening more 745 * than one object in the future. 746 */ 747 if (LM_FIX_NAME(clmp)(path, clmp, &palp, AL_CNT_NEEDED, orig) == NULL) 748 return (NULL); 749 750 if ((palp->al_arritems > 1) && ((mode & RTLD_FIRST) == 0)) { 751 remove_alist(&palp, 1); 752 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_5)); 753 return (NULL); 754 } 755 756 /* 757 * Establish a link-map control list for this request, and load the 758 * associated object. 759 */ 760 if ((nlmco = create_cntl(lml, 1)) == NULL) { 761 remove_alist(&palp, 1); 762 return (NULL); 763 } 764 olmco = nlmco; 765 766 nlmp = load_one(lml, nlmco, palp, clmp, mode, (flags | FLG_RT_PUBHDL), 767 &ghp, in_nfavl); 768 769 /* 770 * Remove any expanded pathname infrastructure, and if the dependency 771 * couldn't be loaded, cleanup. 772 */ 773 remove_alist(&palp, 1); 774 if (nlmp == NULL) { 775 remove_cntl(lml, olmco); 776 return (NULL); 777 } 778 779 /* 780 * If loading an auditor was requested, and the auditor already existed, 781 * then the link-map returned will be to the original auditor. The new 782 * link-map list that was initially created, and the associated link-map 783 * control list are no longer needed. As the auditor is already loaded, 784 * we're probably done, but fall through in case additional relocations 785 * would be triggered by the mode of the caller. 786 */ 787 if ((flags & FLG_RT_AUDIT) && (LIST(nlmp) != lml)) { 788 remove_cntl(lml, olmco); 789 lml = LIST(nlmp); 790 olmco = 0; 791 nlmco = ALIST_OFF_DATA; 792 } 793 794 /* 795 * Finish processing the objects associated with this request. 796 */ 797 if (((nlmp = analyze_lmc(lml, nlmco, nlmp, clmp, in_nfavl)) == NULL) || 798 (relocate_lmc(lml, nlmco, clmp, nlmp, in_nfavl) == 0)) { 799 ghp = NULL; 800 nlmp = NULL; 801 } 802 803 /* 804 * If the dlopen has failed, clean up any objects that might have been 805 * loaded successfully on this new link-map control list. 806 */ 807 if (olmco && (nlmp == NULL)) 808 remove_lmc(lml, clmp, olmco, path); 809 810 /* 811 * Finally, remove any temporary link-map control list. Note, if this 812 * operation successfully established a new link-map list, then a base 813 * link-map control list will have been created, which must remain. 814 */ 815 if (olmco && ((nlmp == NULL) || (olml != (Lm_list *)LM_ID_NEWLM))) 816 remove_cntl(lml, olmco); 817 818 return (ghp); 819 } 820 821 /* 822 * dlopen() and dlsym() operations are the means by which a process can 823 * test for the existence of required dependencies. If the necessary 824 * dependencies don't exist, then associated functionality can't be used. 825 * However, the lack of dependencies can be fixed, and the dlopen() and 826 * dlsym() requests can be repeated. As we use a "not-found" AVL tree to 827 * cache any failed full path loads, secondary dlopen() and dlsym() requests 828 * will fail, even if the dependencies have been installed. 829 * 830 * dlopen() and dlsym() retry any failures by removing the "not-found" AVL 831 * tree. Should any dependencies be found, their names are added to the 832 * FullPath AVL tree. This routine removes any new "not-found" AVL tree, 833 * so that the dlopen() or dlsym() can replace the original "not-found" tree. 834 */ 835 inline static void 836 nfavl_remove(avl_tree_t *avlt) 837 { 838 PathNode *pnp; 839 void *cookie = NULL; 840 841 if (avlt) { 842 while ((pnp = avl_destroy_nodes(avlt, &cookie)) != NULL) 843 free(pnp); 844 845 avl_destroy(avlt); 846 free(avlt); 847 } 848 } 849 850 /* 851 * Internal dlopen() activity. Called from user level or directly for internal 852 * opens that require a handle. 853 */ 854 Grp_hdl * 855 dlmopen_intn(Lm_list *lml, const char *path, int mode, Rt_map *clmp, 856 uint_t flags, uint_t orig) 857 { 858 Lm_list *olml = lml; 859 Rt_map *dlmp = NULL; 860 Grp_hdl *ghp; 861 int in_nfavl = 0; 862 863 /* 864 * Check for magic link-map list values: 865 * 866 * LM_ID_BASE: Operate on the PRIMARY (executables) link map 867 * LM_ID_LDSO: Operation on ld.so.1's link map 868 * LM_ID_NEWLM: Create a new link-map. 869 */ 870 if (lml == (Lm_list *)LM_ID_NEWLM) { 871 if ((lml = calloc(sizeof (Lm_list), 1)) == NULL) 872 return (NULL); 873 874 /* 875 * Establish the new link-map flags from the callers and those 876 * explicitly provided. 877 */ 878 lml->lm_tflags = LIST(clmp)->lm_tflags; 879 if (flags & FLG_RT_AUDIT) { 880 /* 881 * Unset any auditing flags - an auditor shouldn't be 882 * audited. Insure all audit dependencies are loaded. 883 */ 884 lml->lm_tflags &= ~LML_TFLG_AUD_MASK; 885 lml->lm_tflags |= (LML_TFLG_NOLAZYLD | 886 LML_TFLG_LOADFLTR | LML_TFLG_NOAUDIT); 887 } 888 889 if (aplist_append(&dynlm_list, lml, AL_CNT_DYNLIST) == NULL) { 890 free(lml); 891 return (NULL); 892 } 893 if (newlmid(lml) == 0) { 894 (void) aplist_delete_value(dynlm_list, lml); 895 free(lml); 896 return (NULL); 897 } 898 } else if ((uintptr_t)lml < LM_ID_NUM) { 899 if ((uintptr_t)lml == LM_ID_BASE) 900 lml = &lml_main; 901 else if ((uintptr_t)lml == LM_ID_LDSO) 902 lml = &lml_rtld; 903 } 904 905 /* 906 * Open the required object on the associated link-map list. 907 */ 908 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, &in_nfavl); 909 910 /* 911 * If the object could not be found it is possible that the "not-found" 912 * AVL tree had indicated that the file does not exist. In case the 913 * file system has changed since this "not-found" recording was made, 914 * retry the dlopen() with a clean "not-found" AVL tree. 915 */ 916 if ((ghp == NULL) && in_nfavl) { 917 avl_tree_t *oavlt = nfavl; 918 919 nfavl = NULL; 920 ghp = dlmopen_core(lml, olml, path, mode, clmp, flags, orig, 921 NULL); 922 923 /* 924 * If the file is found, then its full path name will have been 925 * registered in the FullPath AVL tree. Remove any new 926 * "not-found" AVL information, and restore the former AVL tree. 927 */ 928 nfavl_remove(nfavl); 929 nfavl = oavlt; 930 } 931 932 /* 933 * Establish the new link-map from which .init processing will begin. 