1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <mdb/mdb_param.h> 27 #include <mdb/mdb_modapi.h> 28 #include <mdb/mdb_ks.h> 29 #include <mdb/mdb_ctf.h> 30 31 #include <sys/types.h> 32 #include <sys/thread.h> 33 #include <sys/session.h> 34 #include <sys/user.h> 35 #include <sys/proc.h> 36 #include <sys/var.h> 37 #include <sys/t_lock.h> 38 #include <sys/callo.h> 39 #include <sys/priocntl.h> 40 #include <sys/class.h> 41 #include <sys/regset.h> 42 #include <sys/stack.h> 43 #include <sys/cpuvar.h> 44 #include <sys/vnode.h> 45 #include <sys/vfs.h> 46 #include <sys/flock_impl.h> 47 #include <sys/kmem_impl.h> 48 #include <sys/vmem_impl.h> 49 #include <sys/kstat.h> 50 #include <sys/dditypes.h> 51 #include <sys/ddi_impldefs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/sysconf.h> 54 #include <sys/task.h> 55 #include <sys/project.h> 56 #include <sys/errorq_impl.h> 57 #include <sys/cred_impl.h> 58 #include <sys/zone.h> 59 #include <sys/panic.h> 60 #include <regex.h> 61 #include <sys/port_impl.h> 62 63 #include "avl.h" 64 #include "bio.h" 65 #include "bitset.h" 66 #include "combined.h" 67 #include "contract.h" 68 #include "cpupart_mdb.h" 69 #include "ctxop.h" 70 #include "cyclic.h" 71 #include "damap.h" 72 #include "devinfo.h" 73 #include "findstack.h" 74 #include "fm.h" 75 #include "group.h" 76 #include "irm.h" 77 #include "kgrep.h" 78 #include "kmem.h" 79 #include "ldi.h" 80 #include "leaky.h" 81 #include "lgrp.h" 82 #include "list.h" 83 #include "log.h" 84 #include "mdi.h" 85 #include "memory.h" 86 #include "mmd.h" 87 #include "modhash.h" 88 #include "ndievents.h" 89 #include "net.h" 90 #include "netstack.h" 91 #include "nvpair.h" 92 #include "pg.h" 93 #include "rctl.h" 94 #include "sobj.h" 95 #include "streams.h" 96 #include "sysevent.h" 97 #include "taskq.h" 98 #include "thread.h" 99 #include "tsd.h" 100 #include "tsol.h" 101 #include "typegraph.h" 102 #include "vfs.h" 103 #include "zone.h" 104 #include "hotplug.h" 105 106 /* 107 * Surely this is defined somewhere... 108 */ 109 #define NINTR 16 110 111 #define KILOS 10 112 #define MEGS 20 113 #define GIGS 30 114 115 #ifndef STACK_BIAS 116 #define STACK_BIAS 0 117 #endif 118 119 static char 120 pstat2ch(uchar_t state) 121 { 122 switch (state) { 123 case SSLEEP: return ('S'); 124 case SRUN: return ('R'); 125 case SZOMB: return ('Z'); 126 case SIDL: return ('I'); 127 case SONPROC: return ('O'); 128 case SSTOP: return ('T'); 129 case SWAIT: return ('W'); 130 default: return ('?'); 131 } 132 } 133 134 #define PS_PRTTHREADS 0x1 135 #define PS_PRTLWPS 0x2 136 #define PS_PSARGS 0x4 137 #define PS_TASKS 0x8 138 #define PS_PROJECTS 0x10 139 #define PS_ZONES 0x20 140 141 static int 142 ps_threadprint(uintptr_t addr, const void *data, void *private) 143 { 144 const kthread_t *t = (const kthread_t *)data; 145 uint_t prt_flags = *((uint_t *)private); 146 147 static const mdb_bitmask_t t_state_bits[] = { 148 { "TS_FREE", UINT_MAX, TS_FREE }, 149 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 150 { "TS_RUN", TS_RUN, TS_RUN }, 151 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 152 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 153 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 154 { "TS_WAIT", TS_WAIT, TS_WAIT }, 155 { NULL, 0, 0 } 156 }; 157 158 if (prt_flags & PS_PRTTHREADS) 159 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 160 161 if (prt_flags & PS_PRTLWPS) 162 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 163 164 return (WALK_NEXT); 165 } 166 167 int 168 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 169 { 170 uint_t prt_flags = 0; 171 proc_t pr; 172 struct pid pid, pgid, sid; 173 sess_t session; 174 cred_t cred; 175 task_t tk; 176 kproject_t pj; 177 zone_t zn; 178 179 if (!(flags & DCMD_ADDRSPEC)) { 180 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 181 mdb_warn("can't walk 'proc'"); 182 return (DCMD_ERR); 183 } 184 return (DCMD_OK); 185 } 186 187 if (mdb_getopts(argc, argv, 188 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 189 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 190 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 191 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 192 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 193 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 194 return (DCMD_USAGE); 195 196 if (DCMD_HDRSPEC(flags)) { 197 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 198 "S", "PID", "PPID", "PGID", "SID"); 199 if (prt_flags & PS_TASKS) 200 mdb_printf("%5s ", "TASK"); 201 if (prt_flags & PS_PROJECTS) 202 mdb_printf("%5s ", "PROJ"); 203 if (prt_flags & PS_ZONES) 204 mdb_printf("%5s ", "ZONE"); 205 mdb_printf("%6s %10s %?s %s%</u>\n", 206 "UID", "FLAGS", "ADDR", "NAME"); 207 } 208 209 mdb_vread(&pr, sizeof (pr), addr); 210 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 211 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 212 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 213 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 214 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 215 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 216 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 217 if (prt_flags & PS_PROJECTS) 218 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 219 if (prt_flags & PS_ZONES) 220 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 221 222 mdb_printf("%c %6d %6d %6d %6d ", 223 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 224 sid.pid_id); 225 if (prt_flags & PS_TASKS) 226 mdb_printf("%5d ", tk.tk_tkid); 227 if (prt_flags & PS_PROJECTS) 228 mdb_printf("%5d ", pj.kpj_id); 229 if (prt_flags & PS_ZONES) 230 mdb_printf("%5d ", zn.zone_id); 231 mdb_printf("%6d 0x%08x %0?p %s\n", 232 cred.cr_uid, pr.p_flag, addr, 233 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 234 235 if (prt_flags & ~PS_PSARGS) 236 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 237 238 return (DCMD_OK); 239 } 240 241 #define PG_NEWEST 0x0001 242 #define PG_OLDEST 0x0002 243 #define PG_PIPE_OUT 0x0004 244 #define PG_EXACT_MATCH 0x0008 245 246 typedef struct pgrep_data { 247 uint_t pg_flags; 248 uint_t pg_psflags; 249 uintptr_t pg_xaddr; 250 hrtime_t pg_xstart; 251 const char *pg_pat; 252 #ifndef _KMDB 253 regex_t pg_reg; 254 #endif 255 } pgrep_data_t; 256 257 /*ARGSUSED*/ 258 static int 259 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 260 { 261 const proc_t *prp = pdata; 262 pgrep_data_t *pgp = data; 263 #ifndef _KMDB 264 regmatch_t pmatch; 265 #endif 266 267 /* 268 * kmdb doesn't have access to the reg* functions, so we fall back 269 * to strstr/strcmp. 270 */ 271 #ifdef _KMDB 272 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 273 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 274 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 275 return (WALK_NEXT); 276 #else 277 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 278 return (WALK_NEXT); 279 280 if ((pgp->pg_flags & PG_EXACT_MATCH) && 281 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 282 return (WALK_NEXT); 283 #endif 284 285 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 286 hrtime_t start; 287 288 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 289 prp->p_user.u_start.tv_nsec; 290 291 if (pgp->pg_flags & PG_NEWEST) { 292 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 293 pgp->pg_xaddr = addr; 294 pgp->pg_xstart = start; 295 } 296 } else { 297 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 298 pgp->pg_xaddr = addr; 299 pgp->pg_xstart = start; 300 } 301 } 302 303 } else if (pgp->pg_flags & PG_PIPE_OUT) { 304 mdb_printf("%p\n", addr); 305 306 } else { 307 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 308 mdb_warn("can't invoke 'ps'"); 309 return (WALK_DONE); 310 } 311 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 312 } 313 314 return (WALK_NEXT); 315 } 316 317 /*ARGSUSED*/ 318 int 319 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 320 { 321 pgrep_data_t pg; 322 int i; 323 #ifndef _KMDB 324 int err; 325 #endif 326 327 if (flags & DCMD_ADDRSPEC) 328 return (DCMD_USAGE); 329 330 pg.pg_flags = 0; 331 pg.pg_xaddr = 0; 332 333 i = mdb_getopts(argc, argv, 334 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 335 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 336 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 337 NULL); 338 339 argc -= i; 340 argv += i; 341 342 if (argc != 1) 343 return (DCMD_USAGE); 344 345 /* 346 * -n and -o are mutually exclusive. 347 */ 348 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 349 return (DCMD_USAGE); 350 351 if (argv->a_type != MDB_TYPE_STRING) 352 return (DCMD_USAGE); 353 354 if (flags & DCMD_PIPE_OUT) 355 pg.pg_flags |= PG_PIPE_OUT; 356 357 pg.pg_pat = argv->a_un.a_str; 358 if (DCMD_HDRSPEC(flags)) 359 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 360 else 361 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 362 363 #ifndef _KMDB 364 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 365 size_t nbytes; 366 char *buf; 367 368 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 369 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 370 (void) regerror(err, &pg.pg_reg, buf, nbytes); 371 mdb_warn("%s\n", buf); 372 373 return (DCMD_ERR); 374 } 375 #endif 376 377 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 378 mdb_warn("can't walk 'proc'"); 379 return (DCMD_ERR); 380 } 381 382 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 383 if (pg.pg_flags & PG_PIPE_OUT) { 384 mdb_printf("%p\n", pg.pg_xaddr); 385 } else { 386 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 387 0, NULL) != 0) { 388 mdb_warn("can't invoke 'ps'"); 389 return (DCMD_ERR); 390 } 391 } 392 } 393 394 return (DCMD_OK); 395 } 396 397 int 398 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 399 { 400 task_t tk; 401 kproject_t pj; 402 403 if (!(flags & DCMD_ADDRSPEC)) { 404 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 405 mdb_warn("can't walk task_cache"); 406 return (DCMD_ERR); 407 } 408 return (DCMD_OK); 409 } 410 if (DCMD_HDRSPEC(flags)) { 411 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 412 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 413 } 414 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 415 mdb_warn("can't read task_t structure at %p", addr); 416 return (DCMD_ERR); 417 } 418 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 419 mdb_warn("can't read project_t structure at %p", addr); 420 return (DCMD_ERR); 421 } 422 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 423 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 424 tk.tk_flags); 425 return (DCMD_OK); 426 } 427 428 int 429 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 430 { 431 kproject_t pj; 432 433 if (!