xref: /titanic_41/usr/src/cmd/sgs/elfdump/common/elfdump.c (revision 30e7468f8f41aa30ada067b2c1d5d284046514da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Dump an elf file.
29  */
30 #include	<sys/elf_386.h>
31 #include	<sys/elf_amd64.h>
32 #include	<sys/elf_SPARC.h>
33 #include	<_libelf.h>
34 #include	<dwarf.h>
35 #include	<stdio.h>
36 #include	<unistd.h>
37 #include	<errno.h>
38 #include	<strings.h>
39 #include	<debug.h>
40 #include	<conv.h>
41 #include	<msg.h>
42 #include	<_elfdump.h>
43 
44 
45 /*
46  * VERSYM_STATE is used to maintain information about the VERSYM section
47  * in the object being analyzed. It is filled in by versions(), and used
48  * by init_symtbl_state() when displaying symbol information.
49  *
50  * There are three forms of symbol versioning known to us:
51  *
52  * 1) The original form, introduced with Solaris 2.5, in which
53  *	the Versym contains indexes to Verdef records, and the
54  *	Versym values for UNDEF symbols resolved by other objects
55  *	are all set to 0.
56  * 2) The GNU form, which is backward compatible with the original
57  *	Solaris form, but which adds several extensions:
58  *	- The Versym also contains indexes to Verneed records, recording
59  *		which object/version contributed the external symbol at
60  *		link time. These indexes start with the next value following
61  *		the final Verdef index. The index is written to the previously
62  *		reserved vna_other field of the ELF Vernaux structure.
63  *	- The top bit of the Versym value is no longer part of the index,
64  *		but is used as a "hidden bit" to prevent binding to the symbol.
65  *	- Multiple implementations of a given symbol, contained in varying
66  *		versions are allowed, using special assembler pseudo ops,
67  *		and encoded in the symbol name using '@' characters.
68  * 3) Modified Solaris form, in which we adopt the first GNU extension
69  *	(Versym indexes to Verneed records), but not the others.
70  *
71  * elfdump can handle any of these cases. The presence of a DT_VERSYM
72  * dynamic element indicates a full GNU object. An object that lacks
73  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
74  * structures is a modified Solaris object. An object that has neither of
75  * these uses the original form.
76  *
77  * max_verndx contains the largest version index that can appear
78  * in a Versym entry. This can never be less than 1: In the case where
79  * there is no verdef/verneed sections, the [0] index is reserved
80  * for local symbols, and the [1] index for globals. If the original
81  * Solaris versioning rules are in effect and there is a verdef section,
82  * then max_verndex is the number of defined versions. If one of the
83  * other versioning forms is in effect, then:
84  *	1) If there is no verneed section, it is the same as for
85  *		original Solaris versioning.
86  *	2) If there is a verneed section, the vna_other field of the
87  *		Vernaux structs contain versions, and max_verndx is the
88  *		largest such index.
89  *
90  * If gnu_full is True, the object uses the full GNU form of versioning.
91  * The value of the gnu_full field is based on the presence of
92  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
93  * Solaris ld does not.
94  *
95  * The gnu_needed field is True if the Versym contains indexes to
96  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
97  * section. If gnu_full is True, then gnu_needed will always be true.
98  * However, gnu_needed can be true without gnu_full. This is the modified
99  * Solaris form.
100  */
101 typedef struct {
102 	Cache	*cache;		/* Pointer to cache entry for VERSYM */
103 	Versym	*data;		/* Pointer to versym array */
104 	int	gnu_full;	/* True if object uses GNU versioning rules */
105 	int	gnu_needed;	/* True if object uses VERSYM indexes for */
106 				/*	VERNEED (subset of gnu_full) */
107 	int	max_verndx;	/* largest versym index value */
108 } VERSYM_STATE;
109 
110 /*
111  * SYMTBL_STATE is used to maintain information about a single symbol
112  * table section, for use by the routines that display symbol information.
113  */
114 typedef struct {
115 	const char	*file;		/* Name of file */
116 	Ehdr		*ehdr;		/* ELF header for file */
117 	Cache		*cache;		/* Cache of all section headers */
118 	Word		shnum;		/* # of sections in cache */
119 	Cache		*seccache;	/* Cache of symbol table section hdr */
120 	Word		secndx;		/* Index of symbol table section hdr */
121 	const char	*secname;	/* Name of section */
122 	uint_t		flags;		/* Command line option flags */
123 	struct {			/* Extended section index data */
124 		int	checked;	/* TRUE if already checked for shxndx */
125 		Word	*data;		/* NULL, or extended section index */
126 					/*	used for symbol table entries */
127 		uint_t	n;		/* # items in shxndx.data */
128 	} shxndx;
129 	VERSYM_STATE	*versym;	/* NULL, or associated VERSYM section */
130 	Sym 		*sym;		/* Array of symbols */
131 	Word		symn;		/* # of symbols */
132 } SYMTBL_STATE;
133 
134 
135 
136 /*
137  * Focal point for verifying symbol names.
138  */
139 static const char *
140 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
141 {
142 	/*
143 	 * If an error in this routine is due to a property of the string
144 	 * section, as opposed to a bad offset into the section (a property of
145 	 * the referencing section), then we will detect the same error on
146 	 * every call involving those sections. We use these static variables
147 	 * to retain the information needed to only issue each such error once.
148 	 */
149 	static Cache	*last_refsec;	/* Last referencing section seen */
150 	static int	strsec_err;	/* True if error issued */
151 
152 	const char	*strs;
153 	Word		strn;
154 
155 	if (strsec->c_data == NULL)
156 		return (NULL);
157 
158 	strs = (char *)strsec->c_data->d_buf;
159 	strn = strsec->c_data->d_size;
160 
161 	/*
162 	 * We only print a diagnostic regarding a bad string table once per
163 	 * input section being processed. If the refsec has changed, reset
164 	 * our retained error state.
165 	 */
166 	if (last_refsec != refsec) {
167 		last_refsec = refsec;
168 		strsec_err = 0;
169 	}
170 
171 	/* Verify that strsec really is a string table */
172 	if (strsec->c_shdr->sh_type != SHT_STRTAB) {
173 		if (!strsec_err) {
174 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
175 			    file, strsec->c_ndx, refsec->c_ndx);
176 			strsec_err = 1;
177 		}
178 		return (MSG_INTL(MSG_STR_UNKNOWN));
179 	}
180 
181 	/*
182 	 * Is the string table offset within range of the available strings?
183 	 */
184 	if (name >= strn) {
185 		/*
186 		 * Do we have a empty string table?
187 		 */
188 		if (strs == NULL) {
189 			if (!strsec_err) {
190 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
191 				    file, strsec->c_name);
192 				strsec_err = 1;
193 			}
194 		} else {
195 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
196 			    file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
197 			    EC_WORD(name), EC_WORD(strn - 1));
198 		}
199 
200 		/*
201 		 * Return the empty string so that the calling function can
202 		 * continue it's output diagnostics.
203 		 */
204 		return (MSG_INTL(MSG_STR_UNKNOWN));
205 	}
206 	return (strs + name);
207 }
208 
209 /*
210  * Relocations can reference section symbols and standard symbols.  If the
211  * former, establish the section name.
212  */
213 static const char *
214 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
215     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
216 {
217 	Sym		*sym;
218 	const char	*name;
219 
220 	if (symndx >= symnum) {
221 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
222 		    file, EC_WORD(symndx), EC_WORD(relndx));
223 		return (MSG_INTL(MSG_STR_UNKNOWN));
224 	}
225 
226 	sym = (Sym *)(syms + symndx);
227 	name = string(csec, symndx, strsec, file, sym->st_name);
228 
229 	/*
230 	 * If the symbol represents a section offset construct an appropriate
231 	 * string.  Note, although section symbol table entries typically have
232 	 * a NULL name pointer, entries do exist that point into the string
233 	 * table to their own NULL strings.
234 	 */
235 	if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
236 	    ((sym->st_name == 0) || (*name == '\0'))) {
237 		(void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
238 		    cache[sym->st_shndx].c_name);
239 		return ((const char *)secstr);
240 	}
241 
242 	return (name);
243 }
244 
245 /*
246  * Focal point for establishing a string table section.  Data such as the
247  * dynamic information simply points to a string table.  Data such as
248  * relocations, reference a symbol table, which in turn is associated with a
249  * string table.
250  */
251 static int
252 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
253     Word *symnum, Cache **symsec, Cache **strsec)
254 {
255 	Shdr	*shdr = cache[ndx].c_shdr;
256 
257 	if (symtab) {
258 		/*
259 		 * Validate the symbol table section.
260 		 */
261 		if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
262 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
263 			    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
264 			return (0);
265 		}
266 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
267 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
268 			    file, cache[ndx].c_name);
269 			return (0);
270 		}
271 
272 		/*
273 		 * Obtain, and verify the symbol table data.
274 		 */
275 		if ((cache[ndx].c_data == NULL) ||
276 		    (cache[ndx].c_data->d_buf == NULL)) {
277 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
278 			    file, cache[ndx].c_name);
279 			return (0);
280 		}
281 
282 		/*
283 		 * Establish the string table index.
284 		 */
285 		ndx = shdr->sh_link;
286 		shdr = cache[ndx].c_shdr;
287 
288 		/*
289 		 * Return symbol table information.
290 		 */
291 		if (symnum)
292 			*symnum = (shdr->sh_size / shdr->sh_entsize);
293 		if (symsec)
294 			*symsec = &cache[ndx];
295 	}
296 
297 	/*
298 	 * Validate the associated string table section.
299 	 */
300 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
301 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
302 		    file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
303 		return (0);
304 	}
305 
306 	if (strsec)
307 		*strsec = &cache[shdr->sh_link];
308 
309 	return (1);
310 }
311 
312 /*
313  * Lookup a symbol and set Sym accordingly.
314  */
315 static int
316 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
317     Cache *symtab, const char *file)
318 {
319 	Shdr	*shdr;
320 	Word	symn, cnt;
321 	Sym	*syms;
322 
323 	if (symtab == 0)
324 		return (0);
325 
326 	shdr = symtab->c_shdr;
327 
328 	/*
329 	 * Determine the symbol data and number.
330 	 */
331 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
332 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
333 		    file, symtab->c_name);
334 		return (0);
335 	}
336 	if (symtab->c_data == NULL)
337 		return (0);
338 
339 	/* LINTED */
340 	symn = (Word)(shdr->sh_size / shdr->sh_entsize);
341 	syms = (Sym *)symtab->c_data->d_buf;
342 
343 	/*
344 	 * Get the associated string table section.
345 	 */
346 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
347 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
348 		    file, symtab->c_name, EC_WORD(shdr->sh_link));
349 		return (0);
350 	}
351 
352 	/*
353 	 * Loop through the symbol table to find a match.
354 	 */
355 	for (cnt = 0; cnt < symn; syms++, cnt++) {
356 		const char	*symname;
357 
358 		symname = string(symtab, cnt, &cache[shdr->sh_link], file,
359 		    syms->st_name);
360 
361 		if (symname && (strcmp(name, symname) == 0)) {
362 			*sym = syms;
363 			return (1);
364 		}
365 	}
366 	return (0);
367 }
368 
369 /*
370  * Print section headers.
371  */
372 static void
373 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr)
374 {
375 	size_t	seccnt;
376 
377 	for (seccnt = 1; seccnt < shnum; seccnt++) {
378 		Cache		*_cache = &cache[seccnt];
379 		Shdr		*shdr = _cache->c_shdr;
380 		const char	*secname = _cache->c_name;
381 
382 		/*
383 		 * Although numerous section header entries can be zero, it's
384 		 * usually a sign of trouble if the type is zero.
385 		 */
386 		if (shdr->sh_type == 0) {
387 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
388 			    file, secname, EC_WORD(shdr->sh_type));
389 		}
390 
391 		if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
392 			continue;
393 
394 		/*
395 		 * Identify any sections that are suspicious.  A .got section
396 		 * shouldn't exist in a relocatable object.
397 		 */
398 		if (ehdr->e_type == ET_REL) {
399 			if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
400 			    MSG_ELF_GOT_SIZE) == 0) {
401 				(void) fprintf(stderr,
402 				    MSG_INTL(MSG_GOT_UNEXPECTED), file,
403 				    secname);
404 			}
405 		}
406 
407 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
408 		dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
409 		Elf_shdr(0, ehdr->e_machine, shdr);
410 	}
411 }
412 
413 /*
414  * Obtain a specified Phdr entry.
415  */
416 static Phdr *
417 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
418 {
419 	Word	cnt, tcnt;
420 	Phdr	*phdr;
421 
422 	if ((phdr = elf_getphdr(elf)) == NULL) {
423 		failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
424 		return (NULL);
425 	}
426 
427 	for (cnt = 0; cnt < phnum; phdr++, cnt++) {
428 		for (tcnt = 0; tcnt < type_cnt; tcnt++) {
429 			if (phdr->p_type == type_arr[tcnt])
430 				return (phdr);
431 		}
432 	}
433 	return (NULL);
434 }
435 
436 static void
437 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, const char *file,
438     Elf *elf, uint_t flags)
439 {
440 #if	defined(_ELF64)
441 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_64
442 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_64
443 #else
444 #define	MSG_UNW_BINSRTAB2	MSG_UNW_BINSRTAB2_32
445 #define	MSG_UNW_BINSRTABENT	MSG_UNW_BINSRTABENT_32
446 #endif
447 
448 	static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
449 
450 	int			frame_cnt = 0, hdr_cnt = 0, frame_ndx, hdr_ndx;
451 	uint64_t		save_frame_ptr, save_frame_base;
452 	Conv_dwarf_ehe_buf_t	dwarf_ehe_buf;
453 	Word			cnt;
454 	Phdr			*uphdr = NULL;
455 
456 	/*
457 	 * Historical background: .eh_frame and .eh_frame_hdr sections
458 	 * come from the GNU compilers (particularly C++), and are used
459 	 * under all architectures. Their format is based on DWARF. When
460 	 * the amd64 ABI was defined, these sections were adopted wholesale
461 	 * from the existing practice.
462 	 *
463 	 * When amd64 support was added to Solaris, support for these
464 	 * sections was added, using the SHT_AMD64_UNWIND section type
465 	 * to identify them. At first, we ignored them in objects for
466 	 * non-amd64 targets, but later broadened our support to include
467 	 * other architectures in order to better support gcc-generated
468 	 * objects.
469 	 *
470 	 * We match these sections by name, rather than section type,
471 	 * because they can come in as either SHT_AMD64_UNWIND, or as
472 	 * SHT_PROGBITS, and because we need to distinquish between
473 	 * the two types (.eh_frame and .eh_frame_hdr).
474 	 */
475 
476 	if (phnum)
477 		uphdr = getphdr(phnum, phdr_types,
478 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
479 
480 	for (cnt = 1; cnt < shnum; cnt++) {
481 		Cache		*_cache = &cache[cnt];
482 		Shdr		*shdr = _cache->c_shdr;
483 		uchar_t		*data;
484 		size_t		datasize;
485 		uint64_t	ndx, frame_ptr, fde_cnt, tabndx;
486 		uint_t		vers, frame_ptr_enc, fde_cnt_enc, table_enc;
487 
488 		/*
489 		 * Skip sections of the wrong type. On amd64, Solaris tags
490 		 * these as SHT_AMD64_UNWIND, while gcc started out issuing
491 		 * them as SHT_PROGBITS and switched over when the amd64 ABI
492 		 * was finalized. On non-amd64, they're all SHT_PROGBITS.
493 		 */
494 		switch (shdr->sh_type) {
495 		case SHT_PROGBITS:
496 			if (ehdr->e_machine == EM_AMD64)
497 				continue;
498 			break;
499 		case SHT_AMD64_UNWIND:
500 			if (ehdr->e_machine != EM_AMD64)
501 				continue;
502 			break;
503 		default:
504 			continue;
505 		}
506 
507 		/*
508 		 * Only sections with names starting with .eh_frame or
509 		 * .eh_frame_hdr are of interest. We do a prefix comparison,
510 		 * allowing for naming conventions like .eh_frame.foo, hence
511 		 * the use of strncmp() rather than strcmp(). This means that
512 		 * we only really need to test for .eh_frame, as it's a
513 		 * prefix of .eh_frame_hdr.
514 		 */
515 		if (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
516 		    MSG_SCN_FRM_SIZE) != 0)
517 			continue;
518 
519 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
520 			continue;
521 
522 		if (_cache->c_data == NULL)
523 			continue;
524 
525 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
526 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
527 
528 		data = (uchar_t *)(_cache->c_data->d_buf);
529 		datasize = _cache->c_data->d_size;
530 
531 		/*
532 		 * Is this a .eh_frame_hdr
533 		 */
534 		if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
535 		    (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
536 		    MSG_SCN_FRMHDR_SIZE) == 0)) {
537 			/*
538 			 * There can only be a single .eh_frame_hdr.
539 			 * Flag duplicates.
