1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 29 /* 30 * sadc.c writes system activity binary data to a file or stdout. 31 * 32 * Usage: sadc [t n] [file] 33 * 34 * if t and n are not specified, it writes a dummy record to data file. This 35 * usage is particularly used at system booting. If t and n are specified, it 36 * writes system data n times to file every t seconds. In both cases, if file 37 * is not specified, it writes data to stdout. 38 */ 39 40 #include <sys/fcntl.h> 41 #include <sys/flock.h> 42 #include <sys/proc.h> 43 #include <sys/stat.h> 44 #include <sys/sysinfo.h> 45 #include <sys/time.h> 46 #include <sys/types.h> 47 #include <sys/var.h> 48 49 #include <ctype.h> 50 #include <errno.h> 51 #include <fcntl.h> 52 #include <kstat.h> 53 #include <memory.h> 54 #include <nlist.h> 55 #include <signal.h> 56 #include <stdarg.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <string.h> 60 #include <time.h> 61 #include <unistd.h> 62 #include <strings.h> 63 64 #include "sa.h" 65 66 #define MAX(x1, x2) ((x1) >= (x2) ? (x1) : (x2)) 67 68 static kstat_ctl_t *kc; /* libkstat cookie */ 69 static int ncpus; 70 static int oncpus; 71 static kstat_t **cpu_stat_list = NULL; 72 static kstat_t **ocpu_stat_list = NULL; 73 static int ncaches; 74 static kstat_t **kmem_cache_list = NULL; 75 76 static kstat_t *sysinfo_ksp, *vminfo_ksp, *var_ksp; 77 static kstat_t *system_misc_ksp, *ufs_inode_ksp, *kmem_oversize_ksp; 78 static kstat_t *file_cache_ksp; 79 static kstat_named_t *ufs_inode_size_knp, *nproc_knp; 80 static kstat_named_t *file_total_knp, *file_avail_knp; 81 static kstat_named_t *oversize_alloc_knp, *oversize_fail_knp; 82 static int slab_create_index, slab_destroy_index, slab_size_index; 83 static int buf_size_index, buf_avail_index, alloc_fail_index; 84 85 static struct iodevinfo zeroiodev = { NULL, NULL }; 86 static struct iodevinfo *firstiodev = NULL; 87 static struct iodevinfo *lastiodev = NULL; 88 static struct iodevinfo *snip = NULL; 89 static ulong_t niodevs; 90 91 static void all_stat_init(void); 92 static int all_stat_load(void); 93 static void fail(int, char *, ...); 94 static void safe_zalloc(void **, int, int); 95 static kid_t safe_kstat_read(kstat_ctl_t *, kstat_t *, void *); 96 static kstat_t *safe_kstat_lookup(kstat_ctl_t *, char *, int, char *); 97 static void *safe_kstat_data_lookup(kstat_t *, char *); 98 static int safe_kstat_data_index(kstat_t *, char *); 99 static void init_iodevs(void); 100 static int iodevinfo_load(void); 101 static int kstat_copy(const kstat_t *, kstat_t *); 102 static void diff_two_arrays(kstat_t ** const [], size_t, size_t, 103 kstat_t ** const []); 104 static void compute_cpu_stat_adj(void); 105 106 static char *cmdname = "sadc"; 107 108 static struct var var; 109 110 static struct sa d; 111 static int64_t cpu_stat_adj[CPU_STATES] = {0}; 112 113 static long ninode; 114 115 int caught_cont = 0; 116 117 /* 118 * Sleep until *wakeup + interval, keeping cadence where desired 119 * 120 * *wakeup - The time we last wanted to wake up. Updated. 