(flags & DCMD_ADDRSPEC)) { 434 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 435 mdb_warn("can't walk projects"); 436 return (DCMD_ERR); 437 } 438 return (DCMD_OK); 439 } 440 if (DCMD_HDRSPEC(flags)) { 441 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 442 "ADDR", "PROJID", "ZONEID", "REFCNT"); 443 } 444 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 445 mdb_warn("can't read kproject_t structure at %p", addr); 446 return (DCMD_ERR); 447 } 448 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 449 pj.kpj_count); 450 return (DCMD_OK); 451 } 452 453 /* walk callouts themselves, either by list or id hash. */ 454 int 455 callout_walk_init(mdb_walk_state_t *wsp) 456 { 457 if (wsp->walk_addr == NULL) { 458 mdb_warn("callout doesn't support global walk"); 459 return (WALK_ERR); 460 } 461 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 462 return (WALK_NEXT); 463 } 464 465 #define CALLOUT_WALK_BYLIST 0 466 #define CALLOUT_WALK_BYID 1 467 468 /* the walker arg switches between walking by list (0) and walking by id (1). */ 469 int 470 callout_walk_step(mdb_walk_state_t *wsp) 471 { 472 int retval; 473 474 if (wsp->walk_addr == NULL) { 475 return (WALK_DONE); 476 } 477 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 478 wsp->walk_addr) == -1) { 479 mdb_warn("failed to read callout at %p", wsp->walk_addr); 480 return (WALK_DONE); 481 } 482 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 483 wsp->walk_cbdata); 484 485 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 486 wsp->walk_addr = 487 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 488 } else { 489 wsp->walk_addr = 490 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 491 } 492 493 return (retval); 494 } 495 496 void 497 callout_walk_fini(mdb_walk_state_t *wsp) 498 { 499 mdb_free(wsp->walk_data, sizeof (callout_t)); 500 } 501 502 /* 503 * walker for callout lists. This is different from hashes and callouts. 504 * Thankfully, it's also simpler. 505 */ 506 int 507 callout_list_walk_init(mdb_walk_state_t *wsp) 508 { 509 if (wsp->walk_addr == NULL) { 510 mdb_warn("callout list doesn't support global walk"); 511 return (WALK_ERR); 512 } 513 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 514 return (WALK_NEXT); 515 } 516 517 int 518 callout_list_walk_step(mdb_walk_state_t *wsp) 519 { 520 int retval; 521 522 if (wsp->walk_addr == NULL) { 523 return (WALK_DONE); 524 } 525 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 526 wsp->walk_addr) != sizeof (callout_list_t)) { 527 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 528 return (WALK_ERR); 529 } 530 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 531 wsp->walk_cbdata); 532 533 wsp->walk_addr = (uintptr_t) 534 (((callout_list_t *)wsp->walk_data)->cl_next); 535 536 return (retval); 537 } 538 539 void 540 callout_list_walk_fini(mdb_walk_state_t *wsp) 541 { 542 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 543 } 544 545 /* routines/structs to walk callout table(s) */ 546 typedef struct cot_data { 547 callout_table_t *ct0; 548 callout_table_t ct; 549 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 550 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 551 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 552 int cotndx; 553 int cotsize; 554 } cot_data_t; 555 556 int 557 callout_table_walk_init(mdb_walk_state_t *wsp) 558 { 559 int max_ncpus; 560 cot_data_t *cot_walk_data; 561 562 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 563 564 if (wsp->walk_addr == NULL) { 565 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 566 mdb_warn("failed to read 'callout_table'"); 567 return (WALK_ERR); 568 } 569 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 570 mdb_warn("failed to get callout_table array size"); 571 return (WALK_ERR); 572 } 573 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 574 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 575 } else { 576 /* not a global walk */ 577 cot_walk_data->cotsize = 1; 578 } 579 580 cot_walk_data->cotndx = 0; 581 wsp->walk_data = cot_walk_data; 582 583 return (WALK_NEXT); 584 } 585 586 int 587 callout_table_walk_step(mdb_walk_state_t *wsp) 588 { 589 int retval; 590 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 591 size_t size; 592 593 if (cotwd->cotndx >= cotwd->cotsize) { 594 return (WALK_DONE); 595 } 596 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 597 wsp->walk_addr) != sizeof (callout_table_t)) { 598 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 599 return (WALK_ERR); 600 } 601 602 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 603 if (cotwd->ct.ct_idhash != NULL) { 604 if (mdb_vread(cotwd->cot_idhash, size, 605 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 606 mdb_warn("failed to read id_hash at %p", 607 cotwd->ct.ct_idhash); 608 return (WALK_ERR); 609 } 610 } 611 if (cotwd->ct.ct_clhash != NULL) { 612 if (mdb_vread(&(cotwd->cot_clhash), size, 613 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 614 mdb_warn("failed to read cl_hash at %p", 615 cotwd->ct.ct_clhash); 616 return (WALK_ERR); 617 } 618 } 619 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 620 if (cotwd->ct.ct_kstat_data != NULL) { 621 if (mdb_vread(&(cotwd->ct_kstat_data), size, 622 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 623 mdb_warn("failed to read kstats at %p", 624 cotwd->ct.ct_kstat_data); 625 return (WALK_ERR); 626 } 627 } 628 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 629 wsp->walk_cbdata); 630 631 cotwd->cotndx++; 632 if (cotwd->cotndx >= cotwd->cotsize) { 633 return (WALK_DONE); 634 } 635 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 636 sizeof (callout_table_t)); 637 638 return (retval); 639 } 640 641 void 642 callout_table_walk_fini(mdb_walk_state_t *wsp) 643 { 644 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 645 } 646 647 static const char *co_typenames[] = { "R", "N" }; 648 649 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 650 651 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 652 653 /* callout flags, in no particular order */ 654 #define COF_REAL 0x00000001 655 #define COF_NORM 0x00000002 656 #define COF_LONG 0x00000004 657 #define COF_SHORT 0x00000008 658 #define COF_EMPTY 0x00000010 659 #define COF_TIME 0x00000020 660 #define COF_BEFORE 0x00000040 661 #define COF_AFTER 0x00000080 662 #define COF_SEQID 0x00000100 663 #define COF_FUNC 0x00000200 664 #define COF_ADDR 0x00000400 665 #define COF_EXEC 0x00000800 666 #define COF_HIRES 0x00001000 667 #define COF_ABS 0x00002000 668 #define COF_TABLE 0x00004000 669 #define COF_BYIDH 0x00008000 670 #define COF_FREE 0x00010000 671 #define COF_LIST 0x00020000 672 #define COF_EXPREL 0x00040000 673 #define COF_HDR 0x00080000 674 #define COF_VERBOSE 0x00100000 675 #define COF_LONGLIST 0x00200000 676 #define COF_THDR 0x00400000 677 #define COF_LHDR 0x00800000 678 #define COF_CHDR 0x01000000 679 #define COF_PARAM 0x02000000 680 #define COF_DECODE 0x04000000 681 #define COF_HEAP 0x08000000 682 #define COF_QUEUE 0x10000000 683 684 /* show real and normal, short and long, expired and unexpired. */ 685 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 686 687 #define COF_LIST_FLAGS \ 688 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 689 690 /* private callout data for callback functions */ 691 typedef struct callout_data { 692 uint_t flags; /* COF_* */ 693 cpu_t *cpu; /* cpu pointer if given */ 694 int seqid; /* cpu seqid, or -1 */ 695 hrtime_t time; /* expiration time value */ 696 hrtime_t atime; /* expiration before value */ 697 hrtime_t btime; /* expiration after value */ 698 uintptr_t funcaddr; /* function address or NULL */ 699 uintptr_t param; /* parameter to function or NULL */ 700 hrtime_t now; /* current system time */ 701 int nsec_per_tick; /* for conversions */ 702 ulong_t ctbits; /* for decoding xid */ 703 callout_table_t *co_table; /* top of callout table array */ 704 int ndx; /* table index. */ 705 int bucket; /* which list/id bucket are we in */ 706 hrtime_t exp; /* expire time */ 707 int list_flags; /* copy of cl_flags */ 708 } callout_data_t; 709 710 /* this callback does the actual callback itself (finally). */ 711 /*ARGSUSED*/ 712 static int 713 callouts_cb(uintptr_t addr, const void *data, void *priv) 714 { 715 callout_data_t *coargs = (callout_data_t *)priv; 716 callout_t *co = (callout_t *)data; 717 int tableid, list_flags; 718 callout_id_t coid; 719 720 if ((coargs == NULL) || (co == NULL)) { 721 return (WALK_ERR); 722 } 723 724 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 725 /* 726 * The callout must have been reallocated. No point in 727 * walking any more. 728 */ 729 return (WALK_DONE); 730 } 731 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 732 /* 733 * The callout must have been freed. No point in 734 * walking any more. 735 */ 736 return (WALK_DONE); 737 } 738 if ((coargs->flags & COF_FUNC) && 739 (coargs->funcaddr != (uintptr_t)co->c_func)) { 740 return (WALK_NEXT); 741 } 742 if ((coargs->flags & COF_PARAM) && 743 (coargs->param != (uintptr_t)co->c_arg)) { 744 return (WALK_NEXT); 745 } 746 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 747 return (WALK_NEXT); 748 } 749 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 750 return (WALK_NEXT); 751 } 752 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 753 return (WALK_NEXT); 754 } 755 /* it is possible we don't have the exp time or flags */ 756 if (coargs->flags & COF_BYIDH) { 757 if (!(coargs->flags & COF_FREE)) { 758 /* we have to fetch the expire time ourselves. */ 759 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 760 (uintptr_t)co->c_list + offsetof(callout_list_t, 761 cl_expiration)) == -1) { 762 mdb_warn("failed to read expiration " 763 "time from %p", co->c_list); 764 coargs->exp = 0; 765 } 766 /* and flags. */ 767 if (mdb_vread(&coargs->list_flags, sizeof (int), 768 (uintptr_t)co->c_list + offsetof(callout_list_t, 769 cl_flags)) == -1) { 770 mdb_warn("failed to read list flags" 771 "from %p", co->c_list); 772 coargs->list_flags = 0; 773 } 774 } else { 775 /* free callouts can't use list pointer. */ 776 coargs->exp = 0; 777 coargs->list_flags = 0; 778 } 779 if (coargs->exp != 0) { 780 if ((coargs->flags & COF_TIME) && 781 (coargs->exp != coargs->time)) { 782 return (WALK_NEXT); 783 } 784 if ((coargs->flags & COF_BEFORE) && 785 (coargs->exp > coargs->btime)) { 786 return (WALK_NEXT); 787 } 788 if ((coargs->flags & COF_AFTER) && 789 (coargs->exp < coargs->atime)) { 790 return (WALK_NEXT); 791 } 792 } 793 /* tricky part, since both HIRES and ABS can be set */ 794 list_flags = coargs->list_flags; 795 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 796 /* both flags are set, only skip "regular" ones */ 797 if (! (list_flags & COF_LIST_FLAGS)) { 798 return (WALK_NEXT); 799 } 800 } else { 801 /* individual flags, or no flags */ 802 if ((coargs->flags & COF_HIRES) && 803 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 804 return (WALK_NEXT); 805 } 806 if ((coargs->flags & COF_ABS) && 807 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 808 return (WALK_NEXT); 809 } 810 } 811 /* 812 * We do the checks for COF_HEAP and COF_QUEUE here only if we 813 * are traversing BYIDH. If the traversal is by callout list, 814 * we do this check in callout_list_cb() to be more 815 * efficient. 816 */ 817 if ((coargs->flags & COF_HEAP) && 818 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 819 return (WALK_NEXT); 820 } 821 822 if ((coargs->flags & COF_QUEUE) && 823 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 824 return (WALK_NEXT); 825 } 826 } 827 828 #define callout_table_mask ((1 << coargs->ctbits) - 1) 829 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 830 #undef callout_table_mask 831 coid = CO_PLAIN_ID(co->c_xid); 832 833 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 834 /* 835 * We need to print the headers. If walking by id, then 836 * the list header isn't printed, so we must include 837 * that info here. 838 */ 839 if (!