xref: /titanic_41/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision b54157c1b1bf9673e4da8b526477d59202cd08a6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Dump an elf file.
30  */
31 #include	<sys/elf_386.h>
32 #include	<sys/elf_amd64.h>
33 #include	<sys/elf_SPARC.h>
34 #include	<_libelf.h>
35 #include	<dwarf.h>
36 #include	<stdio.h>
37 #include	<unistd.h>
38 #include	<errno.h>
39 #include	<strings.h>
40 #include	<debug.h>
41 #include	<conv.h>
42 #include	<msg.h>
43 #include	<_elfdump.h>
44 
45 
46 /*
47  * VERSYM_STATE is used to maintain information about the VERSYM section
48  * in the object being analyzed. It is filled in by versions(), and used
49  * by init_symtbl_state() when displaying symbol information.
50  *
51  * max_verndx contains the largest version index that can appear
52  * in a Versym entry. This can never be less than 1: In the case where
53  * there is no verdef/verneed sections, the [0] index is reserved
54  * for local symbols, and the [1] index for globals. If Solaris versioning
55  * rules are in effect and there is a verdef section, then the number
56  * of defined versions provides this number. If GNU versioning is in effect,
57  * then:
58  *	- If there is no verneed section, it is the same as for
59  *		Solaris versioning.
60  *	- If there is a verneed section, the vna_other field of the
61  *		Vernaux structs contain versions, and max_verndx is the
62  *		largest such index.
63  *
64  * The value of the gnu field is based on the presence of
65  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
66  * Solaris ld does not.
67  */
68 typedef struct {
69 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
70 	Versym	*data;		/* Pointer to versym array */
71 	int	gnu;		/* True if object uses GNU versioning rules */
72 	int	max_verndx;	/* largest versym index value */
73 } VERSYM_STATE;
74 
75 /*
76  * SYMTBL_STATE is used to maintain information about a single symbol
77  * table section, for use by the routines that display symbol information.
78  */
79 typedef struct {
80 	const char	*file;		/* Name of file */
81 	Ehdr		*ehdr;		/* ELF header for file */
82 	Cache		*cache;		/* Cache of all section headers */
83 	Word		shnum;		/* # of sections in cache */
84 	Cache		*seccache;	/* Cache of symbol table section hdr */
85 	Word		secndx;		/* Index of symbol table section hdr */
86 	const char	*secname;	/* Name of section */
87 	uint_t		flags;		/* Command line option flags */
88 	struct {			/* Extended section index data */
89 		int	checked;	/* TRUE if already checked for shxndx */
90 		Word	*data;		/* NULL, or extended section index */
91 					/*	used for symbol table entries */
92 		uint_t	n;		/* # items in shxndx.data */
93 	} shxndx;
94 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
95 	Sym 		*sym;		/* Array of symbols */
96 	Word		symn;		/* # of symbols */
97 } SYMTBL_STATE;
98 
99 
100 
101 /*
102  * Focal point for verifying symbol names.
103  */
104 static const char *
105 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
106 {
107 	/*
108 	 * If an error in this routine is due to a property of the string
109 	 * section, as opposed to a bad offset into the section (a property of
110 	 * the referencing section), then we will detect the same error on
111 	 * every call involving those sections. We use these static variables
112 	 * to retain the information needed to only issue each such error once.
113 	 */
114 	static Cache	*last_refsec;	/* Last referencing section seen */
115 	static int	strsec_err;	/* True if error issued */
116 
117 	const char	*strs;
118 	Word		strn;
119 
120 	if (strsec->c_data == NULL)
121 		return (NULL);
122 
123 	strs = (char *)strsec->c_data->d_buf;
124 	strn = strsec->c_data->d_size;
125 
126 	/*
127 	 * We only print a diagnostic regarding a bad string table once per
128 	 * input section being processed. If the refsec has changed, reset
129 	 * our retained error state.
130 	 */
131 	if (last_refsec != refsec) {
132 		last_refsec = refsec;
133 		strsec_err = 0;
134 	}
135 
136 	/* Verify that strsec really is a string table */
137 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
138 		if (!strsec_err) {
139 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
140 			    file, strsec->c_ndx, refsec->c_ndx);
141 			strsec_err = 1;
142 		}
143 		return (MSG_INTL(MSG_STR_UNKNOWN));
144 	}
145 
146 	/*
147 	 * Is the string table offset within range of the available strings?
148 	 */
149 	if (name >= strn) {
150 		/*
151 		 * Do we have a empty string table?
152 		 */
153 		if (strs == 0) {
154 			if (!strsec_err) {
155 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
156 				    file, strsec->c_name);
157 				strsec_err = 1;
158 			}
159 		} else {
160 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
161 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
162 			    EC_WORD(name), EC_WORD(strn - 1));
163 		}
164 
165 		/*
166 		 * Return the empty string so that the calling function can
167 		 * continue it's output diagnostics.
168 		 */
169 		return (MSG_INTL(MSG_STR_UNKNOWN));
170 	}
171 	return (strs + name);
172 }
173 
174 /*
175  * Relocations can reference section symbols and standard symbols.  If the
176  * former, establish the section name.
177  */
178 static const char *
179 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
180     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file,
181     uint_t flags)
182 {
183 	Sym	*sym;
184 
185 	if (symndx >= symnum) {
186 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
187 		    file, EC_WORD(symndx), EC_WORD(relndx));
188 		return (MSG_INTL(MSG_STR_UNKNOWN));
189 	}
190 
191 	sym = (Sym *)(syms + symndx);
192 
193 	/*
194 	 * If the symbol represents a section offset construct an appropriate
195 	 * string.
196 	 */
197 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) && (sym->st_name == 0)) {
198 		if (flags & FLG_CTL_LONGNAME)
199 			(void) snprintf(secstr, secsz,
200 			    MSG_INTL(MSG_STR_L_SECTION),
201 			    cache[sym->st_shndx].c_name);
202 		else
203 			(void) snprintf(secstr, secsz,
204 			    MSG_INTL(MSG_STR_SECTION),
205 			    cache[sym->st_shndx].c_name);
206 		return ((const char *)secstr);
207 	}
208 
209 	return (string(csec, symndx, strsec, file, sym->st_name));
210 }
211 
212 /*
213  * Focal point for establishing a string table section.  Data such as the
214  * dynamic information simply points to a string table.  Data such as
215  * relocations, reference a symbol table, which in turn is associated with a
216  * string table.
217  */
218 static int
219 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
220     Word *symnum, Cache **symsec, Cache **strsec)
221 {
222 	Shdr	*shdr = cache[ndx].c_shdr;
223 
224 	if (symtab) {
225 		/*
226 		 * Validate the symbol table section.
227 		 */
228 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
229 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
230 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
231 			return (0);
232 		}
233 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
234 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
235 			    file, cache[ndx].c_name);
236 			return (0);
237 		}
238 
239 		/*
240 		 * Obtain, and verify the symbol table data.
241 		 */
242 		if ((cache[ndx].c_data == NULL) ||
243 		    (cache[ndx].c_data->d_buf == NULL)) {
244 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245 			    file, cache[ndx].c_name);
246 			return (0);
247 		}
248 
249 		/*
250 		 * Establish the string table index.
251 		 */
252 		ndx = shdr->sh_link;
253 		shdr = cache[ndx].c_shdr;
254 
255 		/*
256 		 * Return symbol table information.
257 		 */
258 		if (symnum)
259 			*symnum = (shdr->sh_size / shdr->sh_entsize);
260 		if (symsec)
261 			*symsec = &cache[ndx];
262 	}
263 
264 	/*
265 	 * Validate the associated string table section.
266 	 */
267 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
268 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
269 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
270 		return (0);
271 	}
272 
273 	if (strsec)
274 		*strsec = &cache[shdr->sh_link];
275 
276 	return (1);
277 }
278 
279 /*
280  * Lookup a symbol and set Sym accordingly.
281  */
282 static int
283 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
284     Cache *symtab, const char *file)
285 {
286 	Shdr	*shdr;
287 	Word	symn, cnt;
288 	Sym	*syms;
289 
290 	if (symtab == 0)
291 		return (0);
292 
293 	shdr = symtab->c_shdr;
294 
295 	/*
296 	 * Determine the symbol data and number.
297 	 */
298 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
299 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
300 		    file, symtab->c_name);
301 		return (0);
302 	}
303 	if (symtab->c_data == NULL)
304 		return (0);
305 
306 	/* LINTED */
307 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
308 	syms = (Sym *)symtab->c_data->d_buf;
309 
310 	/*
311 	 * Get the associated string table section.
312 	 */
313 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
314 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
315 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
316 		return (0);
317 	}
318 
319 	/*
320 	 * Loop through the symbol table to find a match.
321 	 */
322 	for (cnt = 0; cnt < symn; syms++, cnt++) {
323 		const char	*symname;
324 
325 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
326 		    syms->st_name);
327 
328 		if (symname && (strcmp(name, symname) == 0)) {
329 			*sym = syms;
330 			return (1);
331 		}
332 	}
333 	return (0);
334 }
335 
336 /*
337  * Print section headers.
338  */
339 static void
340 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
341 {
342 	size_t	seccnt;
343 
344 	for (seccnt = 1; seccnt < shnum; seccnt++) {
345 		Cache		*_cache = &cache[seccnt];
346 		Shdr		*shdr = _cache->c_shdr;
347 		const char	*secname = _cache->c_name;
348 
349 		/*
350 		 * Although numerous section header entries can be zero, it's
351 		 * usually a sign of trouble if the type is zero.
352 		 */
353 		if (shdr->sh_type == 0) {
354 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
355 			    file, secname, EC_WORD(shdr->sh_type));
356 		}
357 
358 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
359 			continue;
360 
361 		/*
362 		 * Identify any sections that are suspicious.  A .got section
363 		 * shouldn't exist in a relocatable object.
364 		 */
365 		if (ehdr->e_type == ET_REL) {
366 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
367 			    MSG_ELF_GOT_SIZE) == 0) {
368 				(void) fprintf(stderr,
369 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
370 				    secname);
371 			}
372 		}
373 
374 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
375 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
376 		Elf_shdr(0, ehdr->e_machine, shdr);
377 	}
378 }
379 
380 /*
381  * A couple of instances of unwind data are printed as tables of 8 data items
382  * expressed as 0x?? integers.
383  */
384 #define	UNWINDTBLSZ	10 + (8 * 5) + 1
385 
386 static void
387 unwindtbl(uint64_t *ndx, uint_t len, uchar_t *data, uint64_t doff,
388     const char *msg, const char *pre, size_t plen)
389 {
390 	char	buffer[UNWINDTBLSZ];
391 	uint_t	boff = plen, cnt = 0;
392 
393 	dbg_print(0, msg);
394 	(void) strncpy(buffer, pre, UNWINDTBLSZ);
395 
396 	while (*ndx < (len + 4)) {
397 		if (cnt == 8) {
398 			dbg_print(0, buffer);
399 			boff = plen;
400 			cnt = 0;
401 		}
402 		(void) snprintf(&buffer[boff], UNWINDTBLSZ - boff,
403 		    MSG_ORIG(MSG_UNW_TBLENTRY), data[doff + (*ndx)++]);
404 		boff += 5;
405 		cnt++;
406 	}
407 	if (cnt)
408 		dbg_print(0, buffer);
409 }
410 
411 /*
412  * Obtain a specified Phdr entry.
413  */
414 static Phdr *
415 getphdr(Word phnum, Word type, const char *file, Elf *elf)
416 {
417 	Word	cnt;
418 	Phdr	*phdr;
419 
420 	if ((phdr = elf_getphdr(elf)) == NULL) {
421 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
422 		return (0);
423 	}
424 
425 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
426 		if (phdr->p_type == type)
427 			return (phdr);
428 	}
429 	return (0);
430 }
431 
432 static void
433 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
434     Elf *elf)
435 {
436 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
437 	Word	cnt;
438 	Phdr	*uphdr = 0;
439 
440 	/*
441 	 * For the moment - UNWIND is only relevant for a AMD64 object.
442 	 */
443 	if (ehdr->e_machine != EM_AMD64)
444 		return;
445 
446 	if (phnum)
447 		uphdr = getphdr(phnum, PT_SUNW_UNWIND, file, elf);
448 
449 	for (cnt = 1; cnt < shnum; cnt++) {
450 		Cache		*_cache = &cache[cnt];
451 		Shdr		*shdr = _cache->c_shdr;
452 		uchar_t		*data;
453 		size_t		datasize;
454 		uint64_t	off, ndx, frame_ptr, fde_cnt, tabndx;
455 		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
456 
457 		/*
458 		 * AMD64 - this is a strmcp() just to find the gcc produced
459 		 * sections.  Soon gcc should be setting the section type - and
460 		 * we'll not need this strcmp().
461 		 */
462 		if ((shdr->sh_type != SHT_AMD64_UNWIND) &&
463 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
464 		    MSG_SCN_FRM_SIZE) != 0) &&
465 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
466 		    MSG_SCN_FRMHDR_SIZE) != 0))
467 			continue;
468 
469 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
470 			continue;
471 
472 		if (_cache->c_data == NULL)
473 			continue;
474 
475 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
476 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
477 
478 		data = (uchar_t *)(_cache->c_data->d_buf);
479 		datasize = _cache->c_data->d_size;
480 		off = 0;
481 
482 		/*
483 		 * Is this a .eh_frame_hdr
484 		 */
485 		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
486 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
487 		    MSG_SCN_FRMHDR_SIZE) == 0)) {
488 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
489 			ndx = 0;
490 
491 			vers = data[ndx++];
492 			frame_ptr_enc = data[ndx++];
493 			fde_cnt_enc = data[ndx++];
494 			table_enc = data[ndx++];
495 
496 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
497 
498 			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
499 			    ehdr->e_ident, shdr->sh_addr + ndx);
500 
501 			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
502 			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
503 			    EC_XWORD(frame_ptr));
504 
505 			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
506 			    ehdr->e_ident, shdr->sh_addr + ndx);
507 
508 			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
509 			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
510 			    EC_XWORD(fde_cnt));
511 			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
512 			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
513 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
514 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
515 
516 			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
517 				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
518 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
519 				    table_enc, ehdr->e_ident, shdr->sh_addr)),
520 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
521 				    table_enc, ehdr->e_ident, shdr->sh_addr)));
522 			}
523 			continue;
524 		}
525 
526 		/*
527 		 * Walk the Eh_frame's
528 		 */
529 		while (off < datasize) {
530 			uint_t		cieid, cielength, cieversion;
531 			uint_t		cieretaddr;
532 			int		cieRflag, cieLflag, ciePflag, cieZflag;
533 			uint_t		cieaugndx, length, id;
534 			uint64_t	ciecalign, ciedalign;
535 			char		*cieaugstr;
536 
537 			ndx = 0;
538 			/*
539 			 * Extract length in lsb format.  A zero length
540 			 * indicates that this CIE is a terminator and that
541 			 * processing for this unwind information should end.
542 			 * However, skip this entry and keep processing, just
543 			 * in case there is any other information remaining in
544 			 * this section.  Note, ld(1) will terminate the
545 			 * processing of the .eh_frame contents for this file
546 			 * after a zero length CIE, thus any information that
547 			 * does follow is ignored by ld(1), and is therefore
548 			 * questionable.
549 			 */
550 			if ((length = LSB32EXTRACT(data + off + ndx)) == 0) {
551 				dbg_print(0, MSG_ORIG(MSG_UNW_ZEROTERM));
552 				off += 4;
553 				continue;
554 			}
555 			ndx += 4;
556 
557 			/*
558 			 * extract CIE id in lsb format
559 			 */
560 			id = LSB32EXTRACT(data + off + ndx);
561 			ndx += 4;
562 
563 			/*
564 			 * A CIE record has a id of '0', otherwise this is a
565 			 * FDE entry and the 'id' is the CIE pointer.
