1 /* 2 * Copyright (c) 1999-2004, 2006 Sendmail, Inc. and its suppliers. 3 * All rights reserved. 4 * 5 * By using this file, you agree to the terms and conditions set 6 * forth in the LICENSE file which can be found at the top level of 7 * the sendmail distribution. 8 * 9 */ 10 11 #pragma ident "%Z%%M% %I% %E% SMI" 12 13 #include <sm/gen.h> 14 SM_RCSID("@(#)$Id: engine.c,v 8.121 2006/04/18 21:01:46 ca Exp $") 15 16 #include "libmilter.h" 17 18 #if NETINET || NETINET6 19 # include <arpa/inet.h> 20 #endif /* NETINET || NETINET6 */ 21 22 /* generic argument for functions in the command table */ 23 struct arg_struct 24 { 25 size_t a_len; /* length of buffer */ 26 char *a_buf; /* argument string */ 27 int a_idx; /* index for macro array */ 28 SMFICTX_PTR a_ctx; /* context */ 29 }; 30 31 typedef struct arg_struct genarg; 32 33 /* structure for commands received from MTA */ 34 struct cmdfct_t 35 { 36 char cm_cmd; /* command */ 37 int cm_argt; /* type of arguments expected */ 38 int cm_next; /* next state */ 39 int cm_todo; /* what to do next */ 40 int cm_macros; /* index for macros */ 41 int (*cm_fct) __P((genarg *)); /* function to execute */ 42 }; 43 44 typedef struct cmdfct_t cmdfct; 45 46 /* possible values for cm_argt */ 47 #define CM_ARG0 0 /* no args */ 48 #define CM_ARG1 1 /* one arg (string) */ 49 #define CM_ARG2 2 /* two args (strings) */ 50 #define CM_ARGA 4 /* one string and _SOCK_ADDR */ 51 #define CM_ARGO 5 /* two integers */ 52 #define CM_ARGV 8 /* \0 separated list of args, NULL-terminated */ 53 #define CM_ARGN 9 /* \0 separated list of args (strings) */ 54 55 /* possible values for cm_todo */ 56 #define CT_CONT 0x0000 /* continue reading commands */ 57 #define CT_IGNO 0x0001 /* continue even when error */ 58 59 /* not needed right now, done via return code instead */ 60 #define CT_KEEP 0x0004 /* keep buffer (contains symbols) */ 61 #define CT_END 0x0008 /* start replying */ 62 63 /* index in macro array: macros only for these commands */ 64 #define CI_NONE (-1) 65 #define CI_CONN 0 66 #define CI_HELO 1 67 #define CI_MAIL 2 68 #define CI_RCPT 3 69 #define CI_EOM 4 70 #if CI_EOM >= MAX_MACROS_ENTRIES 71 ERROR: do not compile with CI_EOM >= MAX_MACROS_ENTRIES 72 #endif 73 74 /* function prototypes */ 75 static int st_abortfct __P((genarg *)); 76 static int st_macros __P((genarg *)); 77 static int st_optionneg __P((genarg *)); 78 static int st_bodychunk __P((genarg *)); 79 static int st_connectinfo __P((genarg *)); 80 static int st_bodyend __P((genarg *)); 81 static int st_helo __P((genarg *)); 82 static int st_header __P((genarg *)); 83 static int st_sender __P((genarg *)); 84 static int st_rcpt __P((genarg *)); 85 #if SMFI_VERSION > 2 86 static int st_unknown __P((genarg *)); 87 #endif /* SMFI_VERSION > 2 */ 88 #if SMFI_VERSION > 3 89 static int st_data __P((genarg *)); 90 #endif /* SMFI_VERSION > 3 */ 91 static int st_eoh __P((genarg *)); 92 static int st_quit __P((genarg *)); 93 static int sendreply __P((sfsistat, socket_t, struct timeval *, SMFICTX_PTR)); 94 static void fix_stm __P((SMFICTX_PTR)); 95 static bool trans_ok __P((int, int)); 96 static char **dec_argv __P((char *, size_t)); 97 static int dec_arg2 __P((char *, size_t, char **, char **)); 98 99 /* states */ 100 #define ST_NONE (-1) 101 #define ST_INIT 0 /* initial state */ 102 #define ST_OPTS 1 /* option negotiation */ 103 #define ST_CONN 2 /* connection info */ 104 #define ST_HELO 3 /* helo */ 105 #define ST_MAIL 4 /* mail from */ 106 #define ST_RCPT 5 /* rcpt to */ 107 #define ST_DATA 6 /* data */ 108 #define ST_HDRS 7 /* headers */ 109 #define ST_EOHS 8 /* end of headers */ 110 #define ST_BODY 9 /* body */ 111 #define ST_ENDM 10 /* end of message */ 112 #define ST_QUIT 11 /* quit */ 113 #define ST_ABRT 12 /* abort */ 114 #define ST_UNKN 13 /* unknown SMTP command */ 115 #define ST_LAST ST_UNKN /* last valid state */ 116 #define ST_SKIP 15 /* not a state but required for the state table */ 117 118 /* in a mail transaction? must be before eom according to spec. */ 119 #define ST_IN_MAIL(st) ((st) >= ST_MAIL && (st) < ST_ENDM) 120 121 /* 122 ** set of next states 123 ** each state (ST_*) corresponds to bit in an int value (1 << state) 124 ** each state has a set of allowed transitions ('or' of bits of states) 125 ** so a state transition is valid if the mask of the next state 126 ** is set in the NX_* value 127 ** this function is coded in trans_ok(), see below. 