540 			 */
541 			if (++hdr_cnt > 1)
542 				(void) fprintf(stderr,
543 				    MSG_INTL(MSG_ERR_MULTEHFRMHDR), file,
544 				    EC_WORD(cnt), _cache->c_name);
545 
546 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
547 			ndx = 0;
548 
549 			vers = data[ndx++];
550 			frame_ptr_enc = data[ndx++];
551 			fde_cnt_enc = data[ndx++];
552 			table_enc = data[ndx++];
553 
554 			dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
555 
556 			frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
557 			    ehdr->e_ident, shdr->sh_addr, ndx);
558 			if (hdr_cnt == 1) {
559 				hdr_ndx = cnt;
560 				save_frame_ptr = frame_ptr;
561 			}
562 
563 			dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
564 			    conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
565 			    EC_XWORD(frame_ptr));
566 
567 			fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
568 			    ehdr->e_ident, shdr->sh_addr, ndx);
569 
570 			dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
571 			    conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
572 			    EC_XWORD(fde_cnt));
573 			dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
574 			    conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
575 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
576 			dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
577 
578 			for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
579 				dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
580 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
581 				    table_enc, ehdr->e_ident, shdr->sh_addr,
582 				    ndx)),
583 				    EC_XWORD(dwarf_ehe_extract(data, &ndx,
584 				    table_enc, ehdr->e_ident, shdr->sh_addr,
585 				    ndx)));
586 			}
587 		} else {		/* Display the .eh_frame section */
588 			frame_cnt++;
589 			if (frame_cnt == 1) {
590 				frame_ndx = cnt;
591 				save_frame_base = shdr->sh_addr;
592 			} else if ((frame_cnt >  1) &&
593 			    (ehdr->e_type != ET_REL)) {
594 				Conv_inv_buf_t	inv_buf;
595 
596 				(void) fprintf(stderr,
597 				    MSG_INTL(MSG_WARN_MULTEHFRM), file,
598 				    EC_WORD(cnt), _cache->c_name,
599 				    conv_ehdr_type(ehdr->e_type, 0, &inv_buf));
600 			}
601 			dump_eh_frame(data, datasize, shdr->sh_addr,
602 			    ehdr->e_machine, ehdr->e_ident);
603 		}
604 
605 		/*
606 		 * If we've seen the .eh_frame_hdr and the first .eh_frame
607 		 * section, compare the header frame_ptr to the address of the
608 		 * actual frame section to ensure the link-editor got this
609 		 * right.  Note, this diagnostic is only produced when unwind
610 		 * information is explicitly asked for, as shared objects built
611 		 * with an older ld(1) may reveal this inconsistency.  Although
612 		 * an inconsistency, it doesn't seem to have any adverse effect
613 		 * on existing tools.
614 		 */
615 		if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
616 		    (hdr_cnt > 0) && (frame_cnt > 0) &&
617 		    (save_frame_ptr != save_frame_base))
618 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
619 			    file, EC_WORD(hdr_ndx), cache[hdr_ndx].c_name,
620 			    EC_XWORD(save_frame_ptr), EC_WORD(frame_ndx),
621 			    cache[frame_ndx].c_name, EC_XWORD(save_frame_base));
622 	}
623 
624 #undef MSG_UNW_BINSRTAB2
625 #undef MSG_UNW_BINSRTABENT
626 }
627 
628 /*
629  * Print the hardware/software capabilities.  For executables and shared objects
630  * this should be accompanied with a program header.
631  */
632 static void
633 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
634     Elf *elf)
635 {
636 	Word		cnt;
637 	Shdr		*cshdr = NULL;
638 	Cache		*ccache;
639 	Off		cphdr_off = 0;
640 	Xword		cphdr_sz;
641 
642 	/*
643 	 * Determine if a hardware/software capabilities header exists.
644 	 */
645 	if (phnum) {
646 		Phdr	*phdr;
647 
648 		if ((phdr = elf_getphdr(elf)) == NULL) {
649 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
650 			return;
651 		}
652 
653 		for (cnt = 0; cnt < phnum; phdr++, cnt++) {
654 			if (phdr->p_type == PT_SUNWCAP) {
655 				cphdr_off = phdr->p_offset;
656 				cphdr_sz = phdr->p_filesz;
657 				break;
658 			}
659 		}
660 	}
661 
662 	/*
663 	 * Determine if a hardware/software capabilities section exists.
664 	 */
665 	for (cnt = 1; cnt < shnum; cnt++) {
666 		Cache	*_cache = &cache[cnt];
667 		Shdr	*shdr = _cache->c_shdr;
668 
669 		if (shdr->sh_type != SHT_SUNW_cap)
670 			continue;
671 
672 		if (cphdr_off && ((cphdr_off < shdr->sh_offset) ||
673 		    (cphdr_off + cphdr_sz) > (shdr->sh_offset + shdr->sh_size)))
674 			continue;
675 
676 		if (_cache->c_data == NULL)
677 			continue;
678 
679 		ccache = _cache;
680 		cshdr = shdr;
681 		break;
682 	}
683 
684 	if ((cshdr == NULL) && (cphdr_off == 0))
685 		return;
686 
687 	/*
688 	 * Print the hardware/software capabilities section.
689 	 */
690 	if (cshdr) {
691 		Word	ndx, capn;
692 		Cap	*cap = (Cap *)ccache->c_data->d_buf;
693 
694 		if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
695 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
696 			    file, ccache->c_name);
697 			return;
698 		}
699 
700 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
701 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
702 
703 		Elf_cap_title(0);
704 
705 		capn = (Word)(cshdr->sh_size / cshdr->sh_entsize);
706 
707 		for (ndx = 0; ndx < capn; cap++, ndx++) {
708 			if (cap->c_tag == CA_SUNW_NULL)
709 				continue;
710 
711 			Elf_cap_entry(0, cap, ndx, ehdr->e_machine);
712 
713 			/*
714 			 * An SF1_SUNW_ADDR32 software capability in a 32-bit
715 			 * object is suspicious as it has no effect.
716 			 */
717 			if ((cap->c_tag == CA_SUNW_SF_1) &&
718 			    (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
719 			    (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
720 				(void) fprintf(stderr,
721 				    MSG_INTL(MSG_WARN_INADDR32SF1),
722 				    file, ccache->c_name);
723 			}
724 		}
725 	} else
726 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
727 
728 	/*
729 	 * If this object is an executable or shared object, then the
730 	 * hardware/software capabilities section should have an accompanying
731 	 * program header.
732 	 */
733 	if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
734 		if (cphdr_off == 0)
735 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
736 			    file, ccache->c_name);
737 		else if ((cphdr_off != cshdr->sh_offset) ||
738 		    (cphdr_sz != cshdr->sh_size))
739 			(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
740 			    file, ccache->c_name);
741 	}
742 }
743 
744 /*
745  * Print the interpretor.
746  */
747 static void
748 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
749 {
750 	static Word phdr_types[] = { PT_INTERP };
751 
752 
753 	Word	cnt;
754 	Shdr	*ishdr = NULL;
755 	Cache	*icache;
756 	Off	iphdr_off = 0;
757 	Xword	iphdr_fsz;
758 
759 	/*
760 	 * Determine if an interp header exists.
761 	 */
762 	if (phnum) {
763 		Phdr	*phdr;
764 
765 		phdr = getphdr(phnum, phdr_types,
766 		    sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
767 		if (phdr != NULL) {
768 			iphdr_off = phdr->p_offset;
769 			iphdr_fsz = phdr->p_filesz;
770 		}
771 	}
772 
773 	if (iphdr_off == 0)
774 		return;
775 
776 	/*
777 	 * Determine if an interp section exists.
778 	 */
779 	for (cnt = 1; cnt < shnum; cnt++) {
780 		Cache	*_cache = &cache[cnt];
781 		Shdr	*shdr = _cache->c_shdr;
782 
783 		/*
784 		 * Scan sections to find a section which contains the PT_INTERP
785 		 * string.  The target section can't be in a NOBITS section.
786 		 */
787 		if ((shdr->sh_type == SHT_NOBITS) ||
788 		    (iphdr_off < shdr->sh_offset) ||
789 		    (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
790 			continue;
791 
792 		icache = _cache;
793 		ishdr = shdr;
794 		break;
795 	}
796 
797 	/*
798 	 * Print the interpreter string based on the offset defined in the
799 	 * program header, as this is the offset used by the kernel.
800 	 */
801 	if (ishdr && icache->c_data) {
802 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
803 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
804 		dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
805 		    (char *)icache->c_data->d_buf +
806 		    (iphdr_off - ishdr->sh_offset));
807 	} else
808 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
809 
810 	/*
811 	 * If there are any inconsistences between the program header and
812 	 * section information, flag them.
813 	 */
814 	if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
815 	    (iphdr_fsz != ishdr->sh_size))) {
816 		(void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
817 		    icache->c_name);
818 	}
819 }
820 
821 /*
822  * Print the syminfo section.
823  */
824 static void
825 syminfo(Cache *cache, Word shnum, const char *file)
826 {
827 	Shdr		*infoshdr;
828 	Syminfo		*info;
829 	Sym		*syms;
830 	Dyn		*dyns;
831 	Word		infonum, cnt, ndx, symnum;
832 	Cache		*infocache = NULL, *symsec, *strsec;
833 
834 	for (cnt = 1; cnt < shnum; cnt++) {
835 		if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
836 			infocache = &cache[cnt];
837 			break;
838 		}
839 	}
840 	if (infocache == NULL)
841 		return;
842 
843 	infoshdr = infocache->c_shdr;
844 	if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
845 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
846 		    file, infocache->c_name);
847 		return;
848 	}
849 	if (infocache->c_data == NULL)
850 		return;
851 
852 	infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
853 	info = (Syminfo *)infocache->c_data->d_buf;
854 
855 	/*
856 	 * Get the data buffer of the associated dynamic section.
857 	 */
858 	if ((infoshdr->sh_info == 0) || (infoshdr->sh_info >= shnum)) {
859 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
860 		    file, infocache->c_name, EC_WORD(infoshdr->sh_info));
861 		return;
862 	}
863 	if (cache[infoshdr->sh_info].c_data == NULL)
864 		return;
865 
866 	dyns = cache[infoshdr->sh_info].c_data->d_buf;
867 	if (dyns == NULL) {
868 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
869 		    file, cache[infoshdr->sh_info].c_name);
870 		return;
871 	}
872 
873 	/*
874 	 * Get the data buffer for the associated symbol table and string table.
875 	 */
876 	if (stringtbl(cache, 1, cnt, shnum, file,
877 	    &symnum, &symsec, &strsec) == 0)
878 		return;
879 
880 	syms = symsec->c_data->d_buf;
881 
882 	/*
883 	 * Loop through the syminfo entries.
884 	 */
885 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
886 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
887 	Elf_syminfo_title(0);
888 
889 	for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
890 		Sym 		*sym;
891 		const char	*needed = NULL, *name;
892 
893 		if ((info->si_flags == 0) && (info->si_boundto == 0))
894 			continue;
895 
896 		sym = &syms[ndx];
897 		name = string(infocache, ndx, strsec, file, sym->st_name);
898 
899 		if (info->si_boundto < SYMINFO_BT_LOWRESERVE) {
900 			Dyn	*dyn = &dyns[info->si_boundto];
901 
902 			needed = string(infocache, info->si_boundto,
903 			    strsec, file, dyn->d_un.d_val);
904 		}
905 		Elf_syminfo_entry(0, ndx, info, name, needed);
906 	}
907 }
908 
909 /*
910  * Print version definition section entries.
911  */
912 static void
913 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
914     const char *file)
915 {
916 	Word	cnt;
917 	char	index[MAXNDXSIZE];
918 
919 	Elf_ver_def_title(0);
920 
921 	for (cnt = 1; cnt <= vdf_num; cnt++,
922 	    vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
923 		Conv_ver_flags_buf_t	ver_flags_buf;
924 		const char		*name, *dep;
925 		Half			vcnt = vdf->vd_cnt - 1;
926 		Half			ndx = vdf->vd_ndx;
927 		Verdaux	*vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
928 
929 		/*
930 		 * Obtain the name and first dependency (if any).
931 		 */
932 		name = string(vcache, cnt, scache, file, vdap->vda_name);
933 		vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
934 		if (vcnt)
935 			dep = string(vcache, cnt, scache, file, vdap->vda_name);
936 		else
937 			dep = MSG_ORIG(MSG_STR_EMPTY);
938 
939 		(void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
940 		    EC_XWORD(ndx));
941 		Elf_ver_line_1(0, index, name, dep,
942 		    conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
943 
944 		/*
945 		 * Print any additional dependencies.
946 		 */
947 		if (vcnt) {
948 			vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
949 			for (vcnt--; vcnt; vcnt--,
950 			    vdap = (Verdaux *)((uintptr_t)vdap +
951 			    vdap->vda_next)) {
952 				dep = string(vcache, cnt, scache, file,
953 				    vdap->vda_name);
954 				Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
955 			}
956 		}
957 	}
958 }
959 
960 /*
961  * Print version needed section entries.
962  *
963  * entry:
964  *	vnd - Address of verneed data
965  *	vnd_num - # of Verneed entries
966  *	vcache - Cache of verneed section being processed
967  *	scache - Cache of associated string table section
968  *	file - Name of object being processed.
969  *	versym - Information about versym section
970  *
971  * exit:
972  *	The versions have been printed. If GNU style versioning
973  *	is in effect, versym->max_verndx has been updated to
974  *	contain the largest version index seen.
975  *
976  * note:
977  * 	The versym section of an object that follows the original
978  *	Solaris versioning rules only contains indexes into the verdef
979  *	section. Symbols defined in other objects (UNDEF) are given
980  *	a version of 0, indicating that they are not defined by
981  *	this file, and the Verneed entries do not have associated version
982  *	indexes. For these reasons, we do not display a version index
983  *	for original-style Verneed sections.
984  *
985  *	The GNU versioning extensions alter this: Symbols defined in other
986  *	objects receive a version index in the range above those defined
987  *	by the Verdef section, and the vna_other field of the Vernaux
988  *	structs inside the Verneed section contain the version index for
989  *	that item. We therefore  display the index when showing the
990  *	contents of a GNU style Verneed section. You should not
991  *	necessarily expect these indexes to appear in sorted
992  *	order --- it seems that the GNU ld assigns the versions as
993  *	symbols are encountered during linking, and then the results
994  *	are assembled into the Verneed section afterwards.
995  */
996 static void
997 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
998     const char *file, VERSYM_STATE *versym)
999 {
1000 	Word		cnt;
1001 	char		index[MAXNDXSIZE];
1002 	const char	*index_str;
1003 
1004 	Elf_ver_need_title(0, versym->gnu_needed);
1005 
1006 	for (cnt = 1; cnt <= vnd_num; cnt++,
1007 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1008 		Conv_ver_flags_buf_t	ver_flags_buf;
1009 		const char		*name, *dep;
1010 		Half			vcnt = vnd->vn_cnt;
1011 		Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1012 
1013 		/*
1014 		 * Obtain the name of the needed file and the version name
1015 		 * within it that we're dependent on.  Note that the count
1016 		 * should be at least one, otherwise this is a pretty bogus
1017 		 * entry.
1018 		 */
1019 		name = string(vcache, cnt, scache, file, vnd->vn_file);
1020 		if (vcnt)
1021 			dep = string(vcache, cnt, scache, file, vnap->vna_name);
1022 		else
1023 			dep = MSG_INTL(MSG_STR_NULL);
1024 
1025 		if (vnap->vna_other == 0) {	/* Traditional form */
1026 			index_str = MSG_ORIG(MSG_STR_EMPTY);
1027 		} else {			/* GNU form */
1028 			index_str = index;
1029 			/* Format the version index value */
1030 			(void) snprintf(index, MAXNDXSIZE,
1031 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
1032 			if (vnap->vna_other > versym->max_verndx)
1033 				versym->max_verndx = vnap->vna_other;
1034 		}
1035 		Elf_ver_line_1(0, index_str, name, dep,
1036 		    conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
1037 
1038 		/*
1039 		 * Print any additional version dependencies.
1040 		 */
1041 		if (vcnt) {
1042 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1043 			for (vcnt--; vcnt; vcnt--,
1044 			    vnap = (Vernaux *)((uintptr_t)vnap +
1045 			    vnap->vna_next)) {
1046 				dep = string(vcache, cnt, scache, file,
1047 				    vnap->vna_name);
1048 				if (vnap->vna_other > 0) {
1049 					/* Format the next index value */
1050 					(void) snprintf(index, MAXNDXSIZE,
1051 					    MSG_ORIG(MSG_FMT_INDEX),
1052 					    EC_XWORD(vnap->vna_other));
1053 					Elf_ver_line_1(0, index,
1054 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1055 					    conv_ver_flags(vnap->vna_flags,
1056 					    0, &ver_flags_buf));
1057 					if (vnap->vna_other >
1058 					    versym->max_verndx)
1059 						versym->max_verndx =
1060 						    vnap->vna_other;
1061 				} else {
1062 					Elf_ver_line_3(0,
1063 					    MSG_ORIG(MSG_STR_EMPTY), dep,
1064 					    conv_ver_flags(vnap->vna_flags,
1065 					    0, &ver_flags_buf));
1066 				}
1067 			}
1068 		}
1069 	}
1070 }
1071 
1072 /*
1073  * Examine the Verneed section for information related to GNU
1074  * style Versym indexing:
1075  *	- A non-zero vna_other field indicates that Versym indexes can
1076  *		reference Verneed records.
1077  *	- If the object uses GNU style Versym indexing, the
1078  *	  maximum index value is needed to detect bad Versym entries.
1079  *
1080  * entry:
1081  *	vnd - Address of verneed data
1082  *	vnd_num - # of Verneed entries
1083  *	versym - Information about versym section
1084  *
1085  * exit:
1086  *	If a non-zero vna_other field is seen, versym->gnu_needed is set.
1087  *
1088  *	versym->max_verndx has been updated to contain the largest
1089  *	version index seen.
1090  */
1091 static void
1092 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
1093 {
1094 	Word		cnt;
1095 
1096 	for (cnt = 1; cnt <= vnd_num; cnt++,
1097 	    vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
1098 		Half	vcnt = vnd->vn_cnt;
1099 		Vernaux	*vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
1100 
1101 		/*
1102 		 * A non-zero value of vna_other indicates that this
1103 		 * object references VERNEED items from the VERSYM
1104 		 * array.
1105 		 */
1106 		if (vnap->vna_other != 0) {
1107 			versym->gnu_needed = 1;
1108 			if (vnap->vna_other > versym->max_verndx)
1109 				versym->max_verndx = vnap->vna_other;
1110 		}
1111 
1112 		/*
1113 		 * Check any additional version dependencies.
