1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * This file contains the functions responsible for opening the output file 33 * image, associating the appropriate input elf structures with the new image, 34 * and obtaining new elf structures to define the new image. 35 */ 36 #include <stdio.h> 37 #include <sys/stat.h> 38 #include <fcntl.h> 39 #include <link.h> 40 #include <errno.h> 41 #include <string.h> 42 #include <limits.h> 43 #include <debug.h> 44 #include <unistd.h> 45 #include "msg.h" 46 #include "_libld.h" 47 48 /* 49 * Determine a least common multiplier. Input sections contain an alignment 50 * requirement, which elf_update() uses to insure that the section is aligned 51 * correctly off of the base of the elf image. We must also insure that the 52 * sections mapping is congruent with this alignment requirement. For each 53 * input section associated with a loadable segment determine whether the 54 * segments alignment must be adjusted to compensate for a sections alignment 55 * requirements. 56 */ 57 Xword 58 ld_lcm(Xword a, Xword b) 59 { 60 Xword _r, _a, _b; 61 62 if ((_a = a) == 0) 63 return (b); 64 if ((_b = b) == 0) 65 return (a); 66 67 if (_a > _b) 68 _a = b, _b = a; 69 while ((_r = _b % _a) != 0) 70 _b = _a, _a = _r; 71 return ((a / _a) * b); 72 } 73 74 /* 75 * Open the output file and insure the correct access modes. 76 */ 77 uintptr_t 78 ld_open_outfile(Ofl_desc * ofl) 79 { 80 mode_t mode; 81 struct stat status; 82 83 /* 84 * Determine the required file mode from the type of output file we 85 * are creating. 86 */ 87 mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 88 ? 0777 : 0666; 89 90 /* Determine if the output file already exists */ 91 if (stat(ofl->ofl_name, &status) == 0) { 92 if ((status.st_mode & S_IFMT) != S_IFREG) { 93 /* 94 * It is not a regular file, so don't delete it 95 * or allow it to be deleted. This allows root 96 * users to specify /dev/null output file for 97 * verification links. 98 */ 99 ofl->ofl_flags1 |= FLG_OF1_NONREG; 100 } else { 101 /* 102 * It's a regular file, so unlink it. In standard 103 * Unix fashion, the old file will continue to 104 * exist until its link count drops to 0 and no 105 * process has the file open. In the meantime, we 106 * create a new file (inode) under the same name, 107 * available for new use. 108 * 109 * The advantage of this policy is that creating 110 * a new executable or sharable library does not 111 * corrupt existing processes using the old file. 112 * A possible disadvantage is that if the existing 113 * file has a (link_count > 1), the other names will 114 * continue to reference the old inode, thus 115 * breaking the link. 116 * 117 * A subtlety here is that POSIX says we are not 118 * supposed to replace a non-writable file, which 119 * is something that unlink() is happy to do. The 120 * only 100% reliable test against this is to open 121 * the file for non-destructive write access. If the 122 * open succeeds, we are clear to unlink it, and if 123 * not, then the error generated is the error we 124 * need to report. 125 */ 126 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR, 127 mode)) < 0) { 128 int err = errno; 129 130 if (err != ENOENT) { 131 eprintf(ofl->ofl_lml, ERR_FATAL, 132 MSG_INTL(MSG_SYS_OPEN), 133 ofl->ofl_name, strerror(err)); 134 return (S_ERROR); 135 } 136 } else { 137 (void) close(ofl->ofl_fd); 138 } 139 140 if ((unlink(ofl->ofl_name) == -1) && 141 (errno != ENOENT)) { 142 int err = errno; 143 144 eprintf(ofl->ofl_lml, ERR_FATAL, 145 MSG_INTL(MSG_SYS_UNLINK), 146 ofl->ofl_name, strerror(err)); 147 return (S_ERROR); 148 } 149 } 150 } 151 152 /* 153 * Open (or create) the output file name (ofl_fd acts as a global 154 * flag to ldexit() signifying whether the output file should be 155 * removed or not on error). 