1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 Joyent, Inc. All rights reserved. 25 * Copyright (c) 2013 by Delphix. All rights reserved. 26 */ 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <sys/dditypes.h> 53 #include <sys/ddi_impldefs.h> 54 #include <sys/sysmacros.h> 55 #include <sys/sysconf.h> 56 #include <sys/task.h> 57 #include <sys/project.h> 58 #include <sys/errorq_impl.h> 59 #include <sys/cred_impl.h> 60 #include <sys/zone.h> 61 #include <sys/panic.h> 62 #include <regex.h> 63 #include <sys/port_impl.h> 64 65 #include "avl.h" 66 #include "bio.h" 67 #include "bitset.h" 68 #include "combined.h" 69 #include "contract.h" 70 #include "cpupart_mdb.h" 71 #include "cred.h" 72 #include "ctxop.h" 73 #include "cyclic.h" 74 #include "damap.h" 75 #include "ddi_periodic.h" 76 #include "devinfo.h" 77 #include "findstack.h" 78 #include "fm.h" 79 #include "gcore.h" 80 #include "group.h" 81 #include "irm.h" 82 #include "kgrep.h" 83 #include "kmem.h" 84 #include "ldi.h" 85 #include "leaky.h" 86 #include "lgrp.h" 87 #include "list.h" 88 #include "log.h" 89 #include "mdi.h" 90 #include "memory.h" 91 #include "mmd.h" 92 #include "modhash.h" 93 #include "ndievents.h" 94 #include "net.h" 95 #include "netstack.h" 96 #include "nvpair.h" 97 #include "pg.h" 98 #include "rctl.h" 99 #include "sobj.h" 100 #include "streams.h" 101 #include "sysevent.h" 102 #include "taskq.h" 103 #include "thread.h" 104 #include "tsd.h" 105 #include "tsol.h" 106 #include "typegraph.h" 107 #include "vfs.h" 108 #include "zone.h" 109 #include "hotplug.h" 110 111 /* 112 * Surely this is defined somewhere... 113 */ 114 #define NINTR 16 115 116 #define KILOS 10 117 #define MEGS 20 118 #define GIGS 30 119 120 #ifndef STACK_BIAS 121 #define STACK_BIAS 0 122 #endif 123 124 static char 125 pstat2ch(uchar_t state) 126 { 127 switch (state) { 128 case SSLEEP: return ('S'); 129 case SRUN: return ('R'); 130 case SZOMB: return ('Z'); 131 case SIDL: return ('I'); 132 case SONPROC: return ('O'); 133 case SSTOP: return ('T'); 134 case SWAIT: return ('W'); 135 default: return ('?'); 136 } 137 } 138 139 #define PS_PRTTHREADS 0x1 140 #define PS_PRTLWPS 0x2 141 #define PS_PSARGS 0x4 142 #define PS_TASKS 0x8 143 #define PS_PROJECTS 0x10 144 #define PS_ZONES 0x20 145 146 static int 147 ps_threadprint(uintptr_t addr, const void *data, void *private) 148 { 149 const kthread_t *t = (const kthread_t *)data; 150 uint_t prt_flags = *((uint_t *)private); 151 152 static const mdb_bitmask_t t_state_bits[] = { 153 { "TS_FREE", UINT_MAX, TS_FREE }, 154 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 155 { "TS_RUN", TS_RUN, TS_RUN }, 156 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 157 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 158 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 159 { "TS_WAIT", TS_WAIT, TS_WAIT }, 160 { NULL, 0, 0 } 161 }; 162 163 if (prt_flags & PS_PRTTHREADS) 164 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 165 166 if (prt_flags & PS_PRTLWPS) 167 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 168 169 return (WALK_NEXT); 170 } 171 172 int 173 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 174 { 175 uint_t prt_flags = 0; 176 proc_t pr; 177 struct pid pid, pgid, sid; 178 sess_t session; 179 cred_t cred; 180 task_t tk; 181 kproject_t pj; 182 zone_t zn; 183 184 if (!(flags & DCMD_ADDRSPEC)) { 185 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 186 mdb_warn("can't walk 'proc'"); 187 return (DCMD_ERR); 188 } 189 return (DCMD_OK); 190 } 191 192 if (mdb_getopts(argc, argv, 193 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 194 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 195 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 196 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 197 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 198 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 199 return (DCMD_USAGE); 200 201 if (DCMD_HDRSPEC(flags)) { 202 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 203 "S", "PID", "PPID", "PGID", "SID"); 204 if (prt_flags & PS_TASKS) 205 mdb_printf("%5s ", "TASK"); 206 if (prt_flags & PS_PROJECTS) 207 mdb_printf("%5s ", "PROJ"); 208 if (prt_flags & PS_ZONES) 209 mdb_printf("%5s ", "ZONE"); 210 mdb_printf("%6s %10s %?s %s%</u>\n", 211 "UID", "FLAGS", "ADDR", "NAME"); 212 } 213 214 mdb_vread(&pr, sizeof (pr), addr); 215 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 216 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 217 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 218 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 219 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 220 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 221 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 222 if (prt_flags & PS_PROJECTS) 223 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 224 if (prt_flags & PS_ZONES) 225 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 226 227 mdb_printf("%c %6d %6d %6d %6d ", 228 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 229 sid.pid_id); 230 if (prt_flags & PS_TASKS) 231 mdb_printf("%5d ", tk.tk_tkid); 232 if (prt_flags & PS_PROJECTS) 233 mdb_printf("%5d ", pj.kpj_id); 234 if (prt_flags & PS_ZONES) 235 mdb_printf("%5d ", zn.zone_id); 236 mdb_printf("%6d 0x%08x %0?p %s\n", 237 cred.cr_uid, pr.p_flag, addr, 238 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 239 240 if (prt_flags & ~PS_PSARGS) 241 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 242 243 return (DCMD_OK); 244 } 245 246 #define PG_NEWEST 0x0001 247 #define PG_OLDEST 0x0002 248 #define PG_PIPE_OUT 0x0004 249 #define PG_EXACT_MATCH 0x0008 250 251 typedef struct pgrep_data { 252 uint_t pg_flags; 253 uint_t pg_psflags; 254 uintptr_t pg_xaddr; 255 hrtime_t pg_xstart; 256 const char *pg_pat; 257 #ifndef _KMDB 258 regex_t pg_reg; 259 #endif 260 } pgrep_data_t; 261 262 /*ARGSUSED*/ 263 static int 264 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 265 { 266 const proc_t *prp = pdata; 267 pgrep_data_t *pgp = data; 268 #ifndef _KMDB 269 regmatch_t pmatch; 270 #endif 271 272 /* 273 * kmdb doesn't have access to the reg* functions, so we fall back 274 * to strstr/strcmp. 275 */ 276 #ifdef _KMDB 277 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 278 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 279 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 280 return (WALK_NEXT); 281 #else 282 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 283 return (WALK_NEXT); 284 285 if ((pgp->pg_flags & PG_EXACT_MATCH) && 286 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 287 return (WALK_NEXT); 288 #endif 289 290 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 291 hrtime_t start; 292 293 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 294 prp->p_user.u_start.tv_nsec; 295 296 if (pgp->pg_flags & PG_NEWEST) { 297 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 298 pgp->pg_xaddr = addr; 299 pgp->pg_xstart = start; 300 } 301 } else { 302 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 303 pgp->pg_xaddr = addr; 304 pgp->pg_xstart = start; 305 } 306 } 307 308 } else if (pgp->pg_flags & PG_PIPE_OUT) { 309 mdb_printf("%p\n", addr); 310 311 } else { 312 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 313 mdb_warn("can't invoke 'ps'"); 314 return (WALK_DONE); 315 } 316 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 317 } 318 319 return (WALK_NEXT); 320 } 321 322 /*ARGSUSED*/ 323 int 324 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 325 { 326 pgrep_data_t pg; 327 int i; 328 #ifndef _KMDB 329 int err; 330 #endif 331 332 if (flags & DCMD_ADDRSPEC) 333 return (DCMD_USAGE); 334 335 pg.pg_flags = 0; 336 pg.pg_xaddr = 0; 337 338 i = mdb_getopts(argc, argv, 339 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 340 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 341 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 342 NULL); 343 344 argc -= i; 345 argv += i; 346 347 if (argc != 1) 348 return (DCMD_USAGE); 349 350 /* 351 * -n and -o are mutually exclusive. 352 */ 353 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 354 return (DCMD_USAGE); 355 356 if (argv->a_type != MDB_TYPE_STRING) 357 return (DCMD_USAGE); 358 359 if (flags & DCMD_PIPE_OUT) 360 pg.pg_flags |= PG_PIPE_OUT; 361 362 pg.pg_pat = argv->a_un.a_str; 363 if (DCMD_HDRSPEC(flags)) 364 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 365 else 366 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 367 368 #ifndef _KMDB 369 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 370 size_t nbytes; 371 char *buf; 372 373 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 374 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 375 (void) regerror(err, &pg.pg_reg, buf, nbytes); 376 mdb_warn("%s\n", buf); 377 378 return (DCMD_ERR); 379 } 380 #endif 381 382 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 383 mdb_warn("can't walk 'proc'"); 384 return (DCMD_ERR); 385 } 386 387 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 388 if (pg.pg_flags & PG_PIPE_OUT) { 389 mdb_printf("%p\n", pg.pg_xaddr); 390 } else { 391 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 392 0, NULL) != 0) { 393 mdb_warn("can't invoke 'ps'"); 394 return (DCMD_ERR); 395 } 396 } 397 } 398 399 return (DCMD_OK); 400 } 401 402 int 403 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 404 { 405 task_t tk; 406 kproject_t pj; 407 408 if (!(flags & DCMD_ADDRSPEC)) { 409 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 410 mdb_warn("can't walk task_cache"); 411 return (DCMD_ERR); 412 } 413 return (DCMD_OK); 414 } 415 if (DCMD_HDRSPEC(flags)) { 416 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 417 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 418 } 419 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 420 mdb_warn("can't read task_t structure at %p", addr); 421 return (DCMD_ERR); 422 } 423 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 424 mdb_warn("can't read project_t structure at %p", addr); 425 return (DCMD_ERR); 426 } 427 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 428 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 429 tk.tk_flags); 430 return (DCMD_OK); 431 } 432 433 int 434 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 435 { 436 kproject_t pj; 437 438 if (!(flags & DCMD_ADDRSPEC)) { 439 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 440 mdb_warn("can't walk projects"); 441 return (DCMD_ERR); 442 } 443 return (DCMD_OK); 444 } 445 if (DCMD_HDRSPEC(flags)) { 446 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 447 "ADDR", "PROJID", "ZONEID", "REFCNT"); 448 } 449 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 450 mdb_warn("can't read kproject_t structure at %p", addr); 451 return (DCMD_ERR); 452 } 453 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 454 pj.kpj_count); 455 return (DCMD_OK); 456 } 457 458 /* walk callouts themselves, either by list or id hash. */ 459 int 460 callout_walk_init(mdb_walk_state_t *wsp) 461 { 462 if (wsp->walk_addr == NULL) { 463 mdb_warn("callout doesn't support global walk"); 464 return (WALK_ERR); 465 } 466 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 467 return (WALK_NEXT); 468 } 469 470 #define CALLOUT_WALK_BYLIST 0 471 #define CALLOUT_WALK_BYID 1 472 473 /* the walker arg switches between walking by list (0) and walking by id (1). */ 474 int 475 callout_walk_step(mdb_walk_state_t *wsp) 476 { 477 int retval; 478 479 if (wsp->walk_addr == NULL) { 480 return (WALK_DONE); 481 } 482 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 483 wsp->walk_addr) == -1) { 484 mdb_warn("failed to read callout at %p", wsp->walk_addr); 485 return (WALK_DONE); 486 } 487 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 488 wsp->walk_cbdata); 489 490 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 491 wsp->walk_addr = 492 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 493 } else { 494 wsp->walk_addr = 495 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 496 } 497 498 return (retval); 499 } 500 501 void 502 callout_walk_fini(mdb_walk_state_t *wsp) 503 { 504 mdb_free(wsp->walk_data, sizeof (callout_t)); 505 } 506 507 /* 508 * walker for callout lists. This is different from hashes and callouts. 509 * Thankfully, it's also simpler. 510 */ 511 int 512 callout_list_walk_init(mdb_walk_state_t *wsp) 513 { 514 if (wsp->walk_addr == NULL) { 515 mdb_warn("callout list doesn't support global walk"); 516 return (WALK_ERR); 517 } 518 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 519 return (WALK_NEXT); 520 } 521 522 int 523 callout_list_walk_step(mdb_walk_state_t *wsp) 524 { 525 int retval; 526 527 if (wsp->walk_addr == NULL) { 528 return (WALK_DONE); 529 } 530 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 531 wsp->walk_addr) != sizeof (callout_list_t)) { 532 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 533 return (WALK_ERR); 534 } 535 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 536 wsp->walk_cbdata); 537 538 wsp->walk_addr = (uintptr_t) 539 (((callout_list_t *)wsp->walk_data)->cl_next); 540 541 return (retval); 542 } 543 544 void 545 callout_list_walk_fini(mdb_walk_state_t *wsp) 546 { 547 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 548 } 549 550 /* routines/structs to walk callout table(s) */ 551 typedef struct cot_data { 552 callout_table_t *ct0; 553 callout_table_t ct; 554 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 555 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 556 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 557 int cotndx; 558 int cotsize; 559 } cot_data_t; 560 561 int 562 callout_table_walk_init(mdb_walk_state_t *wsp) 563 { 564 int max_ncpus; 565 cot_data_t *cot_walk_data; 566 567 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 568 569 if (wsp->walk_addr == NULL) { 570 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 571 mdb_warn("failed to read 'callout_table'"); 572 return (WALK_ERR); 573 } 574 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 575 mdb_warn("failed to get callout_table array size"); 576 return (WALK_ERR); 577 } 578 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 579 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 580 } else { 581 /* not a global walk */ 582 cot_walk_data->cotsize = 1; 583 } 584 585 cot_walk_data->cotndx = 0; 586 wsp->walk_data = cot_walk_data; 587 588 return (WALK_NEXT); 589 } 590 591 int 592 callout_table_walk_step(mdb_walk_state_t *wsp) 593 { 594 int retval; 595 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 596 size_t size; 597 598 if (cotwd->cotndx >= cotwd->cotsize) { 599 return (WALK_DONE); 600 } 601 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 602 wsp->walk_addr) != sizeof (callout_table_t)) { 603 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 604 return (WALK_ERR); 605 } 606 607 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 608 if (cotwd->ct.ct_idhash != NULL) { 609 if (mdb_vread(cotwd->cot_idhash, size, 610 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 611 mdb_warn("failed to read id_hash at %p", 612 cotwd->ct.ct_idhash); 613 return (WALK_ERR); 614 } 615 } 616 if (cotwd->ct.ct_clhash != NULL) { 617 if (mdb_vread(&(cotwd->cot_clhash), size, 618 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 619 mdb_warn("failed to read cl_hash at %p", 620 cotwd->ct.ct_clhash); 621 return (WALK_ERR); 622 } 623 } 624 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 625 if (cotwd->ct.ct_kstat_data != NULL) { 626 if (mdb_vread(&(cotwd->ct_kstat_data), size, 627 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 628 mdb_warn("failed to read kstats at %p", 629 cotwd->ct.ct_kstat_data); 630 return (WALK_ERR); 631 } 632 } 633 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 634 wsp->walk_cbdata); 635 636 cotwd->cotndx++; 637 if (cotwd->cotndx >= cotwd->cotsize) { 638 return (WALK_DONE); 639 } 640 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 641 sizeof (callout_table_t)); 642 643 return (retval); 644 } 645 646 void 647 callout_table_walk_fini(mdb_walk_state_t *wsp) 648 { 649 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 650 } 651 652 static const char *co_typenames[] = { "R", "N" }; 653 654 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 655 656 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 657 658 /* callout flags, in no particular order */ 659 #define COF_REAL 0x00000001 660 #define COF_NORM 0x00000002 661 #define COF_LONG 0x00000004 662 #define COF_SHORT 0x00000008 663 #define COF_EMPTY 0x00000010 664 #define COF_TIME 0x00000020 665 #define COF_BEFORE 0x00000040 666 #define COF_AFTER 0x00000080 667 #define COF_SEQID 0x00000100 668 #define COF_FUNC 0x00000200 669 #define COF_ADDR 0x00000400 670 #define COF_EXEC 0x00000800 671 #define COF_HIRES 0x00001000 672 #define COF_ABS 0x00002000 673 #define COF_TABLE 0x00004000 674 #define COF_BYIDH 0x00008000 675 #define COF_FREE 0x00010000 676 #define COF_LIST 0x00020000 677 #define COF_EXPREL 0x00040000 678 #define COF_HDR 0x00080000 679 #define COF_VERBOSE 0x00100000 680 #define COF_LONGLIST 0x00200000 681 #define COF_THDR 0x00400000 682 #define COF_LHDR 0x00800000 683 #define COF_CHDR 0x01000000 684 #define COF_PARAM 0x02000000 685 #define COF_DECODE 0x04000000 686 #define COF_HEAP 0x08000000 687 #define COF_QUEUE 0x10000000 688 689 /* show real and normal, short and long, expired and unexpired. */ 690 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 691 692 #define COF_LIST_FLAGS \ 693 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 694 695 /* private callout data for callback functions */ 696 typedef struct callout_data { 697 uint_t flags; /* COF_* */ 698 cpu_t *cpu; /* cpu pointer if given */ 699 int seqid; /* cpu seqid, or -1 */ 700 hrtime_t time; /* expiration time value */ 701 hrtime_t atime; /* expiration before value */ 702 hrtime_t btime; /* expiration after value */ 703 uintptr_t funcaddr; /* function address or NULL */ 704 uintptr_t param; /* parameter to function or NULL */ 705 hrtime_t now; /* current system time */ 706 int nsec_per_tick; /* for conversions */ 707 ulong_t ctbits; /* for decoding xid */ 708 callout_table_t *co_table; /* top of callout table array */ 709 int ndx; /* table index. */ 710 int bucket; /* which list/id bucket are we in */ 711 hrtime_t exp; /* expire time */ 712 int list_flags; /* copy of cl_flags */ 713 } callout_data_t; 714 715 /* this callback does the actual callback itself (finally). */ 716 /*ARGSUSED*/ 717 static int 718 callouts_cb(uintptr_t addr, const void *data, void *priv) 719 { 720 callout_data_t *coargs = (callout_data_t *)priv; 721 callout_t *co = (callout_t *)data; 722 int tableid, list_flags; 723 callout_id_t coid; 724 725 if ((coargs == NULL) || (co == NULL)) { 726 return (WALK_ERR); 727 } 728 729 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 730 /* 731 * The callout must have been reallocated. No point in 732 * walking any more. 733 */ 734 return (WALK_DONE); 735 } 736 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 737 /* 738 * The callout must have been freed. No point in 739 * walking any more. 740 */ 741 return (WALK_DONE); 742 } 743 if ((coargs->flags & COF_FUNC) && 744 (coargs->funcaddr != (uintptr_t)co->c_func)) { 745 return (WALK_NEXT); 746 } 747 if ((coargs->flags & COF_PARAM) && 748 (coargs->param != (uintptr_t)co->c_arg)) { 749 return (WALK_NEXT); 750 } 751 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 752 return (WALK_NEXT); 753 } 754 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 755 return (WALK_NEXT); 756 } 757 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 758 return (WALK_NEXT); 759 } 760 /* it is possible we don't have the exp time or flags */ 761 if (coargs->flags & COF_BYIDH) { 762 if (!