1114 		 */
1115 		if (vcnt) {
1116 			vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
1117 			for (vcnt--; vcnt; vcnt--,
1118 			    vnap = (Vernaux *)((uintptr_t)vnap +
1119 			    vnap->vna_next)) {
1120 				if (vnap->vna_other == 0)
1121 					continue;
1122 
1123 				versym->gnu_needed = 1;
1124 				if (vnap->vna_other > versym->max_verndx)
1125 					versym->max_verndx = vnap->vna_other;
1126 			}
1127 		}
1128 	}
1129 }
1130 
1131 /*
1132  * Display version section information if the flags require it.
1133  * Return version information needed by other output.
1134  *
1135  * entry:
1136  *	cache - Cache of all section headers
1137  *	shnum - # of sections in cache
1138  *	file - Name of file
1139  *	flags - Command line option flags
1140  *	versym - VERSYM_STATE block to be filled in.
1141  */
1142 static void
1143 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
1144     VERSYM_STATE *versym)
1145 {
1146 	GElf_Word	cnt;
1147 	Cache		*verdef_cache = NULL, *verneed_cache = NULL;
1148 
1149 
1150 	/* Gather information about the version sections */
1151 	bzero(versym, sizeof (*versym));
1152 	versym->max_verndx = 1;
1153 	for (cnt = 1; cnt < shnum; cnt++) {
1154 		Cache		*_cache = &cache[cnt];
1155 		Shdr		*shdr = _cache->c_shdr;
1156 		Dyn		*dyn;
1157 		ulong_t		numdyn;
1158 
1159 		switch (shdr->sh_type) {
1160 		case SHT_DYNAMIC:
1161 			/*
1162 			 * The GNU ld puts a DT_VERSYM entry in the dynamic
1163 			 * section so that the runtime linker can use it to
1164 			 * implement their versioning rules. They allow multiple
1165 			 * incompatible functions with the same name to exist
1166 			 * in different versions. The Solaris ld does not
1167 			 * support this mechanism, and as such, does not
1168 			 * produce DT_VERSYM. We use this fact to determine
1169 			 * which ld produced this object, and how to interpret
1170 			 * the version values.
1171 			 */
1172 			if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
1173 			    (_cache->c_data == NULL))
1174 				continue;
1175 			numdyn = shdr->sh_size / shdr->sh_entsize;
1176 			dyn = (Dyn *)_cache->c_data->d_buf;
1177 			for (; numdyn-- > 0; dyn++)
1178 				if (dyn->d_tag == DT_VERSYM) {
1179 					versym->gnu_full =
1180 					    versym->gnu_needed = 1;
1181 					break;
1182 				}
1183 			break;
1184 
1185 		case SHT_SUNW_versym:
1186 			/* Record data address for later symbol processing */
1187 			if (_cache->c_data != NULL) {
1188 				versym->cache = _cache;
1189 				versym->data = _cache->c_data->d_buf;
1190 				continue;
1191 			}
1192 			break;
1193 
1194 		case SHT_SUNW_verdef:
1195 		case SHT_SUNW_verneed:
1196 			/*
1197 			 * Ensure the data is non-NULL and the number
1198 			 * of items is non-zero. Otherwise, we don't
1199 			 * understand the section, and will not use it.
1200 			 */
1201 			if ((_cache->c_data == NULL) ||
1202 			    (_cache->c_data->d_buf == NULL)) {
1203 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1204 				    file, _cache->c_name);
1205 				continue;
1206 			}
1207 			if (shdr->sh_info == 0) {
1208 				(void) fprintf(stderr,
1209 				    MSG_INTL(MSG_ERR_BADSHINFO),
1210 				    file, _cache->c_name,
1211 				    EC_WORD(shdr->sh_info));
1212 				continue;
1213 			}
1214 
1215 			/* Make sure the string table index is in range */
1216 			if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1217 				(void) fprintf(stderr,
1218 				    MSG_INTL(MSG_ERR_BADSHLINK), file,
1219 				    _cache->c_name, EC_WORD(shdr->sh_link));
1220 				continue;
1221 			}
1222 
1223 			/*
1224 			 * The section is usable. Save the cache entry.
1225 			 */
1226 			if (shdr->sh_type == SHT_SUNW_verdef) {
1227 				verdef_cache = _cache;
1228 				/*
1229 				 * Under Solaris rules, if there is a verdef
1230 				 * section, the max versym index is number
1231 				 * of version definitions it supplies.
1232 				 */
1233 				versym->max_verndx = shdr->sh_info;
1234 			} else {
1235 				verneed_cache = _cache;
1236 			}
1237 			break;
1238 		}
1239 	}
1240 
1241 	/*
1242 	 * If there is a Verneed section, examine it for information
1243 	 * related to GNU style versioning.
1244 	 */
1245 	if (verneed_cache != NULL)
1246 		update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
1247 		    verneed_cache->c_shdr->sh_info, versym);
1248 
1249 	/*
1250 	 * Now that all the information is available, display the
1251 	 * Verdef and Verneed section contents, if requested.
1252 	 */
1253 	if ((flags & FLG_SHOW_VERSIONS) == 0)
1254 		return;
1255 	if (verdef_cache != NULL) {
1256 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1257 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
1258 		    verdef_cache->c_name);
1259 		version_def((Verdef *)verdef_cache->c_data->d_buf,
1260 		    verdef_cache->c_shdr->sh_info, verdef_cache,
1261 		    &cache[verdef_cache->c_shdr->sh_link], file);
1262 	}
1263 	if (verneed_cache != NULL) {
1264 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1265 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
1266 		    verneed_cache->c_name);
1267 		/*
1268 		 * If GNU versioning applies to this object, version_need()
1269 		 * will update versym->max_verndx, and it is not
1270 		 * necessary to call update_gnu_verndx().
1271 		 */
1272 		version_need((Verneed *)verneed_cache->c_data->d_buf,
1273 		    verneed_cache->c_shdr->sh_info, verneed_cache,
1274 		    &cache[verneed_cache->c_shdr->sh_link], file, versym);
1275 	}
1276 }
1277 
1278 /*
1279  * Initialize a symbol table state structure
1280  *
1281  * entry:
1282  *	state - State structure to be initialized
1283  *	cache - Cache of all section headers
1284  *	shnum - # of sections in cache
1285  *	secndx - Index of symbol table section
1286  *	ehdr - ELF header for file
1287  *	versym - Information about versym section
1288  *	file - Name of file
1289  *	flags - Command line option flags
1290  */
1291 static int
1292 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
1293     Ehdr *ehdr, VERSYM_STATE *versym, const char *file, uint_t flags)
1294 {
1295 	Shdr *shdr;
1296 
1297 	state->file = file;
1298 	state->ehdr = ehdr;
1299 	state->cache = cache;
1300 	state->shnum = shnum;
1301 	state->seccache = &cache[secndx];
1302 	state->secndx = secndx;
1303 	state->secname = state->seccache->c_name;
1304 	state->flags = flags;
1305 	state->shxndx.checked = 0;
1306 	state->shxndx.data = NULL;
1307 	state->shxndx.n = 0;
1308 
1309 	shdr = state->seccache->c_shdr;
1310 
1311 	/*
1312 	 * Check the symbol data and per-item size.
1313 	 */
1314 	if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1315 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1316 		    file, state->secname);
1317 		return (0);
1318 	}
1319 	if (state->seccache->c_data == NULL)
1320 		return (0);
1321 
1322 	/* LINTED */
1323 	state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1324 	state->sym = (Sym *)state->seccache->c_data->d_buf;
1325 
1326 	/*
1327 	 * Check associated string table section.
1328 	 */
1329 	if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1330 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1331 		    file, state->secname, EC_WORD(shdr->sh_link));
1332 		return (0);
1333 	}
1334 
1335 	/*
1336 	 * Determine if there is a associated Versym section
1337 	 * with this Symbol Table.
1338 	 */
1339 	if (versym->cache &&
1340 	    (versym->cache->c_shdr->sh_link == state->secndx))
1341 		state->versym = versym;
1342 	else
1343 		state->versym = NULL;
1344 
1345 
1346 	return (1);
1347 }
1348 
1349 /*
1350  * Determine the extended section index used for symbol tables entries.
1351  */
1352 static void
1353 symbols_getxindex(SYMTBL_STATE *state)
1354 {
1355 	uint_t	symn;
1356 	Word	symcnt;
1357 
1358 	state->shxndx.checked = 1;   /* Note that we've been called */
1359 	for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1360 		Cache	*_cache = &state->cache[symcnt];
1361 		Shdr	*shdr = _cache->c_shdr;
1362 
1363 		if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1364 		    (shdr->sh_link != state->secndx))
1365 			continue;
1366 
1367 		if ((shdr->sh_entsize) &&
1368 		    /* LINTED */
1369 		    ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1370 			continue;
1371 
1372 		if (_cache->c_data == NULL)
1373 			continue;
1374 
1375 		state->shxndx.data = _cache->c_data->d_buf;
1376 		state->shxndx.n = symn;
1377 		return;
1378 	}
1379 }
1380 
1381 /*
1382  * Produce a line of output for the given symbol
1383  *
1384  * entry:
1385  *	state - Symbol table state
1386  *	symndx - Index of symbol within the table
1387  *	info - Value of st_info (indicates local/global range)
1388  *	symndx_disp - Index to display. This may not be the same
1389  *		as symndx if the display is relative to the logical
1390  *		combination of the SUNW_ldynsym/dynsym tables.
1391  *	sym - Symbol to display
1392  */
1393 static void
1394 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1395     Sym *sym)
1396 {
1397 	/*
1398 	 * Symbol types for which we check that the specified
1399 	 * address/size land inside the target section.
1400 	 */
1401 	static const int addr_symtype[] = {
1402 		0,			/* STT_NOTYPE */
1403 		1,			/* STT_OBJECT */
1404 		1,			/* STT_FUNC */
1405 		0,			/* STT_SECTION */
1406 		0,			/* STT_FILE */
1407 		1,			/* STT_COMMON */
1408 		0,			/* STT_TLS */
1409 		0,			/* STT_IFUNC */
1410 		0,			/* 8 */
1411 		0,			/* 9 */
1412 		0,			/* 10 */
1413 		0,			/* 11 */
1414 		0,			/* 12 */
1415 		0,			/* STT_SPARC_REGISTER */
1416 		0,			/* 14 */
1417 		0,			/* 15 */
1418 	};
1419 #if STT_NUM != (STT_IFUNC + 1)
1420 #error "STT_NUM has grown. Update addr_symtype[]"
1421 #endif
1422 
1423 	char		index[MAXNDXSIZE];
1424 	const char	*symname, *sec;
1425 	Versym		verndx;
1426 	int		gnuver;
1427 	uchar_t		type;
1428 	Shdr		*tshdr;
1429 	Word		shndx;
1430 	Conv_inv_buf_t	inv_buf;
1431 
1432 	/* Ensure symbol index is in range */
1433 	if (symndx >= state->symn) {
1434 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORTNDX),
1435 		    state->file, state->secname, EC_WORD(symndx));
1436 		return;
1437 	}
1438 
1439 	/*
1440 	 * If we are using extended symbol indexes, find the
1441 	 * corresponding SHN_SYMTAB_SHNDX table.
1442 	 */
1443 	if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1444 		symbols_getxindex(state);
1445 
1446 	/* LINTED */
1447 	symname = string(state->seccache, symndx,
1448 	    &state->cache[state->seccache->c_shdr->sh_link], state->file,
1449 	    sym->st_name);
1450 
1451 	tshdr = NULL;
1452 	sec = NULL;
1453 
1454 	if (state->ehdr->e_type == ET_CORE) {
1455 		sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1456 	} else if (state->flags & FLG_CTL_FAKESHDR) {
1457 		/*
1458 		 * If we are using fake section headers derived from
1459 		 * the program headers, then the section indexes
1460 		 * in the symbols do not correspond to these headers.
1461 		 * The section names are not available, so all we can
1462 		 * do is to display them in numeric form.
1463 		 */
1464 		sec = conv_sym_shndx(sym->st_shndx, &inv_buf);
1465 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1466 	    (sym->st_shndx < state->shnum)) {
1467 		shndx = sym->st_shndx;
1468 		tshdr = state->cache[shndx].c_shdr;
1469 		sec = state->cache[shndx].c_name;
1470 	} else if (sym->st_shndx == SHN_XINDEX) {
1471 		if (state->shxndx.data) {
1472 			Word	_shxndx;
1473 
1474 			if (symndx > state->shxndx.n) {
1475 				(void) fprintf(stderr,
1476 				    MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1477 				    state->file, state->secname,
1478 				    EC_WORD(symndx));
1479 			} else if ((_shxndx =
1480 			    state->shxndx.data[symndx]) > state->shnum) {
1481 				(void) fprintf(stderr,
1482 				    MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1483 				    state->file, state->secname,
1484 				    EC_WORD(symndx), EC_WORD(_shxndx));
1485 			} else {
1486 				shndx = _shxndx;
1487 				tshdr = state->cache[shndx].c_shdr;
1488 				sec = state->cache[shndx].c_name;
1489 			}
1490 		} else {
1491 			(void) fprintf(stderr,
1492 			    MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1493 			    state->file, state->secname, EC_WORD(symndx));
1494 		}
1495 	} else if ((sym->st_shndx < SHN_LORESERVE) &&
1496 	    (sym->st_shndx >= state->shnum)) {
1497 		(void) fprintf(stderr,
1498 		    MSG_INTL(MSG_ERR_BADSYM5), state->file,
1499 		    state->secname, EC_WORD(symndx),
1500 		    demangle(symname, state->flags), sym->st_shndx);
1501 	}
1502 
1503 	/*
1504 	 * If versioning is available display the
1505 	 * version index. If not, then use 0.
1506 	 */
1507 	if (state->versym) {
1508 		Versym test_verndx;
1509 
1510 		verndx = test_verndx = state->versym->data[symndx];
1511 		gnuver = state->versym->gnu_full;
1512 
1513 		/*
1514 		 * Check to see if this is a defined symbol with a
1515 		 * version index that is outside the valid range for
1516 		 * the file. The interpretation of this depends on
1517 		 * the style of versioning used by the object.
1518 		 *
1519 		 * Versions >= VER_NDX_LORESERVE have special meanings,
1520 		 * and are exempt from this checking.
1521 		 *
1522 		 * GNU style version indexes use the top bit of the
1523 		 * 16-bit index value (0x8000) as the "hidden bit".
1524 		 * We must mask off this bit in order to compare
1525 		 * the version against the maximum value.
1526 		 */
1527 		if (gnuver)
1528 			test_verndx &= ~0x8000;
1529 
1530 		if ((test_verndx > state->versym->max_verndx) &&
1531 		    (verndx < VER_NDX_LORESERVE))
1532 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1533 			    state->file, state->secname, EC_WORD(symndx),
1534 			    EC_HALF(test_verndx), state->versym->max_verndx);
1535 	} else {
1536 		verndx = 0;
1537 		gnuver = 0;
1538 	}
1539 
1540 	/*
1541 	 * Error checking for TLS.
1542 	 */
1543 	type = ELF_ST_TYPE(sym->st_info);
1544 	if (type == STT_TLS) {
1545 		if (tshdr &&
1546 		    (sym->st_shndx != SHN_UNDEF) &&
1547 		    ((tshdr->sh_flags & SHF_TLS) == 0)) {
1548 			(void) fprintf(stderr,
1549 			    MSG_INTL(MSG_ERR_BADSYM3), state->file,
1550 			    state->secname, EC_WORD(symndx),
1551 			    demangle(symname, state->flags));
1552 		}
1553 	} else if ((type != STT_SECTION) && sym->st_size &&
1554 	    tshdr && (tshdr->sh_flags & SHF_TLS)) {
1555 		(void) fprintf(stderr,
1556 		    MSG_INTL(MSG_ERR_BADSYM4), state->file,
1557 		    state->secname, EC_WORD(symndx),
1558 		    demangle(symname, state->flags));
1559 	}
1560 
1561 	/*
1562 	 * If a symbol with non-zero size has a type that
1563 	 * specifies an address, then make sure the location
1564 	 * it references is actually contained within the
1565 	 * section.  UNDEF symbols don't count in this case,
1566 	 * so we ignore them.
1567 	 *
1568 	 * The meaning of the st_value field in a symbol
1569 	 * depends on the type of object. For a relocatable
1570 	 * object, it is the offset within the section.
1571 	 * For sharable objects, it is the offset relative to
1572 	 * the base of the object, and for other types, it is
1573 	 * the virtual address. To get an offset within the
1574 	 * section for non-ET_REL files, we subtract the
1575 	 * base address of the section.
1576 	 */
1577 	if (addr_symtype[type] && (sym->st_size > 0) &&
1578 	    (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1579 	    (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1580 		Word v = sym->st_value;
1581 			if (state->ehdr->e_type != ET_REL)
1582 				v -= tshdr->sh_addr;
1583 		if (((v + sym->st_size) > tshdr->sh_size)) {
1584 			(void) fprintf(stderr,
1585 			    MSG_INTL(MSG_ERR_BADSYM6), state->file,
1586 			    state->secname, EC_WORD(symndx),
1587 			    demangle(symname, state->flags),
1588 			    EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1589 			    EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * A typical symbol table uses the sh_info field to indicate one greater
1595 	 * than the symbol table index of the last local symbol, STB_LOCAL.
1596 	 * Therefore, symbol indexes less than sh_info should have local
1597 	 * binding.  Symbol indexes greater than, or equal to sh_info, should
1598 	 * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1599 	 * value and size, as these symbols may be the result of an mcs(1)
1600 	 * section deletion.