156 */ 157 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 158 mode)) < 0) { 159 int err = errno; 160 161 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 162 ofl->ofl_name, strerror(err)); 163 return (S_ERROR); 164 } 165 166 return (1); 167 } 168 169 170 /* 171 * If we are creating a memory model we need to update the present memory image. 172 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 173 * of each section and its associated data buffers. From this information we 174 * can then determine what padding is required. 175 * Two actions are necessary to convert the present disc image into a memory 176 * image: 177 * 178 * o Loadable segments must be padded so that the next segments virtual 179 * address and file offset are the same. 180 * 181 * o NOBITS sections must be converted into allocated, null filled sections. 182 */ 183 static uintptr_t 184 pad_outfile(Ofl_desc *ofl) 185 { 186 Listnode *lnp; 187 off_t offset; 188 Elf_Scn *oscn = 0; 189 Sg_desc *sgp; 190 Ehdr *ehdr; 191 192 /* 193 * Update all the elf structures. This will assign offsets to the 194 * section headers and data buffers as they relate to the new image. 195 */ 196 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 197 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 198 ofl->ofl_name); 199 return (S_ERROR); 200 } 201 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 202 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 203 ofl->ofl_name); 204 return (S_ERROR); 205 } 206 207 /* 208 * Initialize the offset by skipping the Elf header and program 209 * headers. 210 */ 211 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 212 213 /* 214 * Traverse the segment list looking for loadable segments. 215 */ 216 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp, sgp)) { 217 Phdr *phdr = &(sgp->sg_phdr); 218 Os_desc **ospp, *osp; 219 Aliste off; 220 221 /* 222 * If we've already processed a loadable segment, the `scn' 223 * variable will be initialized to the last section that was 224 * part of that segment. Add sufficient padding to this section 225 * to cause the next segments virtual address and file offset to 226 * be the same. 227 */ 228 if (oscn && (phdr->p_type == PT_LOAD)) { 229 Elf_Data * data; 230 size_t size; 231 232 size = (size_t)(S_ROUND(offset, phdr->p_align) - 233 offset); 234 235 if ((data = elf_newdata(oscn)) == NULL) { 236 eprintf(ofl->ofl_lml, ERR_ELF, 237 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 238 return (S_ERROR); 239 } 240 if ((data->d_buf = libld_calloc(size, 1)) == 0) 241 return (S_ERROR); 242 243 data->d_type = ELF_T_BYTE; 244 data->d_size = size; 245 data->d_align = 1; 246 data->d_version = ofl->ofl_dehdr->e_version; 247 } 248 249 /* 250 * Traverse the output sections for this segment calculating the 251 * offset of each section. Retain the final section descriptor 252 * as this will be where any padding buffer will be added. 253 */ 254 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 255 Shdr *shdr; 256 257 osp = *ospp; 258 shdr = osp->os_shdr; 259 260 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 261 offset += shdr->sh_size; 262 263 /* 264 * If this is a NOBITS output section convert all of 265 * its associated input sections into real, null filled, 266 * data buffers, and change the section to PROGBITS. 267 */ 268 if (shdr->sh_type == SHT_NOBITS) 269 shdr->sh_type = SHT_PROGBITS; 270 } 271 272 /* 273 * If this is a loadable segment retain the last output section 274 * descriptor. This acts both as a flag that a loadable 275 * segment has been seen, and as the segment to which a padding 276 * buffer will be added. 277 */ 278 if (phdr->p_type == PT_LOAD) 279 oscn = osp->os_scn; 280 } 281 return (1); 282 } 283 284 /* 285 * Create an output section. The first instance of an input section triggers 286 * the creation of a new output section. 