934 * Ignore .init firing when constructing a configuration file (crle(1)). 935 */ 936 if (ghp && ((mode & RTLD_CONFGEN) == 0)) 937 dlmp = ghp->gh_ownlmp; 938 939 /* 940 * If loading an auditor was requested, and the auditor already existed, 941 * then the link-map returned will be to the original auditor. Remove 942 * the link-map control list that was created for this request. 943 */ 944 if (dlmp && (flags & FLG_RT_AUDIT) && (LIST(dlmp) != lml)) { 945 remove_lml(lml); 946 lml = LIST(dlmp); 947 } 948 949 /* 950 * If this load failed, remove any alternative link-map list. 951 */ 952 if ((ghp == NULL) && 953 ((lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) == 0)) { 954 remove_lml(lml); 955 lml = NULL; 956 } 957 958 /* 959 * Finish this load request. If objects were loaded, .init processing 960 * is computed. Finally, the debuggers are informed of the link-map 961 * lists being stable. 962 */ 963 load_completion(dlmp); 964 965 return (ghp); 966 } 967 968 /* 969 * Argument checking for dlopen. Only called via external entry. 970 */ 971 static Grp_hdl * 972 dlmopen_check(Lm_list *lml, const char *path, int mode, Rt_map *clmp) 973 { 974 /* 975 * Verify that a valid pathname has been supplied. 976 */ 977 if (path && (*path == '\0')) { 978 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 979 return (0); 980 } 981 982 /* 983 * Historically we've always verified the mode is either RTLD_NOW or 984 * RTLD_LAZY. RTLD_NOLOAD is valid by itself. Use of LM_ID_NEWLM 985 * requires a specific pathname, and use of RTLD_PARENT is meaningless. 986 */ 987 if ((mode & (RTLD_NOW | RTLD_LAZY | RTLD_NOLOAD)) == 0) { 988 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_1)); 989 return (0); 990 } 991 if ((mode & (RTLD_NOW | RTLD_LAZY)) == (RTLD_NOW | RTLD_LAZY)) { 992 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_2)); 993 return (0); 994 } 995 if ((lml == (Lm_list *)LM_ID_NEWLM) && (path == NULL)) { 996 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_3)); 997 return (0); 998 } 999 if ((lml == (Lm_list *)LM_ID_NEWLM) && (mode & RTLD_PARENT)) { 1000 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLMODE_4)); 1001 return (0); 1002 } 1003 1004 return (dlmopen_intn(lml, path, mode, clmp, 0, 0)); 1005 } 1006 1007 #pragma weak _dlopen = dlopen 1008 1009 /* 1010 * External entry for dlopen(3dl). On success, returns a pointer (handle) to 1011 * the structure containing information about the newly added object, ie. can 1012 * be used by dlsym(). On failure, returns a null pointer. 1013 */ 1014 void * 1015 dlopen(const char *path, int mode) 1016 { 1017 int entry; 1018 Rt_map *clmp; 1019 Grp_hdl *ghp; 1020 Lm_list *lml; 1021 1022 entry = enter(0); 1023 1024 clmp = _caller(caller(), CL_EXECDEF); 1025 lml = LIST(clmp); 1026 1027 ghp = dlmopen_check(lml, path, mode, clmp); 1028 1029 if (entry) 1030 leave(lml, 0); 1031 return ((void *)ghp); 1032 } 1033 1034 #pragma weak _dlmopen = dlmopen 1035 1036 /* 1037 * External entry for dlmopen(3dl). 1038 */ 1039 void * 1040 dlmopen(Lmid_t lmid, const char *path, int mode) 1041 { 1042 int entry; 1043 Rt_map *clmp; 1044 Grp_hdl *ghp; 1045 1046 entry = enter(0); 1047 1048 clmp = _caller(caller(), CL_EXECDEF); 1049 1050 ghp = dlmopen_check((Lm_list *)lmid, path, mode, clmp); 1051 1052 if (entry) 1053 leave(LIST(clmp), 0); 1054 return ((void *)ghp); 1055 } 1056 1057 /* 1058 * Handle processing for dlsym. 1059 */ 1060 int 1061 dlsym_handle(Grp_hdl *ghp, Slookup *slp, Sresult *srp, uint_t *binfo, 1062 int *in_nfavl) 1063 { 1064 Rt_map *nlmp, * lmp = ghp->gh_ownlmp; 1065 Rt_map *clmp = slp->sl_cmap; 1066 const char *name = slp->sl_name; 1067 Slookup sl = *slp; 1068 1069 sl.sl_flags = (LKUP_FIRST | LKUP_DLSYM | LKUP_SPEC); 1070 1071 /* 1072 * Continue processing a dlsym request. Lookup the required symbol in 1073 * each link-map specified by the handle. 1074 * 1075 * To leverage off of lazy loading, dlsym() requests can result in two 1076 * passes. The first descends the link-maps of any objects already in 1077 * the address space. If the symbol isn't located, and lazy 1078 * dependencies still exist, then a second pass is made to load these 1079 * dependencies if applicable. This model means that in the case where 1080 * a symbol exists in more than one object, the one located may not be 1081 * constant - this is the standard issue with lazy loading. In addition, 1082 * attempting to locate a symbol that doesn't exist will result in the 1083 * loading of all lazy dependencies on the given handle, which can 1084 * defeat some of the advantages of lazy loading (look out JVM). 1085 */ 1086 if (ghp->gh_flags & GPH_ZERO) { 1087 Lm_list *lml; 1088 uint_t lazy = 0; 1089 1090 /* 1091 * If this symbol lookup is triggered from a dlopen(0) handle, 1092 * traverse the present link-map list looking for promiscuous 1093 * entries. 1094 */ 1095 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1096 /* 1097 * If this handle indicates we're only to look in the 1098 * first object check whether we're done. 1099 */ 1100 if ((nlmp != lmp) && (ghp->gh_flags & GPH_FIRST)) 1101 return (0); 1102 1103 if (!(MODE(nlmp) & RTLD_GLOBAL)) 1104 continue; 1105 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1106 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1107 continue; 1108 1109 sl.sl_imap = nlmp; 1110 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1111 return (1); 1112 1113 /* 1114 * Keep track of any global pending lazy loads. 1115 */ 1116 lazy += LAZY(nlmp); 1117 } 1118 1119 /* 1120 * If we're unable to locate the symbol and this link-map list 1121 * still has pending lazy dependencies, start loading them in an 1122 * attempt to exhaust the search. Note that as we're already 1123 * traversing a dynamic linked list of link-maps there's no 1124 * need for elf_lazy_find_sym() to descend the link-maps itself. 