(coargs->flags & COF_FREE)) { 763 /* we have to fetch the expire time ourselves. */ 764 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 765 (uintptr_t)co->c_list + offsetof(callout_list_t, 766 cl_expiration)) == -1) { 767 mdb_warn("failed to read expiration " 768 "time from %p", co->c_list); 769 coargs->exp = 0; 770 } 771 /* and flags. */ 772 if (mdb_vread(&coargs->list_flags, sizeof (int), 773 (uintptr_t)co->c_list + offsetof(callout_list_t, 774 cl_flags)) == -1) { 775 mdb_warn("failed to read list flags" 776 "from %p", co->c_list); 777 coargs->list_flags = 0; 778 } 779 } else { 780 /* free callouts can't use list pointer. */ 781 coargs->exp = 0; 782 coargs->list_flags = 0; 783 } 784 if (coargs->exp != 0) { 785 if ((coargs->flags & COF_TIME) && 786 (coargs->exp != coargs->time)) { 787 return (WALK_NEXT); 788 } 789 if ((coargs->flags & COF_BEFORE) && 790 (coargs->exp > coargs->btime)) { 791 return (WALK_NEXT); 792 } 793 if ((coargs->flags & COF_AFTER) && 794 (coargs->exp < coargs->atime)) { 795 return (WALK_NEXT); 796 } 797 } 798 /* tricky part, since both HIRES and ABS can be set */ 799 list_flags = coargs->list_flags; 800 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 801 /* both flags are set, only skip "regular" ones */ 802 if (! (list_flags & COF_LIST_FLAGS)) { 803 return (WALK_NEXT); 804 } 805 } else { 806 /* individual flags, or no flags */ 807 if ((coargs->flags & COF_HIRES) && 808 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 809 return (WALK_NEXT); 810 } 811 if ((coargs->flags & COF_ABS) && 812 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 813 return (WALK_NEXT); 814 } 815 } 816 /* 817 * We do the checks for COF_HEAP and COF_QUEUE here only if we 818 * are traversing BYIDH. If the traversal is by callout list, 819 * we do this check in callout_list_cb() to be more 820 * efficient. 821 */ 822 if ((coargs->flags & COF_HEAP) && 823 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 824 return (WALK_NEXT); 825 } 826 827 if ((coargs->flags & COF_QUEUE) && 828 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 829 return (WALK_NEXT); 830 } 831 } 832 833 #define callout_table_mask ((1 << coargs->ctbits) - 1) 834 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 835 #undef callout_table_mask 836 coid = CO_PLAIN_ID(co->c_xid); 837 838 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 839 /* 840 * We need to print the headers. If walking by id, then 841 * the list header isn't printed, so we must include 842 * that info here. 843 */ 844 if (!(coargs->flags & COF_VERBOSE)) { 845 mdb_printf("%<u>%3s %-1s %-14s %</u>", 846 "SEQ", "T", "EXP"); 847 } else if (coargs->flags & COF_BYIDH) { 848 mdb_printf("%<u>%-14s %</u>", "EXP"); 849 } 850 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 851 "XHAL", "XID", "FUNC(ARG)"); 852 if (coargs->flags & COF_LONGLIST) { 853 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 854 "PREVID", "NEXTID", "PREVL", "NEXTL"); 855 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 856 "DONE", "UTOS", "THREAD"); 857 } 858 mdb_printf("\n"); 859 coargs->flags &= ~COF_CHDR; 860 coargs->flags |= (COF_THDR | COF_LHDR); 861 } 862 863 if (!(coargs->flags & COF_ADDR)) { 864 if (!(coargs->flags & COF_VERBOSE)) { 865 mdb_printf("%-3d %1s %-14llx ", 866 TABLE_TO_SEQID(tableid), 867 co_typenames[tableid & CALLOUT_TYPE_MASK], 868 (coargs->flags & COF_EXPREL) ? 869 coargs->exp - coargs->now : coargs->exp); 870 } else if (coargs->flags & COF_BYIDH) { 871 mdb_printf("%-14x ", 872 (coargs->flags & COF_EXPREL) ? 873 coargs->exp - coargs->now : coargs->exp); 874 } 875 list_flags = coargs->list_flags; 876 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 877 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 878 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 879 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 880 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 881 (long long)coid, co->c_func, co->c_arg); 882 if (coargs->flags & COF_LONGLIST) { 883 mdb_printf(" %-?p %-?p %-?p %-?p", 884 co->c_idprev, co->c_idnext, co->c_clprev, 885 co->c_clnext); 886 mdb_printf(" %-?p %-4d %-0?p", 887 co->c_done, co->c_waiting, co->c_executor); 888 } 889 } else { 890 /* address only */ 891 mdb_printf("%-0p", addr); 892 } 893 mdb_printf("\n"); 894 return (WALK_NEXT); 895 } 896 897 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 898 /*ARGSUSED*/ 899 static int 900 callout_list_cb(uintptr_t addr, const void *data, void *priv) 901 { 902 callout_data_t *coargs = (callout_data_t *)priv; 903 callout_list_t *cl = (callout_list_t *)data; 904 callout_t *coptr; 905 int list_flags; 906 907 if ((coargs == NULL) || (cl == NULL)) { 908 return (WALK_ERR); 909 } 910 911 coargs->exp = cl->cl_expiration; 912 coargs->list_flags = cl->cl_flags; 913 if ((coargs->flags & COF_FREE) && 914 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 915 /* 916 * The callout list must have been reallocated. No point in 917 * walking any more. 918 */ 919 return (WALK_DONE); 920 } 921 if (!(coargs->flags & COF_FREE) && 922 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 923 /* 924 * The callout list must have been freed. No point in 925 * walking any more. 926 */ 927 return (WALK_DONE); 928 } 929 if ((coargs->flags & COF_TIME) && 930 (cl->cl_expiration != coargs->time)) { 931 return (WALK_NEXT); 932 } 933 if ((coargs->flags & COF_BEFORE) && 934 (cl->cl_expiration > coargs->btime)) { 935 return (WALK_NEXT); 936 } 937 if ((coargs->flags & COF_AFTER) && 938 (cl->cl_expiration < coargs->atime)) { 939 return (WALK_NEXT); 940 } 941 if (!(coargs->flags & COF_EMPTY) && 942 (cl->cl_callouts.ch_head == NULL)) { 943 return (WALK_NEXT); 944 } 945 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 946 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 947 /* both flags are set, only skip "regular" ones */ 948 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 949 return (WALK_NEXT); 950 } 951 } else { 952 if ((coargs->flags & COF_HIRES) && 953 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 954 return (WALK_NEXT); 955 } 956 if ((coargs->flags & COF_ABS) && 957 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 958 return (WALK_NEXT); 959 } 960 } 961 962 if ((coargs->flags & COF_HEAP) && 963 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 964 return (WALK_NEXT); 965 } 966 967 if ((coargs->flags & COF_QUEUE) && 968 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 969 return (WALK_NEXT); 970 } 971 972 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 973 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 974 if (!(coargs->flags & COF_VERBOSE)) { 975 /* don't be redundant again */ 976 mdb_printf("%<u>SEQ T %</u>"); 977 } 978 mdb_printf("%<u>EXP HA BUCKET " 979 "CALLOUTS %</u>"); 980 981 if (coargs->flags & COF_LONGLIST) { 982 mdb_printf("%<u> %-?s %-?s%</u>", 983 "PREV", "NEXT"); 984 } 985 mdb_printf("\n"); 986 coargs->flags &= ~COF_LHDR; 987 coargs->flags |= (COF_THDR | COF_CHDR); 988 } 989 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 990 if (!(coargs->flags & COF_ADDR)) { 991 if (!(coargs->flags & COF_VERBOSE)) { 992 mdb_printf("%3d %1s ", 993 TABLE_TO_SEQID(coargs->ndx), 994 co_typenames[coargs->ndx & 995 CALLOUT_TYPE_MASK]); 996 } 997 998 list_flags = coargs->list_flags; 999 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 1000 (coargs->flags & COF_EXPREL) ? 1001 coargs->exp - coargs->now : coargs->exp, 1002 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 1003 "H" : " ", 1004 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1005 "A" : " ", 1006 coargs->bucket, cl->cl_callouts.ch_head); 1007 1008 if (coargs->flags & COF_LONGLIST) { 1009 mdb_printf(" %-?p %-?p", 1010 cl->cl_prev, cl->cl_next); 1011 } 1012 } else { 1013 /* address only */ 1014 mdb_printf("%-0p", addr); 1015 } 1016 mdb_printf("\n"); 1017 if (coargs->flags & COF_LIST) { 1018 return (WALK_NEXT); 1019 } 1020 } 1021 /* yet another layer as we walk the actual callouts via list. */ 1022 if (cl->cl_callouts.ch_head == NULL) { 1023 return (WALK_NEXT); 1024 } 1025 /* free list structures do not have valid callouts off of them. */ 1026 if (coargs->flags & COF_FREE) { 1027 return (WALK_NEXT); 1028 } 1029 coptr = (callout_t *)cl->cl_callouts.ch_head; 1030 1031 if (coargs->flags & COF_VERBOSE) { 1032 mdb_inc_indent(4); 1033 } 1034 /* 1035 * walk callouts using yet another callback routine. 1036 * we use callouts_bytime because id hash is handled via 1037 * the callout_t_cb callback. 1038 */ 1039 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1040 (uintptr_t)coptr) == -1) { 1041 mdb_warn("cannot walk callouts at %p", coptr); 1042 return (WALK_ERR); 1043 } 1044 if (coargs->flags & COF_VERBOSE) { 1045 mdb_dec_indent(4); 1046 } 1047 1048 return (WALK_NEXT); 1049 } 1050 1051 /* this callback handles the details of callout table walking. */ 1052 static int 1053 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1054 { 1055 callout_data_t *coargs = (callout_data_t *)priv; 1056 cot_data_t *cotwd = (cot_data_t *)data; 1057 callout_table_t *ct = &(cotwd->ct); 1058 int index, seqid, cotype; 1059 int i; 1060 callout_list_t *clptr; 1061 callout_t *coptr; 1062 1063 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1064 return (WALK_ERR); 1065 } 1066 1067 index = ((char *)addr - (char *)coargs->co_table) / 1068 sizeof (callout_table_t); 1069 cotype = index & CALLOUT_TYPE_MASK; 1070 seqid = TABLE_TO_SEQID(index); 1071 1072 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1073 return (WALK_NEXT); 1074 } 1075 1076 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1077 return (WALK_NEXT); 1078 } 1079 1080 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1081 return (WALK_NEXT); 1082 } 1083 1084 if (!(coargs->flags & COF_EMPTY) && ( 1085 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1086 return (WALK_NEXT); 1087 } 1088 1089 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1090 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1091 /* print table hdr */ 1092 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1093 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1094 coargs->flags &= ~COF_THDR; 1095 coargs->flags |= (COF_LHDR | COF_CHDR); 1096 if (coargs->flags & COF_LONGLIST) { 1097 /* more info! */ 1098 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1099 " %-?s %-?s %-?s%</u>", 1100 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1101 "PEND", "FREE", "LOCK"); 1102 } 1103 mdb_printf("\n"); 1104 } 1105 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1106 if (!(coargs->flags & COF_ADDR)) { 1107 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1108 seqid, co_typenames[cotype], 1109 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1110 ct->ct_heap); 1111 if (coargs->flags & COF_LONGLIST) { 1112 /* more info! */ 1113 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1114 " %-?lld %-?lld %-?p", 1115 ct->ct_heap_num, ct->ct_heap_max, 1116 ct->ct_taskq, ct->ct_expired.ch_head, 1117 ct->ct_queue.ch_head, 1118 cotwd->ct_timeouts_pending, 1119 cotwd->ct_allocations - 1120 cotwd->ct_timeouts_pending, 1121 ct->ct_mutex); 1122 } 1123 } else { 1124 /* address only */ 1125 mdb_printf("%-0?p", addr); 1126 } 1127 mdb_printf("\n"); 1128 if (coargs->flags & COF_TABLE) { 1129 return (WALK_NEXT); 1130 } 1131 } 1132 1133 coargs->ndx = index; 1134 if (coargs->flags & COF_VERBOSE) { 1135 mdb_inc_indent(4); 1136 } 1137 /* keep digging. */ 1138 if (!(coargs->flags & COF_BYIDH)) { 1139 /* walk the list hash table */ 1140 if (coargs->flags & COF_FREE) { 1141 clptr = ct->ct_lfree; 1142 coargs->bucket = 0; 1143 if (clptr == NULL) { 1144 return (WALK_NEXT); 1145 } 1146 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1147 (uintptr_t)clptr) == -1) { 1148 mdb_warn("cannot walk callout free list at %p", 1149 clptr); 1150 return (WALK_ERR); 1151 } 1152 } else { 1153 /* first print the expired list. */ 1154 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1155 if (clptr != NULL) { 1156 coargs->bucket = -1; 1157 if (mdb_pwalk("callout_list", callout_list_cb, 1158 coargs, (uintptr_t)clptr) == -1) { 1159 mdb_warn("cannot walk callout_list" 1160 " at %p", clptr); 1161 return (WALK_ERR); 1162 } 1163 } 1164 /* then, print the callout queue */ 1165 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1166 if (clptr != NULL) { 1167 coargs->bucket = -1; 1168 if (mdb_pwalk("callout_list", callout_list_cb, 1169 coargs, (uintptr_t)clptr) == -1) { 1170 mdb_warn("cannot walk callout_list" 1171 " at %p", clptr); 1172 return (WALK_ERR); 1173 } 1174 } 1175 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1176 if (ct->ct_clhash == NULL) { 1177 /* nothing to do */ 1178 break; 1179 } 1180 if (cotwd->cot_clhash[i].ch_head == NULL) { 1181 continue; 1182 } 1183 clptr = (callout_list_t *) 1184 cotwd->cot_clhash[i].ch_head; 1185 coargs->bucket = i; 1186 /* walk list with callback routine. */ 1187 if (mdb_pwalk("callout_list", callout_list_cb, 1188 coargs, (uintptr_t)clptr) == -1) { 1189 mdb_warn("cannot walk callout_list" 1190 " at %p", clptr); 1191 return (WALK_ERR); 1192 } 1193 } 1194 } 1195 } else { 1196 /* walk the id hash table. */ 1197 if (coargs->flags & COF_FREE) { 1198 coptr = ct->ct_free; 1199 coargs->bucket = 0; 1200 if (coptr == NULL) { 1201 return (WALK_NEXT); 1202 } 1203 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1204 (uintptr_t)coptr) == -1) { 1205 mdb_warn("cannot walk callout id free list" 1206 " at %p", coptr); 1207 return (WALK_ERR); 1208 } 1209 } else { 1210 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1211 if (ct->ct_idhash == NULL) { 1212 break; 1213 } 1214 coptr = (callout_t *) 1215 cotwd->cot_idhash[i].ch_head; 1216 if (coptr == NULL) { 1217 continue; 1218 } 1219 coargs->bucket = i; 1220 1221 /* 1222 * walk callouts directly by id. For id 1223 * chain, the callout list is just a header, 1224 * so there's no need to walk it. 1225 */ 1226 if (mdb_pwalk("callouts_byid", callouts_cb, 1227 coargs, (uintptr_t)coptr) == -1) { 1228 mdb_warn("cannot walk callouts at %p", 1229 coptr); 1230 return (WALK_ERR); 1231 } 1232 } 1233 } 1234 } 1235 if (coargs->flags & COF_VERBOSE) { 1236 mdb_dec_indent(4); 1237 } 1238 return (WALK_NEXT); 1239 } 1240 1241 /* 1242 * initialize some common info for both callout dcmds. 1243 */ 1244 int 1245 callout_common_init(callout_data_t *coargs) 1246 { 1247 /* we need a couple of things */ 1248 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1249 mdb_warn("failed to read 'callout_table'"); 1250 return (DCMD_ERR); 1251 } 1252 /* need to get now in nsecs. Approximate with hrtime vars */ 1253 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1254 sizeof (hrtime_t)) { 1255 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1256 "hrtime_base") != sizeof (hrtime_t)) { 1257 mdb_warn("Could not determine current system time"); 1258 return (DCMD_ERR); 1259 } 1260 } 1261 1262 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1263 mdb_warn("failed to read 'callout_table_bits'"); 1264 return (DCMD_ERR); 1265 } 1266 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1267 mdb_warn("failed to read 'nsec_per_tick'"); 1268 return (DCMD_ERR); 1269 } 1270 return (DCMD_OK); 1271 } 1272 1273 /* 1274 * dcmd to print callouts. Optional addr limits to specific table. 