(coargs->flags & COF_VERBOSE)) { 840 mdb_printf("%<u>%3s %-1s %-14s %</u>", 841 "SEQ", "T", "EXP"); 842 } else if (coargs->flags & COF_BYIDH) { 843 mdb_printf("%<u>%-14s %</u>", "EXP"); 844 } 845 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 846 "XHAL", "XID", "FUNC(ARG)"); 847 if (coargs->flags & COF_LONGLIST) { 848 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 849 "PREVID", "NEXTID", "PREVL", "NEXTL"); 850 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 851 "DONE", "UTOS", "THREAD"); 852 } 853 mdb_printf("\n"); 854 coargs->flags &= ~COF_CHDR; 855 coargs->flags |= (COF_THDR | COF_LHDR); 856 } 857 858 if (!(coargs->flags & COF_ADDR)) { 859 if (!(coargs->flags & COF_VERBOSE)) { 860 mdb_printf("%-3d %1s %-14llx ", 861 TABLE_TO_SEQID(tableid), 862 co_typenames[tableid & CALLOUT_TYPE_MASK], 863 (coargs->flags & COF_EXPREL) ? 864 coargs->exp - coargs->now : coargs->exp); 865 } else if (coargs->flags & COF_BYIDH) { 866 mdb_printf("%-14x ", 867 (coargs->flags & COF_EXPREL) ? 868 coargs->exp - coargs->now : coargs->exp); 869 } 870 list_flags = coargs->list_flags; 871 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 872 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 873 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 874 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 875 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 876 (long long)coid, co->c_func, co->c_arg); 877 if (coargs->flags & COF_LONGLIST) { 878 mdb_printf(" %-?p %-?p %-?p %-?p", 879 co->c_idprev, co->c_idnext, co->c_clprev, 880 co->c_clnext); 881 mdb_printf(" %-?p %-4d %-0?p", 882 co->c_done, co->c_waiting, co->c_executor); 883 } 884 } else { 885 /* address only */ 886 mdb_printf("%-0p", addr); 887 } 888 mdb_printf("\n"); 889 return (WALK_NEXT); 890 } 891 892 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 893 /*ARGSUSED*/ 894 static int 895 callout_list_cb(uintptr_t addr, const void *data, void *priv) 896 { 897 callout_data_t *coargs = (callout_data_t *)priv; 898 callout_list_t *cl = (callout_list_t *)data; 899 callout_t *coptr; 900 int list_flags; 901 902 if ((coargs == NULL) || (cl == NULL)) { 903 return (WALK_ERR); 904 } 905 906 coargs->exp = cl->cl_expiration; 907 coargs->list_flags = cl->cl_flags; 908 if ((coargs->flags & COF_FREE) && 909 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 910 /* 911 * The callout list must have been reallocated. No point in 912 * walking any more. 913 */ 914 return (WALK_DONE); 915 } 916 if (!(coargs->flags & COF_FREE) && 917 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 918 /* 919 * The callout list must have been freed. No point in 920 * walking any more. 921 */ 922 return (WALK_DONE); 923 } 924 if ((coargs->flags & COF_TIME) && 925 (cl->cl_expiration != coargs->time)) { 926 return (WALK_NEXT); 927 } 928 if ((coargs->flags & COF_BEFORE) && 929 (cl->cl_expiration > coargs->btime)) { 930 return (WALK_NEXT); 931 } 932 if ((coargs->flags & COF_AFTER) && 933 (cl->cl_expiration < coargs->atime)) { 934 return (WALK_NEXT); 935 } 936 if (!(coargs->flags & COF_EMPTY) && 937 (cl->cl_callouts.ch_head == NULL)) { 938 return (WALK_NEXT); 939 } 940 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 941 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 942 /* both flags are set, only skip "regular" ones */ 943 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 944 return (WALK_NEXT); 945 } 946 } else { 947 if ((coargs->flags & COF_HIRES) && 948 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 949 return (WALK_NEXT); 950 } 951 if ((coargs->flags & COF_ABS) && 952 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 953 return (WALK_NEXT); 954 } 955 } 956 957 if ((coargs->flags & COF_HEAP) && 958 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 959 return (WALK_NEXT); 960 } 961 962 if ((coargs->flags & COF_QUEUE) && 963 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 964 return (WALK_NEXT); 965 } 966 967 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 968 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 969 if (!(coargs->flags & COF_VERBOSE)) { 970 /* don't be redundant again */ 971 mdb_printf("%<u>SEQ T %</u>"); 972 } 973 mdb_printf("%<u>EXP HA BUCKET " 974 "CALLOUTS %</u>"); 975 976 if (coargs->flags & COF_LONGLIST) { 977 mdb_printf("%<u> %-?s %-?s%</u>", 978 "PREV", "NEXT"); 979 } 980 mdb_printf("\n"); 981 coargs->flags &= ~COF_LHDR; 982 coargs->flags |= (COF_THDR | COF_CHDR); 983 } 984 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 985 if (!(coargs->flags & COF_ADDR)) { 986 if (!(coargs->flags & COF_VERBOSE)) { 987 mdb_printf("%3d %1s ", 988 TABLE_TO_SEQID(coargs->ndx), 989 co_typenames[coargs->ndx & 990 CALLOUT_TYPE_MASK]); 991 } 992 993 list_flags = coargs->list_flags; 994 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 995 (coargs->flags & COF_EXPREL) ? 996 coargs->exp - coargs->now : coargs->exp, 997 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 998 "H" : " ", 999 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 1000 "A" : " ", 1001 coargs->bucket, cl->cl_callouts.ch_head); 1002 1003 if (coargs->flags & COF_LONGLIST) { 1004 mdb_printf(" %-?p %-?p", 1005 cl->cl_prev, cl->cl_next); 1006 } 1007 } else { 1008 /* address only */ 1009 mdb_printf("%-0p", addr); 1010 } 1011 mdb_printf("\n"); 1012 if (coargs->flags & COF_LIST) { 1013 return (WALK_NEXT); 1014 } 1015 } 1016 /* yet another layer as we walk the actual callouts via list. */ 1017 if (cl->cl_callouts.ch_head == NULL) { 1018 return (WALK_NEXT); 1019 } 1020 /* free list structures do not have valid callouts off of them. */ 1021 if (coargs->flags & COF_FREE) { 1022 return (WALK_NEXT); 1023 } 1024 coptr = (callout_t *)cl->cl_callouts.ch_head; 1025 1026 if (coargs->flags & COF_VERBOSE) { 1027 mdb_inc_indent(4); 1028 } 1029 /* 1030 * walk callouts using yet another callback routine. 