1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <mdb/mdb_param.h> 29 #include <mdb/mdb_modapi.h> 30 #include <mdb/mdb_ks.h> 31 #include <mdb/mdb_ctf.h> 32 33 #include <sys/types.h> 34 #include <sys/thread.h> 35 #include <sys/session.h> 36 #include <sys/user.h> 37 #include <sys/proc.h> 38 #include <sys/var.h> 39 #include <sys/t_lock.h> 40 #include <sys/callo.h> 41 #include <sys/priocntl.h> 42 #include <sys/class.h> 43 #include <sys/regset.h> 44 #include <sys/stack.h> 45 #include <sys/cpuvar.h> 46 #include <sys/vnode.h> 47 #include <sys/vfs.h> 48 #include <sys/flock_impl.h> 49 #include <sys/kmem_impl.h> 50 #include <sys/vmem_impl.h> 51 #include <sys/kstat.h> 52 #include <vm/seg_vn.h> 53 #include <vm/anon.h> 54 #include <vm/as.h> 55 #include <vm/seg_map.h> 56 #include <sys/dditypes.h> 57 #include <sys/ddi_impldefs.h> 58 #include <sys/sysmacros.h> 59 #include <sys/sysconf.h> 60 #include <sys/task.h> 61 #include <sys/project.h> 62 #include <sys/taskq.h> 63 #include <sys/taskq_impl.h> 64 #include <sys/errorq_impl.h> 65 #include <sys/cred_impl.h> 66 #include <sys/zone.h> 67 #include <sys/panic.h> 68 #include <regex.h> 69 #include <sys/port_impl.h> 70 71 #include "avl.h" 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "list.h" 78 #include "log.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "bio.h" 82 #include "streams.h" 83 #include "cyclic.h" 84 #include "findstack.h" 85 #include "ndievents.h" 86 #include "mmd.h" 87 #include "net.h" 88 #include "nvpair.h" 89 #include "ctxop.h" 90 #include "tsd.h" 91 #include "thread.h" 92 #include "memory.h" 93 #include "sobj.h" 94 #include "sysevent.h" 95 #include "rctl.h" 96 #include "typegraph.h" 97 #include "ldi.h" 98 #include "vfs.h" 99 #include "zone.h" 100 #include "modhash.h" 101 102 /* 103 * Surely this is defined somewhere... 104 */ 105 #define NINTR 16 106 107 #ifndef STACK_BIAS 108 #define STACK_BIAS 0 109 #endif 110 111 static char 112 pstat2ch(uchar_t state) 113 { 114 switch (state) { 115 case SSLEEP: return ('S'); 116 case SRUN: return ('R'); 117 case SZOMB: return ('Z'); 118 case SIDL: return ('I'); 119 case SONPROC: return ('O'); 120 case SSTOP: return ('T'); 121 default: return ('?'); 122 } 123 } 124 125 #define PS_PRTTHREADS 0x1 126 #define PS_PRTLWPS 0x2 127 #define PS_PSARGS 0x4 128 #define PS_TASKS 0x8 129 #define PS_PROJECTS 0x10 130 #define PS_ZONES 0x20 131 132 static int 133 ps_threadprint(uintptr_t addr, const void *data, void *private) 134 { 135 const kthread_t *t = (const kthread_t *)data; 136 uint_t prt_flags = *((uint_t *)private); 137 138 static const mdb_bitmask_t t_state_bits[] = { 139 { "TS_FREE", UINT_MAX, TS_FREE }, 140 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 141 { "TS_RUN", TS_RUN, TS_RUN }, 142 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 143 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 144 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 145 { NULL, 0, 0 } 146 }; 147 148 if (prt_flags & PS_PRTTHREADS) 149 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 150 151 if (prt_flags & PS_PRTLWPS) 152 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 153 154 return (WALK_NEXT); 155 } 156 157 int 158 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 159 { 160 uint_t prt_flags = 0; 161 proc_t pr; 162 struct pid pid, pgid, sid; 163 sess_t session; 164 cred_t cred; 165 task_t tk; 166 kproject_t pj; 167 zone_t zn; 168 169 if (!(flags & DCMD_ADDRSPEC)) { 170 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 171 mdb_warn("can't walk 'proc'"); 172 return (DCMD_ERR); 173 } 174 return (DCMD_OK); 175 } 176 177 if (mdb_getopts(argc, argv, 178 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 179 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 180 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 181 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 182 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 183 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 184 return (DCMD_USAGE); 185 186 if (DCMD_HDRSPEC(flags)) { 187 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 188 "S", "PID", "PPID", "PGID", "SID"); 189 if (prt_flags & PS_TASKS) 190 mdb_printf("%5s ", "TASK"); 191 if (prt_flags & PS_PROJECTS) 192 mdb_printf("%5s ", "PROJ"); 193 if (prt_flags & PS_ZONES) 194 mdb_printf("%5s ", "ZONE"); 195 mdb_printf("%6s %10s %?s %s%</u>\n", 196 "UID", "FLAGS", "ADDR", "NAME"); 197 } 198 199 mdb_vread(&pr, sizeof (pr), addr); 200 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 201 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 202 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 203 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 204 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 205 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 206 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 207 if (prt_flags & PS_PROJECTS) 208 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 209 if (prt_flags & PS_ZONES) 210 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 211 212 mdb_printf("%c %6d %6d %6d %6d ", 213 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 214 sid.pid_id); 215 if (prt_flags & PS_TASKS) 216 mdb_printf("%5d ", tk.tk_tkid); 217 if (prt_flags & PS_PROJECTS) 218 mdb_printf("%5d ", pj.kpj_id); 219 if (prt_flags & PS_ZONES) 220 mdb_printf("%5d ", zn.zone_id); 221 mdb_printf("%6d 0x%08x %0?p %s\n", 222 cred.cr_uid, pr.p_flag, addr, 223 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 224 225 if (prt_flags & ~PS_PSARGS) 226 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 227 228 return (DCMD_OK); 229 } 230 231 #define PG_NEWEST 0x0001 232 #define PG_OLDEST 0x0002 233 #define PG_PIPE_OUT 0x0004 234 #define PG_EXACT_MATCH 0x0008 235 236 typedef struct pgrep_data { 237 uint_t pg_flags; 238 uint_t pg_psflags; 239 uintptr_t pg_xaddr; 240 hrtime_t pg_xstart; 241 const char *pg_pat; 242 #ifndef _KMDB 243 regex_t pg_reg; 244 #endif 245 } pgrep_data_t; 246 247 /*ARGSUSED*/ 248 static int 249 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 250 { 251 const proc_t *prp = pdata; 252 pgrep_data_t *pgp = data; 253 #ifndef _KMDB 254 regmatch_t pmatch; 255 #endif 256 257 /* 258 * kmdb doesn't have access to the reg* functions, so we fall back 259 * to strstr/strcmp. 260 */ 261 #ifdef _KMDB 262 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 263 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 264 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 265 return (WALK_NEXT); 266 #else 267 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 268 return (WALK_NEXT); 269 270 if ((pgp->pg_flags & PG_EXACT_MATCH) && 271 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 272 return (WALK_NEXT); 273 #endif 274 275 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 276 hrtime_t start; 277 278 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 279 prp->p_user.u_start.tv_nsec; 280 281 if (pgp->pg_flags & PG_NEWEST) { 282 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 283 pgp->pg_xaddr = addr; 284 pgp->pg_xstart = start; 285 } 286 } else { 287 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 288 pgp->pg_xaddr = addr; 289 pgp->pg_xstart = start; 290 } 291 } 292 293 } else if (pgp->pg_flags & PG_PIPE_OUT) { 294 mdb_printf("%p\n", addr); 295 296 } else { 297 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 298 mdb_warn("can't invoke 'ps'"); 299 return (WALK_DONE); 300 } 301 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 302 } 303 304 return (WALK_NEXT); 305 } 306 307 /*ARGSUSED*/ 308 int 309 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 310 { 311 pgrep_data_t pg; 312 int i; 313 #ifndef _KMDB 314 int err; 315 #endif 316 317 if (flags & DCMD_ADDRSPEC) 318 return (DCMD_USAGE); 319 320 pg.pg_flags = 0; 321 pg.pg_xaddr = 0; 322 323 i = mdb_getopts(argc, argv, 324 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 325 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 326 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 327 NULL); 328 329 argc -= i; 330 argv += i; 331 332 if (argc != 1) 333 return (DCMD_USAGE); 334 335 /* 336 * -n and -o are mutually exclusive. 337 */ 338 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 339 return (DCMD_USAGE); 340 341 if (argv->a_type != MDB_TYPE_STRING) 342 return (DCMD_USAGE); 343 344 if (flags & DCMD_PIPE_OUT) 345 pg.pg_flags |= PG_PIPE_OUT; 346 347 pg.pg_pat = argv->a_un.a_str; 348 if (DCMD_HDRSPEC(flags)) 349 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 350 else 351 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 352 353 #ifndef _KMDB 354 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 355 size_t nbytes; 356 char *buf; 357 358 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 359 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 360 (void) regerror(err, &pg.pg_reg, buf, nbytes); 361 mdb_warn("%s\n", buf); 362 363 return (DCMD_ERR); 364 } 365 #endif 366 367 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 368 mdb_warn("can't walk 'proc'"); 369 return (DCMD_ERR); 370 } 371 372 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 373 if (pg.pg_flags & PG_PIPE_OUT) { 374 mdb_printf("%p\n", pg.pg_xaddr); 375 } else { 376 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 377 0, NULL) != 0) { 378 mdb_warn("can't invoke 'ps'"); 379 return (DCMD_ERR); 380 } 381 } 382 } 383 384 return (DCMD_OK); 385 } 386 387 int 388 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 389 { 390 task_t tk; 391 kproject_t pj; 392 393 if (!(flags & DCMD_ADDRSPEC)) { 394 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 395 mdb_warn("can't walk task_cache"); 396 return (DCMD_ERR); 397 } 398 return (DCMD_OK); 399 } 400 if (DCMD_HDRSPEC(flags)) { 401 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 402 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 403 } 404 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 405 mdb_warn("can't read task_t structure at %p", addr); 406 return (DCMD_ERR); 407 } 408 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 409 mdb_warn("can't read project_t structure at %p", addr); 410 return (DCMD_ERR); 411 } 412 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 413 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 414 tk.tk_flags); 415 return (DCMD_OK); 416 } 417 418 int 419 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 420 { 421 kproject_t pj; 422 423 if (!(flags & DCMD_ADDRSPEC)) { 424 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 425 mdb_warn("can't walk projects"); 426 return (DCMD_ERR); 427 } 428 return (DCMD_OK); 429 } 430 if (DCMD_HDRSPEC(flags)) { 431 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 432 "ADDR", "PROJID", "ZONEID", "REFCNT"); 433 } 434 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 435 mdb_warn("can't read kproject_t structure at %p", addr); 436 return (DCMD_ERR); 437 } 438 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 439 pj.kpj_count); 440 return (DCMD_OK); 441 } 442 443 /*ARGSUSED*/ 444 int 445 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 446 { 447 callout_table_t *co_ktable[CALLOUT_TABLES]; 448 int co_kfanout; 449 callout_table_t co_table; 450 callout_t co_callout; 451 callout_t *co_ptr; 452 int co_id; 453 clock_t lbolt; 454 int i, j, k; 455 const char *lbolt_sym; 456 457 if ((flags & DCMD_ADDRSPEC) || argc != 0) 458 return (DCMD_USAGE); 459 460 if (mdb_prop_postmortem) 461 lbolt_sym = "panic_lbolt"; 462 else 463 lbolt_sym = "lbolt"; 464 465 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 466 mdb_warn("failed to read '%s'", lbolt_sym); 467 return (DCMD_ERR); 468 } 469 470 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 471 mdb_warn("failed to read callout_fanout"); 472 return (DCMD_ERR); 473 } 474 475 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 476 mdb_warn("failed to read callout_table"); 477 return (DCMD_ERR); 478 } 479 480 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 481 "FUNCTION", "ARGUMENT", "ID", "TIME"); 482 483 for (i = 0; i < CALLOUT_NTYPES; i++) { 484 for (j = 0; j < co_kfanout; j++) { 485 486 co_id = CALLOUT_TABLE(i, j); 487 488 if (mdb_vread(&co_table, sizeof (co_table), 489 (uintptr_t)co_ktable[co_id]) == -1) { 490 mdb_warn("failed to read table at %p", 491 (uintptr_t)co_ktable[co_id]); 492 continue; 493 } 494 495 for (k = 0; k < CALLOUT_BUCKETS; k++) { 496 co_ptr = co_table.ct_idhash[k]; 497 498 while (co_ptr != NULL) { 499 mdb_vread(&co_callout, 500 sizeof (co_callout), 501 (uintptr_t)co_ptr); 502 503 mdb_printf("%-24a %0?p %0?lx %?lx " 504 "(T%+ld)\n", co_callout.c_func, 505 co_callout.c_arg, co_callout.c_xid, 506 co_callout.c_runtime, 507 co_callout.c_runtime - lbolt); 508 509 co_ptr = co_callout.c_idnext; 510 } 511 } 512 } 513 } 514 515 return (DCMD_OK); 516 } 517 518 /*ARGSUSED*/ 519 int 520 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 521 { 522 long num_classes, i; 523 sclass_t *class_tbl; 524 GElf_Sym g_sclass; 525 char class_name[PC_CLNMSZ]; 526 size_t tbl_size; 527 528 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 529 mdb_warn("failed to find symbol sclass\n"); 530 return (DCMD_ERR); 531 } 532 533 tbl_size = (size_t)g_sclass.st_size; 534 num_classes = tbl_size / (sizeof (sclass_t)); 535 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 536 537 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 538 mdb_warn("failed to read sclass"); 539 return (DCMD_ERR); 540 } 541 542 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 543 "INIT FCN", "CLASS FCN"); 544 545 for (i = 0; i < num_classes; i++) { 546 if (mdb_vread(class_name, sizeof (class_name), 547 (uintptr_t)class_tbl[i].cl_name) == -1) 548 (void) strcpy(class_name, "???"); 549 550 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 551 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 552 } 553 554 return (DCMD_OK); 555 } 556 557 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 558 559 int 560 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 561 { 562 uintptr_t rootdir; 563 vnode_t vn; 564 char buf[MAXPATHLEN]; 565 566 uint_t opt_F = FALSE; 567 568 if (mdb_getopts(argc, argv, 569 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 570 return (DCMD_USAGE); 571 572 if (!