1275 * Parses lots of options that get passed to callbacks for walkers. 1276 * Has it's own help function. 1277 */ 1278 /*ARGSUSED*/ 1279 int 1280 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1281 { 1282 callout_data_t coargs; 1283 /* getopts doesn't help much with stuff like this */ 1284 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1285 char *funcname = NULL; 1286 char *paramstr = NULL; 1287 uintptr_t Stmp, Ctmp; /* for getopt. */ 1288 int retval; 1289 1290 coargs.flags = COF_DEFAULT; 1291 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1292 coargs.seqid = -1; 1293 1294 if (mdb_getopts(argc, argv, 1295 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1296 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1297 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1298 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1299 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1300 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1301 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1302 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1303 'd', MDB_OPT_SETBITS, 1, &dflag, 1304 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1305 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1306 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1307 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1308 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1309 'k', MDB_OPT_SETBITS, 1, &kflag, 1310 'f', MDB_OPT_STR, &funcname, 1311 'p', MDB_OPT_STR, ¶mstr, 1312 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1313 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1314 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1315 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1316 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1317 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1318 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1319 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1320 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1321 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1322 NULL) != argc) { 1323 return (DCMD_USAGE); 1324 } 1325 1326 /* initialize from kernel variables */ 1327 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1328 return (retval); 1329 } 1330 1331 /* do some option post-processing */ 1332 if (kflag) { 1333 coargs.time *= coargs.nsec_per_tick; 1334 coargs.atime *= coargs.nsec_per_tick; 1335 coargs.btime *= coargs.nsec_per_tick; 1336 } 1337 1338 if (dflag) { 1339 coargs.time += coargs.now; 1340 coargs.atime += coargs.now; 1341 coargs.btime += coargs.now; 1342 } 1343 if (Sflag) { 1344 if (flags & DCMD_ADDRSPEC) { 1345 mdb_printf("-S option conflicts with explicit" 1346 " address\n"); 1347 return (DCMD_USAGE); 1348 } 1349 coargs.flags |= COF_SEQID; 1350 coargs.seqid = (int)Stmp; 1351 } 1352 if (Cflag) { 1353 if (flags & DCMD_ADDRSPEC) { 1354 mdb_printf("-C option conflicts with explicit" 1355 " address\n"); 1356 return (DCMD_USAGE); 1357 } 1358 if (coargs.flags & COF_SEQID) { 1359 mdb_printf("-C and -S are mutually exclusive\n"); 1360 return (DCMD_USAGE); 1361 } 1362 coargs.cpu = (cpu_t *)Ctmp; 1363 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1364 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1365 mdb_warn("failed to read cpu_t at %p", Ctmp); 1366 return (DCMD_ERR); 1367 } 1368 coargs.flags |= COF_SEQID; 1369 } 1370 /* avoid null outputs. */ 1371 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1372 coargs.flags |= COF_REAL | COF_NORM; 1373 } 1374 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1375 coargs.flags |= COF_LONG | COF_SHORT; 1376 } 1377 if (tflag) { 1378 if (aflag || bflag) { 1379 mdb_printf("-t and -a|b are mutually exclusive\n"); 1380 return (DCMD_USAGE); 1381 } 1382 coargs.flags |= COF_TIME; 1383 } 1384 if (aflag) { 1385 coargs.flags |= COF_AFTER; 1386 } 1387 if (bflag) { 1388 coargs.flags |= COF_BEFORE; 1389 } 1390 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1391 mdb_printf("value for -a must be earlier than the value" 1392 " for -b.\n"); 1393 return (DCMD_USAGE); 1394 } 1395 1396 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1397 mdb_printf("-H and -Q are mutually exclusive\n"); 1398 return (DCMD_USAGE); 1399 } 1400 1401 if (funcname != NULL) { 1402 GElf_Sym sym; 1403 1404 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1405 coargs.funcaddr = mdb_strtoull(funcname); 1406 } else { 1407 coargs.funcaddr = sym.st_value; 1408 } 1409 coargs.flags |= COF_FUNC; 1410 } 1411 1412 if (paramstr != NULL) { 1413 GElf_Sym sym; 1414 1415 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1416 coargs.param = mdb_strtoull(paramstr); 1417 } else { 1418 coargs.param = sym.st_value; 1419 } 1420 coargs.flags |= COF_PARAM; 1421 } 1422 1423 if (!(flags & DCMD_ADDRSPEC)) { 1424 /* don't pass "dot" if no addr. */ 1425 addr = NULL; 1426 } 1427 if (addr != NULL) { 1428 /* 1429 * a callout table was specified. Ignore -r|n option 1430 * to avoid null output. 1431 */ 1432 coargs.flags |= (COF_REAL | COF_NORM); 1433 } 1434 1435 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1436 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1437 } 1438 if (coargs.flags & COF_FREE) { 1439 coargs.flags |= COF_EMPTY; 1440 /* -F = free callouts, -FL = free lists */ 1441 if (!(coargs.flags & COF_LIST)) { 1442 coargs.flags |= COF_BYIDH; 1443 } 1444 } 1445 1446 /* walk table, using specialized callback routine. */ 1447 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1448 mdb_warn("cannot walk callout_table"); 1449 return (DCMD_ERR); 1450 } 1451 return (DCMD_OK); 1452 } 1453 1454 1455 /* 1456 * Given an extended callout id, dump its information. 1457 */ 1458 /*ARGSUSED*/ 1459 int 1460 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1461 { 1462 callout_data_t coargs; 1463 callout_table_t *ctptr; 1464 callout_table_t ct; 1465 callout_id_t coid; 1466 callout_t *coptr; 1467 int tableid; 1468 callout_id_t xid; 1469 ulong_t idhash; 1470 int i, retval; 1471 const mdb_arg_t *arg; 1472 size_t size; 1473 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1474 1475 coargs.flags = COF_DEFAULT | COF_BYIDH; 1476 i = mdb_getopts(argc, argv, 1477 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1478 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1479 NULL); 1480 argc -= i; 1481 argv += i; 1482 1483 if (argc != 1) { 1484 return (DCMD_USAGE); 1485 } 1486 arg = &argv[0]; 1487 1488 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1489 xid = arg->a_un.a_val; 1490 } else { 1491 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1492 } 1493 1494 if (DCMD_HDRSPEC(flags)) { 1495 coargs.flags |= COF_CHDR; 1496 } 1497 1498 1499 /* initialize from kernel variables */ 1500 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1501 return (retval); 1502 } 1503 1504 /* we must massage the environment so that the macros will play nice */ 1505 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1506 #define callout_table_bits coargs.ctbits 1507 #define nsec_per_tick coargs.nsec_per_tick 1508 tableid = CALLOUT_ID_TO_TABLE(xid); 1509 idhash = CALLOUT_IDHASH(xid); 1510 #undef callouts_table_bits 1511 #undef callout_table_mask 1512 #undef nsec_per_tick 1513 coid = CO_PLAIN_ID(xid); 1514 1515 if (flags & DCMD_ADDRSPEC) { 1516 mdb_printf("calloutid does not accept explicit address.\n"); 1517 return (DCMD_USAGE); 1518 } 1519 1520 if (coargs.flags & COF_DECODE) { 1521 if (DCMD_HDRSPEC(flags)) { 1522 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1523 "SEQ", "T", "XL", "XID", "IDHASH"); 1524 } 1525 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1526 TABLE_TO_SEQID(tableid), 1527 co_typenames[tableid & CALLOUT_TYPE_MASK], 1528 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1529 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1530 (long long)coid, idhash); 1531 return (DCMD_OK); 1532 } 1533 1534 /* get our table. Note this relies on the types being correct */ 1535 ctptr = coargs.co_table + tableid; 1536 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1537 mdb_warn("failed to read callout_table at %p", ctptr); 1538 return (DCMD_ERR); 1539 } 1540 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1541 if (ct.ct_idhash != NULL) { 1542 if (mdb_vread(&(cot_idhash), size, 1543 (uintptr_t)ct.ct_idhash) == -1) { 1544 mdb_warn("failed to read id_hash at %p", 1545 ct.ct_idhash); 1546 return (WALK_ERR); 1547 } 1548 } 1549 1550 /* callout at beginning of hash chain */ 1551 if (ct.ct_idhash == NULL) { 1552 mdb_printf("id hash chain for this xid is empty\n"); 1553 return (DCMD_ERR); 1554 } 1555 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1556 if (coptr == NULL) { 1557 mdb_printf("id hash chain for this xid is empty\n"); 1558 return (DCMD_ERR); 1559 } 1560 1561 coargs.ndx = tableid; 1562 coargs.bucket = idhash; 1563 1564 /* use the walker, luke */ 1565 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1566 (uintptr_t)coptr) == -1) { 1567 mdb_warn("cannot walk callouts at %p", coptr); 1568 return (WALK_ERR); 1569 } 1570 1571 return (DCMD_OK); 1572 } 1573 1574 void 1575 callout_help(void) 1576 { 1577 mdb_printf("callout: display callouts.\n" 1578 "Given a callout table address, display callouts from table.\n" 1579 "Without an address, display callouts from all tables.\n" 1580 "options:\n" 1581 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1582 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1583 " -x : limit display to callouts which are executing\n" 1584 " -h : limit display to callouts based on hrestime\n" 1585 " -B : limit display to callouts based on absolute time\n" 1586 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1587 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1588 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1589 " -d : interpret time option to -t|a|b as delta from current time\n" 1590 " -k : use ticks instead of nanoseconds as arguments to" 1591 " -t|a|b. Note that\n ticks are less accurate and may not" 1592 " match other tick times (ie: lbolt).\n" 1593 " -D : display exiration time as delta from current time\n" 1594 " -S seqid : limit display to callouts for this cpu sequence id\n" 1595 " -C addr : limit display to callouts for this cpu pointer\n" 1596 " -f name|addr : limit display to callouts with this function\n" 1597 " -p name|addr : limit display to callouts functions with this" 1598 " parameter\n" 1599 " -T : display the callout table itself, instead of callouts\n" 1600 " -L : display callout lists instead of callouts\n" 1601 " -E : with -T or L, display empty data structures.\n" 1602 " -i : traverse callouts by id hash instead of list hash\n" 1603 " -F : walk free callout list (free list with -i) instead\n" 1604 " -v : display more info for each item\n" 1605 " -V : show details of each level of info as it is traversed\n" 1606 " -H : limit display to callouts in the callout heap\n" 1607 " -Q : limit display to callouts in the callout queue\n" 1608 " -A : show only addresses. Useful for pipelines.\n"); 1609 } 1610 1611 void 1612 calloutid_help(void) 1613 { 1614 mdb_printf("calloutid: display callout by id.\n" 1615 "Given an extended callout id, display the callout infomation.\n" 1616 "options:\n" 1617 " -d : do not dereference callout, just decode the id.\n" 1618 " -v : verbose display more info about the callout\n"); 1619 } 1620 1621 /*ARGSUSED*/ 1622 int 1623 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1624 { 1625 long num_classes, i; 1626 sclass_t *class_tbl; 1627 GElf_Sym g_sclass; 1628 char class_name[PC_CLNMSZ]; 1629 size_t tbl_size; 1630 1631 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1632 mdb_warn("failed to find symbol sclass\n"); 1633 return (DCMD_ERR); 1634 } 1635 1636 tbl_size = (size_t)g_sclass.st_size; 1637 num_classes = tbl_size / (sizeof (sclass_t)); 1638 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1639 1640 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1641 mdb_warn("failed to read sclass"); 1642 return (DCMD_ERR); 1643 } 1644 1645 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1646 "INIT FCN", "CLASS FCN"); 1647 1648 for (i = 0; i < num_classes; i++) { 1649 if (mdb_vread(class_name, sizeof (class_name), 1650 (uintptr_t)class_tbl[i].cl_name) == -1) 1651 (void) strcpy(class_name, "???"); 1652 1653 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1654 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1655 } 1656 1657 return (DCMD_OK); 1658 } 1659 1660 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1661 1662 int 1663 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1664 { 1665 uintptr_t rootdir; 1666 vnode_t vn; 1667 char buf[MAXPATHLEN]; 1668 1669 uint_t opt_F = FALSE; 1670 1671 if (mdb_getopts(argc, argv, 1672 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1673 return (DCMD_USAGE); 1674 1675 if (!(flags & DCMD_ADDRSPEC)) { 1676 mdb_warn("expected explicit vnode_t address before ::\n"); 1677 return (DCMD_USAGE); 1678 } 1679 1680 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1681 mdb_warn("failed to read rootdir"); 1682 return (DCMD_ERR); 1683 } 1684 1685 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1686 return (DCMD_ERR); 1687 1688 if (*buf == '\0') { 1689 mdb_printf("??\n"); 1690 return (DCMD_OK); 1691 } 1692 1693 mdb_printf("%s", buf); 1694 if (opt_F && buf[strlen(buf)-1] != '/' && 1695 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1696 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1697 mdb_printf("\n"); 1698 1699 return (DCMD_OK); 1700 } 1701 1702 int 1703 ld_walk_init(mdb_walk_state_t *wsp) 1704 { 1705 wsp->walk_data = (void *)wsp->walk_addr; 1706 return (WALK_NEXT); 1707 } 1708 1709 int 1710 ld_walk_step(mdb_walk_state_t *wsp) 1711 { 1712 int status; 1713 lock_descriptor_t ld; 1714 1715 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1716 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1717 wsp->walk_addr); 1718 return (WALK_ERR); 1719 } 1720 1721 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1722 if (status == WALK_ERR) 1723 return (WALK_ERR); 1724 1725 wsp->walk_addr = (uintptr_t)ld.l_next; 1726 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1727 return (WALK_DONE); 1728 1729 return (status); 1730 } 1731 1732 int 1733 lg_walk_init(mdb_walk_state_t *wsp) 1734 { 1735 GElf_Sym sym; 1736 1737 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1738 mdb_warn("failed to find symbol 'lock_graph'\n"); 1739 return (WALK_ERR); 1740 } 1741 1742 wsp->walk_addr = (uintptr_t)sym.st_value; 1743 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1744 1745 return (WALK_NEXT); 1746 } 1747 1748 typedef struct lg_walk_data { 1749 uintptr_t startaddr; 1750 mdb_walk_cb_t callback; 1751 void *data; 1752 } lg_walk_data_t; 1753 1754 /* 1755 * We can't use ::walk lock_descriptor directly, because the head of each graph 1756 * is really a dummy lock. Rather than trying to dynamically determine if this 1757 * is a dummy node or not, we just filter out the initial element of the 1758 * list. 1759 */ 1760 static int 1761 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1762 { 1763 lg_walk_data_t *lw = priv; 1764 1765 if (addr != lw->startaddr) 1766 return (lw->callback(addr, data, lw->data)); 1767 1768 return (WALK_NEXT); 1769 } 1770 1771 int 1772 lg_walk_step(mdb_walk_state_t *wsp) 1773 { 1774 graph_t *graph; 1775 lg_walk_data_t lw; 1776 1777 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1778 return (WALK_DONE); 1779 1780 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1781 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1782 return (WALK_ERR); 1783 } 1784 1785 wsp->walk_addr += sizeof (graph); 1786 1787 if (graph == NULL) 1788 return (WALK_NEXT); 1789 1790 lw.callback = wsp->walk_callback; 1791 lw.data = wsp->walk_cbdata; 1792 1793 lw.startaddr = (uintptr_t)&(graph->active_locks); 1794 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1795 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1796 return (WALK_ERR); 1797 } 1798 1799 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1800 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1801 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1802 return (WALK_ERR); 1803 } 1804 1805 return (WALK_NEXT); 1806 } 1807 1808 /* 1809 * The space available for the path corresponding to the locked vnode depends 1810 * on whether we are printing 32- or 64-bit addresses. 