128 */ 129 130 #define MI_MASK(x) (0x0001 << (x)) /* generate a bit "mask" for a state */ 131 #define NX_INIT (MI_MASK(ST_OPTS)) 132 #define NX_OPTS (MI_MASK(ST_CONN) | MI_MASK(ST_UNKN)) 133 #define NX_CONN (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL) | MI_MASK(ST_UNKN)) 134 #define NX_HELO (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL) | MI_MASK(ST_UNKN)) 135 #define NX_MAIL (MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT) | MI_MASK(ST_UNKN)) 136 #define NX_RCPT (MI_MASK(ST_HDRS) | MI_MASK(ST_EOHS) | MI_MASK(ST_DATA) | \ 137 MI_MASK(ST_BODY) | MI_MASK(ST_ENDM) | \ 138 MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT) | MI_MASK(ST_UNKN)) 139 #define NX_DATA (MI_MASK(ST_EOHS) | MI_MASK(ST_HDRS) | MI_MASK(ST_ABRT)) 140 #define NX_HDRS (MI_MASK(ST_EOHS) | MI_MASK(ST_HDRS) | MI_MASK(ST_ABRT)) 141 #define NX_EOHS (MI_MASK(ST_BODY) | MI_MASK(ST_ENDM) | MI_MASK(ST_ABRT)) 142 #define NX_BODY (MI_MASK(ST_ENDM) | MI_MASK(ST_BODY) | MI_MASK(ST_ABRT)) 143 #define NX_ENDM (MI_MASK(ST_QUIT) | MI_MASK(ST_MAIL) | MI_MASK(ST_UNKN)) 144 #define NX_QUIT 0 145 #define NX_ABRT 0 146 #define NX_UNKN (MI_MASK(ST_HELO) | MI_MASK(ST_MAIL) | \ 147 MI_MASK(ST_RCPT) | MI_MASK(ST_ABRT) | \ 148 MI_MASK(ST_DATA) | \ 149 MI_MASK(ST_BODY) | MI_MASK(ST_UNKN) | \ 150 MI_MASK(ST_ABRT) | MI_MASK(ST_QUIT)) 151 #define NX_SKIP MI_MASK(ST_SKIP) 152 153 static int next_states[] = 154 { 155 NX_INIT, 156 NX_OPTS, 157 NX_CONN, 158 NX_HELO, 159 NX_MAIL, 160 NX_RCPT, 161 NX_DATA, 162 NX_HDRS, 163 NX_EOHS, 164 NX_BODY, 165 NX_ENDM, 166 NX_QUIT, 167 NX_ABRT, 168 NX_UNKN 169 }; 170 171 #define SIZE_NEXT_STATES (sizeof(next_states) / sizeof(next_states[0])) 172 173 /* commands received by milter */ 174 static cmdfct cmds[] = 175 { 176 {SMFIC_ABORT, CM_ARG0, ST_ABRT, CT_CONT, CI_NONE, st_abortfct }, 177 {SMFIC_MACRO, CM_ARGV, ST_NONE, CT_KEEP, CI_NONE, st_macros }, 178 {SMFIC_BODY, CM_ARG1, ST_BODY, CT_CONT, CI_NONE, st_bodychunk }, 179 {SMFIC_CONNECT, CM_ARG2, ST_CONN, CT_CONT, CI_CONN, st_connectinfo }, 180 {SMFIC_BODYEOB, CM_ARG1, ST_ENDM, CT_CONT, CI_EOM, st_bodyend }, 181 {SMFIC_HELO, CM_ARG1, ST_HELO, CT_CONT, CI_HELO, st_helo }, 182 {SMFIC_HEADER, CM_ARG2, ST_HDRS, CT_CONT, CI_NONE, st_header }, 183 {SMFIC_MAIL, CM_ARGV, ST_MAIL, CT_CONT, CI_MAIL, st_sender }, 184 {SMFIC_OPTNEG, CM_ARGO, ST_OPTS, CT_CONT, CI_NONE, st_optionneg }, 185 {SMFIC_EOH, CM_ARG0, ST_EOHS, CT_CONT, CI_NONE, st_eoh }, 186 {SMFIC_QUIT, CM_ARG0, ST_QUIT, CT_END, CI_NONE, st_quit }, 187 #if SMFI_VERSION > 3 188 {SMFIC_DATA, CM_ARG0, ST_DATA, CT_CONT, CI_NONE, st_data }, 189 #endif /* SMFI_VERSION > 3 */ 190 {SMFIC_RCPT, CM_ARGV, ST_RCPT, CT_IGNO, CI_RCPT, st_rcpt } 191 #if SMFI_VERSION > 2 192 ,{SMFIC_UNKNOWN,CM_ARG1, ST_UNKN, CT_IGNO, CI_NONE, st_unknown } 193 #endif /* SMFI_VERSION > 2 */ 194 }; 195 196 /* additional (internal) reply codes */ 197 #define _SMFIS_KEEP 20 198 #define _SMFIS_ABORT 21 199 #define _SMFIS_OPTIONS 22 200 #define _SMFIS_NOREPLY 23 201 #define _SMFIS_FAIL (-1) 202 #define _SMFIS_NONE (-2) 203 204 /* 205 ** MI_ENGINE -- receive commands and process them 206 ** 207 ** Parameters: 208 ** ctx -- context structure 209 ** 210 ** Returns: 211 ** MI_FAILURE/MI_SUCCESS 212 */ 213 int 214 mi_engine(ctx) 215 SMFICTX_PTR ctx; 216 { 217 size_t len; 218 int i; 219 socket_t sd; 220 int ret = MI_SUCCESS; 221 int ncmds = sizeof(cmds) / sizeof(cmdfct); 222 int curstate = ST_INIT; 223 int newstate; 224 bool call_abort; 225 sfsistat r; 226 char cmd; 227 char *buf = NULL; 228 genarg arg; 229 struct timeval timeout; 230 int (*f) __P((genarg *)); 231 sfsistat (*fi_abort) __P((SMFICTX *)); 232 sfsistat (*fi_close) __P((SMFICTX *)); 233 234 arg.a_ctx = ctx; 235 sd = ctx->ctx_sd; 236 fi_abort = ctx->ctx_smfi->xxfi_abort; 237 mi_clr_macros(ctx, 0); 238 fix_stm(ctx); 239 r = _SMFIS_NONE; 240 do 241 { 242 /* call abort only if in a mail transaction */ 243 call_abort = ST_IN_MAIL(curstate); 244 timeout.tv_sec = ctx->ctx_timeout; 245 timeout.tv_usec = 0; 246 if (mi_stop() == MILTER_ABRT) 247 { 248 if (ctx->ctx_dbg > 3) 249 sm_dprintf("[%d] milter_abort\n", 250 (int) ctx->ctx_id); 251 ret = MI_FAILURE; 252 break; 253 } 254 255 /* 256 ** Notice: buf is allocated by mi_rd_cmd() and it will 257 ** usually be free()d after it has been used in f(). 258 ** However, if the function returns _SMFIS_KEEP then buf 259 ** contains macros and will not be free()d. 260 ** Hence r must be set to _SMFIS_NONE if a new buf is 261 ** allocated to avoid problem with housekeeping, esp. 262 ** if the code "break"s out of the loop. 263 */ 264 265 r = _SMFIS_NONE; 266 if ((buf = mi_rd_cmd(sd, &timeout, &cmd, &len, 267 ctx->ctx_smfi->xxfi_name)) == NULL && 268 cmd < SMFIC_VALIDCMD) 269 { 270 if (ctx->ctx_dbg > 5) 271 sm_dprintf("[%d] mi_engine: mi_rd_cmd error (%x)\n", 272 (int) ctx->ctx_id, (int) cmd); 273 274 /* 275 ** eof is currently treated as failure -> 276 ** abort() instead of close(), otherwise use: 277 ** if (cmd != SMFIC_EOF) 278 */ 279 280 ret = MI_FAILURE; 281 break; 282 } 283 if (ctx->ctx_dbg > 4) 284 sm_dprintf("[%d] got cmd '%c' len %d\n", 285 (int) ctx->ctx_id, cmd, (int) len); 286 for (i = 0; i < ncmds; i++) 287 { 288 if (cmd == cmds[i].cm_cmd) 289 break; 290 } 291 if (i >= ncmds) 292 { 293 /* unknown command */ 294 if (ctx->ctx_dbg > 1) 295 sm_dprintf("[%d] cmd '%c' unknown\n", 296 (int) ctx->ctx_id, cmd); 297 ret = MI_FAILURE; 298 break; 299 } 300 if ((f = cmds[i].cm_fct) == NULL) 301 { 302 /* stop for now */ 303 if (ctx->ctx_dbg > 1) 304 sm_dprintf("[%d] cmd '%c' not impl\n", 305 (int) ctx->ctx_id, cmd); 306 ret = MI_FAILURE; 307 break; 308 } 309 310 /* is new state ok? */ 311 newstate = cmds[i].cm_next; 312 if (ctx->ctx_dbg > 5) 313 sm_dprintf("[%d] cur %x new %x nextmask %x\n", 314 (int) ctx->ctx_id, 315 curstate, newstate, next_states[curstate]); 316 317 if (newstate != ST_NONE && !trans_ok(curstate, newstate)) 318 { 319 if (ctx->ctx_dbg > 1) 320 sm_dprintf("[%d] abort: cur %d (%x) new %d (%x) next %x\n", 321 (int) ctx->ctx_id, 322 curstate, MI_MASK(curstate), 323 newstate, MI_MASK(newstate), 324 next_states[curstate]); 325 326 /* call abort only if in a mail transaction */ 327 if (fi_abort != NULL && call_abort) 328 (void) (*fi_abort)(ctx); 329 330 /* 331 ** try to reach the new state from HELO 332 ** if it can't be reached, ignore the command. 333 */ 334 335 curstate = ST_HELO; 336 if (!trans_ok(curstate, newstate)) 337 { 338 if (buf != NULL) 339 { 340 free(buf); 341 buf = NULL; 342 } 343 continue; 344 } 345 } 346 arg.a_len = len; 347 arg.a_buf = buf; 348 if (newstate != ST_NONE) 349 { 350 curstate = newstate; 351 ctx->ctx_state = curstate; 352 } 353 arg.a_idx = cmds[i].cm_macros; 354 call_abort = ST_IN_MAIL(curstate); 355 356 /* call function to deal with command */ 357 r = (*f)(&arg); 358 if (r != _SMFIS_KEEP && buf != NULL) 359 { 360 free(buf); 361 buf = NULL; 362 } 363 if (sendreply(r, sd, &timeout, ctx) != MI_SUCCESS) 364 { 365 ret = MI_FAILURE; 366 break; 367 } 368 369 if (r == SMFIS_ACCEPT) 370 { 371 /* accept mail, no further actions taken */ 372 curstate = ST_HELO; 373 } 374 else if (r == SMFIS_REJECT || r == SMFIS_DISCARD || 375 r == SMFIS_TEMPFAIL) 376 { 377 /* 378 ** further actions depend on current state 379 ** if the IGNO bit is set: "ignore" the error, 380 ** i.e., stay in the current state 381 */ 382 if (!bitset(CT_IGNO, cmds[i].cm_todo)) 383 curstate = ST_HELO; 384 } 385 else if (r == _SMFIS_ABORT) 386 { 387 if (ctx->ctx_dbg > 5) 388 sm_dprintf("[%d] function returned abort\n", 389 (int) ctx->ctx_id); 390 ret = MI_FAILURE; 391 break; 392 } 393 } while (!bitset(CT_END, cmds[i].cm_todo)); 