1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2011 Joyent, Inc. All rights reserved. 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 #include <mdb/mdb_param.h> 32 #include <mdb/mdb_modapi.h> 33 #include <mdb/mdb_ctf.h> 34 #include <mdb/mdb_whatis.h> 35 #include <sys/cpuvar.h> 36 #include <sys/kmem_impl.h> 37 #include <sys/vmem_impl.h> 38 #include <sys/machelf.h> 39 #include <sys/modctl.h> 40 #include <sys/kobj.h> 41 #include <sys/panic.h> 42 #include <sys/stack.h> 43 #include <sys/sysmacros.h> 44 #include <vm/page.h> 45 46 #include "avl.h" 47 #include "combined.h" 48 #include "dist.h" 49 #include "kmem.h" 50 #include "list.h" 51 52 #define dprintf(x) if (mdb_debug_level) { \ 53 mdb_printf("kmem debug: "); \ 54 /*CSTYLED*/\ 55 mdb_printf x ;\ 56 } 57 58 #define KM_ALLOCATED 0x01 59 #define KM_FREE 0x02 60 #define KM_BUFCTL 0x04 61 #define KM_CONSTRUCTED 0x08 /* only constructed free buffers */ 62 #define KM_HASH 0x10 63 64 static int mdb_debug_level = 0; 65 66 /*ARGSUSED*/ 67 static int 68 kmem_init_walkers(uintptr_t addr, const kmem_cache_t *c, void *ignored) 69 { 70 mdb_walker_t w; 71 char descr[64]; 72 73 (void) mdb_snprintf(descr, sizeof (descr), 74 "walk the %s cache", c->cache_name); 75 76 w.walk_name = c->cache_name; 77 w.walk_descr = descr; 78 w.walk_init = kmem_walk_init; 79 w.walk_step = kmem_walk_step; 80 w.walk_fini = kmem_walk_fini; 81 w.walk_init_arg = (void *)addr; 82 83 if (mdb_add_walker(&w) == -1) 84 mdb_warn("failed to add %s walker", c->cache_name); 85 86 return (WALK_NEXT); 87 } 88 89 /*ARGSUSED*/ 90 int 91 kmem_debug(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 92 { 93 mdb_debug_level ^= 1; 94 95 mdb_printf("kmem: debugging is now %s\n", 96 mdb_debug_level ? "on" : "off"); 97 98 return (DCMD_OK); 99 } 100 101 int 102 kmem_cache_walk_init(mdb_walk_state_t *wsp) 103 { 104 GElf_Sym sym; 105 106 if (mdb_lookup_by_name("kmem_caches", &sym) == -1) { 107 mdb_warn("couldn't find kmem_caches"); 108 return (WALK_ERR); 109 } 110 111 wsp->walk_addr = (uintptr_t)sym.st_value; 112 113 return (list_walk_init_named(wsp, "cache list", "cache")); 114 } 115 116 int 117 kmem_cpu_cache_walk_init(mdb_walk_state_t *wsp) 118 { 119 if (wsp->walk_addr == NULL) { 120 mdb_warn("kmem_cpu_cache doesn't support global walks"); 121 return (WALK_ERR); 122 } 123 124 if (mdb_layered_walk("cpu", wsp) == -1) { 125 mdb_warn("couldn't walk 'cpu'"); 126 return (WALK_ERR); 127 } 128 129 wsp->walk_data = (void *)wsp->walk_addr; 130 131 return (WALK_NEXT); 132 } 133 134 int 135 kmem_cpu_cache_walk_step(mdb_walk_state_t *wsp) 136 { 137 uintptr_t caddr = (uintptr_t)wsp->walk_data; 138 const cpu_t *cpu = wsp->walk_layer; 139 kmem_cpu_cache_t cc; 140 141 caddr += OFFSETOF(kmem_cache_t, cache_cpu[cpu->cpu_seqid]); 142 143 if (mdb_vread(&cc, sizeof (kmem_cpu_cache_t), caddr) == -1) { 144 mdb_warn("couldn't read kmem_cpu_cache at %p", caddr); 145 return (WALK_ERR); 146 } 147 148 return (wsp->walk_callback(caddr, &cc, wsp->walk_cbdata)); 149 } 150 151 static int 152 kmem_slab_check(void *p, uintptr_t saddr, void *arg) 153 { 154 kmem_slab_t *sp = p; 155 uintptr_t caddr = (uintptr_t)arg; 156 if ((uintptr_t)sp->slab_cache != caddr) { 157 mdb_warn("slab %p isn't in cache %p (in cache %p)\n", 158 saddr, caddr, sp->slab_cache); 159 return (-1); 160 } 161 162 return (0); 163 } 164 165 static int 166 kmem_partial_slab_check(void *p, uintptr_t saddr, void *arg) 167 { 168 kmem_slab_t *sp = p; 169 170 int rc = kmem_slab_check(p, saddr, arg); 171 if (rc != 0) { 172 return (rc); 173 } 174 175 if (!KMEM_SLAB_IS_PARTIAL(sp)) { 176 mdb_warn("slab %p is not a partial slab\n", saddr); 177 return (-1); 178 } 179 180 return (0); 181 } 182 183 static int 184 kmem_complete_slab_check(void *p, uintptr_t saddr, void *arg) 185 { 186 kmem_slab_t *sp = p; 187 188 int rc = kmem_slab_check(p, saddr, arg); 189 if (rc != 0) { 190 return (rc); 191 } 192 193 if (!KMEM_SLAB_IS_ALL_USED(sp)) { 194 mdb_warn("slab %p is not completely allocated\n", saddr); 195 return (-1); 196 } 197 198 return (0); 199 } 200 201 typedef struct { 202 uintptr_t kns_cache_addr; 203 int kns_nslabs; 204 } kmem_nth_slab_t; 205 206 static int 207 kmem_nth_slab_check(void *p, uintptr_t saddr, void *arg) 208 { 209 kmem_nth_slab_t *chkp = arg; 210 211 int rc = kmem_slab_check(p, saddr, (void *)chkp->kns_cache_addr); 212 if (rc != 0) { 213 return (rc); 214 } 215 216 return (chkp->kns_nslabs-- == 0 ? 1 : 0); 217 } 218 219 static int 220 kmem_complete_slab_walk_init(mdb_walk_state_t *wsp) 221 { 222 uintptr_t caddr = wsp->walk_addr; 223 224 wsp->walk_addr = (uintptr_t)(caddr + 225 offsetof(kmem_cache_t, cache_complete_slabs)); 226 227 return (list_walk_init_checked(wsp, "slab list", "slab", 228 kmem_complete_slab_check, (void *)caddr)); 229 } 230 231 static int 232 kmem_partial_slab_walk_init(mdb_walk_state_t *wsp) 233 { 234 uintptr_t caddr = wsp->walk_addr; 235 236 wsp->walk_addr = (uintptr_t)(caddr + 237 offsetof(kmem_cache_t, cache_partial_slabs)); 238 239 return (avl_walk_init_checked(wsp, "slab list", "slab", 240 kmem_partial_slab_check, (void *)caddr)); 241 } 242 243 int 244 kmem_slab_walk_init(mdb_walk_state_t *wsp) 245 { 246 uintptr_t caddr = wsp->walk_addr; 247 248 if (caddr == NULL) { 249 mdb_warn("kmem_slab doesn't support global walks\n"); 250 return (WALK_ERR); 251 } 252 253 combined_walk_init(wsp); 254 combined_walk_add(wsp, 255 kmem_complete_slab_walk_init, list_walk_step, list_walk_fini); 256 combined_walk_add(wsp, 257 kmem_partial_slab_walk_init, avl_walk_step, avl_walk_fini); 258 259 return (WALK_NEXT); 260 } 261 262 static int 263 kmem_first_complete_slab_walk_init(mdb_walk_state_t *wsp) 264 { 265 uintptr_t caddr = wsp->walk_addr; 266 kmem_nth_slab_t *chk; 267 268 chk = mdb_alloc(sizeof (kmem_nth_slab_t), 269 UM_SLEEP | UM_GC); 270 chk->kns_cache_addr = caddr; 271 chk->kns_nslabs = 1; 272 wsp->walk_addr = (uintptr_t)(caddr + 273 offsetof(kmem_cache_t, cache_complete_slabs)); 274 275 return (list_walk_init_checked(wsp, "slab list", "slab", 276 kmem_nth_slab_check, chk)); 277 } 278 279 int 280 kmem_slab_walk_partial_init(mdb_walk_state_t *wsp) 281 { 282 uintptr_t caddr = wsp->walk_addr; 283 kmem_cache_t c; 284 285 if (caddr == NULL) { 286 mdb_warn("kmem_slab_partial doesn't support global walks\n"); 287 return (WALK_ERR); 288 } 289 290 if (mdb_vread(&c, sizeof (c), caddr) == -1) { 291 mdb_warn("couldn't read kmem_cache at %p", caddr); 292 return (WALK_ERR); 293 } 294 295 combined_walk_init(wsp); 296 297 /* 298 * Some consumers (umem_walk_step(), in particular) require at 299 * least one callback if there are any buffers in the cache. So 300 * if there are *no* partial slabs, report the first full slab, if 301 * any. 302 * 303 * Yes, this is ugly, but it's cleaner than the other possibilities. 304 */ 305 if (c.cache_partial_slabs.avl_numnodes == 0) { 306 combined_walk_add(wsp, kmem_first_complete_slab_walk_init, 307 list_walk_step, list_walk_fini); 308 } else { 309 combined_walk_add(wsp, kmem_partial_slab_walk_init, 310 avl_walk_step, avl_walk_fini); 311 } 312 313 return (WALK_NEXT); 314 } 315 316 int 317 kmem_cache(uintptr_t addr, uint_t flags, int ac, const mdb_arg_t *argv) 318 { 319 kmem_cache_t c; 320 const char *filter = NULL; 321 322 if (mdb_getopts(ac, argv, 323 'n', MDB_OPT_STR, &filter, 324 NULL) != ac) { 325 return (DCMD_USAGE); 326 } 327 328 if (!(flags & DCMD_ADDRSPEC)) { 329 if (mdb_walk_dcmd("kmem_cache", "kmem_cache", ac, argv) == -1) { 330 mdb_warn("can't walk kmem_cache"); 331 return (DCMD_ERR); 332 } 333 return (DCMD_OK); 334 } 335 336 if (DCMD_HDRSPEC(flags)) 337 mdb_printf("%-?s %-25s %4s %6s %8s %8s\n", "ADDR", "NAME", 338 "FLAG", "CFLAG", "BUFSIZE", "BUFTOTL"); 339 340 if (mdb_vread(&c, sizeof (c), addr) == -1) { 341 mdb_warn("couldn't read kmem_cache at %p", addr); 342 return (DCMD_ERR); 343 } 344 345 if ((filter != NULL) && (strstr(c.cache_name, filter) == NULL)) 346 return (DCMD_OK); 347 348 mdb_printf("%0?p %-25s %04x %06x %8ld %8lld\n", addr, c.cache_name, 349 c.cache_flags, c.cache_cflags, c.cache_bufsize, c.cache_buftotal); 350 351 return (DCMD_OK); 352 } 353 354 void 355 kmem_cache_help(void) 356 { 357 mdb_printf("%s", "Print kernel memory caches.\n\n"); 358 mdb_dec_indent(2); 359 mdb_printf("%<b>OPTIONS%</b>\n"); 360 mdb_inc_indent(2); 361 mdb_printf("%s", 362 " -n name\n" 363 " name of kmem cache (or matching partial name)\n" 364 "\n" 365 "Column\tDescription\n" 366 "\n" 367 "ADDR\t\taddress of kmem cache\n" 368 "NAME\t\tname of kmem cache\n" 369 "FLAG\t\tvarious cache state flags\n" 370 "CFLAG\t\tcache creation flags\n" 371 "BUFSIZE\tobject size in bytes\n" 372 "BUFTOTL\tcurrent total buffers in cache (allocated and free)\n"); 373 } 374 375 #define LABEL_WIDTH 11 376 static void 377 kmem_slabs_print_dist(uint_t *ks_bucket, size_t buffers_per_slab, 378 size_t maxbuckets, size_t minbucketsize) 379 { 380 uint64_t total; 381 int buckets; 382 int i; 383 const int *distarray; 384 int complete[2]; 385 386 buckets = buffers_per_slab; 387 388 total = 0; 389 for (i = 0; i <= buffers_per_slab; i++) 390 total += ks_bucket[i]; 391 392 if (maxbuckets > 1) 393 buckets = MIN(buckets, maxbuckets); 394 395 if (minbucketsize > 1) { 396 /* 397 * minbucketsize does not apply to the first bucket reserved 398 * for completely allocated slabs 399 */ 400 buckets = MIN(buckets, 1 + ((buffers_per_slab - 1) / 401 minbucketsize)); 402 if ((buckets < 2) && (buffers_per_slab > 1)) { 403 buckets = 2; 404 minbucketsize = (buffers_per_slab - 1); 405 } 406 } 407 408 /* 409 * The first printed bucket is reserved for completely allocated slabs. 410 * Passing (buckets - 1) excludes that bucket from the generated 411 * distribution, since we're handling it as a special case. 412 */ 413 complete[0] = buffers_per_slab; 414 complete[1] = buffers_per_slab + 1; 415 distarray = dist_linear(buckets - 1, 1, buffers_per_slab - 1); 416 417 mdb_printf("%*s\n", LABEL_WIDTH, "Allocated"); 418 dist_print_header("Buffers", LABEL_WIDTH, "Slabs"); 419 420 dist_print_bucket(complete, 0, ks_bucket, total, LABEL_WIDTH); 421 /* 422 * Print bucket ranges in descending order after the first bucket for 423 * completely allocated slabs, so a person can see immediately whether 424 * or not there is fragmentation without having to scan possibly 425 * multiple screens of output. Starting at (buckets - 2) excludes the 426 * extra terminating bucket. 427 */ 428 for (i = buckets - 2; i >= 0; i--) { 429 dist_print_bucket(distarray, i, ks_bucket, total, LABEL_WIDTH); 430 } 431 mdb_printf("\n"); 432 } 433 #undef LABEL_WIDTH 434 435 /*ARGSUSED*/ 436 static int 437 kmem_first_slab(uintptr_t addr, const kmem_slab_t *sp, boolean_t *is_slab) 438 { 439 *is_slab = B_TRUE; 440 return (WALK_DONE); 441 } 442 443 /*ARGSUSED*/ 444 static int 445 kmem_first_partial_slab(uintptr_t addr, const kmem_slab_t *sp, 446 boolean_t *is_slab) 447 { 448 /* 449 * The "kmem_partial_slab" walker reports the first full slab if there 450 * are no partial slabs (for the sake of consumers that require at least 451 * one callback if there are any buffers in the cache). 452 */ 453 *is_slab = KMEM_SLAB_IS_PARTIAL(sp); 454 return (WALK_DONE); 455 } 456 457 typedef struct kmem_slab_usage { 458 int ksu_refcnt; /* count of allocated buffers on slab */ 459 boolean_t ksu_nomove; /* slab marked non-reclaimable */ 460 } kmem_slab_usage_t; 461 462 typedef struct kmem_slab_stats { 463 const kmem_cache_t *ks_cp; 464 int ks_slabs; /* slabs in cache */ 465 int ks_partial_slabs; /* partially allocated slabs in cache */ 466 uint64_t ks_unused_buffers; /* total unused buffers in cache */ 467 int ks_max_buffers_per_slab; /* max buffers per slab */ 468 int ks_usage_len; /* ks_usage array length */ 469 kmem_slab_usage_t *ks_usage; /* partial slab usage */ 470 uint_t *ks_bucket; /* slab usage distribution */ 471 } kmem_slab_stats_t; 472 473 /*ARGSUSED*/ 474 static int 475 kmem_slablist_stat(uintptr_t addr, const kmem_slab_t *sp, 476 kmem_slab_stats_t *ks) 477 { 478 kmem_slab_usage_t *ksu; 479 long unused; 480 481 ks->ks_slabs++; 482 ks->ks_bucket[sp->slab_refcnt]++; 483 484 unused = (sp->slab_chunks - sp->slab_refcnt); 485 if (unused == 0) { 486 return (WALK_NEXT); 487 } 488 489 ks->ks_partial_slabs++; 490 ks->ks_unused_buffers += unused; 491 492 if (ks->ks_partial_slabs > ks->ks_usage_len) { 493 kmem_slab_usage_t *usage; 494 int len = ks->ks_usage_len; 495 496 len = (len == 0 ? 16 : len * 2); 497 usage = mdb_zalloc(len * sizeof (kmem_slab_usage_t), UM_SLEEP); 498 if (ks->ks_usage != NULL) { 499 bcopy(ks->ks_usage, usage, 500 ks->ks_usage_len * sizeof (kmem_slab_usage_t)); 501 mdb_free(ks->ks_usage, 502 ks->ks_usage_len * sizeof (kmem_slab_usage_t)); 503 } 504 ks->ks_usage = usage; 505 ks->ks_usage_len = len; 506 } 507 508 ksu = &ks->ks_usage[ks->ks_partial_slabs - 1]; 509 ksu->ksu_refcnt = sp->slab_refcnt; 510 ksu->ksu_nomove = (sp->slab_flags & KMEM_SLAB_NOMOVE); 511 return (WALK_NEXT); 512 } 513 514 static void 515 kmem_slabs_header() 516 { 517 mdb_printf("%-25s %8s %8s %9s %9s %6s\n", 518 "", "", "Partial", "", "Unused", ""); 519 mdb_printf("%-25s %8s %8s %9s %9s %6s\n", 520 "Cache Name", "Slabs", "Slabs", "Buffers", "Buffers", "Waste"); 521 mdb_printf("%-25s %8s %8s %9s %9s %6s\n", 522 "-------------------------", "--------", "--------", "---------", 523 "---------", "------"); 524 } 525 526 int 527 kmem_slabs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 528 { 529 kmem_cache_t c; 530 kmem_slab_stats_t stats; 531 mdb_walk_cb_t cb; 532 int pct; 533 int tenths_pct; 534 size_t maxbuckets = 1; 535 size_t minbucketsize = 0; 536 const char *filter = NULL; 537 const char *name = NULL; 538 uint_t opt_v = FALSE; 539 boolean_t buckets = B_FALSE; 540 boolean_t skip = B_FALSE; 541 542 if (mdb_getopts(argc, argv, 543 'B', MDB_OPT_UINTPTR, &minbucketsize, 544 'b', MDB_OPT_UINTPTR, &maxbuckets, 545 'n', MDB_OPT_STR, &filter, 546 'N', MDB_OPT_STR, &name, 547 'v', MDB_OPT_SETBITS, TRUE, &opt_v, 548 NULL) != argc) { 549 return (DCMD_USAGE); 550 } 551 552 if ((maxbuckets != 1) || (minbucketsize != 0)) { 553 buckets = B_TRUE; 554 } 555 556 if (!(flags & DCMD_ADDRSPEC)) { 557 if (mdb_walk_dcmd("kmem_cache", "kmem_slabs", argc, 558 argv) == -1) { 559 mdb_warn("can't walk kmem_cache"); 560 return (DCMD_ERR); 561 } 562 return (DCMD_OK); 563 } 564 565 if (mdb_vread(&c, sizeof (c), addr) == -1) { 566 mdb_warn("couldn't read kmem_cache at %p", addr); 567 return (DCMD_ERR); 568 } 569 570 if (name == NULL) { 571 skip = ((filter != NULL) && 572 (strstr(c.cache_name, filter) == NULL)); 573 } else if (filter == NULL) { 574 skip = (strcmp(c.cache_name, name) != 0); 575 } else { 576 /* match either -n or -N */ 577 skip = ((strcmp(c.cache_name, name) != 0) && 578 (strstr(c.cache_name, filter) == NULL)); 579 } 580 581 if (!