287 */ 288 static uintptr_t 289 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx, 290 Boolean fixalign) 291 { 292 Elf_Scn *scn; 293 Shdr *shdr; 294 295 /* 296 * Get a section descriptor for the section. 297 */ 298 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 299 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN), 300 ofl->ofl_name); 301 return (S_ERROR); 302 } 303 osp->os_scn = scn; 304 305 /* 306 * Get a new section header table entry and copy the pertinent 307 * information from the in-core descriptor. 308 */ 309 if ((shdr = elf_getshdr(scn)) == NULL) { 310 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR), 311 ofl->ofl_name); 312 return (S_ERROR); 313 } 314 *shdr = *(osp->os_shdr); 315 osp->os_shdr = shdr; 316 317 /* 318 * If this is the first section within a loadable segment, and the 319 * alignment needs to be updated, record this section. 320 */ 321 if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1)) 322 sgp->sg_fscn = scn; 323 324 /* 325 * Remove any SHF_ORDERED or SHF_LINK_ORDER flags. If we are not 326 * building a relocatable object, remove any SHF_GROUP flag. 327 */ 328 osp->os_shdr->sh_flags &= ~ALL_SHF_ORDER; 329 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 330 osp->os_shdr->sh_flags &= ~SHF_GROUP; 331 332 /* 333 * If this is a TLS section, save it so that the PT_TLS program header 334 * information can be established after the output image has been 335 * initially created. At this point, all TLS input sections are ordered 336 * as they will appear in the output image. 337 */ 338 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 339 (osp->os_shdr->sh_flags & SHF_TLS) && 340 (list_appendc(&ofl->ofl_ostlsseg, osp) == 0)) 341 return (S_ERROR); 342 343 return (0); 344 } 345 346 /* 347 * Create the elf structures that allow the input data to be associated with the 348 * new image: 349 * 350 * o define the new elf image using elf_begin(), 351 * 352 * o obtain an elf header for the image, 353 * 354 * o traverse the input segments and create a program header array 355 * to define the required segments, 356 * 357 * o traverse the output sections for each segment assigning a new 358 * section descriptor and section header for each, 359 * 360 * o traverse the input sections associated with each output section 361 * and assign a new data descriptor to each (each output section 362 * becomes a linked list of input data buffers). 363 */ 364 uintptr_t 365 ld_create_outfile(Ofl_desc *ofl) 366 { 367 Listnode *lnp1; 368 Sg_desc *sgp; 369 Os_desc **ospp; 370 Is_desc *isp; 371 Elf_Data *tlsdata = 0; 372 Aliste off; 373 Word flags = ofl->ofl_flags; 374 Word flags1 = ofl->ofl_flags1; 375 size_t ndx = 0, fndx = 0; 376 Elf_Cmd cmd; 377 Boolean fixalign = FALSE; 378 int fd, nseg = 0, shidx = 0, dataidx = 0, ptloadidx = 0; 379 380 /* 381 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 382 * we need to do alignment adjustment. 383 */ 384 if ((flags1 & FLG_OF1_VADDR) || 385 (ofl->ofl_dtflags_1 & DF_1_NOHDR)) { 386 fixalign = TRUE; 387 } 388 389 if (flags1 & FLG_OF1_MEMORY) { 390 cmd = ELF_C_IMAGE; 391 fd = 0; 392 } else { 393 fd = ofl->ofl_fd; 394 cmd = ELF_C_WRITE; 395 } 396 397 /* 398 * If there are any ordered sections, handle them here. 399 */ 400 if ((ofl->ofl_ordered.head != NULL) && 401 (ld_sort_ordered(ofl) == S_ERROR)) 402 return (S_ERROR); 403 404 /* 405 * Tell the access library about our new temporary file. 406 */ 407 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 408 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 409 ofl->ofl_name); 410 return (S_ERROR); 411 } 412 413 /* 414 * Obtain a new Elf header. 