1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 /* 31 * This file contains the functions responsible for opening the output file 32 * image, associating the appropriate input elf structures with the new image, 33 * and obtaining new elf structures to define the new image. 34 */ 35 #include <stdio.h> 36 #include <sys/stat.h> 37 #include <fcntl.h> 38 #include <link.h> 39 #include <errno.h> 40 #include <string.h> 41 #include <limits.h> 42 #include <debug.h> 43 #include <unistd.h> 44 #include "msg.h" 45 #include "_libld.h" 46 47 /* 48 * Determine a least common multiplier. Input sections contain an alignment 49 * requirement, which elf_update() uses to insure that the section is aligned 50 * correctly off of the base of the elf image. We must also insure that the 51 * sections mapping is congruent with this alignment requirement. For each 52 * input section associated with a loadable segment determine whether the 53 * segments alignment must be adjusted to compensate for a sections alignment 54 * requirements. 55 */ 56 Xword 57 ld_lcm(Xword a, Xword b) 58 { 59 Xword _r, _a, _b; 60 61 if ((_a = a) == 0) 62 return (b); 63 if ((_b = b) == 0) 64 return (a); 65 66 if (_a > _b) 67 _a = b, _b = a; 68 while ((_r = _b % _a) != 0) 69 _b = _a, _a = _r; 70 return ((a / _a) * b); 71 } 72 73 /* 74 * Open the output file and insure the correct access modes. 75 */ 76 uintptr_t 77 ld_open_outfile(Ofl_desc * ofl) 78 { 79 mode_t mode; 80 struct stat status; 81 82 /* 83 * Determine the required file mode from the type of output file we 84 * are creating. 85 */ 86 mode = (ofl->ofl_flags & (FLG_OF_EXEC | FLG_OF_SHAROBJ)) 87 ? 0777 : 0666; 88 89 /* Determine if the output file already exists */ 90 if (stat(ofl->ofl_name, &status) == 0) { 91 if ((status.st_mode & S_IFMT) != S_IFREG) { 92 /* 93 * It is not a regular file, so don't delete it 94 * or allow it to be deleted. This allows root 95 * users to specify /dev/null output file for 96 * verification links. 97 */ 98 ofl->ofl_flags1 |= FLG_OF1_NONREG; 99 } else { 100 /* 101 * It's a regular file, so unlink it. In standard 102 * Unix fashion, the old file will continue to 103 * exist until its link count drops to 0 and no 104 * process has the file open. In the meantime, we 105 * create a new file (inode) under the same name, 106 * available for new use. 107 * 108 * The advantage of this policy is that creating 109 * a new executable or sharable library does not 110 * corrupt existing processes using the old file. 111 * A possible disadvantage is that if the existing 112 * file has a (link_count > 1), the other names will 113 * continue to reference the old inode, thus 114 * breaking the link. 115 * 116 * A subtlety here is that POSIX says we are not 117 * supposed to replace a non-writable file, which 118 * is something that unlink() is happy to do. The 119 * only 100% reliable test against this is to open 120 * the file for non-destructive write access. If the 121 * open succeeds, we are clear to unlink it, and if 122 * not, then the error generated is the error we 123 * need to report. 