(opt_v || buckets) && DCMD_HDRSPEC(flags)) { 582 kmem_slabs_header(); 583 } else if ((opt_v || buckets) && !skip) { 584 if (DCMD_HDRSPEC(flags)) { 585 kmem_slabs_header(); 586 } else { 587 boolean_t is_slab = B_FALSE; 588 const char *walker_name; 589 if (opt_v) { 590 cb = (mdb_walk_cb_t)kmem_first_partial_slab; 591 walker_name = "kmem_slab_partial"; 592 } else { 593 cb = (mdb_walk_cb_t)kmem_first_slab; 594 walker_name = "kmem_slab"; 595 } 596 (void) mdb_pwalk(walker_name, cb, &is_slab, addr); 597 if (is_slab) { 598 kmem_slabs_header(); 599 } 600 } 601 } 602 603 if (skip) { 604 return (DCMD_OK); 605 } 606 607 bzero(&stats, sizeof (kmem_slab_stats_t)); 608 stats.ks_cp = &c; 609 stats.ks_max_buffers_per_slab = c.cache_maxchunks; 610 /* +1 to include a zero bucket */ 611 stats.ks_bucket = mdb_zalloc((stats.ks_max_buffers_per_slab + 1) * 612 sizeof (*stats.ks_bucket), UM_SLEEP); 613 cb = (mdb_walk_cb_t)kmem_slablist_stat; 614 (void) mdb_pwalk("kmem_slab", cb, &stats, addr); 615 616 if (c.cache_buftotal == 0) { 617 pct = 0; 618 tenths_pct = 0; 619 } else { 620 uint64_t n = stats.ks_unused_buffers * 10000; 621 pct = (int)(n / c.cache_buftotal); 622 tenths_pct = pct - ((pct / 100) * 100); 623 tenths_pct = (tenths_pct + 5) / 10; /* round nearest tenth */ 624 if (tenths_pct == 10) { 625 pct += 100; 626 tenths_pct = 0; 627 } 628 } 629 630 pct /= 100; 631 mdb_printf("%-25s %8d %8d %9lld %9lld %3d.%1d%%\n", c.cache_name, 632 stats.ks_slabs, stats.ks_partial_slabs, c.cache_buftotal, 633 stats.ks_unused_buffers, pct, tenths_pct); 634 635 if (maxbuckets == 0) { 636 maxbuckets = stats.ks_max_buffers_per_slab; 637 } 638 639 if (((maxbuckets > 1) || (minbucketsize > 0)) && 640 (stats.ks_slabs > 0)) { 641 mdb_printf("\n"); 642 kmem_slabs_print_dist(stats.ks_bucket, 643 stats.ks_max_buffers_per_slab, maxbuckets, minbucketsize); 644 } 645 646 mdb_free(stats.ks_bucket, (stats.ks_max_buffers_per_slab + 1) * 647 sizeof (*stats.ks_bucket)); 648 649 if (!opt_v) { 650 return (DCMD_OK); 651 } 652 653 if (opt_v && (stats.ks_partial_slabs > 0)) { 654 int i; 655 kmem_slab_usage_t *ksu; 656 657 mdb_printf(" %d complete (%d), %d partial:", 658 (stats.ks_slabs - stats.ks_partial_slabs), 659 stats.ks_max_buffers_per_slab, 660 stats.ks_partial_slabs); 661 662 for (i = 0; i < stats.ks_partial_slabs; i++) { 663 ksu = &stats.ks_usage[i]; 664 mdb_printf(" %d%s", ksu->ksu_refcnt, 665 (ksu->ksu_nomove ? "*" : "")); 666 } 667 mdb_printf("\n\n"); 668 } 669 670 if (stats.ks_usage_len > 0) { 671 mdb_free(stats.ks_usage, 672 stats.ks_usage_len * sizeof (kmem_slab_usage_t)); 673 } 674 675 return (DCMD_OK); 676 } 677 678 void 679 kmem_slabs_help(void) 680 { 681 mdb_printf("%s", 682 "Display slab usage per kmem cache.\n\n"); 683 mdb_dec_indent(2); 684 mdb_printf("%<b>OPTIONS%</b>\n"); 685 mdb_inc_indent(2); 686 mdb_printf("%s", 687 " -n name\n" 688 " name of kmem cache (or matching partial name)\n" 689 " -N name\n" 690 " exact name of kmem cache\n" 691 " -b maxbins\n" 692 " Print a distribution of allocated buffers per slab using at\n" 693 " most maxbins bins. The first bin is reserved for completely\n" 694 " allocated slabs. Setting maxbins to zero (-b 0) has the same\n" 695 " effect as specifying the maximum allocated buffers per slab\n" 696 " or setting minbinsize to 1 (-B 1).\n" 697 " -B minbinsize\n" 698 " Print a distribution of allocated buffers per slab, making\n" 699 " all bins (except the first, reserved for completely allocated\n" 700 " slabs) at least minbinsize buffers apart.\n" 701 " -v verbose output: List the allocated buffer count of each partial\n" 702 " slab on the free list in order from front to back to show how\n" 703 " closely the slabs are ordered by usage. For example\n" 704 "\n" 705 " 10 complete, 3 partial (8): 7 3 1\n" 706 "\n" 707 " means there are thirteen slabs with eight buffers each, including\n" 708 " three partially allocated slabs with less than all eight buffers\n" 709 " allocated.\n" 710 "\n" 711 " Buffer allocations are always from the front of the partial slab\n" 712 " list. When a buffer is freed from a completely used slab, that\n" 713 " slab is added to the front of the partial slab list. Assuming\n" 714 " that all buffers are equally likely to be freed soon, the\n" 715 " desired order of partial slabs is most-used at the front of the\n" 716 " list and least-used at the back (as in the example above).\n" 717 " However, if a slab contains an allocated buffer that will not\n" 718 " soon be freed, it would be better for that slab to be at the\n" 719 " front where all of its buffers can be allocated. Taking a slab\n" 720 " off the partial slab list (either with all buffers freed or all\n" 721 " buffers allocated) reduces cache fragmentation.\n" 722 "\n" 723 " A slab's allocated buffer count representing a partial slab (9 in\n" 724 " the example below) may be marked as follows:\n" 725 "\n" 726 " 9* An asterisk indicates that kmem has marked the slab non-\n" 727 " reclaimable because the kmem client refused to move one of the\n" 728 " slab's buffers. Since kmem does not expect to completely free the\n" 729 " slab, it moves it to the front of the list in the hope of\n" 730 " completely allocating it instead. A slab marked with an asterisk\n" 731 " stays marked for as long as it remains on the partial slab list.\n" 732 "\n" 733 "Column\t\tDescription\n" 734 "\n" 735 "Cache Name\t\tname of kmem cache\n" 736 "Slabs\t\t\ttotal slab count\n" 737 "Partial Slabs\t\tcount of partially allocated slabs on the free list\n" 738 "Buffers\t\ttotal buffer count (Slabs * (buffers per slab))\n" 739 "Unused Buffers\tcount of unallocated buffers across all partial slabs\n" 740 "Waste\t\t\t(Unused Buffers / Buffers) does not include space\n" 741 "\t\t\t for accounting structures (debug mode), slab\n" 742 "\t\t\t coloring (incremental small offsets to stagger\n" 743 "\t\t\t buffer alignment), or the per-CPU magazine layer\n"); 744 } 745 746 static int 747 addrcmp(const void *lhs, const void *rhs) 748 { 749 uintptr_t p1 = *((uintptr_t *)lhs); 750 uintptr_t p2 = *((uintptr_t *)rhs); 751 752 if (p1 < p2) 753 return (-1); 754 if (p1 > p2) 755 return (1); 756 return (0); 757 } 758 759 static int 760 bufctlcmp(const kmem_bufctl_audit_t **lhs, const kmem_bufctl_audit_t **rhs) 761 { 762 const kmem_bufctl_audit_t *bcp1 = *lhs; 763 const kmem_bufctl_audit_t *bcp2 = *rhs; 764 765 if (bcp1->bc_timestamp > bcp2->bc_timestamp) 766 return (-1); 767 768 if (bcp1->bc_timestamp < bcp2->bc_timestamp) 769 return (1); 770 771 return (0); 772 } 773 774 typedef struct kmem_hash_walk { 775 uintptr_t *kmhw_table; 776 size_t kmhw_nelems; 777 size_t kmhw_pos; 778 kmem_bufctl_t kmhw_cur; 779 } kmem_hash_walk_t; 780 781 int 782 kmem_hash_walk_init(mdb_walk_state_t *wsp) 783 { 784 kmem_hash_walk_t *kmhw; 785 uintptr_t *hash; 786 kmem_cache_t c; 787 uintptr_t haddr, addr = wsp->walk_addr; 788 size_t nelems; 789 size_t hsize; 790 791 if (addr == NULL) { 792 mdb_warn("kmem_hash doesn't support global walks\n"); 793 return (WALK_ERR); 794 } 795 796 if (mdb_vread(&c, sizeof (c), addr) == -1) { 797 mdb_warn("couldn't read cache at addr %p", addr); 798 return (WALK_ERR); 799 } 800 801 if (!(c.cache_flags & KMF_HASH)) { 802 mdb_warn("cache %p doesn't have a hash table\n", addr); 803 return (WALK_DONE); /* nothing to do */ 804 } 805 806 kmhw = mdb_zalloc(sizeof (kmem_hash_walk_t), UM_SLEEP); 807 kmhw->kmhw_cur.bc_next = NULL; 808 kmhw->kmhw_pos = 0; 809 810 kmhw->kmhw_nelems = nelems = c.cache_hash_mask + 1; 811 hsize = nelems * sizeof (uintptr_t); 812 haddr = (uintptr_t)c.cache_hash_table; 813 814 kmhw->kmhw_table = hash = mdb_alloc(hsize, UM_SLEEP); 815 if (mdb_vread(hash, hsize, haddr) == -1) { 816 mdb_warn("failed to read hash table at %p", haddr); 817 mdb_free(hash, hsize); 818 mdb_free(kmhw, sizeof (kmem_hash_walk_t)); 819 return (WALK_ERR); 820 } 821 822 wsp->walk_data = kmhw; 823 824 return (WALK_NEXT); 825 } 826 827 int 828 kmem_hash_walk_step(mdb_walk_state_t *wsp) 829 { 830 kmem_hash_walk_t *kmhw = wsp->walk_data; 831 uintptr_t addr = NULL; 832 833 if ((addr = (uintptr_t)kmhw->kmhw_cur.bc_next) == NULL) { 834 while (kmhw->kmhw_pos < kmhw->kmhw_nelems) { 835 if ((addr = kmhw->kmhw_table[kmhw->kmhw_pos++]) != NULL) 836 break; 837 } 838 } 839 if (addr == NULL) 840 return (WALK_DONE); 841 842 if (mdb_vread(&kmhw->kmhw_cur, sizeof (kmem_bufctl_t), addr) == -1) { 843 mdb_warn("couldn't read kmem_bufctl_t at addr %p", addr); 844 return (WALK_ERR); 845 } 846 847 return (wsp->walk_callback(addr, &kmhw->kmhw_cur, wsp->walk_cbdata)); 848 } 849 850 void 851 kmem_hash_walk_fini(mdb_walk_state_t *wsp) 852 { 853 kmem_hash_walk_t *kmhw = wsp->walk_data; 854 855 if (kmhw == NULL) 856 return; 857 858 mdb_free(kmhw->kmhw_table, kmhw->kmhw_nelems * sizeof (uintptr_t)); 859 mdb_free(kmhw, sizeof (kmem_hash_walk_t)); 860 } 861 862 /* 863 * Find the address of the bufctl structure for the address 'buf' in cache 864 * 'cp', which is at address caddr, and place it in *out. 865 */ 866 static int 867 kmem_hash_lookup(kmem_cache_t *cp, uintptr_t caddr, void *buf, uintptr_t *out) 868 { 869 uintptr_t bucket = (uintptr_t)KMEM_HASH(cp, buf); 870 kmem_bufctl_t *bcp; 871 kmem_bufctl_t bc; 872 873 if (mdb_vread(&bcp, sizeof (kmem_bufctl_t *), bucket) == -1) { 874 mdb_warn("unable to read hash bucket for %p in cache %p", 875 buf, caddr); 876 return (-1); 877 } 878 879 while (bcp != NULL) { 880 if (mdb_vread(&bc, sizeof (kmem_bufctl_t), 881 (uintptr_t)bcp) == -1) { 882 mdb_warn("unable to read bufctl at %p", bcp); 883 return (-1); 884 } 885 if (bc.bc_addr == buf) { 886 *out = (uintptr_t)bcp; 887 return (0); 888 } 889 bcp = bc.bc_next; 890 } 891 892 mdb_warn("unable to find bufctl for %p in cache %p\n", buf, caddr); 893 return (-1); 894 } 895 896 int 897 kmem_get_magsize(const kmem_cache_t *cp) 898 { 899 uintptr_t addr = (uintptr_t)cp->cache_magtype; 900 GElf_Sym mt_sym; 901 kmem_magtype_t mt; 902 int res; 903 904 /* 905 * if cpu 0 has a non-zero magsize, it must be correct. caches 906 * with KMF_NOMAGAZINE have disabled their magazine layers, so 907 * it is okay to return 0 for them. 908 */ 909 if ((res = cp->cache_cpu[0].cc_magsize) != 0 || 910 (cp->cache_flags & KMF_NOMAGAZINE)) 911 return (res); 912 913 if (mdb_lookup_by_name("kmem_magtype", &mt_sym) == -1) { 914 mdb_warn("unable to read 'kmem_magtype'"); 915 } else if (addr < mt_sym.st_value || 916 addr + sizeof (mt) - 1 > mt_sym.st_value + mt_sym.st_size - 1 || 917 ((addr - mt_sym.st_value) % sizeof (mt)) != 0) { 918 mdb_warn("cache '%s' has invalid magtype pointer (%p)\n", 919 cp->cache_name, addr); 920 return (0); 921 } 922 if (mdb_vread(&mt, sizeof (mt), addr) == -1) { 923 mdb_warn("unable to read magtype at %a", addr); 924 return (0); 925 } 926 return (mt.mt_magsize); 927 } 928 929 /*ARGSUSED*/ 930 static int 931 kmem_estimate_slab(uintptr_t addr, const kmem_slab_t *sp, size_t *est) 932 { 933 *est -= (sp->slab_chunks - sp->slab_refcnt); 934 935 return (WALK_NEXT); 936 } 937 938 /* 939 * Returns an upper bound on the number of allocated buffers in a given 940 * cache. 941 */ 942 size_t 943 kmem_estimate_allocated(uintptr_t addr, const kmem_cache_t *cp) 944 { 945 int magsize; 946 size_t cache_est; 947 948 cache_est = cp->cache_buftotal; 949 950 (void) mdb_pwalk("kmem_slab_partial", 951 (mdb_walk_cb_t)kmem_estimate_slab, &cache_est, addr); 952 953 if ((magsize = kmem_get_magsize(cp)) != 0) { 954 size_t mag_est = cp->cache_full.ml_total * magsize; 955 956 if (cache_est >= mag_est) { 957 cache_est -= mag_est; 958 } else { 959 mdb_warn("cache %p's magazine layer holds more buffers " 960 "than the slab layer.\n", addr); 961 } 962 } 963 return (cache_est); 964 } 965 966 #define READMAG_ROUNDS(rounds) { \ 967 if (mdb_vread(mp, magbsize, (uintptr_t)kmp) == -1) { \ 968 mdb_warn("couldn't read magazine at %p", kmp); \ 969 goto fail; \ 970 } \ 971 for (i = 0; i < rounds; i++) { \ 972 maglist[magcnt++] = mp->mag_round[i]; \ 973 if (magcnt == magmax) { \ 974 mdb_warn("%d magazines exceeds fudge factor\n", \ 975 magcnt); \ 976 goto fail; \ 977 } \ 978 } \ 979 } 980 981 int 982 kmem_read_magazines(kmem_cache_t *cp, uintptr_t addr, int ncpus, 983 void ***maglistp, size_t *magcntp, size_t *magmaxp, int alloc_flags) 984 { 985 kmem_magazine_t *kmp, *mp; 986 void **maglist = NULL; 987 int i, cpu; 988 size_t magsize, magmax, magbsize; 989 size_t magcnt = 0; 990 991 /* 992 * Read the magtype out of the cache, after verifying the pointer's 993 * correctness. 994 */ 995 magsize = kmem_get_magsize(cp); 996 if (magsize == 0) { 997 *maglistp = NULL; 998 *magcntp = 0; 999 *magmaxp = 0; 1000 return (WALK_NEXT); 1001 } 1002 1003 /* 1004 * There are several places where we need to go buffer hunting: 1005 * the per-CPU loaded magazine, the per-CPU spare full magazine, 1006 * and the full magazine list in the depot. 1007 * 1008 * For an upper bound on the number of buffers in the magazine 1009 * layer, we have the number of magazines on the cache_full 1010 * list plus at most two magazines per CPU (the loaded and the 1011 * spare). Toss in 100 magazines as a fudge factor in case this 1012 * is live (the number "100" comes from the same fudge factor in 1013 * crash(1M)). 1014 */ 1015 magmax = (cp->cache_full.ml_total + 2 * ncpus + 100) * magsize; 1016 magbsize = offsetof(kmem_magazine_t, mag_round[magsize]); 1017 1018 if (magbsize >= PAGESIZE / 2) { 1019 mdb_warn("magazine size for cache %p unreasonable (%x)\n", 1020 addr, magbsize); 1021 return (WALK_ERR); 1022 } 1023 1024 maglist = mdb_alloc(magmax * sizeof (void *), alloc_flags); 1025 mp = mdb_alloc(magbsize, alloc_flags); 1026 if (mp == NULL || maglist == NULL) 1027 goto fail; 1028 1029 /* 1030 * First up: the magazines in the depot (i.e. on the cache_full list). 1031 */ 1032 for (kmp = cp->cache_full.ml_list; kmp != NULL; ) { 1033 READMAG_ROUNDS(magsize); 1034 kmp = mp->mag_next; 1035 1036 if (kmp == cp->cache_full.ml_list) 1037 break; /* cache_full list loop detected */ 1038 } 1039 1040 dprintf(("cache_full list done\n")); 1041 1042 /* 1043 * Now whip through the CPUs, snagging the loaded magazines 1044 * and full spares. 1045 * 1046 * In order to prevent inconsistent dumps, rounds and prounds 1047 * are copied aside before dumping begins. 1048 */ 1049 for (cpu = 0; cpu < ncpus; cpu++) { 1050 kmem_cpu_cache_t *ccp = &cp->cache_cpu[cpu]; 1051 short rounds, prounds; 1052 1053 if (KMEM_DUMPCC(ccp)) { 1054 rounds = ccp->cc_dump_rounds; 1055 prounds = ccp->cc_dump_prounds; 1056 } else { 1057 rounds = ccp->cc_rounds; 1058 prounds = ccp->cc_prounds; 1059 } 1060 1061 dprintf(("reading cpu cache %p\n", 1062 (uintptr_t)ccp - (uintptr_t)cp + addr)); 1063 1064 if (rounds > 0 && 1065 (kmp = ccp->cc_loaded) != NULL) { 1066 dprintf(("reading %d loaded rounds\n", rounds)); 1067 READMAG_ROUNDS(rounds); 1068 } 1069 1070 if (prounds > 0 && 1071 (kmp = ccp->cc_ploaded) != NULL) { 1072 dprintf(("reading %d previously loaded rounds\n", 1073 prounds)); 1074 READMAG_ROUNDS(prounds); 1075 } 1076 } 1077 1078 dprintf(("magazine layer: %d buffers\n", magcnt)); 1079 1080 if (!(alloc_flags & UM_GC)) 1081 mdb_free(mp, magbsize); 1082 1083 *maglistp = maglist; 1084 *magcntp = magcnt; 1085 *magmaxp = magmax; 1086 1087 return (WALK_NEXT); 1088 1089 fail: 1090 if (!(alloc_flags & UM_GC)) { 1091 if (mp) 1092 mdb_free(mp, magbsize); 1093 if (maglist) 1094 mdb_free(maglist, magmax * sizeof (void *)); 1095 } 1096 return (WALK_ERR); 1097 } 1098 1099 static int 1100 kmem_walk_callback(mdb_walk_state_t *wsp, uintptr_t buf) 1101 { 1102 return (wsp->walk_callback(buf, NULL, wsp->walk_cbdata)); 1103 } 1104 1105 static int 1106 bufctl_walk_callback(kmem_cache_t *cp, mdb_walk_state_t *wsp, uintptr_t buf) 1107 { 1108 kmem_bufctl_audit_t b; 1109 1110 /* 1111 * if KMF_AUDIT is not set, we know that we're looking at a 1112 * kmem_bufctl_t. 1113 */ 1114 if (!