1125 */ 1126 lml = LIST(lmp); 1127 if (lazy) { 1128 DBG_CALL(Dbg_syms_lazy_rescan(lml, name)); 1129 1130 sl.sl_flags |= LKUP_NODESCENT; 1131 1132 for (nlmp = lmp; nlmp; nlmp = NEXT_RT_MAP(nlmp)) { 1133 1134 if (!(MODE(nlmp) & RTLD_GLOBAL) || !LAZY(nlmp)) 1135 continue; 1136 if ((FLAGS(nlmp) & FLG_RT_DELETE) && 1137 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 1138 continue; 1139 1140 sl.sl_imap = nlmp; 1141 if (elf_lazy_find_sym(&sl, srp, binfo, 1142 in_nfavl)) 1143 return (1); 1144 } 1145 } 1146 } else { 1147 /* 1148 * Traverse the dlopen() handle searching all presently loaded 1149 * link-maps. 1150 */ 1151 Grp_desc *gdp; 1152 Aliste idx; 1153 uint_t lazy = 0; 1154 1155 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1156 nlmp = gdp->gd_depend; 1157 1158 if ((gdp->gd_flags & GPD_DLSYM) == 0) 1159 continue; 1160 1161 sl.sl_imap = nlmp; 1162 if (LM_LOOKUP_SYM(clmp)(&sl, srp, binfo, in_nfavl)) 1163 return (1); 1164 1165 if (ghp->gh_flags & GPH_FIRST) 1166 return (0); 1167 1168 /* 1169 * Keep track of any pending lazy loads associated 1170 * with this handle. 1171 */ 1172 lazy += LAZY(nlmp); 1173 } 1174 1175 /* 1176 * If we're unable to locate the symbol and this handle still 1177 * has pending lazy dependencies, start loading the lazy 1178 * dependencies, in an attempt to exhaust the search. 1179 */ 1180 if (lazy) { 1181 DBG_CALL(Dbg_syms_lazy_rescan(LIST(lmp), name)); 1182 1183 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1184 nlmp = gdp->gd_depend; 1185 1186 if (((gdp->gd_flags & GPD_DLSYM) == 0) || 1187 (LAZY(nlmp) == 0)) 1188 continue; 1189 1190 sl.sl_imap = nlmp; 1191 if (elf_lazy_find_sym(&sl, srp, binfo, 1192 in_nfavl)) 1193 return (1); 1194 } 1195 } 1196 } 1197 return (0); 1198 } 1199 1200 /* 1201 * Determine whether a symbol resides in a caller. This may be a reference, 1202 * which is associated with a specific dependency. 1203 */ 1204 inline static Sym * 1205 sym_lookup_in_caller(Rt_map *clmp, Slookup *slp, Sresult *srp, uint_t *binfo) 1206 { 1207 if (THIS_IS_ELF(clmp) && SYMINTP(clmp)(slp, srp, binfo, NULL)) { 1208 Sym *sym = srp->sr_sym; 1209 1210 slp->sl_rsymndx = (((ulong_t)sym - 1211 (ulong_t)SYMTAB(clmp)) / SYMENT(clmp)); 1212 slp->sl_rsym = sym; 1213 return (sym); 1214 } 1215 return (NULL); 1216 } 1217 1218 /* 1219 * Core dlsym activity. Selects symbol lookup method from handle. 1220 */ 1221 static void * 1222 dlsym_core(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp, 1223 int *in_nfavl) 1224 { 1225 Sym *sym; 1226 int ret = 0; 1227 Syminfo *sip; 1228 Slookup sl; 1229 Sresult sr; 1230 uint_t binfo; 1231 1232 /* 1233 * Initialize the symbol lookup data structure. 1234 * 1235 * Standard relocations are evaluated using the symbol index of the 1236 * associated relocation symbol. This index provides for loading 1237 * any lazy dependency and establishing a direct binding if necessary. 1238 * If a dlsym() operation originates from an object that contains a 1239 * symbol table entry for the same name, then we need to establish the 1240 * symbol index so that any dependency requirements can be triggered. 1241 * 1242 * Therefore, the first symbol lookup that is carried out is for the 1243 * symbol name within the calling object. If this symbol exists, the 1244 * symbols index is computed, added to the Slookup data, and thus used 1245 * to seed the real symbol lookup. 1246 */ 1247 SLOOKUP_INIT(sl, name, clmp, clmp, ld_entry_cnt, elf_hash(name), 1248 0, 0, 0, LKUP_SYMNDX); 1249 SRESULT_INIT(sr, name); 1250 sym = sym_lookup_in_caller(clmp, &sl, &sr, &binfo); 1251 1252 SRESULT_INIT(sr, name); 1253 1254 if (sym && (ELF_ST_VISIBILITY(sym->st_other) == STV_SINGLETON)) { 1255 Rt_map *hlmp = LIST(clmp)->lm_head; 1256 1257 /* 1258 * If a symbol reference is known, and that reference indicates 1259 * that the symbol is a singleton, then the search for the 1260 * symbol must follow the default search path. 1261 */ 1262 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1263 DBG_DLSYM_SINGLETON)); 1264 1265 sl.sl_imap = hlmp; 1266 if (handle == RTLD_PROBE) 1267 sl.sl_flags = LKUP_NOFALLBACK; 1268 else 1269 sl.sl_flags = LKUP_SPEC; 1270 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1271 1272 } else if (handle == RTLD_NEXT) { 1273 Rt_map *nlmp; 1274 1275 /* 1276 * If this handle is RTLD_NEXT determine whether a lazy load 1277 * from the caller might provide the next object. This mimics 1278 * the lazy loading initialization normally carried out by 1279 * lookup_sym(), however here, we must do this up-front, as 1280 * lookup_sym() will be used to inspect the next object. 1281 */ 1282 if ((sl.sl_rsymndx) && ((sip = SYMINFO(clmp)) != NULL)) { 1283 /* LINTED */ 1284 sip = (Syminfo *)((char *)sip + 1285 (sl.sl_rsymndx * SYMINENT(clmp))); 1286 1287 if ((sip->si_flags & SYMINFO_FLG_DIRECT) && 1288 (sip->si_boundto < SYMINFO_BT_LOWRESERVE)) 1289 (void) elf_lazy_load(clmp, &sl, 1290 sip->si_boundto, name, 0, NULL, in_nfavl); 1291 1292 /* 1293 * Clear the symbol index, so as not to confuse 1294 * lookup_sym() of the next object. 1295 */ 1296 sl.sl_rsymndx = 0; 1297 sl.sl_rsym = NULL; 1298 } 1299 1300 /* 1301 * If the handle is RTLD_NEXT, start searching in the next link 1302 * map from the callers. Determine permissions from the 1303 * present link map. Indicate to lookup_sym() that we're on an 1304 * RTLD_NEXT request so that it will use the callers link map to 1305 * start any possible lazy dependency loading. 1306 */ 1307 sl.sl_imap = nlmp = NEXT_RT_MAP(clmp); 1308 1309 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1310 (nlmp ? NAME(nlmp) : MSG_INTL(MSG_STR_NULL)), 1311 DBG_DLSYM_NEXT)); 1312 1313 if (nlmp == NULL) 1314 return (0); 1315 1316 sl.sl_flags = LKUP_NEXT; 1317 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1318 1319 } else if (handle == RTLD_SELF) { 1320 /* 1321 * If the handle is RTLD_SELF start searching from the caller. 