(flags & DCMD_ADDRSPEC)) { 573 mdb_warn("expected explicit vnode_t address before ::\n"); 574 return (DCMD_USAGE); 575 } 576 577 if (mdb_readvar(&rootdir, "rootdir") == -1) { 578 mdb_warn("failed to read rootdir"); 579 return (DCMD_ERR); 580 } 581 582 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 583 return (DCMD_ERR); 584 585 if (*buf == '\0') { 586 mdb_printf("??\n"); 587 return (DCMD_OK); 588 } 589 590 mdb_printf("%s", buf); 591 if (opt_F && buf[strlen(buf)-1] != '/' && 592 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 593 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 594 mdb_printf("\n"); 595 596 return (DCMD_OK); 597 } 598 599 int 600 ld_walk_init(mdb_walk_state_t *wsp) 601 { 602 wsp->walk_data = (void *)wsp->walk_addr; 603 return (WALK_NEXT); 604 } 605 606 int 607 ld_walk_step(mdb_walk_state_t *wsp) 608 { 609 int status; 610 lock_descriptor_t ld; 611 612 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 613 mdb_warn("couldn't read lock_descriptor_t at %p\n", 614 wsp->walk_addr); 615 return (WALK_ERR); 616 } 617 618 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 619 if (status == WALK_ERR) 620 return (WALK_ERR); 621 622 wsp->walk_addr = (uintptr_t)ld.l_next; 623 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 624 return (WALK_DONE); 625 626 return (status); 627 } 628 629 int 630 lg_walk_init(mdb_walk_state_t *wsp) 631 { 632 GElf_Sym sym; 633 634 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 635 mdb_warn("failed to find symbol 'lock_graph'\n"); 636 return (WALK_ERR); 637 } 638 639 wsp->walk_addr = (uintptr_t)sym.st_value; 640 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 641 642 return (WALK_NEXT); 643 } 644 645 typedef struct lg_walk_data { 646 uintptr_t startaddr; 647 mdb_walk_cb_t callback; 648 void *data; 649 } lg_walk_data_t; 650 651 /* 652 * We can't use ::walk lock_descriptor directly, because the head of each graph 653 * is really a dummy lock. Rather than trying to dynamically determine if this 654 * is a dummy node or not, we just filter out the initial element of the 655 * list. 656 */ 657 static int 658 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 659 { 660 lg_walk_data_t *lw = priv; 661 662 if (addr != lw->startaddr) 663 return (lw->callback(addr, data, lw->data)); 664 665 return (WALK_NEXT); 666 } 667 668 int 669 lg_walk_step(mdb_walk_state_t *wsp) 670 { 671 graph_t *graph; 672 lg_walk_data_t lw; 673 674 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 675 return (WALK_DONE); 676 677 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 678 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 679 return (WALK_ERR); 680 } 681 682 wsp->walk_addr += sizeof (graph); 683 684 if (graph == NULL) 685 return (WALK_NEXT); 686 687 lw.callback = wsp->walk_callback; 688 lw.data = wsp->walk_cbdata; 689 690 lw.startaddr = (uintptr_t)&(graph->active_locks); 691 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 692 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 693 return (WALK_ERR); 694 } 695 696 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 697 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 698 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 699 return (WALK_ERR); 700 } 701 702 return (WALK_NEXT); 703 } 704 705 /* 706 * The space available for the path corresponding to the locked vnode depends 707 * on whether we are printing 32- or 64-bit addresses. 708 */ 709 #ifdef _LP64 710 #define LM_VNPATHLEN 20 711 #else 712 #define LM_VNPATHLEN 30 713 #endif 714 715 /*ARGSUSED*/ 716 static int 717 lminfo_cb(uintptr_t addr, const void *data, void *priv) 718 { 719 const lock_descriptor_t *ld = data; 720 char buf[LM_VNPATHLEN]; 721 proc_t p; 722 723 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 724 addr, ld->l_type == F_RDLCK ? "RD" : 725 ld->l_type == F_WRLCK ? "WR" : "??", 726 ld->l_state, ld->l_flock.l_pid, 727 ld->l_flock.l_pid == 0 ? "<kernel>" : 728 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 729 "<defunct>" : p.p_user.u_comm, 730 ld->l_vnode); 731 732 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 733 sizeof (buf)); 734 mdb_printf("%s\n", buf); 735 736 return (WALK_NEXT); 737 } 738 739 /*ARGSUSED*/ 740 int 741 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 742 { 743 if (DCMD_HDRSPEC(flags)) 744 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 745 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 746 747 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 748 } 749 750 /*ARGSUSED*/ 751 int 752 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 753 { 754 struct seg s; 755 756 if (argc != 0) 757 return (DCMD_USAGE); 758 759 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 760 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 761 "SEG", "BASE", "SIZE", "DATA", "OPS"); 762 } 763 764 if (mdb_vread(&s, sizeof (s), addr) == -1) { 765 mdb_warn("failed to read seg at %p", addr); 766 return (DCMD_ERR); 767 } 768 769 mdb_printf("%?p %?p %?lx %?p %a\n", 770 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 771 772 return (DCMD_OK); 773 } 774 775 /*ARGSUSED*/ 776 static int 777 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 778 { 779 uintptr_t pp = 780 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 781 782 if (pp != NULL) 783 (*nres)++; 784 785 return (WALK_NEXT); 786 } 787 788 static int 789 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 790 { 791 792 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 793 794 if (segvn == (uintptr_t)seg->s_ops) { 795 struct segvn_data svn; 796 int nres = 0; 797 798 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 799 800 if (svn.amp == NULL) { 801 mdb_printf(" %8s", ""); 802 goto drive_on; 803 } 804 805 /* 806 * We've got an amp for this segment; walk through 807 * the amp, and determine mappings. 808 */ 809 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 810 &nres, (uintptr_t)svn.amp) == -1) 811 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 812 813 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 814 drive_on: 815 816 if (svn.vp != NULL) { 817 char buf[29]; 818 819 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 820 mdb_printf(" %s", buf); 821 } else 822 mdb_printf(" [ anon ]"); 823 } 824 825 mdb_printf("\n"); 826 return (WALK_NEXT); 827 } 828 829 static int 830 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 831 { 832 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 833 834 if (segvn == (uintptr_t)seg->s_ops) { 835 struct segvn_data svn; 836 837 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 838 839 if (svn.vp != NULL) { 840 mdb_printf(" %0?p", svn.vp); 841 } else { 842 mdb_printf(" [ anon ]"); 843 } 844 } 845 846 mdb_printf("\n"); 847 return (WALK_NEXT); 848 } 849 850 /*ARGSUSED*/ 851 int 852 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 853 { 854 uintptr_t segvn; 855 proc_t proc; 856 uint_t quick = FALSE; 857 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 858 859 GElf_Sym sym; 860 861 if (!(flags & DCMD_ADDRSPEC)) 862 return (DCMD_USAGE); 863 864 if (mdb_getopts(argc, argv, 865 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 866 return (DCMD_USAGE); 867 868 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 869 mdb_warn("failed to read proc at %p", addr); 870 return (DCMD_ERR); 871 } 872 873 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 874 segvn = (uintptr_t)sym.st_value; 875 else 876 segvn = NULL; 877 878 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 879 880 if (quick) { 881 mdb_printf("VNODE\n"); 882 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 883 } else { 884 mdb_printf("%8s %s\n", "RES", "PATH"); 885 } 886 887 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 888 mdb_warn("failed to walk segments of as %p", proc.p_as); 889 return (DCMD_ERR); 890 } 891 892 return (DCMD_OK); 893 } 894 895 typedef struct anon_walk_data { 896 uintptr_t *aw_levone; 897 uintptr_t *aw_levtwo; 898 int aw_nlevone; 899 int aw_levone_ndx; 900 int aw_levtwo_ndx; 901 struct anon_map aw_amp; 902 struct anon_hdr aw_ahp; 903 } anon_walk_data_t; 904 905 int 906 anon_walk_init(mdb_walk_state_t *wsp) 907 { 908 anon_walk_data_t *aw; 909 910 if (wsp->walk_addr == NULL) { 911 mdb_warn("anon walk doesn't support global walks\n"); 912 return (WALK_ERR); 913 } 914 915 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 916 917 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 918 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 919 mdb_free(aw, sizeof (anon_walk_data_t)); 920 return (WALK_ERR); 921 } 922 923 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 924 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 925 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 926 mdb_free(aw, sizeof (anon_walk_data_t)); 927 return (WALK_ERR); 928 } 929 930 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 931 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 932 aw->aw_nlevone = aw->aw_ahp.size; 933 aw->aw_levtwo = NULL; 934 } else { 935 aw->aw_nlevone = 936 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 937 aw->aw_levtwo = 938 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 939 } 940 941 aw->aw_levone = 942 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 943 944 aw->aw_levone_ndx = 0; 945 aw->aw_levtwo_ndx = 0; 946 947 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 948 (uintptr_t)aw->aw_ahp.array_chunk); 949 950 if (aw->aw_levtwo != NULL) { 951 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 952 aw->aw_levone_ndx++; 953 if (aw->aw_levone_ndx == aw->aw_nlevone) { 954 mdb_warn("corrupt anon; couldn't" 955 "find ptr to lev two map"); 956 goto out; 957 } 958 } 959 960 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 961 aw->aw_levone[aw->aw_levone_ndx]); 962 } 963 964 out: 965 wsp->walk_data = aw; 966 return (0); 967 } 968 969 int 970 anon_walk_step(mdb_walk_state_t *wsp) 971 { 972 int status; 973 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 974 struct anon anon; 975 uintptr_t anonptr; 976 977 again: 978 /* 979 * Once we've walked through level one, we're done. 980 */ 981 if (aw->aw_levone_ndx == aw->aw_nlevone) 982 return (WALK_DONE); 983 984 if (aw->aw_levtwo == NULL) { 985 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 986 aw->aw_levone_ndx++; 987 } else { 988 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 989 aw->aw_levtwo_ndx++; 990 991 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 992 aw->aw_levtwo_ndx = 0; 993 994 do { 995 aw->aw_levone_ndx++; 996 997 if (aw->aw_levone_ndx == aw->aw_nlevone) 998 return (WALK_DONE); 999 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 1000 1001 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 1002 sizeof (uintptr_t), 1003 aw->aw_levone[aw->aw_levone_ndx]); 1004 } 1005 } 1006 1007 if (anonptr != NULL) { 1008 mdb_vread(&anon, sizeof (anon), anonptr); 1009 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1010 } else 1011 goto again; 1012 1013 return (status); 1014 } 1015 1016 void 1017 anon_walk_fini(mdb_walk_state_t *wsp) 1018 { 1019 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1020 1021 if (aw->aw_levtwo != NULL) 1022 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1023 1024 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1025 mdb_free(aw, sizeof (anon_walk_data_t)); 1026 } 1027 1028 /*ARGSUSED*/ 1029 int 1030 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1031 { 1032 if ((uintptr_t)f->f_vnode == *target) { 1033 mdb_printf("file %p\n", addr); 1034 *target = NULL; 1035 } 1036 1037 return (WALK_NEXT); 1038 } 1039 1040 /*ARGSUSED*/ 1041 int 1042 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1043 { 1044 uintptr_t t = *target; 1045 1046 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1047 mdb_warn("couldn't file walk proc %p", addr); 1048 return (WALK_ERR); 1049 } 1050 1051 if (t == NULL) 1052 mdb_printf("%p\n", addr); 1053 1054 return (WALK_NEXT); 1055 } 1056 1057 /*ARGSUSED*/ 1058 int 1059 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1060 { 1061 uintptr_t target = addr; 1062 1063 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1064 return (DCMD_USAGE); 1065 1066 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1067 mdb_warn("can't proc walk"); 1068 return (DCMD_ERR); 1069 } 1070 1071 return (DCMD_OK); 1072 } 1073 1074 typedef struct datafmt { 1075 char *hdr1; 1076 char *hdr2; 1077 char *dashes; 1078 char *fmt; 1079 } datafmt_t; 1080 1081 static datafmt_t kmemfmt[] = { 1082 { "cache ", "name ", 1083 "-------------------------", "%-25s " }, 1084 { " buf", " size", "------", "%6u " }, 1085 { " buf", "in use", "------", "%6u " }, 1086 { " buf", " total", "------", "%6u " }, 1087 { " memory", " in use", "---------", "%9u " }, 1088 { " alloc", " succeed", "---------", "%9u " }, 1089 { "alloc", " fail", "-----", "%5u " }, 1090 { NULL, NULL, NULL, NULL } 1091 }; 1092 1093 static datafmt_t vmemfmt[] = { 1094 { "vmem ", "name ", 1095 "-------------------------", "%-*s " }, 1096 { " memory", " in use", "---------", "%9llu " }, 1097 { " memory", " total", "----------", "%10llu " }, 1098 { " memory", " import", "---------", "%9llu " }, 1099 { " alloc", " succeed", "---------", "%9llu " }, 1100 { "alloc", " fail", "-----", "%5llu " }, 1101 { NULL, NULL, NULL, NULL } 1102 }; 1103 1104 /*ARGSUSED*/ 1105 static int 1106 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1107 { 1108 if (ccp->cc_rounds > 0) 1109 *avail += ccp->cc_rounds; 1110 if (ccp->cc_prounds > 0) 1111 *avail += ccp->cc_prounds; 1112 1113 return (WALK_NEXT); 1114 } 1115 1116 /*ARGSUSED*/ 1117 static int 1118 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1119 { 1120 *alloc += ccp->cc_alloc; 1121 1122 return (WALK_NEXT); 1123 } 1124 1125 /*ARGSUSED*/ 1126 static int 1127 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1128 { 1129 *avail += sp->slab_chunks - sp->slab_refcnt; 1130 1131 return (WALK_NEXT); 1132 } 1133 1134 typedef struct kmastat_vmem { 1135 uintptr_t kv_addr; 1136 struct kmastat_vmem *kv_next; 1137 int kv_meminuse; 1138 int kv_alloc; 1139 int kv_fail; 1140 } kmastat_vmem_t; 1141 1142 static int 1143 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) 1144 { 1145 kmastat_vmem_t *kv; 1146 datafmt_t *dfp = kmemfmt; 1147 int magsize; 1148 1149 int avail, alloc, total; 1150 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1151 cp->cache_slabsize; 1152 1153 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1154 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1155 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1156 1157 magsize = kmem_get_magsize(cp); 1158 1159 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1160 avail = cp->cache_full.ml_total * magsize; 1161 total = cp->cache_buftotal; 1162 1163 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1164 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1165 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1166 1167 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1168 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1169 goto out; 1170 } 1171 1172 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1173 kv->kv_next = *kvp; 1174 kv->kv_addr = (uintptr_t)cp->cache_arena; 1175 *kvp = kv; 1176 out: 1177 kv->kv_meminuse += meminuse; 1178 kv->kv_alloc += alloc; 1179 kv->kv_fail += cp->cache_alloc_fail; 1180 1181 mdb_printf((dfp++)->fmt, cp->cache_name); 1182 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1183 mdb_printf((dfp++)->fmt, total - avail); 1184 mdb_printf((dfp++)->fmt, total); 1185 mdb_printf((dfp++)->fmt, meminuse); 1186 mdb_printf((dfp++)->fmt, alloc); 1187 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1188 mdb_printf("\n"); 1189 1190 return (WALK_NEXT); 1191 } 1192 1193 static int 1194 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 1195 { 1196 size_t len; 1197 1198 while (kv != NULL && kv->kv_addr != addr) 1199 kv = kv->kv_next; 1200 1201 if (kv == NULL || kv->kv_alloc == 0) 1202 return (WALK_NEXT); 1203 1204 len = MIN(17, strlen(v->vm_name)); 1205 1206 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1207 17 - len, "", "", "", "", 1208 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 1209 1210 return (WALK_NEXT); 1211 } 1212 1213 /*ARGSUSED*/ 1214 static int 1215 kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) 1216 { 1217 datafmt_t *dfp = vmemfmt; 1218 const vmem_kstat_t *vkp = &v->vm_kstat; 1219 uintptr_t paddr; 1220 vmem_t parent; 1221 int ident = 0; 1222 1223 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1224 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1225 mdb_warn("couldn't trace %p's ancestry", addr); 1226 ident = 0; 1227 break; 1228 } 1229 paddr = (uintptr_t)parent.vm_source; 1230 } 1231 1232 mdb_printf("%*s", ident, ""); 1233 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1234 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1235 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1236 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 1237 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1238 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1239 1240 mdb_printf("\n"); 1241 1242 return (WALK_NEXT); 1243 } 1244 1245 /*ARGSUSED*/ 1246 int 1247 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1248 { 1249 kmastat_vmem_t *kv = NULL; 1250 datafmt_t *dfp; 1251 1252 if (argc != 0) 1253 return (DCMD_USAGE); 1254 1255 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1256 mdb_printf("%s ", dfp->hdr1); 1257 mdb_printf("\n"); 1258 1259 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1260 mdb_printf("%s ", dfp->hdr2); 1261 mdb_printf("\n"); 1262 1263 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1264 mdb_printf("%s ", dfp->dashes); 1265 mdb_printf("\n"); 1266 1267 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 1268 mdb_warn("can't walk 'kmem_cache'"); 1269 return (DCMD_ERR); 1270 } 1271 1272 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1273 mdb_printf("%s ", dfp->dashes); 1274 mdb_printf("\n"); 1275 1276 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 1277 mdb_warn("can't walk 'vmem'"); 1278 return (DCMD_ERR); 1279 } 1280 1281 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1282 mdb_printf("%s ", dfp->dashes); 1283 mdb_printf("\n"); 1284 1285 mdb_printf("\n"); 1286 1287 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1288 mdb_printf("%s ", dfp->hdr1); 1289 mdb_printf("\n"); 1290 1291 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1292 mdb_printf("%s ", dfp->hdr2); 1293 mdb_printf("\n"); 1294 1295 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1296 mdb_printf("%s ", dfp->dashes); 1297 mdb_printf("\n"); 1298 1299 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 1300 mdb_warn("can't walk 'vmem'"); 1301 return (DCMD_ERR); 1302 } 1303 1304 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1305 mdb_printf("%s ", dfp->dashes); 1306 mdb_printf("\n"); 1307 return (DCMD_OK); 1308 } 1309 1310 /* 1311 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1312 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1313 * unfortunately, a few of the segs are both large and sparse, so we could 1314 * spend quite a bit of time scanning VAs which have no backing pages. 1315 * 1316 * So for the few very sparse segs, we skip the segment itself, and scan 1317 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1318 * Currently, we do this for: 1319 * 1320 * SEG VMEM ARENA 1321 * kvseg heap_arena 1322 * kvseg32 heap32_arena 1323 * kvseg_core heap_core_arena 1324 * 1325 * In addition, we skip the segkpm segment in its entirety, since it is very 1326 * sparse, and contains no new kernel data. 1327 */ 1328 typedef struct kgrep_walk_data { 1329 kgrep_cb_func *kg_cb; 1330 void *kg_cbdata; 1331 uintptr_t kg_kvseg; 1332 uintptr_t kg_kvseg32; 1333 uintptr_t kg_kvseg_core; 1334 uintptr_t kg_segkpm; 1335 uintptr_t kg_heap_lp_base; 1336 uintptr_t kg_heap_lp_end; 1337 } kgrep_walk_data_t; 1338 1339 static int 1340 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1341 { 1342 uintptr_t base = (uintptr_t)seg->s_base; 1343 1344 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1345 addr == kg->kg_kvseg_core) 1346 return (WALK_NEXT); 1347 1348 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1349 return (WALK_NEXT); 1350 1351 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1352 } 1353 1354 /*ARGSUSED*/ 1355 static int 1356 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1357 { 1358 /* 1359 * skip large page heap address range - it is scanned by walking 1360 * allocated vmem_segs in the heap_lp_arena 1361 */ 1362 if (seg->vs_start == kg->kg_heap_lp_base && 1363 seg->vs_end == kg->kg_heap_lp_end) 1364 return (WALK_NEXT); 1365 1366 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1367 } 1368 1369 /*ARGSUSED*/ 1370 static int 1371 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1372 { 1373 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1374 } 1375 1376 static int 1377 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1378 { 1379 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 1380 1381 if (strcmp(vmem->vm_name, "heap") != 0 && 1382 strcmp(vmem->vm_name, "heap32") != 0 && 1383 strcmp(vmem->vm_name, "heap_core") != 0 && 1384 strcmp(vmem->vm_name, "heap_lp") != 0) 1385 return (WALK_NEXT); 1386 1387 if (strcmp(vmem->vm_name, "heap_lp") == 0) 1388 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 1389 1390 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 1391 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1392 return (WALK_ERR); 1393 } 1394 1395 return (WALK_NEXT); 1396 } 1397 1398 int 1399 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1400 { 1401 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1402 kgrep_walk_data_t kg; 1403 1404 if (mdb_get_state() == MDB_STATE_RUNNING) { 1405 mdb_warn("kgrep can only be run on a system " 1406 "dump or under kmdb; see dumpadm(1M)\n"); 1407 return (DCMD_ERR); 1408 } 1409 1410 if (mdb_lookup_by_name("kas", &kas) == -1) { 1411 mdb_warn("failed to locate 'kas' symbol\n"); 1412 return (DCMD_ERR); 1413 } 1414 1415 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1416 mdb_warn("failed to locate 'kvseg' symbol\n"); 1417 return (DCMD_ERR); 1418 } 1419 1420 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1421 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1422 return (DCMD_ERR); 1423 } 1424 1425 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1426 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1427 return (DCMD_ERR); 1428 } 1429 1430 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1431 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1432 return (DCMD_ERR); 1433 } 1434 1435 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 1436 mdb_warn("failed to read 'heap_lp_base'\n"); 1437 return (DCMD_ERR); 1438 } 1439 1440 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 1441 mdb_warn("failed to read 'heap_lp_end'\n"); 1442 return (DCMD_ERR); 1443 } 1444 1445 kg.kg_cb = cb; 1446 kg.kg_cbdata = cbdata; 1447 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1448 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1449 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1450 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1451 1452 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1453 &kg, kas.st_value) == -1) { 1454 mdb_warn("failed to walk kas segments"); 1455 return (DCMD_ERR); 1456 } 1457 1458 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1459 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1460 return (DCMD_ERR); 1461 } 1462 1463 return (DCMD_OK); 1464 } 1465 1466 size_t 1467 kgrep_subr_pagesize(void) 1468 { 1469 return (PAGESIZE); 1470 } 1471 1472 typedef struct file_walk_data { 1473 struct uf_entry *fw_flist; 1474 int fw_flistsz; 1475 int fw_ndx; 1476 int fw_nofiles; 1477 } file_walk_data_t; 1478 1479 int 1480 file_walk_init(mdb_walk_state_t *wsp) 1481 { 1482 file_walk_data_t *fw; 1483 proc_t p; 1484 1485 if (wsp->walk_addr == NULL) { 1486 mdb_warn("file walk doesn't support global walks\n"); 1487 return (WALK_ERR); 1488 } 1489 1490 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1491 1492 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1493 mdb_free(fw, sizeof (file_walk_data_t)); 1494 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1495 return (WALK_ERR); 1496 } 1497 1498 if (p.p_user.u_finfo.fi_nfiles == 0) { 1499 mdb_free(fw, sizeof (file_walk_data_t)); 1500 return (WALK_DONE); 1501 } 1502 1503 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1504 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1505 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1506 1507 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1508 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1509 mdb_warn("failed to read file array at %p", 1510 p.p_user.u_finfo.fi_list); 1511 mdb_free(fw->fw_flist, fw->fw_flistsz); 1512 mdb_free(fw, sizeof (file_walk_data_t)); 1513 return (WALK_ERR); 1514 } 1515 1516 fw->fw_ndx = 0; 1517 wsp->walk_data = fw; 1518 1519 return (WALK_NEXT); 1520 } 1521 1522 int 1523 file_walk_step(mdb_walk_state_t *wsp) 1524 { 1525 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1526 struct file file; 1527 uintptr_t fp; 1528 1529 again: 1530 if (fw->fw_ndx == fw->fw_nofiles) 1531 return (WALK_DONE); 1532 1533 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1534 goto again; 1535 1536 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1537 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1538 } 1539 1540 int 1541 allfile_walk_step(mdb_walk_state_t *wsp) 1542 { 1543 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1544 struct file file; 1545 uintptr_t fp; 1546 1547 if (fw->fw_ndx == fw->fw_nofiles) 1548 return (WALK_DONE); 1549 1550 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1551 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1552 else 1553 bzero(&file, sizeof (file)); 1554 1555 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1556 } 1557 1558 void 1559 file_walk_fini(mdb_walk_state_t *wsp) 1560 { 1561 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1562 1563 mdb_free(fw->fw_flist, fw->fw_flistsz); 1564 mdb_free(fw, sizeof (file_walk_data_t)); 1565 } 1566 1567 int 1568 port_walk_init(mdb_walk_state_t *wsp) 1569 { 1570 if (wsp->walk_addr == NULL) { 1571 mdb_warn("port walk doesn't support global walks\n"); 1572 return (WALK_ERR); 1573 } 1574 1575 if (mdb_layered_walk("file", wsp) == -1) { 1576 mdb_warn("couldn't walk 'file'"); 1577 return (WALK_ERR); 1578 } 1579 return (WALK_NEXT); 1580 } 1581 1582 int 1583 port_walk_step(mdb_walk_state_t *wsp) 1584 { 1585 struct vnode vn; 1586 uintptr_t vp; 1587 uintptr_t pp; 1588 struct port port; 1589 1590 