394 395 if (ret != MI_SUCCESS) 396 { 397 /* call abort only if in a mail transaction */ 398 if (fi_abort != NULL && call_abort) 399 (void) (*fi_abort)(ctx); 400 } 401 402 /* close must always be called */ 403 if ((fi_close = ctx->ctx_smfi->xxfi_close) != NULL) 404 (void) (*fi_close)(ctx); 405 if (r != _SMFIS_KEEP && buf != NULL) 406 free(buf); 407 mi_clr_macros(ctx, 0); 408 return ret; 409 } 410 /* 411 ** SENDREPLY -- send a reply to the MTA 412 ** 413 ** Parameters: 414 ** r -- reply code 415 ** sd -- socket descriptor 416 ** timeout_ptr -- (ptr to) timeout to use for sending 417 ** ctx -- context structure 418 ** 419 ** Returns: 420 ** MI_SUCCESS/MI_FAILURE 421 */ 422 423 static int 424 sendreply(r, sd, timeout_ptr, ctx) 425 sfsistat r; 426 socket_t sd; 427 struct timeval *timeout_ptr; 428 SMFICTX_PTR ctx; 429 { 430 int ret = MI_SUCCESS; 431 432 switch (r) 433 { 434 case SMFIS_CONTINUE: 435 ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_CONTINUE, NULL, 0); 436 break; 437 case SMFIS_TEMPFAIL: 438 case SMFIS_REJECT: 439 if (ctx->ctx_reply != NULL && 440 ((r == SMFIS_TEMPFAIL && *ctx->ctx_reply == '4') || 441 (r == SMFIS_REJECT && *ctx->ctx_reply == '5'))) 442 { 443 ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_REPLYCODE, 444 ctx->ctx_reply, 445 strlen(ctx->ctx_reply) + 1); 446 free(ctx->ctx_reply); 447 ctx->ctx_reply = NULL; 448 } 449 else 450 { 451 ret = mi_wr_cmd(sd, timeout_ptr, r == SMFIS_REJECT ? 452 SMFIR_REJECT : SMFIR_TEMPFAIL, NULL, 0); 453 } 454 break; 455 case SMFIS_DISCARD: 456 ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_DISCARD, NULL, 0); 457 break; 458 case SMFIS_ACCEPT: 459 ret = mi_wr_cmd(sd, timeout_ptr, SMFIR_ACCEPT, NULL, 0); 460 break; 461 case _SMFIS_OPTIONS: 462 { 463 char buf[MILTER_OPTLEN]; 464 mi_int32 v; 465 466 v = htonl(ctx->ctx_smfi->xxfi_version); 467 (void) memcpy(&(buf[0]), (void *) &v, MILTER_LEN_BYTES); 468 v = htonl(ctx->ctx_smfi->xxfi_flags); 469 (void) memcpy(&(buf[MILTER_LEN_BYTES]), (void *) &v, 470 MILTER_LEN_BYTES); 471 v = htonl(ctx->ctx_pflags); 472 (void) memcpy(&(buf[MILTER_LEN_BYTES * 2]), (void *) &v, 473 MILTER_LEN_BYTES); 474 ret = mi_wr_cmd(sd, timeout_ptr, SMFIC_OPTNEG, buf, 475 MILTER_OPTLEN); 476 } 477 break; 478 default: /* don't send a reply */ 479 break; 480 } 481 return ret; 482 } 483 484 /* 485 ** CLR_MACROS -- clear set of macros starting from a given index 486 ** 487 ** Parameters: 488 ** ctx -- context structure 489 ** m -- index from which to clear all macros 490 ** 491 ** Returns: 492 ** None. 493 */ 494 void 495 mi_clr_macros(ctx, m) 496 SMFICTX_PTR ctx; 497 int m; 498 { 499 int i; 500 501 for (i = m; i < MAX_MACROS_ENTRIES; i++) 502 { 503 if (ctx->ctx_mac_ptr[i] != NULL) 504 { 505 free(ctx->ctx_mac_ptr[i]); 506 ctx->ctx_mac_ptr[i] = NULL; 507 } 508 if (ctx->ctx_mac_buf[i] != NULL) 509 { 510 free(ctx->ctx_mac_buf[i]); 511 ctx->ctx_mac_buf[i] = NULL; 512 } 513 } 514 } 515 /* 516 ** ST_OPTIONNEG -- negotiate options 517 ** 518 ** Parameters: 519 ** g -- generic argument structure 520 ** 521 ** Returns: 522 ** abort/send options/continue 523 */ 524 525 static int 526 st_optionneg(g) 527 genarg *g; 528 { 529 mi_int32 i, v; 530 531 if (g == NULL || g->a_ctx->ctx_smfi == NULL) 532 return SMFIS_CONTINUE; 533 mi_clr_macros(g->a_ctx, g->a_idx + 1); 534 535 /* check for minimum length */ 536 if (g->a_len < MILTER_OPTLEN) 537 { 538 smi_log(SMI_LOG_ERR, 539 "%s: st_optionneg[%d]: len too short %d < %d", 540 g->a_ctx->ctx_smfi->xxfi_name, 541 (int) g->a_ctx->ctx_id, (int) g->a_len, 542 MILTER_OPTLEN); 543 return _SMFIS_ABORT; 544 } 545 546 (void) memcpy((void *) &i, (void *) &(g->a_buf[0]), 547 MILTER_LEN_BYTES); 548 v = ntohl(i); 549 if (v < g->a_ctx->ctx_smfi->xxfi_version) 550 { 551 /* hard failure for now! */ 552 smi_log(SMI_LOG_ERR, 553 "%s: st_optionneg[%d]: version mismatch MTA: %d < milter: %d", 554 g->a_ctx->ctx_smfi->xxfi_name, 555 (int) g->a_ctx->ctx_id, (int) v, 556 g->a_ctx->ctx_smfi->xxfi_version); 557 return _SMFIS_ABORT; 