1811 */ 1812 #ifdef _LP64 1813 #define LM_VNPATHLEN 20 1814 #else 1815 #define LM_VNPATHLEN 30 1816 #endif 1817 1818 /*ARGSUSED*/ 1819 static int 1820 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1821 { 1822 const lock_descriptor_t *ld = data; 1823 char buf[LM_VNPATHLEN]; 1824 proc_t p; 1825 1826 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1827 addr, ld->l_type == F_RDLCK ? "RD" : 1828 ld->l_type == F_WRLCK ? "WR" : "??", 1829 ld->l_state, ld->l_flock.l_pid, 1830 ld->l_flock.l_pid == 0 ? "<kernel>" : 1831 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1832 "<defunct>" : p.p_user.u_comm, 1833 ld->l_vnode); 1834 1835 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1836 sizeof (buf)); 1837 mdb_printf("%s\n", buf); 1838 1839 return (WALK_NEXT); 1840 } 1841 1842 /*ARGSUSED*/ 1843 int 1844 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1845 { 1846 if (DCMD_HDRSPEC(flags)) 1847 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1848 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1849 1850 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1851 } 1852 1853 /*ARGSUSED*/ 1854 int 1855 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1856 { 1857 if ((uintptr_t)f->f_vnode == *target) { 1858 mdb_printf("file %p\n", addr); 1859 *target = NULL; 1860 } 1861 1862 return (WALK_NEXT); 1863 } 1864 1865 /*ARGSUSED*/ 1866 int 1867 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1868 { 1869 uintptr_t t = *target; 1870 1871 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1872 mdb_warn("couldn't file walk proc %p", addr); 1873 return (WALK_ERR); 1874 } 1875 1876 if (t == NULL) 1877 mdb_printf("%p\n", addr); 1878 1879 return (WALK_NEXT); 1880 } 1881 1882 /*ARGSUSED*/ 1883 int 1884 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1885 { 1886 uintptr_t target = addr; 1887 1888 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1889 return (DCMD_USAGE); 1890 1891 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1892 mdb_warn("can't proc walk"); 1893 return (DCMD_ERR); 1894 } 1895 1896 return (DCMD_OK); 1897 } 1898 1899 typedef struct datafmt { 1900 char *hdr1; 1901 char *hdr2; 1902 char *dashes; 1903 char *fmt; 1904 } datafmt_t; 1905 1906 static datafmt_t kmemfmt[] = { 1907 { "cache ", "name ", 1908 "-------------------------", "%-25s " }, 1909 { " buf", " size", "------", "%6u " }, 1910 { " buf", "in use", "------", "%6u " }, 1911 { " buf", " total", "------", "%6u " }, 1912 { " memory", " in use", "----------", "%10lu%c " }, 1913 { " alloc", " succeed", "---------", "%9u " }, 1914 { "alloc", " fail", "-----", "%5u " }, 1915 { NULL, NULL, NULL, NULL } 1916 }; 1917 1918 static datafmt_t vmemfmt[] = { 1919 { "vmem ", "name ", 1920 "-------------------------", "%-*s " }, 1921 { " memory", " in use", "----------", "%9llu%c " }, 1922 { " memory", " total", "-----------", "%10llu%c " }, 1923 { " memory", " import", "----------", "%9llu%c " }, 1924 { " alloc", " succeed", "---------", "%9llu " }, 1925 { "alloc", " fail", "-----", "%5llu " }, 1926 { NULL, NULL, NULL, NULL } 1927 }; 1928 1929 /*ARGSUSED*/ 1930 static int 1931 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1932 { 1933 short rounds, prounds; 1934 1935 if (KMEM_DUMPCC(ccp)) { 1936 rounds = ccp->cc_dump_rounds; 1937 prounds = ccp->cc_dump_prounds; 1938 } else { 1939 rounds = ccp->cc_rounds; 1940 prounds = ccp->cc_prounds; 1941 } 1942 if (rounds > 0) 1943 *avail += rounds; 1944 if (prounds > 0) 1945 *avail += prounds; 1946 1947 return (WALK_NEXT); 1948 } 1949 1950 /*ARGSUSED*/ 1951 static int 1952 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1953 { 1954 *alloc += ccp->cc_alloc; 1955 1956 return (WALK_NEXT); 1957 } 1958 1959 /*ARGSUSED*/ 1960 static int 1961 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1962 { 1963 *avail += sp->slab_chunks - sp->slab_refcnt; 1964 1965 return (WALK_NEXT); 1966 } 1967 1968 typedef struct kmastat_vmem { 1969 uintptr_t kv_addr; 1970 struct kmastat_vmem *kv_next; 1971 size_t kv_meminuse; 1972 int kv_alloc; 1973 int kv_fail; 1974 } kmastat_vmem_t; 1975 1976 typedef struct kmastat_args { 1977 kmastat_vmem_t **ka_kvpp; 1978 uint_t ka_shift; 1979 } kmastat_args_t; 1980 1981 static int 1982 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1983 { 1984 kmastat_vmem_t **kvpp = kap->ka_kvpp; 1985 kmastat_vmem_t *kv; 1986 datafmt_t *dfp = kmemfmt; 1987 int magsize; 1988 1989 int avail, alloc, total; 1990 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1991 cp->cache_slabsize; 1992 1993 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1994 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1995 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1996 1997 magsize = kmem_get_magsize(cp); 1998 1999 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 2000 avail = cp->cache_full.ml_total * magsize; 2001 total = cp->cache_buftotal; 2002 2003 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 2004 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2005 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2006 2007 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2008 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2009 goto out; 2010 } 2011 2012 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2013 kv->kv_next = *kvpp; 2014 kv->kv_addr = (uintptr_t)cp->cache_arena; 2015 *kvpp = kv; 2016 out: 2017 kv->kv_meminuse += meminuse; 2018 kv->kv_alloc += alloc; 2019 kv->kv_fail += cp->cache_alloc_fail; 2020 2021 mdb_printf((dfp++)->fmt, cp->cache_name); 2022 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2023 mdb_printf((dfp++)->fmt, total - avail); 2024 mdb_printf((dfp++)->fmt, total); 2025 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2026 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2027 kap->ka_shift == KILOS ? 'K' : 'B'); 2028 mdb_printf((dfp++)->fmt, alloc); 2029 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2030 mdb_printf("\n"); 2031 2032 return (WALK_NEXT); 2033 } 2034 2035 static int 2036 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2037 { 2038 kmastat_vmem_t *kv = *kap->ka_kvpp; 2039 size_t len; 2040 2041 while (kv != NULL && kv->kv_addr != addr) 2042 kv = kv->kv_next; 2043 2044 if (kv == NULL || kv->kv_alloc == 0) 2045 return (WALK_NEXT); 2046 2047 len = MIN(17, strlen(v->vm_name)); 2048 2049 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2050 17 - len, "", "", "", "", 2051 kv->kv_meminuse >> kap->ka_shift, 2052 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2053 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2054 2055 return (WALK_NEXT); 2056 } 2057 2058 /*ARGSUSED*/ 2059 static int 2060 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2061 { 2062 datafmt_t *dfp = vmemfmt; 2063 const vmem_kstat_t *vkp = &v->vm_kstat; 2064 uintptr_t paddr; 2065 vmem_t parent; 2066 int ident = 0; 2067 2068 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2069 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2070 mdb_warn("couldn't trace %p's ancestry", addr); 2071 ident = 0; 2072 break; 2073 } 2074 paddr = (uintptr_t)parent.vm_source; 2075 } 2076 2077 mdb_printf("%*s", ident, ""); 2078 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2079 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2080 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2081 *shiftp == KILOS ? 'K' : 'B'); 2082 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2083 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2084 *shiftp == KILOS ? 'K' : 'B'); 2085 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2086 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2087 *shiftp == KILOS ? 'K' : 'B'); 2088 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2089 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2090 2091 mdb_printf("\n"); 2092 2093 return (WALK_NEXT); 2094 } 2095 2096 /*ARGSUSED*/ 2097 int 2098 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2099 { 2100 kmastat_vmem_t *kv = NULL; 2101 datafmt_t *dfp; 2102 kmastat_args_t ka; 2103 2104 ka.ka_shift = 0; 2105 if (mdb_getopts(argc, argv, 2106 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2107 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2108 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2109 return (DCMD_USAGE); 2110 2111 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2112 mdb_printf("%s ", dfp->hdr1); 2113 mdb_printf("\n"); 2114 2115 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2116 mdb_printf("%s ", dfp->hdr2); 2117 mdb_printf("\n"); 2118 2119 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2120 mdb_printf("%s ", dfp->dashes); 2121 mdb_printf("\n"); 2122 2123 ka.ka_kvpp = &kv; 2124 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2125 mdb_warn("can't walk 'kmem_cache'"); 2126 return (DCMD_ERR); 2127 } 2128 2129 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2130 mdb_printf("%s ", dfp->dashes); 2131 mdb_printf("\n"); 2132 2133 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2134 mdb_warn("can't walk 'vmem'"); 2135 return (DCMD_ERR); 2136 } 2137 2138 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2139 mdb_printf("%s ", dfp->dashes); 2140 mdb_printf("\n"); 2141 2142 mdb_printf("\n"); 2143 2144 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2145 mdb_printf("%s ", dfp->hdr1); 2146 mdb_printf("\n"); 2147 2148 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2149 mdb_printf("%s ", dfp->hdr2); 2150 mdb_printf("\n"); 2151 2152 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2153 mdb_printf("%s ", dfp->dashes); 2154 mdb_printf("\n"); 2155 2156 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2157 mdb_warn("can't walk 'vmem'"); 2158 return (DCMD_ERR); 2159 } 2160 2161 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2162 mdb_printf("%s ", dfp->dashes); 2163 mdb_printf("\n"); 2164 return (DCMD_OK); 2165 } 2166 2167 /* 2168 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2169 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2170 * unfortunately, a few of the segs are both large and sparse, so we could 2171 * spend quite a bit of time scanning VAs which have no backing pages. 2172 * 2173 * So for the few very sparse segs, we skip the segment itself, and scan 2174 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2175 * Currently, we do this for: 2176 * 2177 * SEG VMEM ARENA 2178 * kvseg heap_arena 2179 * kvseg32 heap32_arena 2180 * kvseg_core heap_core_arena 2181 * 2182 * In addition, we skip the segkpm segment in its entirety, since it is very 2183 * sparse, and contains no new kernel data. 2184 */ 2185 typedef struct kgrep_walk_data { 2186 kgrep_cb_func *kg_cb; 2187 void *kg_cbdata; 2188 uintptr_t kg_kvseg; 2189 uintptr_t kg_kvseg32; 2190 uintptr_t kg_kvseg_core; 2191 uintptr_t kg_segkpm; 2192 uintptr_t kg_heap_lp_base; 2193 uintptr_t kg_heap_lp_end; 2194 } kgrep_walk_data_t; 2195 2196 static int 2197 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2198 { 2199 uintptr_t base = (uintptr_t)seg->s_base; 2200 2201 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2202 addr == kg->kg_kvseg_core) 2203 return (WALK_NEXT); 2204 2205 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2206 return (WALK_NEXT); 2207 2208 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2209 } 2210 2211 /*ARGSUSED*/ 2212 static int 2213 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2214 { 2215 /* 2216 * skip large page heap address range - it is scanned by walking 2217 * allocated vmem_segs in the heap_lp_arena 2218 */ 2219 if (seg->vs_start == kg->kg_heap_lp_base && 2220 seg->vs_end == kg->kg_heap_lp_end) 2221 return (WALK_NEXT); 2222 2223 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2224 } 2225 2226 /*ARGSUSED*/ 2227 static int 2228 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2229 { 2230 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2231 } 2232 2233 static int 2234 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2235 { 2236 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2237 2238 if (strcmp(vmem->vm_name, "heap") != 0 && 2239 strcmp(vmem->vm_name, "heap32") != 0 && 2240 strcmp(vmem->vm_name, "heap_core") != 0 && 2241 strcmp(vmem->vm_name, "heap_lp") != 0) 2242 return (WALK_NEXT); 2243 2244 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2245 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2246 2247 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2248 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2249 return (WALK_ERR); 2250 } 2251 2252 return (WALK_NEXT); 2253 } 2254 2255 int 2256 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2257 { 2258 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2259 kgrep_walk_data_t kg; 2260 2261 if (mdb_get_state() == MDB_STATE_RUNNING) { 2262 mdb_warn("kgrep can only be run on a system " 2263 "dump or under kmdb; see dumpadm(1M)\n"); 2264 return (DCMD_ERR); 2265 } 2266 2267 if (mdb_lookup_by_name("kas", &kas) == -1) { 2268 mdb_warn("failed to locate 'kas' symbol\n"); 2269 return (DCMD_ERR); 2270 } 2271 2272 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2273 mdb_warn("failed to locate 'kvseg' symbol\n"); 2274 return (DCMD_ERR); 2275 } 2276 2277 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2278 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2279 return (DCMD_ERR); 2280 } 2281 2282 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2283 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2284 return (DCMD_ERR); 2285 } 2286 2287 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2288 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2289 return (DCMD_ERR); 2290 } 2291 2292 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2293 mdb_warn("failed to read 'heap_lp_base'\n"); 2294 return (DCMD_ERR); 2295 } 2296 2297 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2298 mdb_warn("failed to read 'heap_lp_end'\n"); 2299 return (DCMD_ERR); 2300 } 2301 2302 kg.kg_cb = cb; 2303 kg.kg_cbdata = cbdata; 2304 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2305 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2306 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2307 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2308 2309 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2310 &kg, kas.st_value) == -1) { 2311 mdb_warn("failed to walk kas segments"); 2312 return (DCMD_ERR); 2313 } 2314 2315 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2316 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2317 return (DCMD_ERR); 2318 } 2319 2320 return (DCMD_OK); 2321 } 2322 2323 size_t 2324 kgrep_subr_pagesize(void) 2325 { 2326 return (PAGESIZE); 2327 } 2328 2329 typedef struct file_walk_data { 2330 struct uf_entry *fw_flist; 2331 int fw_flistsz; 2332 int fw_ndx; 2333 int fw_nofiles; 2334 } file_walk_data_t; 2335 2336 int 2337 file_walk_init(mdb_walk_state_t *wsp) 2338 { 2339 file_walk_data_t *fw; 2340 proc_t p; 2341 2342 if (wsp->walk_addr == NULL) { 2343 mdb_warn("file walk doesn't support global walks\n"); 2344 return (WALK_ERR); 2345 } 2346 2347 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2348 2349 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2350 mdb_free(fw, sizeof (file_walk_data_t)); 2351 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2352 return (WALK_ERR); 2353 } 2354 2355 if (p.p_user.u_finfo.fi_nfiles == 0) { 2356 mdb_free(fw, sizeof (file_walk_data_t)); 2357 return (WALK_DONE); 2358 } 2359 2360 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2361 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2362 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2363 2364 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2365 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2366 mdb_warn("failed to read file array at %p", 2367 p.p_user.u_finfo.fi_list); 2368 mdb_free(fw->fw_flist, fw->fw_flistsz); 2369 mdb_free(fw, sizeof (file_walk_data_t)); 2370 return (WALK_ERR); 2371 } 2372 2373 fw->fw_ndx = 0; 2374 wsp->walk_data = fw; 2375 2376 return (WALK_NEXT); 2377 } 2378 2379 int 2380 file_walk_step(mdb_walk_state_t *wsp) 2381 { 2382 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2383 struct file file; 2384 uintptr_t fp; 2385 2386 again: 2387 if (fw->fw_ndx == fw->fw_nofiles) 2388 return (WALK_DONE); 2389 2390 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2391 goto again; 2392 2393 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2394 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2395 } 2396 2397 int 2398 allfile_walk_step(mdb_walk_state_t *wsp) 2399 { 2400 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2401 struct file file; 2402 uintptr_t fp; 2403 2404 if (fw->fw_ndx == fw->fw_nofiles) 2405 return (WALK_DONE); 2406 2407 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2408 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2409 else 2410 bzero(&file, sizeof (file)); 2411 2412 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2413 } 2414 2415 void 2416 file_walk_fini(mdb_walk_state_t *wsp) 2417 { 2418 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2419 2420 mdb_free(fw->fw_flist, fw->fw_flistsz); 2421 mdb_free(fw, sizeof (file_walk_data_t)); 2422 } 2423 2424 int 2425 port_walk_init(mdb_walk_state_t *wsp) 2426 { 2427 if (wsp->walk_addr == NULL) { 2428 mdb_warn("port walk doesn't support global walks\n"); 2429 return (WALK_ERR); 2430 } 2431 2432 if (mdb_layered_walk("file", wsp) == -1) { 2433 mdb_warn("couldn't walk 'file'"); 2434 return (WALK_ERR); 2435 } 2436 return (WALK_NEXT); 2437 } 2438 2439 int 2440 port_walk_step(mdb_walk_state_t *wsp) 2441 { 2442 struct vnode vn; 2443 uintptr_t vp; 2444 uintptr_t pp; 2445 struct port port; 2446 2447 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2448 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2449 mdb_warn("failed to read vnode_t at %p", vp); 2450 return (WALK_ERR); 2451 } 2452 if (vn.v_type != VPORT) 2453 return (WALK_NEXT); 2454 2455 pp = (uintptr_t)vn.v_data; 2456 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2457 mdb_warn("failed to read port_t at %p", pp); 2458 return (WALK_ERR); 2459 } 2460 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2461 } 2462 2463 