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1591 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1592 mdb_warn("failed to read vnode_t at %p", vp); 1593 return (WALK_ERR); 1594 } 1595 if (vn.v_type != VPORT) 1596 return (WALK_NEXT); 1597 1598 pp = (uintptr_t)vn.v_data; 1599 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1600 mdb_warn("failed to read port_t at %p", pp); 1601 return (WALK_ERR); 1602 } 1603 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1604 } 1605 1606 typedef struct portev_walk_data { 1607 list_node_t *pev_node; 1608 list_node_t *pev_last; 1609 size_t pev_offset; 1610 } portev_walk_data_t; 1611 1612 int 1613 portev_walk_init(mdb_walk_state_t *wsp) 1614 { 1615 portev_walk_data_t *pevd; 1616 struct port port; 1617 struct vnode vn; 1618 struct list *list; 1619 uintptr_t vp; 1620 1621 if (wsp->walk_addr == NULL) { 1622 mdb_warn("portev walk doesn't support global walks\n"); 1623 return (WALK_ERR); 1624 } 1625 1626 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1627 1628 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1629 mdb_free(pevd, sizeof (portev_walk_data_t)); 1630 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1631 return (WALK_ERR); 1632 } 1633 1634 vp = (uintptr_t)port.port_vnode; 1635 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1636 mdb_free(pevd, sizeof (portev_walk_data_t)); 1637 mdb_warn("failed to read vnode_t at %p", vp); 1638 return (WALK_ERR); 1639 } 1640 1641 if (vn.v_type != VPORT) { 1642 mdb_free(pevd, sizeof (portev_walk_data_t)); 1643 mdb_warn("input address (%p) does not point to an event port", 1644 wsp->walk_addr); 1645 return (WALK_ERR); 1646 } 1647 1648 if (port.port_queue.portq_nent == 0) { 1649 mdb_free(pevd, sizeof (portev_walk_data_t)); 1650 return (WALK_DONE); 1651 } 1652 list = &port.port_queue.portq_list; 1653 pevd->pev_offset = list->list_offset; 1654 pevd->pev_last = list->list_head.list_prev; 1655 pevd->pev_node = list->list_head.list_next; 1656 wsp->walk_data = pevd; 1657 return (WALK_NEXT); 1658 } 1659 1660 int 1661 portev_walk_step(mdb_walk_state_t *wsp) 1662 { 1663 portev_walk_data_t *pevd; 1664 struct port_kevent ev; 1665 uintptr_t evp; 1666 1667 pevd = (portev_walk_data_t *)wsp->walk_data; 1668 1669 if (pevd->pev_last == NULL) 1670 return (WALK_DONE); 1671 if (pevd->pev_node == pevd->pev_last) 1672 pevd->pev_last = NULL; /* last round */ 1673 1674 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1675 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1676 mdb_warn("failed to read port_kevent at %p", evp); 1677 return (WALK_DONE); 1678 } 1679 pevd->pev_node = ev.portkev_node.list_next; 1680 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1681 } 1682 1683 void 1684 portev_walk_fini(mdb_walk_state_t *wsp) 1685 { 1686 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1687 1688 if (pevd != NULL) 1689 mdb_free(pevd, sizeof (portev_walk_data_t)); 1690 } 1691 1692 typedef struct proc_walk_data { 1693 uintptr_t *pw_stack; 1694 int pw_depth; 1695 int pw_max; 1696 } proc_walk_data_t; 1697 1698 int 1699 proc_walk_init(mdb_walk_state_t *wsp) 1700 { 1701 GElf_Sym sym; 1702 proc_walk_data_t *pw; 1703 1704 if (wsp->walk_addr == NULL) { 1705 if (mdb_lookup_by_name("p0", &sym) == -1) { 1706 mdb_warn("failed to read 'practive'"); 1707 return (WALK_ERR); 1708 } 1709 wsp->walk_addr = (uintptr_t)sym.st_value; 1710 } 1711 1712 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1713 1714 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1715 mdb_warn("failed to read 'nproc'"); 1716 mdb_free(pw, sizeof (pw)); 1717 return (WALK_ERR); 1718 } 1719 1720 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1721 wsp->walk_data = pw; 1722 1723 return (WALK_NEXT); 1724 } 1725 1726 int 1727 proc_walk_step(mdb_walk_state_t *wsp) 1728 { 1729 proc_walk_data_t *pw = wsp->walk_data; 1730 uintptr_t addr = wsp->walk_addr; 1731 uintptr_t cld, sib; 1732 1733 int status; 1734 proc_t pr; 1735 1736 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1737 mdb_warn("failed to read proc at %p", addr); 1738 return (WALK_DONE); 1739 } 1740 1741 cld = (uintptr_t)pr.p_child; 1742 sib = (uintptr_t)pr.p_sibling; 1743 1744 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1745 pw->pw_depth--; 1746 goto sib; 1747 } 1748 1749 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1750 1751 if (status != WALK_NEXT) 1752 return (status); 1753 1754 if ((wsp->walk_addr = cld) != NULL) { 1755 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1756 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1757 addr, cld); 1758 goto sib; 1759 } 1760 1761 pw->pw_stack[pw->pw_depth++] = addr; 1762 1763 if (pw->pw_depth == pw->pw_max) { 1764 mdb_warn("depth %d exceeds max depth; try again\n", 1765 pw->pw_depth); 1766 return (WALK_DONE); 1767 } 1768 return (WALK_NEXT); 1769 } 1770 1771 sib: 1772 /* 1773 * We know that p0 has no siblings, and if another starting proc 1774 * was given, we don't want to walk its siblings anyway. 1775 */ 1776 if (pw->pw_depth == 0) 1777 return (WALK_DONE); 1778 1779 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1780 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1781 addr, sib); 1782 sib = NULL; 1783 } 1784 1785 if ((wsp->walk_addr = sib) == NULL) { 1786 if (pw->pw_depth > 0) { 1787 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1788 return (WALK_NEXT); 1789 } 1790 return (WALK_DONE); 1791 } 1792 1793 return (WALK_NEXT); 1794 } 1795 1796 void 1797 proc_walk_fini(mdb_walk_state_t *wsp) 1798 { 1799 proc_walk_data_t *pw = wsp->walk_data; 1800 1801 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1802 mdb_free(pw, sizeof (proc_walk_data_t)); 1803 } 1804 1805 int 1806 task_walk_init(mdb_walk_state_t *wsp) 1807 { 1808 task_t task; 1809 1810 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1811 mdb_warn("failed to read task at %p", wsp->walk_addr); 1812 return (WALK_ERR); 1813 } 1814 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1815 wsp->walk_data = task.tk_memb_list; 1816 return (WALK_NEXT); 1817 } 1818 1819 int 1820 task_walk_step(mdb_walk_state_t *wsp) 1821 { 1822 proc_t proc; 1823 int status; 1824 1825 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1826 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1827 return (WALK_DONE); 1828 } 1829 1830 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1831 1832 if (proc.p_tasknext == wsp->walk_data) 1833 return (WALK_DONE); 1834 1835 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1836 return (status); 1837 } 1838 1839 int 1840 project_walk_init(mdb_walk_state_t *wsp) 1841 { 1842 if (wsp->walk_addr == NULL) { 1843 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1844 mdb_warn("failed to read 'proj0p'"); 1845 return (WALK_ERR); 1846 } 1847 } 1848 wsp->walk_data = (void *)wsp->walk_addr; 1849 return (WALK_NEXT); 1850 } 1851 1852 int 1853 project_walk_step(mdb_walk_state_t *wsp) 1854 { 1855 uintptr_t addr = wsp->walk_addr; 1856 kproject_t pj; 1857 int status; 1858 1859 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1860 mdb_warn("failed to read project at %p", addr); 1861 return (WALK_DONE); 1862 } 1863 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1864 if (status != WALK_NEXT) 1865 return (status); 1866 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1867 if ((void *)wsp->walk_addr == wsp->walk_data) 1868 return (WALK_DONE); 1869 return (WALK_NEXT); 1870 } 1871 1872 static int 1873 generic_walk_step(mdb_walk_state_t *wsp) 1874 { 1875 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1876 wsp->walk_cbdata)); 1877 } 1878 1879 int 1880 seg_walk_init(mdb_walk_state_t *wsp) 1881 { 1882 if (wsp->walk_addr == NULL) { 1883 mdb_warn("seg walk must begin at struct as *\n"); 1884 return (WALK_ERR); 1885 } 1886 1887 /* 1888 * this is really just a wrapper to AVL tree walk 1889 */ 1890 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 1891 return (avl_walk_init(wsp)); 1892 } 1893 1894 static int 1895 cpu_walk_cmp(const void *l, const void *r) 1896 { 1897 uintptr_t lhs = *((uintptr_t *)l); 1898 uintptr_t rhs = *((uintptr_t *)r); 1899 cpu_t lcpu, rcpu; 1900 1901 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 1902 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 1903 1904 if (lcpu.cpu_id < rcpu.cpu_id) 1905 return (-1); 1906 1907 if (lcpu.cpu_id > rcpu.cpu_id) 1908 return (1); 1909 1910 return (0); 1911 } 1912 1913 typedef struct cpu_walk { 1914 uintptr_t *cw_array; 1915 int cw_ndx; 1916 } cpu_walk_t; 1917 1918 int 1919 cpu_walk_init(mdb_walk_state_t *wsp) 1920 { 1921 cpu_walk_t *cw; 1922 int max_ncpus, i = 0; 1923 uintptr_t current, first; 1924 cpu_t cpu, panic_cpu; 1925 uintptr_t panicstr, addr; 1926 GElf_Sym sym; 1927 1928 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 1929 1930 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 1931 mdb_warn("failed to read 'max_ncpus'"); 1932 return (WALK_ERR); 1933 } 1934 1935 if (mdb_readvar(&panicstr, "panicstr") == -1) { 1936 mdb_warn("failed to read 'panicstr'"); 1937 return (WALK_ERR); 1938 } 1939 1940 if (panicstr != NULL) { 1941 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 1942 mdb_warn("failed to find 'panic_cpu'"); 1943 return (WALK_ERR); 1944 } 1945 1946 addr = (uintptr_t)sym.st_value; 1947 1948 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 1949 mdb_warn("failed to read 'panic_cpu'"); 1950 return (WALK_ERR); 1951 } 1952 } 1953 1954 /* 1955 * Unfortunately, there is no platform-independent way to walk 1956 * CPUs in ID order. We therefore loop through in cpu_next order, 1957 * building an array of CPU pointers which will subsequently be 1958 * sorted. 1959 */ 1960 cw->cw_array = 1961 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 1962 1963 if (mdb_readvar(&first, "cpu_list") == -1) { 1964 mdb_warn("failed to read 'cpu_list'"); 1965 return (WALK_ERR); 1966 } 1967 1968 current = first; 1969 do { 1970 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 1971 mdb_warn("failed to read cpu at %p", current); 1972 return (WALK_ERR); 1973 } 1974 1975 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 1976 cw->cw_array[i++] = addr; 1977 } else { 1978 cw->cw_array[i++] = current; 1979 } 1980 } while ((current = (uintptr_t)cpu.cpu_next) != first); 1981 1982 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 1983 wsp->walk_data = cw; 1984 1985 return (WALK_NEXT); 1986 } 1987 1988 int 1989 cpu_walk_step(mdb_walk_state_t *wsp) 1990 { 1991 cpu_walk_t *cw = wsp->walk_data; 1992 cpu_t cpu; 1993 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 1994 1995 if (addr == NULL) 1996 return (WALK_DONE); 1997 1998 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 1999 mdb_warn("failed to read cpu at %p", addr); 2000 return (WALK_DONE); 2001 } 2002 2003 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2004 } 2005 2006 typedef struct cpuinfo_data { 2007 intptr_t cid_cpu; 2008 uintptr_t cid_lbolt; 2009 uintptr_t **cid_ithr; 2010 char cid_print_head; 2011 char cid_print_thr; 2012 char cid_print_ithr; 2013 char cid_print_flags; 2014 } cpuinfo_data_t; 2015 2016 int 2017 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2018 { 2019 cpu_t c; 2020 int id; 2021 uint8_t pil; 2022 2023 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2024 return (WALK_NEXT); 2025 2026 if (thr->t_bound_cpu == NULL) { 2027 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2028 return (WALK_NEXT); 2029 } 2030 2031 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2032 2033 if ((id = c.cpu_id) >= NCPU) { 2034 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2035 thr->t_bound_cpu, id, NCPU); 2036 return (WALK_NEXT); 2037 } 2038 2039 if ((pil = thr->t_pil) >= NINTR) { 2040 mdb_warn("thread %p has pil (%d) greater than %d\n", 2041 addr, pil, NINTR); 2042 return (WALK_NEXT); 2043 } 2044 2045 if (cid->cid_ithr[id][pil] != NULL) { 2046 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2047 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2048 return (WALK_NEXT); 2049 } 2050 2051 cid->cid_ithr[id][pil] = addr; 2052 2053 return (WALK_NEXT); 2054 } 2055 2056 #define CPUINFO_IDWIDTH 3 2057 #define CPUINFO_FLAGWIDTH 9 2058 2059 #ifdef _LP64 2060 #if defined(__amd64) 2061 #define CPUINFO_TWIDTH 16 2062 #define CPUINFO_CPUWIDTH 16 2063 #else 2064 #define CPUINFO_CPUWIDTH 11 2065 #define CPUINFO_TWIDTH 11 2066 #endif 2067 #else 2068 #define CPUINFO_CPUWIDTH 8 2069 #define CPUINFO_TWIDTH 8 2070 #endif 2071 2072 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2073 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2074 #define CPUINFO_ITHRDELT 4 2075 2076 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2077 flagline < nflaglines ? flagbuf[flagline++] : "") 2078 2079 int 2080 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2081 { 2082 kthread_t t; 2083 disp_t disp; 2084 proc_t p; 2085 uintptr_t pinned; 2086 char **flagbuf; 2087 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2088 2089 const char *flags[] = { 2090 "RUNNING", "READY", "QUIESCED", "EXISTS", 2091 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2092 "SPARE", "FAULTED", NULL 2093 }; 2094 2095 if (cid->cid_cpu != -1) { 2096 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2097 return (WALK_NEXT); 2098 2099 /* 2100 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2101 */ 2102 cid->cid_cpu = -1; 2103 rval = WALK_DONE; 2104 } 2105 2106 if (cid->cid_print_head) { 2107 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2108 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2109 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2110 "PROC"); 2111 cid->cid_print_head = FALSE; 2112 } 2113 2114 bspl = cpu->cpu_base_spl; 2115 2116 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2117 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2118 return (WALK_ERR); 2119 } 2120 2121 mdb_printf("%3d %0*p %3x %4d %4d ", 2122 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2123 disp.disp_nrunnable, bspl); 2124 2125 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2126 mdb_printf("%3d ", t.t_pri); 2127 } else { 2128 mdb_printf("%3s ", "-"); 2129 } 2130 2131 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2132 cpu->cpu_kprunrun ? "yes" : "no"); 2133 2134 if (cpu->cpu_last_swtch) { 2135 clock_t lbolt; 2136 2137 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2138 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2139 return (WALK_ERR); 2140 } 2141 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2142 } else { 2143 mdb_printf("%-6s ", "-"); 2144 } 2145 2146 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2147 2148 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2149 mdb_printf(" (idle)\n"); 2150 else if (cpu->cpu_thread == NULL) 2151 mdb_printf(" -\n"); 2152 else { 2153 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2154 mdb_printf(" %s\n", p.p_user.u_comm); 2155 } else { 2156 mdb_printf(" ?