415 */ 416 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 417 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 418 ofl->ofl_name); 419 return (S_ERROR); 420 } 421 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 422 423 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 424 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 425 int frst = 0; 426 Phdr *phdr = &(sgp->sg_phdr); 427 Word ptype = phdr->p_type; 428 429 /* 430 * Count the number of segments that will go in the program 431 * header table. If a segment is empty, ignore it. 432 */ 433 if (!(flags & FLG_OF_RELOBJ)) { 434 if (ptype == PT_PHDR) { 435 /* 436 * If we are generating an interp section (and 437 * thus an associated PT_INTERP program header 438 * entry) also generate a PT_PHDR program header 439 * entry. This allows the kernel to generate 440 * the appropriate aux vector entries to pass to 441 * the interpreter (refer to exec/elf/elf.c). 442 * Note that if an image was generated with an 443 * interp section, but no associated PT_PHDR 444 * program header entry, the kernel will simply 445 * pass the interpreter an open file descriptor 446 * when the image is executed). 447 */ 448 if (ofl->ofl_osinterp) 449 nseg++; 450 } else if (ptype == PT_INTERP) { 451 if (ofl->ofl_osinterp) 452 nseg++; 453 } else if (ptype == PT_DYNAMIC) { 454 if (flags & FLG_OF_DYNAMIC) 455 nseg++; 456 } else if (ptype == PT_TLS) { 457 if (flags & FLG_OF_TLSPHDR) 458 nseg++; 459 #if defined(__x86) && defined(_ELF64) 460 } else if (ptype == PT_SUNW_UNWIND) { 461 if (ofl->ofl_unwindhdr) 462 nseg++; 463 #endif 464 } else if (ptype == PT_SUNWBSS) { 465 if (ofl->ofl_issunwbss) 466 nseg++; 467 } else if (ptype == PT_SUNWDTRACE) { 468 if (ofl->ofl_dtracesym) 469 nseg++; 470 } else if (ptype == PT_SUNWCAP) { 471 if (ofl->ofl_oscap) 472 nseg++; 473 } else if (sgp->sg_flags & FLG_SG_EMPTY) { 474 nseg++; 475 } else if (sgp->sg_osdescs != NULL) { 476 if ((sgp->sg_flags & FLG_SG_PHREQ) == 0) { 477 /* 478 * If this is a segment for which 479 * we are not making a program header, 480 * don't increment nseg 481 */ 482 ptype = (sgp->sg_phdr).p_type = PT_NULL; 483 } else if (ptype != PT_NULL) 484 nseg++; 485 } 486 } 487 488 /* 489 * If the first loadable segment has the ?N flag, 490 * then ?N will be on. 491 */ 492 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 493 ptloadidx++; 494 if (sgp->sg_flags & FLG_SG_NOHDR) { 495 fixalign = TRUE; 496 ofl->ofl_dtflags_1 |= DF_1_NOHDR; 497 } 498 } 499 500 shidx = 0; 501 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 502 Listnode *lnp2; 503 Os_desc *osp = *ospp; 504 505 dataidx = 0; 506 for (LIST_TRAVERSE(&(osp->os_isdescs), lnp2, isp)) { 507 Elf_Data * data; 508 Ifl_desc * ifl = isp->is_file; 509 510 /* 511 * An input section in the list that has 512 * been previously marked to be discarded 513 * should be completely ignored. 514 */ 515 if (isp->is_flags & FLG_IS_DISCARD) 516 continue; 517 518 /* 519 * At this point we know whether a section has 520 * been referenced. If it hasn't, and the whole 521 * file hasn't been referenced (which would have 522 * been caught in ignore_section_processing()), 523 * give a diagnostic (-D unused,detail) or 524 * discard the section if -zignore is in effect. 525 */ 526 if (ifl && 527 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 528 ((ptype == PT_LOAD) && 529 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 530 (isp->is_shdr->sh_size > 0)))) { 531 Lm_list *lml = ofl->ofl_lml; 532 533 if (ifl->ifl_flags & FLG_IF_IGNORE) { 534 isp->is_flags |= FLG_IS_DISCARD; 535 DBG_CALL(Dbg_unused_sec(lml, isp)); 536 continue; 537 } else 538 DBG_CALL(Dbg_unused_sec(lml, isp)); 539 } 540 541 /* 542 * If this section provides no data, and isn't 543 * referenced, then it can be discarded as well. 544 * Note, if this is the first input section 545 * associated to an output section, let it 546 * through, there may be a legitimate reason why 547 * the user wants a null section. Discarding 548 * additional sections is intended to remove the 549 * empty clutter the compilers have a habit of 550 * creating. Don't provide an unused diagnostic 551 * as these sections aren't typically the users 552 * creation. 