1031 * we use callouts_bytime because id hash is handled via 1032 * the callout_t_cb callback. 1033 */ 1034 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1035 (uintptr_t)coptr) == -1) { 1036 mdb_warn("cannot walk callouts at %p", coptr); 1037 return (WALK_ERR); 1038 } 1039 if (coargs->flags & COF_VERBOSE) { 1040 mdb_dec_indent(4); 1041 } 1042 1043 return (WALK_NEXT); 1044 } 1045 1046 /* this callback handles the details of callout table walking. */ 1047 static int 1048 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1049 { 1050 callout_data_t *coargs = (callout_data_t *)priv; 1051 cot_data_t *cotwd = (cot_data_t *)data; 1052 callout_table_t *ct = &(cotwd->ct); 1053 int index, seqid, cotype; 1054 int i; 1055 callout_list_t *clptr; 1056 callout_t *coptr; 1057 1058 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1059 return (WALK_ERR); 1060 } 1061 1062 index = ((char *)addr - (char *)coargs->co_table) / 1063 sizeof (callout_table_t); 1064 cotype = index & CALLOUT_TYPE_MASK; 1065 seqid = TABLE_TO_SEQID(index); 1066 1067 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1068 return (WALK_NEXT); 1069 } 1070 1071 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1072 return (WALK_NEXT); 1073 } 1074 1075 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1076 return (WALK_NEXT); 1077 } 1078 1079 if (!(coargs->flags & COF_EMPTY) && ( 1080 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1081 return (WALK_NEXT); 1082 } 1083 1084 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1085 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1086 /* print table hdr */ 1087 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1088 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1089 coargs->flags &= ~COF_THDR; 1090 coargs->flags |= (COF_LHDR | COF_CHDR); 1091 if (coargs->flags & COF_LONGLIST) { 1092 /* more info! */ 1093 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1094 " %-?s %-?s %-?s%</u>", 1095 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1096 "PEND", "FREE", "LOCK"); 1097 } 1098 mdb_printf("\n"); 1099 } 1100 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1101 if (!(coargs->flags & COF_ADDR)) { 1102 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1103 seqid, co_typenames[cotype], 1104 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1105 ct->ct_heap); 1106 if (coargs->flags & COF_LONGLIST) { 1107 /* more info! */ 1108 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1109 " %-?lld %-?lld %-?p", 1110 ct->ct_heap_num, ct->ct_heap_max, 1111 ct->ct_taskq, ct->ct_expired.ch_head, 1112 ct->ct_queue.ch_head, 1113 cotwd->ct_timeouts_pending, 1114 cotwd->ct_allocations - 1115 cotwd->ct_timeouts_pending, 1116 ct->ct_mutex); 1117 } 1118 } else { 1119 /* address only */ 1120 mdb_printf("%-0?p", addr); 1121 } 1122 mdb_printf("\n"); 1123 if (coargs->flags & COF_TABLE) { 1124 return (WALK_NEXT); 1125 } 1126 } 1127 1128 coargs->ndx = index; 1129 if (coargs->flags & COF_VERBOSE) { 1130 mdb_inc_indent(4); 1131 } 1132 /* keep digging. */ 1133 if (!(coargs->flags & COF_BYIDH)) { 1134 /* walk the list hash table */ 1135 if (coargs->flags & COF_FREE) { 1136 clptr = ct->ct_lfree; 1137 coargs->bucket = 0; 1138 if (clptr == NULL) { 1139 return (WALK_NEXT); 1140 } 1141 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1142 (uintptr_t)clptr) == -1) { 1143 mdb_warn("cannot walk callout free list at %p", 1144 clptr); 1145 return (WALK_ERR); 1146 } 1147 } else { 1148 /* first print the expired list. */ 1149 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1150 if (clptr != NULL) { 1151 coargs->bucket = -1; 1152 if (mdb_pwalk("callout_list", callout_list_cb, 1153 coargs, (uintptr_t)clptr) == -1) { 1154 mdb_warn("cannot walk callout_list" 1155 " at %p", clptr); 1156 return (WALK_ERR); 1157 } 1158 } 1159 /* then, print the callout queue */ 1160 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1161 if (clptr != NULL) { 1162 coargs->bucket = -1; 1163 if (mdb_pwalk("callout_list", callout_list_cb, 1164 coargs, (uintptr_t)clptr) == -1) { 1165 mdb_warn("cannot walk callout_list" 1166 " at %p", clptr); 1167 return (WALK_ERR); 1168 } 1169 } 1170 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1171 if (ct->ct_clhash == NULL) { 1172 /* nothing to do */ 1173 break; 1174 } 1175 if (cotwd->cot_clhash[i].ch_head == NULL) { 1176 continue; 1177 } 1178 clptr = (callout_list_t *) 1179 cotwd->cot_clhash[i].ch_head; 1180 coargs->bucket = i; 1181 /* walk list with callback routine. */ 1182 if (mdb_pwalk("callout_list", callout_list_cb, 1183 coargs, (uintptr_t)clptr) == -1) { 1184 mdb_warn("cannot walk callout_list" 1185 " at %p", clptr); 1186 return (WALK_ERR); 1187 } 1188 } 1189 } 1190 } else { 1191 /* walk the id hash table. */ 1192 if (coargs->flags & COF_FREE) { 1193 coptr = ct->ct_free; 1194 coargs->bucket = 0; 1195 if (coptr == NULL) { 1196 return (WALK_NEXT); 1197 } 1198 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1199 (uintptr_t)coptr) == -1) { 1200 mdb_warn("cannot walk callout id free list" 1201 " at %p", coptr); 1202 return (WALK_ERR); 1203 } 1204 } else { 1205 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1206 if (ct->ct_idhash == NULL) { 1207 break; 1208 } 1209 coptr = (callout_t *) 1210 cotwd->cot_idhash[i].ch_head; 1211 if (coptr == NULL) { 1212 continue; 1213 } 1214 coargs->bucket = i; 1215 1216 /* 1217 * walk callouts directly by id. For id 1218 * chain, the callout list is just a header, 1219 * so there's no need to walk it. 1220 */ 1221 if (mdb_pwalk("callouts_byid", callouts_cb, 1222 coargs, (uintptr_t)coptr) == -1) { 1223 mdb_warn("cannot walk callouts at %p", 1224 coptr); 1225 return (WALK_ERR); 1226 } 1227 } 1228 } 1229 } 1230 if (coargs->flags & COF_VERBOSE) { 1231 mdb_dec_indent(4); 1232 } 1233 return (WALK_NEXT); 1234 } 1235 1236 /* 1237 * initialize some common info for both callout dcmds. 