566 			 */
567 			if (id == 0) {
568 				uint64_t    persVal;
569 
570 				cielength = length;
571 				cieid = id;
572 				cieLflag = ciePflag = cieRflag = cieZflag = 0;
573 
574 				dbg_print(0, MSG_ORIG(MSG_UNW_CIE),
575 				    EC_XWORD(shdr->sh_addr + off));
576 				dbg_print(0, MSG_ORIG(MSG_UNW_CIELNGTH),
577 				    cielength, cieid);
578 
579 				cieversion = data[off + ndx];
580 				ndx += 1;
581 				cieaugstr = (char *)(&data[off + ndx]);
582 				ndx += strlen(cieaugstr) + 1;
583 
584 				dbg_print(0, MSG_ORIG(MSG_UNW_CIEVERS),
585 				    cieversion, cieaugstr);
586 
587 				ciecalign = uleb_extract(&data[off], &ndx);
588 				ciedalign = sleb_extract(&data[off], &ndx);
589 				cieretaddr = data[off + ndx];
590 				ndx += 1;
591 
592 				dbg_print(0, MSG_ORIG(MSG_UNW_CIECALGN),
593 				    EC_XWORD(ciecalign), EC_XWORD(ciedalign),
594 				    cieretaddr);
595 
596 				if (cieaugstr[0])
597 					dbg_print(0,
598 					    MSG_ORIG(MSG_UNW_CIEAXVAL));
599 
600 				for (cieaugndx = 0; cieaugstr[cieaugndx];
601 				    cieaugndx++) {
602 					uint_t	val;
603 
604 					switch (cieaugstr[cieaugndx]) {
605 					case 'z':
606 						val = uleb_extract(&data[off],
607 						    &ndx);
608 						dbg_print(0,
609 						    MSG_ORIG(MSG_UNW_CIEAXSIZ),
610 						    val);
611 						cieZflag = 1;
612 						break;
613 					case 'P':
614 						ciePflag = data[off + ndx];
615 						ndx += 1;
616 
617 						persVal = dwarf_ehe_extract(
618 						    &data[off], &ndx, ciePflag,
619 						    ehdr->e_ident,
620 						    shdr->sh_addr + off + ndx);
621 						dbg_print(0,
622 						    MSG_ORIG(MSG_UNW_CIEAXPERS),
623 						    ciePflag,
624 						    conv_dwarf_ehe(ciePflag,
625 						    &dwarf_ehe_buf),
626 						    EC_XWORD(persVal));
627 						break;
628 					case 'R':
629 						val = data[off + ndx];
630 						ndx += 1;
631 						dbg_print(0,
632 						    MSG_ORIG(MSG_UNW_CIEAXCENC),
633 						    val, conv_dwarf_ehe(val,
634 						    &dwarf_ehe_buf));
635 						cieRflag = val;
636 						break;
637 					case 'L':
638 						val = data[off + ndx];
639 						ndx += 1;
640 						dbg_print(0,
641 						    MSG_ORIG(MSG_UNW_CIEAXLSDA),
642 						    val, conv_dwarf_ehe(val,
643 						    &dwarf_ehe_buf));
644 						cieLflag = val;
645 						break;
646 					default:
647 						dbg_print(0,
648 						    MSG_ORIG(MSG_UNW_CIEAXUNEC),
649 						    cieaugstr[cieaugndx]);
650 						break;
651 					}
652 				}
653 				if ((cielength + 4) > ndx)
654 					unwindtbl(&ndx, cielength, data, off,
655 					    MSG_ORIG(MSG_UNW_CIECFI),
656 					    MSG_ORIG(MSG_UNW_CIEPRE),
657 					    MSG_UNW_CIEPRE_SIZE);
658 				off += cielength + 4;
659 
660 			} else {
661 				uint_t	    fdelength = length;
662 				int	    fdecieptr = id;
663 				uint64_t    fdeinitloc, fdeaddrrange;
664 
665 				dbg_print(0, MSG_ORIG(MSG_UNW_FDE),
666 				    EC_XWORD(shdr->sh_addr + off));
667 				dbg_print(0, MSG_ORIG(MSG_UNW_FDELNGTH),
668 				    fdelength, fdecieptr);
669 
670 				fdeinitloc = dwarf_ehe_extract(&data[off],
671 				    &ndx, cieRflag, ehdr->e_ident,
672 				    shdr->sh_addr + off + ndx);
673 				fdeaddrrange = dwarf_ehe_extract(&data[off],
674 				    &ndx, (cieRflag & ~DW_EH_PE_pcrel),
675 				    ehdr->e_ident,
676 				    shdr->sh_addr + off + ndx);
677 
678 				dbg_print(0, MSG_ORIG(MSG_UNW_FDEINITLOC),
679 				    EC_XWORD(fdeinitloc),
680 				    EC_XWORD(fdeaddrrange));
681 
682 				if (cieaugstr[0])
683 					dbg_print(0,
684 					    MSG_ORIG(MSG_UNW_FDEAXVAL));
685 				if (cieZflag) {
686 					uint64_t    val;
687 					val = uleb_extract(&data[off], &ndx);
688 					dbg_print(0,
689 					    MSG_ORIG(MSG_UNW_FDEAXSIZE),
690 					    EC_XWORD(val));
691 					if (val & cieLflag) {
692 						fdeinitloc = dwarf_ehe_extract(
693 						    &data[off], &ndx, cieLflag,
694 						    ehdr->e_ident,
695 						    shdr->sh_addr + off + ndx);
696 						dbg_print(0,
697 						    MSG_ORIG(MSG_UNW_FDEAXLSDA),
698 						    EC_XWORD(val));
699 					}
700 				}
701 				if ((fdelength + 4) > ndx)
702 					unwindtbl(&ndx, fdelength, data, off,
703 					    MSG_ORIG(MSG_UNW_FDECFI),
704 					    MSG_ORIG(MSG_UNW_FDEPRE),
705 					    MSG_UNW_FDEPRE_SIZE);
706 				off += fdelength + 4;
707 			}
708 		}
709 	}
710 }
711 
712 /*
713  * Print the hardware/software capabilities.  For executables and shared objects
714  * this should be accompanied with a program header.
715  */
716 static void
717 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
718     Elf *elf)
719 {
720 	Word		cnt;
721 	Shdr		*cshdr = 0;
722 	Cache		*ccache;
723 	Off		cphdr_off = 0;
724 	Xword		cphdr_sz;
725 
726 	/*
727 	 * Determine if a hardware/software capabilities header exists.
728 	 */
729 	if (phnum) {
730 		Phdr	*phdr;
731 
732 		if ((phdr = elf_getphdr(elf)) == NULL) {
733 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
734 			return;
735 		}
736 
737 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
738 			if (phdr->p_type == PT_SUNWCAP) {
739 				cphdr_off = phdr->p_offset;
740 				cphdr_sz = phdr->p_filesz;
741 				break;
742 			}
743 		}
744 	}
745 
746 	/*
747 	 * Determine if a hardware/software capabilities section exists.
748 	 */
749 	for (cnt = 1; cnt < shnum; cnt++) {
750 		Cache	*_cache = &cache[cnt];
751 		Shdr	*shdr = _cache->c_shdr;
752 
753 		if (shdr->sh_type != SHT_SUNW_cap)
754 			continue;
755 
756 		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
757 		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
758 			continue;
759 
760 		if (_cache->c_data == NULL)
761 			continue;
762 
763 		ccache = _cache;
764 		cshdr = shdr;
765 		break;
766 	}
767 
768 	if ((cshdr == 0) && (cphdr_off == 0))
769 		return;
770 
771 	/*
772 	 * Print the hardware/software capabilities section.
773 	 */
774 	if (cshdr) {
775 		Word	ndx, capn;
776 		Cap	*cap = (Cap *)ccache->c_data->d_buf;
777 
778 		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
779 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
780 			    file, ccache->c_name);
781 			return;
782 		}
783 
784 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
785 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
786 
787 		Elf_cap_title(0);
788 
789 		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
790 
791 		for (ndx = 0; ndx < capn; cap++, ndx++) {
792 			if (cap->c_tag != CA_SUNW_NULL)
793 				Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
794 		}
795 	} else
796 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
797 
798 	/*
799 	 * If this object is an executable or shared object, then the
800 	 * hardware/software capabilities section should have an accompanying
801 	 * program header.
802 	 */
803 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
804 		if (cphdr_off == 0)
805 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
806 			    file, ccache->c_name);
807 		else if ((cphdr_off != cshdr->sh_offset) ||
808 		    (cphdr_sz != cshdr->sh_size))
809 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
810 			    file, ccache->c_name);
811 	}
812 }
813 
814 /*
815  * Print the interpretor.
816  */
817 static void
818 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
819 {
820 	Word	cnt;
821 	Shdr	*ishdr = 0;
822 	Cache	*icache;
823 	Off	iphdr_off = 0;
824 	Xword	iphdr_fsz;
825 
826 	/*
827 	 * Determine if an interp header exists.
828 	 */
829 	if (phnum) {
830 		Phdr	*phdr;
831 
832 		if ((phdr = getphdr(phnum, PT_INTERP, file, elf)) != 0) {
833 			iphdr_off = phdr->p_offset;
834 			iphdr_fsz = phdr->p_filesz;
835 		}
836 	}
837 
838 	if (iphdr_off == 0)
839 		return;
840 
841 	/*
842 	 * Determine if an interp section exists.
843 	 */
844 	for (cnt = 1; cnt < shnum; cnt++) {
845 		Cache	*_cache = &cache[cnt];
846 		Shdr	*shdr = _cache->c_shdr;
847 
848 		/*
849 		 * Scan sections to find a section which contains the PT_INTERP
850 		 * string.  The target section can't be in a NOBITS section.
851 		 */
852 		if ((shdr->sh_type == SHT_NOBITS) ||
853 		    (iphdr_off < shdr->sh_offset) ||
854 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
855 			continue;
856 
857 		icache = _cache;
858 		ishdr = shdr;
859 		break;
860 	}
861 
862 	/*
863 	 * Print the interpreter string based on the offset defined in the
864 	 * program header, as this is the offset used by the kernel.
865 	 */
866 	if (ishdr && icache->c_data) {
867 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
868 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
869 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
870 		    (char *)icache->c_data->d_buf +
871 		    (iphdr_off - ishdr->sh_offset));
872 	} else
873 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
874 
875 	/*
876 	 * If there are any inconsistences between the program header and
877 	 * section information, flag them.
878 	 */
879 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
880 	    (iphdr_fsz != ishdr->sh_size))) {
881 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
882 		    icache->c_name);
883 	}
884 }
885 
886 /*
887  * Print the syminfo section.
888  */
889 static void
890 syminfo(Cache *cache, Word shnum, const char *file)
891 {
892 	Shdr		*infoshdr;
893 	Syminfo		*info;
894 	Sym		*syms;
895 	Dyn		*dyns;
896 	Word		infonum, cnt, ndx, symnum;
897 	Cache		*infocache = 0, *symsec, *strsec;
898 
899 	for (cnt = 1; cnt < shnum; cnt++) {
900 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
901 			infocache = &cache[cnt];
902 			break;
903 		}
904 	}
905 	if (infocache == 0)
906 		return;
907 
908 	infoshdr = infocache->c_shdr;
909 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
910 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
911 		    file, infocache->c_name);
912 		return;
913 	}
914 	if (infocache->c_data == NULL)
915 		return;
916 
917 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
918 	info = (Syminfo *)infocache->c_data->d_buf;
919 
920 	/*
921 	 * Get the data buffer of the associated dynamic section.
922 	 */
923 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
924 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
925 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
926 		return;
927 	}
928 	if (cache[infoshdr->sh_info].c_data == NULL)
929 		return;
930 
931 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
932 	if (dyns == 0) {
933 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
934 		    file, cache[infoshdr->sh_info].c_name);
935 		return;
936 	}
937 
938 	/*
939 	 * Get the data buffer for the associated symbol table and string table.
940 	 */
941 	if (stringtbl(cache, 1, cnt, shnum, file,
942 	    &symnum, &symsec, &strsec) == 0)
943 		return;
944 
945 	syms = symsec->c_data->d_buf;
946 
947 	/*
948 	 * Loop through the syminfo entries.
949 	 */
950 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
951 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
952 	Elf_syminfo_title(0);
953 
954 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
955 		Sym 		*sym;
956 		const char	*needed = 0, *name;
957 
958 		if ((info->si_flags == 0) && (info->si_boundto == 0))
959 			continue;
960 
961 		sym = &syms[ndx];
962 		name = string(infocache, ndx, strsec, file, sym->st_name);
963 
964 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
965 			Dyn	*dyn = &dyns[info->si_boundto];
966 
967 			needed = string(infocache, info->si_boundto,
968 			    strsec, file, dyn->d_un.d_val);
969 		}
970 		Elf_syminfo_entry(0, ndx, info, name, needed);
971 	}
972 }
973 
974 /*
975  * Print version definition section entries.
976  */
977 static void
978 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
979     const char *file)
980 {
981 	Word	cnt;
982 	char	index[MAXNDXSIZE];
983 
984 	Elf_ver_def_title(0);
985 
986 	for (cnt = 1; cnt <= vdf_num; cnt++,
987 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
988 		const char	*name, *dep;
989 		Half		vcnt = vdf->vd_cnt - 1;
990 		Half		ndx = vdf->vd_ndx;
991 		Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
992 
993 		/*
994 		 * Obtain the name and first dependency (if any).
995 		 */
996 		name = string(vcache, cnt, scache, file, vdap->vda_name);
997 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
998 		if (vcnt)
999 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
1000 		else
1001 			dep = MSG_ORIG(MSG_STR_EMPTY);
1002 
1003 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
1004 		    EC_XWORD(ndx));
1005 		Elf_ver_line_1(0, index, name, dep,
1006 		    conv_ver_flags(vdf->vd_flags));
1007 
1008 		/*
1009 		 * Print any additional dependencies.
1010 		 */
1011 		if (vcnt) {
1012 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
1013 			for (vcnt--; vcnt; vcnt--,
1014 			    vdap = (Verdaux *)((uintptr_t)vdap +
1015 			    vdap->vda_next)) {
1016 				dep = string(vcache, cnt, scache, file,
1017 				    vdap->vda_name);
1018 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
1019 			}
1020 		}
1021 	}
1022 }
1023 
1024 /*
1025  * Print version needed section entries.
1026  *
1027  * entry:
1028  *	vnd - Address of verneed data
1029  *	vnd_num - # of Verneed entries
1030  *	vcache - Cache of verneed section being processed
1031  *	scache - Cache of associated string table section
1032  *	file - Name of object being processed.
1033  *	versym - Information about versym section
1034  *
1035  * exit:
1036  *	The versions have been printed. If GNU style versioning
1037  *	is in effect, versym->max_verndx has been updated to
1038  *	contain the largest version index seen.
1039  */
1040 static void
1041 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
1042     const char *file, VERSYM_STATE *versym)
1043 {
1044 	Word		cnt;
1045 	char		index[MAXNDXSIZE];
1046 	const char	*index_str;
1047 
1048 	Elf_ver_need_title(0, versym->gnu);
1049 
1050 	/*
1051 	 * The versym section in an object that follows Solaris versioning
1052 	 * rules contains indexes into the verdef section. Symbols defined
1053 	 * in other objects (UNDEF) are given a version of 0, indicating that
1054 	 * they are not defined by this file, and the Verneed entries do not
1055 	 * have associated version indexes. For these reasons, we do not
1056 	 * display a version index for Solaris Verneed sections.
1057 	 *
1058 	 * The GNU versioning rules are different: Symbols defined in other
1059 	 * objects receive a version index in the range above those defined
1060 	 * by the Verdef section, and the vna_other field of the Vernaux
1061 	 * structs inside the Verneed section contain the version index for
1062 	 * that item. We therefore  display the index when showing the
1063 	 * contents of a GNU Verneed section. You should not expect these
1064 	 * indexes to appear in sorted order --- it seems that the GNU ld
1065 	 * assigns the versions as symbols are encountered during linking,
1066 	 * and then the results are assembled into the Verneed section
1067 	 * afterwards.