558 } 559 560 (void) memcpy((void *) &i, (void *) &(g->a_buf[MILTER_LEN_BYTES]), 561 MILTER_LEN_BYTES); 562 v = ntohl(i); 563 564 /* no flags? set to default value for V1 actions */ 565 if (v == 0) 566 v = SMFI_V1_ACTS; 567 i = g->a_ctx->ctx_smfi->xxfi_flags; 568 if ((v & i) != i) 569 { 570 smi_log(SMI_LOG_ERR, 571 "%s: st_optionneg[%d]: 0x%x does not fulfill action requirements 0x%x", 572 g->a_ctx->ctx_smfi->xxfi_name, 573 (int) g->a_ctx->ctx_id, v, i); 574 return _SMFIS_ABORT; 575 } 576 577 (void) memcpy((void *) &i, (void *) &(g->a_buf[MILTER_LEN_BYTES * 2]), 578 MILTER_LEN_BYTES); 579 v = ntohl(i); 580 581 /* no flags? set to default value for V1 protocol */ 582 if (v == 0) 583 v = SMFI_V1_PROT; 584 i = g->a_ctx->ctx_pflags; 585 if ((v & i) != i) 586 { 587 smi_log(SMI_LOG_ERR, 588 "%s: st_optionneg[%d]: 0x%x does not fulfill protocol requirements 0x%x", 589 g->a_ctx->ctx_smfi->xxfi_name, 590 (int) g->a_ctx->ctx_id, v, i); 591 return _SMFIS_ABORT; 592 } 593 594 return _SMFIS_OPTIONS; 595 } 596 /* 597 ** ST_CONNECTINFO -- receive connection information 598 ** 599 ** Parameters: 600 ** g -- generic argument structure 601 ** 602 ** Returns: 603 ** continue or filter-specified value 604 */ 605 606 static int 607 st_connectinfo(g) 608 genarg *g; 609 { 610 size_t l; 611 size_t i; 612 char *s, family; 613 unsigned short port = 0; 614 _SOCK_ADDR sockaddr; 615 sfsistat (*fi_connect) __P((SMFICTX *, char *, _SOCK_ADDR *)); 616 617 if (g == NULL) 618 return _SMFIS_ABORT; 619 mi_clr_macros(g->a_ctx, g->a_idx + 1); 620 if (g->a_ctx->ctx_smfi == NULL || 621 (fi_connect = g->a_ctx->ctx_smfi->xxfi_connect) == NULL) 622 return SMFIS_CONTINUE; 623 624 s = g->a_buf; 625 i = 0; 626 l = g->a_len; 627 while (s[i] != '\0' && i <= l) 628 ++i; 629 if (i + 1 >= l) 630 return _SMFIS_ABORT; 631 632 /* Move past trailing \0 in host string */ 633 i++; 634 family = s[i++]; 635 (void) memset(&sockaddr, '\0', sizeof sockaddr); 636 if (family != SMFIA_UNKNOWN) 637 { 638 if (i + sizeof port >= l) 639 { 640 smi_log(SMI_LOG_ERR, 641 "%s: connect[%d]: wrong len %d >= %d", 642 g->a_ctx->ctx_smfi->xxfi_name, 643 (int) g->a_ctx->ctx_id, (int) i, (int) l); 644 return _SMFIS_ABORT; 645 } 646 (void) memcpy((void *) &port, (void *) (s + i), 647 sizeof port); 648 i += sizeof port; 649 650 /* make sure string is terminated */ 651 if (s[l - 1] != '\0') 652 return _SMFIS_ABORT; 653 # if NETINET 654 if (family == SMFIA_INET) 655 { 656 if (inet_aton(s + i, (struct in_addr *) &sockaddr.sin.sin_addr) 657 != 1) 658 { 659 smi_log(SMI_LOG_ERR, 660 "%s: connect[%d]: inet_aton failed", 661 g->a_ctx->ctx_smfi->xxfi_name, 662 (int) g->a_ctx->ctx_id); 663 return _SMFIS_ABORT; 664 } 665 sockaddr.sa.sa_family = AF_INET; 666 if (port > 0) 667 sockaddr.sin.sin_port = port; 668 } 669 else 670 # endif /* NETINET */ 671 # if NETINET6 672 if (family == SMFIA_INET6) 673 { 674 if (mi_inet_pton(AF_INET6, s + i, 675 &sockaddr.sin6.sin6_addr) != 1) 676 { 677 smi_log(SMI_LOG_ERR, 678 "%s: connect[%d]: mi_inet_pton failed", 679 g->a_ctx->ctx_smfi->xxfi_name, 680 (int) g->a_ctx->ctx_id); 681 return _SMFIS_ABORT; 682 } 683 sockaddr.sa.sa_family = AF_INET6; 684 if (port > 0) 685 sockaddr.sin6.sin6_port = port; 686 } 687 else 688 # endif /* NETINET6 */ 689 # if NETUNIX 690 if (family == SMFIA_UNIX) 691 { 692 if (sm_strlcpy(sockaddr.sunix.sun_path, s + i, 693 sizeof sockaddr.sunix.sun_path) >= 694 sizeof sockaddr.sunix.sun_path) 695 { 696 smi_log(SMI_LOG_ERR, 697 "%s: connect[%d]: path too long", 698 g->a_ctx->ctx_smfi->xxfi_name, 699 (int) g->a_ctx->ctx_id); 700 return _SMFIS_ABORT; 701 } 702 sockaddr.sunix.sun_family = AF_UNIX; 703 } 704 else 705 # endif /* NETUNIX */ 706 { 707 smi_log(SMI_LOG_ERR, 708 "%s: connect[%d]: unknown family %d", 709 g->a_ctx->ctx_smfi->xxfi_name, 710 (int) g->a_ctx->ctx_id, family); 711 return _SMFIS_ABORT; 712 } 713 } 714 return (*fi_connect)(g->a_ctx, g->a_buf, 715 family != SMFIA_UNKNOWN ? &sockaddr : NULL); 716 } 717 718 /* 719 ** ST_EOH -- end of headers 720 ** 721 ** Parameters: 722 ** g -- generic argument structure 723 ** 724 ** Returns: 725 ** continue or filter-specified value 726 */ 727 728 static int 729 st_eoh(g) 730 genarg *g; 731 { 732 sfsistat (*fi_eoh) __P((SMFICTX *)); 733 734 if (g == NULL) 735 return _SMFIS_ABORT; 736 if (g->a_ctx->ctx_smfi != NULL && 737 (fi_eoh = g->a_ctx->ctx_smfi->xxfi_eoh) != NULL) 738 return (*fi_eoh)(g->a_ctx); 739 return SMFIS_CONTINUE; 740 } 741 742 #if SMFI_VERSION > 3 743 /* 744 ** ST_DATA -- DATA command 745 ** 746 ** Parameters: 747 ** g -- generic argument structure 748 ** 749 ** Returns: 750 ** continue or filter-specified value 751 */ 752 753 static int 754 st_data(g) 755 genarg *g; 756 { 757 sfsistat (*fi_data) __P((SMFICTX *)); 758 759 if (g == NULL) 760 return _SMFIS_ABORT; 761 if (g->a_ctx->ctx_smfi != NULL && 762 (fi_data = g->a_ctx->ctx_smfi->xxfi_data) != NULL) 763 return (*fi_data)(g->a_ctx); 764 return SMFIS_CONTINUE; 765 } 766 #endif /* SMFI_VERSION > 3 */ 767 768 /* 769 ** ST_HELO -- helo/ehlo command 770 ** 771 ** Parameters: 772 ** g -- generic argument structure 773 ** 774 ** Returns: 775 ** continue or filter-specified value 776 */ 777 static int 778 st_helo(g) 779 genarg *g; 780 { 781 sfsistat (*fi_helo) __P((SMFICTX *, char *)); 782 783 if (g == NULL) 784 return _SMFIS_ABORT; 785 mi_clr_macros(g->a_ctx, g->a_idx + 1); 786 if (g->a_ctx->ctx_smfi != NULL && 787 (fi_helo = g->a_ctx->ctx_smfi->xxfi_helo) != NULL) 788 { 789 /* paranoia: check for terminating '\0' */ 790 if (g->a_len == 0 || g->a_buf[g->a_len - 1] != '\0') 791 return MI_FAILURE; 792 return (*fi_helo)(g->a_ctx, g->a_buf); 793 } 794 return SMFIS_CONTINUE; 795 } 796 /* 797 ** ST_HEADER -- header line 798 ** 799 ** Parameters: 800 ** g -- generic argument structure 801 ** 802 ** Returns: 803 ** continue or filter-specified value 804 */ 805 806 static int 807 st_header(g) 808 genarg *g; 809 { 810 char *hf, *hv; 811 sfsistat (*fi_header) __P((SMFICTX *, char *, char *)); 812 813 if (g == NULL) 814 return _SMFIS_ABORT; 815 if (g->a_ctx->ctx_smfi == NULL || 816 (fi_header = g->a_ctx->ctx_smfi->xxfi_header) == NULL) 817 return SMFIS_CONTINUE; 818 if (dec_arg2(g->a_buf, g->a_len, &hf, &hv) == MI_SUCCESS) 819 return (*fi_header)(g->a_ctx, hf, hv); 820 else 821 return _SMFIS_ABORT; 822 } 823 824 #define ARGV_FCT(lf, rf, idx) \ 825 char **argv; \ 826 sfsistat (*lf) __P((SMFICTX *, char **)); \ 827 int r; \ 828 \ 829 if (g == NULL) \ 830 return _SMFIS_ABORT; \ 831 mi_clr_macros(g->a_ctx, g->a_idx + 1); \ 832 if (g->a_ctx->ctx_smfi == NULL || \ 833 (lf = g->a_ctx->ctx_smfi->rf) == NULL) \ 834 return SMFIS_CONTINUE; \ 835 if ((argv = dec_argv(g->a_buf, g->a_len)) == NULL) \ 836 return _SMFIS_ABORT; \ 837 r = (*lf)(g->a_ctx, argv); \ 838 free(argv); \ 839 return r; 840 841 /* 842 ** ST_SENDER -- MAIL FROM command 843 ** 844 ** Parameters: 845 ** g -- generic argument structure 846 ** 847 ** Returns: 848 ** continue or filter-specified value 849 */ 850 851 static int 852 st_sender(g) 853 genarg *g; 854 { 855 ARGV_FCT(fi_envfrom, xxfi_envfrom, CI_MAIL) 856 } 857 /* 858 ** ST_RCPT -- RCPT TO command 859 ** 860 ** Parameters: 861 ** g -- generic argument structure 862 ** 863 ** Returns: 864 ** continue or filter-specified value 865 */ 866 867 static int 868 st_rcpt(g) 869 genarg *g; 870 { 871 ARGV_FCT(fi_envrcpt, xxfi_envrcpt, CI_RCPT) 872 } 873 874 #if SMFI_VERSION > 2 875 /* 876 ** ST_UNKNOWN -- unrecognized or unimplemented command 877 ** 878 ** Parameters: 879 ** g -- generic argument structure 880 ** 881 ** Returns: 882 ** continue or filter-specified value 883 */ 884 885 static int 886 st_unknown(g) 887 genarg *g; 888 { 889 sfsistat (*fi_unknown) __P((SMFICTX *, char *)); 890 891 if (g == NULL) 892 return _SMFIS_ABORT; 893 mi_clr_macros(g->a_ctx, g->a_idx + 1); 894 if (g->a_ctx->ctx_smfi != NULL && 895 (fi_unknown = g->a_ctx->ctx_smfi->xxfi_unknown) != NULL) 896 return (*fi_unknown)(g->a_ctx, g->a_buf); 897 return SMFIS_CONTINUE; 898 } 899 #endif /* SMFI_VERSION > 2 */ 900 901 /* 902 ** ST_MACROS -- deal with macros received from the MTA 903 ** 904 ** Parameters: 905 ** g -- generic argument structure 906 ** 907 ** Returns: 908 ** continue/keep 909 ** 910 ** Side effects: 911 ** set pointer in macro array to current values. 