\n"); 2157 } 2158 } 2159 2160 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2161 2162 if (cid->cid_print_flags) { 2163 int first = 1, i, j, k; 2164 char *s; 2165 2166 cid->cid_print_head = TRUE; 2167 2168 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2169 if (!(cpu->cpu_flags & i)) 2170 continue; 2171 2172 if (first) { 2173 s = mdb_alloc(CPUINFO_THRDELT + 1, 2174 UM_GC | UM_SLEEP); 2175 2176 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2177 "%*s|%*s", CPUINFO_FLAGDELT, "", 2178 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2179 flagbuf[nflaglines++] = s; 2180 } 2181 2182 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2183 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2184 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2185 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2186 first ? "<--+" : ""); 2187 2188 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2189 s[k] = ' '; 2190 s[k] = '\0'; 2191 2192 flagbuf[nflaglines++] = s; 2193 first = 0; 2194 } 2195 } 2196 2197 if (cid->cid_print_ithr) { 2198 int i, found_one = FALSE; 2199 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2200 2201 for (i = NINTR - 1; i >= 0; i--) { 2202 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2203 2204 if (iaddr == NULL) 2205 continue; 2206 2207 if (!found_one) { 2208 found_one = TRUE; 2209 2210 CPUINFO_INDENT; 2211 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2212 CPUINFO_ITHRDELT, ""); 2213 2214 CPUINFO_INDENT; 2215 mdb_printf("%c%*s+--> %3s %s\n", 2216 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2217 "", "PIL", "THREAD"); 2218 } 2219 2220 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2221 mdb_warn("failed to read kthread_t at %p", 2222 iaddr); 2223 return (WALK_ERR); 2224 } 2225 2226 CPUINFO_INDENT; 2227 mdb_printf("%c%*s %3d %0*p\n", 2228 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2229 t.t_pil, CPUINFO_TWIDTH, iaddr); 2230 2231 pinned = (uintptr_t)t.t_intr; 2232 } 2233 2234 if (found_one && pinned != NULL) { 2235 cid->cid_print_head = TRUE; 2236 (void) strcpy(p.p_user.u_comm, "?"); 2237 2238 if (mdb_vread(&t, sizeof (t), 2239 (uintptr_t)pinned) == -1) { 2240 mdb_warn("failed to read kthread_t at %p", 2241 pinned); 2242 return (WALK_ERR); 2243 } 2244 if (mdb_vread(&p, sizeof (p), 2245 (uintptr_t)t.t_procp) == -1) { 2246 mdb_warn("failed to read proc_t at %p", 2247 t.t_procp); 2248 return (WALK_ERR); 2249 } 2250 2251 CPUINFO_INDENT; 2252 mdb_printf("%c%*s %3s %0*p %s\n", 2253 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2254 CPUINFO_TWIDTH, pinned, 2255 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2256 "(idle)" : p.p_user.u_comm); 2257 } 2258 } 2259 2260 if (disp.disp_nrunnable && cid->cid_print_thr) { 2261 dispq_t *dq; 2262 2263 int i, npri = disp.disp_npri; 2264 2265 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2266 2267 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2268 (uintptr_t)disp.disp_q) == -1) { 2269 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2270 return (WALK_ERR); 2271 } 2272 2273 CPUINFO_INDENT; 2274 mdb_printf("|\n"); 2275 2276 CPUINFO_INDENT; 2277 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2278 CPUINFO_TWIDTH, "THREAD", "PROC"); 2279 2280 for (i = npri - 1; i >= 0; i--) { 2281 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2282 2283 while (taddr != NULL) { 2284 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2285 mdb_warn("failed to read kthread_t " 2286 "at %p", taddr); 2287 return (WALK_ERR); 2288 } 2289 if (mdb_vread(&p, sizeof (p), 2290 (uintptr_t)t.t_procp) == -1) { 2291 mdb_warn("failed to read proc_t at %p", 2292 t.t_procp); 2293 return (WALK_ERR); 2294 } 2295 2296 CPUINFO_INDENT; 2297 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2298 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2299 2300 taddr = (uintptr_t)t.t_link; 2301 } 2302 } 2303 cid->cid_print_head = TRUE; 2304 } 2305 2306 while (flagline < nflaglines) 2307 mdb_printf("%s\n", flagbuf[flagline++]); 2308 2309 if (cid->cid_print_head) 2310 mdb_printf("\n"); 2311 2312 return (rval); 2313 } 2314 2315 int 2316 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2317 { 2318 uint_t verbose = FALSE; 2319 cpuinfo_data_t cid; 2320 GElf_Sym sym; 2321 clock_t lbolt; 2322 2323 cid.cid_print_ithr = FALSE; 2324 cid.cid_print_thr = FALSE; 2325 cid.cid_print_flags = FALSE; 2326 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2327 cid.cid_cpu = -1; 2328 2329 if (flags & DCMD_ADDRSPEC) 2330 cid.cid_cpu = addr; 2331 2332 if (mdb_getopts(argc, argv, 2333 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2334 return (DCMD_USAGE); 2335 2336 if (verbose) { 2337 cid.cid_print_ithr = TRUE; 2338 cid.cid_print_thr = TRUE; 2339 cid.cid_print_flags = TRUE; 2340 cid.cid_print_head = TRUE; 2341 } 2342 2343 if (cid.cid_print_ithr) { 2344 int i; 2345 2346 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2347 * NCPU, UM_SLEEP | UM_GC); 2348 2349 for (i = 0; i < NCPU; i++) 2350 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2351 NINTR, UM_SLEEP | UM_GC); 2352 2353 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2354 &cid) == -1) { 2355 mdb_warn("couldn't walk thread"); 2356 return (DCMD_ERR); 2357 } 2358 } 2359 2360 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2361 mdb_warn("failed to find panic_lbolt"); 2362 return (DCMD_ERR); 2363 } 2364 2365 cid.cid_lbolt = (uintptr_t)sym.st_value; 2366 2367 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2368 mdb_warn("failed to read panic_lbolt"); 2369 return (DCMD_ERR); 2370 } 2371 2372 if (lbolt == 0) { 2373 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2374 mdb_warn("failed to find lbolt"); 2375 return (DCMD_ERR); 2376 } 2377 cid.cid_lbolt = (uintptr_t)sym.st_value; 2378 } 2379 2380 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2381 mdb_warn("can't walk cpus"); 2382 return (DCMD_ERR); 2383 } 2384 2385 if (cid.cid_cpu != -1) { 2386 /* 2387 * We didn't find this CPU when we walked through the CPUs 2388 * (i.e. the address specified doesn't show up in the "cpu" 2389 * walk). However, the specified address may still correspond 2390 * to a valid cpu_t (for example, if the specified address is 2391 * the actual panicking cpu_t and not the cached panic_cpu). 2392 * Point is: even if we didn't find it, we still want to try 2393 * to print the specified address as a cpu_t. 2394 */ 2395 cpu_t cpu; 2396 2397 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2398 mdb_warn("%p is neither a valid CPU ID nor a " 2399 "valid cpu_t address\n", cid.cid_cpu); 2400 return (DCMD_ERR); 2401 } 2402 2403 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2404 } 2405 2406 return (DCMD_OK); 2407 } 2408 2409 /*ARGSUSED*/ 2410 int 2411 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2412 { 2413 int i; 2414 2415 if (!(flags & DCMD_ADDRSPEC)) 2416 return (DCMD_USAGE); 2417 2418 for (i = 0; i < sizeof (addr) * NBBY; i++) 2419 mdb_printf("%p\n", addr ^ (1UL << i)); 2420 2421 return (DCMD_OK); 2422 } 2423 2424 /* 2425 * Grumble, grumble. 2426 */ 2427 #define SMAP_HASHFUNC(vp, off) \ 2428 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2429 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2430 2431 int 2432 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2433 { 2434 long smd_hashmsk; 2435 int hash; 2436 uintptr_t offset = 0; 2437 struct smap smp; 2438 uintptr_t saddr, kaddr; 2439 uintptr_t smd_hash, smd_smap; 2440 struct seg seg; 2441 2442 if (!(flags & DCMD_ADDRSPEC)) 2443 return (DCMD_USAGE); 2444 2445 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2446 mdb_warn("failed to read smd_hashmsk"); 2447 return (DCMD_ERR); 2448 } 2449 2450 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2451 mdb_warn("failed to read smd_hash"); 2452 return (DCMD_ERR); 2453 } 2454 2455 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2456 mdb_warn("failed to read smd_hash"); 2457 return (DCMD_ERR); 2458 } 2459 2460 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2461 mdb_warn("failed to read segkmap"); 2462 return (DCMD_ERR); 2463 } 2464 2465 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2466 mdb_warn("failed to read segkmap at %p", kaddr); 2467 return (DCMD_ERR); 2468 } 2469 2470 if (argc != 0) { 2471 const mdb_arg_t *arg = &argv[0]; 2472 2473 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2474 offset = arg->a_un.a_val; 2475 else 2476 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2477 } 2478 2479 hash = SMAP_HASHFUNC(addr, offset); 2480 2481 if (mdb_vread(&saddr, sizeof (saddr), 2482 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2483 mdb_warn("couldn't read smap at %p", 2484 smd_hash + hash * sizeof (uintptr_t)); 2485 return (DCMD_ERR); 2486 } 2487 2488 do { 2489 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2490 mdb_warn("couldn't read smap at %p", saddr); 2491 return (DCMD_ERR); 2492 } 2493 2494 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2495 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2496 addr, offset, saddr, ((saddr - smd_smap) / 2497 sizeof (smp)) * MAXBSIZE + seg.s_base); 2498 return (DCMD_OK); 2499 } 2500 2501 saddr = (uintptr_t)smp.sm_hash; 2502 } while (saddr != NULL); 2503 2504 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2505 return (DCMD_OK); 2506 } 2507 2508 /*ARGSUSED*/ 2509 int 2510 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2511 { 2512 uintptr_t kaddr; 2513 struct seg seg; 2514 struct segmap_data sd; 2515 2516 if (!(flags & DCMD_ADDRSPEC)) 2517 return (DCMD_USAGE); 2518 2519 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2520 mdb_warn("failed to read segkmap"); 2521 return (DCMD_ERR); 2522 } 2523 2524 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2525 mdb_warn("failed to read segkmap at %p", kaddr); 2526 return (DCMD_ERR); 2527 } 2528 2529 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2530 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2531 return (DCMD_ERR); 2532 } 2533 2534 mdb_printf("%p is smap %p\n", addr, 2535 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2536 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2537 2538 return (DCMD_OK); 2539 } 2540 2541 int 2542 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2543 { 2544 if (p->p_as == *asp) 2545 mdb_printf("%p\n", addr); 2546 return (WALK_NEXT); 2547 } 2548 2549 /*ARGSUSED*/ 2550 int 2551 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2552 { 2553 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2554 return (DCMD_USAGE); 2555 2556 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2557 mdb_warn("failed to walk proc"); 2558 return (DCMD_ERR); 2559 } 2560 2561 return (DCMD_OK); 2562 } 2563 2564 /*ARGSUSED*/ 2565 int 2566 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2567 { 2568 proc_t parent; 2569 int ident = 0; 2570 uintptr_t paddr; 2571 2572 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2573 mdb_vread(&parent, sizeof (parent), paddr); 2574 paddr = (uintptr_t)parent.p_parent; 2575 } 2576 2577 mdb_inc_indent(ident); 2578 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2579 mdb_dec_indent(ident); 2580 2581 return (WALK_NEXT); 2582 } 2583 2584 void 2585 ptree_ancestors(uintptr_t addr, uintptr_t start) 2586 { 2587 proc_t p; 2588 2589 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2590 mdb_warn("couldn't read ancestor at %p", addr); 2591 return; 2592 } 2593 2594 if (p.p_parent != NULL) 2595 ptree_ancestors((uintptr_t)p.p_parent, start); 2596 2597 if (addr != start) 2598 (void) ptree_walk(addr, &p, NULL); 2599 } 2600 2601 /*ARGSUSED*/ 2602 int 2603 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2604 { 2605 if (!(flags & DCMD_ADDRSPEC)) 2606 addr = NULL; 2607 else 2608 ptree_ancestors(addr, addr); 2609 2610 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2611 mdb_warn("couldn't walk 'proc'"); 2612 return (DCMD_ERR); 2613 } 2614 2615 return (DCMD_OK); 2616 } 2617 2618 /*ARGSUSED*/ 2619 static int 2620 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2621 { 2622 int fdnum; 2623 const mdb_arg_t *argp = &argv[0]; 2624 proc_t p; 2625 uf_entry_t uf; 2626 2627 if ((flags & DCMD_ADDRSPEC) == 0) { 2628 mdb_warn("fd doesn't give global information\n"); 2629 return (DCMD_ERR); 2630 } 2631 if (argc != 1) 2632 return (DCMD_USAGE); 2633 2634 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2635 fdnum = argp->a_un.a_val; 2636 else 2637 fdnum = mdb_strtoull(argp->a_un.a_str); 2638 2639 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2640 mdb_warn("couldn't read proc_t at %p", addr); 2641 return (DCMD_ERR); 2642 } 2643 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2644 mdb_warn("process %p only has %d files open.