121 * interval - We want to sleep until *wakeup + interval 122 * *caught_cont - Global set by signal handler if we got a SIGCONT 123 */ 124 void 125 sleep_until(hrtime_t *wakeup, hrtime_t interval, int *caught_cont) 126 { 127 hrtime_t now, pause, pause_left; 128 struct timespec pause_tv; 129 int status; 130 now = gethrtime(); 131 pause = *wakeup + interval - now; 132 133 if (pause <= 0 || pause < (interval / 4)) 134 if (*caught_cont) { 135 /* Reset our cadence (see comment below) */ 136 *wakeup = now + interval; 137 pause = interval; 138 } else { 139 /* 140 * If we got here, then the time between the 141 * output we just did, and the scheduled time 142 * for the next output is < 1/4 of our requested 143 * interval AND the number of intervals has been 144 * requested AND we have never caught a SIGCONT 145 * (so we have never been suspended). In this 146 * case, we'll try to stay to the desired 147 * cadence, and we will pause for 1/2 the normal 148 * interval this time. 149 */ 150 pause = interval / 2; 151 *wakeup += interval; 152 } 153 else 154 *wakeup += interval; 155 if (pause < 1000) 156 /* Near enough */ 157 return; 158 159 /* Now do the actual sleep */ 160 pause_left = pause; 161 do { 162 pause_tv.tv_sec = pause_left / NANOSEC; 163 pause_tv.tv_nsec = pause_left % NANOSEC; 164 status = nanosleep(&pause_tv, (struct timespec *)NULL); 165 if (status < 0) 166 if (errno == EINTR) { 167 now = gethrtime(); 168 pause_left = *wakeup - now; 169 if (pause_left < 1000) 170 /* Near enough */ 171 return; 172 } else { 173 fail(1, "nanosleep failed"); 174 } 175 } while (status != 0); 176 } 177 178 /* 179 * Signal handler - so we can be aware of SIGCONT 180 */ 181 void 182 cont_handler(int sig_number) 183 { 184 /* Re-set the signal handler */ 185 (void) signal(sig_number, cont_handler); 186 caught_cont = 1; 187 } 188 189 int 190 main(int argc, char *argv[]) 191 { 192 int ct; 193 unsigned ti; 194 int fp; 195 time_t min; 196 struct stat buf; 197 char *fname; 198 struct iodevinfo *iodev; 199 off_t flength; 200 hrtime_t start_n; 201 hrtime_t period_n; 202 203 204 ct = argc >= 3? atoi(argv[2]): 0; 205 min = time((time_t *)0); 206 ti = argc >= 3? atoi(argv[1]): 0; 207 208 period_n = (hrtime_t)ti * NANOSEC; 209 210 if ((kc = kstat_open()) == NULL) 211 fail(1, "kstat_open(): can't open /dev/kstat"); 212 213 /* Set up handler for SIGCONT */ 214 if (signal(SIGCONT, cont_handler) == SIG_ERR) 215 fail(1, "signal failed"); 216 217 all_stat_init(); 218 init_iodevs(); 219 220 if (argc == 3 || argc == 1) { 221 /* 222 * no data file is specified, direct data to stdout. 223 */ 224 fp = 1; 225 } else { 226 struct flock lock; 227 228 fname = (argc == 2) ? argv[1] : argv[3]; 229 /* 230 * Open or Create a data file. If the file doesn't exist, then 231 * it will be created. 232 */ 233 if ((fp = open(fname, O_WRONLY | O_APPEND | O_CREAT, 0644)) 234 == -1) 235 fail(1, "can't open data file"); 236 /* 237 * Lock the entire data file to prevent data corruption 238 */ 239 lock.l_type = F_WRLCK; 240 lock.l_whence = SEEK_SET; 241 lock.l_start = 0; 242 lock.l_len = 0; 243 if (fcntl(fp, F_SETLK, &lock) == -1) 244 fail(1, "can't lock data file"); 245 /* 246 * Get data file statistics for use in determining whether 247 * truncation required and where rollback recovery should 248 * be applied. 