912 */ 913 914 static int 915 st_macros(g) 916 genarg *g; 917 { 918 int i; 919 char **argv; 920 921 if (g == NULL || g->a_len < 1) 922 return _SMFIS_FAIL; 923 if ((argv = dec_argv(g->a_buf + 1, g->a_len - 1)) == NULL) 924 return _SMFIS_FAIL; 925 switch (g->a_buf[0]) 926 { 927 case SMFIC_CONNECT: 928 i = CI_CONN; 929 break; 930 case SMFIC_HELO: 931 i = CI_HELO; 932 break; 933 case SMFIC_MAIL: 934 i = CI_MAIL; 935 break; 936 case SMFIC_RCPT: 937 i = CI_RCPT; 938 break; 939 case SMFIC_BODYEOB: 940 i = CI_EOM; 941 break; 942 default: 943 free(argv); 944 return _SMFIS_FAIL; 945 } 946 if (g->a_ctx->ctx_mac_ptr[i] != NULL) 947 free(g->a_ctx->ctx_mac_ptr[i]); 948 if (g->a_ctx->ctx_mac_buf[i] != NULL) 949 free(g->a_ctx->ctx_mac_buf[i]); 950 g->a_ctx->ctx_mac_ptr[i] = argv; 951 g->a_ctx->ctx_mac_buf[i] = g->a_buf; 952 return _SMFIS_KEEP; 953 } 954 /* 955 ** ST_QUIT -- quit command 956 ** 957 ** Parameters: 958 ** g -- generic argument structure 959 ** 960 ** Returns: 961 ** noreply 962 */ 963 964 /* ARGSUSED */ 965 static int 966 st_quit(g) 967 genarg *g; 968 { 969 return _SMFIS_NOREPLY; 970 } 971 /* 972 ** ST_BODYCHUNK -- deal with a piece of the mail body 973 ** 974 ** Parameters: 975 ** g -- generic argument structure 976 ** 977 ** Returns: 978 ** continue or filter-specified value 979 */ 980 981 static int 982 st_bodychunk(g) 983 genarg *g; 984 { 985 sfsistat (*fi_body) __P((SMFICTX *, unsigned char *, size_t)); 986 987 if (g == NULL) 988 return _SMFIS_ABORT; 989 if (g->a_ctx->ctx_smfi != NULL && 990 (fi_body = g->a_ctx->ctx_smfi->xxfi_body) != NULL) 991 return (*fi_body)(g->a_ctx, (unsigned char *)g->a_buf, 992 g->a_len); 993 return SMFIS_CONTINUE; 994 } 995 /* 996 ** ST_BODYEND -- deal with the last piece of the mail body 997 ** 998 ** Parameters: 999 ** g -- generic argument structure 1000 ** 1001 ** Returns: 1002 ** continue or filter-specified value 1003 ** 1004 ** Side effects: 1005 ** sends a reply for the body part (if non-empty). 1006 */ 1007 1008 static int 1009 st_bodyend(g) 1010 genarg *g; 1011 { 1012 sfsistat r; 1013 sfsistat (*fi_body) __P((SMFICTX *, unsigned char *, size_t)); 1014 sfsistat (*fi_eom) __P((SMFICTX *)); 1015 1016 if (g == NULL) 1017 return _SMFIS_ABORT; 1018 r = SMFIS_CONTINUE; 1019 if (g->a_ctx->ctx_smfi != NULL) 1020 { 1021 if ((fi_body = g->a_ctx->ctx_smfi->xxfi_body) != NULL && 1022 g->a_len > 0) 1023 { 1024 socket_t sd; 1025 struct timeval timeout; 1026 1027 timeout.tv_sec = g->a_ctx->ctx_timeout; 1028 timeout.tv_usec = 0; 1029 sd = g->a_ctx->ctx_sd; 1030 r = (*fi_body)(g->a_ctx, (unsigned char *)g->a_buf, 1031 g->a_len); 1032 if (r != SMFIS_CONTINUE && 1033 sendreply(r, sd, &timeout, g->a_ctx) != MI_SUCCESS) 1034 return _SMFIS_ABORT; 1035 } 1036 } 1037 if (r == SMFIS_CONTINUE && 1038 (fi_eom = g->a_ctx->ctx_smfi->xxfi_eom) != NULL) 1039 return (*fi_eom)(g->a_ctx); 1040 return r; 1041 } 1042 /* 1043 ** ST_ABORTFCT -- deal with aborts 1044 ** 1045 ** Parameters: 1046 ** g -- generic argument structure 1047 ** 1048 ** Returns: 1049 ** abort or filter-specified value 1050 */ 1051 1052 static int 1053 st_abortfct(g) 1054 genarg *g; 1055 { 1056 sfsistat (*fi_abort) __P((SMFICTX *)); 1057 1058 if (g == NULL) 1059 return _SMFIS_ABORT; 1060 if (g != NULL && g->a_ctx->ctx_smfi != NULL && 1061 (fi_abort = g->a_ctx->ctx_smfi->xxfi_abort) != NULL) 1062 (void) (*fi_abort)(g->a_ctx); 1063 return _SMFIS_NOREPLY; 1064 } 1065 /* 1066 ** TRANS_OK -- is the state transition ok? 1067 ** 1068 ** Parameters: 1069 ** old -- old state 1070 ** new -- new state 1071 ** 1072 ** Returns: 1073 ** state transition ok 1074 */ 1075 1076 static bool 1077 trans_ok(old, new) 1078 int old, new; 1079 { 1080 int s, n; 1081 1082 s = old; 1083 if (s >= SIZE_NEXT_STATES) 1084 return false; 1085 do 1086 { 1087 /* is this state transition allowed? */ 1088 if ((MI_MASK(new) & next_states[s]) != 0) 1089 return true; 1090 1091 /* 1092 ** no: try next state; 1093 ** this works since the relevant states are ordered 1094 ** strict sequentially 1095 */ 1096 1097 n = s + 1; 1098 if (n >= SIZE_NEXT_STATES) 1099 return false; 1100 1101 /* 1102 ** can we actually "skip" this state? 