1238 */ 1239 int 1240 callout_common_init(callout_data_t *coargs) 1241 { 1242 /* we need a couple of things */ 1243 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1244 mdb_warn("failed to read 'callout_table'"); 1245 return (DCMD_ERR); 1246 } 1247 /* need to get now in nsecs. Approximate with hrtime vars */ 1248 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1249 sizeof (hrtime_t)) { 1250 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1251 "hrtime_base") != sizeof (hrtime_t)) { 1252 mdb_warn("Could not determine current system time"); 1253 return (DCMD_ERR); 1254 } 1255 } 1256 1257 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1258 mdb_warn("failed to read 'callout_table_bits'"); 1259 return (DCMD_ERR); 1260 } 1261 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1262 mdb_warn("failed to read 'nsec_per_tick'"); 1263 return (DCMD_ERR); 1264 } 1265 return (DCMD_OK); 1266 } 1267 1268 /* 1269 * dcmd to print callouts. Optional addr limits to specific table. 1270 * Parses lots of options that get passed to callbacks for walkers. 1271 * Has it's own help function. 1272 */ 1273 /*ARGSUSED*/ 1274 int 1275 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1276 { 1277 callout_data_t coargs; 1278 /* getopts doesn't help much with stuff like this */ 1279 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1280 char *funcname = NULL; 1281 char *paramstr = NULL; 1282 uintptr_t Stmp, Ctmp; /* for getopt. */ 1283 int retval; 1284 1285 coargs.flags = COF_DEFAULT; 1286 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1287 coargs.seqid = -1; 1288 1289 if (mdb_getopts(argc, argv, 1290 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1291 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1292 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1293 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1294 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1295 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1296 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1297 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1298 'd', MDB_OPT_SETBITS, 1, &dflag, 1299 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1300 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1301 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1302 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1303 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1304 'k', MDB_OPT_SETBITS, 1, &kflag, 1305 'f', MDB_OPT_STR, &funcname, 1306 'p', MDB_OPT_STR, ¶mstr, 1307 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1308 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1309 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1310 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1311 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1312 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1313 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1314 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1315 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1316 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1317 NULL) != argc) { 1318 return (DCMD_USAGE); 1319 } 1320 1321 /* initialize from kernel variables */ 1322 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1323 return (retval); 1324 } 1325 1326 /* do some option post-processing */ 1327 if (kflag) { 1328 coargs.time *= coargs.nsec_per_tick; 1329 coargs.atime *= coargs.nsec_per_tick; 1330 coargs.btime *= coargs.nsec_per_tick; 1331 } 1332 1333 if (dflag) { 1334 coargs.time += coargs.now; 1335 coargs.atime += coargs.now; 1336 coargs.btime += coargs.now; 1337 } 1338 if (Sflag) { 1339 if (flags & DCMD_ADDRSPEC) { 1340 mdb_printf("-S option conflicts with explicit" 1341 " address\n"); 1342 return (DCMD_USAGE); 1343 } 1344 coargs.flags |= COF_SEQID; 1345 coargs.seqid = (int)Stmp; 1346 } 1347 if (Cflag) { 1348 if (flags & DCMD_ADDRSPEC) { 1349 mdb_printf("-C option conflicts with explicit" 1350 " address\n"); 1351 return (DCMD_USAGE); 1352 } 1353 if (coargs.flags & COF_SEQID) { 1354 mdb_printf("-C and -S are mutually exclusive\n"); 1355 return (DCMD_USAGE); 1356 } 1357 coargs.cpu = (cpu_t *)Ctmp; 1358 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1359 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1360 mdb_warn("failed to read cpu_t at %p", Ctmp); 1361 return (DCMD_ERR); 1362 } 1363 coargs.flags |= COF_SEQID; 1364 } 1365 /* avoid null outputs. */ 1366 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1367 coargs.flags |= COF_REAL | COF_NORM; 1368 } 1369 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1370 coargs.flags |= COF_LONG | COF_SHORT; 1371 } 1372 if (tflag) { 1373 if (aflag || bflag) { 1374 mdb_printf("-t and -a|b are mutually exclusive\n"); 1375 return (DCMD_USAGE); 1376 } 1377 coargs.flags |= COF_TIME; 1378 } 1379 if (aflag) { 1380 coargs.flags |= COF_AFTER; 1381 } 1382 if (bflag) { 1383 coargs.flags |= COF_BEFORE; 1384 } 1385 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1386 mdb_printf("value for -a must be earlier than the value" 1387 " for -b.