1322 */ 1323 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, NAME(clmp), 1324 DBG_DLSYM_SELF)); 1325 1326 sl.sl_imap = clmp; 1327 sl.sl_flags = (LKUP_SPEC | LKUP_SELF); 1328 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1329 1330 } else if (handle == RTLD_DEFAULT) { 1331 Rt_map *hlmp = LIST(clmp)->lm_head; 1332 1333 /* 1334 * If the handle is RTLD_DEFAULT mimic the standard symbol 1335 * lookup as would be triggered by a relocation. 1336 */ 1337 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1338 DBG_DLSYM_DEFAULT)); 1339 1340 sl.sl_imap = hlmp; 1341 sl.sl_flags = LKUP_SPEC; 1342 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1343 1344 } else if (handle == RTLD_PROBE) { 1345 Rt_map *hlmp = LIST(clmp)->lm_head; 1346 1347 /* 1348 * If the handle is RTLD_PROBE, mimic the standard symbol 1349 * lookup as would be triggered by a relocation, however do 1350 * not fall back to a lazy loading rescan if the symbol can't be 1351 * found within the currently loaded objects. Note, a lazy 1352 * loaded dependency required by the caller might still get 1353 * loaded to satisfy this request, but no exhaustive lazy load 1354 * rescan is carried out. 1355 */ 1356 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 0, 1357 DBG_DLSYM_PROBE)); 1358 1359 sl.sl_imap = hlmp; 1360 sl.sl_flags = LKUP_NOFALLBACK; 1361 ret = LM_LOOKUP_SYM(clmp)(&sl, &sr, &binfo, in_nfavl); 1362 1363 } else { 1364 Grp_hdl *ghp = (Grp_hdl *)handle; 1365 1366 /* 1367 * Look in the shared object specified by the handle and in all 1368 * of its dependencies. 1369 */ 1370 DBG_CALL(Dbg_dl_dlsym(clmp, name, in_nfavl, 1371 NAME(ghp->gh_ownlmp), DBG_DLSYM_DEF)); 1372 1373 ret = LM_DLSYM(clmp)(ghp, &sl, &sr, &binfo, in_nfavl); 1374 } 1375 1376 if (ret && ((sym = sr.sr_sym) != NULL)) { 1377 Lm_list *lml = LIST(clmp); 1378 Addr addr = sym->st_value; 1379 1380 *dlmp = sr.sr_dmap; 1381 if (!(FLAGS(*dlmp) & FLG_RT_FIXED)) 1382 addr += ADDR(*dlmp); 1383 1384 /* 1385 * Indicate that the defining object is now used. 1386 */ 1387 if (*dlmp != clmp) 1388 FLAGS1(*dlmp) |= FL1_RT_USED; 1389 1390 DBG_CALL(Dbg_bind_global(clmp, 0, 0, (Xword)-1, PLT_T_NONE, 1391 *dlmp, addr, sym->st_value, sr.sr_name, binfo)); 1392 1393 if ((lml->lm_tflags | AFLAGS(clmp)) & LML_TFLG_AUD_SYMBIND) { 1394 uint_t sb_flags = LA_SYMB_DLSYM; 1395 /* LINTED */ 1396 uint_t symndx = (uint_t)(((Xword)sym - 1397 (Xword)SYMTAB(*dlmp)) / SYMENT(*dlmp)); 1398 addr = audit_symbind(clmp, *dlmp, sym, symndx, addr, 1399 &sb_flags); 1400 } 1401 return ((void *)addr); 1402 } 1403 1404 return (NULL); 1405 } 1406 1407 /* 1408 * Internal dlsym activity. Called from user level or directly for internal 1409 * symbol lookup. 1410 */ 1411 void * 1412 dlsym_intn(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1413 { 1414 Rt_map *llmp = NULL; 1415 void *error; 1416 Aliste idx; 1417 Grp_desc *gdp; 1418 int in_nfavl = 0; 1419 1420 /* 1421 * While looking for symbols it's quite possible that additional objects 1422 * get loaded from lazy loading. These objects will have been added to 1423 * the same link-map list as those objects on the handle. Remember this 1424 * list for later investigation. 1425 */ 1426 if ((handle == RTLD_NEXT) || (handle == RTLD_DEFAULT) || 1427 (handle == RTLD_SELF) || (handle == RTLD_PROBE)) 1428 llmp = LIST(clmp)->lm_tail; 1429 else { 1430 Grp_hdl *ghp = (Grp_hdl *)handle; 1431 1432 if (ghp->gh_ownlmp) 1433 llmp = LIST(ghp->gh_ownlmp)->lm_tail; 1434 else { 1435 for (ALIST_TRAVERSE(ghp->gh_depends, idx, gdp)) { 1436 if ((llmp = 1437 LIST(gdp->gd_depend)->lm_tail) != NULL) 1438 break; 1439 } 1440 } 1441 } 1442 1443 error = dlsym_core(handle, name, clmp, dlmp, &in_nfavl); 1444 1445 /* 1446 * If the symbol could not be found it is possible that the "not-found" 1447 * AVL tree had indicated that a required file does not exist. In case 1448 * the file system has changed since this "not-found" recording was 1449 * made, retry the dlsym() with a clean "not-found" AVL tree. 1450 */ 1451 if ((error == NULL) && in_nfavl) { 1452 avl_tree_t *oavlt = nfavl; 1453 1454 nfavl = NULL; 1455 error = dlsym_core(handle, name, clmp, dlmp, NULL); 1456 1457 /* 1458 * If the symbol is found, then any file that was loaded will 1459 * have had its full path name registered in the FullPath AVL 1460 * tree. Remove any new "not-found" AVL information, and 1461 * restore the former AVL tree. 1462 */ 1463 nfavl_remove(nfavl); 1464 nfavl = oavlt; 1465 } 1466 1467 if (error == NULL) { 1468 /* 1469 * Cache the error message, as Java tends to fall through this 1470 * code many times. 1471 */ 1472 if (nosym_str == NULL) 1473 nosym_str = MSG_INTL(MSG_GEN_NOSYM); 1474 eprintf(LIST(clmp), ERR_FATAL, nosym_str, name); 1475 } 1476 1477 load_completion(llmp); 1478 return (error); 1479 } 1480 1481 /* 1482 * Argument checking for dlsym. Only called via external entry. 1483 */ 1484 static void * 1485 dlsym_check(void *handle, const char *name, Rt_map *clmp, Rt_map **dlmp) 1486 { 1487 /* 1488 * Verify the arguments. 1489 */ 1490 if (name == NULL) { 1491 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_ILLSYM)); 1492 return (NULL); 1493 } 1494 if ((handle != RTLD_NEXT) && (handle != RTLD_DEFAULT) && 1495 (handle != RTLD_SELF) && (handle != RTLD_PROBE) && 1496 (hdl_validate((Grp_hdl *)handle) == 0)) { 1497 eprintf(LIST(clmp), ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1498 EC_NATPTR(handle)); 1499 return (NULL); 1500 } 1501 return (dlsym_intn(handle, name, clmp, dlmp)); 1502 } 1503 1504 1505 #pragma weak _dlsym = dlsym 1506 1507 /* 1508 * External entry for dlsym(). On success, returns the address of the specified 1509 * symbol. On error returns a null. 1510 */ 1511 void * 1512 dlsym(void *handle, const char *name) 1513 { 1514 int entry; 1515 Rt_map *clmp, *dlmp = NULL; 1516 void *addr; 1517 1518 entry = enter(0); 1519 1520 clmp = _caller(caller(), CL_EXECDEF); 1521 1522 addr = dlsym_check(handle, name, clmp, &dlmp); 1523 1524 if (entry) { 1525 if (dlmp) 1526 is_dep_init(dlmp, clmp); 1527 leave(LIST(clmp), 0); 1528 } 1529 return (addr); 1530 } 1531 1532 /* 1533 * Core dladdr activity. 