124 */ 125 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR, 126 mode)) < 0) { 127 int err = errno; 128 129 if (err != ENOENT) { 130 eprintf(ofl->ofl_lml, ERR_FATAL, 131 MSG_INTL(MSG_SYS_OPEN), 132 ofl->ofl_name, strerror(err)); 133 return (S_ERROR); 134 } 135 } else { 136 (void) close(ofl->ofl_fd); 137 } 138 139 if ((unlink(ofl->ofl_name) == -1) && 140 (errno != ENOENT)) { 141 int err = errno; 142 143 eprintf(ofl->ofl_lml, ERR_FATAL, 144 MSG_INTL(MSG_SYS_UNLINK), 145 ofl->ofl_name, strerror(err)); 146 return (S_ERROR); 147 } 148 } 149 } 150 151 /* 152 * Open (or create) the output file name (ofl_fd acts as a global 153 * flag to ldexit() signifying whether the output file should be 154 * removed or not on error). 155 */ 156 if ((ofl->ofl_fd = open(ofl->ofl_name, O_RDWR | O_CREAT | O_TRUNC, 157 mode)) < 0) { 158 int err = errno; 159 160 eprintf(ofl->ofl_lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 161 ofl->ofl_name, strerror(err)); 162 return (S_ERROR); 163 } 164 165 return (1); 166 } 167 168 169 /* 170 * If we are creating a memory model we need to update the present memory image. 171 * First we need to call elf_update(ELF_C_NULL) which will calculate the offsets 172 * of each section and its associated data buffers. From this information we 173 * can then determine what padding is required. 174 * Two actions are necessary to convert the present disc image into a memory 175 * image: 176 * 177 * o Loadable segments must be padded so that the next segments virtual 178 * address and file offset are the same. 179 * 180 * o NOBITS sections must be converted into allocated, null filled sections. 181 */ 182 static uintptr_t 183 pad_outfile(Ofl_desc *ofl) 184 { 185 Aliste idx1; 186 off_t offset; 187 Elf_Scn *oscn = 0; 188 Sg_desc *sgp; 189 Ehdr *ehdr; 190 191 /* 192 * Update all the elf structures. This will assign offsets to the 193 * section headers and data buffers as they relate to the new image. 194 */ 195 if (elf_update(ofl->ofl_welf, ELF_C_NULL) == -1) { 196 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 197 ofl->ofl_name); 198 return (S_ERROR); 199 } 200 if ((ehdr = elf_getehdr(ofl->ofl_welf)) == NULL) { 201 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 202 ofl->ofl_name); 203 return (S_ERROR); 204 } 205 206 /* 207 * Initialize the offset by skipping the Elf header and program 208 * headers. 209 */ 210 offset = ehdr->e_phoff + (ehdr->e_phnum * ehdr->e_phentsize); 211 212 /* 213 * Traverse the segment list looking for loadable segments. 214 */ 215 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) { 216 Phdr *phdr = &(sgp->sg_phdr); 217 Os_desc *osp; 218 Aliste idx2; 219 220 /* 221 * If we've already processed a loadable segment, the `scn' 222 * variable will be initialized to the last section that was 223 * part of that segment. Add sufficient padding to this section 224 * to cause the next segments virtual address and file offset to 225 * be the same. 226 */ 227 if (oscn && (phdr->p_type == PT_LOAD)) { 228 Elf_Data * data; 229 size_t size; 230 231 size = (size_t)(S_ROUND(offset, phdr->p_align) - 232 offset); 233 234 if ((data = elf_newdata(oscn)) == NULL) { 235 eprintf(ofl->ofl_lml, ERR_ELF, 236 MSG_INTL(MSG_ELF_NEWDATA), ofl->ofl_name); 237 return (S_ERROR); 238 } 239 if ((data->d_buf = libld_calloc(size, 1)) == 0) 240 return (S_ERROR); 241 242 data->d_type = ELF_T_BYTE; 243 data->d_size = size; 244 data->d_align = 1; 245 data->d_version = ofl->ofl_dehdr->e_version; 246 } 247 248 /* 249 * Traverse the output sections for this segment calculating the 250 * offset of each section. Retain the final section descriptor 251 * as this will be where any padding buffer will be added. 