(cp->cache_flags & KMF_AUDIT) || 1115 mdb_vread(&b, sizeof (kmem_bufctl_audit_t), buf) == -1) { 1116 (void) memset(&b, 0, sizeof (b)); 1117 if (mdb_vread(&b, sizeof (kmem_bufctl_t), buf) == -1) { 1118 mdb_warn("unable to read bufctl at %p", buf); 1119 return (WALK_ERR); 1120 } 1121 } 1122 1123 return (wsp->walk_callback(buf, &b, wsp->walk_cbdata)); 1124 } 1125 1126 typedef struct kmem_walk { 1127 int kmw_type; 1128 1129 uintptr_t kmw_addr; /* cache address */ 1130 kmem_cache_t *kmw_cp; 1131 size_t kmw_csize; 1132 1133 /* 1134 * magazine layer 1135 */ 1136 void **kmw_maglist; 1137 size_t kmw_max; 1138 size_t kmw_count; 1139 size_t kmw_pos; 1140 1141 /* 1142 * slab layer 1143 */ 1144 char *kmw_valid; /* to keep track of freed buffers */ 1145 char *kmw_ubase; /* buffer for slab data */ 1146 } kmem_walk_t; 1147 1148 static int 1149 kmem_walk_init_common(mdb_walk_state_t *wsp, int type) 1150 { 1151 kmem_walk_t *kmw; 1152 int ncpus, csize; 1153 kmem_cache_t *cp; 1154 size_t vm_quantum; 1155 1156 size_t magmax, magcnt; 1157 void **maglist = NULL; 1158 uint_t chunksize, slabsize; 1159 int status = WALK_ERR; 1160 uintptr_t addr = wsp->walk_addr; 1161 const char *layered; 1162 1163 type &= ~KM_HASH; 1164 1165 if (addr == NULL) { 1166 mdb_warn("kmem walk doesn't support global walks\n"); 1167 return (WALK_ERR); 1168 } 1169 1170 dprintf(("walking %p\n", addr)); 1171 1172 /* 1173 * First we need to figure out how many CPUs are configured in the 1174 * system to know how much to slurp out. 1175 */ 1176 mdb_readvar(&ncpus, "max_ncpus"); 1177 1178 csize = KMEM_CACHE_SIZE(ncpus); 1179 cp = mdb_alloc(csize, UM_SLEEP); 1180 1181 if (mdb_vread(cp, csize, addr) == -1) { 1182 mdb_warn("couldn't read cache at addr %p", addr); 1183 goto out2; 1184 } 1185 1186 /* 1187 * It's easy for someone to hand us an invalid cache address. 1188 * Unfortunately, it is hard for this walker to survive an 1189 * invalid cache cleanly. So we make sure that: 1190 * 1191 * 1. the vmem arena for the cache is readable, 1192 * 2. the vmem arena's quantum is a power of 2, 1193 * 3. our slabsize is a multiple of the quantum, and 1194 * 4. our chunksize is >0 and less than our slabsize. 1195 */ 1196 if (mdb_vread(&vm_quantum, sizeof (vm_quantum), 1197 (uintptr_t)&cp->cache_arena->vm_quantum) == -1 || 1198 vm_quantum == 0 || 1199 (vm_quantum & (vm_quantum - 1)) != 0 || 1200 cp->cache_slabsize < vm_quantum || 1201 P2PHASE(cp->cache_slabsize, vm_quantum) != 0 || 1202 cp->cache_chunksize == 0 || 1203 cp->cache_chunksize > cp->cache_slabsize) { 1204 mdb_warn("%p is not a valid kmem_cache_t\n", addr); 1205 goto out2; 1206 } 1207 1208 dprintf(("buf total is %d\n", cp->cache_buftotal)); 1209 1210 if (cp->cache_buftotal == 0) { 1211 mdb_free(cp, csize); 1212 return (WALK_DONE); 1213 } 1214 1215 /* 1216 * If they ask for bufctls, but it's a small-slab cache, 1217 * there is nothing to report. 1218 */ 1219 if ((type & KM_BUFCTL) && !(cp->cache_flags & KMF_HASH)) { 1220 dprintf(("bufctl requested, not KMF_HASH (flags: %p)\n", 1221 cp->cache_flags)); 1222 mdb_free(cp, csize); 1223 return (WALK_DONE); 1224 } 1225 1226 /* 1227 * If they want constructed buffers, but there's no constructor or 1228 * the cache has DEADBEEF checking enabled, there is nothing to report. 1229 */ 1230 if ((type & KM_CONSTRUCTED) && (!(type & KM_FREE) || 1231 cp->cache_constructor == NULL || 1232 (cp->cache_flags & (KMF_DEADBEEF | KMF_LITE)) == KMF_DEADBEEF)) { 1233 mdb_free(cp, csize); 1234 return (WALK_DONE); 1235 } 1236 1237 /* 1238 * Read in the contents of the magazine layer 1239 */ 1240 if (kmem_read_magazines(cp, addr, ncpus, &maglist, &magcnt, 1241 &magmax, UM_SLEEP) == WALK_ERR) 1242 goto out2; 1243 1244 /* 1245 * We have all of the buffers from the magazines; if we are walking 1246 * allocated buffers, sort them so we can bsearch them later. 1247 */ 1248 if (type & KM_ALLOCATED) 1249 qsort(maglist, magcnt, sizeof (void *), addrcmp); 1250 1251 wsp->walk_data = kmw = mdb_zalloc(sizeof (kmem_walk_t), UM_SLEEP); 1252 1253 kmw->kmw_type = type; 1254 kmw->kmw_addr = addr; 1255 kmw->kmw_cp = cp; 1256 kmw->kmw_csize = csize; 1257 kmw->kmw_maglist = maglist; 1258 kmw->kmw_max = magmax; 1259 kmw->kmw_count = magcnt; 1260 kmw->kmw_pos = 0; 1261 1262 /* 1263 * When walking allocated buffers in a KMF_HASH cache, we walk the 1264 * hash table instead of the slab layer. 1265 */ 1266 if ((cp->cache_flags & KMF_HASH) && (type & KM_ALLOCATED)) { 1267 layered = "kmem_hash"; 1268 1269 kmw->kmw_type |= KM_HASH; 1270 } else { 1271 /* 1272 * If we are walking freed buffers, we only need the 1273 * magazine layer plus the partially allocated slabs. 1274 * To walk allocated buffers, we need all of the slabs. 1275 */ 1276 if (type & KM_ALLOCATED) 1277 layered = "kmem_slab"; 1278 else 1279 layered = "kmem_slab_partial"; 1280 1281 /* 1282 * for small-slab caches, we read in the entire slab. For 1283 * freed buffers, we can just walk the freelist. For 1284 * allocated buffers, we use a 'valid' array to track 1285 * the freed buffers. 1286 */ 1287 if (!(cp->cache_flags & KMF_HASH)) { 1288 chunksize = cp->cache_chunksize; 1289 slabsize = cp->cache_slabsize; 1290 1291 kmw->kmw_ubase = mdb_alloc(slabsize + 1292 sizeof (kmem_bufctl_t), UM_SLEEP); 1293 1294 if (type & KM_ALLOCATED) 1295 kmw->kmw_valid = 1296 mdb_alloc(slabsize / chunksize, UM_SLEEP); 1297 } 1298 } 1299 1300 status = WALK_NEXT; 1301 1302 if (mdb_layered_walk(layered, wsp) == -1) { 1303 mdb_warn("unable to start layered '%s' walk", layered); 1304 status = WALK_ERR; 1305 } 1306 1307 out1: 1308 if (status == WALK_ERR) { 1309 if (kmw->kmw_valid) 1310 mdb_free(kmw->kmw_valid, slabsize / chunksize); 1311 1312 if (kmw->kmw_ubase) 1313 mdb_free(kmw->kmw_ubase, slabsize + 1314 sizeof (kmem_bufctl_t)); 1315 1316 if (kmw->kmw_maglist) 1317 mdb_free(kmw->kmw_maglist, 1318 kmw->kmw_max * sizeof (uintptr_t)); 1319 1320 mdb_free(kmw, sizeof (kmem_walk_t)); 1321 wsp->walk_data = NULL; 1322 } 1323 1324 out2: 1325 if (status == WALK_ERR) 1326 mdb_free(cp, csize); 1327 1328 return (status); 1329 } 1330 1331 int 1332 kmem_walk_step(mdb_walk_state_t *wsp) 1333 { 1334 kmem_walk_t *kmw = wsp->walk_data; 1335 int type = kmw->kmw_type; 1336 kmem_cache_t *cp = kmw->kmw_cp; 1337 1338 void **maglist = kmw->kmw_maglist; 1339 int magcnt = kmw->kmw_count; 1340 1341 uintptr_t chunksize, slabsize; 1342 uintptr_t addr; 1343 const kmem_slab_t *sp; 1344 const kmem_bufctl_t *bcp; 1345 kmem_bufctl_t bc; 1346 1347 int chunks; 1348 char *kbase; 1349 void *buf; 1350 int i, ret; 1351 1352 char *valid, *ubase; 1353 1354 /* 1355 * first, handle the 'kmem_hash' layered walk case 1356 */ 1357 if (type & KM_HASH) { 1358 /* 1359 * We have a buffer which has been allocated out of the 1360 * global layer. We need to make sure that it's not 1361 * actually sitting in a magazine before we report it as 1362 * an allocated buffer. 1363 */ 1364 buf = ((const kmem_bufctl_t *)wsp->walk_layer)->bc_addr; 1365 1366 if (magcnt > 0 && 1367 bsearch(&buf, maglist, magcnt, sizeof (void *), 1368 addrcmp) != NULL) 1369 return (WALK_NEXT); 1370 1371 if (type & KM_BUFCTL) 1372 return (bufctl_walk_callback(cp, wsp, wsp->walk_addr)); 1373 1374 return (kmem_walk_callback(wsp, (uintptr_t)buf)); 1375 } 1376 1377 ret = WALK_NEXT; 1378 1379 addr = kmw->kmw_addr; 1380 1381 /* 1382 * If we're walking freed buffers, report everything in the 1383 * magazine layer before processing the first slab. 1384 */ 1385 if ((type & KM_FREE) && magcnt != 0) { 1386 kmw->kmw_count = 0; /* only do this once */ 1387 for (i = 0; i < magcnt; i++) { 1388 buf = maglist[i]; 1389 1390 if (type & KM_BUFCTL) { 1391 uintptr_t out; 1392 1393 if (cp->cache_flags & KMF_BUFTAG) { 1394 kmem_buftag_t *btp; 1395 kmem_buftag_t tag; 1396 1397 /* LINTED - alignment */ 1398 btp = KMEM_BUFTAG(cp, buf); 1399 if (mdb_vread(&tag, sizeof (tag), 1400 (uintptr_t)btp) == -1) { 1401 mdb_warn("reading buftag for " 1402 "%p at %p", buf, btp); 1403 continue; 1404 } 1405 out = (uintptr_t)tag.bt_bufctl; 1406 } else { 1407 if (kmem_hash_lookup(cp, addr, buf, 1408 &out) == -1) 1409 continue; 1410 } 1411 ret = bufctl_walk_callback(cp, wsp, out); 1412 } else { 1413 ret = kmem_walk_callback(wsp, (uintptr_t)buf); 1414 } 1415 1416 if (ret != WALK_NEXT) 1417 return (ret); 1418 } 1419 } 1420 1421 /* 1422 * If they want constructed buffers, we're finished, since the 1423 * magazine layer holds them all. 1424 */ 1425 if (type & KM_CONSTRUCTED) 1426 return (WALK_DONE); 1427 1428 /* 1429 * Handle the buffers in the current slab 1430 */ 1431 chunksize = cp->cache_chunksize; 1432 slabsize = cp->cache_slabsize; 1433 1434 sp = wsp->walk_layer; 1435 chunks = sp->slab_chunks; 1436 kbase = sp->slab_base; 1437 1438 dprintf(("kbase is %p\n", kbase)); 1439 1440 if (!(cp->cache_flags & KMF_HASH)) { 1441 valid = kmw->kmw_valid; 1442 ubase = kmw->kmw_ubase; 1443 1444 if (mdb_vread(ubase, chunks * chunksize, 1445 (uintptr_t)kbase) == -1) { 1446 mdb_warn("failed to read slab contents at %p", kbase); 1447 return (WALK_ERR); 1448 } 1449 1450 /* 1451 * Set up the valid map as fully allocated -- we'll punch 1452 * out the freelist. 1453 */ 1454 if (type & KM_ALLOCATED) 1455 (void) memset(valid, 1, chunks); 1456 } else { 1457 valid = NULL; 1458 ubase = NULL; 1459 } 1460 1461 /* 1462 * walk the slab's freelist 1463 */ 1464 bcp = sp->slab_head; 1465 1466 dprintf(("refcnt is %d; chunks is %d\n", sp->slab_refcnt, chunks)); 1467 1468 /* 1469 * since we could be in the middle of allocating a buffer, 1470 * our refcnt could be one higher than it aught. So we 1471 * check one further on the freelist than the count allows. 1472 */ 1473 for (i = sp->slab_refcnt; i <= chunks; i++) { 1474 uint_t ndx; 1475 1476 dprintf(("bcp is %p\n", bcp)); 1477 1478 if (bcp == NULL) { 1479 if (i == chunks) 1480 break; 1481 mdb_warn( 1482 "slab %p in cache %p freelist too short by %d\n", 1483 sp, addr, chunks - i); 1484 break; 1485 } 1486 1487 if (cp->cache_flags & KMF_HASH) { 1488 if (mdb_vread(&bc, sizeof (bc), (uintptr_t)bcp) == -1) { 1489 mdb_warn("failed to read bufctl ptr at %p", 1490 bcp); 1491 break; 1492 } 1493 buf = bc.bc_addr; 1494 } else { 1495 /* 1496 * Otherwise the buffer is (or should be) in the slab 1497 * that we've read in; determine its offset in the 1498 * slab, validate that it's not corrupt, and add to 1499 * our base address to find the umem_bufctl_t. (Note 1500 * that we don't need to add the size of the bufctl 1501 * to our offset calculation because of the slop that's 1502 * allocated for the buffer at ubase.) 1503 */ 1504 uintptr_t offs = (uintptr_t)bcp - (uintptr_t)kbase; 1505 1506 if (offs > chunks * chunksize) { 1507 mdb_warn("found corrupt bufctl ptr %p" 1508 " in slab %p in cache %p\n", bcp, 1509 wsp->walk_addr, addr); 1510 break; 1511 } 1512 1513 bc = *((kmem_bufctl_t *)((uintptr_t)ubase + offs)); 1514 buf = KMEM_BUF(cp, bcp); 1515 } 1516 1517 ndx = ((uintptr_t)buf - (uintptr_t)kbase) / chunksize; 1518 1519 if (ndx > slabsize / cp->cache_bufsize) { 1520 /* 1521 * This is very wrong; we have managed to find 1522 * a buffer in the slab which shouldn't 1523 * actually be here. Emit a warning, and 1524 * try to continue. 1525 */ 1526 mdb_warn("buf %p is out of range for " 1527 "slab %p, cache %p\n", buf, sp, addr); 1528 } else if (type & KM_ALLOCATED) { 1529 /* 1530 * we have found a buffer on the slab's freelist; 1531 * clear its entry 1532 */ 1533 valid[ndx] = 0; 1534 } else { 1535 /* 1536 * Report this freed buffer 1537 */ 1538 if (type & KM_BUFCTL) { 1539 ret = bufctl_walk_callback(cp, wsp, 1540 (uintptr_t)bcp); 1541 } else { 1542 ret = kmem_walk_callback(wsp, (uintptr_t)buf); 1543 } 1544 if (ret != WALK_NEXT) 1545 return (ret); 1546 } 1547 1548 bcp = bc.bc_next; 1549 } 1550 1551 if (bcp != NULL) { 1552 dprintf(("slab %p in cache %p freelist too long (%p)\n", 1553 sp, addr, bcp)); 1554 } 1555 1556 /* 1557 * If we are walking freed buffers, the loop above handled reporting 1558 * them. 1559 */ 1560 if (type & KM_FREE) 1561 return (WALK_NEXT); 1562 1563 if (type & KM_BUFCTL) { 1564 mdb_warn("impossible situation: small-slab KM_BUFCTL walk for " 1565 "cache %p\n", addr); 1566 return (WALK_ERR); 1567 } 1568 1569 /* 1570 * Report allocated buffers, skipping buffers in the magazine layer. 1571 * We only get this far for small-slab caches. 1572 */ 1573 for (i = 0; ret == WALK_NEXT && i < chunks; i++) { 1574 buf = (char *)kbase + i * chunksize; 1575 1576 if (!valid[i]) 1577 continue; /* on slab freelist */ 1578 1579 if (magcnt > 0 && 1580 bsearch(&buf, maglist, magcnt, sizeof (void *), 1581 addrcmp) != NULL) 1582 continue; /* in magazine layer */ 1583 1584 ret = kmem_walk_callback(wsp, (uintptr_t)buf); 1585 } 1586 return (ret); 1587 } 1588 1589 void 1590 kmem_walk_fini(mdb_walk_state_t *wsp) 1591 { 1592 kmem_walk_t *kmw = wsp->walk_data; 1593 uintptr_t chunksize; 1594 uintptr_t slabsize; 1595 1596 if (kmw == NULL) 1597 return; 1598 1599 if (kmw->kmw_maglist != NULL) 1600 mdb_free(kmw->kmw_maglist, kmw->kmw_max * sizeof (void *)); 1601 1602 chunksize = kmw->kmw_cp->cache_chunksize; 1603 slabsize = kmw->kmw_cp->cache_slabsize; 1604 1605 if (kmw->kmw_valid != NULL) 1606 mdb_free(kmw->kmw_valid, slabsize / chunksize); 1607 if (kmw->kmw_ubase != NULL) 1608 mdb_free(kmw->kmw_ubase, slabsize + sizeof (kmem_bufctl_t)); 1609 1610 mdb_free(kmw->kmw_cp, kmw->kmw_csize); 1611 mdb_free(kmw, sizeof (kmem_walk_t)); 1612 } 1613 1614 /*ARGSUSED*/ 1615 static int 1616 kmem_walk_all(uintptr_t addr, const kmem_cache_t *c, mdb_walk_state_t *wsp) 1617 { 1618 /* 1619 * Buffers allocated from NOTOUCH caches can also show up as freed 1620 * memory in other caches. This can be a little confusing, so we 1621 * don't walk NOTOUCH caches when walking all caches (thereby assuring 1622 * that "::walk kmem" and "::walk freemem" yield disjoint output). 1623 */ 1624 if (c->cache_cflags & KMC_NOTOUCH) 1625 return (WALK_NEXT); 1626 1627 if (mdb_pwalk(wsp->walk_data, wsp->walk_callback, 1628 wsp->walk_cbdata, addr) == -1) 1629 return (WALK_DONE); 1630 1631 return (WALK_NEXT); 1632 } 1633 1634 #define KMEM_WALK_ALL(name, wsp) { \ 1635 wsp->walk_data = (name); \ 1636 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_walk_all, wsp) == -1) \ 1637 return (WALK_ERR); \ 1638 return (WALK_DONE); \ 1639 } 1640 1641 int 1642 kmem_walk_init(mdb_walk_state_t *wsp) 1643 { 1644 if (wsp->walk_arg != NULL) 1645 wsp->walk_addr = (uintptr_t)wsp->walk_arg; 1646 1647 if (wsp->walk_addr == NULL) 1648 KMEM_WALK_ALL("kmem", wsp); 1649 return (kmem_walk_init_common(wsp, KM_ALLOCATED)); 1650 } 1651 1652 int 1653 bufctl_walk_init(mdb_walk_state_t *wsp) 1654 { 1655 if (wsp->walk_addr == NULL) 1656 KMEM_WALK_ALL("bufctl", wsp); 1657 return (kmem_walk_init_common(wsp, KM_ALLOCATED | KM_BUFCTL)); 1658 } 1659 1660 int 1661 freemem_walk_init(mdb_walk_state_t *wsp) 1662 { 1663 if (wsp->walk_addr == NULL) 1664 KMEM_WALK_ALL("freemem", wsp); 1665 return (kmem_walk_init_common(wsp, KM_FREE)); 1666 } 1667 1668 int 1669 freemem_constructed_walk_init(mdb_walk_state_t *wsp) 1670 { 1671 if (wsp->walk_addr == NULL) 1672 KMEM_WALK_ALL("freemem_constructed", wsp); 1673 return (kmem_walk_init_common(wsp, KM_FREE | KM_CONSTRUCTED)); 1674 } 1675 1676 int 1677 freectl_walk_init(mdb_walk_state_t *wsp) 1678 { 1679 if (wsp->walk_addr == NULL) 1680 KMEM_WALK_ALL("freectl", wsp); 1681 return (kmem_walk_init_common(wsp, KM_FREE | KM_BUFCTL)); 1682 } 1683 1684 int 1685 freectl_constructed_walk_init(mdb_walk_state_t *wsp) 1686 { 1687 if (wsp->walk_addr == NULL) 1688 KMEM_WALK_ALL("freectl_constructed", wsp); 1689 return (kmem_walk_init_common(wsp, 1690 KM_FREE | KM_BUFCTL | KM_CONSTRUCTED)); 1691 } 1692 1693 typedef struct bufctl_history_walk { 1694 void *bhw_next; 1695 kmem_cache_t *bhw_cache; 1696 kmem_slab_t *bhw_slab; 1697 hrtime_t bhw_timestamp; 1698 } bufctl_history_walk_t; 1699 1700 int 1701 bufctl_history_walk_init(mdb_walk_state_t *wsp) 1702 { 1703 bufctl_history_walk_t *bhw; 1704 kmem_bufctl_audit_t bc; 1705 kmem_bufctl_audit_t bcn; 1706 1707 if (wsp->walk_addr == NULL) { 1708 mdb_warn("bufctl_history walk doesn't support global walks\n"); 1709 return (WALK_ERR); 1710 } 1711 1712 if (mdb_vread(&bc, sizeof (bc), wsp->walk_addr) == -1) { 1713 mdb_warn("unable to read bufctl at %p", wsp->walk_addr); 1714 return (WALK_ERR); 1715 } 1716 1717 bhw = mdb_zalloc(sizeof (*bhw), UM_SLEEP); 1718 bhw->bhw_timestamp = 0; 1719 bhw->bhw_cache = bc.bc_cache; 1720 bhw->bhw_slab = bc.bc_slab; 1721 1722 /* 1723 * sometimes the first log entry matches the base bufctl; in that 1724 * case, skip the base bufctl. 