1534 */ 1535 static void 1536 dladdr_core(Rt_map *almp, void *addr, Dl_info_t *dlip, void **info, int flags) 1537 { 1538 /* 1539 * Set up generic information and any defaults. 1540 */ 1541 dlip->dli_fname = PATHNAME(almp); 1542 1543 dlip->dli_fbase = (void *)ADDR(almp); 1544 dlip->dli_sname = NULL; 1545 dlip->dli_saddr = NULL; 1546 1547 /* 1548 * Determine the nearest symbol to this address. 1549 */ 1550 LM_DLADDR(almp)((ulong_t)addr, almp, dlip, info, flags); 1551 } 1552 1553 #pragma weak _dladdr = dladdr 1554 1555 /* 1556 * External entry for dladdr(3dl) and dladdr1(3dl). Returns an information 1557 * structure that reflects the symbol closest to the address specified. 1558 */ 1559 int 1560 dladdr(void *addr, Dl_info_t *dlip) 1561 { 1562 int entry, ret; 1563 Rt_map *clmp, *almp; 1564 Lm_list *clml; 1565 1566 entry = enter(0); 1567 1568 clmp = _caller(caller(), CL_EXECDEF); 1569 clml = LIST(clmp); 1570 1571 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1572 1573 /* 1574 * Use our calling technique to determine what object is associated 1575 * with the supplied address. If a caller can't be determined, 1576 * indicate the failure. 1577 */ 1578 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1579 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1580 EC_NATPTR(addr)); 1581 ret = 0; 1582 } else { 1583 dladdr_core(almp, addr, dlip, 0, 0); 1584 ret = 1; 1585 } 1586 1587 if (entry) 1588 leave(clml, 0); 1589 return (ret); 1590 } 1591 1592 #pragma weak _dladdr1 = dladdr1 1593 1594 int 1595 dladdr1(void *addr, Dl_info_t *dlip, void **info, int flags) 1596 { 1597 int entry, ret = 1; 1598 Rt_map *clmp, *almp; 1599 Lm_list *clml; 1600 1601 entry = enter(0); 1602 1603 clmp = _caller(caller(), CL_EXECDEF); 1604 clml = LIST(clmp); 1605 1606 DBG_CALL(Dbg_dl_dladdr(clmp, addr)); 1607 1608 /* 1609 * Validate any flags. 1610 */ 1611 if (flags) { 1612 int request; 1613 1614 if (((request = (flags & RTLD_DL_MASK)) != RTLD_DL_SYMENT) && 1615 (request != RTLD_DL_LINKMAP)) { 1616 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLFLAGS), 1617 flags); 1618 ret = 0; 1619 1620 } else if (info == NULL) { 1621 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLINFO), 1622 flags); 1623 ret = 0; 1624 } 1625 } 1626 1627 /* 1628 * Use our calling technique to determine what object is associated 1629 * with the supplied address. If a caller can't be determined, 1630 * indicate the failure. 1631 */ 1632 if (ret) { 1633 if ((almp = _caller(addr, CL_NONE)) == NULL) { 1634 eprintf(clml, ERR_FATAL, MSG_INTL(MSG_ARG_INVADDR), 1635 EC_NATPTR(addr)); 1636 ret = 0; 1637 } else 1638 dladdr_core(almp, addr, dlip, info, flags); 1639 } 1640 1641 if (entry) 1642 leave(clml, 0); 1643 return (ret); 1644 } 1645 1646 /* 1647 * Core dldump activity. 1648 */ 1649 static int 1650 dldump_core(Rt_map *clmp, Rt_map *lmp, const char *ipath, const char *opath, 1651 int flags) 1652 { 1653 Lm_list *lml = LIST(clmp); 1654 Addr addr = 0; 1655 1656 /* 1657 * Verify any arguments first. 1658 */ 1659 if ((opath == NULL) || (opath[0] == '\0') || 1660 ((lmp == NULL) && (ipath[0] == '\0'))) { 1661 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLPATH)); 1662 return (1); 1663 } 1664 1665 /* 1666 * If an input file is specified make sure its one of our dependencies 1667 * on the main link-map list. Note, this has really all evolved for 1668 * crle(), which uses libcrle.so on an alternative link-map to trigger 1669 * dumping objects from the main link-map list. If we ever want to 1670 * dump objects from alternative link-maps, this model is going to 1671 * have to be revisited. 1672 */ 1673 if (lmp == NULL) { 1674 if ((lmp = is_so_loaded(&lml_main, ipath, NULL)) == NULL) { 1675 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NOFILE), 1676 ipath); 1677 return (1); 1678 } 1679 if (FLAGS(lmp) & FLG_RT_ALTER) { 1680 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_ALTER), ipath); 1681 return (1); 1682 } 1683 if (FLAGS(lmp) & FLG_RT_NODUMP) { 1684 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_GEN_NODUMP), 1685 ipath); 1686 return (1); 1687 } 1688 } 1689 1690 /* 1691 * If the object being dump'ed isn't fixed identify its mapping. 1692 */ 1693 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 1694 addr = ADDR(lmp); 1695 1696 /* 1697 * As rt_dldump() will effectively lazy load the necessary support 1698 * libraries, make sure ld.so.1 is initialized for plt relocations. 1699 */ 1700 if (elf_rtld_load() == 0) 1701 return (0); 1702 1703 /* 1704 * Dump the required image. 1705 */ 1706 return (rt_dldump(lmp, opath, flags, addr)); 1707 } 1708 1709 #pragma weak _dldump = dldump 1710 1711 /* 1712 * External entry for dldump(3c). Returns 0 on success, non-zero otherwise. 1713 */ 1714 int 1715 dldump(const char *ipath, const char *opath, int flags) 1716 { 1717 int error, entry; 1718 Rt_map *clmp, *lmp; 1719 1720 entry = enter(0); 1721 1722 clmp = _caller(caller(), CL_EXECDEF); 1723 1724 if (ipath) { 1725 lmp = NULL; 1726 } else { 1727 lmp = lml_main.lm_head; 1728 ipath = NAME(lmp); 1729 } 1730 1731 DBG_CALL(Dbg_dl_dldump(clmp, ipath, opath, flags)); 1732 1733 error = dldump_core(clmp, lmp, ipath, opath, flags); 1734 1735 if (entry) 1736 leave(LIST(clmp), 0); 1737 return (error); 1738 } 1739 1740 /* 1741 * get_linkmap_id() translates Lm_list * pointers to the Link_map id as used by 1742 * the rtld_db and dlmopen() interfaces. It checks to see if the Link_map is 1743 * one of the primary ones and if so returns it's special token: 1744 * LM_ID_BASE 1745 * LM_ID_LDSO 1746 * 1747 * If it's not one of the primary link_map id's it will instead returns a 1748 * pointer to the Lm_list structure which uniquely identifies the Link_map. 1749 */ 1750 Lmid_t 1751 get_linkmap_id(Lm_list *lml) 1752 { 1753 if (lml->lm_flags & LML_FLG_BASELM) 1754 return (LM_ID_BASE); 1755 if (lml->lm_flags & LML_FLG_RTLDLM) 1756 return (LM_ID_LDSO); 1757 1758 return ((Lmid_t)lml); 1759 } 1760 1761 /* 1762 * Set a new deferred dependency name. 1763 */ 1764 static int 1765 set_def_need(Lm_list *lml, Dyninfo *dyip, const char *name) 1766 { 1767 /* 1768 * If this dependency has already been established, then this dlinfo() 1769 * call is too late. 1770 */ 1771 if (dyip->di_info) { 1772 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_DEPLOADED), 1773 dyip->di_name); 1774 return (-1); 1775 } 1776 1777 /* 1778 * Assign the new dependency name. 1779 */ 1780 DBG_CALL(Dbg_file_deferred(lml, dyip->di_name, name)); 1781 dyip->di_flags |= FLG_DI_DEF_DONE; 1782 dyip->di_name = name; 1783 return (0); 1784 } 1785 1786 /* 1787 * Extract information for a dlopen() handle. 