1068 	 */
1069 	if (versym->gnu) {
1070 		index_str = index;
1071 	} else {
1072 		/* For Solaris versioning, display a NULL string */
1073 		index_str = MSG_ORIG(MSG_STR_EMPTY);
1074 	}
1075 
1076 	for (cnt = 1; cnt <= vnd_num; cnt++,
1077 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1078 		const char	*name, *dep;
1079 		Half		vcnt = vnd->vn_cnt;
1080 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1081 
1082 		/*
1083 		 * Obtain the name of the needed file and the version name
1084 		 * within it that we're dependent on.  Note that the count
1085 		 * should be at least one, otherwise this is a pretty bogus
1086 		 * entry.
1087 		 */
1088 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1089 		if (vcnt)
1090 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1091 		else
1092 			dep = MSG_INTL(MSG_STR_NULL);
1093 
1094 		if (versym->gnu) {
1095 			/* Format the version index value */
1096 			(void) snprintf(index, MAXNDXSIZE,
1097 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1098 			if (vnap->vna_other > versym->max_verndx)
1099 				versym->max_verndx = vnap->vna_other;
1100 		}
1101 		Elf_ver_line_1(0, index_str, name, dep,
1102 		    conv_ver_flags(vnap->vna_flags));
1103 
1104 		/*
1105 		 * Print any additional version dependencies.
1106 		 */
1107 		if (vcnt) {
1108 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1109 			for (vcnt--; vcnt; vcnt--,
1110 			    vnap = (Vernaux *)((uintptr_t)vnap +
1111 			    vnap->vna_next)) {
1112 				dep = string(vcache, cnt, scache, file,
1113 				    vnap->vna_name);
1114 				if (versym->gnu) {
1115 					/* Format the next index value */
1116 					(void) snprintf(index, MAXNDXSIZE,
1117 					    MSG_ORIG(MSG_FMT_INDEX),
1118 					    EC_XWORD(vnap->vna_other));
1119 					Elf_ver_line_1(0, index_str,
1120 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1121 					    conv_ver_flags(vnap->vna_flags));
1122 					if (vnap->vna_other >
1123 					    versym->max_verndx)
1124 						versym->max_verndx =
1125 						    vnap->vna_other;
1126 				} else {
1127 					Elf_ver_line_3(0,
1128 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1129 					    conv_ver_flags(vnap->vna_flags));
1130 				}
1131 			}
1132 		}
1133 	}
1134 }
1135 
1136 /*
1137  * Compute the max_verndx value for a GNU style object with
1138  * a Verneed section. This is only needed if version_need() is not
1139  * called.
1140  *
1141  * entry:
1142  *	vnd - Address of verneed data
1143  *	vnd_num - # of Verneed entries
1144  *	versym - Information about versym section
1145  *
1146  * exit:
1147  *	versym->max_verndx has been updated to contain the largest
1148  *	version index seen.
1149  */
1150 static void
1151 update_gnu_max_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1152 {
1153 	Word		cnt;
1154 
1155 	for (cnt = 1; cnt <= vnd_num; cnt++,
1156 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1157 		Half	vcnt = vnd->vn_cnt;
1158 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1159 
1160 		if (vnap->vna_other > versym->max_verndx)
1161 			versym->max_verndx = vnap->vna_other;
1162 
1163 		/*
1164 		 * Check any additional version dependencies.
1165 		 */
1166 		if (vcnt) {
1167 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1168 			for (vcnt--; vcnt; vcnt--,
1169 			    vnap = (Vernaux *)((uintptr_t)vnap +
1170 			    vnap->vna_next)) {
1171 				if (vnap->vna_other > versym->max_verndx)
1172 					versym->max_verndx = vnap->vna_other;
1173 			}
1174 		}
1175 	}
1176 }
1177 
1178 /*
1179  * Display version section information if the flags require it.
1180  * Return version information needed by other output.
1181  *
1182  * entry:
1183  *	cache - Cache of all section headers
1184  *	shnum - # of sections in cache
1185  *	file - Name of file
1186  *	flags - Command line option flags
1187  *	versym - VERSYM_STATE block to be filled in.
1188  */
1189 static void
1190 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1191     VERSYM_STATE *versym)
1192 {
1193 	GElf_Word	cnt;
1194 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1195 
1196 
1197 	/* Gather information about the version sections */
1198 	bzero(versym, sizeof (*versym));
1199 	versym->max_verndx = 1;
1200 	for (cnt = 1; cnt < shnum; cnt++) {
1201 		Cache		*_cache = &cache[cnt];
1202 		Shdr		*shdr = _cache->c_shdr;
1203 		Dyn		*dyn;
1204 		ulong_t		numdyn;
1205 
1206 		switch (shdr->sh_type) {
1207 		case SHT_DYNAMIC:
1208 			/*
1209 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1210 			 * section so that the runtime linker can use it to
1211 			 * implement their versioning rules. They allow multiple
1212 			 * incompatible functions with the same name to exist
1213 			 * in different versions. The Solaris ld does not
1214 			 * support this mechanism, and as such, does not
1215 			 * produce DT_VERSYM. We use this fact to determine
1216 			 * which ld produced this object, and how to interpret
1217 			 * the version values.
1218 			 */
1219 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1220 			    (_cache->c_data == NULL))
1221 				continue;
1222 			numdyn = shdr->sh_size / shdr->sh_entsize;
1223 			dyn = (Dyn *)_cache->c_data->d_buf;
1224 			for (; numdyn-- > 0; dyn++)
1225 				if (dyn->d_tag == DT_VERSYM) {
1226 					versym->gnu = 1;
1227 					break;
1228 				}
1229 			break;
1230 
1231 		case SHT_SUNW_versym:
1232 			/* Record data address for later symbol processing */
1233 			if (_cache->c_data != NULL) {
1234 				versym->cache = _cache;
1235 				versym->data = _cache->c_data->d_buf;
1236 				continue;
1237 			}
1238 			break;
1239 
1240 		case SHT_SUNW_verdef:
1241 		case SHT_SUNW_verneed:
1242 			/*
1243 			 * Ensure the data is non-NULL and the number
1244 			 * of items is non-zero. Otherwise, we don't
1245 			 * understand the section, and will not use it.
1246 			 */
1247 			if ((_cache->c_data == NULL) ||
1248 			    (_cache->c_data->d_buf == NULL)) {
1249 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1250 				    file, _cache->c_name);
1251 				continue;
1252 			}
1253 			if (shdr->sh_info == 0) {
1254 				(void) fprintf(stderr,
1255 				    MSG_INTL(MSG_ERR_BADSHINFO),
1256 				    file, _cache->c_name,
1257 				    EC_WORD(shdr->sh_info));
1258 				continue;
1259 			}
1260 
1261 			/* Make sure the string table index is in range */
1262 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1263 				(void) fprintf(stderr,
1264 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1265 				    _cache->c_name, EC_WORD(shdr->sh_link));
1266 				continue;
1267 			}
1268 
1269 			/*
1270 			 * The section is usable. Save the cache entry.
1271 			 */
1272 			if (shdr->sh_type == SHT_SUNW_verdef) {
1273 				verdef_cache = _cache;
1274 				/*
1275 				 * Under Solaris rules, if there is a verdef
1276 				 * section, the max versym index is number
1277 				 * of version definitions it supplies.
1278 				 */
1279 				versym->max_verndx = shdr->sh_info;
1280 			} else {
1281 				verneed_cache = _cache;
1282 			}
1283 			break;
1284 		}
1285 	}
1286 
1287 	if ((flags & FLG_SHOW_VERSIONS) == 0) {
1288 		/*
1289 		 * If GNU versioning applies to this object, and there
1290 		 * is a Verneed section, then examine it to determine
1291 		 * the maximum Versym version index for this file.
1292 		 */
1293 		if ((versym->gnu) && (verneed_cache != NULL))
1294 			update_gnu_max_verndx(
1295 			    (Verneed *)verneed_cache->c_data->d_buf,
1296 			    verneed_cache->c_shdr->sh_info, versym);
1297 		return;
1298 	}
1299 
1300 	/*
1301 	 * Now that all the information is available, display the
1302 	 * Verdef and Verneed section contents.
1303 	 */
1304 	if (verdef_cache != NULL) {
1305 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1306 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1307 		    verdef_cache->c_name);
1308 		version_def((Verdef *)verdef_cache->c_data->d_buf,
1309 		    verdef_cache->c_shdr->sh_info, verdef_cache,
1310 		    &cache[verdef_cache->c_shdr->sh_link], file);
1311 	}
1312 	if (verneed_cache != NULL) {
1313 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1314 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1315 		    verneed_cache->c_name);
1316 		/*
1317 		 * If GNU versioning applies to this object, version_need()
1318 		 * will update versym->max_verndx, and it is not
1319 		 * necessary to call update_gnu_max_verndx().
1320 		 */
1321 		version_need((Verneed *)verneed_cache->c_data->d_buf,
1322 		    verneed_cache->c_shdr->sh_info, verneed_cache,
1323 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1324 	}
1325 }
1326 
1327 /*
1328  * Initialize a symbol table state structure
1329  *
1330  * entry:
1331  *	state - State structure to be initialized
1332  *	cache - Cache of all section headers
1333  *	shnum - # of sections in cache
1334  *	secndx - Index of symbol table section
1335  *	ehdr - ELF header for file
1336  *	versym - Information about versym section
1337  *	file - Name of file
1338  *	flags - Command line option flags
1339  */
1340 static int
1341 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1342     Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1343 {
1344 	Shdr *shdr;
1345 
1346 	state->file = file;
1347 	state->ehdr = ehdr;
1348 	state->cache = cache;
1349 	state->shnum = shnum;
1350 	state->seccache = &cache[secndx];
1351 	state->secndx = secndx;
1352 	state->secname = state->seccache->c_name;
1353 	state->flags = flags;
1354 	state->shxndx.checked = 0;
1355 	state->shxndx.data = NULL;
1356 	state->shxndx.n = 0;
1357 
1358 	shdr = state->seccache->c_shdr;
1359 
1360 	/*
1361 	 * Check the symbol data and per-item size.
1362 	 */
1363 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1364 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1365 		    file, state->secname);
1366 		return (0);
1367 	}
1368 	if (state->seccache->c_data == NULL)
1369 		return (0);
1370 
1371 	/* LINTED */
1372 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1373 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1374 
1375 	/*
1376 	 * Check associated string table section.
1377 	 */
1378 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1379 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1380 		    file, state->secname, EC_WORD(shdr->sh_link));
1381 		return (0);
1382 	}
1383 
1384 	/*
1385 	 * Determine if there is a associated Versym section
1386 	 * with this Symbol Table.
1387 	 */
1388 	if (versym->cache &&
1389 	    (versym->cache->c_shdr->sh_link == state->secndx))
1390 		state->versym = versym;
1391 	else
1392 		state->versym = NULL;
1393 
1394 
1395 	return (1);
1396 }
1397 
1398 /*
1399  * Determine the extended section index used for symbol tables entries.
1400  */
1401 static void
1402 symbols_getxindex(SYMTBL_STATE * state)
1403 {
1404 	uint_t	symn;
1405 	Word	symcnt;
1406 
1407 	state->shxndx.checked = 1;   /* Note that we've been called */
1408 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1409 		Cache	*_cache = &state->cache[symcnt];
1410 		Shdr	*shdr = _cache->c_shdr;
1411 
1412 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1413 		    (shdr->sh_link != state->secndx))
1414 			continue;
1415 
1416 		if ((shdr->sh_entsize) &&
1417 		    /* LINTED */
1418 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1419 			continue;
1420 
1421 		if (_cache->c_data == NULL)
1422 			continue;
1423 
1424 		state->shxndx.data = _cache->c_data->d_buf;
1425 		state->shxndx.n = symn;
1426 		return;
1427 	}
1428 }
1429 
1430 /*
1431  * Produce a line of output for the given symbol
1432  *
1433  * entry:
1434  *	state - Symbol table state
1435  *	symndx - Index of symbol within the table
1436  *	info - Value of st_info (indicates local/global range)
1437  *	symndx_disp - Index to display. This may not be the same
1438  *		as symndx if the display is relative to the logical
1439  *		combination of the SUNW_ldynsym/dynsym tables.
1440  *	sym - Symbol to display
1441  */
1442 static void
1443 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1444     Sym *sym)
1445 {
1446 	/*
1447 	 * Symbol types for which we check that the specified
1448 	 * address/size land inside the target section.
1449 	 */
1450 	static const int addr_symtype[STT_NUM] = {
1451 		0,			/* STT_NOTYPE */
1452 		1,			/* STT_OBJECT */
1453 		1,			/* STT_FUNC */
1454 		0,			/* STT_SECTION */
1455 		0,			/* STT_FILE */
1456 		1,			/* STT_COMMON */
1457 		0,			/* STT_TLS */
1458 	};
1459 #if STT_NUM != (STT_TLS + 1)
1460 #error "STT_NUM has grown. Update addr_symtype[]"
1461 #endif
1462 
1463 	char		index[MAXNDXSIZE];
1464 	const char	*symname, *sec;
1465 	Versym		verndx;
1466 	int		gnuver;
1467 	uchar_t		type;
1468 	Shdr		*tshdr;
1469 	Word		shndx;
1470 	Conv_inv_buf_t	inv_buf;
1471 
1472 	/* Ensure symbol index is in range */
1473 	if (symndx >= state->symn) {
1474 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1475 		    state->file, state->secname, EC_WORD(symndx));
1476 		return;
1477 	}
1478 
1479 	/*
1480 	 * If we are using extended symbol indexes, find the
1481 	 * corresponding SHN_SYMTAB_SHNDX table.
1482 	 */
1483 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1484 		symbols_getxindex(state);
1485 
1486 	/* LINTED */
1487 	symname = string(state->seccache, symndx,
1488 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1489 	    sym->st_name);
1490 
1491 	tshdr = 0;
1492 	sec = NULL;
1493 
1494 	if (state->ehdr->e_type == ET_CORE) {
1495 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1496 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1497 		/*
1498 		 * If we are using fake section headers derived from
1499 		 * the program headers, then the section indexes
1500 		 * in the symbols do not correspond to these headers.
1501 		 * The section names are not available, so all we can
1502 		 * do is to display them in numeric form.
1503 		 */
1504 		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1505 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1506 	    (sym->st_shndx < state->shnum)) {
1507 		shndx = sym->st_shndx;
1508 		tshdr = state->cache[shndx].c_shdr;
1509 		sec = state->cache[shndx].c_name;
1510 	} else if (sym->st_shndx == SHN_XINDEX) {
1511 		if (state->shxndx.data) {
1512 			Word	_shxndx;
1513 
1514 			if (symndx > state->shxndx.n) {
1515 				(void) fprintf(stderr,
1516 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1517 				    state->file, state->secname,
1518 				    EC_WORD(symndx));
1519 			} else if ((_shxndx =
1520 			    state->shxndx.data[symndx]) > state->shnum) {
1521 				(void) fprintf(stderr,
1522 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1523 				    state->file, state->secname,
1524 				    EC_WORD(symndx), EC_WORD(_shxndx));
1525 			} else {
1526 				shndx = _shxndx;
1527 				tshdr = state->cache[shndx].c_shdr;
1528 				sec = state->cache[shndx].c_name;
1529 			}
1530 		} else {
1531 			(void) fprintf(stderr,
1532 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1533 			    state->file, state->secname, EC_WORD(symndx));
1534 		}
1535 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1536 	    (sym->st_shndx >= state->shnum)) {
1537 		(void) fprintf(stderr,
1538 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1539 		    state->secname, EC_WORD(symndx),
1540 		    demangle(symname, state->flags), sym->st_shndx);
1541 	}
1542 
1543 	/*
1544 	 * If versioning is available display the
1545 	 * version index. If not, then use 0.