252 */ 253 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) { 254 Shdr *shdr = osp->os_shdr; 255 256 offset = (off_t)S_ROUND(offset, shdr->sh_addralign); 257 offset += shdr->sh_size; 258 259 /* 260 * If this is a NOBITS output section convert all of 261 * its associated input sections into real, null filled, 262 * data buffers, and change the section to PROGBITS. 263 */ 264 if (shdr->sh_type == SHT_NOBITS) 265 shdr->sh_type = SHT_PROGBITS; 266 } 267 268 /* 269 * If this is a loadable segment retain the last output section 270 * descriptor. This acts both as a flag that a loadable 271 * segment has been seen, and as the segment to which a padding 272 * buffer will be added. 273 */ 274 if (phdr->p_type == PT_LOAD) 275 oscn = osp->os_scn; 276 } 277 return (1); 278 } 279 280 /* 281 * Create an output section. The first instance of an input section triggers 282 * the creation of a new output section. 283 */ 284 static uintptr_t 285 create_outsec(Ofl_desc *ofl, Sg_desc *sgp, Os_desc *osp, Word ptype, int shidx, 286 Boolean fixalign) 287 { 288 Elf_Scn *scn; 289 Shdr *shdr; 290 291 /* 292 * Get a section descriptor for the section. 293 */ 294 if ((scn = elf_newscn(ofl->ofl_welf)) == NULL) { 295 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWSCN), 296 ofl->ofl_name); 297 return (S_ERROR); 298 } 299 osp->os_scn = scn; 300 301 /* 302 * Get a new section header table entry and copy the pertinent 303 * information from the in-core descriptor. 304 */ 305 if ((shdr = elf_getshdr(scn)) == NULL) { 306 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR), 307 ofl->ofl_name); 308 return (S_ERROR); 309 } 310 *shdr = *(osp->os_shdr); 311 osp->os_shdr = shdr; 312 313 /* 314 * If this is the first section within a loadable segment, and the 315 * alignment needs to be updated, record this section. 316 */ 317 if ((fixalign == TRUE) && (ptype == PT_LOAD) && (shidx == 1)) 318 sgp->sg_fscn = scn; 319 320 /* 321 * If not building a relocatable object, remove any of the 322 * following flags, as they have been acted upon and are not 323 * meaningful in the output: 324 * SHF_ORDERED, SHF_LINK_ORDER, SHF_GROUP 325 * For relocatable objects, we allow them to propagate to 326 * the output object to be handled by the next linker that 327 * sees them. 328 */ 329 if ((ofl->ofl_flags & FLG_OF_RELOBJ) == 0) 330 osp->os_shdr->sh_flags &= ~(ALL_SHF_ORDER|SHF_GROUP); 331 332 /* 333 * If this is a TLS section, save it so that the PT_TLS program header 334 * information can be established after the output image has been 335 * initially created. At this point, all TLS input sections are ordered 336 * as they will appear in the output image. 337 */ 338 if ((ofl->ofl_flags & FLG_OF_TLSPHDR) && 339 (osp->os_shdr->sh_flags & SHF_TLS) && 340 (aplist_append(&ofl->ofl_ostlsseg, osp, 341 AL_CNT_OFL_OSTLSSEG) == NULL)) 342 return (S_ERROR); 343 344 return (0); 345 } 346 347 /* 348 * Create the elf structures that allow the input data to be associated with the 349 * new image: 350 * 351 * o define the new elf image using elf_begin(), 352 * 353 * o obtain an elf header for the image, 354 * 355 * o traverse the input segments and create a program header array 356 * to define the required segments, 357 * 358 * o traverse the output sections for each segment assigning a new 359 * section descriptor and section header for each, 360 * 361 * o traverse the input sections associated with each output section 362 * and assign a new data descriptor to each (each output section 363 * becomes a linked list of input data buffers). 