1788 */ 1789 static int 1790 dlinfo_core(void *handle, int request, void *p, Rt_map *clmp) 1791 { 1792 Conv_inv_buf_t inv_buf; 1793 char *handlename; 1794 Lm_list *lml = LIST(clmp); 1795 Rt_map *lmp = NULL; 1796 1797 /* 1798 * Determine whether a handle is provided. A handle isn't needed for 1799 * all operations, but it is validated here for the initial diagnostic. 1800 */ 1801 if (handle == RTLD_SELF) { 1802 lmp = clmp; 1803 } else { 1804 Grp_hdl *ghp = (Grp_hdl *)handle; 1805 1806 if (hdl_validate(ghp)) 1807 lmp = ghp->gh_ownlmp; 1808 } 1809 if (lmp) { 1810 handlename = NAME(lmp); 1811 } else { 1812 (void) conv_invalid_val(&inv_buf, EC_NATPTR(handle), 0); 1813 handlename = inv_buf.buf; 1814 } 1815 1816 DBG_CALL(Dbg_dl_dlinfo(clmp, handlename, request, p)); 1817 1818 /* 1819 * Validate the request and return buffer. 1820 */ 1821 if ((request > RTLD_DI_MAX) || (p == NULL)) { 1822 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_ILLVAL)); 1823 return (-1); 1824 } 1825 1826 /* 1827 * Return configuration cache name and address. 1828 */ 1829 if (request == RTLD_DI_CONFIGADDR) { 1830 Dl_info_t *dlip = (Dl_info_t *)p; 1831 1832 if ((config->c_name == NULL) || (config->c_bgn == 0) || 1833 (config->c_end == 0)) { 1834 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOCONFIG)); 1835 return (-1); 1836 } 1837 dlip->dli_fname = config->c_name; 1838 dlip->dli_fbase = (void *)config->c_bgn; 1839 return (0); 1840 } 1841 1842 /* 1843 * Return profiled object name (used by ldprof audit library). 1844 */ 1845 if (request == RTLD_DI_PROFILENAME) { 1846 if (profile_name == NULL) { 1847 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_NOPROFNAME)); 1848 return (-1); 1849 } 1850 1851 *(const char **)p = profile_name; 1852 return (0); 1853 } 1854 if (request == RTLD_DI_PROFILEOUT) { 1855 /* 1856 * If a profile destination directory hasn't been specified 1857 * provide a default. 1858 */ 1859 if (profile_out == NULL) 1860 profile_out = MSG_ORIG(MSG_PTH_VARTMP); 1861 1862 *(const char **)p = profile_out; 1863 return (0); 1864 } 1865 1866 /* 1867 * Obtain or establish a termination signal. 1868 */ 1869 if (request == RTLD_DI_GETSIGNAL) { 1870 *(int *)p = killsig; 1871 return (0); 1872 } 1873 1874 if (request == RTLD_DI_SETSIGNAL) { 1875 sigset_t set; 1876 int sig = *(int *)p; 1877 1878 /* 1879 * Determine whether the signal is in range. 1880 */ 1881 (void) sigfillset(&set); 1882 if (sigismember(&set, sig) != 1) { 1883 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVSIG), sig); 1884 return (-1); 1885 } 1886 1887 killsig = sig; 1888 return (0); 1889 } 1890 1891 /* 1892 * For any other request a link-map is required. Verify the handle. 1893 */ 1894 if (lmp == NULL) { 1895 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_ARG_INVHNDL), 1896 EC_NATPTR(handle)); 1897 return (-1); 1898 } 1899 1900 /* 1901 * Obtain the process arguments, environment and auxv. Note, as the 1902 * environment can be modified by the user (putenv(3c)), reinitialize 1903 * the environment pointer on each request. 1904 */ 1905 if (request == RTLD_DI_ARGSINFO) { 1906 Dl_argsinfo_t *aip = (Dl_argsinfo_t *)p; 1907 Lm_list *lml = LIST(lmp); 1908 1909 *aip = argsinfo; 1910 if (lml->lm_flags & LML_FLG_ENVIRON) 1911 aip->dla_envp = *(lml->lm_environ); 1912 1913 return (0); 1914 } 1915 1916 /* 1917 * Return Lmid_t of the Link-Map list that the specified object is 1918 * loaded on. 1919 */ 1920 if (request == RTLD_DI_LMID) { 1921 *(Lmid_t *)p = get_linkmap_id(LIST(lmp)); 1922 return (0); 1923 } 1924 1925 /* 1926 * Return a pointer to the Link-Map structure associated with the 1927 * specified object. 1928 */ 1929 if (request == RTLD_DI_LINKMAP) { 1930 *(Link_map **)p = (Link_map *)lmp; 1931 return (0); 1932 } 1933 1934 /* 1935 * Return search path information, or the size of the buffer required 1936 * to store the information. 1937 */ 1938 if ((request == RTLD_DI_SERINFO) || (request == RTLD_DI_SERINFOSIZE)) { 1939 Spath_desc sd = { search_rules, NULL, 0 }; 1940 Pdesc *pdp; 1941 Dl_serinfo_t *info; 1942 Dl_serpath_t *path; 1943 char *strs; 1944 size_t size = sizeof (Dl_serinfo_t); 1945 uint_t cnt = 0; 1946 1947 info = (Dl_serinfo_t *)p; 1948 path = &info->dls_serpath[0]; 1949 strs = (char *)&info->dls_serpath[info->dls_cnt]; 1950 1951 /* 1952 * Traverse search path entries for this object. 1953 */ 1954 while ((pdp = get_next_dir(&sd, lmp, 0)) != NULL) { 1955 size_t _size; 1956 1957 if (pdp->pd_pname == NULL) 1958 continue; 1959 1960 /* 1961 * If configuration information exists, it's possible 1962 * this path has been identified as non-existent, if so 1963 * ignore it. 1964 */ 1965 if (pdp->pd_info) { 1966 Rtc_obj *dobj = (Rtc_obj *)pdp->pd_info; 1967 if (dobj->co_flags & RTC_OBJ_NOEXIST) 1968 continue; 1969 } 1970 1971 /* 1972 * Keep track of search path count and total info size. 1973 */ 1974 if (cnt++) 1975 size += sizeof (Dl_serpath_t); 1976 _size = pdp->pd_plen + 1; 1977 size += _size; 1978 1979 if (request == RTLD_DI_SERINFOSIZE) 1980 continue; 1981 1982 /* 1983 * If we're filling in search path information, confirm 1984 * there's sufficient space. 