1546 	 */
1547 	if (state->versym) {
1548 		Versym test_verndx;
1549 
1550 		verndx = test_verndx = state->versym->data[symndx];
1551 		gnuver = state->versym->gnu;
1552 
1553 		/*
1554 		 * Check to see if this is a defined symbol with a
1555 		 * version index that is outside the valid range for
1556 		 * the file. The interpretation of this depends on
1557 		 * the style of versioning used by the object.
1558 		 *
1559 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1560 		 * and are exempt from this checking.
1561 		 *
1562 		 * GNU style version indexes use the top bit of the
1563 		 * 16-bit index value (0x8000) as the "hidden bit".
1564 		 * We must mask off this bit in order to compare
1565 		 * the version against the maximum value.
1566 		 */
1567 		if (gnuver)
1568 			test_verndx &= ~0x8000;
1569 
1570 		if ((test_verndx > state->versym->max_verndx) &&
1571 		    (verndx < VER_NDX_LORESERVE))
1572 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1573 			    state->file, state->secname, EC_WORD(symndx),
1574 			    EC_HALF(test_verndx), state->versym->max_verndx);
1575 	} else {
1576 		verndx = 0;
1577 		gnuver = 0;
1578 	}
1579 
1580 	/*
1581 	 * Error checking for TLS.
1582 	 */
1583 	type = ELF_ST_TYPE(sym->st_info);
1584 	if (type == STT_TLS) {
1585 		if (tshdr &&
1586 		    (sym->st_shndx != SHN_UNDEF) &&
1587 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1588 			(void) fprintf(stderr,
1589 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1590 			    state->secname, EC_WORD(symndx),
1591 			    demangle(symname, state->flags));
1592 		}
1593 	} else if ((type != STT_SECTION) && sym->st_size &&
1594 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1595 		(void) fprintf(stderr,
1596 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1597 		    state->secname, EC_WORD(symndx),
1598 		    demangle(symname, state->flags));
1599 	}
1600 
1601 	/*
1602 	 * If a symbol with non-zero size has a type that
1603 	 * specifies an address, then make sure the location
1604 	 * it references is actually contained within the
1605 	 * section.  UNDEF symbols don't count in this case,
1606 	 * so we ignore them.
1607 	 *
1608 	 * The meaning of the st_value field in a symbol
1609 	 * depends on the type of object. For a relocatable
1610 	 * object, it is the offset within the section.
1611 	 * For sharable objects, it is the offset relative to
1612 	 * the base of the object, and for other types, it is
1613 	 * the virtual address. To get an offset within the
1614 	 * section for non-ET_REL files, we subtract the
1615 	 * base address of the section.
1616 	 */
1617 	if (addr_symtype[type] && (sym->st_size > 0) &&
1618 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1619 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1620 		Word v = sym->st_value;
1621 			if (state->ehdr->e_type != ET_REL)
1622 				v -= tshdr->sh_addr;
1623 		if (((v + sym->st_size) > tshdr->sh_size)) {
1624 			(void) fprintf(stderr,
1625 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1626 			    state->secname, EC_WORD(symndx),
1627 			    demangle(symname, state->flags),
1628 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1629 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * A typical symbol table uses the sh_info field to indicate one greater
1635 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1636 	 * Therefore, symbol indexes less than sh_info should have local
1637 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1638 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1639 	 * value and size, as these symbols may be the result of an mcs(1)
1640 	 * section deletion.
1641 	 */
1642 	if (info) {
1643 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1644 
1645 		if ((symndx < info) && (bind != STB_LOCAL)) {
1646 			(void) fprintf(stderr,
1647 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1648 			    state->secname, EC_WORD(symndx),
1649 			    demangle(symname, state->flags), EC_XWORD(info));
1650 
1651 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1652 		    ((sym->st_shndx != SHN_UNDEF) ||
1653 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1654 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1655 			(void) fprintf(stderr,
1656 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1657 			    state->secname, EC_WORD(symndx),
1658 			    demangle(symname, state->flags), EC_XWORD(info));
1659 		}
1660 	}
1661 
1662 	(void) snprintf(index, MAXNDXSIZE,
1663 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1664 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1665 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1666 }
1667 
1668 /*
1669  * Search for and process any symbol tables.
1670  */
1671 void
1672 symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1673     const char *file, uint_t flags)
1674 {
1675 	SYMTBL_STATE state;
1676 	Cache *_cache;
1677 	Word secndx;
1678 
1679 	for (secndx = 1; secndx < shnum; secndx++) {
1680 		Word		symcnt;
1681 		Shdr		*shdr;
1682 
1683 		_cache = &cache[secndx];
1684 		shdr = _cache->c_shdr;
1685 
1686 		if ((shdr->sh_type != SHT_SYMTAB) &&
1687 		    (shdr->sh_type != SHT_DYNSYM) &&
1688 		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1689 			continue;
1690 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
1691 			continue;
1692 
1693 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1694 		    versym, file, flags))
1695 			continue;
1696 		/*
1697 		 * Loop through the symbol tables entries.
1698 		 */
1699 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1700 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1701 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1702 
1703 		for (symcnt = 0; symcnt < state.symn; symcnt++)
1704 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1705 			    state.sym + symcnt);
1706 	}
1707 }
1708 
1709 /*
1710  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1711  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1712  */
1713 static void
1714 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1715     const char *file, uint_t flags)
1716 {
1717 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1718 	Cache		*sortcache,	*symcache;
1719 	Shdr		*sortshdr,	*symshdr;
1720 	Word		sortsecndx,	symsecndx;
1721 	Word		ldynsym_cnt;
1722 	Word		*ndx;
1723 	Word		ndxn;
1724 	int		output_cnt = 0;
1725 	Conv_inv_buf_t	inv_buf;
1726 
1727 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1728 
1729 		sortcache = &cache[sortsecndx];
1730 		sortshdr = sortcache->c_shdr;
1731 
1732 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1733 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1734 			continue;
1735 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
1736 		    sortshdr->sh_type))
1737 			continue;
1738 
1739 		/*
1740 		 * If the section references a SUNW_ldynsym, then we
1741 		 * expect to see the associated .dynsym immediately
1742 		 * following. If it references a .dynsym, there is no
1743 		 * SUNW_ldynsym. If it is any other type, then we don't
1744 		 * know what to do with it.
1745 		 */
1746 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1747 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1748 			    file, sortcache->c_name,
1749 			    EC_WORD(sortshdr->sh_link));
1750 			continue;
1751 		}
1752 		symcache = &cache[sortshdr->sh_link];
1753 		symshdr = symcache->c_shdr;
1754 		symsecndx = sortshdr->sh_link;
1755 		ldynsym_cnt = 0;
1756 		switch (symshdr->sh_type) {
1757 		case SHT_SUNW_LDYNSYM:
1758 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1759 			    symsecndx, ehdr, versym, file, flags))
1760 				continue;
1761 			ldynsym_cnt = ldynsym_state.symn;
1762 			/*
1763 			 * We know that the dynsym follows immediately
1764 			 * after the SUNW_ldynsym, and so, should be at
1765 			 * (sortshdr->sh_link + 1). However, elfdump is a
1766 			 * diagnostic tool, so we do the full paranoid
1767 			 * search instead.
1768 			 */
1769 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1770 				symcache = &cache[symsecndx];
1771 				symshdr = symcache->c_shdr;
1772 				if (symshdr->sh_type == SHT_DYNSYM)
1773 					break;
1774 			}
1775 			if (symsecndx >= shnum) {	/* Dynsym not found! */
1776 				(void) fprintf(stderr,
1777 				    MSG_INTL(MSG_ERR_NODYNSYM),
1778 				    file, sortcache->c_name);
1779 				continue;
1780 			}
1781 			/* Fallthrough to process associated dynsym */
1782 			/*FALLTHROUGH*/
1783 		case SHT_DYNSYM:
1784 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1785 			    symsecndx, ehdr, versym, file, flags))
1786 				continue;
1787 			break;
1788 		default:
1789 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1790 			    file, sortcache->c_name, conv_sec_type(
1791 			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1792 			continue;
1793 		}
1794 
1795 		/*
1796 		 * Output header
1797 		 */
1798 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1799 		if (ldynsym_cnt > 0) {
1800 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1801 			    sortcache->c_name, ldynsym_state.secname,
1802 			    dynsym_state.secname);
1803 			/*
1804 			 * The data for .SUNW_ldynsym and dynsym sections
1805 			 * is supposed to be adjacent with SUNW_ldynsym coming
1806 			 * first. Check, and issue a warning if it isn't so.
1807 			 */
1808 			if (((ldynsym_state.sym + ldynsym_state.symn)
1809 			    != dynsym_state.sym) &&
1810 			    ((flags & FLG_CTL_FAKESHDR) == 0))
1811 				(void) fprintf(stderr,
1812 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1813 				    ldynsym_state.secname,
1814 				    dynsym_state.secname);
1815 		} else {
1816 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1817 			    sortcache->c_name, dynsym_state.secname);
1818 		}
1819 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1820 
1821 		/* If not first one, insert a line of whitespace */
1822 		if (output_cnt++ > 0)
1823 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1824 
1825 		/*
1826 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1827 		 * symbol indices. Iterate over the array entries,
1828 		 * dispaying the referenced symbols.
1829 		 */
1830 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1831 		ndx = (Word *)sortcache->c_data->d_buf;
1832 		for (; ndxn-- > 0; ndx++) {
1833 			if (*ndx >= ldynsym_cnt) {
1834 				Word sec_ndx = *ndx - ldynsym_cnt;
1835 
1836 				output_symbol(&dynsym_state, sec_ndx, 0,
1837 				    *ndx, dynsym_state.sym + sec_ndx);
1838 			} else {
1839 				output_symbol(&ldynsym_state, *ndx, 0,
1840 				    *ndx, ldynsym_state.sym + *ndx);
1841 			}
1842 		}
1843 	}
1844 }
1845 
1846 /*
1847  * Search for and process any relocation sections.
1848  */
1849 static void
1850 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file,
1851     uint_t flags)
1852 {
1853 	Word	cnt;
1854 
1855 	for (cnt = 1; cnt < shnum; cnt++) {
1856 		Word		type, symnum;
1857 		Xword		relndx, relnum, relsize;
1858 		void		*rels;
1859 		Sym		*syms;
1860 		Cache		*symsec, *strsec;
1861 		Cache		*_cache = &cache[cnt];
1862 		Shdr		*shdr = _cache->c_shdr;
1863 		char		*relname = _cache->c_name;
1864 		Conv_inv_buf_t	inv_buf;
1865 
1866 		if (((type = shdr->sh_type) != SHT_RELA) &&
1867 		    (type != SHT_REL))
1868 			continue;
1869 		if (!match(MATCH_F_ALL, relname, cnt, type))
1870 			continue;
1871 
1872 		/*
1873 		 * Decide entry size.
1874 		 */
1875 		if (((relsize = shdr->sh_entsize) == 0) ||
1876 		    (relsize > shdr->sh_size)) {
1877 			if (type == SHT_RELA)
1878 				relsize = sizeof (Rela);
1879 			else
1880 				relsize = sizeof (Rel);
1881 		}
1882 
1883 		/*
1884 		 * Determine the number of relocations available.
1885 		 */
1886 		if (shdr->sh_size == 0) {
1887 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1888 			    file, relname);
1889 			continue;
1890 		}
1891 		if (_cache->c_data == NULL)
1892 			continue;
1893 
1894 		rels = _cache->c_data->d_buf;
1895 		relnum = shdr->sh_size / relsize;
1896 
1897 		/*
1898 		 * Get the data buffer for the associated symbol table and
1899 		 * string table.
1900 		 */
1901 		if (stringtbl(cache, 1, cnt, shnum, file,
1902 		    &symnum, &symsec, &strsec) == 0)
1903 			continue;
1904 
1905 		syms = symsec->c_data->d_buf;
1906 
1907 		/*
1908 		 * Loop through the relocation entries.
1909 		 */
1910 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1911 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1912 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1913 
1914 		for (relndx = 0; relndx < relnum; relndx++,
1915 		    rels = (void *)((char *)rels + relsize)) {
1916 			Half		mach = ehdr->e_machine;
1917 			char		section[BUFSIZ];
1918 			const char	*symname;
1919 			Word		symndx, reltype;
1920 			Rela		*rela;
1921 			Rel		*rel;
1922 
1923 			/*
1924 			 * Unravel the relocation and determine the symbol with
1925 			 * which this relocation is associated.
1926 			 */
1927 			if (type == SHT_RELA) {
1928 				rela = (Rela *)rels;
1929 				symndx = ELF_R_SYM(rela->r_info);
1930 				reltype = ELF_R_TYPE(rela->r_info, mach);
1931 			} else {
1932 				rel = (Rel *)rels;
1933 				symndx = ELF_R_SYM(rel->r_info);
1934 				reltype = ELF_R_TYPE(rel->r_info, mach);
1935 			}
1936 
1937 			symname = relsymname(cache, _cache, strsec, symndx,
1938 			    symnum, relndx, syms, section, BUFSIZ, file,
1939 			    flags);
1940 
1941 			/*
1942 			 * A zero symbol index is only valid for a few
1943 			 * relocations.
1944 			 */
1945 			if (symndx == 0) {
1946 				int	badrel = 0;
1947 
1948 				if ((mach == EM_SPARC) ||
1949 				    (mach == EM_SPARC32PLUS) ||
1950 				    (mach == EM_SPARCV9)) {
1951 					if ((reltype != R_SPARC_NONE) &&
1952 					    (reltype != R_SPARC_REGISTER) &&
1953 					    (reltype != R_SPARC_RELATIVE))
1954 						badrel++;
1955 				} else if (mach == EM_386) {
1956 					if ((reltype != R_386_NONE) &&
1957 					    (reltype != R_386_RELATIVE))
1958 						badrel++;
1959 				} else if (mach == EM_AMD64) {
1960 					if ((reltype != R_AMD64_NONE) &&
1961 					    (reltype != R_AMD64_RELATIVE))
1962 						badrel++;
1963 				}
1964 
1965 				if (badrel) {
1966 					(void) fprintf(stderr,
1967 					    MSG_INTL(MSG_ERR_BADREL1), file,
1968 					    conv_reloc_type(mach, reltype,
1969 					    0, &inv_buf));
1970 				}
1971 			}
1972 
1973 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
1974 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
1975 			    rels, relname, symname, 0);
1976 		}
1977 	}
1978 }
1979 
1980 
1981 /*
1982  * This value controls which test dyn_test() performs.
1983  */
1984 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
1985 
1986 /*
1987  * Used by dynamic() to compare the value of a dynamic element against
1988  * the starting address of the section it references.
1989  *
1990  * entry:
1991  *	test_type - Specify which dyn item is being tested.
1992  *	sh_type - SHT_* type value for required section.
1993  *	sec_cache - Cache entry for section, or NULL if the object lacks
1994  *		a section of this type.
1995  *	dyn - Dyn entry to be tested
1996  *	dynsec_cnt - # of dynamic section being examined. The first
1997  *		dynamic section is 1, the next is 2, and so on...
1998  *	ehdr - ELF header for file
1999  *	file - Name of file
2000  */
2001 static void
2002 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2003     Word dynsec_cnt, Ehdr *ehdr, const char *file)
2004 {
2005 	Conv_inv_buf_t	buf1, buf2;
2006 
2007 	/*
2008 	 * These tests are based around the implicit assumption that
2009 	 * there is only one dynamic section in an object, and also only
2010 	 * one of the sections it references. We have therefore gathered
2011 	 * all of the necessary information to test this in a single pass
2012 	 * over the section headers, which is very efficient. We are not
2013 	 * aware of any case where more than one dynamic section would
2014 	 * be meaningful in an ELF object, so this is a reasonable solution.