typedef struct portev_walk_data { 2464 list_node_t *pev_node; 2465 list_node_t *pev_last; 2466 size_t pev_offset; 2467 } portev_walk_data_t; 2468 2469 int 2470 portev_walk_init(mdb_walk_state_t *wsp) 2471 { 2472 portev_walk_data_t *pevd; 2473 struct port port; 2474 struct vnode vn; 2475 struct list *list; 2476 uintptr_t vp; 2477 2478 if (wsp->walk_addr == NULL) { 2479 mdb_warn("portev walk doesn't support global walks\n"); 2480 return (WALK_ERR); 2481 } 2482 2483 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2484 2485 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2486 mdb_free(pevd, sizeof (portev_walk_data_t)); 2487 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2488 return (WALK_ERR); 2489 } 2490 2491 vp = (uintptr_t)port.port_vnode; 2492 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2493 mdb_free(pevd, sizeof (portev_walk_data_t)); 2494 mdb_warn("failed to read vnode_t at %p", vp); 2495 return (WALK_ERR); 2496 } 2497 2498 if (vn.v_type != VPORT) { 2499 mdb_free(pevd, sizeof (portev_walk_data_t)); 2500 mdb_warn("input address (%p) does not point to an event port", 2501 wsp->walk_addr); 2502 return (WALK_ERR); 2503 } 2504 2505 if (port.port_queue.portq_nent == 0) { 2506 mdb_free(pevd, sizeof (portev_walk_data_t)); 2507 return (WALK_DONE); 2508 } 2509 list = &port.port_queue.portq_list; 2510 pevd->pev_offset = list->list_offset; 2511 pevd->pev_last = list->list_head.list_prev; 2512 pevd->pev_node = list->list_head.list_next; 2513 wsp->walk_data = pevd; 2514 return (WALK_NEXT); 2515 } 2516 2517 int 2518 portev_walk_step(mdb_walk_state_t *wsp) 2519 { 2520 portev_walk_data_t *pevd; 2521 struct port_kevent ev; 2522 uintptr_t evp; 2523 2524 pevd = (portev_walk_data_t *)wsp->walk_data; 2525 2526 if (pevd->pev_last == NULL) 2527 return (WALK_DONE); 2528 if (pevd->pev_node == pevd->pev_last) 2529 pevd->pev_last = NULL; /* last round */ 2530 2531 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2532 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2533 mdb_warn("failed to read port_kevent at %p", evp); 2534 return (WALK_DONE); 2535 } 2536 pevd->pev_node = ev.portkev_node.list_next; 2537 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2538 } 2539 2540 void 2541 portev_walk_fini(mdb_walk_state_t *wsp) 2542 { 2543 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2544 2545 if (pevd != NULL) 2546 mdb_free(pevd, sizeof (portev_walk_data_t)); 2547 } 2548 2549 typedef struct proc_walk_data { 2550 uintptr_t *pw_stack; 2551 int pw_depth; 2552 int pw_max; 2553 } proc_walk_data_t; 2554 2555 int 2556 proc_walk_init(mdb_walk_state_t *wsp) 2557 { 2558 GElf_Sym sym; 2559 proc_walk_data_t *pw; 2560 2561 if (wsp->walk_addr == NULL) { 2562 if (mdb_lookup_by_name("p0", &sym) == -1) { 2563 mdb_warn("failed to read 'practive'"); 2564 return (WALK_ERR); 2565 } 2566 wsp->walk_addr = (uintptr_t)sym.st_value; 2567 } 2568 2569 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2570 2571 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2572 mdb_warn("failed to read 'nproc'"); 2573 mdb_free(pw, sizeof (pw)); 2574 return (WALK_ERR); 2575 } 2576 2577 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2578 wsp->walk_data = pw; 2579 2580 return (WALK_NEXT); 2581 } 2582 2583 int 2584 proc_walk_step(mdb_walk_state_t *wsp) 2585 { 2586 proc_walk_data_t *pw = wsp->walk_data; 2587 uintptr_t addr = wsp->walk_addr; 2588 uintptr_t cld, sib; 2589 2590 int status; 2591 proc_t pr; 2592 2593 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2594 mdb_warn("failed to read proc at %p", addr); 2595 return (WALK_DONE); 2596 } 2597 2598 cld = (uintptr_t)pr.p_child; 2599 sib = (uintptr_t)pr.p_sibling; 2600 2601 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2602 pw->pw_depth--; 2603 goto sib; 2604 } 2605 2606 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2607 2608 if (status != WALK_NEXT) 2609 return (status); 2610 2611 if ((wsp->walk_addr = cld) != NULL) { 2612 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2613 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2614 addr, cld); 2615 goto sib; 2616 } 2617 2618 pw->pw_stack[pw->pw_depth++] = addr; 2619 2620 if (pw->pw_depth == pw->pw_max) { 2621 mdb_warn("depth %d exceeds max depth; try again\n", 2622 pw->pw_depth); 2623 return (WALK_DONE); 2624 } 2625 return (WALK_NEXT); 2626 } 2627 2628 sib: 2629 /* 2630 * We know that p0 has no siblings, and if another starting proc 2631 * was given, we don't want to walk its siblings anyway. 2632 */ 2633 if (pw->pw_depth == 0) 2634 return (WALK_DONE); 2635 2636 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2637 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2638 addr, sib); 2639 sib = NULL; 2640 } 2641 2642 if ((wsp->walk_addr = sib) == NULL) { 2643 if (pw->pw_depth > 0) { 2644 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2645 return (WALK_NEXT); 2646 } 2647 return (WALK_DONE); 2648 } 2649 2650 return (WALK_NEXT); 2651 } 2652 2653 void 2654 proc_walk_fini(mdb_walk_state_t *wsp) 2655 { 2656 proc_walk_data_t *pw = wsp->walk_data; 2657 2658 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2659 mdb_free(pw, sizeof (proc_walk_data_t)); 2660 } 2661 2662 int 2663 task_walk_init(mdb_walk_state_t *wsp) 2664 { 2665 task_t task; 2666 2667 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2668 mdb_warn("failed to read task at %p", wsp->walk_addr); 2669 return (WALK_ERR); 2670 } 2671 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2672 wsp->walk_data = task.tk_memb_list; 2673 return (WALK_NEXT); 2674 } 2675 2676 int 2677 task_walk_step(mdb_walk_state_t *wsp) 2678 { 2679 proc_t proc; 2680 int status; 2681 2682 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2683 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2684 return (WALK_DONE); 2685 } 2686 2687 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2688 2689 if (proc.p_tasknext == wsp->walk_data) 2690 return (WALK_DONE); 2691 2692 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2693 return (status); 2694 } 2695 2696 int 2697 project_walk_init(mdb_walk_state_t *wsp) 2698 { 2699 if (wsp->walk_addr == NULL) { 2700 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2701 mdb_warn("failed to read 'proj0p'"); 2702 return (WALK_ERR); 2703 } 2704 } 2705 wsp->walk_data = (void *)wsp->walk_addr; 2706 return (WALK_NEXT); 2707 } 2708 2709 int 2710 project_walk_step(mdb_walk_state_t *wsp) 2711 { 2712 uintptr_t addr = wsp->walk_addr; 2713 kproject_t pj; 2714 int status; 2715 2716 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2717 mdb_warn("failed to read project at %p", addr); 2718 return (WALK_DONE); 2719 } 2720 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2721 if (status != WALK_NEXT) 2722 return (status); 2723 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2724 if ((void *)wsp->walk_addr == wsp->walk_data) 2725 return (WALK_DONE); 2726 return (WALK_NEXT); 2727 } 2728 2729 static int 2730 generic_walk_step(mdb_walk_state_t *wsp) 2731 { 2732 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2733 wsp->walk_cbdata)); 2734 } 2735 2736 static int 2737 cpu_walk_cmp(const void *l, const void *r) 2738 { 2739 uintptr_t lhs = *((uintptr_t *)l); 2740 uintptr_t rhs = *((uintptr_t *)r); 2741 cpu_t lcpu, rcpu; 2742 2743 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2744 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2745 2746 if (lcpu.cpu_id < rcpu.cpu_id) 2747 return (-1); 2748 2749 if (lcpu.cpu_id > rcpu.cpu_id) 2750 return (1); 2751 2752 return (0); 2753 } 2754 2755 typedef struct cpu_walk { 2756 uintptr_t *cw_array; 2757 int cw_ndx; 2758 } cpu_walk_t; 2759 2760 int 2761 cpu_walk_init(mdb_walk_state_t *wsp) 2762 { 2763 cpu_walk_t *cw; 2764 int max_ncpus, i = 0; 2765 uintptr_t current, first; 2766 cpu_t cpu, panic_cpu; 2767 uintptr_t panicstr, addr; 2768 GElf_Sym sym; 2769 2770 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2771 2772 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2773 mdb_warn("failed to read 'max_ncpus'"); 2774 return (WALK_ERR); 2775 } 2776 2777 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2778 mdb_warn("failed to read 'panicstr'"); 2779 return (WALK_ERR); 2780 } 2781 2782 if (panicstr != NULL) { 2783 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2784 mdb_warn("failed to find 'panic_cpu'"); 2785 return (WALK_ERR); 2786 } 2787 2788 addr = (uintptr_t)sym.st_value; 2789 2790 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2791 mdb_warn("failed to read 'panic_cpu'"); 2792 return (WALK_ERR); 2793 } 2794 } 2795 2796 /* 2797 * Unfortunately, there is no platform-independent way to walk 2798 * CPUs in ID order. We therefore loop through in cpu_next order, 2799 * building an array of CPU pointers which will subsequently be 2800 * sorted. 2801 */ 2802 cw->cw_array = 2803 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2804 2805 if (mdb_readvar(&first, "cpu_list") == -1) { 2806 mdb_warn("failed to read 'cpu_list'"); 2807 return (WALK_ERR); 2808 } 2809 2810 current = first; 2811 do { 2812 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2813 mdb_warn("failed to read cpu at %p", current); 2814 return (WALK_ERR); 2815 } 2816 2817 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2818 cw->cw_array[i++] = addr; 2819 } else { 2820 cw->cw_array[i++] = current; 2821 } 2822 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2823 2824 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2825 wsp->walk_data = cw; 2826 2827 return (WALK_NEXT); 2828 } 2829 2830 int 2831 cpu_walk_step(mdb_walk_state_t *wsp) 2832 { 2833 cpu_walk_t *cw = wsp->walk_data; 2834 cpu_t cpu; 2835 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2836 2837 if (addr == NULL) 2838 return (WALK_DONE); 2839 2840 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2841 mdb_warn("failed to read cpu at %p", addr); 2842 return (WALK_DONE); 2843 } 2844 2845 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2846 } 2847 2848 typedef struct cpuinfo_data { 2849 intptr_t cid_cpu; 2850 uintptr_t **cid_ithr; 2851 char cid_print_head; 2852 char cid_print_thr; 2853 char cid_print_ithr; 2854 char cid_print_flags; 2855 } cpuinfo_data_t; 2856 2857 int 2858 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2859 { 2860 cpu_t c; 2861 int id; 2862 uint8_t pil; 2863 2864 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2865 return (WALK_NEXT); 2866 2867 if (thr->t_bound_cpu == NULL) { 2868 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2869 return (WALK_NEXT); 2870 } 2871 2872 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2873 2874 if ((id = c.cpu_id) >= NCPU) { 2875 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2876 thr->t_bound_cpu, id, NCPU); 2877 return (WALK_NEXT); 2878 } 2879 2880 if ((pil = thr->t_pil) >= NINTR) { 2881 mdb_warn("thread %p has pil (%d) greater than %d\n", 2882 addr, pil, NINTR); 2883 return (WALK_NEXT); 2884 } 2885 2886 if (cid->cid_ithr[id][pil] != NULL) { 2887 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2888 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2889 return (WALK_NEXT); 2890 } 2891 2892 cid->cid_ithr[id][pil] = addr; 2893 2894 return (WALK_NEXT); 2895 } 2896 2897 #define CPUINFO_IDWIDTH 3 2898 #define CPUINFO_FLAGWIDTH 9 2899 2900 #ifdef _LP64 2901 #if defined(__amd64) 2902 #define CPUINFO_TWIDTH 16 2903 #define CPUINFO_CPUWIDTH 16 2904 #else 2905 #define CPUINFO_CPUWIDTH 11 2906 #define CPUINFO_TWIDTH 11 2907 #endif 2908 #else 2909 #define CPUINFO_CPUWIDTH 8 2910 #define CPUINFO_TWIDTH 8 2911 #endif 2912 2913 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2914 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2915 #define CPUINFO_ITHRDELT 4 2916 2917 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2918 flagline < nflaglines ? flagbuf[flagline++] : "") 2919 2920 int 2921 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2922 { 2923 kthread_t t; 2924 disp_t disp; 2925 proc_t p; 2926 uintptr_t pinned; 2927 char **flagbuf; 2928 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2929 2930 const char *flags[] = { 2931 "RUNNING", "READY", "QUIESCED", "EXISTS", 2932 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2933 "SPARE", "FAULTED", NULL 2934 }; 2935 2936 if (cid->cid_cpu != -1) { 2937 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2938 return (WALK_NEXT); 2939 2940 /* 2941 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2942 */ 2943 cid->cid_cpu = -1; 2944 rval = WALK_DONE; 2945 } 2946 2947 if (cid->cid_print_head) { 2948 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2949 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2950 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2951 "PROC"); 2952 cid->cid_print_head = FALSE; 2953 } 2954 2955 bspl = cpu->cpu_base_spl; 2956 2957 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2958 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2959 return (WALK_ERR); 2960 } 2961 2962 mdb_printf("%3d %0*p %3x %4d %4d ", 2963 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2964 disp.disp_nrunnable, bspl); 2965 2966 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2967 mdb_printf("%3d ", t.t_pri); 2968 } else { 2969 mdb_printf("%3s ", "-"); 2970 } 2971 2972 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2973 cpu->cpu_kprunrun ? "yes" : "no"); 2974 2975 if (cpu->cpu_last_swtch) { 2976 mdb_printf("t-%-4d ", 2977 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2978 } else { 2979 mdb_printf("%-6s ", "-"); 2980 } 2981 2982 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2983 2984 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2985 mdb_printf(" (idle)\n"); 2986 else if (cpu->cpu_thread == NULL) 2987 mdb_printf(" -\n"); 2988 else { 2989 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2990 mdb_printf(" %s\n", p.p_user.u_comm); 2991 } else { 2992 mdb_printf(" ?\n"); 2993 } 2994 } 2995 2996 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2997 2998 if (cid->cid_print_flags) { 2999 int first = 1, i, j, k; 3000 char *s; 3001 3002 cid->cid_print_head = TRUE; 3003 3004 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3005 if (!(cpu->cpu_flags & i)) 3006 continue; 3007 3008 if (first) { 3009 s = mdb_alloc(CPUINFO_THRDELT + 1, 3010 UM_GC | UM_SLEEP); 3011 3012 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3013 "%*s|%*s", CPUINFO_FLAGDELT, "", 3014 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3015 flagbuf[nflaglines++] = s; 3016 } 3017 3018 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3019 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3020 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3021 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3022 first ? "<--+" : ""); 3023 3024 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3025 s[k] = ' '; 3026 s[k] = '\0'; 3027 3028 flagbuf[nflaglines++] = s; 3029 first = 0; 3030 } 3031 } 3032 3033 if (cid->cid_print_ithr) { 3034 int i, found_one = FALSE; 3035 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3036 3037 for (i = NINTR - 1; i >= 0; i--) { 3038 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3039 3040 if (iaddr == NULL) 3041 continue; 3042 3043 if (!found_one) { 3044 found_one = TRUE; 3045 3046 CPUINFO_INDENT; 3047 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3048 CPUINFO_ITHRDELT, ""); 3049 3050 CPUINFO_INDENT; 3051 mdb_printf("%c%*s+--> %3s %s\n", 3052 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3053 "", "PIL", "THREAD"); 3054 } 3055 3056 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3057 mdb_warn("failed to read kthread_t at %p", 3058 iaddr); 3059 return (WALK_ERR); 3060 } 3061 3062 CPUINFO_INDENT; 3063 mdb_printf("%c%*s %3d %0*p\n", 3064 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3065 t.t_pil, CPUINFO_TWIDTH, iaddr); 3066 3067 pinned = (uintptr_t)t.t_intr; 3068 } 3069 3070 if (found_one && pinned != NULL) { 3071 cid->cid_print_head = TRUE; 3072 (void) strcpy(p.p_user.u_comm, "?"); 3073 3074 if (mdb_vread(&t, sizeof (t), 3075 (uintptr_t)pinned) == -1) { 3076 mdb_warn("failed to read kthread_t at %p", 3077 pinned); 3078 return (WALK_ERR); 3079 } 3080 if (mdb_vread(&p, sizeof (p), 3081 (uintptr_t)t.t_procp) == -1) { 3082 mdb_warn("failed to read proc_t at %p", 3083 t.t_procp); 3084 return (WALK_ERR); 3085 } 3086 3087 CPUINFO_INDENT; 3088 mdb_printf("%c%*s %3s %0*p %s\n", 3089 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3090 CPUINFO_TWIDTH, pinned, 3091 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3092 "(idle)" : p.p_user.u_comm); 3093 } 3094 } 3095 3096 if (disp.disp_nrunnable && cid->cid_print_thr) { 3097 dispq_t *dq; 3098 3099 int i, npri = disp.disp_npri; 3100 3101 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3102 3103 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3104 (uintptr_t)disp.disp_q) == -1) { 3105 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3106 return (WALK_ERR); 3107 } 3108 3109 CPUINFO_INDENT; 3110 mdb_printf("|\n"); 3111 3112 CPUINFO_INDENT; 3113 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3114 CPUINFO_TWIDTH, "THREAD", "PROC"); 3115 3116 for (i = npri - 1; i >= 0; i--) { 3117 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3118 3119 while (taddr != NULL) { 3120 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3121 mdb_warn("failed to read kthread_t " 3122 "at %p", taddr); 3123 return (WALK_ERR); 3124 } 3125 if (mdb_vread(&p, sizeof (p), 3126 (uintptr_t)t.t_procp) == -1) { 3127 mdb_warn("failed to read proc_t at %p", 3128 t.t_procp); 3129 return (WALK_ERR); 3130 } 3131 3132 CPUINFO_INDENT; 3133 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3134 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3135 3136 taddr = (uintptr_t)t.t_link; 3137 } 3138 } 3139 cid->cid_print_head = TRUE; 3140 } 3141 3142 while (flagline < nflaglines) 3143 mdb_printf("%s\n", flagbuf[flagline++]); 3144 3145 if (cid->cid_print_head) 3146 mdb_printf("\n"); 3147 3148 return (rval); 3149 } 3150 3151 int 3152 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3153 { 3154 uint_t verbose = FALSE; 3155 cpuinfo_data_t cid; 3156 3157 cid.cid_print_ithr = FALSE; 3158 cid.cid_print_thr = FALSE; 3159 cid.cid_print_flags = FALSE; 3160 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3161 cid.cid_cpu = -1; 3162 3163 if (flags & DCMD_ADDRSPEC) 3164 cid.cid_cpu = addr; 3165 3166 if (mdb_getopts(argc, argv, 3167 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3168 return (DCMD_USAGE); 3169 3170 if (verbose) { 3171 cid.cid_print_ithr = TRUE; 3172 cid.cid_print_thr = TRUE; 3173 cid.cid_print_flags = TRUE; 3174 cid.cid_print_head = TRUE; 3175 } 3176 3177 if (cid.cid_print_ithr) { 3178 int i; 3179 3180 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3181 * NCPU, UM_SLEEP | UM_GC); 3182 3183 for (i = 0; i < NCPU; i++) 3184 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3185 NINTR, UM_SLEEP | UM_GC); 3186 3187 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3188 &cid) == -1) { 3189 mdb_warn("couldn't walk thread"); 3190 return (DCMD_ERR); 3191 } 3192 } 3193 3194 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3195 mdb_warn("can't walk cpus"); 3196 return (DCMD_ERR); 3197 } 3198 3199 if (cid.cid_cpu != -1) { 3200 /* 3201 * We didn't find this CPU when we walked through the CPUs 3202 * (i.e. the address specified doesn't show up in the "cpu" 3203 * walk). However, the specified address may still correspond 3204 * to a valid cpu_t (for example, if the specified address is 3205 * the actual panicking cpu_t and not the cached panic_cpu). 