\n", 2645 addr, p.p_user.u_finfo.fi_nfiles); 2646 return (DCMD_ERR); 2647 } 2648 if (mdb_vread(&uf, sizeof (uf_entry_t), 2649 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2650 mdb_warn("couldn't read uf_entry_t at %p", 2651 &p.p_user.u_finfo.fi_list[fdnum]); 2652 return (DCMD_ERR); 2653 } 2654 2655 mdb_printf("%p\n", uf.uf_file); 2656 return (DCMD_OK); 2657 } 2658 2659 /*ARGSUSED*/ 2660 static int 2661 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2662 { 2663 pid_t pid = (pid_t)addr; 2664 2665 if (argc != 0) 2666 return (DCMD_USAGE); 2667 2668 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2669 mdb_warn("PID 0t%d not found\n", pid); 2670 return (DCMD_ERR); 2671 } 2672 2673 mdb_printf("%p\n", addr); 2674 return (DCMD_OK); 2675 } 2676 2677 static char *sysfile_cmd[] = { 2678 "exclude:", 2679 "include:", 2680 "forceload:", 2681 "rootdev:", 2682 "rootfs:", 2683 "swapdev:", 2684 "swapfs:", 2685 "moddir:", 2686 "set", 2687 "unknown", 2688 }; 2689 2690 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2691 2692 /*ARGSUSED*/ 2693 static int 2694 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2695 { 2696 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2697 *target = NULL; 2698 return (WALK_DONE); 2699 } 2700 return (WALK_NEXT); 2701 } 2702 2703 /*ARGSUSED*/ 2704 static int 2705 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2706 { 2707 struct sysparam *sysp, sys; 2708 char var[256]; 2709 char modname[256]; 2710 char val[256]; 2711 char strval[256]; 2712 vmem_t *mod_sysfile_arena; 2713 void *straddr; 2714 2715 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2716 mdb_warn("failed to read sysparam_hd"); 2717 return (DCMD_ERR); 2718 } 2719 2720 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2721 mdb_warn("failed to read mod_sysfile_arena"); 2722 return (DCMD_ERR); 2723 } 2724 2725 while (sysp != NULL) { 2726 var[0] = '\0'; 2727 val[0] = '\0'; 2728 modname[0] = '\0'; 2729 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2730 mdb_warn("couldn't read sysparam %p", sysp); 2731 return (DCMD_ERR); 2732 } 2733 if (sys.sys_modnam != NULL && 2734 mdb_readstr(modname, 256, 2735 (uintptr_t)sys.sys_modnam) == -1) { 2736 mdb_warn("couldn't read modname in %p", sysp); 2737 return (DCMD_ERR); 2738 } 2739 if (sys.sys_ptr != NULL && 2740 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2741 mdb_warn("couldn't read ptr in %p", sysp); 2742 return (DCMD_ERR); 2743 } 2744 if (sys.sys_op != SETOP_NONE) { 2745 /* 2746 * Is this an int or a string? We determine this 2747 * by checking whether straddr is contained in 2748 * mod_sysfile_arena. If so, the walker will set 2749 * straddr to NULL. 2750 */ 2751 straddr = (void *)(uintptr_t)sys.sys_info; 2752 if (sys.sys_op == SETOP_ASSIGN && 2753 sys.sys_info != 0 && 2754 mdb_pwalk("vmem_seg", 2755 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2756 (uintptr_t)mod_sysfile_arena) == 0 && 2757 straddr == NULL && 2758 mdb_readstr(strval, 256, 2759 (uintptr_t)sys.sys_info) != -1) { 2760 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2761 strval); 2762 } else { 2763 (void) mdb_snprintf(val, sizeof (val), 2764 "0x%llx [0t%llu]", sys.sys_info, 2765 sys.sys_info); 2766 } 2767 } 2768 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2769 modname, modname[0] == '\0' ? "" : ":", 2770 var, sysfile_ops[sys.sys_op], val); 2771 2772 sysp = sys.sys_next; 2773 } 2774 2775 return (DCMD_OK); 2776 } 2777 2778 /* 2779 * Dump a taskq_ent_t given its address. 2780 */ 2781 /*ARGSUSED*/ 2782 int 2783 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2784 { 2785 taskq_ent_t taskq_ent; 2786 GElf_Sym sym; 2787 char buf[MDB_SYM_NAMLEN+1]; 2788 2789 2790 if (!(flags & DCMD_ADDRSPEC)) { 2791 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2792 return (DCMD_USAGE); 2793 } 2794 2795 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2796 mdb_warn("failed to read taskq_ent_t at %p", addr); 2797 return (DCMD_ERR); 2798 } 2799 2800 if (DCMD_HDRSPEC(flags)) { 2801 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2802 "ENTRY", "ARG", "FUNCTION"); 2803 } 2804 2805 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2806 buf, sizeof (buf), &sym) == -1) { 2807 (void) strcpy(buf, "????"); 2808 } 2809 2810 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2811 2812 return (DCMD_OK); 2813 } 2814 2815 /* 2816 * Given the address of the (taskq_t) task queue head, walk the queue listing 2817 * the address of every taskq_ent_t. 2818 */ 2819 int 2820 taskq_walk_init(mdb_walk_state_t *wsp) 2821 { 2822 taskq_t tq_head; 2823 2824 2825 if (wsp->walk_addr == NULL) { 2826 mdb_warn("start address required\n"); 2827 return (WALK_ERR); 2828 } 2829 2830 2831 /* 2832 * Save the address of the list head entry. This terminates the list. 2833 */ 2834 wsp->walk_data = (void *) 2835 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2836 2837 2838 /* 2839 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2840 */ 2841 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2842 -1) { 2843 mdb_warn("failed to read taskq list head at %p", 2844 wsp->walk_addr); 2845 } 2846 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2847 2848 2849 /* 2850 * Check for null list (next=head) 2851 */ 2852 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2853 return (WALK_DONE); 2854 } 2855 2856 return (WALK_NEXT); 2857 } 2858 2859 2860 int 2861 taskq_walk_step(mdb_walk_state_t *wsp) 2862 { 2863 taskq_ent_t tq_ent; 2864 int status; 2865 2866 2867 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 2868 -1) { 2869 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 2870 return (DCMD_ERR); 2871 } 2872 2873 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 2874 wsp->walk_cbdata); 2875 2876 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 2877 2878 2879 /* Check if we're at the last element (next=head) */ 2880 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2881 return (WALK_DONE); 2882 } 2883 2884 return (status); 2885 } 2886 2887 int 2888 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 2889 { 2890 2891 if (*didp == thr->t_did) { 2892 mdb_printf("%p\n", addr); 2893 return (WALK_DONE); 2894 } else 2895 return (WALK_NEXT); 2896 } 2897 2898 /*ARGSUSED*/ 2899 int 2900 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2901 { 2902 const mdb_arg_t *argp = &argv[0]; 2903 kt_did_t did; 2904 2905 if (argc != 1) 2906 return (DCMD_USAGE); 2907 2908 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 2909 2910 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 2911 mdb_warn("failed to walk thread"); 2912 return (DCMD_ERR); 2913 2914 } 2915 return (DCMD_OK); 2916 2917 } 2918 2919 static int 2920 errorq_walk_init(mdb_walk_state_t *wsp) 2921 { 2922 if (wsp->walk_addr == NULL && 2923 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 2924 mdb_warn("failed to read errorq_list"); 2925 return (WALK_ERR); 2926 } 2927 2928 return (WALK_NEXT); 2929 } 2930 2931 static int 2932 errorq_walk_step(mdb_walk_state_t *wsp) 2933 { 2934 uintptr_t addr = wsp->walk_addr; 2935 errorq_t eq; 2936 2937 if (addr == NULL) 2938 return (WALK_DONE); 2939 2940 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 2941 mdb_warn("failed to read errorq at %p", addr); 2942 return (WALK_ERR); 2943 } 2944 2945 wsp->walk_addr = (uintptr_t)eq.eq_next; 2946 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 2947 } 2948 2949 typedef struct eqd_walk_data { 2950 uintptr_t *eqd_stack; 2951 void *eqd_buf; 2952 ulong_t eqd_qpos; 2953 ulong_t eqd_qlen; 2954 size_t eqd_size; 2955 } eqd_walk_data_t; 2956 2957 /* 2958 * In order to walk the list of pending error queue elements, we push the 2959 * addresses of the corresponding data buffers in to the eqd_stack array. 2960 * The error lists are in reverse chronological order when iterating using 2961 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 2962 * walker client gets addresses in order from oldest error to newest error. 2963 */ 2964 static void 2965 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 2966 { 2967 errorq_elem_t eqe; 2968 2969 while (addr != NULL) { 2970 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 2971 mdb_warn("failed to read errorq element at %p", addr); 2972 break; 2973 } 2974 2975 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 2976 mdb_warn("errorq is overfull -- more than %lu " 2977 "elems found\n", eqdp->eqd_qlen); 2978 break; 2979 } 2980 2981 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 2982 addr = (uintptr_t)eqe.eqe_prev; 2983 } 2984 } 2985 2986 static int 2987 eqd_walk_init(mdb_walk_state_t *wsp) 2988 { 2989 eqd_walk_data_t *eqdp; 2990 errorq_elem_t eqe, *addr; 2991 errorq_t eq; 2992 ulong_t i; 2993 2994 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 2995 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 2996 return (WALK_ERR); 2997 } 2998 2999 if (eq.eq_ptail != NULL && 3000 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3001 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3002 return (WALK_ERR); 3003 } 3004 3005 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3006 wsp->walk_data = eqdp; 3007 3008 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3009 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3010 eqdp->eqd_qlen = eq.eq_qlen; 3011 eqdp->eqd_qpos = 0; 3012 eqdp->eqd_size = eq.eq_size; 3013 3014 /* 3015 * The newest elements in the queue are on the pending list, so we 3016 * push those on to our stack first. 3017 */ 3018 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3019 3020 /* 3021 * If eq_ptail is set, it may point to a subset of the errors on the 3022 * pending list in the event a casptr() failed; if ptail's data is 3023 * already in our stack, NULL out eq_ptail and ignore it. 3024 */ 3025 if (eq.eq_ptail != NULL) { 3026 for (i = 0; i < eqdp->eqd_qpos; i++) { 3027 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3028 eq.eq_ptail = NULL; 3029 break; 3030 } 3031 } 3032 } 3033 3034 /* 3035 * If eq_phead is set, it has the processing list in order from oldest 3036 * to newest. Use this to recompute eq_ptail as best we can and then 3037 * we nicely fall into eqd_push_list() of eq_ptail below. 3038 */ 3039 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3040 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3041 eq.eq_ptail = addr; 3042 3043 /* 3044 * The oldest elements in the queue are on the processing list, subject 3045 * to machinations in the if-clauses above. Push any such elements. 3046 */ 3047 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3048 return (WALK_NEXT); 3049 } 3050 3051 static int 3052 eqd_walk_step(mdb_walk_state_t *wsp) 3053 { 3054 eqd_walk_data_t *eqdp = wsp->walk_data; 3055 uintptr_t addr; 3056 3057 if (eqdp->eqd_qpos == 0) 3058 return (WALK_DONE); 3059 3060 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3061 3062 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3063 mdb_warn("failed to read errorq data at %p", addr); 3064 return (WALK_ERR); 3065 } 3066 3067 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3068 } 3069 3070 static void 3071 eqd_walk_fini(mdb_walk_state_t *wsp) 3072 { 3073 eqd_walk_data_t *eqdp = wsp->walk_data; 3074 3075 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3076 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3077 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3078 } 3079 3080 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3081 3082 static int 3083 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3084 { 3085 int i; 3086 errorq_t eq; 3087 uint_t opt_v = FALSE; 3088 3089 if (!