1601 	 */
1602 	if (info) {
1603 		uchar_t	bind = ELF_ST_BIND(sym->st_info);
1604 
1605 		if ((symndx < info) && (bind != STB_LOCAL)) {
1606 			(void) fprintf(stderr,
1607 			    MSG_INTL(MSG_ERR_BADSYM7), state->file,
1608 			    state->secname, EC_WORD(symndx),
1609 			    demangle(symname, state->flags), EC_XWORD(info));
1610 
1611 		} else if ((symndx >= info) && (bind == STB_LOCAL) &&
1612 		    ((sym->st_shndx != SHN_UNDEF) ||
1613 		    (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1614 		    (sym->st_size != 0) || (sym->st_value != 0))) {
1615 			(void) fprintf(stderr,
1616 			    MSG_INTL(MSG_ERR_BADSYM8), state->file,
1617 			    state->secname, EC_WORD(symndx),
1618 			    demangle(symname, state->flags), EC_XWORD(info));
1619 		}
1620 	}
1621 
1622 	(void) snprintf(index, MAXNDXSIZE,
1623 	    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1624 	Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index,
1625 	    state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1626 }
1627 
1628 /*
1629  * Search for and process any symbol tables.
1630  */
1631 void
1632 symbols(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1633     const char *file, uint_t flags)
1634 {
1635 	SYMTBL_STATE state;
1636 	Cache *_cache;
1637 	Word secndx;
1638 
1639 	for (secndx = 1; secndx < shnum; secndx++) {
1640 		Word		symcnt;
1641 		Shdr		*shdr;
1642 
1643 		_cache = &cache[secndx];
1644 		shdr = _cache->c_shdr;
1645 
1646 		if ((shdr->sh_type != SHT_SYMTAB) &&
1647 		    (shdr->sh_type != SHT_DYNSYM) &&
1648 		    (shdr->sh_type != SHT_SUNW_LDYNSYM))
1649 			continue;
1650 		if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
1651 			continue;
1652 
1653 		if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
1654 		    versym, file, flags))
1655 			continue;
1656 		/*
1657 		 * Loop through the symbol tables entries.
1658 		 */
1659 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1660 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
1661 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1662 
1663 		for (symcnt = 0; symcnt < state.symn; symcnt++)
1664 			output_symbol(&state, symcnt, shdr->sh_info, symcnt,
1665 			    state.sym + symcnt);
1666 	}
1667 }
1668 
1669 /*
1670  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
1671  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
1672  */
1673 static void
1674 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, VERSYM_STATE *versym,
1675     const char *file, uint_t flags)
1676 {
1677 	SYMTBL_STATE	ldynsym_state,	dynsym_state;
1678 	Cache		*sortcache,	*symcache;
1679 	Shdr		*sortshdr,	*symshdr;
1680 	Word		sortsecndx,	symsecndx;
1681 	Word		ldynsym_cnt;
1682 	Word		*ndx;
1683 	Word		ndxn;
1684 	int		output_cnt = 0;
1685 	Conv_inv_buf_t	inv_buf;
1686 
1687 	for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
1688 
1689 		sortcache = &cache[sortsecndx];
1690 		sortshdr = sortcache->c_shdr;
1691 
1692 		if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
1693 		    (sortshdr->sh_type != SHT_SUNW_tlssort))
1694 			continue;
1695 		if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
1696 		    sortshdr->sh_type))
1697 			continue;
1698 
1699 		/*
1700 		 * If the section references a SUNW_ldynsym, then we
1701 		 * expect to see the associated .dynsym immediately
1702 		 * following. If it references a .dynsym, there is no
1703 		 * SUNW_ldynsym. If it is any other type, then we don't
1704 		 * know what to do with it.
1705 		 */
1706 		if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
1707 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1708 			    file, sortcache->c_name,
1709 			    EC_WORD(sortshdr->sh_link));
1710 			continue;
1711 		}
1712 		symcache = &cache[sortshdr->sh_link];
1713 		symshdr = symcache->c_shdr;
1714 		symsecndx = sortshdr->sh_link;
1715 		ldynsym_cnt = 0;
1716 		switch (symshdr->sh_type) {
1717 		case SHT_SUNW_LDYNSYM:
1718 			if (!init_symtbl_state(&ldynsym_state, cache, shnum,
1719 			    symsecndx, ehdr, versym, file, flags))
1720 				continue;
1721 			ldynsym_cnt = ldynsym_state.symn;
1722 			/*
1723 			 * We know that the dynsym follows immediately
1724 			 * after the SUNW_ldynsym, and so, should be at
1725 			 * (sortshdr->sh_link + 1). However, elfdump is a
1726 			 * diagnostic tool, so we do the full paranoid
1727 			 * search instead.
1728 			 */
1729 			for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
1730 				symcache = &cache[symsecndx];
1731 				symshdr = symcache->c_shdr;
1732 				if (symshdr->sh_type == SHT_DYNSYM)
1733 					break;
1734 			}
1735 			if (symsecndx >= shnum) {	/* Dynsym not found! */
1736 				(void) fprintf(stderr,
1737 				    MSG_INTL(MSG_ERR_NODYNSYM),
1738 				    file, sortcache->c_name);
1739 				continue;
1740 			}
1741 			/* Fallthrough to process associated dynsym */
1742 			/* FALLTHROUGH */
1743 		case SHT_DYNSYM:
1744 			if (!init_symtbl_state(&dynsym_state, cache, shnum,
1745 			    symsecndx, ehdr, versym, file, flags))
1746 				continue;
1747 			break;
1748 		default:
1749 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
1750 			    file, sortcache->c_name, conv_sec_type(
1751 			    ehdr->e_machine, symshdr->sh_type, 0, &inv_buf));
1752 			continue;
1753 		}
1754 
1755 		/*
1756 		 * Output header
1757 		 */
1758 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1759 		if (ldynsym_cnt > 0) {
1760 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
1761 			    sortcache->c_name, ldynsym_state.secname,
1762 			    dynsym_state.secname);
1763 			/*
1764 			 * The data for .SUNW_ldynsym and dynsym sections
1765 			 * is supposed to be adjacent with SUNW_ldynsym coming
1766 			 * first. Check, and issue a warning if it isn't so.
1767 			 */
1768 			if (((ldynsym_state.sym + ldynsym_state.symn)
1769 			    != dynsym_state.sym) &&
1770 			    ((flags & FLG_CTL_FAKESHDR) == 0))
1771 				(void) fprintf(stderr,
1772 				    MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
1773 				    ldynsym_state.secname,
1774 				    dynsym_state.secname);
1775 		} else {
1776 			dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
1777 			    sortcache->c_name, dynsym_state.secname);
1778 		}
1779 		Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1780 
1781 		/* If not first one, insert a line of whitespace */
1782 		if (output_cnt++ > 0)
1783 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1784 
1785 		/*
1786 		 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
1787 		 * symbol indices. Iterate over the array entries,
1788 		 * dispaying the referenced symbols.
1789 		 */
1790 		ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
1791 		ndx = (Word *)sortcache->c_data->d_buf;
1792 		for (; ndxn-- > 0; ndx++) {
1793 			if (*ndx >= ldynsym_cnt) {
1794 				Word sec_ndx = *ndx - ldynsym_cnt;
1795 
1796 				output_symbol(&dynsym_state, sec_ndx, 0,
1797 				    *ndx, dynsym_state.sym + sec_ndx);
1798 			} else {
1799 				output_symbol(&ldynsym_state, *ndx, 0,
1800 				    *ndx, ldynsym_state.sym + *ndx);
1801 			}
1802 		}
1803 	}
1804 }
1805 
1806 /*
1807  * Search for and process any relocation sections.
1808  */
1809 static void
1810 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
1811 {
1812 	Word	cnt;
1813 
1814 	for (cnt = 1; cnt < shnum; cnt++) {
1815 		Word		type, symnum;
1816 		Xword		relndx, relnum, relsize;
1817 		void		*rels;
1818 		Sym		*syms;
1819 		Cache		*symsec, *strsec;
1820 		Cache		*_cache = &cache[cnt];
1821 		Shdr		*shdr = _cache->c_shdr;
1822 		char		*relname = _cache->c_name;
1823 		Conv_inv_buf_t	inv_buf;
1824 
1825 		if (((type = shdr->sh_type) != SHT_RELA) &&
1826 		    (type != SHT_REL))
1827 			continue;
1828 		if (!match(MATCH_F_ALL, relname, cnt, type))
1829 			continue;
1830 
1831 		/*
1832 		 * Decide entry size.
1833 		 */
1834 		if (((relsize = shdr->sh_entsize) == 0) ||
1835 		    (relsize > shdr->sh_size)) {
1836 			if (type == SHT_RELA)
1837 				relsize = sizeof (Rela);
1838 			else
1839 				relsize = sizeof (Rel);
1840 		}
1841 
1842 		/*
1843 		 * Determine the number of relocations available.
1844 		 */
1845 		if (shdr->sh_size == 0) {
1846 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1847 			    file, relname);
1848 			continue;
1849 		}
1850 		if (_cache->c_data == NULL)
1851 			continue;
1852 
1853 		rels = _cache->c_data->d_buf;
1854 		relnum = shdr->sh_size / relsize;
1855 
1856 		/*
1857 		 * Get the data buffer for the associated symbol table and
1858 		 * string table.
1859 		 */
1860 		if (stringtbl(cache, 1, cnt, shnum, file,
1861 		    &symnum, &symsec, &strsec) == 0)
1862 			continue;
1863 
1864 		syms = symsec->c_data->d_buf;
1865 
1866 		/*
1867 		 * Loop through the relocation entries.
1868 		 */
1869 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1870 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
1871 		Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
1872 
1873 		for (relndx = 0; relndx < relnum; relndx++,
1874 		    rels = (void *)((char *)rels + relsize)) {
1875 			Half		mach = ehdr->e_machine;
1876 			char		section[BUFSIZ];
1877 			const char	*symname;
1878 			Word		symndx, reltype;
1879 			Rela		*rela;
1880 			Rel		*rel;
1881 
1882 			/*
1883 			 * Unravel the relocation and determine the symbol with
1884 			 * which this relocation is associated.
1885 			 */
1886 			if (type == SHT_RELA) {
1887 				rela = (Rela *)rels;
1888 				symndx = ELF_R_SYM(rela->r_info);
1889 				reltype = ELF_R_TYPE(rela->r_info, mach);
1890 			} else {
1891 				rel = (Rel *)rels;
1892 				symndx = ELF_R_SYM(rel->r_info);
1893 				reltype = ELF_R_TYPE(rel->r_info, mach);
1894 			}
1895 
1896 			symname = relsymname(cache, _cache, strsec, symndx,
1897 			    symnum, relndx, syms, section, BUFSIZ, file);
1898 
1899 			/*
1900 			 * A zero symbol index is only valid for a few
1901 			 * relocations.
1902 			 */
1903 			if (symndx == 0) {
1904 				int	badrel = 0;
1905 
1906 				if ((mach == EM_SPARC) ||
1907 				    (mach == EM_SPARC32PLUS) ||
1908 				    (mach == EM_SPARCV9)) {
1909 					if ((reltype != R_SPARC_NONE) &&
1910 					    (reltype != R_SPARC_REGISTER) &&
1911 					    (reltype != R_SPARC_RELATIVE))
1912 						badrel++;
1913 				} else if (mach == EM_386) {
1914 					if ((reltype != R_386_NONE) &&
1915 					    (reltype != R_386_RELATIVE))
1916 						badrel++;
1917 				} else if (mach == EM_AMD64) {
1918 					if ((reltype != R_AMD64_NONE) &&
1919 					    (reltype != R_AMD64_RELATIVE))
1920 						badrel++;
1921 				}
1922 
1923 				if (badrel) {
1924 					(void) fprintf(stderr,
1925 					    MSG_INTL(MSG_ERR_BADREL1), file,
1926 					    conv_reloc_type(mach, reltype,
1927 					    0, &inv_buf));
1928 				}
1929 			}
1930 
1931 			Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
1932 			    MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
1933 			    rels, relname, symname, 0);
1934 		}
1935 	}
1936 }
1937 
1938 
1939 /*
1940  * This value controls which test dyn_test() performs.
1941  */
1942 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
1943 
1944 /*
1945  * Used by dynamic() to compare the value of a dynamic element against
1946  * the starting address of the section it references.
1947  *
1948  * entry:
1949  *	test_type - Specify which dyn item is being tested.
1950  *	sh_type - SHT_* type value for required section.
1951  *	sec_cache - Cache entry for section, or NULL if the object lacks
1952  *		a section of this type.
1953  *	dyn - Dyn entry to be tested
1954  *	dynsec_cnt - # of dynamic section being examined. The first
1955  *		dynamic section is 1, the next is 2, and so on...
1956  *	ehdr - ELF header for file
1957  *	file - Name of file
1958  */
1959 static void
1960 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
1961     Word dynsec_cnt, Ehdr *ehdr, const char *file)
1962 {
1963 	Conv_inv_buf_t	buf1, buf2;
1964 
1965 	/*
1966 	 * These tests are based around the implicit assumption that
1967 	 * there is only one dynamic section in an object, and also only
1968 	 * one of the sections it references. We have therefore gathered
1969 	 * all of the necessary information to test this in a single pass
1970 	 * over the section headers, which is very efficient. We are not
1971 	 * aware of any case where more than one dynamic section would
1972 	 * be meaningful in an ELF object, so this is a reasonable solution.
1973 	 *
1974 	 * To test multiple dynamic sections correctly would be more
1975 	 * expensive in code and time. We would have to build a data structure
1976 	 * containing all the dynamic elements. Then, we would use the address
1977 	 * to locate the section it references and ensure the section is of
1978 	 * the right type and that the address in the dynamic element is
1979 	 * to the start of the section. Then, we could check the size and
1980 	 * entsize values against those same sections. This is O(n^2), and
1981 	 * also complicated.
1982 	 *
1983 	 * In the highly unlikely case that there is more than one dynamic
1984 	 * section, we only test the first one, and simply allow the values
1985 	 * of the subsequent one to be displayed unchallenged.
1986 	 */
1987 	if (dynsec_cnt != 1)
1988 		return;
1989 
1990 	/*
1991 	 * A DT_ item that references a section address should always find
1992 	 * the section in the file.
1993 	 */
1994 	if (sec_cache == NULL) {
1995 		const char *name;
1996 
1997 		/*
1998 		 * Supply section names instead of section types for
1999 		 * things that reference progbits so that the error
2000 		 * message will make more sense.
2001 		 */
2002 		switch (dyn->d_tag) {
2003 		case DT_INIT:
2004 			name = MSG_ORIG(MSG_ELF_INIT);
2005 			break;
2006 		case DT_FINI:
2007 			name = MSG_ORIG(MSG_ELF_FINI);
2008 			break;
2009 		default:
2010 			name = conv_sec_type(ehdr->e_machine, sh_type,
2011 			    0, &buf1);
2012 			break;
2013 		}
2014 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2015 		    name, conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf2));
2016 		return;
2017 	}
2018 
2019 
2020 	switch (test_type) {
2021 	case DYN_TEST_ADDR:
2022 		/* The section address should match the DT_ item value */
2023 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2024 			(void) fprintf(stderr,
2025 			    MSG_INTL(MSG_ERR_DYNBADADDR), file,
2026 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2027 			    EC_ADDR(dyn->d_un.d_val), sec_cache->c_ndx,
2028 			    sec_cache->c_name,
2029 			    EC_ADDR(sec_cache->c_shdr->sh_addr));
2030 		break;
2031 
2032 	case DYN_TEST_SIZE:
2033 		/* The section size should match the DT_ item value */
2034 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2035 			(void) fprintf(stderr,
2036 			    MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2037 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2038 			    EC_XWORD(dyn->d_un.d_val),
2039 			    sec_cache->c_ndx, sec_cache->c_name,
2040 			    EC_XWORD(sec_cache->c_shdr->sh_size));
2041 		break;
2042 
2043 	case DYN_TEST_ENTSIZE:
2044 		/* The sh_entsize value should match the DT_ item value */
2045 		if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2046 			(void) fprintf(stderr,
2047 			    MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2048 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf1),
2049 			    EC_XWORD(dyn->d_un.d_val),
2050 			    sec_cache->c_ndx, sec_cache->c_name,
2051 			    EC_XWORD(sec_cache->c_shdr->sh_entsize));
2052 		break;
2053 	}
2054 }
2055 
2056 
2057 /*
2058  * There are some DT_ entries that have corresponding symbols
2059  * (e.g. DT_INIT and _init). It is expected that these items will
2060  * both have the same value if both are present. This routine
2061  * examines the well known symbol tables for such symbols and
2062  * issues warnings for any that don't match.
2063  *
2064  * entry:
2065  *	dyn - Dyn entry to be tested
2066  *	symname - Name of symbol that corresponds to dyn
2067  *	symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2068  *	cache - Cache of all section headers
2069  *	shnum - # of sections in cache
2070  *	ehdr - ELF header for file
2071  *	file - Name of file
2072  */
2073 static void
2074 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2075     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *cache,
2076     Word shnum, Ehdr *ehdr, const char *file)
2077 {
2078 	Conv_inv_buf_t	buf;
2079 	int		i;
2080 	Sym		*sym;
2081 	Cache		*_cache;
2082 
2083 	for (i = 0; i < 3; i++) {
2084 		switch (i) {
2085 		case 0:
2086 			_cache = symtab_cache;
2087 			break;
2088 		case 1:
2089 			_cache = dynsym_cache;
2090 			break;
2091 		case 2:
2092 			_cache = ldynsym_cache;
2093 			break;
2094 		}
2095 
2096 		if ((_cache != NULL) &&
2097 		    symlookup(symname, cache, shnum, &sym, _cache, file) &&
2098 		    (sym->st_value != dyn->d_un.d_val))
2099 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2100 			    file, _cache->c_name,
2101 			    conv_dyn_tag(dyn->d_tag, ehdr->e_machine, 0, &buf),
2102 			    symname, EC_ADDR(sym->st_value));
2103 	}
2104 }
2105 
2106 
2107 /*
2108  * Search for and process a .dynamic section.