249 */ 250 if (fstat(fp, &buf) == -1) 251 fail(1, "can't get data file information"); 252 /* 253 * If the data file was opened and is too old, truncate it 254 */ 255 if (min - buf.st_mtime > 86400) 256 if (ftruncate(fp, 0) == -1) 257 fail(1, "can't truncate data file"); 258 /* 259 * Remember filesize for rollback on error (bug #1223549) 260 */ 261 flength = buf.st_size; 262 } 263 264 memset(&d, 0, sizeof (d)); 265 266 /* 267 * If n == 0, write the additional dummy record. 268 */ 269 if (ct == 0) { 270 d.valid = 0; 271 d.ts = min; 272 d.niodevs = niodevs; 273 274 if (write(fp, &d, sizeof (struct sa)) != sizeof (struct sa)) 275 ftruncate(fp, flength), fail(1, "write failed"); 276 277 for (iodev = firstiodev; iodev; iodev = iodev->next) { 278 if (write(fp, iodev, sizeof (struct iodevinfo)) != 279 sizeof (struct iodevinfo)) 280 ftruncate(fp, flength), fail(1, "write failed"); 281 } 282 } 283 284 start_n = gethrtime(); 285 286 for (;;) { 287 do { 288 (void) kstat_chain_update(kc); 289 all_stat_init(); 290 init_iodevs(); 291 } while (all_stat_load() || iodevinfo_load()); 292 293 d.ts = time((time_t *)0); 294 d.valid = 1; 295 d.niodevs = niodevs; 296 297 if (write(fp, &d, sizeof (struct sa)) != sizeof (struct sa)) 298 ftruncate(fp, flength), fail(1, "write failed"); 299 300 for (iodev = firstiodev; iodev; iodev = iodev->next) { 301 if (write(fp, iodev, sizeof (struct iodevinfo)) != 302 sizeof (struct iodevinfo)) 303 ftruncate(fp, flength), fail(1, "write failed"); 304 } 305 if (--ct > 0) { 306 sleep_until(&start_n, period_n, &caught_cont); 307 } else { 308 close(fp); 309 return (0); 310 } 311 } 312 313 /*NOTREACHED*/ 314 } 315 316 /* 317 * Get various KIDs for subsequent all_stat_load operations. 318 */ 319 320 static void 321 all_stat_init(void) 322 { 323 kstat_t *ksp; 324 325 /* 326 * Initialize global statistics 327 */ 328 329 sysinfo_ksp = safe_kstat_lookup(kc, "unix", 0, "sysinfo"); 330 vminfo_ksp = safe_kstat_lookup(kc, "unix", 0, "vminfo"); 331 kmem_oversize_ksp = safe_kstat_lookup(kc, "vmem", -1, "kmem_oversize"); 332 var_ksp = safe_kstat_lookup(kc, "unix", 0, "var"); 333 system_misc_ksp = safe_kstat_lookup(kc, "unix", 0, "system_misc"); 334 file_cache_ksp = safe_kstat_lookup(kc, "unix", 0, "file_cache"); 335 ufs_inode_ksp = kstat_lookup(kc, "ufs", 0, "inode_cache"); 336 337 safe_kstat_read(kc, system_misc_ksp, NULL); 338 nproc_knp = safe_kstat_data_lookup(system_misc_ksp, "nproc"); 339 340 safe_kstat_read(kc, file_cache_ksp, NULL); 341 file_avail_knp = safe_kstat_data_lookup(file_cache_ksp, "buf_avail"); 342 file_total_knp = safe_kstat_data_lookup(file_cache_ksp, "buf_total"); 343 344 safe_kstat_read(kc, kmem_oversize_ksp, NULL); 345 oversize_alloc_knp = safe_kstat_data_lookup(kmem_oversize_ksp, 346 "mem_total"); 347 oversize_fail_knp = safe_kstat_data_lookup(kmem_oversize_ksp, "fail"); 348 349 if (ufs_inode_ksp != NULL) { 350 safe_kstat_read(kc, ufs_inode_ksp, NULL); 351 ufs_inode_size_knp = safe_kstat_data_lookup(ufs_inode_ksp, 352 "size"); 353 ninode = ((kstat_named_t *) 354 safe_kstat_data_lookup(ufs_inode_ksp, 355 "maxsize"))->value.l; 356 } 357 358 /* 359 * Load constant values now -- no need to reread each time 360 */ 361 362 safe_kstat_read(kc, var_ksp, (void *) &var); 363 364 /* 365 * Initialize per-CPU and per-kmem-cache statistics 366 */ 367 368 ncpus = ncaches = 0; 369 for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) { 370 if (strncmp(ksp->ks_name, "cpu_stat", 8) == 0) 371 ncpus++; 372 if (strcmp(ksp->ks_class, "kmem_cache") == 0) 373 ncaches++; 374 } 375 376 safe_zalloc((void **)&cpu_stat_list, ncpus * sizeof (kstat_t *), 1); 377 safe_zalloc((void **)&kmem_cache_list, ncaches * sizeof (kstat_t *), 1); 378 379 ncpus = ncaches = 0; 380 for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) { 381 if (strncmp(ksp->ks_name, "cpu_stat", 8) == 0 && 382 kstat_read(kc, ksp, NULL) != -1) 383 cpu_stat_list[ncpus++] = ksp; 384 if (strcmp(ksp->ks_class, "kmem_cache") == 0 && 385 kstat_read(kc, ksp, NULL) != -1) 386 kmem_cache_list[ncaches++] = ksp; 387 } 388 389 if (ncpus == 0) 390 fail(1, "can't find any cpu statistics"); 391 392 if (ncaches == 0) 393 fail(1, "can't find any kmem_cache statistics"); 394 395 ksp = kmem_cache_list[0]; 396 safe_kstat_read(kc, ksp, NULL); 397 buf_size_index = safe_kstat_data_index(ksp, "buf_size"); 398 slab_create_index = safe_kstat_data_index(ksp, "slab_create"); 399 slab_destroy_index = safe_kstat_data_index(ksp, "slab_destroy"); 400 slab_size_index = safe_kstat_data_index(ksp, "slab_size"); 401 buf_avail_index = safe_kstat_data_index(ksp, "buf_avail"); 402 alloc_fail_index = safe_kstat_data_index(ksp, "alloc_fail"); 403 } 404 405 /* 406 * load statistics, summing across CPUs where needed 407 */ 408 409 static int 410 all_stat_load(void) 411 { 412 int i, j; 413 cpu_stat_t cs; 414 ulong_t *np, *tp; 415 uint64_t cpu_tick[4] = {0, 0, 0, 0}; 416 417 memset(&d, 0, sizeof (d)); 418 419 /* 420 * Global statistics 421 */ 422 423 safe_kstat_read(kc, sysinfo_ksp, (void *) &d.si); 424 safe_kstat_read(kc, vminfo_ksp, (void *) &d.vmi); 425 safe_kstat_read(kc, system_misc_ksp, NULL); 426 safe_kstat_read(kc, file_cache_ksp, NULL); 427 428 if (ufs_inode_ksp != NULL) { 429 safe_kstat_read(kc, ufs_inode_ksp, NULL); 430 d.szinode = ufs_inode_size_knp->value.ul; 431 } 432 433 d.szfile = file_total_knp->value.ui64 - file_avail_knp->value.ui64; 434 d.szproc = nproc_knp->value.ul; 435 436 d.mszinode = (ninode > d.szinode) ? ninode : d.szinode; 437 d.mszfile = d.szfile; 438 d.mszproc = var.v_proc; 439 440 /* 441 * Per-CPU statistics. 442 */ 443 444 for (i = 0; i < ncpus; i++) { 445 if (kstat_read(kc, cpu_stat_list[i], (void *) &cs) == -1) 446 return (1); 447 448 np = (ulong_t *)&d.csi; 449 tp = (ulong_t *)&cs.cpu_sysinfo; 450 451 /* 452 * Accumulate cpu ticks for CPU_IDLE, CPU_USER, CPU_KERNEL and 453 * CPU_WAIT with respect to each of the cpus. 454 */ 455 for (j = 0; j < CPU_STATES; j++) 456 cpu_tick[j] += tp[j]; 457 458 for (j = 0; j < sizeof (cpu_sysinfo_t); j += sizeof (ulong_t)) 459 *np++ += *tp++; 460 np = (ulong_t *)&d.cvmi; 461 tp = (ulong_t *)&cs.cpu_vminfo; 462 for (j = 0; j < sizeof (cpu_vminfo_t); j += sizeof (ulong_t)) 463 *np++ += *tp++; 464 } 465 466 /* 467 * Per-cache kmem statistics. 