364 */ 365 uintptr_t 366 ld_create_outfile(Ofl_desc *ofl) 367 { 368 Sg_desc *sgp; 369 Os_desc *osp; 370 Is_desc *isp; 371 Elf_Data *tlsdata = 0; 372 Aliste idx1; 373 ofl_flag_t flags = ofl->ofl_flags; 374 ofl_flag_t flags1 = ofl->ofl_flags1; 375 size_t ndx; 376 Elf_Cmd cmd; 377 Boolean fixalign = FALSE; 378 int fd, nseg = 0, shidx, dataidx, ptloadidx = 0; 379 380 /* 381 * If DF_1_NOHDR was set in map_parse() or FLG_OF1_VADDR was set, 382 * we need to do alignment adjustment. 383 */ 384 if ((flags1 & FLG_OF1_VADDR) || 385 (ofl->ofl_dtflags_1 & DF_1_NOHDR)) { 386 fixalign = TRUE; 387 } 388 389 if (flags1 & FLG_OF1_MEMORY) { 390 cmd = ELF_C_IMAGE; 391 fd = 0; 392 } else { 393 fd = ofl->ofl_fd; 394 cmd = ELF_C_WRITE; 395 } 396 397 /* 398 * If there are any ordered sections, handle them here. 399 */ 400 if ((ofl->ofl_ordered != NULL) && 401 (ld_sort_ordered(ofl) == S_ERROR)) 402 return (S_ERROR); 403 404 /* 405 * Tell the access library about our new temporary file. 406 */ 407 if ((ofl->ofl_welf = elf_begin(fd, cmd, 0)) == NULL) { 408 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 409 ofl->ofl_name); 410 return (S_ERROR); 411 } 412 413 /* 414 * Obtain a new Elf header. 415 */ 416 if ((ofl->ofl_nehdr = elf_newehdr(ofl->ofl_welf)) == NULL) { 417 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_NEWEHDR), 418 ofl->ofl_name); 419 return (S_ERROR); 420 } 421 ofl->ofl_nehdr->e_machine = ofl->ofl_dehdr->e_machine; 422 423 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD)); 424 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) { 425 int frst = 0; 426 Phdr *phdr = &(sgp->sg_phdr); 427 Word ptype = phdr->p_type; 428 Aliste idx2; 429 430 /* 431 * Count the number of segments that will go in the program 432 * header table. If a segment is empty, ignore it. 433 */ 434 if (!(flags & FLG_OF_RELOBJ)) { 435 if (ptype == PT_PHDR) { 436 /* 437 * If we are generating an interp section (and 438 * thus an associated PT_INTERP program header 439 * entry) also generate a PT_PHDR program header 440 * entry. This allows the kernel to generate 441 * the appropriate aux vector entries to pass to 442 * the interpreter (refer to exec/elf/elf.c). 443 * Note that if an image was generated with an 444 * interp section, but no associated PT_PHDR 445 * program header entry, the kernel will simply 446 * pass the interpreter an open file descriptor 447 * when the image is executed). 448 */ 449 if (ofl->ofl_osinterp) 450 nseg++; 451 } else if (ptype == PT_INTERP) { 452 if (ofl->ofl_osinterp) 453 nseg++; 454 } else if (ptype == PT_DYNAMIC) { 455 if (flags & FLG_OF_DYNAMIC) 456 nseg++; 457 } else if (ptype == PT_TLS) { 458 if (flags & FLG_OF_TLSPHDR) 459 nseg++; 460 } else if (ptype == PT_SUNW_UNWIND) { 461 if (ofl->ofl_unwindhdr) 462 nseg++; 463 } else if (ptype == PT_SUNWDTRACE) { 464 if (ofl->ofl_dtracesym) 465 nseg++; 466 } else if (ptype == PT_SUNWCAP) { 467 if (ofl->ofl_oscap) 468 nseg++; 469 } else if (sgp->sg_flags & FLG_SG_EMPTY) { 470 nseg++; 471 } else if (sgp->sg_osdescs != NULL) { 472 if ((sgp->sg_flags & FLG_SG_PHREQ) == 0) { 473 /* 474 * If this is a segment for which 475 * we are not making a program header, 476 * don't increment nseg 477 */ 478 ptype = (sgp->sg_phdr).p_type = PT_NULL; 479 } else if (ptype != PT_NULL) 480 nseg++; 481 } 482 } 483 484 /* 485 * Establish any processing unique to the first loadable 486 * segment. 