553 */ 554 if (ifl && dataidx && 555 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 556 (isp->is_shdr->sh_size == 0)) { 557 isp->is_flags |= FLG_IS_DISCARD; 558 continue; 559 } 560 561 /* 562 * The first input section triggers the creation 563 * of the associated output section. 564 */ 565 if (osp->os_scn == NULL) { 566 shidx++; 567 568 if (create_outsec(ofl, sgp, osp, ptype, 569 shidx, fixalign) == S_ERROR) 570 return (S_ERROR); 571 } 572 573 dataidx++; 574 575 /* 576 * Create a new output data buffer for each 577 * input data buffer, thus linking the new 578 * buffers to the new elf output structures. 579 * Simply make the new data buffers point to 580 * the old data. 581 */ 582 if ((data = elf_newdata(osp->os_scn)) == NULL) { 583 eprintf(ofl->ofl_lml, ERR_ELF, 584 MSG_INTL(MSG_ELF_NEWDATA), 585 ofl->ofl_name); 586 return (S_ERROR); 587 } 588 *data = *(isp->is_indata); 589 isp->is_indata = data; 590 591 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 592 (shidx == 1) && (dataidx == 1)) 593 data->d_align = sgp->sg_addralign; 594 595 /* 596 * Save the first TLS data buffer, as this is 597 * the start of the TLS segment. Realign this 598 * buffer based on the alignment requirements 599 * of all the TLS input sections. 600 */ 601 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 602 (isp->is_shdr->sh_flags & SHF_TLS)) { 603 if (tlsdata == 0) 604 tlsdata = data; 605 tlsdata->d_align = 606 ld_lcm(tlsdata->d_align, 607 isp->is_shdr->sh_addralign); 608 } 609 610 #if defined(_ELF64) && defined(_ILP32) 611 /* 612 * 4106312, the 32-bit ELF64 version of ld 613 * needs to be able to create large .bss 614 * sections. The d_size member of Elf_Data 615 * only allows 32-bits in _ILP32, so we build 616 * multiple data-items that each fit into 32- 617 * bits. libelf (4106398) can summ these up 618 * into a 64-bit quantity. This only works 619 * for NOBITS sections which don't have any 620 * real data to maintain and don't require 621 * large file support. 622 */ 623 if (isp->is_shdr->sh_type == SHT_NOBITS) { 624 Xword sz = isp->is_shdr->sh_size; 625 626 while (sz >> 32) { 627 data->d_size = SIZE_MAX; 628 sz -= (Xword)SIZE_MAX; 629 630 data = elf_newdata(osp->os_scn); 631 if (data == NULL) 632 return (S_ERROR); 633 } 634 data->d_size = (size_t)sz; 635 } 636 #endif 637 638 /* 639 * If this segment requires rounding realign the 640 * first data buffer associated with the first 641 * section. 642 */ 643 if ((frst++ == 0) && 644 (sgp->sg_flags & FLG_SG_ROUND)) { 645 Xword align; 646 647 if (data->d_align) 648 align = (Xword) 649 S_ROUND(data->d_align, 650 sgp->sg_round); 651 else 652 align = sgp->sg_round; 653 654 data->d_align = (size_t)align; 655 } 656 } 657 658 /* 659 * Clear the szoutrels counter so that it can be used 660 * again in the building of relocs. See machrel.c. 661 */ 662 osp->os_szoutrels = 0; 663 } 664 } 665 666 /* 667 * Build an empty PHDR. 668 */ 669 if (nseg) { 670 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 671 nseg)) == NULL) { 672 eprintf(ofl->ofl_lml, ERR_ELF, 673 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 674 return (S_ERROR); 675 } 676 } 677 678 /* 679 * If we need to generate a memory model, pad the image. 680 */ 681 if (flags1 & FLG_OF1_MEMORY) { 682 if (pad_outfile(ofl) == S_ERROR) 683 return (S_ERROR); 684 } 685 686 /* 687 * After all the basic input file processing, all data pointers are 688 * referencing two types of memory: 689 * 690 * o allocated memory, ie. elf structures, internal link 691 * editor structures, and any new sections that have been 692 * created. 693 * 694 * o original input file mmap'ed memory, ie. the actual data 695 * sections of the input file images. 