468 */ 469 470 for (i = 0; i < ncaches; i++) { 471 kstat_named_t *knp; 472 u_longlong_t slab_create, slab_destroy, slab_size, mem_total; 473 u_longlong_t buf_size, buf_avail, alloc_fail; 474 int kmi_index; 475 476 if (kstat_read(kc, kmem_cache_list[i], NULL) == -1) 477 return (1); 478 knp = kmem_cache_list[i]->ks_data; 479 slab_create = knp[slab_create_index].value.ui64; 480 slab_destroy = knp[slab_destroy_index].value.ui64; 481 slab_size = knp[slab_size_index].value.ui64; 482 buf_size = knp[buf_size_index].value.ui64; 483 buf_avail = knp[buf_avail_index].value.ui64; 484 alloc_fail = knp[alloc_fail_index].value.ui64; 485 if (buf_size <= 256) 486 kmi_index = KMEM_SMALL; 487 else 488 kmi_index = KMEM_LARGE; 489 mem_total = (slab_create - slab_destroy) * slab_size; 490 491 d.kmi.km_mem[kmi_index] += (ulong_t)mem_total; 492 d.kmi.km_alloc[kmi_index] += 493 (ulong_t)mem_total - buf_size * buf_avail; 494 d.kmi.km_fail[kmi_index] += (ulong_t)alloc_fail; 495 } 496 497 safe_kstat_read(kc, kmem_oversize_ksp, NULL); 498 499 d.kmi.km_alloc[KMEM_OSIZE] = d.kmi.km_mem[KMEM_OSIZE] = 500 oversize_alloc_knp->value.ui64; 501 d.kmi.km_fail[KMEM_OSIZE] = oversize_fail_knp->value.ui64; 502 503 /* 504 * Adjust CPU statistics so the delta calculations in sar will 505 * be correct when facing changes to the set of online CPUs. 506 */ 507 compute_cpu_stat_adj(); 508 for (i = 0; i < CPU_STATES; i++) 509 d.csi.cpu[i] = (cpu_tick[i] + cpu_stat_adj[i]) / ncpus; 510 511 return (0); 512 } 513 514 static void 515 fail(int do_perror, char *message, ...) 516 { 517 va_list args; 518 519 va_start(args, message); 520 fprintf(stderr, "%s: ", cmdname); 521 vfprintf(stderr, message, args); 522 va_end(args); 523 if (do_perror) 524 fprintf(stderr, ": %s", strerror(errno)); 525 fprintf(stderr, "\n"); 526 exit(2); 527 } 528 529 static void 530 safe_zalloc(void **ptr, int size, int free_first) 531 { 532 if (free_first && *ptr != NULL) 533 free(*ptr); 534 if ((*ptr = malloc(size)) == NULL) 535 fail(1, "malloc failed"); 536 memset(*ptr, 0, size); 537 } 538 539 static kid_t 540 safe_kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *data) 541 { 542 kid_t kstat_chain_id = kstat_read(kc, ksp, data); 543 544 if (kstat_chain_id == -1) 545 fail(1, "kstat_read(%x, '%s') failed", kc, ksp->ks_name); 546 return (kstat_chain_id); 547 } 548 549 static kstat_t * 550 safe_kstat_lookup(kstat_ctl_t *kc, char *ks_module, int ks_instance, 551 char *ks_name) 552 { 553 kstat_t *ksp = kstat_lookup(kc, ks_module, ks_instance, ks_name); 554 555 if (ksp == NULL) 556 fail(0, "kstat_lookup('%s', %d, '%s') failed", 557 ks_module == NULL ? "" : ks_module, 558 ks_instance, 559 ks_name == NULL ? "" : ks_name); 560 return (ksp); 561 } 562 563 static void * 564 