3206 * Point is: even if we didn't find it, we still want to try 3207 * to print the specified address as a cpu_t. 3208 */ 3209 cpu_t cpu; 3210 3211 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3212 mdb_warn("%p is neither a valid CPU ID nor a " 3213 "valid cpu_t address\n", cid.cid_cpu); 3214 return (DCMD_ERR); 3215 } 3216 3217 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3218 } 3219 3220 return (DCMD_OK); 3221 } 3222 3223 /*ARGSUSED*/ 3224 int 3225 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3226 { 3227 int i; 3228 3229 if (!(flags & DCMD_ADDRSPEC)) 3230 return (DCMD_USAGE); 3231 3232 for (i = 0; i < sizeof (addr) * NBBY; i++) 3233 mdb_printf("%p\n", addr ^ (1UL << i)); 3234 3235 return (DCMD_OK); 3236 } 3237 3238 int 3239 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3240 { 3241 if (p->p_as == *asp) 3242 mdb_printf("%p\n", addr); 3243 return (WALK_NEXT); 3244 } 3245 3246 /*ARGSUSED*/ 3247 int 3248 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3249 { 3250 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3251 return (DCMD_USAGE); 3252 3253 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3254 mdb_warn("failed to walk proc"); 3255 return (DCMD_ERR); 3256 } 3257 3258 return (DCMD_OK); 3259 } 3260 3261 /*ARGSUSED*/ 3262 int 3263 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3264 { 3265 proc_t parent; 3266 int ident = 0; 3267 uintptr_t paddr; 3268 3269 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3270 mdb_vread(&parent, sizeof (parent), paddr); 3271 paddr = (uintptr_t)parent.p_parent; 3272 } 3273 3274 mdb_inc_indent(ident); 3275 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3276 mdb_dec_indent(ident); 3277 3278 return (WALK_NEXT); 3279 } 3280 3281 void 3282 ptree_ancestors(uintptr_t addr, uintptr_t start) 3283 { 3284 proc_t p; 3285 3286 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3287 mdb_warn("couldn't read ancestor at %p", addr); 3288 return; 3289 } 3290 3291 if (p.p_parent != NULL) 3292 ptree_ancestors((uintptr_t)p.p_parent, start); 3293 3294 if (addr != start) 3295 (void) ptree_walk(addr, &p, NULL); 3296 } 3297 3298 /*ARGSUSED*/ 3299 int 3300 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3301 { 3302 if (!(flags & DCMD_ADDRSPEC)) 3303 addr = NULL; 3304 else 3305 ptree_ancestors(addr, addr); 3306 3307 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3308 mdb_warn("couldn't walk 'proc'"); 3309 return (DCMD_ERR); 3310 } 3311 3312 return (DCMD_OK); 3313 } 3314 3315 /*ARGSUSED*/ 3316 static int 3317 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3318 { 3319 int fdnum; 3320 const mdb_arg_t *argp = &argv[0]; 3321 proc_t p; 3322 uf_entry_t uf; 3323 3324 if ((flags & DCMD_ADDRSPEC) == 0) { 3325 mdb_warn("fd doesn't give global information\n"); 3326 return (DCMD_ERR); 3327 } 3328 if (argc != 1) 3329 return (DCMD_USAGE); 3330 3331 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3332 fdnum = argp->a_un.a_val; 3333 else 3334 fdnum = mdb_strtoull(argp->a_un.a_str); 3335 3336 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3337 mdb_warn("couldn't read proc_t at %p", addr); 3338 return (DCMD_ERR); 3339 } 3340 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3341 mdb_warn("process %p only has %d files open.\n", 3342 addr, p.p_user.u_finfo.fi_nfiles); 3343 return (DCMD_ERR); 3344 } 3345 if (mdb_vread(&uf, sizeof (uf_entry_t), 3346 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3347 mdb_warn("couldn't read uf_entry_t at %p", 3348 &p.p_user.u_finfo.fi_list[fdnum]); 3349 return (DCMD_ERR); 3350 } 3351 3352 mdb_printf("%p\n", uf.uf_file); 3353 return (DCMD_OK); 3354 } 3355 3356 /*ARGSUSED*/ 3357 static int 3358 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3359 { 3360 pid_t pid = (pid_t)addr; 3361 3362 if (argc != 0) 3363 return (DCMD_USAGE); 3364 3365 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3366 mdb_warn("PID 0t%d not found\n", pid); 3367 return (DCMD_ERR); 3368 } 3369 3370 mdb_printf("%p\n", addr); 3371 return (DCMD_OK); 3372 } 3373 3374 static char *sysfile_cmd[] = { 3375 "exclude:", 3376 "include:", 3377 "forceload:", 3378 "rootdev:", 3379 "rootfs:", 3380 "swapdev:", 3381 "swapfs:", 3382 "moddir:", 3383 "set", 3384 "unknown", 3385 }; 3386 3387 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3388 3389 /*ARGSUSED*/ 3390 static int 3391 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3392 { 3393 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3394 *target = NULL; 3395 return (WALK_DONE); 3396 } 3397 return (WALK_NEXT); 3398 } 3399 3400 /*ARGSUSED*/ 3401 static int 3402 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3403 { 3404 struct sysparam *sysp, sys; 3405 char var[256]; 3406 char modname[256]; 3407 char val[256]; 3408 char strval[256]; 3409 vmem_t *mod_sysfile_arena; 3410 void *straddr; 3411 3412 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3413 mdb_warn("failed to read sysparam_hd"); 3414 return (DCMD_ERR); 3415 } 3416 3417 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3418 mdb_warn("failed to read mod_sysfile_arena"); 3419 return (DCMD_ERR); 3420 } 3421 3422 while (sysp != NULL) { 3423 var[0] = '\0'; 3424 val[0] = '\0'; 3425 modname[0] = '\0'; 3426 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3427 mdb_warn("couldn't read sysparam %p", sysp); 3428 return (DCMD_ERR); 3429 } 3430 if (sys.sys_modnam != NULL && 3431 mdb_readstr(modname, 256, 3432 (uintptr_t)sys.sys_modnam) == -1) { 3433 mdb_warn("couldn't read modname in %p", sysp); 3434 return (DCMD_ERR); 3435 } 3436 if (sys.sys_ptr != NULL && 3437 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3438 mdb_warn("couldn't read ptr in %p", sysp); 3439 return (DCMD_ERR); 3440 } 3441 if (sys.sys_op != SETOP_NONE) { 3442 /* 3443 * Is this an int or a string? We determine this 3444 * by checking whether straddr is contained in 3445 * mod_sysfile_arena. If so, the walker will set 3446 * straddr to NULL. 3447 */ 3448 straddr = (void *)(uintptr_t)sys.sys_info; 3449 if (sys.sys_op == SETOP_ASSIGN && 3450 sys.sys_info != 0 && 3451 mdb_pwalk("vmem_seg", 3452 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3453 (uintptr_t)mod_sysfile_arena) == 0 && 3454 straddr == NULL && 3455 mdb_readstr(strval, 256, 3456 (uintptr_t)sys.sys_info) != -1) { 3457 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3458 strval); 3459 } else { 3460 (void) mdb_snprintf(val, sizeof (val), 3461 "0x%llx [0t%llu]", sys.sys_info, 3462 sys.sys_info); 3463 } 3464 } 3465 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3466 modname, modname[0] == '\0' ? "" : ":", 3467 var, sysfile_ops[sys.sys_op], val); 3468 3469 sysp = sys.sys_next; 3470 } 3471 3472 return (DCMD_OK); 3473 } 3474 3475 int 3476 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3477 { 3478 3479 if (*didp == thr->t_did) { 3480 mdb_printf("%p\n", addr); 3481 return (WALK_DONE); 3482 } else 3483 return (WALK_NEXT); 3484 } 3485 3486 /*ARGSUSED*/ 3487 int 3488 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3489 { 3490 const mdb_arg_t *argp = &argv[0]; 3491 kt_did_t did; 3492 3493 if (argc != 1) 3494 return (DCMD_USAGE); 3495 3496 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3497 3498 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3499 mdb_warn("failed to walk thread"); 3500 return (DCMD_ERR); 3501 3502 } 3503 return (DCMD_OK); 3504 3505 } 3506 3507 static int 3508 errorq_walk_init(mdb_walk_state_t *wsp) 3509 { 3510 if (wsp->walk_addr == NULL && 3511 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3512 mdb_warn("failed to read errorq_list"); 3513 return (WALK_ERR); 3514 } 3515 3516 return (WALK_NEXT); 3517 } 3518 3519 static int 3520 errorq_walk_step(mdb_walk_state_t *wsp) 3521 { 3522 uintptr_t addr = wsp->walk_addr; 3523 errorq_t eq; 3524 3525 if (addr == NULL) 3526 return (WALK_DONE); 3527 3528 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3529 mdb_warn("failed to read errorq at %p", addr); 3530 return (WALK_ERR); 3531 } 3532 3533 wsp->walk_addr = (uintptr_t)eq.eq_next; 3534 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3535 } 3536 3537 typedef struct eqd_walk_data { 3538 uintptr_t *eqd_stack; 3539 void *eqd_buf; 3540 ulong_t eqd_qpos; 3541 ulong_t eqd_qlen; 3542 size_t eqd_size; 3543 } eqd_walk_data_t; 3544 3545 /* 3546 * In order to walk the list of pending error queue elements, we push the 3547 * addresses of the corresponding data buffers in to the eqd_stack array. 3548 * The error lists are in reverse chronological order when iterating using 3549 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3550 * walker client gets addresses in order from oldest error to newest error. 3551 */ 3552 static void 3553 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3554 { 3555 errorq_elem_t eqe; 3556 3557 while (addr != NULL) { 3558 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3559 mdb_warn("failed to read errorq element at %p", addr); 3560 break; 3561 } 3562 3563 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3564 mdb_warn("errorq is overfull -- more than %lu " 3565 "elems found\n", eqdp->eqd_qlen); 3566 break; 3567 } 3568 3569 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3570 addr = (uintptr_t)eqe.eqe_prev; 3571 } 3572 } 3573 3574 static int 3575 eqd_walk_init(mdb_walk_state_t *wsp) 3576 { 3577 eqd_walk_data_t *eqdp; 3578 errorq_elem_t eqe, *addr; 3579 errorq_t eq; 3580 ulong_t i; 3581 3582 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3583 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3584 return (WALK_ERR); 3585 } 3586 3587 if (eq.eq_ptail != NULL && 3588 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3589 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3590 return (WALK_ERR); 3591 } 3592 3593 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3594 wsp->walk_data = eqdp; 3595 3596 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3597 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3598 eqdp->eqd_qlen = eq.eq_qlen; 3599 eqdp->eqd_qpos = 0; 3600 eqdp->eqd_size = eq.eq_size; 3601 3602 /* 3603 * The newest elements in the queue are on the pending list, so we 3604 * push those on to our stack first. 3605 */ 3606 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3607 3608 /* 3609 * If eq_ptail is set, it may point to a subset of the errors on the 3610 * pending list in the event a casptr() failed; if ptail's data is 3611 * already in our stack, NULL out eq_ptail and ignore it. 3612 */ 3613 if (eq.eq_ptail != NULL) { 3614 for (i = 0; i < eqdp->eqd_qpos; i++) { 3615 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3616 eq.eq_ptail = NULL; 3617 break; 3618 } 3619 } 3620 } 3621 3622 /* 3623 * If eq_phead is set, it has the processing list in order from oldest 3624 * to newest. Use this to recompute eq_ptail as best we can and then 3625 * we nicely fall into eqd_push_list() of eq_ptail below. 3626 */ 3627 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3628 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3629 eq.eq_ptail = addr; 3630 3631 /* 3632 * The oldest elements in the queue are on the processing list, subject 3633 * to machinations in the if-clauses above. Push any such elements. 3634 */ 3635 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3636 return (WALK_NEXT); 3637 } 3638 3639 static int 3640 eqd_walk_step(mdb_walk_state_t *wsp) 3641 { 3642 eqd_walk_data_t *eqdp = wsp->walk_data; 3643 uintptr_t addr; 3644 3645 if (eqdp->eqd_qpos == 0) 3646 return (WALK_DONE); 3647 3648 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3649 3650 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3651 mdb_warn("failed to read errorq data at %p", addr); 3652 return (WALK_ERR); 3653 } 3654 3655 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3656 } 3657 3658 static void 3659 eqd_walk_fini(mdb_walk_state_t *wsp) 3660 { 3661 eqd_walk_data_t *eqdp = wsp->walk_data; 3662 3663 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3664 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3665 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3666 } 3667 3668 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3669 3670 static int 3671 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3672 { 3673 int i; 3674 errorq_t eq; 3675 uint_t opt_v = FALSE; 3676 3677 if (!(flags & DCMD_ADDRSPEC)) { 3678 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3679 mdb_warn("can't walk 'errorq'"); 3680 return (DCMD_ERR); 3681 } 3682 return (DCMD_OK); 3683 } 3684 3685 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3686 argc -= i; 3687 argv += i; 3688 3689 if (argc != 0) 3690 return (DCMD_USAGE); 3691 3692 if (opt_v || DCMD_HDRSPEC(flags)) { 3693 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3694 "ADDR", "NAME", "S", "V", "N"); 3695 if (!opt_v) { 3696 mdb_printf("%7s %7s %7s%</u>\n", 3697 "ACCEPT", "DROP", "LOG"); 3698 } else { 3699 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3700 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3701 } 3702 } 3703 3704 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3705 mdb_warn("failed to read errorq at %p", addr); 3706 return (DCMD_ERR); 3707 } 3708 3709 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3710 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3711 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3712 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3713 3714 if (!opt_v) { 3715 mdb_printf("%7llu %7llu %7llu\n", 3716 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3717 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3718 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3719 } else { 3720 mdb_printf("%5s %6lu %6lu %3u %a\n", 3721 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3722 mdb_printf("%38s\n%41s" 3723 "%12s %llu\n" 3724 "%53s %llu\n" 3725 "%53s %llu\n" 3726 "%53s %llu\n" 3727 "%53s %llu\n" 3728 "%53s %llu\n" 3729 "%53s %llu\n" 3730 "%53s %llu\n\n", 3731 "|", "+-> ", 3732 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3733 "DROPPED", EQKSVAL(eq, eqk_dropped), 3734 "LOGGED", EQKSVAL(eq, eqk_logged), 3735 "RESERVED", EQKSVAL(eq, eqk_reserved), 3736 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3737 "COMMITTED", EQKSVAL(eq, eqk_committed), 3738 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3739 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3740 } 3741 3742 return (DCMD_OK); 3743 } 3744 3745 /*ARGSUSED*/ 3746 static int 3747 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3748 { 3749 cpu_t panic_cpu; 3750 kthread_t *panic_thread; 3751 void *buf; 3752 panic_data_t *pd; 3753 int i, n; 3754 3755 if (!mdb_prop_postmortem) { 3756 mdb_warn("panicinfo can only be run on a system " 3757 "dump; see dumpadm(1M)\n"); 3758 return (DCMD_ERR); 3759 } 3760 3761 if (flags & DCMD_ADDRSPEC || argc != 0) 3762 return (DCMD_USAGE); 3763 3764 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3765 mdb_warn("failed to read 'panic_cpu'"); 3766 else 3767 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3768 3769 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3770 mdb_warn("failed to read 'panic_thread'"); 3771 else 3772 mdb_printf("%16s %?p\n", "thread", panic_thread); 3773 3774 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3775 pd = (panic_data_t *)buf; 3776 3777 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3778 pd->pd_version != PANICBUFVERS) { 3779 mdb_warn("failed to read 'panicbuf'"); 3780 mdb_free(buf, PANICBUFSIZE); 3781 return (DCMD_ERR); 3782 } 3783 3784 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3785 3786 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3787 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3788 3789 for (i = 0; i < n; i++) 3790 mdb_printf("%16s %?llx\n", 3791 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3792 3793 mdb_free(buf, PANICBUFSIZE); 3794 return (DCMD_OK); 3795 } 3796 3797 /* 3798 * ::time dcmd, which will print a hires timestamp of when we entered the 3799 * debugger, or the lbolt value if used with the -l option. 