696 * 697 * Up until now, the only memory modifications have been carried out on 698 * the allocated memory. Before carrying out any relocations, write the 699 * new output file image and reassign any necessary data pointers to the 700 * output files memory image. This insures that any relocation 701 * modifications are made to the output file image and not to the input 702 * file image, thus preventing the creation of dirty pages and reducing 703 * the overall swap space requirement. 704 * 705 * Write out the elf structure so as to create the new file image. 706 */ 707 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 708 ELF_C_WRIMAGE)) == (size_t)-1) { 709 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 710 ofl->ofl_name); 711 return (S_ERROR); 712 } 713 714 /* 715 * Initialize the true `ofl' information with the memory images address 716 * and size. This will be used to write() out the image once any 717 * relocation processing has been completed. We also use this image 718 * information to setup a new Elf descriptor, which is used to obtain 719 * all the necessary elf pointers within the new output image. 720 */ 721 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 722 ofl->ofl_welf)) == NULL) { 723 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 724 ofl->ofl_name); 725 return (S_ERROR); 726 } 727 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 728 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 729 ofl->ofl_name); 730 return (S_ERROR); 731 } 732 if (!(flags & FLG_OF_RELOBJ)) 733 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 734 eprintf(ofl->ofl_lml, ERR_ELF, 735 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 736 return (S_ERROR); 737 } 738 739 /* 740 * Reinitialize the section descriptors, section headers and obtain new 741 * output data buffer pointers (these will be used to perform any 742 * relocations). 743 */ 744 for (LIST_TRAVERSE(&ofl->ofl_segs, lnp1, sgp)) { 745 Phdr *_phdr = &(sgp->sg_phdr); 746 Os_desc **ospp; 747 Aliste off; 748 Boolean recorded = FALSE; 749 750 for (ALIST_TRAVERSE(sgp->sg_osdescs, off, ospp)) { 751 Os_desc *osp = *ospp; 752 753 /* 754 * Make sure that an output section was originally 755 * created. Input sections that had been marked as 756 * discarded may have made an output section 757 * unnecessary. Remove this alist entry so that 758 * future output section descriptor processing doesn't 759 * have to compensate for this empty section. 760 */ 761 if (osp->os_scn == NULL) { 762 (void) alist_delete(sgp->sg_osdescs, 0, &off); 763 continue; 764 } 765 766 if ((osp->os_scn = elf_getscn(ofl->ofl_elf, ++ndx)) == 767 NULL) { 768 eprintf(ofl->ofl_lml, ERR_ELF, 769 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 770 ndx); 771 return (S_ERROR); 772 } 773 if ((osp->os_shdr = elf_getshdr(osp->os_scn)) == 774 NULL) { 775 eprintf(ofl->ofl_lml, ERR_ELF, 776 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 777 return (S_ERROR); 778 } 779 if ((fixalign == TRUE) && (sgp->sg_fscn != 0) && 780 (recorded == FALSE)) { 781 Elf_Scn *scn; 782 783 scn = sgp->sg_fscn; 784 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 785 eprintf(ofl->ofl_lml, ERR_ELF, 786 MSG_INTL(MSG_ELF_NDXSCN), 787 ofl->ofl_name); 788 return (S_ERROR); 789 } 790 if (ndx == fndx) { 791 sgp->sg_fscn = osp->os_scn; 792 recorded = TRUE; 793 } 794 } 795 796 if ((osp->os_outdata = 797 elf_getdata(osp->os_scn, NULL)) == NULL) { 798 eprintf(ofl->ofl_lml, ERR_ELF, 799 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 800 return (S_ERROR); 801 } 802 803 /* 804 * If this section is part of a loadable segment insure 805 * that the segments alignment is appropriate. 806 */ 807 if (_phdr->p_type == PT_LOAD) { 808 _phdr->p_align = ld_lcm(_phdr->p_align, 809 osp->os_shdr->sh_addralign); 810 } 811 } 812 } 813 return (1); 814 } 815