safe_kstat_data_lookup(kstat_t *ksp, char *name) 565 { 566 void *fp = kstat_data_lookup(ksp, name); 567 568 if (fp == NULL) 569 fail(0, "kstat_data_lookup('%s', '%s') failed", 570 ksp->ks_name, name); 571 return (fp); 572 } 573 574 static int 575 safe_kstat_data_index(kstat_t *ksp, char *name) 576 { 577 return ((int)((char *)safe_kstat_data_lookup(ksp, name) - 578 (char *)ksp->ks_data) / (ksp->ks_data_size / ksp->ks_ndata)); 579 } 580 581 static int 582 kscmp(kstat_t *ks1, kstat_t *ks2) 583 { 584 int cmp; 585 586 cmp = strcmp(ks1->ks_module, ks2->ks_module); 587 if (cmp != 0) 588 return (cmp); 589 cmp = ks1->ks_instance - ks2->ks_instance; 590 if (cmp != 0) 591 return (cmp); 592 return (strcmp(ks1->ks_name, ks2->ks_name)); 593 } 594 595 static void 596 init_iodevs(void) 597 { 598 struct iodevinfo *iodev, *previodev, *comp; 599 kstat_t *ksp; 600 601 iodev = &zeroiodev; 602 niodevs = 0; 603 604 /* 605 * Patch the snip in the iodevinfo list (see below) 606 */ 607 if (snip) 608 lastiodev->next = snip; 609 610 for (ksp = kc->kc_chain; ksp; ksp = ksp->ks_next) { 611 612 if (ksp->ks_type != KSTAT_TYPE_IO) 613 continue; 614 previodev = iodev; 615 if (iodev->next) 616 iodev = iodev->next; 617 else { 618 safe_zalloc((void **) &iodev->next, 619 sizeof (struct iodevinfo), 0); 620 iodev = iodev->next; 621 iodev->next = NULL; 622 } 623 iodev->ksp = ksp; 624 iodev->ks = *ksp; 625 memset((void *)&iodev->kios, 0, sizeof (kstat_io_t)); 626 iodev->kios.wlastupdate = iodev->ks.ks_crtime; 627 iodev->kios.rlastupdate = iodev->ks.ks_crtime; 628 629 /* 630 * Insertion sort on (ks_module, ks_instance, ks_name) 631 */ 632 comp = &zeroiodev; 633 while (kscmp(&iodev->ks, &comp->next->ks) > 0) 634 comp = comp->next; 635 if (previodev != comp) { 636 previodev->next = iodev->next; 637 iodev->next = comp->next; 638 comp->next = iodev; 639 iodev = previodev; 640 } 641 niodevs++; 642 } 643 /* 644 * Put a snip in the linked list of iodevinfos. The idea: 645 * If there was a state change such that now there are fewer 646 * iodevs, we snip the list and retain the tail, rather than 647 * freeing it. At the next state change, we clip the tail back on. 648 * This prevents a lot of malloc/free activity, and it's simpler. 649 */ 650 lastiodev = iodev; 651 snip = iodev->next; 652 iodev->next = NULL; 653 654 firstiodev = zeroiodev.next; 655 } 656 657 static int 658 iodevinfo_load(void) 659 { 660 struct iodevinfo *iodev; 661 662 for (iodev = firstiodev; iodev; iodev = iodev->next) { 663 if (kstat_read(kc, iodev->ksp, (void *) &iodev->kios) == -1) 664 return (1); 665 } 666 return (0); 667 } 668 669 static int 670 kstat_copy(const kstat_t *src, kstat_t *dst) 671 { 672 *dst = *src; 673 674 if (src->ks_data != NULL) { 675 if ((dst->ks_data = malloc(src->ks_data_size)) == NULL) 676 return (-1); 677 bcopy(src->ks_data, dst->ks_data, src->ks_data_size); 678 } else { 679 dst->ks_data = NULL; 680 dst->ks_data_size = 0; 681 } 682 return (0); 683 } 684 685 /* 686 * Determine what is different between two sets of kstats; s[0] and s[1] 687 * are arrays of kstats of size ns0 and