2015 	 *
2016 	 * To test multiple dynamic sections correctly would be more
2017 	 * expensive in code and time. We would have to build a data structure
2018 	 * containing all the dynamic elements. Then, we would use the address
2019 	 * to locate the section it references and ensure the section is of
2020 	 * the right type and that the address in the dynamic element is
2021 	 * to the start of the section. Then, we could check the size and
2022 	 * entsize values against those same sections. This is O(n^2), and
2023 	 * also complicated.
2024 	 *
2025 	 * In the highly unlikely case that there is more than one dynamic
2026 	 * section, we only test the first one, and simply allow the values
2027 	 * of the subsequent one to be displayed unchallenged.
2028 	 */
2029 	if (dynsec_cnt != 1)
2030 		return;
2031 
2032 	/*
2033 	 * A DT_ item that references a section address should always find
2034 	 * the section in the file.
2035 	 */
2036 	if (sec_cache == NULL) {
2037 		const char *name;
2038 
2039 		/*
2040 		 * Supply section names instead of section types for
2041 		 * things that reference progbits so that the error
2042 		 * message will make more sense.
2043 		 */
2044 		switch (dyn->d_tag) {
2045 		case DT_INIT:
2046 			name = MSG_ORIG(MSG_ELF_INIT);
2047 			break;
2048 		case DT_FINI:
2049 			name = MSG_ORIG(MSG_ELF_FINI);
2050 			break;
2051 		default:
2052 			name = conv_sec_type(ehdr->e_machine, sh_type,
2053 			    0, &buf1);
2054 			break;
2055 		}
2056 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2057 		    name, conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf2));
2058 		return;
2059 	}
2060 
2061 
2062 	switch (test_type) {
2063 	case DYN_TEST_ADDR:
2064 		/* The section address should match the DT_ item value */
2065 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2066 			(void) fprintf(stderr,
2067 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2068 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2069 			    EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx,
2070 			    sec_cache->c_name,
2071 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2072 		break;
2073 
2074 	case DYN_TEST_SIZE:
2075 		/* The section size should match the DT_ item value */
2076 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2077 			(void) fprintf(stderr,
2078 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2079 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2080 			    EC_XWORD(dyn->d_un.d_val),
2081 			    sec_cache->c_ndx, sec_cache->c_name,
2082 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2083 		break;
2084 
2085 	case DYN_TEST_ENTSIZE:
2086 		/* The sh_entsize value should match the DT_ item value */
2087 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2088 			(void) fprintf(stderr,
2089 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2090 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2091 			    EC_XWORD(dyn->d_un.d_val),
2092 			    sec_cache->c_ndx, sec_cache->c_name,
2093 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2094 		break;
2095 	}
2096 }
2097 
2098 
2099 /*
2100  * There are some DT_ entries that have corresponding symbols
2101  * (e.g. DT_INIT and _init). It is expected that these items will
2102  * both have the same value if both are present. This routine
2103  * examines the well known symbol tables for such symbols and
2104  * issues warnings for any that don't match.
2105  *
2106  * entry:
2107  *	dyn - Dyn entry to be tested
2108  *	symname - Name of symbol that corresponds to dyn
2109  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2110  *	cache - Cache of all section headers
2111  *	shnum - # of sections in cache
2112  *	ehdr - ELF header for file
2113  *	file - Name of file
2114  */
2115 
2116 static void
2117 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2118     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *cache,
2119     Word shnum, Ehdr *ehdr, const char *file)
2120 {
2121 	Conv_inv_buf_t	buf;
2122 	int		i;
2123 	Sym		*sym;
2124 	Cache		*_cache;
2125 
2126 	for (i = 0; i < 3; i++) {
2127 		switch (i) {
2128 		case 0:
2129 			_cache = symtab_cache;
2130 			break;
2131 		case 1:
2132 			_cache = dynsym_cache;
2133 			break;
2134 		case 2:
2135 			_cache = ldynsym_cache;
2136 			break;
2137 		}
2138 
2139 		if ((_cache != NULL) &&
2140 		    symlookup(symname, cache, shnum, &sym, _cache, file) &&
2141 		    (sym->st_value != dyn->d_un.d_val))
2142 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2143 			    file, _cache->c_name,
2144 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf),
2145 			    symname, EC_ADDR(sym->st_value));
2146 	}
2147 }
2148 
2149 
2150 /*
2151  * Search for and process a .dynamic section.
2152  */
2153 static void
2154 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2155 {
2156 	struct {
2157 		Cache	*symtab;
2158 		Cache	*dynstr;
2159 		Cache	*dynsym;
2160 		Cache	*hash;
2161 		Cache	*fini;
2162 		Cache	*fini_array;
2163 		Cache	*init;
2164 		Cache	*init_array;
2165 		Cache	*preinit_array;
2166 		Cache	*rel;
2167 		Cache	*rela;
2168 		Cache	*sunw_cap;
2169 		Cache	*sunw_ldynsym;
2170 		Cache	*sunw_move;
2171 		Cache	*sunw_syminfo;
2172 		Cache	*sunw_symsort;
2173 		Cache	*sunw_tlssort;
2174 		Cache	*sunw_verdef;
2175 		Cache	*sunw_verneed;
2176 		Cache	*sunw_versym;
2177 	} sec;
2178 	Word	dynsec_ndx;
2179 	Word	dynsec_num;
2180 	int	dynsec_cnt;
2181 	Word	cnt;
2182 
2183 	/*
2184 	 * Make a pass over all the sections, gathering section information
2185 	 * we'll need below.
2186 	 */
2187 	dynsec_num = 0;
2188 	bzero(&sec, sizeof (sec));
2189 	for (cnt = 1; cnt < shnum; cnt++) {
2190 		Cache	*_cache = &cache[cnt];
2191 
2192 		switch (_cache->c_shdr->sh_type) {
2193 		case SHT_DYNAMIC:
2194 			if (dynsec_num == 0) {
2195 				dynsec_ndx = cnt;
2196 
2197 				/* Does it have a valid string table? */
2198 				(void) stringtbl(cache, 0, cnt, shnum, file,
2199 				    0, 0, &sec.dynstr);
2200 			}
2201 			dynsec_num++;
2202 			break;
2203 
2204 
2205 		case SHT_PROGBITS:
2206 			/*
2207 			 * We want to detect the .init and .fini sections,
2208 			 * if present. These are SHT_PROGBITS, so all we
2209 			 * have to go on is the section name. Normally comparing
2210 			 * names is a bad idea, but there are some special
2211 			 * names (i.e. .init/.fini/.interp) that are very
2212 			 * difficult to use in any other context, and for
2213 			 * these symbols, we do the heuristic match.
2214 			 */
2215 			if (strcmp(_cache->c_name,
2216 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2217 				if (sec.init == NULL)
2218 					sec.init = _cache;
2219 			} else if (strcmp(_cache->c_name,
2220 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2221 				if (sec.fini == NULL)
2222 					sec.fini = _cache;
2223 			}
2224 			break;
2225 
2226 		case SHT_REL:
2227 			/*
2228 			 * We want the SHT_REL section with the lowest
2229 			 * offset. The linker gathers them together,
2230 			 * and puts the address of the first one
2231 			 * into the DT_REL dynamic element.
2232 			 */
2233 			if ((sec.rel == NULL) ||
2234 			    (_cache->c_shdr->sh_offset <
2235 			    sec.rel->c_shdr->sh_offset))
2236 				sec.rel = _cache;
2237 			break;
2238 
2239 		case SHT_RELA:
2240 			/* RELA is handled just like RELA above */
2241 			if ((sec.rela == NULL) ||
2242 			    (_cache->c_shdr->sh_offset <
2243 			    sec.rela->c_shdr->sh_offset))
2244 				sec.rela = _cache;
2245 			break;
2246 
2247 		/*
2248 		 * The GRAB macro is used for the simple case in which
2249 		 * we simply grab the first section of the desired type.
2250 		 */
2251 #define	GRAB(_sec_type, _sec_field) \
2252 		case _sec_type: \
2253 			if (sec._sec_field == NULL) \
2254 				sec._sec_field = _cache; \
2255 				break
2256 		GRAB(SHT_SYMTAB,	symtab);
2257 		GRAB(SHT_DYNSYM,	dynsym);
2258 		GRAB(SHT_FINI_ARRAY,	fini_array);
2259 		GRAB(SHT_HASH,		hash);
2260 		GRAB(SHT_INIT_ARRAY,	init_array);
2261 		GRAB(SHT_SUNW_move,	sunw_move);
2262 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2263 		GRAB(SHT_SUNW_cap,	sunw_cap);
2264 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2265 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2266 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2267 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2268 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2269 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2270 		GRAB(SHT_SUNW_versym,	sunw_versym);
2271 #undef GRAB
2272 		}
2273 	}
2274 
2275 	/*
2276 	 * If no dynamic section, return immediately. If more than one
2277 	 * dynamic section, then something odd is going on and an error
2278 	 * is in order, but then continue on and display them all.
2279 	 */
2280 	if (dynsec_num == 0)
2281 		return;
2282 	if (dynsec_num > 1)
2283 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2284 		    file, EC_WORD(dynsec_num));
2285 
2286 
2287 	dynsec_cnt = 0;
2288 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2289 	    cnt++) {
2290 		Dyn	*dyn;
2291 		ulong_t	numdyn;
2292 		int	ndx, end_ndx;
2293 		Cache	*_cache = &cache[cnt], *strsec;
2294 		Shdr	*shdr = _cache->c_shdr;
2295 		int	dumped = 0;
2296 
2297 		if (shdr->sh_type != SHT_DYNAMIC)
2298 			continue;
2299 		dynsec_cnt++;
2300 
2301 		/*
2302 		 * Verify the associated string table section.
2303 		 */
2304 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2305 			continue;
2306 
2307 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2308 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2309 			    file, _cache->c_name);
2310 			continue;
2311 		}
2312 		if (_cache->c_data == NULL)
2313 			continue;
2314 
2315 		numdyn = shdr->sh_size / shdr->sh_entsize;
2316 		dyn = (Dyn *)_cache->c_data->d_buf;
2317 
2318 		/*
2319 		 * We expect the REL/RELA entries to reference the reloc
2320 		 * section with the lowest address. However, this is
2321 		 * not true for dumped objects. Detect if this object has
2322 		 * been dumped so that we can skip the reloc address test
2323 		 * in that case.
2324 		 */
2325 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2326 			if (dyn->d_tag == DT_FLAGS_1) {
2327 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2328 				break;
2329 			}
2330 		}
2331 		dyn = (Dyn *)_cache->c_data->d_buf;
2332 
2333 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2334 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2335 
2336 		Elf_dyn_title(0);
2337 
2338 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2339 			union {
2340 				Conv_inv_buf_t		inv;
2341 				Conv_dyn_flag_buf_t	flag;
2342 				Conv_dyn_flag1_buf_t	flag1;
2343 				Conv_dyn_posflag1_buf_t	posflag1;
2344 				Conv_dyn_feature1_buf_t	feature1;
2345 			} c_buf;
2346 			const char	*name = NULL;
2347 
2348 			/*
2349 			 * Print the information numerically, and if possible
2350 			 * as a string. If a string is available, name is
2351 			 * set to reference it.
2352 			 *
2353 			 * Also, take this opportunity to sanity check
2354 			 * the values of DT elements. In the code above,
2355 			 * we gathered information on sections that are
2356 			 * referenced by the dynamic section. Here, we
2357 			 * compare the attributes of those sections to
2358 			 * the DT_ items that reference them and report
2359 			 * on inconsistencies.
2360 			 *
2361 			 * Things not currently tested that could be improved
2362 			 * in later revisions include:
2363 			 *	- We don't check PLT or GOT related items
2364 			 *	- We don't handle computing the lengths of
2365 			 *		relocation arrays. To handle this
2366 			 *		requires examining data that spans
2367 			 *		across sections, in a contiguous span
2368 			 *		within a single segment.
2369 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2370 			 *		verified without parsing the sections.
2371 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2372 			 *		be the sum of the lengths of .dynsym and
2373 			 *		.SUNW_ldynsym
2374 			 *	- DT_SUNW_STRPAD can't be verified other than
2375 			 *		to check that it's not larger than
2376 			 *		the string table.
2377 			 *	- Some items come in "all or none" clusters
2378 			 *		that give an address, element size,
2379 			 *		and data length in bytes. We don't
2380 			 *		verify that there are no missing items
2381 			 *		in such groups.
2382 			 */
2383 			switch (dyn->d_tag) {
2384 			case DT_NULL:
2385 				/*
2386 				 * Special case: DT_NULLs can come in groups
2387 				 * that we prefer to reduce to a single line.
2388 				 */
2389 				end_ndx = ndx;
2390 				while ((end_ndx < (numdyn - 1)) &&
2391 				    ((dyn + 1)->d_tag == DT_NULL)) {
2392 					dyn++;
2393 					end_ndx++;
2394 				}
2395 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2396 				ndx = end_ndx;
2397 				continue;
2398 
2399 			/*
2400 			 * String items all reference the dynstr. The string()
2401 			 * function does the necessary sanity checking.
2402 			 */
2403 			case DT_NEEDED:
2404 			case DT_SONAME:
2405 			case DT_FILTER:
2406 			case DT_AUXILIARY:
2407 			case DT_CONFIG:
2408 			case DT_RPATH:
2409 			case DT_RUNPATH:
2410 			case DT_USED:
2411 			case DT_DEPAUDIT:
2412 			case DT_AUDIT:
2413 			case DT_SUNW_AUXILIARY:
2414 			case DT_SUNW_FILTER:
2415 				name = string(_cache, ndx, strsec,
2416 				    file, dyn->d_un.d_ptr);
2417 				break;
2418 
2419 			case DT_FLAGS:
2420 				name = conv_dyn_flag(dyn->d_un.d_val,
2421 				    0, &c_buf.flag);
2422 				break;
2423 			case DT_FLAGS_1:
2424 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2425 				    &c_buf.flag1);
2426 				break;
2427 			case DT_POSFLAG_1:
2428 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2429 				    &c_buf.posflag1);
2430 				break;
2431 			case DT_FEATURE_1:
2432 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2433 				    &c_buf.feature1);
2434 				break;
2435 			case DT_DEPRECATED_SPARC_REGISTER:
2436 				name = MSG_INTL(MSG_STR_DEPRECATED);
2437 				break;
2438 
2439 			case DT_SUNW_LDMACH:
2440 				name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0,
2441 				    &c_buf.inv);
2442 				break;
2443 
2444 			/*
2445 			 * Cases below this point are strictly sanity checking,
2446 			 * and do not generate a name string. The TEST_ macros
2447 			 * are used to hide the boilerplate arguments neeeded
2448 			 * by dyn_test().