487 */ 488 if ((ptype == PT_LOAD) && (ptloadidx == 0)) { 489 ptloadidx++; 490 491 /* 492 * If the first loadable segment has the ?N flag then 493 * alignments of following segments need to be fixed, 494 * plus a .dynamic FLAGS1 setting is required. 495 */ 496 if (sgp->sg_flags & FLG_SG_NOHDR) { 497 fixalign = TRUE; 498 ofl->ofl_dtflags_1 |= DF_1_NOHDR; 499 } 500 } 501 502 shidx = 0; 503 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) { 504 Aliste idx3; 505 506 dataidx = 0; 507 for (APLIST_TRAVERSE(osp->os_isdescs, idx3, isp)) { 508 Elf_Data *data; 509 Ifl_desc *ifl = isp->is_file; 510 511 /* 512 * An input section in the list that has 513 * been previously marked to be discarded 514 * should be completely ignored. 515 */ 516 if (isp->is_flags & FLG_IS_DISCARD) 517 continue; 518 519 /* 520 * At this point we know whether a section has 521 * been referenced. If it hasn't, and the whole 522 * file hasn't been referenced (which would have 523 * been caught in ignore_section_processing()), 524 * give a diagnostic (-D unused,detail) or 525 * discard the section if -zignore is in effect. 526 */ 527 if (ifl && 528 (((ifl->ifl_flags & FLG_IF_FILEREF) == 0) || 529 ((ptype == PT_LOAD) && 530 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 531 (isp->is_shdr->sh_size > 0)))) { 532 Lm_list *lml = ofl->ofl_lml; 533 534 if (ifl->ifl_flags & FLG_IF_IGNORE) { 535 isp->is_flags |= FLG_IS_DISCARD; 536 DBG_CALL(Dbg_unused_sec(lml, 537 isp)); 538 continue; 539 } else { 540 DBG_CALL(Dbg_unused_sec(lml, 541 isp)); 542 } 543 } 544 545 /* 546 * If this section provides no data, and isn't 547 * referenced, then it can be discarded as well. 548 * Note, if this is the first input section 549 * associated to an output section, let it 550 * through, there may be a legitimate reason why 551 * the user wants a null section. Discarding 552 * additional sections is intended to remove the 553 * empty clutter the compilers have a habit of 554 * creating. Don't provide an unused diagnostic 555 * as these sections aren't typically the users 556 * creation. 557 */ 558 if (ifl && dataidx && 559 ((isp->is_flags & FLG_IS_SECTREF) == 0) && 560 (isp->is_shdr->sh_size == 0)) { 561 isp->is_flags |= FLG_IS_DISCARD; 562 continue; 563 } 564 565 /* 566 * The first input section triggers the creation 567 * of the associated output section. 568 */ 569 if (osp->os_scn == NULL) { 570 shidx++; 571 572 if (create_outsec(ofl, sgp, osp, ptype, 573 shidx, fixalign) == S_ERROR) 574 return (S_ERROR); 575 } 576 577 dataidx++; 578 579 /* 580 * Create a new output data buffer for each 581 * input data buffer, thus linking the new 582 * buffers to the new elf output structures. 