3800 * 3801 */ 3802 /*ARGSUSED*/ 3803 static int 3804 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3805 { 3806 uint_t opt_dec = FALSE; 3807 uint_t opt_lbolt = FALSE; 3808 uint_t opt_hex = FALSE; 3809 const char *fmt; 3810 hrtime_t result; 3811 3812 if (mdb_getopts(argc, argv, 3813 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 3814 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3815 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 3816 NULL) != argc) 3817 return (DCMD_USAGE); 3818 3819 if (opt_dec && opt_hex) 3820 return (DCMD_USAGE); 3821 3822 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 3823 fmt = 3824 opt_hex ? "0x%llx\n" : 3825 opt_dec ? "0t%lld\n" : "%#llr\n"; 3826 3827 mdb_printf(fmt, result); 3828 return (DCMD_OK); 3829 } 3830 3831 void 3832 time_help(void) 3833 { 3834 mdb_printf("Prints the system time in nanoseconds.\n\n" 3835 "::time will return the timestamp at which we dropped into, \n" 3836 "if called from, kmdb(1); the core dump's high resolution \n" 3837 "time if inspecting one; or the running hires time if we're \n" 3838 "looking at a live system.\n\n" 3839 "Switches:\n" 3840 " -d report times in decimal\n" 3841 " -l prints the number of clock ticks since system boot\n" 3842 " -x report times in hexadecimal\n"); 3843 } 3844 3845 static const mdb_dcmd_t dcmds[] = { 3846 3847 /* from genunix.c */ 3848 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3849 { "binding_hash_entry", ":", "print driver names hash table entry", 3850 binding_hash_entry }, 3851 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3852 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3853 " [-FivVA]", 3854 "display callouts", callout, callout_help }, 3855 { "calloutid", "[-d|v] xid", "print callout by extended id", 3856 calloutid, calloutid_help }, 3857 { "class", NULL, "print process scheduler classes", class }, 3858 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3859 { "did2thread", "? kt_did", "find kernel thread for this id", 3860 did2thread }, 3861 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3862 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3863 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3864 { "lminfo", NULL, "print lock manager information", lminfo }, 3865 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3866 { "panicinfo", NULL, "print panic information", panicinfo }, 3867 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3868 { "project", NULL, "display kernel project(s)", project }, 3869 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3870 { "pgrep", "[-x] [-n | -o] pattern", 3871 "pattern match against all processes", pgrep }, 3872 { "ptree", NULL, "print process tree", ptree }, 3873 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3874 sysevent}, 3875 { "sysevent_channel", "?", "print sysevent channel database", 3876 sysevent_channel}, 3877 { "sysevent_class_list", ":", "print sysevent class list", 3878 sysevent_class_list}, 3879 { "sysevent_subclass_list", ":", 3880 "print sysevent subclass list", sysevent_subclass_list}, 3881 { "system", NULL, "print contents of /etc/system file", sysfile }, 3882 { "task", NULL, "display kernel task(s)", task }, 3883 { "time", "[-dlx]", "display system time", time, time_help }, 3884 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3885 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3886 whereopen }, 3887 3888 /* from bio.c */ 3889 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3890 3891 /* from bitset.c */ 3892 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3893 3894 /* from contract.c */ 3895 { "contract", "?", "display a contract", cmd_contract }, 3896 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3897 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3898 3899 /* from cpupart.c */ 3900 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3901 3902 /* from cred.c */ 3903 { "cred", ":[-v]", "display a credential", cmd_cred }, 3904 { "credgrp", ":[-v]", "display cred_t groups", cmd_credgrp }, 3905 { "credsid", ":[-v]", "display a credsid_t", cmd_credsid }, 3906 { "ksidlist", ":[-v]", "display a ksidlist_t", cmd_ksidlist }, 3907 3908 /* from cyclic.c */ 3909 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3910 { "cycid", "?", "dump a cyclic id", cycid }, 3911 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3912 { "cyclic", ":", "developer information", cyclic }, 3913 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3914 3915 /* from damap.c */ 3916 { "damap", ":", "display a damap_t", damap, damap_help }, 3917 3918 /* from ddi_periodic.c */ 3919 { "ddi_periodic", "?[-v]", "dump ddi_periodic_impl_t info", dprinfo }, 3920 3921 /* from devinfo.c */ 3922 { "devbindings", "?[-qs] [device-name | major-num]", 3923 "print devinfo nodes bound to device-name or major-num", 3924 devbindings, devinfo_help }, 3925 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3926 devinfo_help }, 3927 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3928 devinfo_audit }, 3929 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3930 devinfo_audit_log }, 3931 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3932 devinfo_audit_node }, 3933 { "devinfo2driver", ":", "find driver name for this devinfo node", 3934 devinfo2driver }, 3935 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3936 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3937 dev2major }, 3938 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3939 dev2minor }, 3940 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3941 devt }, 3942 { "major2name", "?<major-num>", "convert major number to dev name", 3943 major2name }, 3944 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3945 minornodes }, 3946 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3947 modctl2devinfo }, 3948 { "name2major", "<dev-name>", "convert dev name to major number", 3949 name2major }, 3950 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3951 { "softstate", ":<instance>", "retrieve soft-state pointer", 3952 softstate }, 3953 { "devinfo_fm", ":", "devinfo fault managment configuration", 3954 devinfo_fm }, 3955 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3956 devinfo_fmce}, 3957 3958 /* from findstack.c */ 3959 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3960 { "findstack_debug", NULL, "toggle findstack debugging", 3961 findstack_debug }, 3962 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3963 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3964 "print unique kernel thread stacks", 3965 stacks, stacks_help }, 3966 3967 /* from fm.c */ 3968 { "ereport", "[-v]", "print ereports logged in dump", 3969 ereport }, 3970 3971 /* from group.c */ 3972 { "group", "?[-q]", "display a group", group}, 3973 3974 /* from hotplug.c */ 3975 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3976 hotplug, hotplug_help }, 3977 3978 /* from irm.c */ 3979 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3980 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3981 irmreqs_dcmd }, 3982 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3983 3984 /* from kgrep.c + genunix.c */ 3985 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3986 kgrep_help }, 3987 3988 /* from kmem.c */ 3989 { "allocdby", ":", "given a thread, print its allocated buffers", 3990 allocdby }, 3991 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3992 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3993 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3994 { "kmalog", "?[ fail | slab ]", 3995 "display kmem transaction log and stack traces", kmalog }, 3996 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3997 kmastat }, 3998 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3999 "of the kmem allocator", kmausers, kmausers_help }, 4000 { "kmem_cache", "?[-n name]", 4001 "print kernel memory caches", kmem_cache, kmem_cache_help}, 4002 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 4003 "[-B minbinsize]", "display slab usage per kmem cache", 4004 kmem_slabs, kmem_slabs_help }, 4005 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 4006 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 4007 { "kmem_verify", "?", "check integrity of kmem-managed memory", 4008 kmem_verify }, 4009 { "vmem", "?", "print a vmem_t", vmem }, 4010 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 4011 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 4012 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 4013 { "whatthread", ":[-v]", "print threads whose stack contains the " 4014 "given address", whatthread }, 4015 4016 /* from ldi.c */ 4017 { "ldi_handle", "?[-i]", "display a layered driver handle", 4018 ldi_handle, ldi_handle_help }, 4019 { "ldi_ident", NULL, "display a layered driver identifier", 4020 ldi_ident, ldi_ident_help }, 4021 4022 /* from leaky.c + leaky_subr.c */ 4023 { "findleaks", FINDLEAKS_USAGE, 4024 "search for potential kernel memory leaks", findleaks, 4025 findleaks_help }, 4026 4027 /* from lgrp.c */ 4028 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4029 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4030 4031 /* from log.c */ 4032 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4033 4034 /* from mdi.c */ 4035 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4036 "and detailed pi_prop list", mdipi }, 4037 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4038 mdiprops }, 4039 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4040 "list all paths", mdiphci }, 4041 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4042 "all phcis", mdivhci }, 4043 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4044 "client links", mdiclient_paths }, 4045 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4046 "phci links", mdiphci_paths }, 4047 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4048 mdiphcis }, 4049 4050 /* from memory.c */ 4051 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4052 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4053 { "memstat", NULL, "display memory usage summary", memstat }, 4054 { "page", "?", "display a summarized page_t", page }, 4055 { "pagelookup", "?[-v vp] [-o offset]", 4056 "find the page_t with the name {vp, offset}", 4057 pagelookup, pagelookup_help }, 4058 { "page_num2pp", ":", "find the page_t for a given page frame number", 4059 page_num2pp }, 4060 { "pmap", ":[-q]", "print process memory map", pmap }, 4061 { "seg", ":", "print address space segment", seg }, 4062 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4063 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4064 4065 /* from mmd.c */ 4066 { "multidata", ":[-sv]", "display a summarized multidata_t", 4067 multidata }, 4068 { "pattbl", ":", "display a summarized multidata attribute table", 4069 pattbl }, 4070 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4071 pattr2multidata }, 4072 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4073 pdesc2slab }, 4074 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4075 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4076 slab2multidata }, 4077 4078 /* from modhash.c */ 4079 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4080 "display information about one or all mod_hash structures", 4081 modhash, modhash_help }, 4082 { "modent", ":[-k | -v | -t type]", 4083 "display information about a mod_hash_entry", modent, 4084 modent_help }, 4085 4086 /* from net.c */ 4087 { "dladm", "?<sub-command> [flags]", "show data link information", 4088 dladm, dladm_help }, 4089 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4090 mi }, 4091 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4092 "show network statistics", netstat }, 4093 { "sonode", "?[-f inet | inet6 | unix | #] " 4094 "[-t stream | dgram | raw | #] [-p #]", 4095 "filter and display sonode", sonode }, 4096 4097 /* from netstack.c */ 4098 { "netstack", "", "show stack instances", netstack }, 4099 4100 /* from nvpair.c */ 4101 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4102 nvpair_print }, 4103 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4104 print_nvlist }, 4105 4106 /* from pg.c */ 4107 { "pg", "?[-q]", "display a pg", pg}, 4108 4109 /* from rctl.c */ 4110 { "rctl_dict", "?", "print systemwide default rctl definitions", 4111 rctl_dict }, 4112 { "rctl_list", ":[handle]", "print rctls for the given proc", 4113 rctl_list }, 4114 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4115 rctl }, 4116 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4117 "sequence", rctl_validate }, 4118 4119 /* from sobj.c */ 4120 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4121 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4122 mutex_help }, 4123 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4124 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4125 { "turnstile", "?", "display a turnstile", turnstile }, 4126 4127 /* from stream.c */ 4128 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4129 "print an mblk", mblk_prt, mblk_help }, 4130 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4131 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4132 mblk2dblk }, 4133 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4134 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4135 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4136 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4137 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4138 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4139 "filter and display STREAM queue", queue, queue_help }, 4140 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4141 "filter and display STREAM head", stdata, stdata_help }, 4142 { "str2mate", ":", "print mate of this stream", str2mate }, 4143 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4144 { "stream", ":", "display STREAM", stream }, 4145 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4146 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4147 "filter and display STREAM sync queue", syncq, syncq_help }, 4148 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4149 4150 /* from taskq.c */ 4151 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4152 "display a taskq", taskq, taskq_help }, 4153 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4154 4155 /* from thread.c */ 4156 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4157 thread_help }, 4158 { "threadlist", "?[-t] [-v [count]]", 4159 "display threads and associated C stack traces", threadlist, 4160 threadlist_help }, 4161 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4162 stackinfo_help }, 4163 4164 /* from tsd.c */ 4165 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4166 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4167 4168 /* 4169 * typegraph does not work under kmdb, as it requires too much memory 4170 * for its internal data structures. 