2449 			 */
2450 #define	TEST_ADDR(_sh_type, _sec_field) \
2451 				dyn_test(DYN_TEST_ADDR, _sh_type, \
2452 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2453 #define	TEST_SIZE(_sh_type, _sec_field) \
2454 				dyn_test(DYN_TEST_SIZE, _sh_type, \
2455 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2456 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
2457 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
2458 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2459 
2460 			case DT_FINI:
2461 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
2462 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2463 				    cache, shnum, ehdr, file);
2464 				TEST_ADDR(SHT_PROGBITS, fini);
2465 				break;
2466 
2467 			case DT_FINI_ARRAY:
2468 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
2469 				break;
2470 
2471 			case DT_FINI_ARRAYSZ:
2472 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
2473 				break;
2474 
2475 			case DT_HASH:
2476 				TEST_ADDR(SHT_HASH, hash);
2477 				break;
2478 
2479 			case DT_INIT:
2480 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
2481 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2482 				    cache, shnum, ehdr, file);
2483 				TEST_ADDR(SHT_PROGBITS, init);
2484 				break;
2485 
2486 			case DT_INIT_ARRAY:
2487 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
2488 				break;
2489 
2490 			case DT_INIT_ARRAYSZ:
2491 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
2492 				break;
2493 
2494 			case DT_MOVEENT:
2495 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
2496 				break;
2497 
2498 			case DT_MOVESZ:
2499 				TEST_SIZE(SHT_SUNW_move, sunw_move);
2500 				break;
2501 
2502 			case DT_MOVETAB:
2503 				TEST_ADDR(SHT_SUNW_move, sunw_move);
2504 				break;
2505 
2506 			case DT_PREINIT_ARRAY:
2507 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
2508 				break;
2509 
2510 			case DT_PREINIT_ARRAYSZ:
2511 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
2512 				break;
2513 
2514 			case DT_REL:
2515 				if (!dumped)
2516 					TEST_ADDR(SHT_REL, rel);
2517 				break;
2518 
2519 			case DT_RELENT:
2520 				TEST_ENTSIZE(SHT_REL, rel);
2521 				break;
2522 
2523 			case DT_RELA:
2524 				if (!dumped)
2525 					TEST_ADDR(SHT_RELA, rela);
2526 				break;
2527 
2528 			case DT_RELAENT:
2529 				TEST_ENTSIZE(SHT_RELA, rela);
2530 				break;
2531 
2532 			case DT_STRTAB:
2533 				TEST_ADDR(SHT_STRTAB, dynstr);
2534 				break;
2535 
2536 			case DT_STRSZ:
2537 				TEST_SIZE(SHT_STRTAB, dynstr);
2538 				break;
2539 
2540 			case DT_SUNW_CAP:
2541 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
2542 				break;
2543 
2544 			case DT_SUNW_SYMTAB:
2545 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2546 				break;
2547 
2548 			case DT_SYMENT:
2549 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
2550 				break;
2551 
2552 			case DT_SYMINENT:
2553 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
2554 				break;
2555 
2556 			case DT_SYMINFO:
2557 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
2558 				break;
2559 
2560 			case DT_SYMINSZ:
2561 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
2562 				break;
2563 
2564 			case DT_SYMTAB:
2565 				TEST_ADDR(SHT_DYNSYM, dynsym);
2566 				break;
2567 
2568 			case DT_SUNW_SORTENT:
2569 				/*
2570 				 * This entry is related to both the symsort and
2571 				 * tlssort sections.
2572 				 */
2573 				{
2574 					int test_tls =
2575 					    (sec.sunw_tlssort != NULL);
2576 					int test_sym =
2577 					    (sec.sunw_symsort != NULL) ||
2578 					    !test_tls;
2579 					if (test_sym)
2580 						TEST_ENTSIZE(SHT_SUNW_symsort,
2581 						    sunw_symsort);
2582 					if (test_tls)
2583 						TEST_ENTSIZE(SHT_SUNW_tlssort,
2584 						    sunw_tlssort);
2585 				}
2586 				break;
2587 
2588 
2589 			case DT_SUNW_SYMSORT:
2590 				TEST_ADDR(SHT_SUNW_symsort, sunw_symsort);
2591 				break;
2592 
2593 			case DT_SUNW_SYMSORTSZ:
2594 				TEST_SIZE(SHT_SUNW_symsort, sunw_symsort);
2595 				break;
2596 
2597 			case DT_SUNW_TLSSORT:
2598 				TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort);
2599 				break;
2600 
2601 			case DT_SUNW_TLSSORTSZ:
2602 				TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort);
2603 				break;
2604 
2605 			case DT_VERDEF:
2606 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
2607 				break;
2608 
2609 			case DT_VERNEED:
2610 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
2611 				break;
2612 
2613 			case DT_VERSYM:
2614 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
2615 				break;
2616 #undef TEST_ADDR
2617 #undef TEST_SIZE
2618 #undef TEST_ENTSIZE
2619 			}
2620 
2621 			if (name == NULL)
2622 				name = MSG_ORIG(MSG_STR_EMPTY);
2623 			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2624 		}
2625 	}
2626 }
2627 
2628 /*
2629  * Search for and process a MOVE section.
2630  */
2631 static void
2632 move(Cache *cache, Word shnum, const char *file, uint_t flags)
2633 {
2634 	Word		cnt;
2635 	const char	*fmt = 0;
2636 
2637 	for (cnt = 1; cnt < shnum; cnt++) {
2638 		Word	movenum, symnum, ndx;
2639 		Sym	*syms;
2640 		Cache	*_cache = &cache[cnt];
2641 		Shdr	*shdr = _cache->c_shdr;
2642 		Cache	*symsec, *strsec;
2643 		Move	*move;
2644 
2645 		if (shdr->sh_type != SHT_SUNW_move)
2646 			continue;
2647 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2648 			continue;
2649 
2650 		/*
2651 		 * Determine the move data and number.
2652 		 */
2653 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2654 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2655 			    file, _cache->c_name);
2656 			continue;
2657 		}
2658 		if (_cache->c_data == NULL)
2659 			continue;
2660 
2661 		move = (Move *)_cache->c_data->d_buf;
2662 		movenum = shdr->sh_size / shdr->sh_entsize;
2663 
2664 		/*
2665 		 * Get the data buffer for the associated symbol table and
2666 		 * string table.
2667 		 */
2668 		if (stringtbl(cache, 1, cnt, shnum, file,
2669 		    &symnum, &symsec, &strsec) == 0)
2670 			return;
2671 
2672 		syms = (Sym *)symsec->c_data->d_buf;
2673 
2674 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2675 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2676 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2677 
2678 		if (fmt == 0)
2679 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2680 
2681 		for (ndx = 0; ndx < movenum; move++, ndx++) {
2682 			const char	*symname;
2683 			char		index[MAXNDXSIZE], section[BUFSIZ];
2684 			Word		symndx, shndx;
2685 			Sym		*sym;
2686 
2687 			/*
2688 			 * Check for null entries
2689 			 */
2690 			if ((move->m_info == 0) && (move->m_value == 0) &&
2691 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2692 			    (move->m_stride == 0)) {
2693 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2694 				    EC_XWORD(move->m_poffset), 0, 0, 0,
2695 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2696 				continue;
2697 			}
2698 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2699 			    (symndx >= symnum)) {
2700 				(void) fprintf(stderr,
2701 				    MSG_INTL(MSG_ERR_BADMINFO), file,
2702 				    _cache->c_name, EC_XWORD(move->m_info));
2703 
2704 				(void) snprintf(index, MAXNDXSIZE,
2705 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2706 				dbg_print(0, fmt, index,
2707 				    EC_XWORD(move->m_poffset),
2708 				    ELF_M_SIZE(move->m_info), move->m_repeat,
2709 				    move->m_stride, move->m_value,
2710 				    MSG_INTL(MSG_STR_UNKNOWN));
2711 				continue;
2712 			}
2713 
2714 			symname = relsymname(cache, _cache, strsec,
2715 			    symndx, symnum, ndx, syms, section, BUFSIZ, file,
2716 			    flags);
2717 			sym = (Sym *)(syms + symndx);
2718 
2719 			/*
2720 			 * Additional sanity check.
2721 			 */
2722 			shndx = sym->st_shndx;
2723 			if (!((shndx == SHN_COMMON) ||
2724 			    (((shndx >= 1) && (shndx <= shnum)) &&
2725 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2726 				(void) fprintf(stderr,
2727 				    MSG_INTL(MSG_ERR_BADSYM2), file,
2728 				    _cache->c_name, EC_WORD(symndx),
2729 				    demangle(symname, flags));
2730 			}
2731 
2732 			(void) snprintf(index, MAXNDXSIZE,
2733 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2734 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2735 			    ELF_M_SIZE(move->m_info), move->m_repeat,
2736 			    move->m_stride, move->m_value,
2737 			    demangle(symname, flags));
2738 		}
2739 	}
2740 }
2741 
2742 /*
2743  * Traverse a note section analyzing each note information block.
2744  * The data buffers size is used to validate references before they are made,
2745  * and is decremented as each element is processed.
2746  */
2747 void
2748 note_entry(Cache *cache, Word *data, size_t size, const char *file)
2749 {
2750 	size_t	bsize = size;
2751 
2752 	/*
2753 	 * Print out a single `note' information block.
2754 	 */
2755 	while (size > 0) {
2756 		size_t	namesz, descsz, type, pad, noteoff;
2757 
2758 		noteoff = bsize - size;
2759 		/*
2760 		 * Make sure we can at least reference the 3 initial entries
2761 		 * (4-byte words) of the note information block.
2762 		 */
2763 		if (size >= (sizeof (Word) * 3))
2764 			size -= (sizeof (Word) * 3);
2765 		else {
2766 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2767 			    file, cache->c_name, EC_WORD(noteoff));
2768 			return;
2769 		}
2770 
2771 		/*
2772 		 * Make sure any specified name string can be referenced.
2773 		 */
2774 		if ((namesz = *data++) != 0) {
2775 			if (size >= namesz)
2776 				size -= namesz;
2777 			else {
2778 				(void) fprintf(stderr,
2779 				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2780 				    cache->c_name, EC_WORD(noteoff),
2781 				    EC_WORD(namesz));
2782 				return;
2783 			}
2784 		}
2785 
2786 		/*
2787 		 * Make sure any specified descriptor can be referenced.
2788 		 */
2789 		if ((descsz = *data++) != 0) {
2790 			/*
2791 			 * If namesz isn't a 4-byte multiple, account for any
2792 			 * padding that must exist before the descriptor.
2793 			 */
2794 			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2795 				pad = sizeof (Word) - pad;
2796 				size -= pad;
2797 			}
2798 			if (size >= descsz)
2799 				size -= descsz;
2800 			else {
2801 				(void) fprintf(stderr,
2802 				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2803 				    cache->c_name, EC_WORD(noteoff),
2804 				    EC_WORD(namesz));
2805 				return;
2806 			}
2807 		}
2808 
2809 		type = *data++;
2810 
2811 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2812 		dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2813 
2814 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2815 		if (namesz) {
2816 			char	*name = (char *)data;
2817 
2818 			/*
2819 			 * Since the name string may have 'null' bytes
2820 			 * in it (ia32 .string) - we just write the
2821 			 * whole stream in a single fwrite.
2822 			 */
2823 			(void) fwrite(name, namesz, 1, stdout);
2824 			name = name + ((namesz + (sizeof (Word) - 1)) &
2825 			    ~(sizeof (Word) - 1));
2826 			/* LINTED */
2827 			data = (Word *)name;
2828 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2829 		}
2830 
2831 		/*
2832 		 * If multiple information blocks exist within a .note section
2833 		 * account for any padding that must exist before the next
2834 		 * information block.
2835 		 */
2836 		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2837 			pad = sizeof (Word) - pad;
2838 			if (size > pad)
2839 				size -= pad;
2840 		}
2841 
2842 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2843 		if (descsz) {
2844 			int		ndx, byte, word;
2845 			char		string[58], *str = string;
2846 			uchar_t		*desc = (uchar_t *)data;
2847 
2848 			/*
2849 			 * Dump descriptor bytes.
2850 			 */
2851 			for (ndx = byte = word = 0; descsz; descsz--, desc++) {
2852 				int	tok = *desc;
2853 
2854 				(void) snprintf(str, 58, MSG_ORIG(MSG_NOTE_TOK),
2855 				    tok);
2856 				str += 3;
2857 
2858 				if (++byte == 4) {
2859 					*str++ = ' ', *str++ = ' ';
2860 					word++;
2861 					byte = 0;
2862 				}
2863 				if (word == 4) {
2864 					*str = '\0';
2865 					dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
2866 					    ndx, string);
2867 					word = 0;
2868 					ndx += 16;
2869 					str = string;
2870 				}
2871 			}
2872 			if (byte || word) {
2873 				*str = '\0';
2874 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC),
2875 				    ndx, string);
2876 			}
2877 
2878 			desc += pad;
2879 			/* LINTED */
2880 			data = (Word *)desc;
2881 		}
2882 	}
2883 }
2884 
2885 /*
2886  * Search for and process a .note section.
2887  */
2888 static void
2889 note(Cache *cache, Word shnum, const char *file)
2890 {
2891 	Word	cnt;
2892 
2893 	/*
2894 	 * Otherwise look for any .note sections.
2895 	 */
2896 	for (cnt = 1; cnt < shnum; cnt++) {
2897 		Cache	*_cache = &cache[cnt];
2898 		Shdr	*shdr = _cache->c_shdr;
2899 
2900 		if (shdr->sh_type != SHT_NOTE)
2901 			continue;
2902 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2903 			continue;
2904 
2905 		/*
2906 		 * As these sections are often hand rolled, make sure they're
2907 		 * properly aligned before proceeding, and issue an error
2908 		 * as necessary.
2909 		 *
2910 		 * Note that we will continue on to display the note even
2911 		 * if it has bad alignment. We can do this safely, because
2912 		 * libelf knows the alignment required for SHT_NOTE, and
2913 		 * takes steps to deliver a properly aligned buffer to us
2914 		 * even if the actual file is misaligned.
2915 		 */
2916 		if (shdr->sh_offset & (sizeof (Word) - 1))
2917 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
2918 			    file, _cache->c_name);
2919 
2920 		if (_cache->c_data == NULL)
2921 			continue;
2922 
2923 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2924 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
2925 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
2926 		/* LINTED */
2927 		    (Word)_cache->c_data->d_size, file);
2928 	}
2929 }
2930 
2931 /*
2932  * Determine an individual hash entry.  This may be the initial hash entry,
2933  * or an associated chain entry.
2934  */
2935 static void
2936 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
2937     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
2938     uint_t flags, int chain)
2939 {
2940 	Sym		*sym;
2941 	const char	*symname, *str;
2942 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
2943 	ulong_t		nbkt, nhash;
2944 
2945 	if (symndx > symn) {
2946 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
2947 		    EC_WORD(symndx), EC_WORD(hashndx));
2948 		symname = MSG_INTL(MSG_STR_UNKNOWN);
2949 	} else {
2950 		sym = (Sym *)(syms + symndx);
2951 		symname = string(refsec, symndx, strsec, file, sym->st_name);
2952 	}
2953 
2954 	if (chain == 0) {
2955 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2956 		    hashndx);
2957 		str = (const char *)_bucket;
2958 	} else
2959 		str = MSG_ORIG(MSG_STR_EMPTY);
2960 
2961 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
2962 	    EC_WORD(symndx));
2963 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
2964 	    demangle(symname, flags));
2965 
2966 	/*
2967 	 * Determine if this string is in the correct bucket.
2968 	 */
2969 	nhash = elf_hash(symname);
2970 	nbkt = nhash % bkts;
2971 
2972 	if (nbkt != hashndx) {
2973 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
2974 		    hsecname, symname, EC_WORD(hashndx), nbkt);
2975 	}
2976 }
2977 
2978 #define	MAXCOUNT	500
2979 
2980 static void
2981 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
2982 {
2983 	static int	count[MAXCOUNT];
2984 	Word		cnt;
2985 	ulong_t		ndx, bkts;
2986 	char		number[MAXNDXSIZE];
2987 
2988 	for (cnt = 1; cnt < shnum; cnt++) {
2989 		uint_t		*hash, *chain;
2990 		Cache		*_cache = &cache[cnt];
2991 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
2992 		char		*ssecname, *hsecname = _cache->c_name;
2993 		Sym		*syms;
2994 		Word		symn;
2995 
2996 		if (hshdr->sh_type != SHT_HASH)
2997 			continue;
2998 
2999 		/*
3000 		 * Determine the hash table data and size.
3001 		 */
3002 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3003 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3004 			    file, hsecname);
3005 			continue;
3006 		}
3007 		if (_cache->c_data == NULL)
3008 			continue;
3009 
3010 		hash = (uint_t *)_cache->c_data->d_buf;
3011 		bkts = *hash;
3012 		chain = hash + 2 + bkts;
3013 		hash += 2;
3014 
3015 		/*
3016 		 * Get the data buffer for the associated symbol table.