583 * Simply make the new data buffers point to 584 * the old data. 585 */ 586 if ((data = elf_newdata(osp->os_scn)) == NULL) { 587 eprintf(ofl->ofl_lml, ERR_ELF, 588 MSG_INTL(MSG_ELF_NEWDATA), 589 ofl->ofl_name); 590 return (S_ERROR); 591 } 592 *data = *(isp->is_indata); 593 isp->is_indata = data; 594 595 if ((fixalign == TRUE) && (ptype == PT_LOAD) && 596 (shidx == 1) && (dataidx == 1)) 597 data->d_align = sgp->sg_addralign; 598 599 /* 600 * Save the first TLS data buffer, as this is 601 * the start of the TLS segment. Realign this 602 * buffer based on the alignment requirements 603 * of all the TLS input sections. 604 */ 605 if ((flags & FLG_OF_TLSPHDR) && 606 (isp->is_shdr->sh_flags & SHF_TLS)) { 607 if (tlsdata == 0) 608 tlsdata = data; 609 tlsdata->d_align = 610 ld_lcm(tlsdata->d_align, 611 isp->is_shdr->sh_addralign); 612 } 613 614 #if defined(_ELF64) && defined(_ILP32) 615 /* 616 * 4106312, the 32-bit ELF64 version of ld 617 * needs to be able to create large .bss 618 * sections. The d_size member of Elf_Data 619 * only allows 32-bits in _ILP32, so we build 620 * multiple data-items that each fit into 32- 621 * bits. libelf (4106398) can summ these up 622 * into a 64-bit quantity. This only works 623 * for NOBITS sections which don't have any 624 * real data to maintain and don't require 625 * large file support. 626 */ 627 if (isp->is_shdr->sh_type == SHT_NOBITS) { 628 Xword sz = isp->is_shdr->sh_size; 629 630 while (sz >> 32) { 631 data->d_size = SIZE_MAX; 632 sz -= (Xword)SIZE_MAX; 633 634 data = elf_newdata(osp->os_scn); 635 if (data == NULL) 636 return (S_ERROR); 637 } 638 data->d_size = (size_t)sz; 639 } 640 #endif 641 642 /* 643 * If this segment requires rounding realign the 644 * first data buffer associated with the first 645 * section. 646 */ 647 if ((frst++ == 0) && 648 (sgp->sg_flags & FLG_SG_ROUND)) { 649 Xword align; 650 651 if (data->d_align) 652 align = (Xword) 653 S_ROUND(data->d_align, 654 sgp->sg_round); 655 else 656 align = sgp->sg_round; 657 658 data->d_align = (size_t)align; 659 } 660 } 661 662 /* 663 * Clear the szoutrels counter so that it can be used 664 * again in the building of relocs. See machrel.c. 665 */ 666 osp->os_szoutrels = 0; 667 } 668 } 669 670 /* 671 * Build an empty PHDR. 672 */ 673 if (nseg) { 674 if ((ofl->ofl_phdr = elf_newphdr(ofl->ofl_welf, 675 nseg)) == NULL) { 676 eprintf(ofl->ofl_lml, ERR_ELF, 677 MSG_INTL(MSG_ELF_NEWPHDR), ofl->ofl_name); 678 return (S_ERROR); 679 } 680 } 681 682 /* 683 * If we need to generate a memory model, pad the image. 684 */ 685 if (flags1 & FLG_OF1_MEMORY) { 686 if (pad_outfile(ofl) == S_ERROR) 687 return (S_ERROR); 688 } 689 690 /* 691 * After all the basic input file processing, all data pointers are 692 * referencing two types of memory: 693 * 694 * o allocated memory, ie. elf structures, internal link 695 * editor structures, and any new sections that have been 696 * created. 697 * 698 * o original input file mmap'ed memory, ie. the actual data 699 * sections of the input file images. 700 * 701 * Up until now, the only memory modifications have been carried out on 702 * the allocated memory. Before carrying out any relocations, write the 703 * new output file image and reassign any necessary data pointers to the 704 * output files memory image. This insures that any relocation 705 * modifications are made to the output file image and not to the input 706 * file image, thus preventing the creation of dirty pages and reducing 707 * the overall swap space requirement. 