4171 */ 4172 #ifndef _KMDB 4173 /* from typegraph.c */ 4174 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4175 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4176 findfalse }, 4177 { "typegraph", NULL, "build type graph", typegraph }, 4178 { "istype", ":type", "manually set object type", istype }, 4179 { "notype", ":", "manually clear object type", notype }, 4180 { "whattype", ":", "determine object type", whattype }, 4181 #endif 4182 4183 /* from vfs.c */ 4184 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4185 { "pfiles", ":[-fp]", "print process file information", pfiles, 4186 pfiles_help }, 4187 4188 /* from zone.c */ 4189 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4190 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4191 "selected zones", zsd }, 4192 4193 #ifndef _KMDB 4194 { "gcore", NULL, "generate a user core for the given process", 4195 gcore_dcmd }, 4196 #endif 4197 4198 { NULL } 4199 }; 4200 4201 static const mdb_walker_t walkers[] = { 4202 4203 /* from genunix.c */ 4204 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4205 callout_walk_init, callout_walk_step, callout_walk_fini, 4206 (void *)CALLOUT_WALK_BYLIST }, 4207 { "callouts_byid", "walk callouts by id hash chain", 4208 callout_walk_init, callout_walk_step, callout_walk_fini, 4209 (void *)CALLOUT_WALK_BYID }, 4210 { "callout_list", "walk a callout list", callout_list_walk_init, 4211 callout_list_walk_step, callout_list_walk_fini }, 4212 { "callout_table", "walk callout table array", callout_table_walk_init, 4213 callout_table_walk_step, callout_table_walk_fini }, 4214 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4215 { "ereportq_dump", "walk list of ereports in dump error queue", 4216 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4217 { "ereportq_pend", "walk list of ereports in pending error queue", 4218 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4219 { "errorq", "walk list of system error queues", 4220 errorq_walk_init, errorq_walk_step, NULL }, 4221 { "errorq_data", "walk pending error queue data buffers", 4222 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4223 { "allfile", "given a proc pointer, list all file pointers", 4224 file_walk_init, allfile_walk_step, file_walk_fini }, 4225 { "file", "given a proc pointer, list of open file pointers", 4226 file_walk_init, file_walk_step, file_walk_fini }, 4227 { "lock_descriptor", "walk lock_descriptor_t structures", 4228 ld_walk_init, ld_walk_step, NULL }, 4229 { "lock_graph", "walk lock graph", 4230 lg_walk_init, lg_walk_step, NULL }, 4231 { "port", "given a proc pointer, list of created event ports", 4232 port_walk_init, port_walk_step, NULL }, 4233 { "portev", "given a port pointer, list of events in the queue", 4234 portev_walk_init, portev_walk_step, portev_walk_fini }, 4235 { "proc", "list of active proc_t structures", 4236 proc_walk_init, proc_walk_step, proc_walk_fini }, 4237 { "projects", "walk a list of kernel projects", 4238 project_walk_init, project_walk_step, NULL }, 4239 { "sysevent_pend", "walk sysevent pending queue", 4240 sysevent_pend_walk_init, sysevent_walk_step, 4241 sysevent_walk_fini}, 4242 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4243 sysevent_walk_step, sysevent_walk_fini}, 4244 { "sysevent_channel", "walk sysevent channel subscriptions", 4245 sysevent_channel_walk_init, sysevent_channel_walk_step, 4246 sysevent_channel_walk_fini}, 4247 { "sysevent_class_list", "walk sysevent subscription's class list", 4248 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4249 sysevent_class_list_walk_fini}, 4250 { "sysevent_subclass_list", 4251 "walk sysevent subscription's subclass list", 4252 sysevent_subclass_list_walk_init, 4253 sysevent_subclass_list_walk_step, 4254 sysevent_subclass_list_walk_fini}, 4255 { "task", "given a task pointer, walk its processes", 4256 task_walk_init, task_walk_step, NULL }, 4257 4258 /* from avl.c */ 4259 { AVL_WALK_NAME, AVL_WALK_DESC, 4260 avl_walk_init, avl_walk_step, avl_walk_fini }, 4261 4262 /* from bio.c */ 4263 { "buf", "walk the bio buf hash", 4264 buf_walk_init, buf_walk_step, buf_walk_fini }, 4265 4266 /* from contract.c */ 4267 { "contract", "walk all contracts, or those of the specified type", 4268 ct_walk_init, generic_walk_step, NULL }, 4269 { "ct_event", "walk events on a contract event queue", 4270 ct_event_walk_init, generic_walk_step, NULL }, 4271 { "ct_listener", "walk contract event queue listeners", 4272 ct_listener_walk_init, generic_walk_step, NULL }, 4273 4274 /* from cpupart.c */ 4275 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4276 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4277 NULL }, 4278 { "cpupart_walk", "walk the set of cpu partitions", 4279 cpupart_walk_init, cpupart_walk_step, NULL }, 4280 4281 /* from ctxop.c */ 4282 { "ctxop", "walk list of context ops on a thread", 4283 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4284 4285 /* from cyclic.c */ 4286 { "cyccpu", "walk per-CPU cyc_cpu structures", 4287 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4288 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4289 cycomni_walk_init, cycomni_walk_step, NULL }, 4290 { "cyctrace", "walk cyclic trace buffer", 4291 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4292 4293 /* from devinfo.c */ 4294 { "binding_hash", "walk all entries in binding hash table", 4295 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4296 { "devinfo", "walk devinfo tree or subtree", 4297 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4298 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4299 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4300 devinfo_audit_log_walk_fini}, 4301 { "devinfo_audit_node", "walk per-devinfo audit history", 4302 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4303 devinfo_audit_node_walk_fini}, 4304 { "devinfo_children", "walk children of devinfo node", 4305 devinfo_children_walk_init, devinfo_children_walk_step, 4306 devinfo_children_walk_fini }, 4307 { "devinfo_parents", "walk ancestors of devinfo node", 4308 devinfo_parents_walk_init, devinfo_parents_walk_step, 4309 devinfo_parents_walk_fini }, 4310 { "devinfo_siblings", "walk siblings of devinfo node", 4311 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4312 { "devi_next", "walk devinfo list", 4313 NULL, devi_next_walk_step, NULL }, 4314 { "devnames", "walk devnames array", 4315 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4316 { "minornode", "given a devinfo node, walk minor nodes", 4317 minornode_walk_init, minornode_walk_step, NULL }, 4318 { "softstate", 4319 "given an i_ddi_soft_state*, list all in-use driver stateps", 4320 soft_state_walk_init, soft_state_walk_step, 4321 NULL, NULL }, 4322 { "softstate_all", 4323 "given an i_ddi_soft_state*, list all driver stateps", 4324 soft_state_walk_init, soft_state_all_walk_step, 4325 NULL, NULL }, 4326 { "devinfo_fmc", 4327 "walk a fault management handle cache active list", 4328 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4329 4330 /* from group.c */ 4331 { "group", "walk all elements of a group", 4332 group_walk_init, group_walk_step, NULL }, 4333 4334 /* from irm.c */ 4335 { "irmpools", "walk global list of interrupt pools", 4336 irmpools_walk_init, list_walk_step, list_walk_fini }, 4337 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4338 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4339 4340 /* from kmem.c */ 4341 { "allocdby", "given a thread, walk its allocated bufctls", 4342 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4343 { "bufctl", "walk a kmem cache's bufctls", 4344 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4345 { "bufctl_history", "walk the available history of a bufctl", 4346 bufctl_history_walk_init, bufctl_history_walk_step, 4347 bufctl_history_walk_fini }, 4348 { "freedby", "given a thread, walk its freed bufctls", 4349 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4350 { "freectl", "walk a kmem cache's free bufctls", 4351 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4352 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4353 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4354 { "freemem", "walk a kmem cache's free memory", 4355 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4356 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4357 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4358 { "kmem", "walk a kmem cache", 4359 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4360 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4361 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4362 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4363 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4364 { "kmem_log", "walk the kmem transaction log", 4365 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4366 { "kmem_slab", "given a kmem cache, walk its slabs", 4367 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4368 { "kmem_slab_partial", 4369 "given a kmem cache, walk its partially allocated slabs (min 1)", 4370 kmem_slab_walk_partial_init, combined_walk_step, 4371 combined_walk_fini }, 4372 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4373 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4374 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4375 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4376 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4377 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4378 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4379 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4380 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4381 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4382 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4383 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4384 4385 /* from ldi.c */ 4386 { "ldi_handle", "walk the layered driver handle hash", 4387 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4388 { "ldi_ident", "walk the layered driver identifier hash", 4389 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4390 4391 /* from leaky.c + leaky_subr.c */ 4392 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4393 "stack trace", 4394 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4395 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4396 "leaks w/ same stack trace", 4397 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4398 4399 /* from lgrp.c */ 4400 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4401 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4402 { "lgrptbl", "walk lgroup table", 4403 lgrp_walk_init, lgrp_walk_step, NULL }, 4404 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4405 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4406 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4407 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4408 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4409 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4410 4411 /* from list.c */ 4412 { LIST_WALK_NAME, LIST_WALK_DESC, 4413 list_walk_init, list_walk_step, list_walk_fini }, 4414 4415 /* from mdi.c */ 4416 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4417 mdi_pi_client_link_walk_init, 4418 mdi_pi_client_link_walk_step, 4419 mdi_pi_client_link_walk_fini }, 4420 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4421 mdi_pi_phci_link_walk_init, 4422 mdi_pi_phci_link_walk_step, 4423 mdi_pi_phci_link_walk_fini }, 4424 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4425 mdi_phci_ph_next_walk_init, 4426 mdi_phci_ph_next_walk_step, 4427 mdi_phci_ph_next_walk_fini }, 4428 4429 /* from memory.c */ 4430 { "allpages", "walk all pages, including free pages", 4431 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4432 { "anon", "given an amp, list allocated anon structures", 4433 anon_walk_init, anon_walk_step, anon_walk_fini, 4434 ANON_WALK_ALLOC }, 4435 { "anon_all", "given an amp, list contents of all anon slots", 4436 anon_walk_init, anon_walk_step, anon_walk_fini, 4437 ANON_WALK_ALL }, 4438 { "memlist", "walk specified memlist", 4439 NULL, memlist_walk_step, NULL }, 4440 { "page", "walk all pages, or those from the specified vnode", 4441 page_walk_init, page_walk_step, page_walk_fini }, 4442 { "seg", "given an as, list of segments", 4443 seg_walk_init, avl_walk_step, avl_walk_fini }, 4444 { "segvn_anon", 4445 "given a struct segvn_data, list allocated anon structures", 4446 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4447 ANON_WALK_ALLOC }, 4448 { "segvn_anon_all", 4449 "given a struct segvn_data, list contents of all anon slots", 4450 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4451 ANON_WALK_ALL }, 4452 { "segvn_pages", 4453 "given a struct segvn_data, list resident pages in " 4454 "offset order", 4455 segvn_pages_walk_init, segvn_pages_walk_step, 4456 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4457 { "segvn_pages_all", 4458 "for each offset in a struct segvn_data, give page_t pointer " 4459 "(if resident), or NULL.", 4460 segvn_pages_walk_init, segvn_pages_walk_step, 4461 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4462 { "swapinfo", "walk swapinfo structures", 4463 swap_walk_init, swap_walk_step, NULL }, 4464 4465 /* from mmd.c */ 4466 { "pattr", "walk pattr_t structures", pattr_walk_init, 4467 mmdq_walk_step, mmdq_walk_fini }, 4468 { "pdesc", "walk pdesc_t structures", 4469 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4470 { "pdesc_slab", "walk pdesc_slab_t structures", 4471 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4472 4473 /* from modhash.c */ 4474 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4475 modhash_walk_step, NULL }, 4476 { "modent", "walk list of entries in a given mod_hash", 4477 modent_walk_init, modent_walk_step, modent_walk_fini }, 4478 { "modchain", "walk list of entries in a given mod_hash_entry", 4479 NULL, modchain_walk_step, NULL }, 4480 4481 /* from net.c */ 4482 { "icmp", "walk ICMP control structures using MI for all stacks", 4483 mi_payload_walk_init, mi_payload_walk_step, NULL, 4484 &mi_icmp_arg }, 4485 { "mi", "given a MI_O, walk the MI", 4486 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4487 { "sonode", "given a sonode, walk its children", 4488 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4489 { "icmp_stacks", "walk all the icmp_stack_t", 4490 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4491 { "tcp_stacks", "walk all the tcp_stack_t", 4492 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4493 { "udp_stacks", "walk all the udp_stack_t", 4494 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4495 4496 /* from netstack.c */ 4497 { "netstack", "walk a list of kernel netstacks", 4498 netstack_walk_init, netstack_walk_step, NULL }, 4499 4500 /* from nvpair.c */ 4501 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4502 nvpair_walk_init, nvpair_walk_step, NULL }, 4503 4504 /* from rctl.c */ 4505 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4506 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4507 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4508 rctl_set_walk_step, NULL }, 4509 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4510 rctl_val_walk_init, rctl_val_walk_step }, 4511 4512 /* from sobj.c */ 4513 { "blocked", "walk threads blocked on a given sobj", 4514 blocked_walk_init, blocked_walk_step, NULL }, 4515 { "wchan", "given a wchan, list of blocked threads", 4516 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4517 4518 /* from stream.c */ 4519 { "b_cont", "walk mblk_t list using b_cont", 4520 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4521 { "b_next", "walk mblk_t list using b_next", 4522 mblk_walk_init, b_next_step, mblk_walk_fini }, 4523 { "qlink", "walk queue_t list using q_link", 4524 queue_walk_init, queue_link_step, queue_walk_fini }, 4525 { "qnext", "walk queue_t list using q_next", 4526 queue_walk_init, queue_next_step, queue_walk_fini }, 4527 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4528 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4529 { "readq", "walk read queue side of stdata", 4530 str_walk_init, strr_walk_step, str_walk_fini }, 4531 { "writeq", "walk write queue side of stdata", 4532 str_walk_init, strw_walk_step, str_walk_fini }, 4533 4534 /* from taskq.c */ 4535 { "taskq_thread", "given a taskq_t, list all of its threads", 4536 taskq_thread_walk_init, 4537 taskq_thread_walk_step, 4538 taskq_thread_walk_fini }, 4539 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4540 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4541 4542 /* from thread.c */ 4543 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4544 deathrow_walk_init, deathrow_walk_step, NULL }, 4545 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4546 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4547 { "cpupart_dispq", 4548 "given a cpupart_t, walk threads in dispatcher queues", 4549 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4550 { "lwp_deathrow", "walk lwp_deathrow", 4551 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4552 { "thread", "global or per-process kthread_t structures", 4553 thread_walk_init, thread_walk_step, thread_walk_fini }, 4554 { "thread_deathrow", "walk threads on thread_deathrow", 4555 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4556 4557 /* from tsd.c */ 4558 { "tsd", "walk list of thread-specific data", 4559 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4560 4561 /* from tsol.c */ 4562 { "tnrh", "walk remote host cache structures", 4563 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4564 { "tnrhtp", "walk remote host template structures", 4565 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4566 4567 /* 4568 * typegraph does not work under kmdb, as it requires too much memory 4569 * for its internal data structures. 4570 */ 4571 #ifndef _KMDB 4572 /* from typegraph.c */ 4573 { "typeconflict", "walk buffers with conflicting type inferences", 4574 typegraph_walk_init, typeconflict_walk_step }, 4575 { "typeunknown", "walk buffers with unknown types", 4576 typegraph_walk_init, typeunknown_walk_step }, 4577 #endif 4578 4579 /* from vfs.c */ 4580 { "vfs", "walk file system list", 4581 vfs_walk_init, vfs_walk_step }, 4582 4583 /* from zone.c */ 4584 { "zone", "walk a list of kernel zones", 4585 zone_walk_init, zone_walk_step, NULL }, 4586 { "zsd", "walk list of zsd entries for a zone", 4587 zsd_walk_init, zsd_walk_step, NULL }, 4588 4589 { NULL } 4590 }; 4591 4592 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4593 4594 /*ARGSUSED*/ 4595 static void 4596 genunix_statechange_cb(void *ignored) 4597 { 4598 /* 4599 * Force ::findleaks and ::stacks to let go any cached state. 4600 */ 4601 leaky_cleanup(1); 4602 stacks_cleanup(1); 4603 4604 kmem_statechange(); /* notify kmem */ 4605 } 4606 4607 const mdb_modinfo_t * 4608 _mdb_init(void) 4609 { 4610 kmem_init(); 4611 4612 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4613 genunix_statechange_cb, NULL); 4614 4615 #ifndef _KMDB 4616 gcore_init(); 4617 #endif 4618 4619 return (&modinfo); 4620 } 4621 4622 void 4623 _mdb_fini(void) 4624 { 4625 leaky_cleanup(1); 4626 stacks_cleanup(1); 4627 } 4628