1725 */ 1726 if (bc.bc_lastlog != NULL && 1727 mdb_vread(&bcn, sizeof (bcn), (uintptr_t)bc.bc_lastlog) != -1 && 1728 bc.bc_addr == bcn.bc_addr && 1729 bc.bc_cache == bcn.bc_cache && 1730 bc.bc_slab == bcn.bc_slab && 1731 bc.bc_timestamp == bcn.bc_timestamp && 1732 bc.bc_thread == bcn.bc_thread) 1733 bhw->bhw_next = bc.bc_lastlog; 1734 else 1735 bhw->bhw_next = (void *)wsp->walk_addr; 1736 1737 wsp->walk_addr = (uintptr_t)bc.bc_addr; 1738 wsp->walk_data = bhw; 1739 1740 return (WALK_NEXT); 1741 } 1742 1743 int 1744 bufctl_history_walk_step(mdb_walk_state_t *wsp) 1745 { 1746 bufctl_history_walk_t *bhw = wsp->walk_data; 1747 uintptr_t addr = (uintptr_t)bhw->bhw_next; 1748 uintptr_t baseaddr = wsp->walk_addr; 1749 kmem_bufctl_audit_t bc; 1750 1751 if (addr == NULL) 1752 return (WALK_DONE); 1753 1754 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 1755 mdb_warn("unable to read bufctl at %p", bhw->bhw_next); 1756 return (WALK_ERR); 1757 } 1758 1759 /* 1760 * The bufctl is only valid if the address, cache, and slab are 1761 * correct. We also check that the timestamp is decreasing, to 1762 * prevent infinite loops. 1763 */ 1764 if ((uintptr_t)bc.bc_addr != baseaddr || 1765 bc.bc_cache != bhw->bhw_cache || 1766 bc.bc_slab != bhw->bhw_slab || 1767 (bhw->bhw_timestamp != 0 && bc.bc_timestamp >= bhw->bhw_timestamp)) 1768 return (WALK_DONE); 1769 1770 bhw->bhw_next = bc.bc_lastlog; 1771 bhw->bhw_timestamp = bc.bc_timestamp; 1772 1773 return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata)); 1774 } 1775 1776 void 1777 bufctl_history_walk_fini(mdb_walk_state_t *wsp) 1778 { 1779 bufctl_history_walk_t *bhw = wsp->walk_data; 1780 1781 mdb_free(bhw, sizeof (*bhw)); 1782 } 1783 1784 typedef struct kmem_log_walk { 1785 kmem_bufctl_audit_t *klw_base; 1786 kmem_bufctl_audit_t **klw_sorted; 1787 kmem_log_header_t klw_lh; 1788 size_t klw_size; 1789 size_t klw_maxndx; 1790 size_t klw_ndx; 1791 } kmem_log_walk_t; 1792 1793 int 1794 kmem_log_walk_init(mdb_walk_state_t *wsp) 1795 { 1796 uintptr_t lp = wsp->walk_addr; 1797 kmem_log_walk_t *klw; 1798 kmem_log_header_t *lhp; 1799 int maxndx, i, j, k; 1800 1801 /* 1802 * By default (global walk), walk the kmem_transaction_log. Otherwise 1803 * read the log whose kmem_log_header_t is stored at walk_addr. 1804 */ 1805 if (lp == NULL && mdb_readvar(&lp, "kmem_transaction_log") == -1) { 1806 mdb_warn("failed to read 'kmem_transaction_log'"); 1807 return (WALK_ERR); 1808 } 1809 1810 if (lp == NULL) { 1811 mdb_warn("log is disabled\n"); 1812 return (WALK_ERR); 1813 } 1814 1815 klw = mdb_zalloc(sizeof (kmem_log_walk_t), UM_SLEEP); 1816 lhp = &klw->klw_lh; 1817 1818 if (mdb_vread(lhp, sizeof (kmem_log_header_t), lp) == -1) { 1819 mdb_warn("failed to read log header at %p", lp); 1820 mdb_free(klw, sizeof (kmem_log_walk_t)); 1821 return (WALK_ERR); 1822 } 1823 1824 klw->klw_size = lhp->lh_chunksize * lhp->lh_nchunks; 1825 klw->klw_base = mdb_alloc(klw->klw_size, UM_SLEEP); 1826 maxndx = lhp->lh_chunksize / sizeof (kmem_bufctl_audit_t) - 1; 1827 1828 if (mdb_vread(klw->klw_base, klw->klw_size, 1829 (uintptr_t)lhp->lh_base) == -1) { 1830 mdb_warn("failed to read log at base %p", lhp->lh_base); 1831 mdb_free(klw->klw_base, klw->klw_size); 1832 mdb_free(klw, sizeof (kmem_log_walk_t)); 1833 return (WALK_ERR); 1834 } 1835 1836 klw->klw_sorted = mdb_alloc(maxndx * lhp->lh_nchunks * 1837 sizeof (kmem_bufctl_audit_t *), UM_SLEEP); 1838 1839 for (i = 0, k = 0; i < lhp->lh_nchunks; i++) { 1840 kmem_bufctl_audit_t *chunk = (kmem_bufctl_audit_t *) 1841 ((uintptr_t)klw->klw_base + i * lhp->lh_chunksize); 1842 1843 for (j = 0; j < maxndx; j++) 1844 klw->klw_sorted[k++] = &chunk[j]; 1845 } 1846 1847 qsort(klw->klw_sorted, k, sizeof (kmem_bufctl_audit_t *), 1848 (int(*)(const void *, const void *))bufctlcmp); 1849 1850 klw->klw_maxndx = k; 1851 wsp->walk_data = klw; 1852 1853 return (WALK_NEXT); 1854 } 1855 1856 int 1857 kmem_log_walk_step(mdb_walk_state_t *wsp) 1858 { 1859 kmem_log_walk_t *klw = wsp->walk_data; 1860 kmem_bufctl_audit_t *bcp; 1861 1862 if (klw->klw_ndx == klw->klw_maxndx) 1863 return (WALK_DONE); 1864 1865 bcp = klw->klw_sorted[klw->klw_ndx++]; 1866 1867 return (wsp->walk_callback((uintptr_t)bcp - (uintptr_t)klw->klw_base + 1868 (uintptr_t)klw->klw_lh.lh_base, bcp, wsp->walk_cbdata)); 1869 } 1870 1871 void 1872 kmem_log_walk_fini(mdb_walk_state_t *wsp) 1873 { 1874 kmem_log_walk_t *klw = wsp->walk_data; 1875 1876 mdb_free(klw->klw_base, klw->klw_size); 1877 mdb_free(klw->klw_sorted, klw->klw_maxndx * 1878 sizeof (kmem_bufctl_audit_t *)); 1879 mdb_free(klw, sizeof (kmem_log_walk_t)); 1880 } 1881 1882 typedef struct allocdby_bufctl { 1883 uintptr_t abb_addr; 1884 hrtime_t abb_ts; 1885 } allocdby_bufctl_t; 1886 1887 typedef struct allocdby_walk { 1888 const char *abw_walk; 1889 uintptr_t abw_thread; 1890 size_t abw_nbufs; 1891 size_t abw_size; 1892 allocdby_bufctl_t *abw_buf; 1893 size_t abw_ndx; 1894 } allocdby_walk_t; 1895 1896 int 1897 allocdby_walk_bufctl(uintptr_t addr, const kmem_bufctl_audit_t *bcp, 1898 allocdby_walk_t *abw) 1899 { 1900 if ((uintptr_t)bcp->bc_thread != abw->abw_thread) 1901 return (WALK_NEXT); 1902 1903 if (abw->abw_nbufs == abw->abw_size) { 1904 allocdby_bufctl_t *buf; 1905 size_t oldsize = sizeof (allocdby_bufctl_t) * abw->abw_size; 1906 1907 buf = mdb_zalloc(oldsize << 1, UM_SLEEP); 1908 1909 bcopy(abw->abw_buf, buf, oldsize); 1910 mdb_free(abw->abw_buf, oldsize); 1911 1912 abw->abw_size <<= 1; 1913 abw->abw_buf = buf; 1914 } 1915 1916 abw->abw_buf[abw->abw_nbufs].abb_addr = addr; 1917 abw->abw_buf[abw->abw_nbufs].abb_ts = bcp->bc_timestamp; 1918 abw->abw_nbufs++; 1919 1920 return (WALK_NEXT); 1921 } 1922 1923 /*ARGSUSED*/ 1924 int 1925 allocdby_walk_cache(uintptr_t addr, const kmem_cache_t *c, allocdby_walk_t *abw) 1926 { 1927 if (mdb_pwalk(abw->abw_walk, (mdb_walk_cb_t)allocdby_walk_bufctl, 1928 abw, addr) == -1) { 1929 mdb_warn("couldn't walk bufctl for cache %p", addr); 1930 return (WALK_DONE); 1931 } 1932 1933 return (WALK_NEXT); 1934 } 1935 1936 static int 1937 allocdby_cmp(const allocdby_bufctl_t *lhs, const allocdby_bufctl_t *rhs) 1938 { 1939 if (lhs->abb_ts < rhs->abb_ts) 1940 return (1); 1941 if (lhs->abb_ts > rhs->abb_ts) 1942 return (-1); 1943 return (0); 1944 } 1945 1946 static int 1947 allocdby_walk_init_common(mdb_walk_state_t *wsp, const char *walk) 1948 { 1949 allocdby_walk_t *abw; 1950 1951 if (wsp->walk_addr == NULL) { 1952 mdb_warn("allocdby walk doesn't support global walks\n"); 1953 return (WALK_ERR); 1954 } 1955 1956 abw = mdb_zalloc(sizeof (allocdby_walk_t), UM_SLEEP); 1957 1958 abw->abw_thread = wsp->walk_addr; 1959 abw->abw_walk = walk; 1960 abw->abw_size = 128; /* something reasonable */ 1961 abw->abw_buf = 1962 mdb_zalloc(abw->abw_size * sizeof (allocdby_bufctl_t), UM_SLEEP); 1963 1964 wsp->walk_data = abw; 1965 1966 if (mdb_walk("kmem_cache", 1967 (mdb_walk_cb_t)allocdby_walk_cache, abw) == -1) { 1968 mdb_warn("couldn't walk kmem_cache"); 1969 allocdby_walk_fini(wsp); 1970 return (WALK_ERR); 1971 } 1972 1973 qsort(abw->abw_buf, abw->abw_nbufs, sizeof (allocdby_bufctl_t), 1974 (int(*)(const void *, const void *))allocdby_cmp); 1975 1976 return (WALK_NEXT); 1977 } 1978 1979 int 1980 allocdby_walk_init(mdb_walk_state_t *wsp) 1981 { 1982 return (allocdby_walk_init_common(wsp, "bufctl")); 1983 } 1984 1985 int 1986 freedby_walk_init(mdb_walk_state_t *wsp) 1987 { 1988 return (allocdby_walk_init_common(wsp, "freectl")); 1989 } 1990 1991 int 1992 allocdby_walk_step(mdb_walk_state_t *wsp) 1993 { 1994 allocdby_walk_t *abw = wsp->walk_data; 1995 kmem_bufctl_audit_t bc; 1996 uintptr_t addr; 1997 1998 if (abw->abw_ndx == abw->abw_nbufs) 1999 return (WALK_DONE); 2000 2001 addr = abw->abw_buf[abw->abw_ndx++].abb_addr; 2002 2003 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 2004 mdb_warn("couldn't read bufctl at %p", addr); 2005 return (WALK_DONE); 2006 } 2007 2008 return (wsp->walk_callback(addr, &bc, wsp->walk_cbdata)); 2009 } 2010 2011 void 2012 allocdby_walk_fini(mdb_walk_state_t *wsp) 2013 { 2014 allocdby_walk_t *abw = wsp->walk_data; 2015 2016 mdb_free(abw->abw_buf, sizeof (allocdby_bufctl_t) * abw->abw_size); 2017 mdb_free(abw, sizeof (allocdby_walk_t)); 2018 } 2019 2020 /*ARGSUSED*/ 2021 int 2022 allocdby_walk(uintptr_t addr, const kmem_bufctl_audit_t *bcp, void *ignored) 2023 { 2024 char c[MDB_SYM_NAMLEN]; 2025 GElf_Sym sym; 2026 int i; 2027 2028 mdb_printf("%0?p %12llx ", addr, bcp->bc_timestamp); 2029 for (i = 0; i < bcp->bc_depth; i++) { 2030 if (mdb_lookup_by_addr(bcp->bc_stack[i], 2031 MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1) 2032 continue; 2033 if (strncmp(c, "kmem_", 5) == 0) 2034 continue; 2035 mdb_printf("%s+0x%lx", 2036 c, bcp->bc_stack[i] - (uintptr_t)sym.st_value); 2037 break; 2038 } 2039 mdb_printf("\n"); 2040 2041 return (WALK_NEXT); 2042 } 2043 2044 static int 2045 allocdby_common(uintptr_t addr, uint_t flags, const char *w) 2046 { 2047 if (!(flags & DCMD_ADDRSPEC)) 2048 return (DCMD_USAGE); 2049 2050 mdb_printf("%-?s %12s %s\n", "BUFCTL", "TIMESTAMP", "CALLER"); 2051 2052 if (mdb_pwalk(w, (mdb_walk_cb_t)allocdby_walk, NULL, addr) == -1) { 2053 mdb_warn("can't walk '%s' for %p", w, addr); 2054 return (DCMD_ERR); 2055 } 2056 2057 return (DCMD_OK); 2058 } 2059 2060 /*ARGSUSED*/ 2061 int 2062 allocdby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2063 { 2064 return (allocdby_common(addr, flags, "allocdby")); 2065 } 2066 2067 /*ARGSUSED*/ 2068 int 2069 freedby(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2070 { 2071 return (allocdby_common(addr, flags, "freedby")); 2072 } 2073 2074 /* 2075 * Return a string describing the address in relation to the given thread's 2076 * stack. 2077 * 2078 * - If the thread state is TS_FREE, return " (inactive interrupt thread)". 2079 * 2080 * - If the address is above the stack pointer, return an empty string 2081 * signifying that the address is active. 2082 * 2083 * - If the address is below the stack pointer, and the thread is not on proc, 2084 * return " (below sp)". 2085 * 2086 * - If the address is below the stack pointer, and the thread is on proc, 2087 * return " (possibly below sp)". Depending on context, we may or may not 2088 * have an accurate t_sp. 2089 */ 2090 static const char * 2091 stack_active(const kthread_t *t, uintptr_t addr) 2092 { 2093 uintptr_t panicstk; 2094 GElf_Sym sym; 2095 2096 if (t->t_state == TS_FREE) 2097 return (" (inactive interrupt thread)"); 2098 2099 /* 2100 * Check to see if we're on the panic stack. If so, ignore t_sp, as it 2101 * no longer relates to the thread's real stack. 2102 */ 2103 if (mdb_lookup_by_name("panic_stack", &sym) == 0) { 2104 panicstk = (uintptr_t)sym.st_value; 2105 2106 if (t->t_sp >= panicstk && t->t_sp < panicstk + PANICSTKSIZE) 2107 return (""); 2108 } 2109 2110 if (addr >= t->t_sp + STACK_BIAS) 2111 return (""); 2112 2113 if (t->t_state == TS_ONPROC) 2114 return (" (possibly below sp)"); 2115 2116 return (" (below sp)"); 2117 } 2118 2119 /* 2120 * Additional state for the kmem and vmem ::whatis handlers 2121 */ 2122 typedef struct whatis_info { 2123 mdb_whatis_t *wi_w; 2124 const kmem_cache_t *wi_cache; 2125 const vmem_t *wi_vmem; 2126 vmem_t *wi_msb_arena; 2127 size_t wi_slab_size; 2128 uint_t wi_slab_found; 2129 uint_t wi_kmem_lite_count; 2130 uint_t wi_freemem; 2131 } whatis_info_t; 2132 2133 /* call one of our dcmd functions with "-v" and the provided address */ 2134 static void 2135 whatis_call_printer(mdb_dcmd_f *dcmd, uintptr_t addr) 2136 { 2137 mdb_arg_t a; 2138 a.a_type = MDB_TYPE_STRING; 2139 a.a_un.a_str = "-v"; 2140 2141 mdb_printf(":\n"); 2142 (void) (*dcmd)(addr, DCMD_ADDRSPEC, 1, &a); 2143 } 2144 2145 static void 2146 whatis_print_kmf_lite(uintptr_t btaddr, size_t count) 2147 { 2148 #define KMEM_LITE_MAX 16 2149 pc_t callers[KMEM_LITE_MAX]; 2150 pc_t uninit = (pc_t)KMEM_UNINITIALIZED_PATTERN; 2151 2152 kmem_buftag_t bt; 2153 intptr_t stat; 2154 const char *plural = ""; 2155 int i; 2156 2157 /* validate our arguments and read in the buftag */ 2158 if (count == 0 || count > KMEM_LITE_MAX || 2159 mdb_vread(&bt, sizeof (bt), btaddr) == -1) 2160 return; 2161 2162 /* validate the buffer state and read in the callers */ 2163 stat = (intptr_t)bt.bt_bufctl ^ bt.bt_bxstat; 2164 2165 if (stat != KMEM_BUFTAG_ALLOC && stat != KMEM_BUFTAG_FREE) 2166 return; 2167 2168 if (mdb_vread(callers, count * sizeof (pc_t), 2169 btaddr + offsetof(kmem_buftag_lite_t, bt_history)) == -1) 2170 return; 2171 2172 /* If there aren't any filled in callers, bail */ 2173 if (callers[0] == uninit) 2174 return; 2175 2176 plural = (callers[1] == uninit) ? "" : "s"; 2177 2178 /* Everything's done and checked; print them out */ 2179 mdb_printf(":\n"); 2180 2181 mdb_inc_indent(8); 2182 mdb_printf("recent caller%s: %a", plural, callers[0]); 2183 for (i = 1; i < count; i++) { 2184 if (callers[i] == uninit) 2185 break; 2186 mdb_printf(", %a", callers[i]); 2187 } 2188 mdb_dec_indent(8); 2189 } 2190 2191 static void 2192 whatis_print_kmem(whatis_info_t *wi, uintptr_t maddr, uintptr_t addr, 2193 uintptr_t baddr) 2194 { 2195 mdb_whatis_t *w = wi->wi_w; 2196 2197 const kmem_cache_t *cp = wi->wi_cache; 2198 /* LINTED pointer cast may result in improper alignment */ 2199 uintptr_t btaddr = (uintptr_t)KMEM_BUFTAG(cp, addr); 2200 int quiet = (mdb_whatis_flags(w) & WHATIS_QUIET); 2201 int call_printer = (!quiet && (cp->cache_flags & KMF_AUDIT)); 2202 2203 mdb_whatis_report_object(w, maddr, addr, ""); 2204 2205 if (baddr != 0 && !call_printer) 2206 mdb_printf("bufctl %p ", baddr); 2207 2208 mdb_printf("%s from %s", 2209 (wi->wi_freemem == FALSE) ? "allocated" : "freed", cp->cache_name); 2210 2211 if (baddr != 0 && call_printer) { 2212 whatis_call_printer(bufctl, baddr); 2213 return; 2214 } 2215 2216 /* for KMF_LITE caches, try to print out the previous callers */ 2217 if (!quiet && (cp->cache_flags & KMF_LITE)) 2218 whatis_print_kmf_lite(btaddr, wi->wi_kmem_lite_count); 2219 2220 mdb_printf("\n"); 2221 } 2222 2223 /*ARGSUSED*/ 2224 static int 2225 whatis_walk_kmem(uintptr_t addr, void *ignored, whatis_info_t *wi) 2226 { 2227 mdb_whatis_t *w = wi->wi_w; 2228 2229 uintptr_t cur; 2230 size_t size = wi->wi_cache->cache_bufsize; 2231 2232 while (mdb_whatis_match(w, addr, size, &cur)) 2233 whatis_print_kmem(wi, cur, addr, NULL); 2234 2235 return (WHATIS_WALKRET(w)); 2236 } 2237 2238 /*ARGSUSED*/ 2239 static int 2240 whatis_walk_bufctl(uintptr_t baddr, const kmem_bufctl_t *bcp, whatis_info_t *wi) 2241 { 2242 mdb_whatis_t *w = wi->wi_w; 2243 2244 uintptr_t cur; 2245 uintptr_t addr = (uintptr_t)bcp->bc_addr; 2246 size_t size = wi->wi_cache->cache_bufsize; 2247 2248 while (mdb_whatis_match(w, addr, size, &cur)) 2249 whatis_print_kmem(wi, cur, addr, baddr); 2250 2251 return (WHATIS_WALKRET(w)); 2252 } 2253 2254 static int 2255 whatis_walk_seg(uintptr_t addr, const vmem_seg_t *vs, whatis_info_t *wi) 2256 { 2257 mdb_whatis_t *w = wi->wi_w; 2258 2259 size_t size = vs->vs_end - vs->vs_start; 2260 uintptr_t cur; 2261 2262 /* We're not interested in anything but alloc and free segments */ 2263 if (vs->vs_type != VMEM_ALLOC && vs->vs_type != VMEM_FREE) 2264 return (WALK_NEXT); 2265 2266 while (mdb_whatis_match(w, vs->vs_start, size, &cur)) { 2267 mdb_whatis_report_object(w, cur, vs->vs_start, ""); 2268 2269 /* 2270 * If we're not printing it seperately, provide the vmem_seg 2271 * pointer if it has a stack trace. 