708 * 709 * Write out the elf structure so as to create the new file image. 710 */ 711 if ((ofl->ofl_size = (size_t)elf_update(ofl->ofl_welf, 712 ELF_C_WRIMAGE)) == (size_t)-1) { 713 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_UPDATE), 714 ofl->ofl_name); 715 return (S_ERROR); 716 } 717 718 /* 719 * Initialize the true `ofl' information with the memory images address 720 * and size. This will be used to write() out the image once any 721 * relocation processing has been completed. We also use this image 722 * information to setup a new Elf descriptor, which is used to obtain 723 * all the necessary elf pointers within the new output image. 724 */ 725 if ((ofl->ofl_elf = elf_begin(0, ELF_C_IMAGE, 726 ofl->ofl_welf)) == NULL) { 727 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_BEGIN), 728 ofl->ofl_name); 729 return (S_ERROR); 730 } 731 if ((ofl->ofl_nehdr = elf_getehdr(ofl->ofl_elf)) == NULL) { 732 eprintf(ofl->ofl_lml, ERR_ELF, MSG_INTL(MSG_ELF_GETEHDR), 733 ofl->ofl_name); 734 return (S_ERROR); 735 } 736 if (!(flags & FLG_OF_RELOBJ)) 737 if ((ofl->ofl_phdr = elf_getphdr(ofl->ofl_elf)) == NULL) { 738 eprintf(ofl->ofl_lml, ERR_ELF, 739 MSG_INTL(MSG_ELF_GETPHDR), ofl->ofl_name); 740 return (S_ERROR); 741 } 742 743 /* 744 * Reinitialize the section descriptors, section headers and obtain new 745 * output data buffer pointers (these will be used to perform any 746 * relocations). 747 */ 748 ndx = 0; 749 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) { 750 Phdr *_phdr = &(sgp->sg_phdr); 751 Os_desc *osp; 752 Aliste idx2; 753 Boolean recorded = FALSE; 754 755 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) { 756 /* 757 * Make sure that an output section was originally 758 * created. Input sections that had been marked as 759 * discarded may have made an output section 760 * unnecessary. Remove this alist entry so that 761 * future output section descriptor processing doesn't 762 * have to compensate for this empty section. 763 */ 764 if (osp->os_scn == NULL) { 765 aplist_delete(sgp->sg_osdescs, &idx2); 766 continue; 767 } 768 if ((osp->os_scn = 769 elf_getscn(ofl->ofl_elf, ++ndx)) == NULL) { 770 eprintf(ofl->ofl_lml, ERR_ELF, 771 MSG_INTL(MSG_ELF_GETSCN), ofl->ofl_name, 772 ndx); 773 return (S_ERROR); 774 } 775 if ((osp->os_shdr = 776 elf_getshdr(osp->os_scn)) == NULL) { 777 eprintf(ofl->ofl_lml, ERR_ELF, 778 MSG_INTL(MSG_ELF_GETSHDR), ofl->ofl_name); 779 return (S_ERROR); 780 } 781 if ((fixalign == TRUE) && sgp->sg_fscn && 782 (recorded == FALSE)) { 783 size_t fndx; 784 Elf_Scn *scn; 785 786 scn = sgp->sg_fscn; 787 if ((fndx = elf_ndxscn(scn)) == SHN_UNDEF) { 788 eprintf(ofl->ofl_lml, ERR_ELF, 789 MSG_INTL(MSG_ELF_NDXSCN), 790 ofl->ofl_name); 791 return (S_ERROR); 792 } 793 if (ndx == fndx) { 794 sgp->sg_fscn = osp->os_scn; 795 recorded = TRUE; 796 } 797 } 798 799 if ((osp->os_outdata = 800 elf_getdata(osp->os_scn, NULL)) == NULL) { 801 eprintf(ofl->ofl_lml, ERR_ELF, 802 MSG_INTL(MSG_ELF_GETDATA), ofl->ofl_name); 803 return (S_ERROR); 804 } 805 806 /* 807 * If this section is part of a loadable segment insure 808 * that the segments alignment is appropriate. 809 */ 810 if (_phdr->p_type == PT_LOAD) { 811 _phdr->p_align = ld_lcm(_phdr->p_align, 812 osp->os_shdr->sh_addralign); 813 } 814 } 815 } 816 return (1); 817 } 818