1103 ** see fix_stm() which sets this bit for those 1104 ** states which the filter program is not interested in 1105 */ 1106 1107 if (bitset(NX_SKIP, next_states[n])) 1108 s = n; 1109 else 1110 return false; 1111 } while (s < SIZE_NEXT_STATES); 1112 return false; 1113 } 1114 /* 1115 ** FIX_STM -- add "skip" bits to the state transition table 1116 ** 1117 ** Parameters: 1118 ** ctx -- context structure 1119 ** 1120 ** Returns: 1121 ** None. 1122 ** 1123 ** Side effects: 1124 ** may change state transition table. 1125 */ 1126 1127 static void 1128 fix_stm(ctx) 1129 SMFICTX_PTR ctx; 1130 { 1131 unsigned long fl; 1132 1133 if (ctx == NULL || ctx->ctx_smfi == NULL) 1134 return; 1135 fl = ctx->ctx_pflags; 1136 if (bitset(SMFIP_NOCONNECT, fl)) 1137 next_states[ST_CONN] |= NX_SKIP; 1138 if (bitset(SMFIP_NOHELO, fl)) 1139 next_states[ST_HELO] |= NX_SKIP; 1140 if (bitset(SMFIP_NOMAIL, fl)) 1141 next_states[ST_MAIL] |= NX_SKIP; 1142 if (bitset(SMFIP_NORCPT, fl)) 1143 next_states[ST_RCPT] |= NX_SKIP; 1144 if (bitset(SMFIP_NOHDRS, fl)) 1145 next_states[ST_HDRS] |= NX_SKIP; 1146 if (bitset(SMFIP_NOEOH, fl)) 1147 next_states[ST_EOHS] |= NX_SKIP; 1148 if (bitset(SMFIP_NOBODY, fl)) 1149 next_states[ST_BODY] |= NX_SKIP; 1150 } 1151 /* 1152 ** DEC_ARGV -- split a buffer into a list of strings, NULL terminated 1153 ** 1154 ** Parameters: 1155 ** buf -- buffer with several strings 1156 ** len -- length of buffer 1157 ** 1158 ** Returns: 1159 ** array of pointers to the individual strings 1160 */ 1161 1162 static char ** 1163 dec_argv(buf, len) 1164 char *buf; 1165 size_t len; 1166 { 1167 char **s; 1168 size_t i; 1169 int elem, nelem; 1170 1171 nelem = 0; 1172 for (i = 0; i < len; i++) 1173 { 1174 if (buf[i] == '\0') 1175 ++nelem; 1176 } 1177 if (nelem == 0) 1178 return NULL; 1179 1180 /* last entry is only for the name */ 1181 s = (char **)malloc((nelem + 1) * (sizeof *s)); 1182 if (s == NULL) 1183 return NULL; 1184 s[0] = buf; 1185 for (i = 0, elem = 0; i < len && elem < nelem; i++) 1186 { 1187 if (buf[i] == '\0') 1188 { 1189 ++elem; 1190 if (i + 1 >= len) 1191 s[elem] = NULL; 1192 else 1193 s[elem] = &(buf[i + 1]); 1194 } 1195 } 1196 1197 /* overwrite last entry (already done above, just paranoia) */ 1198 s[elem] = NULL; 1199 return s; 1200 } 1201 /* 1202 ** DEC_ARG2 -- split a buffer into two strings 1203 ** 1204 ** Parameters: 1205 ** buf -- buffer with two strings 1206 ** len -- length of buffer 1207 ** s1,s2 -- pointer to result strings 1208 ** 1209 ** Returns: 1210 ** MI_FAILURE/MI_SUCCESS 1211 */ 1212 1213 static int 1214 dec_arg2(buf, len, s1, s2) 1215 char *buf; 1216 size_t len; 1217 char **s1; 1218 char **s2; 1219 { 1220 size_t i; 1221 1222 /* paranoia: check for terminating '\0' */ 1223 if (len == 0 || buf[len - 1] != '\0') 1224 return MI_FAILURE; 1225 *s1 = buf; 1226 for (i = 1; i < len && buf[i] != '\0'; i++) 1227 continue; 1228 if (i >= len - 1) 1229 return MI_FAILURE; 1230 *s2 = buf + i + 1; 1231 return MI_SUCCESS; 1232 } 1233 /* 1234 ** SENDOK -- is it ok for the filter to send stuff to the MTA? 1235 ** 1236 ** Parameters: 1237 ** ctx -- context structure 1238 ** flag -- flag to check 1239 ** 1240 ** Returns: 1241 ** sending allowed (in current state) 1242 */ 1243 1244 bool 1245 mi_sendok(ctx, flag) 1246 SMFICTX_PTR ctx; 1247 int flag; 1248 { 1249 if (ctx == NULL || ctx->ctx_smfi == NULL) 1250 return false; 1251 1252 /* did the milter request this operation? */ 1253 if (flag != 0 && !bitset(flag, ctx->ctx_smfi->xxfi_flags)) 1254 return false; 1255 1256 /* are we in the correct state? It must be "End of Message". */ 1257 return ctx->ctx_state == ST_ENDM; 1258 } 1259