1985 */ 1986 if (size > info->dls_size) { 1987 eprintf(lml, ERR_FATAL, 1988 MSG_INTL(MSG_ARG_SERSIZE), 1989 EC_OFF(info->dls_size)); 1990 return (-1); 1991 } 1992 if (cnt > info->dls_cnt) { 1993 eprintf(lml, ERR_FATAL, 1994 MSG_INTL(MSG_ARG_SERCNT), info->dls_cnt); 1995 return (-1); 1996 } 1997 1998 /* 1999 * Append the path to the information buffer. 2000 */ 2001 (void) strcpy(strs, pdp->pd_pname); 2002 path->dls_name = strs; 2003 path->dls_flags = (pdp->pd_flags & LA_SER_MASK); 2004 2005 strs = strs + _size; 2006 path++; 2007 } 2008 2009 /* 2010 * If we're here to size the search buffer fill it in. 2011 */ 2012 if (request == RTLD_DI_SERINFOSIZE) { 2013 info->dls_size = size; 2014 info->dls_cnt = cnt; 2015 } 2016 2017 return (0); 2018 } 2019 2020 /* 2021 * Return the origin of the object associated with this link-map. 2022 * Basically return the dirname(1) of the objects fullpath. 2023 */ 2024 if (request == RTLD_DI_ORIGIN) { 2025 char *str = (char *)p; 2026 2027 (void) strncpy(str, ORIGNAME(lmp), DIRSZ(lmp)); 2028 str += DIRSZ(lmp); 2029 *str = '\0'; 2030 2031 return (0); 2032 } 2033 2034 /* 2035 * Return the number of object mappings, or the mapping information for 2036 * this object. 2037 */ 2038 if (request == RTLD_DI_MMAPCNT) { 2039 uint_t *cnt = (uint_t *)p; 2040 2041 *cnt = MMAPCNT(lmp); 2042 return (0); 2043 } 2044 if (request == RTLD_DI_MMAPS) { 2045 Dl_mapinfo_t *mip = (Dl_mapinfo_t *)p; 2046 2047 if (mip->dlm_acnt && mip->dlm_maps) { 2048 uint_t cnt = 0; 2049 2050 while ((cnt < mip->dlm_acnt) && (cnt < MMAPCNT(lmp))) { 2051 mip->dlm_maps[cnt] = MMAPS(lmp)[cnt]; 2052 cnt++; 2053 } 2054 mip->dlm_rcnt = cnt; 2055 } 2056 return (0); 2057 } 2058 2059 /* 2060 * Assign a new dependency name to a deferred dependency. 2061 */ 2062 if ((request == RTLD_DI_DEFERRED) || 2063 (request == RTLD_DI_DEFERRED_SYM)) { 2064 Dl_definfo_t *dfip = (Dl_definfo_t *)p; 2065 Dyninfo *dyip; 2066 const char *dname, *rname; 2067 2068 /* 2069 * Verify the names. 2070 */ 2071 if ((dfip->dld_refname == NULL) || 2072 (dfip->dld_depname == NULL)) { 2073 eprintf(LIST(clmp), ERR_FATAL, 2074 MSG_INTL(MSG_ARG_ILLNAME)); 2075 return (-1); 2076 } 2077 2078 dname = dfip->dld_depname; 2079 rname = dfip->dld_refname; 2080 2081 /* 2082 * A deferred dependency can be determined by referencing a 2083 * symbol family member that is associated to the dependency, 2084 * or by looking for the dependency by its name. 2085 */ 2086 if (request == RTLD_DI_DEFERRED_SYM) { 2087 Slookup sl; 2088 Sresult sr; 2089 uint_t binfo; 2090 Syminfo *sip; 2091 2092 /* 2093 * Lookup the symbol in the associated object. 2094 */ 2095 SLOOKUP_INIT(sl, rname, lmp, lmp, ld_entry_cnt, 2096 elf_hash(rname), 0, 0, 0, LKUP_SYMNDX); 2097 SRESULT_INIT(sr, rname); 2098 if (sym_lookup_in_caller(clmp, &sl, &sr, 2099 &binfo) == NULL) { 2100 eprintf(LIST(clmp), ERR_FATAL, 2101 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2102 return (-1); 2103 } 2104 2105 /* 2106 * Use the symbols index to reference the Syminfo entry 2107 * and thus find the associated dependency. 2108 */ 2109 if (sl.sl_rsymndx && ((sip = SYMINFO(clmp)) != NULL)) { 2110 /* LINTED */ 2111 sip = (Syminfo *)((char *)sip + 2112 (sl.sl_rsymndx * SYMINENT(lmp))); 2113 2114 if ((sip->si_flags & SYMINFO_FLG_DEFERRED) && 2115 (sip->si_boundto < SYMINFO_BT_LOWRESERVE) && 2116 ((dyip = DYNINFO(lmp)) != NULL)) { 2117 dyip += sip->si_boundto; 2118 2119 if (!(dyip->di_flags & FLG_DI_IGNORE)) 2120 return (set_def_need(lml, 2121 dyip, dname)); 2122 } 2123 } 2124 2125 /* 2126 * No deferred symbol found. 2127 */ 2128 eprintf(LIST(clmp), ERR_FATAL, 2129 MSG_INTL(MSG_DEF_NOSYMFOUND), rname); 2130 return (-1); 2131 2132 } else { 2133 Dyn *dyn; 2134 2135 /* 2136 * Using the target objects dependency information, find 2137 * the associated deferred dependency. 2138 */ 2139 for (dyn = DYN(lmp), dyip = DYNINFO(lmp); 2140 !(dyip->di_flags & FLG_DI_IGNORE); dyn++, dyip++) { 2141 const char *oname; 2142 2143 if ((dyip->di_flags & FLG_DI_DEFERRED) == 0) 2144 continue; 2145 2146 if (strcmp(rname, dyip->di_name) == 0) 2147 return (set_def_need(lml, dyip, dname)); 2148 2149 /* 2150 * If this dependency name has been changed by 2151 * a previous dlinfo(), check the original 2152 * dynamic entry string. The user might be 2153 * attempting to re-change an entry using the 2154 * original name as the reference. 2155 */ 2156 if ((dyip->di_flags & FLG_DI_DEF_DONE) == 0) 2157 continue; 2158 2159 oname = STRTAB(lmp) + dyn->d_un.d_val; 2160 if (strcmp(rname, oname) == 0) 2161 return (set_def_need(lml, dyip, dname)); 2162 } 2163 2164 /* 2165 * No deferred dependency found. 2166 */ 2167 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_DEF_NODEPFOUND), 2168 rname); 2169 return (-1); 2170 } 2171 } 2172 return (0); 2173 } 2174 2175 #pragma weak _dlinfo = dlinfo 2176 2177 /* 2178 * External entry for dlinfo(3dl). 2179 */ 2180 int 2181 dlinfo(void *handle, int request, void *p) 2182 { 2183 int error, entry; 2184 Rt_map *clmp; 2185 2186 entry = enter(0); 2187 2188 clmp = _caller(caller(), CL_EXECDEF); 2189 2190 error = dlinfo_core(handle, request, p, clmp); 2191 2192 if (entry) 2193 leave(LIST(clmp), 0); 2194 return (error); 2195 } 2196 2197 /* 2198 * GNU defined function to iterate through the program headers for all 2199 * currently loaded dynamic objects. The caller supplies a callback function 2200 * which is called for each object. 2201 * 2202 * entry: 2203 * callback - Callback function to call. The arguments to the callback 2204 * function are: 2205 * info - Address of dl_phdr_info structure 2206 * size - sizeof (struct dl_phdr_info) 2207 * data - Caller supplied value. 2208 * data - Value supplied by caller, which is passed to callback without 2209 * examination. 2210 * 2211 * exit: 2212 * callback is called for each dynamic ELF object in the process address 2213 * space, halting when a non-zero value is returned, or when the last 2214 * object has been processed. The return value from the last call 2215 * to callback is returned. 