(flags & DCMD_ADDRSPEC)) { 3090 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3091 mdb_warn("can't walk 'errorq'"); 3092 return (DCMD_ERR); 3093 } 3094 return (DCMD_OK); 3095 } 3096 3097 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3098 argc -= i; 3099 argv += i; 3100 3101 if (argc != 0) 3102 return (DCMD_USAGE); 3103 3104 if (opt_v || DCMD_HDRSPEC(flags)) { 3105 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3106 "ADDR", "NAME", "S", "V", "N"); 3107 if (!opt_v) { 3108 mdb_printf("%7s %7s %7s%</u>\n", 3109 "ACCEPT", "DROP", "LOG"); 3110 } else { 3111 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3112 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3113 } 3114 } 3115 3116 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3117 mdb_warn("failed to read errorq at %p", addr); 3118 return (DCMD_ERR); 3119 } 3120 3121 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3122 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3123 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3124 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3125 3126 if (!opt_v) { 3127 mdb_printf("%7llu %7llu %7llu\n", 3128 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3129 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3130 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3131 } else { 3132 mdb_printf("%5s %6lu %6lu %3u %a\n", 3133 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3134 mdb_printf("%38s\n%41s" 3135 "%12s %llu\n" 3136 "%53s %llu\n" 3137 "%53s %llu\n" 3138 "%53s %llu\n" 3139 "%53s %llu\n" 3140 "%53s %llu\n" 3141 "%53s %llu\n" 3142 "%53s %llu\n\n", 3143 "|", "+-> ", 3144 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3145 "DROPPED", EQKSVAL(eq, eqk_dropped), 3146 "LOGGED", EQKSVAL(eq, eqk_logged), 3147 "RESERVED", EQKSVAL(eq, eqk_reserved), 3148 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3149 "COMMITTED", EQKSVAL(eq, eqk_committed), 3150 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3151 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3152 } 3153 3154 return (DCMD_OK); 3155 } 3156 3157 /*ARGSUSED*/ 3158 static int 3159 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3160 { 3161 cpu_t panic_cpu; 3162 kthread_t *panic_thread; 3163 void *panicbuf; 3164 panic_data_t *pd; 3165 int i, n; 3166 3167 if (!mdb_prop_postmortem) { 3168 mdb_warn("panicinfo can only be run on a system " 3169 "dump; see dumpadm(1M)\n"); 3170 return (DCMD_ERR); 3171 } 3172 3173 if (flags & DCMD_ADDRSPEC || argc != 0) 3174 return (DCMD_USAGE); 3175 3176 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3177 mdb_warn("failed to read 'panic_cpu'"); 3178 else 3179 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3180 3181 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3182 mdb_warn("failed to read 'panic_thread'"); 3183 else 3184 mdb_printf("%16s %?p\n", "thread", panic_thread); 3185 3186 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3187 pd = (panic_data_t *)panicbuf; 3188 3189 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3190 pd->pd_version != PANICBUFVERS) { 3191 mdb_warn("failed to read 'panicbuf'"); 3192 mdb_free(panicbuf, PANICBUFSIZE); 3193 return (DCMD_ERR); 3194 } 3195 3196 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3197 3198 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3199 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3200 3201 for (i = 0; i < n; i++) 3202 mdb_printf("%16s %?llx\n", 3203 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3204 3205 mdb_free(panicbuf, PANICBUFSIZE); 3206 return (DCMD_OK); 3207 } 3208 3209 static const mdb_dcmd_t dcmds[] = { 3210 3211 /* from genunix.c */ 3212 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3213 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3214 { "binding_hash_entry", ":", "print driver names hash table entry", 3215 binding_hash_entry }, 3216 { "callout", NULL, "print callout table", callout }, 3217 { "class", NULL, "print process scheduler classes", class }, 3218 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3219 { "did2thread", "? kt_did", "find kernel thread for this id", 3220 did2thread }, 3221 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3222 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3223 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3224 { "lminfo", NULL, "print lock manager information", lminfo }, 3225 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3226 { "panicinfo", NULL, "print panic information", panicinfo }, 3227 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3228 { "pmap", ":[-q]", "print process memory map", pmap }, 3229 { "project", NULL, "display kernel project(s)", project }, 3230 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3231 { "pgrep", "[-x] [-n | -o] pattern", 3232 "pattern match against all processes", pgrep }, 3233 { "ptree", NULL, "print process tree", ptree }, 3234 { "seg", ":", "print address space segment", seg }, 3235 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3236 sysevent}, 3237 { "sysevent_channel", "?", "print sysevent channel database", 3238 sysevent_channel}, 3239 { "sysevent_class_list", ":", "print sysevent class list", 3240 sysevent_class_list}, 3241 { "sysevent_subclass_list", ":", 3242 "print sysevent subclass list", sysevent_subclass_list}, 3243 { "system", NULL, "print contents of /etc/system file", sysfile }, 3244 { "task", NULL, "display kernel task(s)", task }, 3245 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3246 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3247 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3248 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3249 whereopen }, 3250 3251 /* from zone.c */ 3252 { "zone", "?", "display kernel zone(s)", zoneprt }, 3253 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3254 3255 /* from bio.c */ 3256 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3257 3258 /* from contract.c */ 3259 { "contract", "?", "display a contract", cmd_contract }, 3260 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3261 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3262 3263 /* from cpupart.c */ 3264 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3265 3266 /* from cyclic.c */ 3267 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3268 { "cycid", "?", "dump a cyclic id", cycid }, 3269 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3270 { "cyclic", ":", "developer information", cyclic }, 3271 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3272 3273 /* from devinfo.c */ 3274 { "devbindings", "?[-qs] [device-name | major-num]", 3275 "print devinfo nodes bound to device-name or major-num", 3276 devbindings, devinfo_help }, 3277 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3278 devinfo_help }, 3279 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3280 devinfo_audit }, 3281 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3282 devinfo_audit_log }, 3283 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3284 devinfo_audit_node }, 3285 { "devinfo2driver", ":", "find driver name for this devinfo node", 3286 devinfo2driver }, 3287 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3288 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3289 dev2major }, 3290 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3291 dev2minor }, 3292 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3293 devt }, 3294 { "major2name", "?<major-num>", "convert major number to dev name", 3295 major2name }, 3296 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3297 minornodes }, 3298 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3299 modctl2devinfo }, 3300 { "name2major", "<dev-name>", "convert dev name to major number", 3301 name2major }, 3302 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3303 { "softstate", ":<instance>", "retrieve soft-state pointer", 3304 softstate }, 3305 { "devinfo_fm", ":", "devinfo fault managment configuration", 3306 devinfo_fm }, 3307 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3308 devinfo_fmce}, 3309 3310 /* from findstack.c */ 3311 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3312 { "findstack_debug", NULL, "toggle findstack debugging", 3313 findstack_debug }, 3314 3315 /* from kgrep.c + genunix.c */ 3316 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3317 kgrep_help }, 3318 3319 /* from kmem.c */ 3320 { "allocdby", ":", "given a thread, print its allocated buffers", 3321 allocdby }, 3322 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3323 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3324 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3325 { "kmalog", "?[ fail | slab ]", 3326 "display kmem transaction log and stack traces", kmalog }, 3327 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3328 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3329 "of the kmem allocator", kmausers, kmausers_help }, 3330 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3331 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3332 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3333 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3334 kmem_verify }, 3335 { "vmem", "?", "print a vmem_t", vmem }, 3336 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3337 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3338 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3339 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3340 whatis_help }, 3341 { "whatthread", ":[-v]", "print threads whose stack contains the " 3342 "given address", whatthread }, 3343 3344 /* from ldi.c */ 3345 { "ldi_handle", "?[-i]", "display a layered driver handle", 3346 ldi_handle, ldi_handle_help }, 3347 { "ldi_ident", NULL, "display a layered driver identifier", 3348 ldi_ident, ldi_ident_help }, 3349 3350 /* from leaky.c + leaky_subr.c */ 3351 { "findleaks", FINDLEAKS_USAGE, 3352 "search for potential kernel memory leaks", findleaks, 3353 findleaks_help }, 3354 3355 /* from lgrp.c */ 3356 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3357 3358 /* from log.c */ 3359 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3360 3361 /* from memory.c */ 3362 { "page", "?", "display a summarized page_t", page }, 3363 { "memstat", NULL, "display memory usage summary", memstat }, 3364 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3365 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3366 3367 /* from mmd.c */ 3368 { "multidata", ":[-sv]", "display a summarized multidata_t", 3369 multidata }, 3370 { "pattbl", ":", "display a summarized multidata attribute table", 3371 pattbl }, 3372 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3373 pattr2multidata }, 3374 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3375 pdesc2slab }, 3376 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3377 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3378 slab2multidata }, 3379 3380 /* from modhash.c */ 3381 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3382 "display information about one or all mod_hash structures", 3383 modhash, modhash_help }, 3384 { "modent", ":[-k | -v | -t type]", 3385 "display information about a mod_hash_entry", modent, 3386 modent_help }, 3387 3388 /* from net.c */ 3389 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3390 mi }, 3391 { "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]", 3392 "show network statistics", netstat }, 3393 { "sonode", "?[-f inet | inet6 | unix | #] " 3394 "[-t stream | dgram | raw | #] [-p #]", 3395 "filter and display sonode", sonode }, 3396 3397 /* from nvpair.c */ 3398 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3399 nvpair_print }, 3400 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 3401 nvlist_print }, 3402 3403 /* from rctl.c */ 3404 { "rctl_dict", "?", "print systemwide default rctl definitions", 3405 rctl_dict }, 3406 { "rctl_list", ":[handle]", "print rctls for the given proc", 3407 rctl_list }, 3408 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3409 rctl }, 3410 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3411 "sequence", rctl_validate }, 3412 3413 /* from sobj.c */ 3414 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3415 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3416 mutex_help }, 3417 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3418 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3419 { "turnstile", "?", "display a turnstile", turnstile }, 3420 3421 /* from stream.c */ 3422 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3423 "print an mblk", mblk_prt, mblk_help }, 3424 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3425 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3426 mblk2dblk }, 3427 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3428 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3429 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3430 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3431 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3432 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3433 "filter and display STREAM queue", queue, queue_help }, 3434 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3435 "filter and display STREAM head", stdata, stdata_help }, 3436 { "str2mate", ":", "print mate of this stream", str2mate }, 3437 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3438 { "stream", ":", "display STREAM", stream }, 3439 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3440 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3441 "filter and display STREAM sync queue", syncq, syncq_help }, 3442 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3443 3444 /* from thread.c */ 3445 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3446 thread_help }, 3447 { "threadlist", "?[-v [count]]", 3448 "display threads and associated C stack traces", threadlist, 3449 threadlist_help }, 3450 3451 /* from tsd.c */ 3452 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3453 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3454 3455 /* 3456 * typegraph does not work under kmdb, as it requires too much memory 3457 * for its internal data structures. 