3017 		 */
3018 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3019 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3020 			    file, hsecname, EC_WORD(hshdr->sh_link));
3021 			continue;
3022 		}
3023 
3024 		_cache = &cache[hshdr->sh_link];
3025 		ssecname = _cache->c_name;
3026 
3027 		if (_cache->c_data == NULL)
3028 			continue;
3029 
3030 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3031 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3032 			    file, ssecname);
3033 			continue;
3034 		}
3035 
3036 		sshdr = _cache->c_shdr;
3037 		/* LINTED */
3038 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3039 
3040 		/*
3041 		 * Get the associated string table section.
3042 		 */
3043 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3044 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3045 			    file, ssecname, EC_WORD(sshdr->sh_link));
3046 			continue;
3047 		}
3048 
3049 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3050 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3051 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3052 
3053 		/*
3054 		 * Loop through the hash buckets, printing the appropriate
3055 		 * symbols.
3056 		 */
3057 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3058 			Word	_ndx, _cnt;
3059 
3060 			if (*hash == 0) {
3061 				count[0]++;
3062 				continue;
3063 			}
3064 
3065 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3066 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3067 
3068 			/*
3069 			 * Determine if any other symbols are chained to this
3070 			 * bucket.
3071 			 */
3072 			_ndx = chain[*hash];
3073 			_cnt = 1;
3074 			while (_ndx) {
3075 				hash_entry(_cache, &cache[sshdr->sh_link],
3076 				    hsecname, ndx, _ndx, symn, syms, file,
3077 				    bkts, flags, 1);
3078 				_ndx = chain[_ndx];
3079 				_cnt++;
3080 			}
3081 
3082 			if (_cnt >= MAXCOUNT) {
3083 				(void) fprintf(stderr,
3084 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3085 				    _cache->c_name, EC_WORD(ndx),
3086 				    EC_WORD(_cnt));
3087 			} else
3088 				count[_cnt]++;
3089 		}
3090 		break;
3091 	}
3092 
3093 	/*
3094 	 * Print out the count information.
3095 	 */
3096 	bkts = cnt = 0;
3097 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3098 
3099 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3100 		Word	_cnt;
3101 
3102 		if ((_cnt = count[ndx]) == 0)
3103 			continue;
3104 
3105 		(void) snprintf(number, MAXNDXSIZE,
3106 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3107 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3108 		    EC_WORD(ndx));
3109 		bkts += _cnt;
3110 		cnt += (Word)(ndx * _cnt);
3111 	}
3112 	if (cnt) {
3113 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3114 		    bkts);
3115 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3116 		    EC_WORD(cnt));
3117 	}
3118 }
3119 
3120 static void
3121 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3122 {
3123 	Word	scnt;
3124 
3125 	for (scnt = 1; scnt < shnum; scnt++) {
3126 		Cache	*_cache = &cache[scnt];
3127 		Shdr	*shdr = _cache->c_shdr;
3128 		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
3129 		Cache	*symsec, *strsec;
3130 		Sym	*syms, *sym;
3131 		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3132 
3133 		if (shdr->sh_type != SHT_GROUP)
3134 			continue;
3135 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3136 			continue;
3137 		if ((_cache->c_data == NULL) ||
3138 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3139 			continue;
3140 		grpcnt = shdr->sh_size / sizeof (Word);
3141 
3142 		/*
3143 		 * Get the data buffer for the associated symbol table and
3144 		 * string table.
3145 		 */
3146 		if (stringtbl(cache, 1, scnt, shnum, file,
3147 		    &symnum, &symsec, &strsec) == 0)
3148 			return;
3149 
3150 		syms = symsec->c_data->d_buf;
3151 
3152 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3153 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3154 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3155 
3156 		/*
3157 		 * The first element of the group defines the group.  The
3158 		 * associated symbol is defined by the sh_link field.
3159 		 */
3160 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3161 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3162 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3163 			return;
3164 		}
3165 
3166 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3167 		if (grpdata[0] & GRP_COMDAT) {
3168 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3169 		}
3170 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3171 			size_t	len = strlen(flgstrbuf);
3172 
3173 			(void) snprintf(&flgstrbuf[len],
3174 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3175 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3176 		}
3177 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3178 		sym = (Sym *)(syms + shdr->sh_info);
3179 
3180 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3181 		    demangle(string(_cache, 0, strsec, file, sym->st_name),
3182 		    flags));
3183 
3184 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3185 			char		index[MAXNDXSIZE];
3186 			const char	*name;
3187 
3188 			(void) snprintf(index, MAXNDXSIZE,
3189 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3190 
3191 			if (grpdata[gcnt] >= shnum)
3192 				name = MSG_INTL(MSG_GRP_INVALSCN);
3193 			else
3194 				name = cache[grpdata[gcnt]].c_name;
3195 
3196 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3197 			    EC_XWORD(grpdata[gcnt]));
3198 		}
3199 	}
3200 }
3201 
3202 static void
3203 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file, uint_t flags)
3204 {
3205 	Cache		*gotcache = NULL, *symtab = NULL;
3206 	Addr		gotbgn, gotend;
3207 	Shdr		*gotshdr;
3208 	Word		cnt, gotents, gotndx;
3209 	size_t		gentsize;
3210 	Got_info	*gottable;
3211 	char		*gotdata;
3212 	Sym		*gotsym;
3213 	Xword		gotsymaddr;
3214 	uint_t		sys_encoding;
3215 
3216 	/*
3217 	 * First, find the got.
3218 	 */
3219 	for (cnt = 1; cnt < shnum; cnt++) {
3220 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
3221 		    MSG_ELF_GOT_SIZE) == 0) {
3222 			gotcache = &cache[cnt];
3223 			break;
3224 		}
3225 	}
3226 	if (gotcache == NULL)
3227 		return;
3228 
3229 	/*
3230 	 * A got section within a relocatable object is suspicious.
3231 	 */
3232 	if (ehdr->e_type == ET_REL) {
3233 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
3234 		    gotcache->c_name);
3235 	}
3236 
3237 	gotshdr = gotcache->c_shdr;
3238 	if (gotshdr->sh_size == 0) {
3239 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3240 		    file, gotcache->c_name);
3241 		return;
3242 	}
3243 
3244 	gotbgn = gotshdr->sh_addr;
3245 	gotend = gotbgn + gotshdr->sh_size;
3246 
3247 	/*
3248 	 * Some architectures don't properly set the sh_entsize for the GOT
3249 	 * table.  If it's not set, default to a size of a pointer.
3250 	 */
3251 	if ((gentsize = gotshdr->sh_entsize) == 0)
3252 		gentsize = sizeof (Xword);
3253 
3254 	if (gotcache->c_data == NULL)
3255 		return;
3256 
3257 	/* LINTED */
3258 	gotents = (Word)(gotshdr->sh_size / gentsize);
3259 	gotdata = gotcache->c_data->d_buf;
3260 
3261 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
3262 		int err = errno;
3263 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
3264 		    strerror(err));
3265 		return;
3266 	}
3267 
3268 	/*
3269 	 * Now we scan through all the sections looking for any relocations
3270 	 * that may be against the GOT.  Since these may not be isolated to a
3271 	 * .rel[a].got section we check them all.
3272 	 * While scanning sections save the symbol table entry (a symtab
3273 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
3274 	 */
3275 	for (cnt = 1; cnt < shnum; cnt++) {
3276 		Word		type, symnum;
3277 		Xword		relndx, relnum, relsize;
3278 		void		*rels;
3279 		Sym		*syms;
3280 		Cache		*symsec, *strsec;
3281 		Cache		*_cache = &cache[cnt];
3282 		Shdr		*shdr;
3283 
3284 		shdr = _cache->c_shdr;
3285 		type = shdr->sh_type;
3286 
3287 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
3288 			symtab = _cache;
3289 			continue;
3290 		}
3291 		if (type == SHT_SYMTAB) {
3292 			symtab = _cache;
3293 			continue;
3294 		}
3295 		if ((type != SHT_RELA) && (type != SHT_REL))
3296 			continue;
3297 
3298 		/*
3299 		 * Decide entry size.
3300 		 */
3301 		if (((relsize = shdr->sh_entsize) == 0) ||
3302 		    (relsize > shdr->sh_size)) {
3303 			if (type == SHT_RELA)
3304 				relsize = sizeof (Rela);
3305 			else
3306 				relsize = sizeof (Rel);
3307 		}
3308 
3309 		/*
3310 		 * Determine the number of relocations available.
3311 		 */
3312 		if (shdr->sh_size == 0) {
3313 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3314 			    file, _cache->c_name);
3315 			continue;
3316 		}
3317 		if (_cache->c_data == NULL)
3318 			continue;
3319 
3320 		rels = _cache->c_data->d_buf;
3321 		relnum = shdr->sh_size / relsize;
3322 
3323 		/*
3324 		 * Get the data buffer for the associated symbol table and
3325 		 * string table.
3326 		 */
3327 		if (stringtbl(cache, 1, cnt, shnum, file,
3328 		    &symnum, &symsec, &strsec) == 0)
3329 			continue;
3330 
3331 		syms = symsec->c_data->d_buf;
3332 
3333 		/*
3334 		 * Loop through the relocation entries.
3335 		 */
3336 		for (relndx = 0; relndx < relnum; relndx++,
3337 		    rels = (void *)((char *)rels + relsize)) {
3338 			char		section[BUFSIZ];
3339 			Addr		offset;
3340 			Got_info	*gip;
3341 			Word		symndx, reltype;
3342 			Rela		*rela;
3343 			Rel		*rel;
3344 
3345 			/*
3346 			 * Unravel the relocation.
3347 			 */
3348 			if (type == SHT_RELA) {
3349 				rela = (Rela *)rels;
3350 				symndx = ELF_R_SYM(rela->r_info);
3351 				reltype = ELF_R_TYPE(rela->r_info,
3352 				    ehdr->e_machine);
3353 				offset = rela->r_offset;
3354 			} else {
3355 				rel = (Rel *)rels;
3356 				symndx = ELF_R_SYM(rel->r_info);
3357 				reltype = ELF_R_TYPE(rel->r_info,
3358 				    ehdr->e_machine);
3359 				offset = rel->r_offset;
3360 			}
3361 
3362 			/*
3363 			 * Only pay attention to relocations against the GOT.
3364 			 */
3365 			if ((offset < gotbgn) || (offset >= gotend))
3366 				continue;
3367 
3368 			/* LINTED */
3369 			gotndx = (Word)((offset - gotbgn) /
3370 			    gotshdr->sh_entsize);
3371 			gip = &gottable[gotndx];
3372 
3373 			if (gip->g_reltype != 0) {
3374 				(void) fprintf(stderr,
3375 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
3376 				    EC_WORD(gotndx), EC_ADDR(offset));
3377 				continue;
3378 			}
3379 
3380 			if (symndx)
3381 				gip->g_symname = relsymname(cache, _cache,
3382 				    strsec, symndx, symnum, relndx, syms,
3383 				    section, BUFSIZ, file, flags);
3384 			gip->g_reltype = reltype;
3385 			gip->g_rel = rels;
3386 		}
3387 	}
3388 
3389 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, symtab,
3390 	    file))
3391 		gotsymaddr = gotsym->st_value;
3392 	else
3393 		gotsymaddr = gotbgn;
3394 
3395 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3396 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
3397 	Elf_got_title(0);
3398 
3399 	sys_encoding = _elf_sys_encoding();
3400 	for (gotndx = 0; gotndx < gotents; gotndx++) {
3401 		Got_info	*gip;
3402 		Sword		gindex;
3403 		Addr		gaddr;
3404 		Xword		gotentry;
3405 
3406 		gip = &gottable[gotndx];
3407 
3408 		gaddr = gotbgn + (gotndx * gentsize);
3409 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
3410 
3411 		if (gentsize == sizeof (Word))
3412 			/* LINTED */
3413 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
3414 		else
3415 			/* LINTED */
3416 			gotentry = *((Xword *)(gotdata) + gotndx);
3417 
3418 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
3419 		    ehdr->e_ident[EI_DATA], sys_encoding,
3420 		    gip->g_reltype, gip->g_rel, gip->g_symname);
3421 	}
3422 	free(gottable);
3423 }
3424 
3425 void
3426 checksum(Elf *elf)
3427 {
3428 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3429 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
3430 }
3431 
3432 /*
3433  * This variable is used by regular() to communicate the address of
3434  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
3435  * the qsort() interface does not include a userdata argument by which
3436  * such arbitrary data can be passed, so we are stuck using global data.
3437  */
3438 static Cache *sort_shdr_ndx_arr_cache;
3439 
3440 
3441 /*
3442  * Used with qsort() to sort the section indices so that they can be
3443  * used to access the section headers in order of increasing data offset.
3444  *
3445  * entry:
3446  *	sort_shdr_ndx_arr_cache - Contains address of
3447  *		section header cache.
3448  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
3449  *
3450  * exit:
3451  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
3452  */
3453 static int
3454 sort_shdr_ndx_arr(const void *v1, const void *v2)
3455 {
3456 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
3457 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
3458 
3459 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
3460 		return (-1);
3461 
3462 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
3463 		return (1);
3464 
3465 	return (0);
3466 }
3467 
3468 
3469 static int
3470 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
3471     size_t shnum, Cache **cache_ret)
3472 {
3473 	Elf_Scn		*scn;
3474 	Elf_Data	*data;
3475 	size_t		ndx;
3476 	Shdr		*nameshdr;
3477 	char		*names = 0;
3478 	Cache		*cache, *_cache;
3479 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
3480 
3481 
3482 	/*
3483 	 * Obtain the .shstrtab data buffer to provide the required section
3484 	 * name strings.
3485 	 */
3486 	if (shstrndx == SHN_UNDEF) {
3487 		/*
3488 		 * It is rare, but legal, for an object to lack a
3489 		 * header string table section.
3490 		 */
3491 		names = NULL;
3492 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
3493 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
3494 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
3495 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
3496 		    EC_XWORD(shstrndx));
3497 
3498 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
3499 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3500 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
3501 		    EC_XWORD(shstrndx));
3502 
3503 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
3504 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3505 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3506 		    EC_WORD(elf_ndxscn(scn)));
3507 
3508 	} else if ((names = data->d_buf) == 0)
3509 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
3510 
3511 	/*
3512 	 * Allocate a cache to maintain a descriptor for each section.
3513 	 */
3514 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
3515 		int err = errno;
3516 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3517 		    file, strerror(err));
3518 		return (0);
3519 	}
3520 
3521 	*cache = cache_init;
3522 	_cache = cache;
3523 	_cache++;
3524 
3525 	/*
3526 	 * Allocate an array that will hold the section index for
3527 	 * each section that has data in the ELF file:
3528 	 *
3529 	 *	- Is not a NOBITS section
3530 	 *	- Data has non-zero length
3531 	 *
3532 	 * Note that shnum is an upper bound on the size required. It
3533 	 * is likely that we won't use a few of these array elements.
3534 	 * Allocating a modest amount of extra memory in this case means
3535 	 * that we can avoid an extra loop to count the number of needed
3536 	 * items, and can fill this array immediately in the first loop
3537 	 * below.
3538 	 */
3539 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
3540 		int err = errno;
3541 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3542 		    file, strerror(err));
3543 		return (0);
3544 	}
3545 	shdr_ndx_arr_cnt = 0;
3546 
3547 	/*
3548 	 * Traverse the sections of the file.  This gathering of data is
3549 	 * carried out in two passes.  First, the section headers are captured
3550 	 * and the section header names are evaluated.  A verification pass is
3551 	 * then carried out over the section information.  Files have been
3552 	 * known to exhibit overlapping (and hence erroneous) section header
3553 	 * information.
3554 	 *
3555 	 * Finally, the data for each section is obtained.  This processing is
3556 	 * carried out after section verification because should any section
3557 	 * header overlap occur, and a file needs translating (ie. xlate'ing
3558 	 * information from a non-native architecture file), then the process
3559 	 * of translation can corrupt the section header information.  Of
3560 	 * course, if there is any section overlap, the data related to the
3561 	 * sections is going to be compromised.  However, it is the translation
3562 	 * of this data that has caused problems with elfdump()'s ability to
3563 	 * extract the data.