2216 * 2217 * note: 2218 * The Linux implementation has added additional fields to the 2219 * dl_phdr_info structure over time. The callback function is 2220 * supposed to use the size field to determine which fields are 2221 * present, and to avoid attempts to access non-existent fields. 2222 * We have added those fields that are compatible with Solaris, and 2223 * which are used by GNU C++ (g++) runtime exception handling support. 2224 * 2225 * note: 2226 * We issue a callback for every ELF object mapped into the process 2227 * address space at the time this routine is entered. These callbacks 2228 * are arbitrary functions that can do anything, including possibly 2229 * causing new objects to be mapped into the process, or unmapped. 2230 * This complicates matters: 2231 * 2232 * - Adding new objects can cause the alists to be reallocated 2233 * or for contents to move. This can happen explicitly via 2234 * dlopen(), or implicitly via lazy loading. One might consider 2235 * simply banning dlopen from a callback, but lazy loading must 2236 * be allowed, in which case there's no reason to ban dlopen(). 2237 * 2238 * - Removing objects can leave us holding references to freed 2239 * memory that must not be accessed, and can cause the list 2240 * items to move in a way that would cause us to miss reporting 2241 * one, or double report others. 2242 * 2243 * - We cannot allocate memory to build a separate data structure, 2244 * because the interface to dl_iterate_phdr() does not have a 2245 * way to communicate allocation errors back to the caller. 2246 * Even if we could, it would be difficult to do so efficiently. 2247 * 2248 * - It is possible for dl_iterate_phdr() to be called recursively 2249 * from a callback, and there is no way for us to detect or manage 2250 * this effectively, particularly as the user might use longjmp() 2251 * to skip past us on return. Hence, we must be reentrant 2252 * (stateless), further precluding the option of building a 2253 * separate data structure. 2254 * 2255 * Despite these constraints, we are able to traverse the link-map 2256 * lists safely: 2257 * 2258 * - Once interposer (preload) objects have been processed at 2259 * startup, we know that new objects are always placed at the 2260 * end of the list. Hence, if we are reading a list when that 2261 * happens, the new object will not alter the part of the list 2262 * that we've already processed. 2263 * 2264 * - The alist _TRAVERSE macros recalculate the address of the 2265 * current item from scratch on each iteration, rather than 2266 * incrementing a pointer. Hence, alist additions that occur 2267 * in mid-traverse will not cause confusion. 2268 * 2269 * There is one limitation: We cannot continue operation if an object 2270 * is removed from the process from within a callback. We detect when 2271 * this happens and return immediately with a -1 return value. 2272 * 2273 * note: 2274 * As currently implemented, if a callback causes an object to be loaded, 2275 * that object may or may not be reported by the current invocation of 2276 * dl_iterate_phdr(), based on whether or not we have already processed 2277 * the link-map list that receives it. If we want to prevent this, it 2278 * can be done efficiently by associating the current value of cnt_map 2279 * with each new Rt_map entered into the system. Then this function can 2280 * use that to detect and skip new objects that enter the system in 2281 * mid-iteration. However, the Linux documentation is ambiguous on whether 2282 * this is necessary, and it does not appear to matter in practice. 2283 * We have therefore chosen not to do so at this time. 2284 */ 2285 int 2286 dl_iterate_phdr(int (*callback)(struct dl_phdr_info *, size_t, void *), 2287 void *data) 2288 { 2289 struct dl_phdr_info info; 2290 u_longlong_t l_cnt_map = cnt_map; 2291 u_longlong_t l_cnt_unmap = cnt_unmap; 2292 Lm_list *lml, *clml; 2293 Lm_cntl *lmc; 2294 Rt_map *lmp, *clmp; 2295 Aliste idx1, idx2; 2296 Ehdr *ehdr; 2297 int ret = 0; 2298 int entry; 2299 2300 entry = enter(0); 2301 clmp = _caller(caller(), CL_EXECDEF); 2302 clml = LIST(clmp); 2303 2304 DBG_CALL(Dbg_dl_iphdr_enter(clmp, cnt_map, cnt_unmap)); 2305 2306 /* Issue a callback for each ELF object in the process */ 2307 for (APLIST_TRAVERSE(dynlm_list, idx1, lml)) { 2308 for (ALIST_TRAVERSE(lml->lm_lists, idx2, lmc)) { 2309 for (lmp = lmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 2310 #if defined(_sparc) && !defined(_LP64) 2311 /* 2312 * On 32-bit sparc, the possibility exists that 2313 * this object is not ELF. 2314 */ 2315 if (THIS_IS_NOT_ELF(lmp)) 2316 continue; 2317 #endif 2318 /* Prepare the object information structure */ 2319 ehdr = (Ehdr *) ADDR(lmp); 2320 info.dlpi_addr = (ehdr->e_type == ET_EXEC) ? 2321 0 : ADDR(lmp); 2322 info.dlpi_name = lmp->rt_pathname; 2323 info.dlpi_phdr = (Phdr *) 2324 (ADDR(lmp) + ehdr->e_phoff); 2325 info.dlpi_phnum = ehdr->e_phnum; 2326 info.dlpi_adds = cnt_map; 2327 info.dlpi_subs = cnt_unmap; 2328 2329 /* Issue the callback */ 2330 DBG_CALL(Dbg_dl_iphdr_callback(clml, &info)); 2331 leave(clml, thr_flg_reenter); 2332 ret = (* callback)(&info, sizeof (info), data); 2333 (void) enter(thr_flg_reenter); 2334 2335 /* Return immediately on non-zero result */ 2336 if (ret != 0) 2337 goto done; 2338 2339 /* Adapt to object mapping changes */ 2340 if ((cnt_map == l_cnt_map) && 2341 (cnt_unmap == l_cnt_unmap)) 2342 continue; 2343 2344 DBG_CALL(Dbg_dl_iphdr_mapchange(clml, cnt_map, 2345 cnt_unmap)); 2346 2347 /* Stop if an object was unmapped */ 2348 if (cnt_unmap == l_cnt_unmap) { 2349 l_cnt_map = cnt_map; 2350 continue; 2351 } 2352 2353 ret = -1; 2354 DBG_CALL(Dbg_dl_iphdr_unmap_ret(clml)); 2355 goto done; 2356 } 2357 } 2358 } 2359 2360 done: 2361 if (entry) 2362 leave(LIST(clmp), 0); 2363 return (ret); 2364 } 2365