2272 */ 2273 if ((mdb_whatis_flags(w) & WHATIS_QUIET) && 2274 (!(mdb_whatis_flags(w) & WHATIS_BUFCTL) || 2275 (vs->vs_type == VMEM_ALLOC && vs->vs_depth != 0))) { 2276 mdb_printf("vmem_seg %p ", addr); 2277 } 2278 2279 mdb_printf("%s from the %s vmem arena", 2280 (vs->vs_type == VMEM_ALLOC) ? "allocated" : "freed", 2281 wi->wi_vmem->vm_name); 2282 2283 if (!(mdb_whatis_flags(w) & WHATIS_QUIET)) 2284 whatis_call_printer(vmem_seg, addr); 2285 else 2286 mdb_printf("\n"); 2287 } 2288 2289 return (WHATIS_WALKRET(w)); 2290 } 2291 2292 static int 2293 whatis_walk_vmem(uintptr_t addr, const vmem_t *vmem, whatis_info_t *wi) 2294 { 2295 mdb_whatis_t *w = wi->wi_w; 2296 const char *nm = vmem->vm_name; 2297 2298 int identifier = ((vmem->vm_cflags & VMC_IDENTIFIER) != 0); 2299 int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0); 2300 2301 if (identifier != idspace) 2302 return (WALK_NEXT); 2303 2304 wi->wi_vmem = vmem; 2305 2306 if (mdb_whatis_flags(w) & WHATIS_VERBOSE) 2307 mdb_printf("Searching vmem arena %s...\n", nm); 2308 2309 if (mdb_pwalk("vmem_seg", 2310 (mdb_walk_cb_t)whatis_walk_seg, wi, addr) == -1) { 2311 mdb_warn("can't walk vmem_seg for %p", addr); 2312 return (WALK_NEXT); 2313 } 2314 2315 return (WHATIS_WALKRET(w)); 2316 } 2317 2318 /*ARGSUSED*/ 2319 static int 2320 whatis_walk_slab(uintptr_t saddr, const kmem_slab_t *sp, whatis_info_t *wi) 2321 { 2322 mdb_whatis_t *w = wi->wi_w; 2323 2324 /* It must overlap with the slab data, or it's not interesting */ 2325 if (mdb_whatis_overlaps(w, 2326 (uintptr_t)sp->slab_base, wi->wi_slab_size)) { 2327 wi->wi_slab_found++; 2328 return (WALK_DONE); 2329 } 2330 return (WALK_NEXT); 2331 } 2332 2333 static int 2334 whatis_walk_cache(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2335 { 2336 mdb_whatis_t *w = wi->wi_w; 2337 2338 char *walk, *freewalk; 2339 mdb_walk_cb_t func; 2340 int do_bufctl; 2341 2342 int identifier = ((c->cache_flags & KMC_IDENTIFIER) != 0); 2343 int idspace = ((mdb_whatis_flags(w) & WHATIS_IDSPACE) != 0); 2344 2345 if (identifier != idspace) 2346 return (WALK_NEXT); 2347 2348 /* Override the '-b' flag as necessary */ 2349 if (!(c->cache_flags & KMF_HASH)) 2350 do_bufctl = FALSE; /* no bufctls to walk */ 2351 else if (c->cache_flags & KMF_AUDIT) 2352 do_bufctl = TRUE; /* we always want debugging info */ 2353 else 2354 do_bufctl = ((mdb_whatis_flags(w) & WHATIS_BUFCTL) != 0); 2355 2356 if (do_bufctl) { 2357 walk = "bufctl"; 2358 freewalk = "freectl"; 2359 func = (mdb_walk_cb_t)whatis_walk_bufctl; 2360 } else { 2361 walk = "kmem"; 2362 freewalk = "freemem"; 2363 func = (mdb_walk_cb_t)whatis_walk_kmem; 2364 } 2365 2366 wi->wi_cache = c; 2367 2368 if (mdb_whatis_flags(w) & WHATIS_VERBOSE) 2369 mdb_printf("Searching %s...\n", c->cache_name); 2370 2371 /* 2372 * If more then two buffers live on each slab, figure out if we're 2373 * interested in anything in any slab before doing the more expensive 2374 * kmem/freemem (bufctl/freectl) walkers. 2375 */ 2376 wi->wi_slab_size = c->cache_slabsize - c->cache_maxcolor; 2377 if (!(c->cache_flags & KMF_HASH)) 2378 wi->wi_slab_size -= sizeof (kmem_slab_t); 2379 2380 if ((wi->wi_slab_size / c->cache_chunksize) > 2) { 2381 wi->wi_slab_found = 0; 2382 if (mdb_pwalk("kmem_slab", (mdb_walk_cb_t)whatis_walk_slab, wi, 2383 addr) == -1) { 2384 mdb_warn("can't find kmem_slab walker"); 2385 return (WALK_DONE); 2386 } 2387 if (wi->wi_slab_found == 0) 2388 return (WALK_NEXT); 2389 } 2390 2391 wi->wi_freemem = FALSE; 2392 if (mdb_pwalk(walk, func, wi, addr) == -1) { 2393 mdb_warn("can't find %s walker", walk); 2394 return (WALK_DONE); 2395 } 2396 2397 if (mdb_whatis_done(w)) 2398 return (WALK_DONE); 2399 2400 /* 2401 * We have searched for allocated memory; now search for freed memory. 2402 */ 2403 if (mdb_whatis_flags(w) & WHATIS_VERBOSE) 2404 mdb_printf("Searching %s for free memory...\n", c->cache_name); 2405 2406 wi->wi_freemem = TRUE; 2407 if (mdb_pwalk(freewalk, func, wi, addr) == -1) { 2408 mdb_warn("can't find %s walker", freewalk); 2409 return (WALK_DONE); 2410 } 2411 2412 return (WHATIS_WALKRET(w)); 2413 } 2414 2415 static int 2416 whatis_walk_touch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2417 { 2418 if (c->cache_arena == wi->wi_msb_arena || 2419 (c->cache_cflags & KMC_NOTOUCH)) 2420 return (WALK_NEXT); 2421 2422 return (whatis_walk_cache(addr, c, wi)); 2423 } 2424 2425 static int 2426 whatis_walk_metadata(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2427 { 2428 if (c->cache_arena != wi->wi_msb_arena) 2429 return (WALK_NEXT); 2430 2431 return (whatis_walk_cache(addr, c, wi)); 2432 } 2433 2434 static int 2435 whatis_walk_notouch(uintptr_t addr, const kmem_cache_t *c, whatis_info_t *wi) 2436 { 2437 if (c->cache_arena == wi->wi_msb_arena || 2438 !(c->cache_cflags & KMC_NOTOUCH)) 2439 return (WALK_NEXT); 2440 2441 return (whatis_walk_cache(addr, c, wi)); 2442 } 2443 2444 static int 2445 whatis_walk_thread(uintptr_t addr, const kthread_t *t, mdb_whatis_t *w) 2446 { 2447 uintptr_t cur; 2448 uintptr_t saddr; 2449 size_t size; 2450 2451 /* 2452 * Often, one calls ::whatis on an address from a thread structure. 2453 * We use this opportunity to short circuit this case... 2454 */ 2455 while (mdb_whatis_match(w, addr, sizeof (kthread_t), &cur)) 2456 mdb_whatis_report_object(w, cur, addr, 2457 "allocated as a thread structure\n"); 2458 2459 /* 2460 * Now check the stack 2461 */ 2462 if (t->t_stkbase == NULL) 2463 return (WALK_NEXT); 2464 2465 /* 2466 * This assumes that t_stk is the end of the stack, but it's really 2467 * only the initial stack pointer for the thread. Arguments to the 2468 * initial procedure, SA(MINFRAME), etc. are all after t_stk. So 2469 * that 't->t_stk::whatis' reports "part of t's stack", we include 2470 * t_stk in the range (the "+ 1", below), but the kernel should 2471 * really include the full stack bounds where we can find it. 2472 */ 2473 saddr = (uintptr_t)t->t_stkbase; 2474 size = (uintptr_t)t->t_stk - saddr + 1; 2475 while (mdb_whatis_match(w, saddr, size, &cur)) 2476 mdb_whatis_report_object(w, cur, cur, 2477 "in thread %p's stack%s\n", addr, stack_active(t, cur)); 2478 2479 return (WHATIS_WALKRET(w)); 2480 } 2481 2482 static void 2483 whatis_modctl_match(mdb_whatis_t *w, const char *name, 2484 uintptr_t base, size_t size, const char *where) 2485 { 2486 uintptr_t cur; 2487 2488 /* 2489 * Since we're searching for addresses inside a module, we report 2490 * them as symbols. 2491 */ 2492 while (mdb_whatis_match(w, base, size, &cur)) 2493 mdb_whatis_report_address(w, cur, "in %s's %s\n", name, where); 2494 } 2495 2496 static int 2497 whatis_walk_modctl(uintptr_t addr, const struct modctl *m, mdb_whatis_t *w) 2498 { 2499 char name[MODMAXNAMELEN]; 2500 struct module mod; 2501 Shdr shdr; 2502 2503 if (m->mod_mp == NULL) 2504 return (WALK_NEXT); 2505 2506 if (mdb_vread(&mod, sizeof (mod), (uintptr_t)m->mod_mp) == -1) { 2507 mdb_warn("couldn't read modctl %p's module", addr); 2508 return (WALK_NEXT); 2509 } 2510 2511 if (mdb_readstr(name, sizeof (name), (uintptr_t)m->mod_modname) == -1) 2512 (void) mdb_snprintf(name, sizeof (name), "0x%p", addr); 2513 2514 whatis_modctl_match(w, name, 2515 (uintptr_t)mod.text, mod.text_size, "text segment"); 2516 whatis_modctl_match(w, name, 2517 (uintptr_t)mod.data, mod.data_size, "data segment"); 2518 whatis_modctl_match(w, name, 2519 (uintptr_t)mod.bss, mod.bss_size, "bss segment"); 2520 2521 if (mdb_vread(&shdr, sizeof (shdr), (uintptr_t)mod.symhdr) == -1) { 2522 mdb_warn("couldn't read symbol header for %p's module", addr); 2523 return (WALK_NEXT); 2524 } 2525 2526 whatis_modctl_match(w, name, 2527 (uintptr_t)mod.symtbl, mod.nsyms * shdr.sh_entsize, "symtab"); 2528 whatis_modctl_match(w, name, 2529 (uintptr_t)mod.symspace, mod.symsize, "symtab"); 2530 2531 return (WHATIS_WALKRET(w)); 2532 } 2533 2534 /*ARGSUSED*/ 2535 static int 2536 whatis_walk_memseg(uintptr_t addr, const struct memseg *seg, mdb_whatis_t *w) 2537 { 2538 uintptr_t cur; 2539 2540 uintptr_t base = (uintptr_t)seg->pages; 2541 size_t size = (uintptr_t)seg->epages - base; 2542 2543 while (mdb_whatis_match(w, base, size, &cur)) { 2544 /* round our found pointer down to the page_t base. */ 2545 size_t offset = (cur - base) % sizeof (page_t); 2546 2547 mdb_whatis_report_object(w, cur, cur - offset, 2548 "allocated as a page structure\n"); 2549 } 2550 2551 return (WHATIS_WALKRET(w)); 2552 } 2553 2554 /*ARGSUSED*/ 2555 static int 2556 whatis_run_modules(mdb_whatis_t *w, void *arg) 2557 { 2558 if (mdb_walk("modctl", (mdb_walk_cb_t)whatis_walk_modctl, w) == -1) { 2559 mdb_warn("couldn't find modctl walker"); 2560 return (1); 2561 } 2562 return (0); 2563 } 2564 2565 /*ARGSUSED*/ 2566 static int 2567 whatis_run_threads(mdb_whatis_t *w, void *ignored) 2568 { 2569 /* 2570 * Now search all thread stacks. Yes, this is a little weak; we 2571 * can save a lot of work by first checking to see if the 2572 * address is in segkp vs. segkmem. But hey, computers are 2573 * fast. 2574 */ 2575 if (mdb_walk("thread", (mdb_walk_cb_t)whatis_walk_thread, w) == -1) { 2576 mdb_warn("couldn't find thread walker"); 2577 return (1); 2578 } 2579 return (0); 2580 } 2581 2582 /*ARGSUSED*/ 2583 static int 2584 whatis_run_pages(mdb_whatis_t *w, void *ignored) 2585 { 2586 if (mdb_walk("memseg", (mdb_walk_cb_t)whatis_walk_memseg, w) == -1) { 2587 mdb_warn("couldn't find memseg walker"); 2588 return (1); 2589 } 2590 return (0); 2591 } 2592 2593 /*ARGSUSED*/ 2594 static int 2595 whatis_run_kmem(mdb_whatis_t *w, void *ignored) 2596 { 2597 whatis_info_t wi; 2598 2599 bzero(&wi, sizeof (wi)); 2600 wi.wi_w = w; 2601 2602 if (mdb_readvar(&wi.wi_msb_arena, "kmem_msb_arena") == -1) 2603 mdb_warn("unable to readvar \"kmem_msb_arena\""); 2604 2605 if (mdb_readvar(&wi.wi_kmem_lite_count, 2606 "kmem_lite_count") == -1 || wi.wi_kmem_lite_count > 16) 2607 wi.wi_kmem_lite_count = 0; 2608 2609 /* 2610 * We process kmem caches in the following order: 2611 * 2612 * non-KMC_NOTOUCH, non-metadata (typically the most interesting) 2613 * metadata (can be huge with KMF_AUDIT) 2614 * KMC_NOTOUCH, non-metadata (see kmem_walk_all()) 2615 */ 2616 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_touch, 2617 &wi) == -1 || 2618 mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_metadata, 2619 &wi) == -1 || 2620 mdb_walk("kmem_cache", (mdb_walk_cb_t)whatis_walk_notouch, 2621 &wi) == -1) { 2622 mdb_warn("couldn't find kmem_cache walker"); 2623 return (1); 2624 } 2625 return (0); 2626 } 2627 2628 /*ARGSUSED*/ 2629 static int 2630 whatis_run_vmem(mdb_whatis_t *w, void *ignored) 2631 { 2632 whatis_info_t wi; 2633 2634 bzero(&wi, sizeof (wi)); 2635 wi.wi_w = w; 2636 2637 if (mdb_walk("vmem_postfix", 2638 (mdb_walk_cb_t)whatis_walk_vmem, &wi) == -1) { 2639 mdb_warn("couldn't find vmem_postfix walker"); 2640 return (1); 2641 } 2642 return (0); 2643 } 2644 2645 typedef struct kmem_log_cpu { 2646 uintptr_t kmc_low; 2647 uintptr_t kmc_high; 2648 } kmem_log_cpu_t; 2649 2650 typedef struct kmem_log_data { 2651 uintptr_t kmd_addr; 2652 kmem_log_cpu_t *kmd_cpu; 2653 } kmem_log_data_t; 2654 2655 int 2656 kmem_log_walk(uintptr_t addr, const kmem_bufctl_audit_t *b, 2657 kmem_log_data_t *kmd) 2658 { 2659 int i; 2660 kmem_log_cpu_t *kmc = kmd->kmd_cpu; 2661 size_t bufsize; 2662 2663 for (i = 0; i < NCPU; i++) { 2664 if (addr >= kmc[i].kmc_low && addr < kmc[i].kmc_high) 2665 break; 2666 } 2667 2668 if (kmd->kmd_addr) { 2669 if (b->bc_cache == NULL) 2670 return (WALK_NEXT); 2671 2672 if (mdb_vread(&bufsize, sizeof (bufsize), 2673 (uintptr_t)&b->bc_cache->cache_bufsize) == -1) { 2674 mdb_warn( 2675 "failed to read cache_bufsize for cache at %p", 2676 b->bc_cache); 2677 return (WALK_ERR); 2678 } 2679 2680 if (kmd->kmd_addr < (uintptr_t)b->bc_addr || 2681 kmd->kmd_addr >= (uintptr_t)b->bc_addr + bufsize) 2682 return (WALK_NEXT); 2683 } 2684 2685 if (i == NCPU) 2686 mdb_printf(" "); 2687 else 2688 mdb_printf("%3d", i); 2689 2690 mdb_printf(" %0?p %0?p %16llx %0?p\n", addr, b->bc_addr, 2691 b->bc_timestamp, b->bc_thread); 2692 2693 return (WALK_NEXT); 2694 } 2695 2696 /*ARGSUSED*/ 2697 int 2698 kmem_log(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2699 { 2700 kmem_log_header_t lh; 2701 kmem_cpu_log_header_t clh; 2702 uintptr_t lhp, clhp; 2703 int ncpus; 2704 uintptr_t *cpu; 2705 GElf_Sym sym; 2706 kmem_log_cpu_t *kmc; 2707 int i; 2708 kmem_log_data_t kmd; 2709 uint_t opt_b = FALSE; 2710 2711 if (mdb_getopts(argc, argv, 2712 'b', MDB_OPT_SETBITS, TRUE, &opt_b, NULL) != argc) 2713 return (DCMD_USAGE); 2714 2715 if (mdb_readvar(&lhp, "kmem_transaction_log") == -1) { 2716 mdb_warn("failed to read 'kmem_transaction_log'"); 2717 return (DCMD_ERR); 2718 } 2719 2720 if (lhp == NULL) { 2721 mdb_warn("no kmem transaction log\n"); 2722 return (DCMD_ERR); 2723 } 2724 2725 mdb_readvar(&ncpus, "ncpus"); 2726 2727 if (mdb_vread(&lh, sizeof (kmem_log_header_t), lhp) == -1) { 2728 mdb_warn("failed to read log header at %p", lhp); 2729 return (DCMD_ERR); 2730 } 2731 2732 clhp = lhp + ((uintptr_t)&lh.lh_cpu[0] - (uintptr_t)&lh); 2733 2734 cpu = mdb_alloc(sizeof (uintptr_t) * NCPU, UM_SLEEP | UM_GC); 2735 2736 if (mdb_lookup_by_name("cpu", &sym) == -1) { 2737 mdb_warn("couldn't find 'cpu' array"); 2738 return (DCMD_ERR); 2739 } 2740 2741 if (sym.st_size != NCPU * sizeof (uintptr_t)) { 2742 mdb_warn("expected 'cpu' to be of size %d; found %d\n", 2743 NCPU * sizeof (uintptr_t), sym.st_size); 2744 return (DCMD_ERR); 2745 } 2746 2747 if (mdb_vread(cpu, sym.st_size, (uintptr_t)sym.st_value) == -1) { 2748 mdb_warn("failed to read cpu array at %p", sym.st_value); 2749 return (DCMD_ERR); 2750 } 2751 2752 kmc = mdb_zalloc(sizeof (kmem_log_cpu_t) * NCPU, UM_SLEEP | UM_GC); 2753 kmd.kmd_addr = NULL; 2754 kmd.kmd_cpu = kmc; 2755 2756 for (i = 0; i < NCPU; i++) { 2757 2758 if (cpu[i] == NULL) 2759 continue; 2760 2761 if (mdb_vread(&clh, sizeof (clh), clhp) == -1) { 2762 mdb_warn("cannot read cpu %d's log header at %p", 2763 i, clhp); 2764 return (DCMD_ERR); 2765 } 2766 2767 kmc[i].kmc_low = clh.clh_chunk * lh.lh_chunksize + 2768 (uintptr_t)lh.lh_base; 2769 kmc[i].kmc_high = (uintptr_t)clh.clh_current; 2770 2771 clhp += sizeof (kmem_cpu_log_header_t); 2772 } 2773 2774 mdb_printf("%3s %-?s %-?s %16s %-?s\n", "CPU", "ADDR", "BUFADDR", 2775 "TIMESTAMP", "THREAD"); 2776 2777 /* 2778 * If we have been passed an address, print out only log entries 2779 * corresponding to that address. If opt_b is specified, then interpret 2780 * the address as a bufctl. 