2109  */
2110 static void
2111 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2112 {
2113 	struct {
2114 		Cache	*symtab;
2115 		Cache	*dynstr;
2116 		Cache	*dynsym;
2117 		Cache	*hash;
2118 		Cache	*fini;
2119 		Cache	*fini_array;
2120 		Cache	*init;
2121 		Cache	*init_array;
2122 		Cache	*preinit_array;
2123 		Cache	*rel;
2124 		Cache	*rela;
2125 		Cache	*sunw_cap;
2126 		Cache	*sunw_ldynsym;
2127 		Cache	*sunw_move;
2128 		Cache	*sunw_syminfo;
2129 		Cache	*sunw_symsort;
2130 		Cache	*sunw_tlssort;
2131 		Cache	*sunw_verdef;
2132 		Cache	*sunw_verneed;
2133 		Cache	*sunw_versym;
2134 	} sec;
2135 	Word	dynsec_ndx;
2136 	Word	dynsec_num;
2137 	int	dynsec_cnt;
2138 	Word	cnt;
2139 
2140 	/*
2141 	 * Make a pass over all the sections, gathering section information
2142 	 * we'll need below.
2143 	 */
2144 	dynsec_num = 0;
2145 	bzero(&sec, sizeof (sec));
2146 	for (cnt = 1; cnt < shnum; cnt++) {
2147 		Cache	*_cache = &cache[cnt];
2148 
2149 		switch (_cache->c_shdr->sh_type) {
2150 		case SHT_DYNAMIC:
2151 			if (dynsec_num == 0) {
2152 				dynsec_ndx = cnt;
2153 
2154 				/* Does it have a valid string table? */
2155 				(void) stringtbl(cache, 0, cnt, shnum, file,
2156 				    0, 0, &sec.dynstr);
2157 			}
2158 			dynsec_num++;
2159 			break;
2160 
2161 
2162 		case SHT_PROGBITS:
2163 			/*
2164 			 * We want to detect the .init and .fini sections,
2165 			 * if present. These are SHT_PROGBITS, so all we
2166 			 * have to go on is the section name. Normally comparing
2167 			 * names is a bad idea, but there are some special
2168 			 * names (i.e. .init/.fini/.interp) that are very
2169 			 * difficult to use in any other context, and for
2170 			 * these symbols, we do the heuristic match.
2171 			 */
2172 			if (strcmp(_cache->c_name,
2173 			    MSG_ORIG(MSG_ELF_INIT)) == 0) {
2174 				if (sec.init == NULL)
2175 					sec.init = _cache;
2176 			} else if (strcmp(_cache->c_name,
2177 			    MSG_ORIG(MSG_ELF_FINI)) == 0) {
2178 				if (sec.fini == NULL)
2179 					sec.fini = _cache;
2180 			}
2181 			break;
2182 
2183 		case SHT_REL:
2184 			/*
2185 			 * We want the SHT_REL section with the lowest
2186 			 * offset. The linker gathers them together,
2187 			 * and puts the address of the first one
2188 			 * into the DT_REL dynamic element.
2189 			 */
2190 			if ((sec.rel == NULL) ||
2191 			    (_cache->c_shdr->sh_offset <
2192 			    sec.rel->c_shdr->sh_offset))
2193 				sec.rel = _cache;
2194 			break;
2195 
2196 		case SHT_RELA:
2197 			/* RELA is handled just like RELA above */
2198 			if ((sec.rela == NULL) ||
2199 			    (_cache->c_shdr->sh_offset <
2200 			    sec.rela->c_shdr->sh_offset))
2201 				sec.rela = _cache;
2202 			break;
2203 
2204 		/*
2205 		 * The GRAB macro is used for the simple case in which
2206 		 * we simply grab the first section of the desired type.
2207 		 */
2208 #define	GRAB(_sec_type, _sec_field) \
2209 		case _sec_type: \
2210 			if (sec._sec_field == NULL) \
2211 				sec._sec_field = _cache; \
2212 				break
2213 		GRAB(SHT_SYMTAB,	symtab);
2214 		GRAB(SHT_DYNSYM,	dynsym);
2215 		GRAB(SHT_FINI_ARRAY,	fini_array);
2216 		GRAB(SHT_HASH,		hash);
2217 		GRAB(SHT_INIT_ARRAY,	init_array);
2218 		GRAB(SHT_SUNW_move,	sunw_move);
2219 		GRAB(SHT_PREINIT_ARRAY,	preinit_array);
2220 		GRAB(SHT_SUNW_cap,	sunw_cap);
2221 		GRAB(SHT_SUNW_LDYNSYM,	sunw_ldynsym);
2222 		GRAB(SHT_SUNW_syminfo,	sunw_syminfo);
2223 		GRAB(SHT_SUNW_symsort,	sunw_symsort);
2224 		GRAB(SHT_SUNW_tlssort,	sunw_tlssort);
2225 		GRAB(SHT_SUNW_verdef,	sunw_verdef);
2226 		GRAB(SHT_SUNW_verneed,	sunw_verneed);
2227 		GRAB(SHT_SUNW_versym,	sunw_versym);
2228 #undef GRAB
2229 		}
2230 	}
2231 
2232 	/*
2233 	 * If no dynamic section, return immediately. If more than one
2234 	 * dynamic section, then something odd is going on and an error
2235 	 * is in order, but then continue on and display them all.
2236 	 */
2237 	if (dynsec_num == 0)
2238 		return;
2239 	if (dynsec_num > 1)
2240 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2241 		    file, EC_WORD(dynsec_num));
2242 
2243 
2244 	dynsec_cnt = 0;
2245 	for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2246 	    cnt++) {
2247 		Dyn	*dyn;
2248 		ulong_t	numdyn;
2249 		int	ndx, end_ndx;
2250 		Cache	*_cache = &cache[cnt], *strsec;
2251 		Shdr	*shdr = _cache->c_shdr;
2252 		int	dumped = 0;
2253 
2254 		if (shdr->sh_type != SHT_DYNAMIC)
2255 			continue;
2256 		dynsec_cnt++;
2257 
2258 		/*
2259 		 * Verify the associated string table section.
2260 		 */
2261 		if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2262 			continue;
2263 
2264 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2265 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2266 			    file, _cache->c_name);
2267 			continue;
2268 		}
2269 		if (_cache->c_data == NULL)
2270 			continue;
2271 
2272 		numdyn = shdr->sh_size / shdr->sh_entsize;
2273 		dyn = (Dyn *)_cache->c_data->d_buf;
2274 
2275 		/*
2276 		 * We expect the REL/RELA entries to reference the reloc
2277 		 * section with the lowest address. However, this is
2278 		 * not true for dumped objects. Detect if this object has
2279 		 * been dumped so that we can skip the reloc address test
2280 		 * in that case.
2281 		 */
2282 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2283 			if (dyn->d_tag == DT_FLAGS_1) {
2284 				dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
2285 				break;
2286 			}
2287 		}
2288 		dyn = (Dyn *)_cache->c_data->d_buf;
2289 
2290 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2291 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
2292 
2293 		Elf_dyn_title(0);
2294 
2295 		for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
2296 			union {
2297 				Conv_inv_buf_t		inv;
2298 				Conv_dyn_flag_buf_t	flag;
2299 				Conv_dyn_flag1_buf_t	flag1;
2300 				Conv_dyn_posflag1_buf_t	posflag1;
2301 				Conv_dyn_feature1_buf_t	feature1;
2302 			} c_buf;
2303 			const char	*name = NULL;
2304 
2305 			/*
2306 			 * Print the information numerically, and if possible
2307 			 * as a string. If a string is available, name is
2308 			 * set to reference it.
2309 			 *
2310 			 * Also, take this opportunity to sanity check
2311 			 * the values of DT elements. In the code above,
2312 			 * we gathered information on sections that are
2313 			 * referenced by the dynamic section. Here, we
2314 			 * compare the attributes of those sections to
2315 			 * the DT_ items that reference them and report
2316 			 * on inconsistencies.
2317 			 *
2318 			 * Things not currently tested that could be improved
2319 			 * in later revisions include:
2320 			 *	- We don't check PLT or GOT related items
2321 			 *	- We don't handle computing the lengths of
2322 			 *		relocation arrays. To handle this
2323 			 *		requires examining data that spans
2324 			 *		across sections, in a contiguous span
2325 			 *		within a single segment.
2326 			 *	- DT_VERDEFNUM and DT_VERNEEDNUM can't be
2327 			 *		verified without parsing the sections.
2328 			 *	- We don't handle DT_SUNW_SYMSZ, which would
2329 			 *		be the sum of the lengths of .dynsym and
2330 			 *		.SUNW_ldynsym
2331 			 *	- DT_SUNW_STRPAD can't be verified other than
2332 			 *		to check that it's not larger than
2333 			 *		the string table.
2334 			 *	- Some items come in "all or none" clusters
2335 			 *		that give an address, element size,
2336 			 *		and data length in bytes. We don't
2337 			 *		verify that there are no missing items
2338 			 *		in such groups.
2339 			 */
2340 			switch (dyn->d_tag) {
2341 			case DT_NULL:
2342 				/*
2343 				 * Special case: DT_NULLs can come in groups
2344 				 * that we prefer to reduce to a single line.
2345 				 */
2346 				end_ndx = ndx;
2347 				while ((end_ndx < (numdyn - 1)) &&
2348 				    ((dyn + 1)->d_tag == DT_NULL)) {
2349 					dyn++;
2350 					end_ndx++;
2351 				}
2352 				Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
2353 				ndx = end_ndx;
2354 				continue;
2355 
2356 			/*
2357 			 * String items all reference the dynstr. The string()
2358 			 * function does the necessary sanity checking.
2359 			 */
2360 			case DT_NEEDED:
2361 			case DT_SONAME:
2362 			case DT_FILTER:
2363 			case DT_AUXILIARY:
2364 			case DT_CONFIG:
2365 			case DT_RPATH:
2366 			case DT_RUNPATH:
2367 			case DT_USED:
2368 			case DT_DEPAUDIT:
2369 			case DT_AUDIT:
2370 			case DT_SUNW_AUXILIARY:
2371 			case DT_SUNW_FILTER:
2372 				name = string(_cache, ndx, strsec,
2373 				    file, dyn->d_un.d_ptr);
2374 				break;
2375 
2376 			case DT_FLAGS:
2377 				name = conv_dyn_flag(dyn->d_un.d_val,
2378 				    0, &c_buf.flag);
2379 				break;
2380 			case DT_FLAGS_1:
2381 				name = conv_dyn_flag1(dyn->d_un.d_val, 0,
2382 				    &c_buf.flag1);
2383 				break;
2384 			case DT_POSFLAG_1:
2385 				name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
2386 				    &c_buf.posflag1);
2387 				break;
2388 			case DT_FEATURE_1:
2389 				name = conv_dyn_feature1(dyn->d_un.d_val, 0,
2390 				    &c_buf.feature1);
2391 				break;
2392 			case DT_DEPRECATED_SPARC_REGISTER:
2393 				name = MSG_INTL(MSG_STR_DEPRECATED);
2394 				break;
2395 
2396 			case DT_SUNW_LDMACH:
2397 				name = conv_ehdr_mach((Half)dyn->d_un.d_val, 0,
2398 				    &c_buf.inv);
2399 				break;
2400 
2401 			/*
2402 			 * Cases below this point are strictly sanity checking,
2403 			 * and do not generate a name string. The TEST_ macros
2404 			 * are used to hide the boilerplate arguments neeeded
2405 			 * by dyn_test().
2406 			 */
2407 #define	TEST_ADDR(_sh_type, _sec_field) \
2408 				dyn_test(DYN_TEST_ADDR, _sh_type, \
2409 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2410 #define	TEST_SIZE(_sh_type, _sec_field) \
2411 				dyn_test(DYN_TEST_SIZE, _sh_type, \
2412 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2413 #define	TEST_ENTSIZE(_sh_type, _sec_field) \
2414 				dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
2415 				    sec._sec_field, dyn, dynsec_cnt, ehdr, file)
2416 
2417 			case DT_FINI:
2418 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
2419 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2420 				    cache, shnum, ehdr, file);
2421 				TEST_ADDR(SHT_PROGBITS, fini);
2422 				break;
2423 
2424 			case DT_FINI_ARRAY:
2425 				TEST_ADDR(SHT_FINI_ARRAY, fini_array);
2426 				break;
2427 
2428 			case DT_FINI_ARRAYSZ:
2429 				TEST_SIZE(SHT_FINI_ARRAY, fini_array);
2430 				break;
2431 
2432 			case DT_HASH:
2433 				TEST_ADDR(SHT_HASH, hash);
2434 				break;
2435 
2436 			case DT_INIT:
2437 				dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
2438 				    sec.symtab, sec.dynsym, sec.sunw_ldynsym,
2439 				    cache, shnum, ehdr, file);
2440 				TEST_ADDR(SHT_PROGBITS, init);
2441 				break;
2442 
2443 			case DT_INIT_ARRAY:
2444 				TEST_ADDR(SHT_INIT_ARRAY, init_array);
2445 				break;
2446 
2447 			case DT_INIT_ARRAYSZ:
2448 				TEST_SIZE(SHT_INIT_ARRAY, init_array);
2449 				break;
2450 
2451 			case DT_MOVEENT:
2452 				TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
2453 				break;
2454 
2455 			case DT_MOVESZ:
2456 				TEST_SIZE(SHT_SUNW_move, sunw_move);
2457 				break;
2458 
2459 			case DT_MOVETAB:
2460 				TEST_ADDR(SHT_SUNW_move, sunw_move);
2461 				break;
2462 
2463 			case DT_PREINIT_ARRAY:
2464 				TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
2465 				break;
2466 
2467 			case DT_PREINIT_ARRAYSZ:
2468 				TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
2469 				break;
2470 
2471 			case DT_REL:
2472 				if (!dumped)
2473 					TEST_ADDR(SHT_REL, rel);
2474 				break;
2475 
2476 			case DT_RELENT:
2477 				TEST_ENTSIZE(SHT_REL, rel);
2478 				break;
2479 
2480 			case DT_RELA:
2481 				if (!dumped)
2482 					TEST_ADDR(SHT_RELA, rela);
2483 				break;
2484 
2485 			case DT_RELAENT:
2486 				TEST_ENTSIZE(SHT_RELA, rela);
2487 				break;
2488 
2489 			case DT_STRTAB:
2490 				TEST_ADDR(SHT_STRTAB, dynstr);
2491 				break;
2492 
2493 			case DT_STRSZ:
2494 				TEST_SIZE(SHT_STRTAB, dynstr);
2495 				break;
2496 
2497 			case DT_SUNW_CAP:
2498 				TEST_ADDR(SHT_SUNW_cap, sunw_cap);
2499 				break;
2500 
2501 			case DT_SUNW_SYMTAB:
2502 				TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2503 				break;
2504 
2505 			case DT_SYMENT:
2506 				TEST_ENTSIZE(SHT_DYNSYM, dynsym);
2507 				break;
2508 
2509 			case DT_SYMINENT:
2510 				TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
2511 				break;
2512 
2513 			case DT_SYMINFO:
2514 				TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
2515 				break;
2516 
2517 			case DT_SYMINSZ:
2518 				TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
2519 				break;
2520 
2521 			case DT_SYMTAB:
2522 				TEST_ADDR(SHT_DYNSYM, dynsym);
2523 				break;
2524 
2525 			case DT_SUNW_SORTENT:
2526 				/*
2527 				 * This entry is related to both the symsort and
2528 				 * tlssort sections.
2529 				 */
2530 				{
2531 					int test_tls =
2532 					    (sec.sunw_tlssort != NULL);
2533 					int test_sym =
2534 					    (sec.sunw_symsort != NULL) ||
2535 					    !test_tls;
2536 					if (test_sym)
2537 						TEST_ENTSIZE(SHT_SUNW_symsort,
2538 						    sunw_symsort);
2539 					if (test_tls)
2540 						TEST_ENTSIZE(SHT_SUNW_tlssort,
2541 						    sunw_tlssort);
2542 				}
2543 				break;
2544 
2545 
2546 			case DT_SUNW_SYMSORT:
2547 				TEST_ADDR(SHT_SUNW_symsort, sunw_symsort);
2548 				break;
2549 
2550 			case DT_SUNW_SYMSORTSZ:
2551 				TEST_SIZE(SHT_SUNW_symsort, sunw_symsort);
2552 				break;
2553 
2554 			case DT_SUNW_TLSSORT:
2555 				TEST_ADDR(SHT_SUNW_tlssort, sunw_tlssort);
2556 				break;
2557 
2558 			case DT_SUNW_TLSSORTSZ:
2559 				TEST_SIZE(SHT_SUNW_tlssort, sunw_tlssort);
2560 				break;
2561 
2562 			case DT_VERDEF:
2563 				TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
2564 				break;
2565 
2566 			case DT_VERNEED:
2567 				TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
2568 				break;
2569 
2570 			case DT_VERSYM:
2571 				TEST_ADDR(SHT_SUNW_versym, sunw_versym);
2572 				break;
2573 #undef TEST_ADDR
2574 #undef TEST_SIZE
2575 #undef TEST_ENTSIZE
2576 			}
2577 
2578 			if (name == NULL)
2579 				name = MSG_ORIG(MSG_STR_EMPTY);
2580 			Elf_dyn_entry(0, dyn, ndx, name, ehdr->e_machine);
2581 		}
2582 	}
2583 }
2584 
2585 /*
2586  * Search for and process a MOVE section.
2587  */
2588 static void
2589 move(Cache *cache, Word shnum, const char *file, uint_t flags)
2590 {
2591 	Word		cnt;
2592 	const char	*fmt = NULL;
2593 
2594 	for (cnt = 1; cnt < shnum; cnt++) {
2595 		Word	movenum, symnum, ndx;
2596 		Sym	*syms;
2597 		Cache	*_cache = &cache[cnt];
2598 		Shdr	*shdr = _cache->c_shdr;
2599 		Cache	*symsec, *strsec;
2600 		Move	*move;
2601 
2602 		if (shdr->sh_type != SHT_SUNW_move)
2603 			continue;
2604 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2605 			continue;
2606 
2607 		/*
2608 		 * Determine the move data and number.