3458 */ 3459 #ifndef _KMDB 3460 /* from typegraph.c */ 3461 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3462 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3463 findfalse }, 3464 { "typegraph", NULL, "build type graph", typegraph }, 3465 { "istype", ":type", "manually set object type", istype }, 3466 { "notype", ":", "manually clear object type", notype }, 3467 { "whattype", ":", "determine object type", whattype }, 3468 #endif 3469 3470 /* from vfs.c */ 3471 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3472 { "pfiles", ":[-fp]", "print process file information", pfiles, 3473 pfiles_help }, 3474 3475 { NULL } 3476 }; 3477 3478 static const mdb_walker_t walkers[] = { 3479 3480 /* from genunix.c */ 3481 { "anon", "given an amp, list of anon structures", 3482 anon_walk_init, anon_walk_step, anon_walk_fini }, 3483 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3484 { "errorq", "walk list of system error queues", 3485 errorq_walk_init, errorq_walk_step, NULL }, 3486 { "errorq_data", "walk pending error queue data buffers", 3487 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3488 { "allfile", "given a proc pointer, list all file pointers", 3489 file_walk_init, allfile_walk_step, file_walk_fini }, 3490 { "file", "given a proc pointer, list of open file pointers", 3491 file_walk_init, file_walk_step, file_walk_fini }, 3492 { "lock_descriptor", "walk lock_descriptor_t structures", 3493 ld_walk_init, ld_walk_step, NULL }, 3494 { "lock_graph", "walk lock graph", 3495 lg_walk_init, lg_walk_step, NULL }, 3496 { "port", "given a proc pointer, list of created event ports", 3497 port_walk_init, port_walk_step, NULL }, 3498 { "portev", "given a port pointer, list of events in the queue", 3499 portev_walk_init, portev_walk_step, portev_walk_fini }, 3500 { "proc", "list of active proc_t structures", 3501 proc_walk_init, proc_walk_step, proc_walk_fini }, 3502 { "projects", "walk a list of kernel projects", 3503 project_walk_init, project_walk_step, NULL }, 3504 { "seg", "given an as, list of segments", 3505 seg_walk_init, avl_walk_step, avl_walk_fini }, 3506 { "sysevent_pend", "walk sysevent pending queue", 3507 sysevent_pend_walk_init, sysevent_walk_step, 3508 sysevent_walk_fini}, 3509 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3510 sysevent_walk_step, sysevent_walk_fini}, 3511 { "sysevent_channel", "walk sysevent channel subscriptions", 3512 sysevent_channel_walk_init, sysevent_channel_walk_step, 3513 sysevent_channel_walk_fini}, 3514 { "sysevent_class_list", "walk sysevent subscription's class list", 3515 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3516 sysevent_class_list_walk_fini}, 3517 { "sysevent_subclass_list", 3518 "walk sysevent subscription's subclass list", 3519 sysevent_subclass_list_walk_init, 3520 sysevent_subclass_list_walk_step, 3521 sysevent_subclass_list_walk_fini}, 3522 { "task", "given a task pointer, walk its processes", 3523 task_walk_init, task_walk_step, NULL }, 3524 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3525 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3526 3527 /* from avl.c */ 3528 { AVL_WALK_NAME, AVL_WALK_DESC, 3529 avl_walk_init, avl_walk_step, avl_walk_fini }, 3530 3531 /* from zone.c */ 3532 { "zone", "walk a list of kernel zones", 3533 zone_walk_init, zone_walk_step, NULL }, 3534 { "zsd", "walk list of zsd entries for a zone", 3535 zsd_walk_init, zsd_walk_step, NULL }, 3536 3537 /* from bio.c */ 3538 { "buf", "walk the bio buf hash", 3539 buf_walk_init, buf_walk_step, buf_walk_fini }, 3540 3541 /* from contract.c */ 3542 { "contract", "walk all contracts, or those of the specified type", 3543 ct_walk_init, generic_walk_step, NULL }, 3544 { "ct_event", "walk events on a contract event queue", 3545 ct_event_walk_init, generic_walk_step, NULL }, 3546 { "ct_listener", "walk contract event queue listeners", 3547 ct_listener_walk_init, generic_walk_step, NULL }, 3548 3549 /* from cpupart.c */ 3550 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3551 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3552 NULL }, 3553 { "cpupart_walk", "walk the set of cpu partitions", 3554 cpupart_walk_init, cpupart_walk_step, NULL }, 3555 3556 /* from ctxop.c */ 3557 { "ctxop", "walk list of context ops on a thread", 3558 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3559 3560 /* from cyclic.c */ 3561 { "cyccpu", "walk per-CPU cyc_cpu structures", 3562 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3563 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3564 cycomni_walk_init, cycomni_walk_step, NULL }, 3565 { "cyctrace", "walk cyclic trace buffer", 3566 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3567 3568 /* from devinfo.c */ 3569 { "binding_hash", "walk all entries in binding hash table", 3570 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3571 { "devinfo", "walk devinfo tree or subtree", 3572 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3573 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3574 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3575 devinfo_audit_log_walk_fini}, 3576 { "devinfo_audit_node", "walk per-devinfo audit history", 3577 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3578 devinfo_audit_node_walk_fini}, 3579 { "devinfo_children", "walk children of devinfo node", 3580 devinfo_children_walk_init, devinfo_children_walk_step, 3581 devinfo_children_walk_fini }, 3582 { "devinfo_parents", "walk ancestors of devinfo node", 3583 devinfo_parents_walk_init, devinfo_parents_walk_step, 3584 devinfo_parents_walk_fini }, 3585 { "devinfo_siblings", "walk siblings of devinfo node", 3586 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3587 { "devi_next", "walk devinfo list", 3588 NULL, devi_next_walk_step, NULL }, 3589 { "devnames", "walk devnames array", 3590 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3591 { "minornode", "given a devinfo node, walk minor nodes", 3592 minornode_walk_init, minornode_walk_step, NULL }, 3593 { "softstate", 3594 "given an i_ddi_soft_state*, list all in-use driver stateps", 3595 soft_state_walk_init, soft_state_walk_step, 3596 NULL, NULL }, 3597 { "softstate_all", 3598 "given an i_ddi_soft_state*, list all driver stateps", 3599 soft_state_walk_init, soft_state_all_walk_step, 3600 NULL, NULL }, 3601 { "devinfo_fmc", 3602 "walk a fault management handle cache active list", 3603 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3604 3605 /* from kmem.c */ 3606 { "allocdby", "given a thread, walk its allocated bufctls", 3607 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3608 { "bufctl", "walk a kmem cache's bufctls", 3609 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3610 { "bufctl_history", "walk the available history of a bufctl", 3611 bufctl_history_walk_init, bufctl_history_walk_step, 3612 bufctl_history_walk_fini }, 3613 { "freedby", "given a thread, walk its freed bufctls", 3614 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3615 { "freectl", "walk a kmem cache's free bufctls", 3616 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3617 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3618 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3619 { "freemem", "walk a kmem cache's free memory", 3620 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3621 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3622 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3623 { "kmem", "walk a kmem cache", 3624 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3625 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3626 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3627 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3628 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3629 { "kmem_log", "walk the kmem transaction log", 3630 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3631 { "kmem_slab", "given a kmem cache, walk its slabs", 3632 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3633 { "kmem_slab_partial", 3634 "given a kmem cache, walk its partially allocated slabs (min 1)", 3635 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3636 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3637 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3638 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3639 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3640 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3641 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3642 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3643 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3644 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3645 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3646 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3647 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3648 3649 /* from ldi.c */ 3650 { "ldi_handle", "walk the layered driver handle hash", 3651 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3652 { "ldi_ident", "walk the layered driver identifier hash", 3653 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3654 3655 /* from leaky.c + leaky_subr.c */ 3656 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3657 "stack trace", 3658 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3659 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3660 "leaks w/ same stack trace", 3661 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3662 3663 /* from lgrp.c */ 3664 { "lgrp_cpulist", "given an lgrp, walk cpus", 3665 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, 3666 NULL }, 3667 { "lgrptbl", "walk the lgrp table", 3668 lgrp_walk_init, lgrp_walk_step, NULL }, 3669 3670 /* from list.c */ 3671 { LIST_WALK_NAME, LIST_WALK_DESC, 3672 list_walk_init, list_walk_step, list_walk_fini }, 3673 3674 /* from memory.c */ 3675 { "page", "walk all pages, or those from the specified vnode", 3676 page_walk_init, page_walk_step, page_walk_fini }, 3677 { "memlist", "walk specified memlist", 3678 NULL, memlist_walk_step, NULL }, 3679 { "swapinfo", "walk swapinfo structures", 3680 swap_walk_init, swap_walk_step, NULL }, 3681 3682 /* from mmd.c */ 3683 { "pattr", "walk pattr_t structures", pattr_walk_init, 3684 mmdq_walk_step, mmdq_walk_fini }, 3685 { "pdesc", "walk pdesc_t structures", 3686 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3687 { "pdesc_slab", "walk pdesc_slab_t structures", 3688 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3689 3690 /* from modhash.c */ 3691 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3692 modhash_walk_step, NULL }, 3693 { "modent", "walk list of entries in a given mod_hash", 3694 modent_walk_init, modent_walk_step, modent_walk_fini }, 3695 { "modchain", "walk list of entries in a given mod_hash_entry", 3696 NULL, modchain_walk_step, NULL }, 3697 3698 /* from net.c */ 3699 { "ar", "walk ar_t structures using MI", 3700 mi_payload_walk_init, mi_payload_walk_step, 3701 mi_payload_walk_fini, &mi_ar_arg }, 3702 { "icmp", "walk ICMP control structures using MI", 3703 mi_payload_walk_init, mi_payload_walk_step, 3704 mi_payload_walk_fini, &mi_icmp_arg }, 3705 { "ill", "walk ill_t structures using MI", 3706 mi_payload_walk_init, mi_payload_walk_step, 3707 mi_payload_walk_fini, &mi_ill_arg }, 3708 { "mi", "given a MI_O, walk the MI", 3709 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3710 { "sonode", "given a sonode, walk its children", 3711 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3712 3713 /* from nvpair.c */ 3714 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3715 nvpair_walk_init, nvpair_walk_step, NULL }, 3716 3717 /* from rctl.c */ 3718 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3719 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3720 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3721 rctl_set_walk_step, NULL }, 3722 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3723 rctl_val_walk_init, rctl_val_walk_step }, 3724 3725 /* from sobj.c */ 3726 { "blocked", "walk threads blocked on a given sobj", 3727 blocked_walk_init, blocked_walk_step, NULL }, 3728 { "wchan", "given a wchan, list of blocked threads", 3729 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3730 3731 /* from stream.c */ 3732 { "b_cont", "walk mblk_t list using b_cont", 3733 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3734 { "b_next", "walk mblk_t list using b_next", 3735 mblk_walk_init, b_next_step, mblk_walk_fini }, 3736 { "qlink", "walk queue_t list using q_link", 3737 queue_walk_init, queue_link_step, queue_walk_fini }, 3738 { "qnext", "walk queue_t list using q_next", 3739 queue_walk_init, queue_next_step, queue_walk_fini }, 3740 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3741 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3742 { "readq", "walk read queue side of stdata", 3743 str_walk_init, strr_walk_step, str_walk_fini }, 3744 { "writeq", "walk write queue side of stdata", 3745 str_walk_init, strw_walk_step, str_walk_fini }, 3746 3747 /* from thread.c */ 3748 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3749 deathrow_walk_init, deathrow_walk_step, NULL }, 3750 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3751 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3752 { "cpupart_dispq", 3753 "given a cpupart_t, walk threads in dispatcher queues", 3754 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3755 { "lwp_deathrow", "walk lwp_deathrow", 3756 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3757 { "thread", "global or per-process kthread_t structures", 3758 thread_walk_init, thread_walk_step, thread_walk_fini }, 3759 { "thread_deathrow", "walk threads on thread_deathrow", 3760 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3761 3762 /* from tsd.c */ 3763 { "tsd", "walk list of thread-specific data", 3764 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3765 3766 /* 3767 * typegraph does not work under kmdb, as it requires too much memory 3768 * for its internal data structures. 3769 */ 3770 #ifndef _KMDB 3771 /* from typegraph.c */ 3772 { "typeconflict", "walk buffers with conflicting type inferences", 3773 typegraph_walk_init, typeconflict_walk_step }, 3774 { "typeunknown", "walk buffers with unknown types", 3775 typegraph_walk_init, typeunknown_walk_step }, 3776 #endif 3777 3778 /* from vfs.c */ 3779 { "vfs", "walk file system list", 3780 vfs_walk_init, vfs_walk_step }, 3781 { NULL } 3782 }; 3783 3784 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3785 3786 const mdb_modinfo_t * 3787 _mdb_init(void) 3788 { 3789 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3790 mdb_warn("failed to read 'top_devinfo'"); 3791 return (NULL); 3792 } 3793 3794 if (findstack_init() != DCMD_OK) 3795 return (NULL); 3796 3797 kmem_init(); 3798 3799 return (&modinfo); 3800 } 3801 3802 void 3803 _mdb_fini(void) 3804 { 3805 /* 3806 * Force ::findleaks to let go any cached memory 3807 */ 3808 leaky_cleanup(1); 3809 } 3810