2781 */ 2782 if (flags & DCMD_ADDRSPEC) { 2783 kmem_bufctl_audit_t b; 2784 2785 if (opt_b) { 2786 kmd.kmd_addr = addr; 2787 } else { 2788 if (mdb_vread(&b, 2789 sizeof (kmem_bufctl_audit_t), addr) == -1) { 2790 mdb_warn("failed to read bufctl at %p", addr); 2791 return (DCMD_ERR); 2792 } 2793 2794 (void) kmem_log_walk(addr, &b, &kmd); 2795 2796 return (DCMD_OK); 2797 } 2798 } 2799 2800 if (mdb_walk("kmem_log", (mdb_walk_cb_t)kmem_log_walk, &kmd) == -1) { 2801 mdb_warn("can't find kmem log walker"); 2802 return (DCMD_ERR); 2803 } 2804 2805 return (DCMD_OK); 2806 } 2807 2808 typedef struct bufctl_history_cb { 2809 int bhc_flags; 2810 int bhc_argc; 2811 const mdb_arg_t *bhc_argv; 2812 int bhc_ret; 2813 } bufctl_history_cb_t; 2814 2815 /*ARGSUSED*/ 2816 static int 2817 bufctl_history_callback(uintptr_t addr, const void *ign, void *arg) 2818 { 2819 bufctl_history_cb_t *bhc = arg; 2820 2821 bhc->bhc_ret = 2822 bufctl(addr, bhc->bhc_flags, bhc->bhc_argc, bhc->bhc_argv); 2823 2824 bhc->bhc_flags &= ~DCMD_LOOPFIRST; 2825 2826 return ((bhc->bhc_ret == DCMD_OK)? WALK_NEXT : WALK_DONE); 2827 } 2828 2829 void 2830 bufctl_help(void) 2831 { 2832 mdb_printf("%s", 2833 "Display the contents of kmem_bufctl_audit_ts, with optional filtering.\n\n"); 2834 mdb_dec_indent(2); 2835 mdb_printf("%<b>OPTIONS%</b>\n"); 2836 mdb_inc_indent(2); 2837 mdb_printf("%s", 2838 " -v Display the full content of the bufctl, including its stack trace\n" 2839 " -h retrieve the bufctl's transaction history, if available\n" 2840 " -a addr\n" 2841 " filter out bufctls not involving the buffer at addr\n" 2842 " -c caller\n" 2843 " filter out bufctls without the function/PC in their stack trace\n" 2844 " -e earliest\n" 2845 " filter out bufctls timestamped before earliest\n" 2846 " -l latest\n" 2847 " filter out bufctls timestamped after latest\n" 2848 " -t thread\n" 2849 " filter out bufctls not involving thread\n"); 2850 } 2851 2852 int 2853 bufctl(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2854 { 2855 kmem_bufctl_audit_t bc; 2856 uint_t verbose = FALSE; 2857 uint_t history = FALSE; 2858 uint_t in_history = FALSE; 2859 uintptr_t caller = NULL, thread = NULL; 2860 uintptr_t laddr, haddr, baddr = NULL; 2861 hrtime_t earliest = 0, latest = 0; 2862 int i, depth; 2863 char c[MDB_SYM_NAMLEN]; 2864 GElf_Sym sym; 2865 2866 if (mdb_getopts(argc, argv, 2867 'v', MDB_OPT_SETBITS, TRUE, &verbose, 2868 'h', MDB_OPT_SETBITS, TRUE, &history, 2869 'H', MDB_OPT_SETBITS, TRUE, &in_history, /* internal */ 2870 'c', MDB_OPT_UINTPTR, &caller, 2871 't', MDB_OPT_UINTPTR, &thread, 2872 'e', MDB_OPT_UINT64, &earliest, 2873 'l', MDB_OPT_UINT64, &latest, 2874 'a', MDB_OPT_UINTPTR, &baddr, NULL) != argc) 2875 return (DCMD_USAGE); 2876 2877 if (!(flags & DCMD_ADDRSPEC)) 2878 return (DCMD_USAGE); 2879 2880 if (in_history && !history) 2881 return (DCMD_USAGE); 2882 2883 if (history && !in_history) { 2884 mdb_arg_t *nargv = mdb_zalloc(sizeof (*nargv) * (argc + 1), 2885 UM_SLEEP | UM_GC); 2886 bufctl_history_cb_t bhc; 2887 2888 nargv[0].a_type = MDB_TYPE_STRING; 2889 nargv[0].a_un.a_str = "-H"; /* prevent recursion */ 2890 2891 for (i = 0; i < argc; i++) 2892 nargv[i + 1] = argv[i]; 2893 2894 /* 2895 * When in history mode, we treat each element as if it 2896 * were in a seperate loop, so that the headers group 2897 * bufctls with similar histories. 2898 */ 2899 bhc.bhc_flags = flags | DCMD_LOOP | DCMD_LOOPFIRST; 2900 bhc.bhc_argc = argc + 1; 2901 bhc.bhc_argv = nargv; 2902 bhc.bhc_ret = DCMD_OK; 2903 2904 if (mdb_pwalk("bufctl_history", bufctl_history_callback, &bhc, 2905 addr) == -1) { 2906 mdb_warn("unable to walk bufctl_history"); 2907 return (DCMD_ERR); 2908 } 2909 2910 if (bhc.bhc_ret == DCMD_OK && !(flags & DCMD_PIPE_OUT)) 2911 mdb_printf("\n"); 2912 2913 return (bhc.bhc_ret); 2914 } 2915 2916 if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) { 2917 if (verbose) { 2918 mdb_printf("%16s %16s %16s %16s\n" 2919 "%<u>%16s %16s %16s %16s%</u>\n", 2920 "ADDR", "BUFADDR", "TIMESTAMP", "THREAD", 2921 "", "CACHE", "LASTLOG", "CONTENTS"); 2922 } else { 2923 mdb_printf("%<u>%-?s %-?s %-12s %-?s %s%</u>\n", 2924 "ADDR", "BUFADDR", "TIMESTAMP", "THREAD", "CALLER"); 2925 } 2926 } 2927 2928 if (mdb_vread(&bc, sizeof (bc), addr) == -1) { 2929 mdb_warn("couldn't read bufctl at %p", addr); 2930 return (DCMD_ERR); 2931 } 2932 2933 /* 2934 * Guard against bogus bc_depth in case the bufctl is corrupt or 2935 * the address does not really refer to a bufctl. 2936 */ 2937 depth = MIN(bc.bc_depth, KMEM_STACK_DEPTH); 2938 2939 if (caller != NULL) { 2940 laddr = caller; 2941 haddr = caller + sizeof (caller); 2942 2943 if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c, sizeof (c), 2944 &sym) != -1 && caller == (uintptr_t)sym.st_value) { 2945 /* 2946 * We were provided an exact symbol value; any 2947 * address in the function is valid. 2948 */ 2949 laddr = (uintptr_t)sym.st_value; 2950 haddr = (uintptr_t)sym.st_value + sym.st_size; 2951 } 2952 2953 for (i = 0; i < depth; i++) 2954 if (bc.bc_stack[i] >= laddr && bc.bc_stack[i] < haddr) 2955 break; 2956 2957 if (i == depth) 2958 return (DCMD_OK); 2959 } 2960 2961 if (thread != NULL && (uintptr_t)bc.bc_thread != thread) 2962 return (DCMD_OK); 2963 2964 if (earliest != 0 && bc.bc_timestamp < earliest) 2965 return (DCMD_OK); 2966 2967 if (latest != 0 && bc.bc_timestamp > latest) 2968 return (DCMD_OK); 2969 2970 if (baddr != 0 && (uintptr_t)bc.bc_addr != baddr) 2971 return (DCMD_OK); 2972 2973 if (flags & DCMD_PIPE_OUT) { 2974 mdb_printf("%#lr\n", addr); 2975 return (DCMD_OK); 2976 } 2977 2978 if (verbose) { 2979 mdb_printf( 2980 "%<b>%16p%</b> %16p %16llx %16p\n" 2981 "%16s %16p %16p %16p\n", 2982 addr, bc.bc_addr, bc.bc_timestamp, bc.bc_thread, 2983 "", bc.bc_cache, bc.bc_lastlog, bc.bc_contents); 2984 2985 mdb_inc_indent(17); 2986 for (i = 0; i < depth; i++) 2987 mdb_printf("%a\n", bc.bc_stack[i]); 2988 mdb_dec_indent(17); 2989 mdb_printf("\n"); 2990 } else { 2991 mdb_printf("%0?p %0?p %12llx %0?p", addr, bc.bc_addr, 2992 bc.bc_timestamp, bc.bc_thread); 2993 2994 for (i = 0; i < depth; i++) { 2995 if (mdb_lookup_by_addr(bc.bc_stack[i], 2996 MDB_SYM_FUZZY, c, sizeof (c), &sym) == -1) 2997 continue; 2998 if (strncmp(c, "kmem_", 5) == 0) 2999 continue; 3000 mdb_printf(" %a\n", bc.bc_stack[i]); 3001 break; 3002 } 3003 3004 if (i >= depth) 3005 mdb_printf("\n"); 3006 } 3007 3008 return (DCMD_OK); 3009 } 3010 3011 typedef struct kmem_verify { 3012 uint64_t *kmv_buf; /* buffer to read cache contents into */ 3013 size_t kmv_size; /* number of bytes in kmv_buf */ 3014 int kmv_corruption; /* > 0 if corruption found. */ 3015 int kmv_besilent; /* report actual corruption sites */ 3016 struct kmem_cache kmv_cache; /* the cache we're operating on */ 3017 } kmem_verify_t; 3018 3019 /* 3020 * verify_pattern() 3021 * verify that buf is filled with the pattern pat. 3022 */ 3023 static int64_t 3024 verify_pattern(uint64_t *buf_arg, size_t size, uint64_t pat) 3025 { 3026 /*LINTED*/ 3027 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size); 3028 uint64_t *buf; 3029 3030 for (buf = buf_arg; buf < bufend; buf++) 3031 if (*buf != pat) 3032 return ((uintptr_t)buf - (uintptr_t)buf_arg); 3033 return (-1); 3034 } 3035 3036 /* 3037 * verify_buftag() 3038 * verify that btp->bt_bxstat == (bcp ^ pat) 3039 */ 3040 static int 3041 verify_buftag(kmem_buftag_t *btp, uintptr_t pat) 3042 { 3043 return (btp->bt_bxstat == ((intptr_t)btp->bt_bufctl ^ pat) ? 0 : -1); 3044 } 3045 3046 /* 3047 * verify_free() 3048 * verify the integrity of a free block of memory by checking 3049 * that it is filled with 0xdeadbeef and that its buftag is sane. 3050 */ 3051 /*ARGSUSED1*/ 3052 static int 3053 verify_free(uintptr_t addr, const void *data, void *private) 3054 { 3055 kmem_verify_t *kmv = (kmem_verify_t *)private; 3056 uint64_t *buf = kmv->kmv_buf; /* buf to validate */ 3057 int64_t corrupt; /* corruption offset */ 3058 kmem_buftag_t *buftagp; /* ptr to buftag */ 3059 kmem_cache_t *cp = &kmv->kmv_cache; 3060 int besilent = kmv->kmv_besilent; 3061 3062 /*LINTED*/ 3063 buftagp = KMEM_BUFTAG(cp, buf); 3064 3065 /* 3066 * Read the buffer to check. 3067 */ 3068 if (mdb_vread(buf, kmv->kmv_size, addr) == -1) { 3069 if (!besilent) 3070 mdb_warn("couldn't read %p", addr); 3071 return (WALK_NEXT); 3072 } 3073 3074 if ((corrupt = verify_pattern(buf, cp->cache_verify, 3075 KMEM_FREE_PATTERN)) >= 0) { 3076 if (!besilent) 3077 mdb_printf("buffer %p (free) seems corrupted, at %p\n", 3078 addr, (uintptr_t)addr + corrupt); 3079 goto corrupt; 3080 } 3081 /* 3082 * When KMF_LITE is set, buftagp->bt_redzone is used to hold 3083 * the first bytes of the buffer, hence we cannot check for red 3084 * zone corruption. 3085 */ 3086 if ((cp->cache_flags & (KMF_HASH | KMF_LITE)) == KMF_HASH && 3087 buftagp->bt_redzone != KMEM_REDZONE_PATTERN) { 3088 if (!besilent) 3089 mdb_printf("buffer %p (free) seems to " 3090 "have a corrupt redzone pattern\n", addr); 3091 goto corrupt; 3092 } 3093 3094 /* 3095 * confirm bufctl pointer integrity. 3096 */ 3097 if (verify_buftag(buftagp, KMEM_BUFTAG_FREE) == -1) { 3098 if (!besilent) 3099 mdb_printf("buffer %p (free) has a corrupt " 3100 "buftag\n", addr); 3101 goto corrupt; 3102 } 3103 3104 return (WALK_NEXT); 3105 corrupt: 3106 kmv->kmv_corruption++; 3107 return (WALK_NEXT); 3108 } 3109 3110 /* 3111 * verify_alloc() 3112 * Verify that the buftag of an allocated buffer makes sense with respect 3113 * to the buffer. 3114 */ 3115 /*ARGSUSED1*/ 3116 static int 3117 verify_alloc(uintptr_t addr, const void *data, void *private) 3118 { 3119 kmem_verify_t *kmv = (kmem_verify_t *)private; 3120 kmem_cache_t *cp = &kmv->kmv_cache; 3121 uint64_t *buf = kmv->kmv_buf; /* buf to validate */ 3122 /*LINTED*/ 3123 kmem_buftag_t *buftagp = KMEM_BUFTAG(cp, buf); 3124 uint32_t *ip = (uint32_t *)buftagp; 3125 uint8_t *bp = (uint8_t *)buf; 3126 int looks_ok = 0, size_ok = 1; /* flags for finding corruption */ 3127 int besilent = kmv->kmv_besilent; 3128 3129 /* 3130 * Read the buffer to check. 3131 */ 3132 if (mdb_vread(buf, kmv->kmv_size, addr) == -1) { 3133 if (!besilent) 3134 mdb_warn("couldn't read %p", addr); 3135 return (WALK_NEXT); 3136 } 3137 3138 /* 3139 * There are two cases to handle: 3140 * 1. If the buf was alloc'd using kmem_cache_alloc, it will have 3141 * 0xfeedfacefeedface at the end of it 3142 * 2. If the buf was alloc'd using kmem_alloc, it will have 3143 * 0xbb just past the end of the region in use. At the buftag, 3144 * it will have 0xfeedface (or, if the whole buffer is in use, 3145 * 0xfeedface & bb000000 or 0xfeedfacf & 000000bb depending on 3146 * endianness), followed by 32 bits containing the offset of the 3147 * 0xbb byte in the buffer. 3148 * 3149 * Finally, the two 32-bit words that comprise the second half of the 3150 * buftag should xor to KMEM_BUFTAG_ALLOC 3151 */ 3152 3153 if (buftagp->bt_redzone == KMEM_REDZONE_PATTERN) 3154 looks_ok = 1; 3155 else if (!KMEM_SIZE_VALID(ip[1])) 3156 size_ok = 0; 3157 else if (bp[KMEM_SIZE_DECODE(ip[1])] == KMEM_REDZONE_BYTE) 3158 looks_ok = 1; 3159 else 3160 size_ok = 0; 3161 3162 if (!size_ok) { 3163 if (!besilent) 3164 mdb_printf("buffer %p (allocated) has a corrupt " 3165 "redzone size encoding\n", addr); 3166 goto corrupt; 3167 } 3168 3169 if (!looks_ok) { 3170 if (!besilent) 3171 mdb_printf("buffer %p (allocated) has a corrupt " 3172 "redzone signature\n", addr); 3173 goto corrupt; 3174 } 3175 3176 if (verify_buftag(buftagp, KMEM_BUFTAG_ALLOC) == -1) { 3177 if (!besilent) 3178 mdb_printf("buffer %p (allocated) has a " 3179 "corrupt buftag\n", addr); 3180 goto corrupt; 3181 } 3182 3183 return (WALK_NEXT); 3184 corrupt: 3185 kmv->kmv_corruption++; 3186 return (WALK_NEXT); 3187 } 3188 3189 /*ARGSUSED2*/ 3190 int 3191 kmem_verify(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3192 { 3193 if (flags & DCMD_ADDRSPEC) { 3194 int check_alloc = 0, check_free = 0; 3195 kmem_verify_t kmv; 3196 3197 if (mdb_vread(&kmv.kmv_cache, sizeof (kmv.kmv_cache), 3198 addr) == -1) { 3199 mdb_warn("couldn't read kmem_cache %p", addr); 3200 return (DCMD_ERR); 3201 } 3202 3203 kmv.kmv_size = kmv.kmv_cache.cache_buftag + 3204 sizeof (kmem_buftag_t); 3205 kmv.kmv_buf = mdb_alloc(kmv.kmv_size, UM_SLEEP | UM_GC); 3206 kmv.kmv_corruption = 0; 3207 3208 if ((kmv.kmv_cache.cache_flags & KMF_REDZONE)) { 3209 check_alloc = 1; 3210 if (kmv.kmv_cache.cache_flags & KMF_DEADBEEF) 3211 check_free = 1; 3212 } else { 3213 if (!(flags & DCMD_LOOP)) { 3214 mdb_warn("cache %p (%s) does not have " 3215 "redzone checking enabled\n", addr, 3216 kmv.kmv_cache.cache_name); 3217 } 3218 return (DCMD_ERR); 3219 } 3220 3221 if (flags & DCMD_LOOP) { 3222 /* 3223 * table mode, don't print out every corrupt buffer 3224 */ 3225 kmv.kmv_besilent = 1; 3226 } else { 3227 mdb_printf("Summary for cache '%s'\n", 3228 kmv.kmv_cache.cache_name); 3229 mdb_inc_indent(2); 3230 kmv.kmv_besilent = 0; 3231 } 3232 3233 if (check_alloc) 3234 (void) mdb_pwalk("kmem", verify_alloc, &kmv, addr); 3235 if (check_free) 3236 (void) mdb_pwalk("freemem", verify_free, &kmv, addr); 3237 3238 if (flags & DCMD_LOOP) { 3239 if (kmv.kmv_corruption == 0) { 3240 mdb_printf("%-*s %?p clean\n", 3241 KMEM_CACHE_NAMELEN, 3242 kmv.kmv_cache.cache_name, addr); 3243 } else { 3244 char *s = ""; /* optional s in "buffer[s]" */ 3245 if (kmv.kmv_corruption > 1) 3246 s = "s"; 3247 3248 mdb_printf("%-*s %?p %d corrupt buffer%s\n", 3249 KMEM_CACHE_NAMELEN, 3250 kmv.kmv_cache.cache_name, addr, 3251 kmv.kmv_corruption, s); 3252 } 3253 } else { 3254 /* 3255 * This is the more verbose mode, when the user has 3256 * type addr::kmem_verify. If the cache was clean, 3257 * nothing will have yet been printed. So say something. 