2609 		 */
2610 		if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
2611 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2612 			    file, _cache->c_name);
2613 			continue;
2614 		}
2615 		if (_cache->c_data == NULL)
2616 			continue;
2617 
2618 		move = (Move *)_cache->c_data->d_buf;
2619 		movenum = shdr->sh_size / shdr->sh_entsize;
2620 
2621 		/*
2622 		 * Get the data buffer for the associated symbol table and
2623 		 * string table.
2624 		 */
2625 		if (stringtbl(cache, 1, cnt, shnum, file,
2626 		    &symnum, &symsec, &strsec) == 0)
2627 			return;
2628 
2629 		syms = (Sym *)symsec->c_data->d_buf;
2630 
2631 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2632 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
2633 		dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
2634 
2635 		if (fmt == NULL)
2636 			fmt = MSG_INTL(MSG_MOVE_ENTRY);
2637 
2638 		for (ndx = 0; ndx < movenum; move++, ndx++) {
2639 			const char	*symname;
2640 			char		index[MAXNDXSIZE], section[BUFSIZ];
2641 			Word		symndx, shndx;
2642 			Sym		*sym;
2643 
2644 			/*
2645 			 * Check for null entries
2646 			 */
2647 			if ((move->m_info == 0) && (move->m_value == 0) &&
2648 			    (move->m_poffset == 0) && (move->m_repeat == 0) &&
2649 			    (move->m_stride == 0)) {
2650 				dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
2651 				    EC_XWORD(move->m_poffset), 0, 0, 0,
2652 				    EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
2653 				continue;
2654 			}
2655 			if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
2656 			    (symndx >= symnum)) {
2657 				(void) fprintf(stderr,
2658 				    MSG_INTL(MSG_ERR_BADMINFO), file,
2659 				    _cache->c_name, EC_XWORD(move->m_info));
2660 
2661 				(void) snprintf(index, MAXNDXSIZE,
2662 				    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2663 				dbg_print(0, fmt, index,
2664 				    EC_XWORD(move->m_poffset),
2665 				    ELF_M_SIZE(move->m_info), move->m_repeat,
2666 				    move->m_stride, move->m_value,
2667 				    MSG_INTL(MSG_STR_UNKNOWN));
2668 				continue;
2669 			}
2670 
2671 			symname = relsymname(cache, _cache, strsec,
2672 			    symndx, symnum, ndx, syms, section, BUFSIZ, file);
2673 			sym = (Sym *)(syms + symndx);
2674 
2675 			/*
2676 			 * Additional sanity check.
2677 			 */
2678 			shndx = sym->st_shndx;
2679 			if (!((shndx == SHN_COMMON) ||
2680 			    (((shndx >= 1) && (shndx <= shnum)) &&
2681 			    (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
2682 				(void) fprintf(stderr,
2683 				    MSG_INTL(MSG_ERR_BADSYM2), file,
2684 				    _cache->c_name, EC_WORD(symndx),
2685 				    demangle(symname, flags));
2686 			}
2687 
2688 			(void) snprintf(index, MAXNDXSIZE,
2689 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
2690 			dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
2691 			    ELF_M_SIZE(move->m_info), move->m_repeat,
2692 			    move->m_stride, move->m_value,
2693 			    demangle(symname, flags));
2694 		}
2695 	}
2696 }
2697 
2698 /*
2699  * Callback function for use with conv_str_to_c_literal() below.
2700  */
2701 /*ARGSUSED2*/
2702 static void
2703 c_literal_cb(const void *ptr, size_t size, void *uvalue)
2704 {
2705 	(void) fwrite(ptr, size, 1, stdout);
2706 }
2707 
2708 /*
2709  * Traverse a note section analyzing each note information block.
2710  * The data buffers size is used to validate references before they are made,
2711  * and is decremented as each element is processed.
2712  */
2713 void
2714 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
2715 {
2716 	size_t		bsize = size;
2717 	int		cnt = 0;
2718 	int		is_corenote;
2719 	int		do_swap;
2720 	Conv_inv_buf_t	inv_buf;
2721 
2722 	do_swap =  _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
2723 
2724 	/*
2725 	 * Print out a single `note' information block.
2726 	 */
2727 	while (size > 0) {
2728 		size_t	namesz, descsz, type, pad, noteoff;
2729 
2730 		noteoff = bsize - size;
2731 		/*
2732 		 * Make sure we can at least reference the 3 initial entries
2733 		 * (4-byte words) of the note information block.
2734 		 */
2735 		if (size >= (sizeof (Word) * 3))
2736 			size -= (sizeof (Word) * 3);
2737 		else {
2738 			(void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
2739 			    file, cache->c_name, EC_WORD(noteoff));
2740 			return;
2741 		}
2742 
2743 		/*
2744 		 * Make sure any specified name string can be referenced.
2745 		 */
2746 		if ((namesz = *data++) != 0) {
2747 			if (size >= namesz)
2748 				size -= namesz;
2749 			else {
2750 				(void) fprintf(stderr,
2751 				    MSG_INTL(MSG_NOTE_BADNMSZ), file,
2752 				    cache->c_name, EC_WORD(noteoff),
2753 				    EC_WORD(namesz));
2754 				return;
2755 			}
2756 		}
2757 
2758 		/*
2759 		 * Make sure any specified descriptor can be referenced.
2760 		 */
2761 		if ((descsz = *data++) != 0) {
2762 			/*
2763 			 * If namesz isn't a 4-byte multiple, account for any
2764 			 * padding that must exist before the descriptor.
2765 			 */
2766 			if ((pad = (namesz & (sizeof (Word) - 1))) != 0) {
2767 				pad = sizeof (Word) - pad;
2768 				size -= pad;
2769 			}
2770 			if (size >= descsz)
2771 				size -= descsz;
2772 			else {
2773 				(void) fprintf(stderr,
2774 				    MSG_INTL(MSG_NOTE_BADDESZ), file,
2775 				    cache->c_name, EC_WORD(noteoff),
2776 				    EC_WORD(namesz));
2777 				return;
2778 			}
2779 		}
2780 
2781 		type = *data++;
2782 
2783 		/*
2784 		 * Is this a Solaris core note? Such notes all have
2785 		 * the name "CORE".
2786 		 */
2787 		is_corenote = (ehdr->e_type == ET_CORE) &&
2788 		    (namesz == (MSG_STR_CORE_SIZE + 1)) &&
2789 		    (strncmp(MSG_ORIG(MSG_STR_CORE), (char *)data,
2790 		    MSG_STR_CORE_SIZE + 1) == 0);
2791 
2792 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2793 		dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
2794 		cnt++;
2795 		dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ), EC_WORD(namesz));
2796 		dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ), EC_WORD(descsz));
2797 
2798 		if (is_corenote)
2799 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
2800 			    conv_cnote_type(type, 0, &inv_buf));
2801 		else
2802 			dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE), EC_WORD(type));
2803 		if (namesz) {
2804 			char	*name = (char *)data;
2805 
2806 
2807 			dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
2808 			/*
2809 			 * The name string can contain embedded 'null'
2810 			 * bytes and/or unprintable characters. Also,
2811 			 * the final NULL is documented in the ELF ABI
2812 			 * as being included in the namesz. So, display
2813 			 * the name using C literal string notation, and
2814 			 * include the terminating NULL in the output.
2815 			 * We don't show surrounding double quotes, as
2816 			 * that implies the termination that we are showing
2817 			 * explicitly.
2818 			 */
2819 			(void) fwrite(MSG_ORIG(MSG_STR_8SP),
2820 			    MSG_STR_8SP_SIZE, 1, stdout);
2821 			conv_str_to_c_literal(name, namesz, c_literal_cb, NULL);
2822 			name = name + ((namesz + (sizeof (Word) - 1)) &
2823 			    ~(sizeof (Word) - 1));
2824 			/* LINTED */
2825 			data = (Word *)name;
2826 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2827 		}
2828 
2829 		/*
2830 		 * If multiple information blocks exist within a .note section
2831 		 * account for any padding that must exist before the next
2832 		 * information block.
2833 		 */
2834 		if ((pad = (descsz & (sizeof (Word) - 1))) != 0) {
2835 			pad = sizeof (Word) - pad;
2836 			if (size > pad)
2837 				size -= pad;
2838 		}
2839 
2840 		if (descsz) {
2841 			int		hexdump = 1;
2842 			const char	*desc = (const char *)data;
2843 
2844 			/*
2845 			 * If this is a core note, let the corenote()
2846 			 * function handle it.
2847 			 */
2848 			if (is_corenote) {
2849 				/* We only issue the bad arch error once */
2850 				static int	badnote_done = 0;
2851 				corenote_ret_t	corenote_ret;
2852 
2853 				corenote_ret = corenote(ehdr->e_machine,
2854 				    do_swap, type, desc, descsz);
2855 				switch (corenote_ret) {
2856 				case CORENOTE_R_OK:
2857 					hexdump = 0;
2858 					break;
2859 				case CORENOTE_R_BADDATA:
2860 					(void) fprintf(stderr,
2861 					    MSG_INTL(MSG_NOTE_BADCOREDATA),
2862 					    file);
2863 					break;
2864 				case CORENOTE_R_BADARCH:
2865 					if (badnote_done)
2866 						break;
2867 					(void) fprintf(stderr,
2868 					    MSG_INTL(MSG_NOTE_BADCOREARCH),
2869 					    file,
2870 					    conv_ehdr_mach(ehdr->e_machine,
2871 					    0, &inv_buf));
2872 					break;
2873 				}
2874 			}
2875 
2876 			/*
2877 			 * The default thing when we don't understand
2878 			 * the note data is to display it as hex bytes.
2879 			 */
2880 			if (hexdump) {
2881 				dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
2882 				dump_hex_bytes(desc, descsz, 8, 4, 4);
2883 			}
2884 			desc += descsz + pad;
2885 
2886 			/* LINTED */
2887 			data = (Word *)desc;
2888 		}
2889 	}
2890 }
2891 
2892 /*
2893  * Search for and process .note sections.
2894  *
2895  * Returns the number of note sections seen.
2896  */
2897 static Word
2898 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2899 {
2900 	Word	cnt, note_cnt = 0;
2901 
2902 	/*
2903 	 * Otherwise look for any .note sections.
2904 	 */
2905 	for (cnt = 1; cnt < shnum; cnt++) {
2906 		Cache	*_cache = &cache[cnt];
2907 		Shdr	*shdr = _cache->c_shdr;
2908 
2909 		if (shdr->sh_type != SHT_NOTE)
2910 			continue;
2911 		note_cnt++;
2912 		if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
2913 			continue;
2914 
2915 		/*
2916 		 * As these sections are often hand rolled, make sure they're
2917 		 * properly aligned before proceeding, and issue an error
2918 		 * as necessary.
2919 		 *
2920 		 * Note that we will continue on to display the note even
2921 		 * if it has bad alignment. We can do this safely, because
2922 		 * libelf knows the alignment required for SHT_NOTE, and
2923 		 * takes steps to deliver a properly aligned buffer to us
2924 		 * even if the actual file is misaligned.
2925 		 */
2926 		if (shdr->sh_offset & (sizeof (Word) - 1))
2927 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
2928 			    file, _cache->c_name);
2929 
2930 		if (_cache->c_data == NULL)
2931 			continue;
2932 
2933 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2934 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
2935 		note_entry(_cache, (Word *)_cache->c_data->d_buf,
2936 		/* LINTED */
2937 		    (Word)_cache->c_data->d_size, ehdr, file);
2938 	}
2939 
2940 	return (note_cnt);
2941 }
2942 
2943 /*
2944  * Determine an individual hash entry.  This may be the initial hash entry,
2945  * or an associated chain entry.
2946  */
2947 static void
2948 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
2949     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
2950     uint_t flags, int chain)
2951 {
2952 	Sym		*sym;
2953 	const char	*symname, *str;
2954 	char		_bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
2955 	ulong_t		nbkt, nhash;
2956 
2957 	if (symndx > symn) {
2958 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
2959 		    EC_WORD(symndx), EC_WORD(hashndx));
2960 		symname = MSG_INTL(MSG_STR_UNKNOWN);
2961 	} else {
2962 		sym = (Sym *)(syms + symndx);
2963 		symname = string(refsec, symndx, strsec, file, sym->st_name);
2964 	}
2965 
2966 	if (chain == 0) {
2967 		(void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
2968 		    hashndx);
2969 		str = (const char *)_bucket;
2970 	} else
2971 		str = MSG_ORIG(MSG_STR_EMPTY);
2972 
2973 	(void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
2974 	    EC_WORD(symndx));
2975 	dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
2976 	    demangle(symname, flags));
2977 
2978 	/*
2979 	 * Determine if this string is in the correct bucket.
2980 	 */
2981 	nhash = elf_hash(symname);
2982 	nbkt = nhash % bkts;
2983 
2984 	if (nbkt != hashndx) {
2985 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
2986 		    hsecname, symname, EC_WORD(hashndx), nbkt);
2987 	}
2988 }
2989 
2990 #define	MAXCOUNT	500
2991 
2992 static void
2993 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
2994 {
2995 	static int	count[MAXCOUNT];
2996 	Word		cnt;
2997 	ulong_t		ndx, bkts;
2998 	char		number[MAXNDXSIZE];
2999 
3000 	for (cnt = 1; cnt < shnum; cnt++) {
3001 		uint_t		*hash, *chain;
3002 		Cache		*_cache = &cache[cnt];
3003 		Shdr		*sshdr, *hshdr = _cache->c_shdr;
3004 		char		*ssecname, *hsecname = _cache->c_name;
3005 		Sym		*syms;
3006 		Word		symn;
3007 
3008 		if (hshdr->sh_type != SHT_HASH)
3009 			continue;
3010 
3011 		/*
3012 		 * Determine the hash table data and size.
3013 		 */
3014 		if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3015 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3016 			    file, hsecname);
3017 			continue;
3018 		}
3019 		if (_cache->c_data == NULL)
3020 			continue;
3021 
3022 		hash = (uint_t *)_cache->c_data->d_buf;
3023 		bkts = *hash;
3024 		chain = hash + 2 + bkts;
3025 		hash += 2;
3026 
3027 		/*
3028 		 * Get the data buffer for the associated symbol table.
3029 		 */
3030 		if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3031 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3032 			    file, hsecname, EC_WORD(hshdr->sh_link));
3033 			continue;
3034 		}
3035 
3036 		_cache = &cache[hshdr->sh_link];
3037 		ssecname = _cache->c_name;
3038 
3039 		if (_cache->c_data == NULL)
3040 			continue;
3041 
3042 		if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3043 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3044 			    file, ssecname);
3045 			continue;
3046 		}
3047 
3048 		sshdr = _cache->c_shdr;
3049 		/* LINTED */
3050 		symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3051 
3052 		/*
3053 		 * Get the associated string table section.
3054 		 */
3055 		if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3056 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3057 			    file, ssecname, EC_WORD(sshdr->sh_link));
3058 			continue;
3059 		}
3060 
3061 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3062 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3063 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3064 
3065 		/*
3066 		 * Loop through the hash buckets, printing the appropriate
3067 		 * symbols.
3068 		 */
3069 		for (ndx = 0; ndx < bkts; ndx++, hash++) {
3070 			Word	_ndx, _cnt;
3071 
3072 			if (*hash == 0) {
3073 				count[0]++;
3074 				continue;
3075 			}
3076 
3077 			hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3078 			    ndx, *hash, symn, syms, file, bkts, flags, 0);
3079 
3080 			/*
3081 			 * Determine if any other symbols are chained to this
3082 			 * bucket.
3083 			 */
3084 			_ndx = chain[*hash];
3085 			_cnt = 1;
3086 			while (_ndx) {
3087 				hash_entry(_cache, &cache[sshdr->sh_link],
3088 				    hsecname, ndx, _ndx, symn, syms, file,
3089 				    bkts, flags, 1);
3090 				_ndx = chain[_ndx];
3091 				_cnt++;
3092 			}
3093 
3094 			if (_cnt >= MAXCOUNT) {
3095 				(void) fprintf(stderr,
3096 				    MSG_INTL(MSG_HASH_OVERFLW), file,
3097 				    _cache->c_name, EC_WORD(ndx),
3098 				    EC_WORD(_cnt));
3099 			} else
3100 				count[_cnt]++;
3101 		}
3102 		break;
3103 	}
3104 
3105 	/*
3106 	 * Print out the count information.
3107 	 */
3108 	bkts = cnt = 0;
3109 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3110 
3111 	for (ndx = 0; ndx < MAXCOUNT; ndx++) {
3112 		Word	_cnt;
3113 
3114 		if ((_cnt = count[ndx]) == 0)
3115 			continue;
3116 
3117 		(void) snprintf(number, MAXNDXSIZE,
3118 		    MSG_ORIG(MSG_FMT_INTEGER), _cnt);
3119 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
3120 		    EC_WORD(ndx));
3121 		bkts += _cnt;
3122 		cnt += (Word)(ndx * _cnt);
3123 	}
3124 	if (cnt) {
3125 		(void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3126 		    bkts);
3127 		dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
3128 		    EC_WORD(cnt));
3129 	}
3130 }
3131 
3132 static void
3133 group(Cache *cache, Word shnum, const char *file, uint_t flags)
3134 {
3135 	Word	scnt;
3136 
3137 	for (scnt = 1; scnt < shnum; scnt++) {
3138 		Cache	*_cache = &cache[scnt];
3139 		Shdr	*shdr = _cache->c_shdr;
3140 		Word	*grpdata, gcnt, grpcnt, symnum, unknown;
3141 		Cache	*symsec, *strsec;
3142 		Sym	*syms, *sym;
3143 		char	flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
3144 
3145 		if (shdr->sh_type != SHT_GROUP)
3146 			continue;
3147 		if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
3148 			continue;
3149 		if ((_cache->c_data == NULL) ||
3150 		    ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
3151 			continue;
3152 		grpcnt = shdr->sh_size / sizeof (Word);
3153 
3154 		/*
3155 		 * Get the data buffer for the associated symbol table and
3156 		 * string table.