ns1, respectively, and sorted by 688 * instance number. u[0] and u[1] are two arrays which must be 689 * caller-zallocated; each must be of size MAX(ns0, ns1). When the 690 * function terminates, u[0] contains all s[0]-unique items and u[1] 691 * contains all s[1]-unique items. Any unused entries in u[0] and u[1] 692 * are left NULL. 693 */ 694 static void 695 diff_two_arrays(kstat_t ** const s[], size_t ns0, size_t ns1, 696 kstat_t ** const u[]) 697 { 698 kstat_t **s0p = s[0], **s1p = s[1]; 699 kstat_t **u0p = u[0], **u1p = u[1]; 700 int i = 0, j = 0; 701 702 while (i < ns0 && j < ns1) { 703 if ((*s0p)->ks_instance == (*s1p)->ks_instance) { 704 if ((*s0p)->ks_kid != (*s1p)->ks_kid) { 705 /* 706 * The instance is the same, but this 707 * CPU has been offline during the 708 * interval, so we consider *u0p to 709 * be s0p-unique, and similarly for 710 * *u1p. 711 */ 712 *(u0p++) = *s0p; 713 *(u1p++) = *s1p; 714 } 715 s0p++; 716 i++; 717 s1p++; 718 j++; 719 } else if ((*s0p)->ks_instance < (*s1p)->ks_instance) { 720 *(u0p++) = *(s0p++); 721 i++; 722 } else { 723 *(u1p++) = *(s1p++); 724 j++; 725 } 726 } 727 728 while (i < ns0) { 729 *(u0p++) = *(s0p++); 730 i++; 731 } 732 while (j < ns1) { 733 *(u1p++) = *(s1p++); 734 j++; 735 } 736 } 737 738 static int 739 cpuid_compare(const void *p1, const void *p2) 740 { 741 return ((*(kstat_t **)p1)->ks_instance - 742 (*(kstat_t **)p2)->ks_instance); 743 } 744 745 /* 746 * Identify those CPUs which were not present for the whole interval so 747 * their statistics can be removed from the aggregate. 748 */ 749 static void 750 compute_cpu_stat_adj(void) 751 { 752 int i, j; 753 754 if (ocpu_stat_list) { 755 kstat_t **s[2]; 756 kstat_t **inarray[2]; 757 int max_cpus = MAX(ncpus, oncpus); 758 759 qsort(cpu_stat_list, ncpus, sizeof (*cpu_stat_list), 760 cpuid_compare); 761 qsort(ocpu_stat_list, oncpus, sizeof (*ocpu_stat_list), 762 cpuid_compare); 763 764 s[0] = ocpu_stat_list; 765 s[1] = cpu_stat_list; 766 767 safe_zalloc((void *)&inarray[0], sizeof (**inarray) * max_cpus, 768 0); 769 safe_zalloc((void *)&inarray[1], sizeof (**inarray) * max_cpus, 770 0); 771 diff_two_arrays(s, oncpus, ncpus, inarray); 772 773 for (i = 0; i < max_cpus; i++) { 774 if (inarray[0][i]) 775 for (j = 0; j < CPU_STATES; j++) 776 cpu_stat_adj[j] += 777 ((cpu_stat_t *)inarray[0][i] 778 ->ks_data)->cpu_sysinfo.cpu[j]; 779 if (inarray[1][i]) 780 for (j = 0; j < CPU_STATES; j++) 781 cpu_stat_adj[j] -= 782 ((cpu_stat_t *)inarray[1][i] 783 ->ks_data)->cpu_sysinfo.cpu[j]; 784 } 785 786 free(inarray[0]); 787 free(inarray[1]); 788 } 789 790 /* 791 * Preserve the last interval's CPU stats. 792 */ 793 if (cpu_stat_list) { 794 for (i = 0; i < oncpus; i++) 795 free(ocpu_stat_list[i]->ks_data); 796 797 oncpus = ncpus; 798 safe_zalloc((void **)&ocpu_stat_list, oncpus * 799 sizeof (*ocpu_stat_list), 1); 800 for (i = 0; i < ncpus; i++) { 801 safe_zalloc((void *)&ocpu_stat_list[i], 802 sizeof (*ocpu_stat_list[0]), 0); 803 if (kstat_copy(cpu_stat_list[i], ocpu_stat_list[i])) 804 fail(1, "kstat_copy() failed"); 805 } 806 } 807 } 808