3258 */ 3259 if (kmv.kmv_corruption == 0) 3260 mdb_printf("clean\n"); 3261 3262 mdb_dec_indent(2); 3263 } 3264 } else { 3265 /* 3266 * If the user didn't specify a cache to verify, we'll walk all 3267 * kmem_cache's, specifying ourself as a callback for each... 3268 * this is the equivalent of '::walk kmem_cache .::kmem_verify' 3269 */ 3270 mdb_printf("%<u>%-*s %-?s %-20s%</b>\n", KMEM_CACHE_NAMELEN, 3271 "Cache Name", "Addr", "Cache Integrity"); 3272 (void) (mdb_walk_dcmd("kmem_cache", "kmem_verify", 0, NULL)); 3273 } 3274 3275 return (DCMD_OK); 3276 } 3277 3278 typedef struct vmem_node { 3279 struct vmem_node *vn_next; 3280 struct vmem_node *vn_parent; 3281 struct vmem_node *vn_sibling; 3282 struct vmem_node *vn_children; 3283 uintptr_t vn_addr; 3284 int vn_marked; 3285 vmem_t vn_vmem; 3286 } vmem_node_t; 3287 3288 typedef struct vmem_walk { 3289 vmem_node_t *vw_root; 3290 vmem_node_t *vw_current; 3291 } vmem_walk_t; 3292 3293 int 3294 vmem_walk_init(mdb_walk_state_t *wsp) 3295 { 3296 uintptr_t vaddr, paddr; 3297 vmem_node_t *head = NULL, *root = NULL, *current = NULL, *parent, *vp; 3298 vmem_walk_t *vw; 3299 3300 if (mdb_readvar(&vaddr, "vmem_list") == -1) { 3301 mdb_warn("couldn't read 'vmem_list'"); 3302 return (WALK_ERR); 3303 } 3304 3305 while (vaddr != NULL) { 3306 vp = mdb_zalloc(sizeof (vmem_node_t), UM_SLEEP); 3307 vp->vn_addr = vaddr; 3308 vp->vn_next = head; 3309 head = vp; 3310 3311 if (vaddr == wsp->walk_addr) 3312 current = vp; 3313 3314 if (mdb_vread(&vp->vn_vmem, sizeof (vmem_t), vaddr) == -1) { 3315 mdb_warn("couldn't read vmem_t at %p", vaddr); 3316 goto err; 3317 } 3318 3319 vaddr = (uintptr_t)vp->vn_vmem.vm_next; 3320 } 3321 3322 for (vp = head; vp != NULL; vp = vp->vn_next) { 3323 3324 if ((paddr = (uintptr_t)vp->vn_vmem.vm_source) == NULL) { 3325 vp->vn_sibling = root; 3326 root = vp; 3327 continue; 3328 } 3329 3330 for (parent = head; parent != NULL; parent = parent->vn_next) { 3331 if (parent->vn_addr != paddr) 3332 continue; 3333 vp->vn_sibling = parent->vn_children; 3334 parent->vn_children = vp; 3335 vp->vn_parent = parent; 3336 break; 3337 } 3338 3339 if (parent == NULL) { 3340 mdb_warn("couldn't find %p's parent (%p)\n", 3341 vp->vn_addr, paddr); 3342 goto err; 3343 } 3344 } 3345 3346 vw = mdb_zalloc(sizeof (vmem_walk_t), UM_SLEEP); 3347 vw->vw_root = root; 3348 3349 if (current != NULL) 3350 vw->vw_current = current; 3351 else 3352 vw->vw_current = root; 3353 3354 wsp->walk_data = vw; 3355 return (WALK_NEXT); 3356 err: 3357 for (vp = head; head != NULL; vp = head) { 3358 head = vp->vn_next; 3359 mdb_free(vp, sizeof (vmem_node_t)); 3360 } 3361 3362 return (WALK_ERR); 3363 } 3364 3365 int 3366 vmem_walk_step(mdb_walk_state_t *wsp) 3367 { 3368 vmem_walk_t *vw = wsp->walk_data; 3369 vmem_node_t *vp; 3370 int rval; 3371 3372 if ((vp = vw->vw_current) == NULL) 3373 return (WALK_DONE); 3374 3375 rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata); 3376 3377 if (vp->vn_children != NULL) { 3378 vw->vw_current = vp->vn_children; 3379 return (rval); 3380 } 3381 3382 do { 3383 vw->vw_current = vp->vn_sibling; 3384 vp = vp->vn_parent; 3385 } while (vw->vw_current == NULL && vp != NULL); 3386 3387 return (rval); 3388 } 3389 3390 /* 3391 * The "vmem_postfix" walk walks the vmem arenas in post-fix order; all 3392 * children are visited before their parent. We perform the postfix walk 3393 * iteratively (rather than recursively) to allow mdb to regain control 3394 * after each callback. 3395 */ 3396 int 3397 vmem_postfix_walk_step(mdb_walk_state_t *wsp) 3398 { 3399 vmem_walk_t *vw = wsp->walk_data; 3400 vmem_node_t *vp = vw->vw_current; 3401 int rval; 3402 3403 /* 3404 * If this node is marked, then we know that we have already visited 3405 * all of its children. If the node has any siblings, they need to 3406 * be visited next; otherwise, we need to visit the parent. Note 3407 * that vp->vn_marked will only be zero on the first invocation of 3408 * the step function. 3409 */ 3410 if (vp->vn_marked) { 3411 if (vp->vn_sibling != NULL) 3412 vp = vp->vn_sibling; 3413 else if (vp->vn_parent != NULL) 3414 vp = vp->vn_parent; 3415 else { 3416 /* 3417 * We have neither a parent, nor a sibling, and we 3418 * have already been visited; we're done. 3419 */ 3420 return (WALK_DONE); 3421 } 3422 } 3423 3424 /* 3425 * Before we visit this node, visit its children. 3426 */ 3427 while (vp->vn_children != NULL && !vp->vn_children->vn_marked) 3428 vp = vp->vn_children; 3429 3430 vp->vn_marked = 1; 3431 vw->vw_current = vp; 3432 rval = wsp->walk_callback(vp->vn_addr, &vp->vn_vmem, wsp->walk_cbdata); 3433 3434 return (rval); 3435 } 3436 3437 void 3438 vmem_walk_fini(mdb_walk_state_t *wsp) 3439 { 3440 vmem_walk_t *vw = wsp->walk_data; 3441 vmem_node_t *root = vw->vw_root; 3442 int done; 3443 3444 if (root == NULL) 3445 return; 3446 3447 if ((vw->vw_root = root->vn_children) != NULL) 3448 vmem_walk_fini(wsp); 3449 3450 vw->vw_root = root->vn_sibling; 3451 done = (root->vn_sibling == NULL && root->vn_parent == NULL); 3452 mdb_free(root, sizeof (vmem_node_t)); 3453 3454 if (done) { 3455 mdb_free(vw, sizeof (vmem_walk_t)); 3456 } else { 3457 vmem_walk_fini(wsp); 3458 } 3459 } 3460 3461 typedef struct vmem_seg_walk { 3462 uint8_t vsw_type; 3463 uintptr_t vsw_start; 3464 uintptr_t vsw_current; 3465 } vmem_seg_walk_t; 3466 3467 /*ARGSUSED*/ 3468 int 3469 vmem_seg_walk_common_init(mdb_walk_state_t *wsp, uint8_t type, char *name) 3470 { 3471 vmem_seg_walk_t *vsw; 3472 3473 if (wsp->walk_addr == NULL) { 3474 mdb_warn("vmem_%s does not support global walks\n", name); 3475 return (WALK_ERR); 3476 } 3477 3478 wsp->walk_data = vsw = mdb_alloc(sizeof (vmem_seg_walk_t), UM_SLEEP); 3479 3480 vsw->vsw_type = type; 3481 vsw->vsw_start = wsp->walk_addr + offsetof(vmem_t, vm_seg0); 3482 vsw->vsw_current = vsw->vsw_start; 3483 3484 return (WALK_NEXT); 3485 } 3486 3487 /* 3488 * vmem segments can't have type 0 (this should be added to vmem_impl.h). 3489 */ 3490 #define VMEM_NONE 0 3491 3492 int 3493 vmem_alloc_walk_init(mdb_walk_state_t *wsp) 3494 { 3495 return (vmem_seg_walk_common_init(wsp, VMEM_ALLOC, "alloc")); 3496 } 3497 3498 int 3499 vmem_free_walk_init(mdb_walk_state_t *wsp) 3500 { 3501 return (vmem_seg_walk_common_init(wsp, VMEM_FREE, "free")); 3502 } 3503 3504 int 3505 vmem_span_walk_init(mdb_walk_state_t *wsp) 3506 { 3507 return (vmem_seg_walk_common_init(wsp, VMEM_SPAN, "span")); 3508 } 3509 3510 int 3511 vmem_seg_walk_init(mdb_walk_state_t *wsp) 3512 { 3513 return (vmem_seg_walk_common_init(wsp, VMEM_NONE, "seg")); 3514 } 3515 3516 int 3517 vmem_seg_walk_step(mdb_walk_state_t *wsp) 3518 { 3519 vmem_seg_t seg; 3520 vmem_seg_walk_t *vsw = wsp->walk_data; 3521 uintptr_t addr = vsw->vsw_current; 3522 static size_t seg_size = 0; 3523 int rval; 3524 3525 if (!seg_size) { 3526 if (mdb_readvar(&seg_size, "vmem_seg_size") == -1) { 3527 mdb_warn("failed to read 'vmem_seg_size'"); 3528 seg_size = sizeof (vmem_seg_t); 3529 } 3530 } 3531 3532 if (seg_size < sizeof (seg)) 3533 bzero((caddr_t)&seg + seg_size, sizeof (seg) - seg_size); 3534 3535 if (mdb_vread(&seg, seg_size, addr) == -1) { 3536 mdb_warn("couldn't read vmem_seg at %p", addr); 3537 return (WALK_ERR); 3538 } 3539 3540 vsw->vsw_current = (uintptr_t)seg.vs_anext; 3541 if (vsw->vsw_type != VMEM_NONE && seg.vs_type != vsw->vsw_type) { 3542 rval = WALK_NEXT; 3543 } else { 3544 rval = wsp->walk_callback(addr, &seg, wsp->walk_cbdata); 3545 } 3546 3547 if (vsw->vsw_current == vsw->vsw_start) 3548 return (WALK_DONE); 3549 3550 return (rval); 3551 } 3552 3553 void 3554 vmem_seg_walk_fini(mdb_walk_state_t *wsp) 3555 { 3556 vmem_seg_walk_t *vsw = wsp->walk_data; 3557 3558 mdb_free(vsw, sizeof (vmem_seg_walk_t)); 3559 } 3560 3561 #define VMEM_NAMEWIDTH 22 3562 3563 int 3564 vmem(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3565 { 3566 vmem_t v, parent; 3567 vmem_kstat_t *vkp = &v.vm_kstat; 3568 uintptr_t paddr; 3569 int ident = 0; 3570 char c[VMEM_NAMEWIDTH]; 3571 3572 if (!(flags & DCMD_ADDRSPEC)) { 3573 if (mdb_walk_dcmd("vmem", "vmem", argc, argv) == -1) { 3574 mdb_warn("can't walk vmem"); 3575 return (DCMD_ERR); 3576 } 3577 return (DCMD_OK); 3578 } 3579 3580 if (DCMD_HDRSPEC(flags)) 3581 mdb_printf("%-?s %-*s %10s %12s %9s %5s\n", 3582 "ADDR", VMEM_NAMEWIDTH, "NAME", "INUSE", 3583 "TOTAL", "SUCCEED", "FAIL"); 3584 3585 if (mdb_vread(&v, sizeof (v), addr) == -1) { 3586 mdb_warn("couldn't read vmem at %p", addr); 3587 return (DCMD_ERR); 3588 } 3589 3590 for (paddr = (uintptr_t)v.vm_source; paddr != NULL; ident += 2) { 3591 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 3592 mdb_warn("couldn't trace %p's ancestry", addr); 3593 ident = 0; 3594 break; 3595 } 3596 paddr = (uintptr_t)parent.vm_source; 3597 } 3598 3599 (void) mdb_snprintf(c, VMEM_NAMEWIDTH, "%*s%s", ident, "", v.vm_name); 3600 3601 mdb_printf("%0?p %-*s %10llu %12llu %9llu %5llu\n", 3602 addr, VMEM_NAMEWIDTH, c, 3603 vkp->vk_mem_inuse.value.ui64, vkp->vk_mem_total.value.ui64, 3604 vkp->vk_alloc.value.ui64, vkp->vk_fail.value.ui64); 3605 3606 return (DCMD_OK); 3607 } 3608 3609 void 3610 vmem_seg_help(void) 3611 { 3612 mdb_printf("%s", 3613 "Display the contents of vmem_seg_ts, with optional filtering.\n\n" 3614 "\n" 3615 "A vmem_seg_t represents a range of addresses (or arbitrary numbers),\n" 3616 "representing a single chunk of data. Only ALLOC segments have debugging\n" 3617 "information.\n"); 3618 mdb_dec_indent(2); 3619 mdb_printf("%<b>OPTIONS%</b>\n"); 3620 mdb_inc_indent(2); 3621 mdb_printf("%s", 3622 " -v Display the full content of the vmem_seg, including its stack trace\n" 3623 " -s report the size of the segment, instead of the end address\n" 3624 " -c caller\n" 3625 " filter out segments without the function/PC in their stack trace\n" 3626 " -e earliest\n" 3627 " filter out segments timestamped before earliest\n" 3628 " -l latest\n" 3629 " filter out segments timestamped after latest\n" 3630 " -m minsize\n" 3631 " filer out segments smaller than minsize\n" 3632 " -M maxsize\n" 3633 " filer out segments larger than maxsize\n" 3634 " -t thread\n" 3635 " filter out segments not involving thread\n" 3636 " -T type\n" 3637 " filter out segments not of type 'type'\n" 3638 " type is one of: ALLOC/FREE/SPAN/ROTOR/WALKER\n"); 3639 } 3640 3641 /*ARGSUSED*/ 3642 int 3643 vmem_seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3644 { 3645 vmem_seg_t vs; 3646 pc_t *stk = vs.vs_stack; 3647 uintptr_t sz; 3648 uint8_t t; 3649 const char *type = NULL; 3650 GElf_Sym sym; 3651 char c[MDB_SYM_NAMLEN]; 3652 int no_debug; 3653 int i; 3654 int depth; 3655 uintptr_t laddr, haddr; 3656 3657 uintptr_t caller = NULL, thread = NULL; 3658 uintptr_t minsize = 0, maxsize = 0; 3659 3660 hrtime_t earliest = 0, latest = 0; 3661 3662 uint_t size = 0; 3663 uint_t verbose = 0; 3664 3665 if (!(flags & DCMD_ADDRSPEC)) 3666 return (DCMD_USAGE); 3667 3668 if (mdb_getopts(argc, argv, 3669 'c', MDB_OPT_UINTPTR, &caller, 3670 'e', MDB_OPT_UINT64, &earliest, 3671 'l', MDB_OPT_UINT64, &latest, 3672 's', MDB_OPT_SETBITS, TRUE, &size, 3673 'm', MDB_OPT_UINTPTR, &minsize, 3674 'M', MDB_OPT_UINTPTR, &maxsize, 3675 't', MDB_OPT_UINTPTR, &thread, 3676 'T', MDB_OPT_STR, &type, 3677 'v', MDB_OPT_SETBITS, TRUE, &verbose, 3678 NULL) != argc) 3679 return (DCMD_USAGE); 3680 3681 if (DCMD_HDRSPEC(flags) && !(flags & DCMD_PIPE_OUT)) { 3682 if (verbose) { 3683 mdb_printf("%16s %4s %16s %16s %16s\n" 3684 "%<u>%16s %4s %16s %16s %16s%</u>\n", 3685 "ADDR", "TYPE", "START", "END", "SIZE", 3686 "", "", "THREAD", "TIMESTAMP", ""); 3687 } else { 3688 mdb_printf("%?s %4s %?s %?s %s\n", "ADDR", "TYPE", 3689 "START", size? "SIZE" : "END", "WHO"); 3690 } 3691 } 3692 3693 if (mdb_vread(&vs, sizeof (vs), addr) == -1) { 3694 mdb_warn("couldn't read vmem_seg at %p", addr); 3695 return (DCMD_ERR); 3696 } 3697 3698 if (type != NULL) { 3699 if (strcmp(type, "ALLC") == 0 || strcmp(type, "ALLOC") == 0) 3700 t = VMEM_ALLOC; 3701 else if (strcmp(type, "FREE") == 0) 3702 t = VMEM_FREE; 3703 else if (strcmp(type, "SPAN") == 0) 3704 t = VMEM_SPAN; 3705 else if (strcmp(type, "ROTR") == 0 || 3706 strcmp(type, "ROTOR") == 0) 3707 t = VMEM_ROTOR; 3708 else if (strcmp(type, "WLKR") == 0 || 3709 strcmp(type, "WALKER") == 0) 3710 t = VMEM_WALKER; 3711 else { 3712 mdb_warn("\"%s\" is not a recognized vmem_seg type\n", 3713 type); 3714 return (DCMD_ERR); 3715 } 3716 3717 if (vs.vs_type != t) 3718 return (DCMD_OK); 3719 } 3720 3721 sz = vs.vs_end - vs.vs_start; 3722 3723 if (minsize != 0 && sz < minsize) 3724 return (DCMD_OK); 3725 3726 if (maxsize != 0 && sz > maxsize) 3727 return (DCMD_OK); 3728 3729 t = vs.vs_type; 3730 depth = vs.vs_depth; 3731 3732 /* 3733 * debug info, when present, is only accurate for VMEM_ALLOC segments 3734 */ 3735 no_debug = (t != VMEM_ALLOC) || 3736 (depth == 0 || depth > VMEM_STACK_DEPTH); 3737 3738 if (no_debug) { 3739 if (caller != NULL || thread != NULL || earliest != 0 || 3740 latest != 0) 3741 return (DCMD_OK); /* not enough info */ 3742 } else { 3743 if (caller != NULL) { 3744 laddr = caller; 3745 haddr = caller + sizeof (caller); 3746 3747 if (mdb_lookup_by_addr(caller, MDB_SYM_FUZZY, c, 3748 sizeof (c), &sym) != -1 && 3749 caller == (uintptr_t)sym.st_value) { 3750 /* 3751 * We were provided an exact symbol value; any 3752 * address in the function is valid. 3753 */ 3754 laddr = (uintptr_t)sym.st_value; 3755 haddr = (uintptr_t)sym.st_value + sym.st_size; 3756 } 3757 3758 for (i = 0; i < depth; i++) 3759 if (vs.vs_stack[i] >= laddr && 3760 vs.vs_stack[i] < haddr) 3761 break; 3762 3763 if (i == depth) 3764 return (DCMD_OK); 3765 } 3766 3767 if (thread != NULL && (uintptr_t)vs.vs_thread != thread) 3768 return (DCMD_OK); 3769 3770 if (earliest != 0 && vs.vs_timestamp < earliest) 3771 return (DCMD_OK); 3772 3773 if (latest != 0 && vs.vs_timestamp > latest) 3774 return (DCMD_OK); 3775 } 3776 3777 type = (t == VMEM_ALLOC ? "ALLC" : 3778 t == VMEM_FREE ? "FREE" : 3779 t == VMEM_SPAN ? "SPAN" : 3780 t == VMEM_ROTOR ? "ROTR" : 3781 t == VMEM_WALKER ? "WLKR" : 3782 "????"); 3783 3784 if (flags & DCMD_PIPE_OUT) { 3785 mdb_printf("%#lr\n", addr); 3786 return (DCMD_OK); 3787 } 3788 3789 if (verbose) { 3790 mdb_printf("%<b>%16p%</b> %4s %16p %16p %16d\n", 3791 addr, type, vs.vs_start, vs.vs_end, sz); 3792 3793 if (no_debug) 3794 return (DCMD_OK); 3795 3796 mdb_printf("%16s %4s %16p %16llx\n", 3797 "", "", vs.vs_thread, vs.vs_timestamp); 3798 3799 mdb_inc_indent(17); 3800 for (i = 0; i < depth; i++) { 3801 mdb_printf("%a\n", stk[i]); 3802 } 3803 mdb_dec_indent(17); 3804 mdb_printf("\n"); 3805 } else { 3806 mdb_printf("%0?p %4s %0?p %0?p", addr, type, 3807 vs.vs_start, size? sz : vs.vs_end); 3808 3809 if (no_debug) { 3810 mdb_printf("\n"); 3811 return (DCMD_OK); 3812 } 3813 3814 for (i = 0; i < depth; i++) { 3815 if (mdb_lookup_by_addr(stk[i], MDB_SYM_FUZZY, 3816 c, sizeof (c), &sym) == -1) 3817 continue; 3818 if (strncmp(c, "vmem_", 5) == 0) 3819 continue; 3820 break; 3821 } 3822 mdb_printf(" %a\n", stk[i]); 3823 } 3824 return (DCMD_OK); 3825 } 3826 3827 typedef struct kmalog_data { 3828 uintptr_t kma_addr; 3829 hrtime_t kma_newest; 3830 } kmalog_data_t; 3831 3832 /*ARGSUSED*/ 3833 static int 3834 showbc(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmalog_data_t *kma) 3835 { 3836 char name[KMEM_CACHE_NAMELEN + 1]; 3837 hrtime_t delta; 3838 int i, depth; 3839 size_t bufsize; 3840 3841 if (bcp->bc_timestamp == 0) 3842 return (WALK_DONE); 3843 3844 if (kma->kma_newest == 0) 3845 kma->kma_newest = bcp->bc_timestamp; 3846 3847 if (kma->kma_addr) { 3848 if (mdb_vread(&bufsize, sizeof (bufsize), 3849 (uintptr_t)&bcp->bc_cache->cache_bufsize) == -1) { 3850 mdb_warn( 3851 "failed to read cache_bufsize for cache at %p", 3852 bcp->bc_cache); 3853 return (WALK_ERR); 3854 } 3855 3856 if (kma->kma_addr < (uintptr_t)bcp->bc_addr || 3857 kma->kma_addr >= (uintptr_t)bcp->bc_addr + bufsize) 3858 return (WALK_NEXT); 3859 } 3860 3861 delta = kma->kma_newest - bcp->bc_timestamp; 3862 depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH); 3863 3864 if (mdb_readstr(name, sizeof (name), (uintptr_t) 3865 &bcp->bc_cache->cache_name) <= 0) 3866 (void) mdb_snprintf(name, sizeof (name), "%a", bcp->bc_cache); 3867 3868 mdb_printf("\nT-%lld.