3157 		 */
3158 		if (stringtbl(cache, 1, scnt, shnum, file,
3159 		    &symnum, &symsec, &strsec) == 0)
3160 			return;
3161 
3162 		syms = symsec->c_data->d_buf;
3163 
3164 		dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3165 		dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
3166 		dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
3167 
3168 		/*
3169 		 * The first element of the group defines the group.  The
3170 		 * associated symbol is defined by the sh_link field.
3171 		 */
3172 		if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
3173 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
3174 			    file, _cache->c_name, EC_WORD(shdr->sh_info));
3175 			return;
3176 		}
3177 
3178 		(void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
3179 		if (grpdata[0] & GRP_COMDAT) {
3180 			(void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
3181 		}
3182 		if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
3183 			size_t	len = strlen(flgstrbuf);
3184 
3185 			(void) snprintf(&flgstrbuf[len],
3186 			    (MSG_GRP_COMDAT_SIZE + 10 - len),
3187 			    MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
3188 		}
3189 		(void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
3190 		sym = (Sym *)(syms + shdr->sh_info);
3191 
3192 		dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
3193 		    demangle(string(_cache, 0, strsec, file, sym->st_name),
3194 		    flags));
3195 
3196 		for (gcnt = 1; gcnt < grpcnt; gcnt++) {
3197 			char		index[MAXNDXSIZE];
3198 			const char	*name;
3199 
3200 			(void) snprintf(index, MAXNDXSIZE,
3201 			    MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
3202 
3203 			if (grpdata[gcnt] >= shnum)
3204 				name = MSG_INTL(MSG_GRP_INVALSCN);
3205 			else
3206 				name = cache[grpdata[gcnt]].c_name;
3207 
3208 			(void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
3209 			    EC_XWORD(grpdata[gcnt]));
3210 		}
3211 	}
3212 }
3213 
3214 static void
3215 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3216 {
3217 	Cache		*gotcache = NULL, *symtab = NULL;
3218 	Addr		gotbgn, gotend;
3219 	Shdr		*gotshdr;
3220 	Word		cnt, gotents, gotndx;
3221 	size_t		gentsize;
3222 	Got_info	*gottable;
3223 	char		*gotdata;
3224 	Sym		*gotsym;
3225 	Xword		gotsymaddr;
3226 	uint_t		sys_encoding;
3227 
3228 	/*
3229 	 * First, find the got.
3230 	 */
3231 	for (cnt = 1; cnt < shnum; cnt++) {
3232 		if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
3233 		    MSG_ELF_GOT_SIZE) == 0) {
3234 			gotcache = &cache[cnt];
3235 			break;
3236 		}
3237 	}
3238 	if (gotcache == NULL)
3239 		return;
3240 
3241 	/*
3242 	 * A got section within a relocatable object is suspicious.
3243 	 */
3244 	if (ehdr->e_type == ET_REL) {
3245 		(void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
3246 		    gotcache->c_name);
3247 	}
3248 
3249 	gotshdr = gotcache->c_shdr;
3250 	if (gotshdr->sh_size == 0) {
3251 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3252 		    file, gotcache->c_name);
3253 		return;
3254 	}
3255 
3256 	gotbgn = gotshdr->sh_addr;
3257 	gotend = gotbgn + gotshdr->sh_size;
3258 
3259 	/*
3260 	 * Some architectures don't properly set the sh_entsize for the GOT
3261 	 * table.  If it's not set, default to a size of a pointer.
3262 	 */
3263 	if ((gentsize = gotshdr->sh_entsize) == 0)
3264 		gentsize = sizeof (Xword);
3265 
3266 	if (gotcache->c_data == NULL)
3267 		return;
3268 
3269 	/* LINTED */
3270 	gotents = (Word)(gotshdr->sh_size / gentsize);
3271 	gotdata = gotcache->c_data->d_buf;
3272 
3273 	if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
3274 		int err = errno;
3275 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
3276 		    strerror(err));
3277 		return;
3278 	}
3279 
3280 	/*
3281 	 * Now we scan through all the sections looking for any relocations
3282 	 * that may be against the GOT.  Since these may not be isolated to a
3283 	 * .rel[a].got section we check them all.
3284 	 * While scanning sections save the symbol table entry (a symtab
3285 	 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
3286 	 */
3287 	for (cnt = 1; cnt < shnum; cnt++) {
3288 		Word		type, symnum;
3289 		Xword		relndx, relnum, relsize;
3290 		void		*rels;
3291 		Sym		*syms;
3292 		Cache		*symsec, *strsec;
3293 		Cache		*_cache = &cache[cnt];
3294 		Shdr		*shdr;
3295 
3296 		shdr = _cache->c_shdr;
3297 		type = shdr->sh_type;
3298 
3299 		if ((symtab == 0) && (type == SHT_DYNSYM)) {
3300 			symtab = _cache;
3301 			continue;
3302 		}
3303 		if (type == SHT_SYMTAB) {
3304 			symtab = _cache;
3305 			continue;
3306 		}
3307 		if ((type != SHT_RELA) && (type != SHT_REL))
3308 			continue;
3309 
3310 		/*
3311 		 * Decide entry size.
3312 		 */
3313 		if (((relsize = shdr->sh_entsize) == 0) ||
3314 		    (relsize > shdr->sh_size)) {
3315 			if (type == SHT_RELA)
3316 				relsize = sizeof (Rela);
3317 			else
3318 				relsize = sizeof (Rel);
3319 		}
3320 
3321 		/*
3322 		 * Determine the number of relocations available.
3323 		 */
3324 		if (shdr->sh_size == 0) {
3325 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3326 			    file, _cache->c_name);
3327 			continue;
3328 		}
3329 		if (_cache->c_data == NULL)
3330 			continue;
3331 
3332 		rels = _cache->c_data->d_buf;
3333 		relnum = shdr->sh_size / relsize;
3334 
3335 		/*
3336 		 * Get the data buffer for the associated symbol table and
3337 		 * string table.
3338 		 */
3339 		if (stringtbl(cache, 1, cnt, shnum, file,
3340 		    &symnum, &symsec, &strsec) == 0)
3341 			continue;
3342 
3343 		syms = symsec->c_data->d_buf;
3344 
3345 		/*
3346 		 * Loop through the relocation entries.
3347 		 */
3348 		for (relndx = 0; relndx < relnum; relndx++,
3349 		    rels = (void *)((char *)rels + relsize)) {
3350 			char		section[BUFSIZ];
3351 			Addr		offset;
3352 			Got_info	*gip;
3353 			Word		symndx, reltype;
3354 			Rela		*rela;
3355 			Rel		*rel;
3356 
3357 			/*
3358 			 * Unravel the relocation.
3359 			 */
3360 			if (type == SHT_RELA) {
3361 				rela = (Rela *)rels;
3362 				symndx = ELF_R_SYM(rela->r_info);
3363 				reltype = ELF_R_TYPE(rela->r_info,
3364 				    ehdr->e_machine);
3365 				offset = rela->r_offset;
3366 			} else {
3367 				rel = (Rel *)rels;
3368 				symndx = ELF_R_SYM(rel->r_info);
3369 				reltype = ELF_R_TYPE(rel->r_info,
3370 				    ehdr->e_machine);
3371 				offset = rel->r_offset;
3372 			}
3373 
3374 			/*
3375 			 * Only pay attention to relocations against the GOT.
3376 			 */
3377 			if ((offset < gotbgn) || (offset >= gotend))
3378 				continue;
3379 
3380 			/* LINTED */
3381 			gotndx = (Word)((offset - gotbgn) /
3382 			    gotshdr->sh_entsize);
3383 			gip = &gottable[gotndx];
3384 
3385 			if (gip->g_reltype != 0) {
3386 				(void) fprintf(stderr,
3387 				    MSG_INTL(MSG_GOT_MULTIPLE), file,
3388 				    EC_WORD(gotndx), EC_ADDR(offset));
3389 				continue;
3390 			}
3391 
3392 			if (symndx)
3393 				gip->g_symname = relsymname(cache, _cache,
3394 				    strsec, symndx, symnum, relndx, syms,
3395 				    section, BUFSIZ, file);
3396 			gip->g_reltype = reltype;
3397 			gip->g_rel = rels;
3398 		}
3399 	}
3400 
3401 	if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, symtab,
3402 	    file))
3403 		gotsymaddr = gotsym->st_value;
3404 	else
3405 		gotsymaddr = gotbgn;
3406 
3407 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3408 	dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
3409 	Elf_got_title(0);
3410 
3411 	sys_encoding = _elf_sys_encoding();
3412 	for (gotndx = 0; gotndx < gotents; gotndx++) {
3413 		Got_info	*gip;
3414 		Sword		gindex;
3415 		Addr		gaddr;
3416 		Xword		gotentry;
3417 
3418 		gip = &gottable[gotndx];
3419 
3420 		gaddr = gotbgn + (gotndx * gentsize);
3421 		gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
3422 
3423 		if (gentsize == sizeof (Word))
3424 			/* LINTED */
3425 			gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
3426 		else
3427 			/* LINTED */
3428 			gotentry = *((Xword *)(gotdata) + gotndx);
3429 
3430 		Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
3431 		    ehdr->e_ident[EI_DATA], sys_encoding,
3432 		    gip->g_reltype, gip->g_rel, gip->g_symname);
3433 	}
3434 	free(gottable);
3435 }
3436 
3437 void
3438 checksum(Elf *elf)
3439 {
3440 	dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3441 	dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
3442 }
3443 
3444 /*
3445  * This variable is used by regular() to communicate the address of
3446  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
3447  * the qsort() interface does not include a userdata argument by which
3448  * such arbitrary data can be passed, so we are stuck using global data.
3449  */
3450 static Cache *sort_shdr_ndx_arr_cache;
3451 
3452 
3453 /*
3454  * Used with qsort() to sort the section indices so that they can be
3455  * used to access the section headers in order of increasing data offset.
3456  *
3457  * entry:
3458  *	sort_shdr_ndx_arr_cache - Contains address of
3459  *		section header cache.
3460  *	v1, v2 - Point at elements of sort_shdr_bits array to be compared.
3461  *
3462  * exit:
3463  *	Returns -1 (less than), 0 (equal) or 1 (greater than).
3464  */
3465 static int
3466 sort_shdr_ndx_arr(const void *v1, const void *v2)
3467 {
3468 	Cache	*cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
3469 	Cache	*cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
3470 
3471 	if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
3472 		return (-1);
3473 
3474 	if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
3475 		return (1);
3476 
3477 	return (0);
3478 }
3479 
3480 
3481 static int
3482 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
3483     size_t shnum, Cache **cache_ret, Word flags)
3484 {
3485 	Elf_Scn		*scn;
3486 	Elf_Data	*data;
3487 	size_t		ndx;
3488 	Shdr		*nameshdr;
3489 	char		*names = NULL;
3490 	Cache		*cache, *_cache;
3491 	size_t		*shdr_ndx_arr, shdr_ndx_arr_cnt;
3492 
3493 
3494 	/*
3495 	 * Obtain the .shstrtab data buffer to provide the required section
3496 	 * name strings.
3497 	 */
3498 	if (shstrndx == SHN_UNDEF) {
3499 		/*
3500 		 * It is rare, but legal, for an object to lack a
3501 		 * header string table section.
3502 		 */
3503 		names = NULL;
3504 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
3505 	} else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
3506 		failure(file, MSG_ORIG(MSG_ELF_GETSCN));
3507 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
3508 		    EC_XWORD(shstrndx));
3509 
3510 	} else if ((data = elf_getdata(scn, NULL)) == NULL) {
3511 		failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3512 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
3513 		    EC_XWORD(shstrndx));
3514 
3515 	} else if ((nameshdr = elf_getshdr(scn)) == NULL) {
3516 		failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3517 		(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3518 		    EC_WORD(elf_ndxscn(scn)));
3519 
3520 	} else if ((names = data->d_buf) == NULL)
3521 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
3522 
3523 	/*
3524 	 * Allocate a cache to maintain a descriptor for each section.
3525 	 */
3526 	if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
3527 		int err = errno;
3528 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3529 		    file, strerror(err));
3530 		return (0);
3531 	}
3532 
3533 	*cache = cache_init;
3534 	_cache = cache;
3535 	_cache++;
3536 
3537 	/*
3538 	 * Allocate an array that will hold the section index for
3539 	 * each section that has data in the ELF file:
3540 	 *
3541 	 *	- Is not a NOBITS section
3542 	 *	- Data has non-zero length
3543 	 *
3544 	 * Note that shnum is an upper bound on the size required. It
3545 	 * is likely that we won't use a few of these array elements.
3546 	 * Allocating a modest amount of extra memory in this case means
3547 	 * that we can avoid an extra loop to count the number of needed
3548 	 * items, and can fill this array immediately in the first loop
3549 	 * below.
3550 	 */
3551 	if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
3552 		int err = errno;
3553 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3554 		    file, strerror(err));
3555 		return (0);
3556 	}
3557 	shdr_ndx_arr_cnt = 0;
3558 
3559 	/*
3560 	 * Traverse the sections of the file.  This gathering of data is
3561 	 * carried out in two passes.  First, the section headers are captured
3562 	 * and the section header names are evaluated.  A verification pass is
3563 	 * then carried out over the section information.  Files have been
3564 	 * known to exhibit overlapping (and hence erroneous) section header
3565 	 * information.
3566 	 *
3567 	 * Finally, the data for each section is obtained.  This processing is
3568 	 * carried out after section verification because should any section
3569 	 * header overlap occur, and a file needs translating (ie. xlate'ing
3570 	 * information from a non-native architecture file), then the process
3571 	 * of translation can corrupt the section header information.  Of
3572 	 * course, if there is any section overlap, the data related to the
3573 	 * sections is going to be compromised.  However, it is the translation
3574 	 * of this data that has caused problems with elfdump()'s ability to
3575 	 * extract the data.
3576 	 */
3577 	for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
3578 	    ndx++, _cache++) {
3579 		char	scnndxnm[100];
3580 
3581 		_cache->c_ndx = ndx;
3582 		_cache->c_scn = scn;
3583 
3584 		if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
3585 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3586 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
3587 			    EC_WORD(elf_ndxscn(scn)));
3588 		}
3589 
3590 		/*
3591 		 * If this section has data in the file, include it in
3592 		 * the array of sections to check for address overlap.
3593 		 */
3594 		if ((_cache->c_shdr->sh_size != 0) &&
3595 		    (_cache->c_shdr->sh_type != SHT_NOBITS))
3596 			shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
3597 
3598 		/*
3599 		 * If a shstrtab exists, assign the section name.
3600 		 */
3601 		if (names && _cache->c_shdr) {
3602 			if (_cache->c_shdr->sh_name &&
3603 			    /* LINTED */
3604 			    (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
3605 				const char	*symname;
3606 				char		*secname;
3607 
3608 				secname = names + _cache->c_shdr->sh_name;
3609 
3610 				/*
3611 				 * A SUN naming convention employs a "%" within
3612 				 * a section name to indicate a section/symbol
3613 				 * name.  This originated from the compilers
3614 				 * -xF option, that places functions into their
3615 				 * own sections.  This convention (which has no
3616 				 * formal standard) has also been followed for
3617 				 * COMDAT sections.  To demangle the symbol
3618 				 * name, the name must be separated from the
3619 				 * section name.
3620 				 */
3621 				if (((flags & FLG_CTL_DEMANGLE) == 0) ||
3622 				    ((symname = strchr(secname, '%')) == NULL))
3623 					_cache->c_name = secname;
3624 				else {
3625 					size_t	secsz = ++symname - secname;
3626 					size_t	strsz;
3627 
3628 					symname = demangle(symname, flags);
3629 					strsz = secsz + strlen(symname) + 1;
3630 
3631 					if ((_cache->c_name =
3632 					    malloc(strsz)) == NULL) {
3633 						int err = errno;
3634 						(void) fprintf(stderr,
3635 						    MSG_INTL(MSG_ERR_MALLOC),
3636 						    file, strerror(err));
3637 						return (0);
3638 					}
3639 					(void) snprintf(_cache->c_name, strsz,
3640 					    MSG_ORIG(MSG_FMT_SECSYM),
3641 					    EC_WORD(secsz), secname, symname);
3642 				}
3643 
3644 				continue;
3645 			}
3646 
3647 			/*
3648 			 * Generate an error if the section name index is zero
3649 			 * or exceeds the shstrtab data.  Fall through to
3650 			 * fabricate a section name.
3651 			 */
3652 			if ((_cache->c_shdr->sh_name == 0) ||
3653 			    /* LINTED */
3654 			    (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
3655 				(void) fprintf(stderr,
3656 				    MSG_INTL(MSG_ERR_BADSHNAME), file,
3657 				    EC_WORD(ndx),
3658 				    EC_XWORD(_cache->c_shdr->sh_name));
3659 			}
3660 		}
3661 
3662 		/*
3663 		 * If there exists no shstrtab data, or a section header has no
3664 		 * name (an invalid index of 0), then compose a name for the
3665 		 * section.
3666 		 */
3667 		(void) snprintf(scnndxnm, sizeof (scnndxnm),
3668 		    MSG_INTL(MSG_FMT_SCNNDX), ndx);
3669 
3670 		if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
3671 			int err = errno;
3672 			(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
3673 			    file, strerror(err));
3674 			return (0);
3675 		}
3676 		(void) strcpy(_cache->c_name, scnndxnm);
3677 	}
3678 
3679 	/*
3680 	 * Having collected all the sections, validate their address range.