3564 	 */
3565 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3566 	    ndx++, _cache++) {
3567 		char	scnndxnm[100];
3568 
3569 		_cache->c_ndx = ndx;
3570 		_cache->c_scn = scn;
3571 
3572 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3573 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3574 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3575 			    EC_WORD(elf_ndxscn(scn)));
3576 		}
3577 
3578 		/*
3579 		 * If this section has data in the file, include it in
3580 		 * the array of sections to check for address overlap.
3581 		 */
3582 		if ((_cache->c_shdr->sh_size != 0) &&
3583 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3584 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3585 
3586 		/*
3587 		 * If a shstrtab exists, assign the section name.
3588 		 */
3589 		if (names && _cache->c_shdr) {
3590 			if (_cache->c_shdr->sh_name &&
3591 			    /* LINTED */
3592 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3593 				_cache->c_name =
3594 				    names + _cache->c_shdr->sh_name;
3595 				continue;
3596 			}
3597 
3598 			/*
3599 			 * Generate an error if the section name index is zero
3600 			 * or exceeds the shstrtab data.  Fall through to
3601 			 * fabricate a section name.
3602 			 */
3603 			if ((_cache->c_shdr->sh_name == 0) ||
3604 			    /* LINTED */
3605 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3606 				(void) fprintf(stderr,
3607 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3608 				    EC_WORD(ndx),
3609 				    EC_XWORD(_cache->c_shdr->sh_name));
3610 			}
3611 		}
3612 
3613 		/*
3614 		 * If there exists no shstrtab data, or a section header has no
3615 		 * name (an invalid index of 0), then compose a name for the
3616 		 * section.
3617 		 */
3618 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3619 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3620 
3621 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3622 			int err = errno;
3623 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3624 			    file, strerror(err));
3625 			return (0);
3626 		}
3627 		(void) strcpy(_cache->c_name, scnndxnm);
3628 	}
3629 
3630 	/*
3631 	 * Having collected all the sections, validate their address range.
3632 	 * Cases have existed where the section information has been invalid.
3633 	 * This can lead to all sorts of other, hard to diagnose errors, as
3634 	 * each section is processed individually (ie. with elf_getdata()).
3635 	 * Here, we carry out some address comparisons to catch a family of
3636 	 * overlapping memory issues we have observed (likely, there are others
3637 	 * that we have yet to discover).
3638 	 *
3639 	 * Note, should any memory overlap occur, obtaining any additional
3640 	 * data from the file is questionable.  However, it might still be
3641 	 * possible to inspect the ELF header, Programs headers, or individual
3642 	 * sections, so rather than bailing on an error condition, continue
3643 	 * processing to see if any data can be salvaged.
3644 	 */
3645 	if (shdr_ndx_arr_cnt > 1) {
3646 		sort_shdr_ndx_arr_cache = cache;
3647 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3648 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3649 	}
3650 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3651 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3652 		Shdr	*shdr = _cache->c_shdr;
3653 		Off	bgn1, bgn = shdr->sh_offset;
3654 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3655 		size_t	ndx1;
3656 
3657 		/*
3658 		 * Check the section against all following ones, reporting
3659 		 * any overlaps. Since we've sorted the sections by offset,
3660 		 * we can stop after the first comparison that fails. There
3661 		 * are no overlaps in a properly formed ELF file, in which
3662 		 * case this algorithm runs in O(n) time. This will degenerate
3663 		 * to O(n^2) for a completely broken file. Such a file is
3664 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3665 		 * for the analysis to take longer.
3666 		 */
3667 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3668 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3669 			Shdr	*shdr1 = _cache1->c_shdr;
3670 
3671 			bgn1 = shdr1->sh_offset;
3672 			end1 = shdr1->sh_offset + shdr1->sh_size;
3673 
3674 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3675 			    ((bgn1 < end) && (end1 >= end))) {
3676 				(void) fprintf(stderr,
3677 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3678 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3679 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3680 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3681 				    _cache1->c_name, EC_OFF(bgn1),
3682 				    EC_OFF(end1));
3683 			} else {	/* No overlap, so can stop */
3684 				break;
3685 			}
3686 		}
3687 
3688 		/*
3689 		 * In addition to checking for sections overlapping
3690 		 * each other (done above), we should also make sure
3691 		 * the section doesn't overlap the section header array.
3692 		 */
3693 		bgn1 = ehdr->e_shoff;
3694 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3695 
3696 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3697 		    ((bgn1 < end) && (end1 >= end))) {
3698 			(void) fprintf(stderr,
3699 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3700 			    EC_OFF(end1),
3701 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3702 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3703 		}
3704 	}
3705 
3706 	/*
3707 	 * Obtain the data for each section.
3708 	 */
3709 	for (ndx = 1; ndx < shnum; ndx++) {
3710 		Cache	*_cache = &cache[ndx];
3711 		Elf_Scn	*scn = _cache->c_scn;
3712 
3713 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3714 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3715 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3716 			    EC_WORD(elf_ndxscn(scn)));
3717 		}
3718 	}
3719 
3720 	return (1);
3721 }
3722 
3723 
3724 
3725 int
3726 regular(const char *file, int fd, Elf *elf, uint_t flags,
3727     const char *wname, int wfd)
3728 {
3729 	Elf_Scn		*scn;
3730 	Ehdr		*ehdr;
3731 	size_t		ndx, shstrndx, shnum, phnum;
3732 	Shdr		*shdr;
3733 	Cache		*cache;
3734 	VERSYM_STATE	versym;
3735 	int		ret = 0;
3736 	int		addr_align;
3737 
3738 	if ((ehdr = elf_getehdr(elf)) == NULL) {
3739 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3740 		return (ret);
3741 	}
3742 
3743 	if (elf_getshnum(elf, &shnum) == 0) {
3744 		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3745 		return (ret);
3746 	}
3747 
3748 	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3749 		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3750 		return (ret);
3751 	}
3752 
3753 	if (elf_getphnum(elf, &phnum) == 0) {
3754 		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3755 		return (ret);
3756 	}
3757 	/*
3758 	 * If the user requested section headers derived from the
3759 	 * program headers (-P option) and this file doesn't have
3760 	 * any program headers (i.e. ET_REL), then we can't do it.
3761 	 */
3762 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
3763 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3764 		return (ret);
3765 	}
3766 
3767 
3768 	if ((scn = elf_getscn(elf, 0)) != NULL) {
3769 		if ((shdr = elf_getshdr(scn)) == NULL) {
3770 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3771 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3772 			return (ret);
3773 		}
3774 	} else
3775 		shdr = 0;
3776 
3777 	/*
3778 	 * Print the elf header.
3779 	 */
3780 	if (flags & FLG_SHOW_EHDR)
3781 		Elf_ehdr(0, ehdr, shdr);
3782 
3783 	/*
3784 	 * If the section headers or program headers have inadequate
3785 	 * alignment for the class of object, print a warning. libelf
3786 	 * can handle such files, but programs that use them can crash
3787 	 * when they dereference unaligned items.
3788 	 *
3789 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
3790 	 * allows access to data types smaller than 128-bits to be on
3791 	 * word alignment.
3792 	 */
3793 	if (ehdr->e_machine == EM_AMD64)
3794 		addr_align = sizeof (Word);
3795 	else
3796 		addr_align = sizeof (Addr);
3797 
3798 	if (ehdr->e_phoff & (addr_align - 1))
3799 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3800 	if (ehdr->e_shoff & (addr_align - 1))
3801 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3802 
3803 	/*
3804 	 * Print the program headers.
3805 	 */
3806 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
3807 		Phdr	*phdr;
3808 
3809 		if ((phdr = elf_getphdr(elf)) == NULL) {
3810 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3811 			return (ret);
3812 		}
3813 
3814 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3815 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
3816 			    NULL, ndx, phdr->p_type))
3817 				continue;
3818 
3819 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3820 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3821 			Elf_phdr(0, ehdr->e_machine, phdr);
3822 		}
3823 	}
3824 
3825 	/*
3826 	 * If we have flag bits set that explicitly require a show or calc
3827 	 * operation, but none of them require the section headers, then
3828 	 * we are done and can return now.
3829 	 */
3830 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
3831 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
3832 		return (ret);
3833 
3834 	/*
3835 	 * If there are no section headers, then resort to synthesizing
3836 	 * section headers from the program headers. This is normally
3837 	 * only done by explicit request, but in this case there's no
3838 	 * reason not to go ahead, since the alternative is simply to quit.
3839 	 */
3840 	if ((shnum <= 1) && ((flags & FLG_CTL_FAKESHDR) == 0)) {
3841 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
3842 		flags |= FLG_CTL_FAKESHDR;
3843 	}
3844 
3845 	/*
3846 	 * Generate a cache of section headers and related information
3847 	 * for use by the rest of elfdump. If requested (or the file
3848 	 * contains no section headers), we generate a fake set of
3849 	 * headers from the information accessible from the program headers.
3850 	 * Otherwise, we use the real section headers contained in the file.
3851 	 */
3852 
3853 	if (flags & FLG_CTL_FAKESHDR) {
3854 		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
3855 			return (ret);
3856 	} else {
3857 		if (shdr_cache(file, elf, ehdr, shstrndx, shnum, &cache) == 0)
3858 			return (ret);
3859 	}
3860 
3861 	/*
3862 	 * Everything from this point on requires section headers.
3863 	 * If we have no section headers, there is no reason to continue.
3864 	 */
3865 	if (shnum <= 1)
3866 		goto done;
3867 
3868 	/*
3869 	 * If -w was specified, find and write out the section(s) data.
3870 	 */
3871 	if (wfd) {
3872 		for (ndx = 1; ndx < shnum; ndx++) {
3873 			Cache	*_cache = &cache[ndx];
3874 
3875 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
3876 			    ndx, _cache->c_shdr->sh_type) &&
3877 			    _cache->c_data && _cache->c_data->d_buf) {
3878 				if (write(wfd, _cache->c_data->d_buf,
3879 				    _cache->c_data->d_size) !=
3880 				    _cache->c_data->d_size) {
3881 					int err = errno;
3882 					(void) fprintf(stderr,
3883 					    MSG_INTL(MSG_ERR_WRITE), wname,
3884 					    strerror(err));
3885 					/*
3886 					 * Return an exit status of 1, because
3887 					 * the failure is not related to the
3888 					 * ELF file, but by system resources.
3889 					 */
3890 					ret = 1;
3891 					goto done;
3892 				}
3893 			}
3894 		}
3895 	}
3896 
3897 	/*
3898 	 * If we have no flag bits set that explicitly require a show or calc
3899 	 * operation, but match options (-I, -N, -T) were used, then run
3900 	 * through the section headers and see if we can't deduce show flags
3901 	 * from the match options given.
3902 	 *
3903 	 * We don't do this if -w was specified, because (-I, -N, -T) used
3904 	 * with -w in lieu of some other option is supposed to be quiet.
3905 	 */
3906 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
3907 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
3908 		for (ndx = 1; ndx < shnum; ndx++) {
3909 			Cache	*_cache = &cache[ndx];
3910 
3911 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
3912 			    ndx, _cache->c_shdr->sh_type))
3913 				continue;
3914 
3915 			switch (_cache->c_shdr->sh_type) {
3916 			case SHT_PROGBITS:
3917 				/*
3918 				 * Heuristic time: It is usually bad form
3919 				 * to assume that specific section names
3920 				 * have a given meaning. However, the
3921 				 * ELF ABI does specify a few such names. Try
3922 				 * to match them:
3923 				 */
3924 				if (strcmp(_cache->c_name,
3925 				    MSG_ORIG(MSG_ELF_INTERP)) == 0)
3926 					flags |= FLG_SHOW_INTERP;
3927 				else if (strcmp(_cache->c_name,
3928 				    MSG_ORIG(MSG_ELF_GOT)) == 0)
3929 					flags |= FLG_SHOW_GOT;
3930 				break;
3931 
3932 			case SHT_SYMTAB:
3933 			case SHT_DYNSYM:
3934 			case SHT_SUNW_LDYNSYM:
3935 			case SHT_SUNW_versym:
3936 			case SHT_SYMTAB_SHNDX:
3937 				flags |= FLG_SHOW_SYMBOLS;
3938 				break;
3939 
3940 			case SHT_RELA:
3941 			case SHT_REL:
3942 				flags |= FLG_SHOW_RELOC;
3943 				break;
3944 
3945 			case SHT_HASH:
3946 				flags |= FLG_SHOW_HASH;
3947 				break;
3948 
3949 			case SHT_DYNAMIC:
3950 				flags |= FLG_SHOW_DYNAMIC;
3951 				break;
3952 
3953 			case SHT_NOTE:
3954 				flags |= FLG_SHOW_NOTE;
3955 				break;
3956 
3957 			case SHT_GROUP:
3958 				flags |= FLG_SHOW_GROUP;
3959 				break;
3960 
3961 			case SHT_SUNW_symsort:
3962 			case SHT_SUNW_tlssort:
3963 				flags |= FLG_SHOW_SORT;
3964 				break;
3965 
3966 			case SHT_SUNW_cap:
3967 				flags |= FLG_SHOW_CAP;
3968 				break;
3969 
3970 			case SHT_SUNW_move:
3971 				flags |= FLG_SHOW_MOVE;
3972 				break;
3973 
3974 			case SHT_SUNW_syminfo:
3975 				flags |= FLG_SHOW_SYMINFO;
3976 				break;
3977 
3978 			case SHT_SUNW_verdef:
3979 			case SHT_SUNW_verneed:
3980 				flags |= FLG_SHOW_VERSIONS;
3981 				break;
3982 
3983 			case SHT_AMD64_UNWIND:
3984 				flags |= FLG_SHOW_UNWIND;
3985 				break;
3986 			}
3987 		}
3988 	}
3989 
3990 
3991 	if (flags & FLG_SHOW_SHDR)
3992 		sections(file, cache, shnum, ehdr);
3993 
3994 	if (flags & FLG_SHOW_INTERP)
3995 		interp(file, cache, shnum, phnum, elf);
3996 
3997 	versions(cache, shnum, file, flags, &versym);
3998 
3999 	if (flags & FLG_SHOW_SYMBOLS)
4000 		symbols(cache, shnum, ehdr, &versym, file, flags);
4001 
4002 	if (flags & FLG_SHOW_SORT)
4003 		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
4004 
4005 	if (flags & FLG_SHOW_HASH)
4006 		hash(cache, shnum, file, flags);
4007 
4008 	if (flags & FLG_SHOW_GOT)
4009 		got(cache, shnum, ehdr, file, flags);
4010 
4011 	if (flags & FLG_SHOW_GROUP)
4012 		group(cache, shnum, file, flags);
4013 
4014 	if (flags & FLG_SHOW_SYMINFO)
4015 		syminfo(cache, shnum, file);
4016 
4017 	if (flags & FLG_SHOW_RELOC)
4018 		reloc(cache, shnum, ehdr, file, flags);
4019 
4020 	if (flags & FLG_SHOW_DYNAMIC)
4021 		dynamic(cache, shnum, ehdr, file);
4022 
4023 	if (flags & FLG_SHOW_NOTE)
4024 		note(cache, shnum, file);
4025 
4026 	if (flags & FLG_SHOW_MOVE)
4027 		move(cache, shnum, file, flags);
4028 
4029 	if (flags & FLG_CALC_CHECKSUM)
4030 		checksum(elf);
4031 
4032 	if (flags & FLG_SHOW_CAP)
4033 		cap(file, cache, shnum, phnum, ehdr, elf);
4034 
4035 	if (flags & FLG_SHOW_UNWIND)
4036 		unwind(cache, shnum, phnum, ehdr, file, elf);
4037 
4038 
4039 	/* Release the memory used to cache section headers */
4040 done:
4041 	if (flags & FLG_CTL_FAKESHDR)
4042 		fake_shdr_cache_free(cache, shnum);
4043 	else
4044 		free(cache);
4045 
4046 	return (ret);
4047 }
4048