%09lld addr=%p %s\n", 3869 delta / NANOSEC, delta % NANOSEC, bcp->bc_addr, name); 3870 3871 for (i = 0; i < depth; i++) 3872 mdb_printf("\t %a\n", bcp->bc_stack[i]); 3873 3874 return (WALK_NEXT); 3875 } 3876 3877 int 3878 kmalog(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3879 { 3880 const char *logname = "kmem_transaction_log"; 3881 kmalog_data_t kma; 3882 3883 if (argc > 1) 3884 return (DCMD_USAGE); 3885 3886 kma.kma_newest = 0; 3887 if (flags & DCMD_ADDRSPEC) 3888 kma.kma_addr = addr; 3889 else 3890 kma.kma_addr = NULL; 3891 3892 if (argc > 0) { 3893 if (argv->a_type != MDB_TYPE_STRING) 3894 return (DCMD_USAGE); 3895 if (strcmp(argv->a_un.a_str, "fail") == 0) 3896 logname = "kmem_failure_log"; 3897 else if (strcmp(argv->a_un.a_str, "slab") == 0) 3898 logname = "kmem_slab_log"; 3899 else 3900 return (DCMD_USAGE); 3901 } 3902 3903 if (mdb_readvar(&addr, logname) == -1) { 3904 mdb_warn("failed to read %s log header pointer"); 3905 return (DCMD_ERR); 3906 } 3907 3908 if (mdb_pwalk("kmem_log", (mdb_walk_cb_t)showbc, &kma, addr) == -1) { 3909 mdb_warn("failed to walk kmem log"); 3910 return (DCMD_ERR); 3911 } 3912 3913 return (DCMD_OK); 3914 } 3915 3916 /* 3917 * As the final lure for die-hard crash(1M) users, we provide ::kmausers here. 3918 * The first piece is a structure which we use to accumulate kmem_cache_t 3919 * addresses of interest. The kmc_add is used as a callback for the kmem_cache 3920 * walker; we either add all caches, or ones named explicitly as arguments. 3921 */ 3922 3923 typedef struct kmclist { 3924 const char *kmc_name; /* Name to match (or NULL) */ 3925 uintptr_t *kmc_caches; /* List of kmem_cache_t addrs */ 3926 int kmc_nelems; /* Num entries in kmc_caches */ 3927 int kmc_size; /* Size of kmc_caches array */ 3928 } kmclist_t; 3929 3930 static int 3931 kmc_add(uintptr_t addr, const kmem_cache_t *cp, kmclist_t *kmc) 3932 { 3933 void *p; 3934 int s; 3935 3936 if (kmc->kmc_name == NULL || 3937 strcmp(cp->cache_name, kmc->kmc_name) == 0) { 3938 /* 3939 * If we have a match, grow our array (if necessary), and then 3940 * add the virtual address of the matching cache to our list. 3941 */ 3942 if (kmc->kmc_nelems >= kmc->kmc_size) { 3943 s = kmc->kmc_size ? kmc->kmc_size * 2 : 256; 3944 p = mdb_alloc(sizeof (uintptr_t) * s, UM_SLEEP | UM_GC); 3945 3946 bcopy(kmc->kmc_caches, p, 3947 sizeof (uintptr_t) * kmc->kmc_size); 3948 3949 kmc->kmc_caches = p; 3950 kmc->kmc_size = s; 3951 } 3952 3953 kmc->kmc_caches[kmc->kmc_nelems++] = addr; 3954 return (kmc->kmc_name ? WALK_DONE : WALK_NEXT); 3955 } 3956 3957 return (WALK_NEXT); 3958 } 3959 3960 /* 3961 * The second piece of ::kmausers is a hash table of allocations. Each 3962 * allocation owner is identified by its stack trace and data_size. We then 3963 * track the total bytes of all such allocations, and the number of allocations 3964 * to report at the end. Once we have a list of caches, we walk through the 3965 * allocated bufctls of each, and update our hash table accordingly. 3966 */ 3967 3968 typedef struct kmowner { 3969 struct kmowner *kmo_head; /* First hash elt in bucket */ 3970 struct kmowner *kmo_next; /* Next hash elt in chain */ 3971 size_t kmo_signature; /* Hash table signature */ 3972 uint_t kmo_num; /* Number of allocations */ 3973 size_t kmo_data_size; /* Size of each allocation */ 3974 size_t kmo_total_size; /* Total bytes of allocation */ 3975 int kmo_depth; /* Depth of stack trace */ 3976 uintptr_t kmo_stack[KMEM_STACK_DEPTH]; /* Stack trace */ 3977 } kmowner_t; 3978 3979 typedef struct kmusers { 3980 uintptr_t kmu_addr; /* address of interest */ 3981 const kmem_cache_t *kmu_cache; /* Current kmem cache */ 3982 kmowner_t *kmu_hash; /* Hash table of owners */ 3983 int kmu_nelems; /* Number of entries in use */ 3984 int kmu_size; /* Total number of entries */ 3985 } kmusers_t; 3986 3987 static void 3988 kmu_add(kmusers_t *kmu, const kmem_bufctl_audit_t *bcp, 3989 size_t size, size_t data_size) 3990 { 3991 int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH); 3992 size_t bucket, signature = data_size; 3993 kmowner_t *kmo, *kmoend; 3994 3995 /* 3996 * If the hash table is full, double its size and rehash everything. 3997 */ 3998 if (kmu->kmu_nelems >= kmu->kmu_size) { 3999 int s = kmu->kmu_size ? kmu->kmu_size * 2 : 1024; 4000 4001 kmo = mdb_alloc(sizeof (kmowner_t) * s, UM_SLEEP | UM_GC); 4002 bcopy(kmu->kmu_hash, kmo, sizeof (kmowner_t) * kmu->kmu_size); 4003 kmu->kmu_hash = kmo; 4004 kmu->kmu_size = s; 4005 4006 kmoend = kmu->kmu_hash + kmu->kmu_size; 4007 for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++) 4008 kmo->kmo_head = NULL; 4009 4010 kmoend = kmu->kmu_hash + kmu->kmu_nelems; 4011 for (kmo = kmu->kmu_hash; kmo < kmoend; kmo++) { 4012 bucket = kmo->kmo_signature & (kmu->kmu_size - 1); 4013 kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head; 4014 kmu->kmu_hash[bucket].kmo_head = kmo; 4015 } 4016 } 4017 4018 /* 4019 * Finish computing the hash signature from the stack trace, and then 4020 * see if the owner is in the hash table. If so, update our stats. 4021 */ 4022 for (i = 0; i < depth; i++) 4023 signature += bcp->bc_stack[i]; 4024 4025 bucket = signature & (kmu->kmu_size - 1); 4026 4027 for (kmo = kmu->kmu_hash[bucket].kmo_head; kmo; kmo = kmo->kmo_next) { 4028 if (kmo->kmo_signature == signature) { 4029 size_t difference = 0; 4030 4031 difference |= kmo->kmo_data_size - data_size; 4032 difference |= kmo->kmo_depth - depth; 4033 4034 for (i = 0; i < depth; i++) { 4035 difference |= kmo->kmo_stack[i] - 4036 bcp->bc_stack[i]; 4037 } 4038 4039 if (difference == 0) { 4040 kmo->kmo_total_size += size; 4041 kmo->kmo_num++; 4042 return; 4043 } 4044 } 4045 } 4046 4047 /* 4048 * If the owner is not yet hashed, grab the next element and fill it 4049 * in based on the allocation information. 4050 */ 4051 kmo = &kmu->kmu_hash[kmu->kmu_nelems++]; 4052 kmo->kmo_next = kmu->kmu_hash[bucket].kmo_head; 4053 kmu->kmu_hash[bucket].kmo_head = kmo; 4054 4055 kmo->kmo_signature = signature; 4056 kmo->kmo_num = 1; 4057 kmo->kmo_data_size = data_size; 4058 kmo->kmo_total_size = size; 4059 kmo->kmo_depth = depth; 4060 4061 for (i = 0; i < depth; i++) 4062 kmo->kmo_stack[i] = bcp->bc_stack[i]; 4063 } 4064 4065 /* 4066 * When ::kmausers is invoked without the -f flag, we simply update our hash 4067 * table with the information from each allocated bufctl. 4068 */ 4069 /*ARGSUSED*/ 4070 static int 4071 kmause1(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu) 4072 { 4073 const kmem_cache_t *cp = kmu->kmu_cache; 4074 4075 kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize); 4076 return (WALK_NEXT); 4077 } 4078 4079 /* 4080 * When ::kmausers is invoked with the -f flag, we print out the information 4081 * for each bufctl as well as updating the hash table. 4082 */ 4083 static int 4084 kmause2(uintptr_t addr, const kmem_bufctl_audit_t *bcp, kmusers_t *kmu) 4085 { 4086 int i, depth = MIN(bcp->bc_depth, KMEM_STACK_DEPTH); 4087 const kmem_cache_t *cp = kmu->kmu_cache; 4088 kmem_bufctl_t bufctl; 4089 4090 if (kmu->kmu_addr) { 4091 if (mdb_vread(&bufctl, sizeof (bufctl), addr) == -1) 4092 mdb_warn("couldn't read bufctl at %p", addr); 4093 else if (kmu->kmu_addr < (uintptr_t)bufctl.bc_addr || 4094 kmu->kmu_addr >= (uintptr_t)bufctl.bc_addr + 4095 cp->cache_bufsize) 4096 return (WALK_NEXT); 4097 } 4098 4099 mdb_printf("size %d, addr %p, thread %p, cache %s\n", 4100 cp->cache_bufsize, addr, bcp->bc_thread, cp->cache_name); 4101 4102 for (i = 0; i < depth; i++) 4103 mdb_printf("\t %a\n", bcp->bc_stack[i]); 4104 4105 kmu_add(kmu, bcp, cp->cache_bufsize, cp->cache_bufsize); 4106 return (WALK_NEXT); 4107 } 4108 4109 /* 4110 * We sort our results by allocation size before printing them. 4111 */ 4112 static int 4113 kmownercmp(const void *lp, const void *rp) 4114 { 4115 const kmowner_t *lhs = lp; 4116 const kmowner_t *rhs = rp; 4117 4118 return (rhs->kmo_total_size - lhs->kmo_total_size); 4119 } 4120 4121 /* 4122 * The main engine of ::kmausers is relatively straightforward: First we 4123 * accumulate our list of kmem_cache_t addresses into the kmclist_t. Next we 4124 * iterate over the allocated bufctls of each cache in the list. Finally, 4125 * we sort and print our results. 4126 */ 4127 /*ARGSUSED*/ 4128 int 4129 kmausers(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4130 { 4131 int mem_threshold = 8192; /* Minimum # bytes for printing */ 4132 int cnt_threshold = 100; /* Minimum # blocks for printing */ 4133 int audited_caches = 0; /* Number of KMF_AUDIT caches found */ 4134 int do_all_caches = 1; /* Do all caches (no arguments) */ 4135 int opt_e = FALSE; /* Include "small" users */ 4136 int opt_f = FALSE; /* Print stack traces */ 4137 4138 mdb_walk_cb_t callback = (mdb_walk_cb_t)kmause1; 4139 kmowner_t *kmo, *kmoend; 4140 int i, oelems; 4141 4142 kmclist_t kmc; 4143 kmusers_t kmu; 4144 4145 bzero(&kmc, sizeof (kmc)); 4146 bzero(&kmu, sizeof (kmu)); 4147 4148 while ((i = mdb_getopts(argc, argv, 4149 'e', MDB_OPT_SETBITS, TRUE, &opt_e, 4150 'f', MDB_OPT_SETBITS, TRUE, &opt_f, NULL)) != argc) { 4151 4152 argv += i; /* skip past options we just processed */ 4153 argc -= i; /* adjust argc */ 4154 4155 if (argv->a_type != MDB_TYPE_STRING || *argv->a_un.a_str == '-') 4156 return (DCMD_USAGE); 4157 4158 oelems = kmc.kmc_nelems; 4159 kmc.kmc_name = argv->a_un.a_str; 4160 (void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc); 4161 4162 if (kmc.kmc_nelems == oelems) { 4163 mdb_warn("unknown kmem cache: %s\n", kmc.kmc_name); 4164 return (DCMD_ERR); 4165 } 4166 4167 do_all_caches = 0; 4168 argv++; 4169 argc--; 4170 } 4171 4172 if (flags & DCMD_ADDRSPEC) { 4173 opt_f = TRUE; 4174 kmu.kmu_addr = addr; 4175 } else { 4176 kmu.kmu_addr = NULL; 4177 } 4178 4179 if (opt_e) 4180 mem_threshold = cnt_threshold = 0; 4181 4182 if (opt_f) 4183 callback = (mdb_walk_cb_t)kmause2; 4184 4185 if (do_all_caches) { 4186 kmc.kmc_name = NULL; /* match all cache names */ 4187 (void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmc_add, &kmc); 4188 } 4189 4190 for (i = 0; i < kmc.kmc_nelems; i++) { 4191 uintptr_t cp = kmc.kmc_caches[i]; 4192 kmem_cache_t c; 4193 4194 if (mdb_vread(&c, sizeof (c), cp) == -1) { 4195 mdb_warn("failed to read cache at %p", cp); 4196 continue; 4197 } 4198 4199 if (!(c.cache_flags & KMF_AUDIT)) { 4200 if (!do_all_caches) { 4201 mdb_warn("KMF_AUDIT is not enabled for %s\n", 4202 c.cache_name); 4203 } 4204 continue; 4205 } 4206 4207 kmu.kmu_cache = &c; 4208 (void) mdb_pwalk("bufctl", callback, &kmu, cp); 4209 audited_caches++; 4210 } 4211 4212 if (audited_caches == 0 && do_all_caches) { 4213 mdb_warn("KMF_AUDIT is not enabled for any caches\n"); 4214 return (DCMD_ERR); 4215 } 4216 4217 qsort(kmu.kmu_hash, kmu.kmu_nelems, sizeof (kmowner_t), kmownercmp); 4218 kmoend = kmu.kmu_hash + kmu.kmu_nelems; 4219 4220 for (kmo = kmu.kmu_hash; kmo < kmoend; kmo++) { 4221 if (kmo->kmo_total_size < mem_threshold && 4222 kmo->kmo_num < cnt_threshold) 4223 continue; 4224 mdb_printf("%lu bytes for %u allocations with data size %lu:\n", 4225 kmo->kmo_total_size, kmo->kmo_num, kmo->kmo_data_size); 4226 for (i = 0; i < kmo->kmo_depth; i++) 4227 mdb_printf("\t %a\n", kmo->kmo_stack[i]); 4228 } 4229 4230 return (DCMD_OK); 4231 } 4232 4233 void 4234 kmausers_help(void) 4235 { 4236 mdb_printf( 4237 "Displays the largest users of the kmem allocator, sorted by \n" 4238 "trace. If one or more caches is specified, only those caches\n" 4239 "will be searched. By default, all caches are searched. If an\n" 4240 "address is specified, then only those allocations which include\n" 4241 "the given address are displayed. Specifying an address implies\n" 4242 "-f.\n" 4243 "\n" 4244 "\t-e\tInclude all users, not just the largest\n" 4245 "\t-f\tDisplay individual allocations. By default, users are\n" 4246 "\t\tgrouped by stack\n"); 4247 } 4248 4249 static int 4250 kmem_ready_check(void) 4251 { 4252 int ready; 4253 4254 if (mdb_readvar(&ready, "kmem_ready") < 0) 4255 return (-1); /* errno is set for us */ 4256 4257 return (ready); 4258 } 4259 4260 void 4261 kmem_statechange(void) 4262 { 4263 static int been_ready = 0; 4264 4265 if (been_ready) 4266 return; 4267 4268 if (kmem_ready_check() <= 0) 4269 return; 4270 4271 been_ready = 1; 4272 (void) mdb_walk("kmem_cache", (mdb_walk_cb_t)kmem_init_walkers, NULL); 4273 } 4274 4275 void 4276 kmem_init(void) 4277 { 4278 mdb_walker_t w = { 4279 "kmem_cache", "walk list of kmem caches", kmem_cache_walk_init, 4280 list_walk_step, list_walk_fini 4281 }; 4282 4283 /* 4284 * If kmem is ready, we'll need to invoke the kmem_cache walker 4285 * immediately. Walkers in the linkage structure won't be ready until 4286 * _mdb_init returns, so we'll need to add this one manually. If kmem 4287 * is ready, we'll use the walker to initialize the caches. If kmem 4288 * isn't ready, we'll register a callback that will allow us to defer 4289 * cache walking until it is. 4290 */ 4291 if (mdb_add_walker(&w) != 0) { 4292 mdb_warn("failed to add kmem_cache walker"); 4293 return; 4294 } 4295 4296 kmem_statechange(); 4297 4298 /* register our ::whatis handlers */ 4299 mdb_whatis_register("modules", whatis_run_modules, NULL, 4300 WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID); 4301 mdb_whatis_register("threads", whatis_run_threads, NULL, 4302 WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID); 4303 mdb_whatis_register("pages", whatis_run_pages, NULL, 4304 WHATIS_PRIO_EARLY, WHATIS_REG_NO_ID); 4305 mdb_whatis_register("kmem", whatis_run_kmem, NULL, 4306 WHATIS_PRIO_ALLOCATOR, 0); 4307 mdb_whatis_register("vmem", whatis_run_vmem, NULL, 4308 WHATIS_PRIO_ALLOCATOR, 0); 4309 } 4310 4311 typedef struct whatthread { 4312 uintptr_t wt_target; 4313 int wt_verbose; 4314 } whatthread_t; 4315 4316 static int 4317 whatthread_walk_thread(uintptr_t addr, const kthread_t *t, whatthread_t *w) 4318 { 4319 uintptr_t current, data; 4320 4321 if (t->t_stkbase == NULL) 4322 return (WALK_NEXT); 4323 4324 /* 4325 * Warn about swapped out threads, but drive on anyway 4326 */ 4327 if (!(t->t_schedflag & TS_LOAD)) { 4328 mdb_warn("thread %p's stack swapped out\n", addr); 4329 return (WALK_NEXT); 4330 } 4331 4332 /* 4333 * Search the thread's stack for the given pointer. Note that it would 4334 * be more efficient to follow ::kgrep's lead and read in page-sized 4335 * chunks, but this routine is already fast and simple. 4336 */ 4337 for (current = (uintptr_t)t->t_stkbase; current < (uintptr_t)t->t_stk; 4338 current += sizeof (uintptr_t)) { 4339 if (mdb_vread(&data, sizeof (data), current) == -1) { 4340 mdb_warn("couldn't read thread %p's stack at %p", 4341 addr, current); 4342 return (WALK_ERR); 4343 } 4344 4345 if (data == w->wt_target) { 4346 if (w->wt_verbose) { 4347 mdb_printf("%p in thread %p's stack%s\n", 4348 current, addr, stack_active(t, current)); 4349 } else { 4350 mdb_printf("%#lr\n", addr); 4351 return (WALK_NEXT); 4352 } 4353 } 4354 } 4355 4356 return (WALK_NEXT); 4357 } 4358 4359 int 4360 whatthread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 4361 { 4362 whatthread_t w; 4363 4364 if (!(flags & DCMD_ADDRSPEC)) 4365 return (DCMD_USAGE); 4366 4367 w.wt_verbose = FALSE; 4368 w.wt_target = addr; 4369 4370 if (mdb_getopts(argc, argv, 4371 'v', MDB_OPT_SETBITS, TRUE, &w.wt_verbose, NULL) != argc) 4372 return (DCMD_USAGE); 4373 4374 if (mdb_walk("thread", (mdb_walk_cb_t)whatthread_walk_thread, &w) 4375 == -1) { 4376 mdb_warn("couldn't walk threads"); 4377 return (DCMD_ERR); 4378 } 4379 4380 return (DCMD_OK); 4381 } 4382