3681 	 * Cases have existed where the section information has been invalid.
3682 	 * This can lead to all sorts of other, hard to diagnose errors, as
3683 	 * each section is processed individually (ie. with elf_getdata()).
3684 	 * Here, we carry out some address comparisons to catch a family of
3685 	 * overlapping memory issues we have observed (likely, there are others
3686 	 * that we have yet to discover).
3687 	 *
3688 	 * Note, should any memory overlap occur, obtaining any additional
3689 	 * data from the file is questionable.  However, it might still be
3690 	 * possible to inspect the ELF header, Programs headers, or individual
3691 	 * sections, so rather than bailing on an error condition, continue
3692 	 * processing to see if any data can be salvaged.
3693 	 */
3694 	if (shdr_ndx_arr_cnt > 1) {
3695 		sort_shdr_ndx_arr_cache = cache;
3696 		qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
3697 		    sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
3698 	}
3699 	for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
3700 		Cache	*_cache = cache + shdr_ndx_arr[ndx];
3701 		Shdr	*shdr = _cache->c_shdr;
3702 		Off	bgn1, bgn = shdr->sh_offset;
3703 		Off	end1, end = shdr->sh_offset + shdr->sh_size;
3704 		size_t	ndx1;
3705 
3706 		/*
3707 		 * Check the section against all following ones, reporting
3708 		 * any overlaps. Since we've sorted the sections by offset,
3709 		 * we can stop after the first comparison that fails. There
3710 		 * are no overlaps in a properly formed ELF file, in which
3711 		 * case this algorithm runs in O(n) time. This will degenerate
3712 		 * to O(n^2) for a completely broken file. Such a file is
3713 		 * (1) highly unlikely, and (2) unusable, so it is reasonable
3714 		 * for the analysis to take longer.
3715 		 */
3716 		for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
3717 			Cache	*_cache1 = cache + shdr_ndx_arr[ndx1];
3718 			Shdr	*shdr1 = _cache1->c_shdr;
3719 
3720 			bgn1 = shdr1->sh_offset;
3721 			end1 = shdr1->sh_offset + shdr1->sh_size;
3722 
3723 			if (((bgn1 <= bgn) && (end1 > bgn)) ||
3724 			    ((bgn1 < end) && (end1 >= end))) {
3725 				(void) fprintf(stderr,
3726 				    MSG_INTL(MSG_ERR_SECMEMOVER), file,
3727 				    EC_WORD(elf_ndxscn(_cache->c_scn)),
3728 				    _cache->c_name, EC_OFF(bgn), EC_OFF(end),
3729 				    EC_WORD(elf_ndxscn(_cache1->c_scn)),
3730 				    _cache1->c_name, EC_OFF(bgn1),
3731 				    EC_OFF(end1));
3732 			} else {	/* No overlap, so can stop */
3733 				break;
3734 			}
3735 		}
3736 
3737 		/*
3738 		 * In addition to checking for sections overlapping
3739 		 * each other (done above), we should also make sure
3740 		 * the section doesn't overlap the section header array.
3741 		 */
3742 		bgn1 = ehdr->e_shoff;
3743 		end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
3744 
3745 		if (((bgn1 <= bgn) && (end1 > bgn)) ||
3746 		    ((bgn1 < end) && (end1 >= end))) {
3747 			(void) fprintf(stderr,
3748 			    MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
3749 			    EC_OFF(end1),
3750 			    EC_WORD(elf_ndxscn(_cache->c_scn)),
3751 			    _cache->c_name, EC_OFF(bgn), EC_OFF(end));
3752 		}
3753 	}
3754 
3755 	/*
3756 	 * Obtain the data for each section.
3757 	 */
3758 	for (ndx = 1; ndx < shnum; ndx++) {
3759 		Cache	*_cache = &cache[ndx];
3760 		Elf_Scn	*scn = _cache->c_scn;
3761 
3762 		if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
3763 			failure(file, MSG_ORIG(MSG_ELF_GETDATA));
3764 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
3765 			    EC_WORD(elf_ndxscn(scn)));
3766 		}
3767 
3768 		/*
3769 		 * If a string table, verify that it has NULL first and
3770 		 * final bytes.
3771 		 */
3772 		if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
3773 		    (_cache->c_data->d_buf != NULL) &&
3774 		    (_cache->c_data->d_size > 0)) {
3775 			const char *s = _cache->c_data->d_buf;
3776 
3777 			if ((*s != '\0') ||
3778 			    (*(s + _cache->c_data->d_size - 1) != '\0'))
3779 				(void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
3780 				    file, _cache->c_name);
3781 		}
3782 	}
3783 
3784 	return (1);
3785 }
3786 
3787 
3788 
3789 int
3790 regular(const char *file, int fd, Elf *elf, uint_t flags,
3791     const char *wname, int wfd)
3792 {
3793 	Elf_Scn		*scn;
3794 	Ehdr		*ehdr;
3795 	size_t		ndx, shstrndx, shnum, phnum;
3796 	Shdr		*shdr;
3797 	Cache		*cache;
3798 	VERSYM_STATE	versym;
3799 	int		ret = 0;
3800 	int		addr_align;
3801 
3802 	if ((ehdr = elf_getehdr(elf)) == NULL) {
3803 		failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
3804 		return (ret);
3805 	}
3806 
3807 	if (elf_getshnum(elf, &shnum) == 0) {
3808 		failure(file, MSG_ORIG(MSG_ELF_GETSHNUM));
3809 		return (ret);
3810 	}
3811 
3812 	if (elf_getshstrndx(elf, &shstrndx) == 0) {
3813 		failure(file, MSG_ORIG(MSG_ELF_GETSHSTRNDX));
3814 		return (ret);
3815 	}
3816 
3817 	if (elf_getphnum(elf, &phnum) == 0) {
3818 		failure(file, MSG_ORIG(MSG_ELF_GETPHNUM));
3819 		return (ret);
3820 	}
3821 	/*
3822 	 * If the user requested section headers derived from the
3823 	 * program headers (-P option) and this file doesn't have
3824 	 * any program headers (i.e. ET_REL), then we can't do it.
3825 	 */
3826 	if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
3827 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
3828 		return (ret);
3829 	}
3830 
3831 
3832 	if ((scn = elf_getscn(elf, 0)) != NULL) {
3833 		if ((shdr = elf_getshdr(scn)) == NULL) {
3834 			failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
3835 			(void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
3836 			return (ret);
3837 		}
3838 	} else
3839 		shdr = NULL;
3840 
3841 	/*
3842 	 * Print the elf header.
3843 	 */
3844 	if (flags & FLG_SHOW_EHDR)
3845 		Elf_ehdr(0, ehdr, shdr);
3846 
3847 	/*
3848 	 * If the section headers or program headers have inadequate
3849 	 * alignment for the class of object, print a warning. libelf
3850 	 * can handle such files, but programs that use them can crash
3851 	 * when they dereference unaligned items.
3852 	 *
3853 	 * Note that the AMD64 ABI, although it is a 64-bit architecture,
3854 	 * allows access to data types smaller than 128-bits to be on
3855 	 * word alignment.
3856 	 */
3857 	if (ehdr->e_machine == EM_AMD64)
3858 		addr_align = sizeof (Word);
3859 	else
3860 		addr_align = sizeof (Addr);
3861 
3862 	if (ehdr->e_phoff & (addr_align - 1))
3863 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
3864 	if (ehdr->e_shoff & (addr_align - 1))
3865 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
3866 
3867 	/*
3868 	 * Print the program headers.
3869 	 */
3870 	if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
3871 		Phdr	*phdr;
3872 
3873 		if ((phdr = elf_getphdr(elf)) == NULL) {
3874 			failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
3875 			return (ret);
3876 		}
3877 
3878 		for (ndx = 0; ndx < phnum; phdr++, ndx++) {
3879 			if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
3880 			    NULL, ndx, phdr->p_type))
3881 				continue;
3882 
3883 			dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3884 			dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
3885 			Elf_phdr(0, ehdr->e_machine, phdr);
3886 		}
3887 	}
3888 
3889 	/*
3890 	 * If we have flag bits set that explicitly require a show or calc
3891 	 * operation, but none of them require the section headers, then
3892 	 * we are done and can return now.
3893 	 */
3894 	if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
3895 	    ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
3896 		return (ret);
3897 
3898 	/*
3899 	 * If there are no section headers, then resort to synthesizing
3900 	 * section headers from the program headers. This is normally
3901 	 * only done by explicit request, but in this case there's no
3902 	 * reason not to go ahead, since the alternative is simply to quit.
3903 	 */
3904 	if ((shnum <= 1) && ((flags & FLG_CTL_FAKESHDR) == 0)) {
3905 		(void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
3906 		flags |= FLG_CTL_FAKESHDR;
3907 	}
3908 
3909 	/*
3910 	 * Generate a cache of section headers and related information
3911 	 * for use by the rest of elfdump. If requested (or the file
3912 	 * contains no section headers), we generate a fake set of
3913 	 * headers from the information accessible from the program headers.
3914 	 * Otherwise, we use the real section headers contained in the file.
3915 	 */
3916 
3917 	if (flags & FLG_CTL_FAKESHDR) {
3918 		if (fake_shdr_cache(file, fd, elf, ehdr, &cache, &shnum) == 0)
3919 			return (ret);
3920 	} else {
3921 		if (shdr_cache(file, elf, ehdr, shstrndx, shnum,
3922 		    &cache, flags) == 0)
3923 			return (ret);
3924 	}
3925 
3926 	/*
3927 	 * Everything from this point on requires section headers.
3928 	 * If we have no section headers, there is no reason to continue.
3929 	 */
3930 	if (shnum <= 1)
3931 		goto done;
3932 
3933 	/*
3934 	 * If -w was specified, find and write out the section(s) data.
3935 	 */
3936 	if (wfd) {
3937 		for (ndx = 1; ndx < shnum; ndx++) {
3938 			Cache	*_cache = &cache[ndx];
3939 
3940 			if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
3941 			    ndx, _cache->c_shdr->sh_type) &&
3942 			    _cache->c_data && _cache->c_data->d_buf) {
3943 				if (write(wfd, _cache->c_data->d_buf,
3944 				    _cache->c_data->d_size) !=
3945 				    _cache->c_data->d_size) {
3946 					int err = errno;
3947 					(void) fprintf(stderr,
3948 					    MSG_INTL(MSG_ERR_WRITE), wname,
3949 					    strerror(err));
3950 					/*
3951 					 * Return an exit status of 1, because
3952 					 * the failure is not related to the
3953 					 * ELF file, but by system resources.
3954 					 */
3955 					ret = 1;
3956 					goto done;
3957 				}
3958 			}
3959 		}
3960 	}
3961 
3962 	/*
3963 	 * If we have no flag bits set that explicitly require a show or calc
3964 	 * operation, but match options (-I, -N, -T) were used, then run
3965 	 * through the section headers and see if we can't deduce show flags
3966 	 * from the match options given.
3967 	 *
3968 	 * We don't do this if -w was specified, because (-I, -N, -T) used
3969 	 * with -w in lieu of some other option is supposed to be quiet.
3970 	 */
3971 	if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
3972 	    ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
3973 		for (ndx = 1; ndx < shnum; ndx++) {
3974 			Cache	*_cache = &cache[ndx];
3975 
3976 			if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
3977 			    ndx, _cache->c_shdr->sh_type))
3978 				continue;
3979 
3980 			switch (_cache->c_shdr->sh_type) {
3981 			case SHT_PROGBITS:
3982 				/*
3983 				 * Heuristic time: It is usually bad form
3984 				 * to assume the meaning/format of a PROGBITS
3985 				 * section based on its name. However, there
3986 				 * are exceptions: The ELF ABI specifies
3987 				 * .interp and .got sections by name. Existing
3988 				 * practice has similarly pinned down the
3989 				 * meaning of unwind sections (.eh_frame and
3990 				 * .eh_frame_hdr).
3991 				 *
3992 				 * Check for these special names.
3993 				 */
3994 				if (strcmp(_cache->c_name,
3995 				    MSG_ORIG(MSG_ELF_INTERP)) == 0)
3996 					flags |= FLG_SHOW_INTERP;
3997 				else if (strcmp(_cache->c_name,
3998 				    MSG_ORIG(MSG_ELF_GOT)) == 0)
3999 					flags |= FLG_SHOW_GOT;
4000 				else if (strncmp(_cache->c_name,
4001 				    MSG_ORIG(MSG_SCN_FRM),
4002 				    MSG_SCN_FRM_SIZE) == 0)
4003 					flags |= FLG_SHOW_UNWIND;
4004 				break;
4005 
4006 			case SHT_SYMTAB:
4007 			case SHT_DYNSYM:
4008 			case SHT_SUNW_LDYNSYM:
4009 			case SHT_SUNW_versym:
4010 			case SHT_SYMTAB_SHNDX:
4011 				flags |= FLG_SHOW_SYMBOLS;
4012 				break;
4013 
4014 			case SHT_RELA:
4015 			case SHT_REL:
4016 				flags |= FLG_SHOW_RELOC;
4017 				break;
4018 
4019 			case SHT_HASH:
4020 				flags |= FLG_SHOW_HASH;
4021 				break;
4022 
4023 			case SHT_DYNAMIC:
4024 				flags |= FLG_SHOW_DYNAMIC;
4025 				break;
4026 
4027 			case SHT_NOTE:
4028 				flags |= FLG_SHOW_NOTE;
4029 				break;
4030 
4031 			case SHT_GROUP:
4032 				flags |= FLG_SHOW_GROUP;
4033 				break;
4034 
4035 			case SHT_SUNW_symsort:
4036 			case SHT_SUNW_tlssort:
4037 				flags |= FLG_SHOW_SORT;
4038 				break;
4039 
4040 			case SHT_SUNW_cap:
4041 				flags |= FLG_SHOW_CAP;
4042 				break;
4043 
4044 			case SHT_SUNW_move:
4045 				flags |= FLG_SHOW_MOVE;
4046 				break;
4047 
4048 			case SHT_SUNW_syminfo:
4049 				flags |= FLG_SHOW_SYMINFO;
4050 				break;
4051 
4052 			case SHT_SUNW_verdef:
4053 			case SHT_SUNW_verneed:
4054 				flags |= FLG_SHOW_VERSIONS;
4055 				break;
4056 
4057 			case SHT_AMD64_UNWIND:
4058 				flags |= FLG_SHOW_UNWIND;
4059 				break;
4060 			}
4061 		}
4062 	}
4063 
4064 
4065 	if (flags & FLG_SHOW_SHDR)
4066 		sections(file, cache, shnum, ehdr);
4067 
4068 	if (flags & FLG_SHOW_INTERP)
4069 		interp(file, cache, shnum, phnum, elf);
4070 
4071 	versions(cache, shnum, file, flags, &versym);
4072 
4073 	if (flags & FLG_SHOW_SYMBOLS)
4074 		symbols(cache, shnum, ehdr, &versym, file, flags);
4075 
4076 	if (flags & FLG_SHOW_SORT)
4077 		sunw_sort(cache, shnum, ehdr, &versym, file, flags);
4078 
4079 	if (flags & FLG_SHOW_HASH)
4080 		hash(cache, shnum, file, flags);
4081 
4082 	if (flags & FLG_SHOW_GOT)
4083 		got(cache, shnum, ehdr, file);
4084 
4085 	if (flags & FLG_SHOW_GROUP)
4086 		group(cache, shnum, file, flags);
4087 
4088 	if (flags & FLG_SHOW_SYMINFO)
4089 		syminfo(cache, shnum, file);
4090 
4091 	if (flags & FLG_SHOW_RELOC)
4092 		reloc(cache, shnum, ehdr, file);
4093 
4094 	if (flags & FLG_SHOW_DYNAMIC)
4095 		dynamic(cache, shnum, ehdr, file);
4096 
4097 	if (flags & FLG_SHOW_NOTE) {
4098 		Word	note_cnt;
4099 		size_t	note_shnum;
4100 		Cache	*note_cache;
4101 
4102 		note_cnt = note(cache, shnum, ehdr, file);
4103 
4104 		/*
4105 		 * Solaris core files have section headers, but these
4106 		 * headers do not include SHT_NOTE sections that reference
4107 		 * the core note sections. This means that note() won't
4108 		 * find the core notes. Fake section headers (-P option)
4109 		 * recover these sections, but it is inconvenient to require
4110 		 * users to specify -P in this situation. If the following
4111 		 * are all true:
4112 		 *
4113 		 *	- No note sections were found
4114 		 *	- This is a core file
4115 		 *	- We are not already using fake section headers
4116 		 *
4117 		 * then we will automatically generate fake section headers
4118 		 * and then process them in a second call to note().
4119 		 */
4120 		if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
4121 		    !(flags & FLG_CTL_FAKESHDR) &&
4122 		    (fake_shdr_cache(file, fd, elf, ehdr,
4123 		    &note_cache, &note_shnum) != 0)) {
4124 			(void) note(note_cache, note_shnum, ehdr, file);
4125 			fake_shdr_cache_free(note_cache, note_shnum);
4126 		}
4127 	}
4128 
4129 	if (flags & FLG_SHOW_MOVE)
4130 		move(cache, shnum, file, flags);
4131 
4132 	if (flags & FLG_CALC_CHECKSUM)
4133 		checksum(elf);
4134 
4135 	if (flags & FLG_SHOW_CAP)
4136 		cap(file, cache, shnum, phnum, ehdr, elf);
4137 
4138 	if (flags & FLG_SHOW_UNWIND)
4139 		unwind(cache, shnum, phnum, ehdr, file, elf, flags);
4140 
4141 
4142 	/* Release the memory used to cache section headers */
4143 done:
4144 	if (flags & FLG_CTL_FAKESHDR)
4145 		fake_shdr_cache_free(cache, shnum);
4146 	else
4147 		free(cache);
4148 
4149 	return (ret);
4150 }
4151