\n"); 1388 return (DCMD_USAGE); 1389 } 1390 1391 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1392 mdb_printf("-H and -Q are mutually exclusive\n"); 1393 return (DCMD_USAGE); 1394 } 1395 1396 if (funcname != NULL) { 1397 GElf_Sym sym; 1398 1399 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1400 coargs.funcaddr = mdb_strtoull(funcname); 1401 } else { 1402 coargs.funcaddr = sym.st_value; 1403 } 1404 coargs.flags |= COF_FUNC; 1405 } 1406 1407 if (paramstr != NULL) { 1408 GElf_Sym sym; 1409 1410 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1411 coargs.param = mdb_strtoull(paramstr); 1412 } else { 1413 coargs.param = sym.st_value; 1414 } 1415 coargs.flags |= COF_PARAM; 1416 } 1417 1418 if (!(flags & DCMD_ADDRSPEC)) { 1419 /* don't pass "dot" if no addr. */ 1420 addr = NULL; 1421 } 1422 if (addr != NULL) { 1423 /* 1424 * a callout table was specified. Ignore -r|n option 1425 * to avoid null output. 1426 */ 1427 coargs.flags |= (COF_REAL | COF_NORM); 1428 } 1429 1430 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1431 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1432 } 1433 if (coargs.flags & COF_FREE) { 1434 coargs.flags |= COF_EMPTY; 1435 /* -F = free callouts, -FL = free lists */ 1436 if (!(coargs.flags & COF_LIST)) { 1437 coargs.flags |= COF_BYIDH; 1438 } 1439 } 1440 1441 /* walk table, using specialized callback routine. */ 1442 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1443 mdb_warn("cannot walk callout_table"); 1444 return (DCMD_ERR); 1445 } 1446 return (DCMD_OK); 1447 } 1448 1449 1450 /* 1451 * Given an extended callout id, dump its information. 1452 */ 1453 /*ARGSUSED*/ 1454 int 1455 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1456 { 1457 callout_data_t coargs; 1458 callout_table_t *ctptr; 1459 callout_table_t ct; 1460 callout_id_t coid; 1461 callout_t *coptr; 1462 int tableid; 1463 callout_id_t xid; 1464 ulong_t idhash; 1465 int i, retval; 1466 const mdb_arg_t *arg; 1467 size_t size; 1468 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1469 1470 coargs.flags = COF_DEFAULT | COF_BYIDH; 1471 i = mdb_getopts(argc, argv, 1472 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1473 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1474 NULL); 1475 argc -= i; 1476 argv += i; 1477 1478 if (argc != 1) { 1479 return (DCMD_USAGE); 1480 } 1481 arg = &argv[0]; 1482 1483 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1484 xid = arg->a_un.a_val; 1485 } else { 1486 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1487 } 1488 1489 if (DCMD_HDRSPEC(flags)) { 1490 coargs.flags |= COF_CHDR; 1491 } 1492 1493 1494 /* initialize from kernel variables */ 1495 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1496 return (retval); 1497 } 1498 1499 /* we must massage the environment so that the macros will play nice */ 1500 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1501 #define callout_table_bits coargs.ctbits 1502 #define nsec_per_tick coargs.nsec_per_tick 1503 tableid = CALLOUT_ID_TO_TABLE(xid); 1504 idhash = CALLOUT_IDHASH(xid); 1505 #undef callouts_table_bits 1506 #undef callout_table_mask 1507 #undef nsec_per_tick 1508 coid = CO_PLAIN_ID(xid); 1509 1510 if (flags & DCMD_ADDRSPEC) { 1511 mdb_printf("calloutid does not accept explicit address.\n"); 1512 return (DCMD_USAGE); 1513 } 1514 1515 if (coargs.flags & COF_DECODE) { 1516 if (DCMD_HDRSPEC(flags)) { 1517 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1518 "SEQ", "T", "XL", "XID", "IDHASH"); 1519 } 1520 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1521 TABLE_TO_SEQID(tableid), 1522 co_typenames[tableid & CALLOUT_TYPE_MASK], 1523 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1524 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1525 (long long)coid, idhash); 1526 return (DCMD_OK); 1527 } 1528 1529 /* get our table. Note this relies on the types being correct */ 1530 ctptr = coargs.co_table + tableid; 1531 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1532 mdb_warn("failed to read callout_table at %p", ctptr); 1533 return (DCMD_ERR); 1534 } 1535 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1536 if (ct.ct_idhash != NULL) { 1537 if (mdb_vread(&(cot_idhash), size, 1538 (uintptr_t)ct.ct_idhash) == -1) { 1539 mdb_warn("failed to read id_hash at %p", 1540 ct.ct_idhash); 1541 return (WALK_ERR); 1542 } 1543 } 1544 1545 /* callout at beginning of hash chain */ 1546 if (ct.ct_idhash == NULL) { 1547 mdb_printf("id hash chain for this xid is empty\n"); 1548 return (DCMD_ERR); 1549 } 1550 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1551 if (coptr == NULL) { 1552 mdb_printf("id hash chain for this xid is empty\n"); 1553 return (DCMD_ERR); 1554 } 1555 1556 coargs.ndx = tableid; 1557 coargs.bucket = idhash; 1558 1559 /* use the walker, luke */ 1560 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1561 (uintptr_t)coptr) == -1) { 1562 mdb_warn("cannot walk callouts at %p", coptr); 1563 return (WALK_ERR); 1564 } 1565 1566 return (DCMD_OK); 1567 } 1568 1569 void 1570 callout_help(void) 1571 { 1572 mdb_printf("callout: display callouts.\n" 1573 "Given a callout table address, display callouts from table.\n" 1574 "Without an address, display callouts from all tables.\n" 1575 "options:\n" 1576 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1577 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1578 " -x : limit display to callouts which are executing\n" 1579 " -h : limit display to callouts based on hrestime\n" 1580 " -B : limit display to callouts based on absolute time\n" 1581 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1582 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1583 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1584 " -d : interpret time option to -t|a|b as delta from current time\n" 1585 " -k : use ticks instead of nanoseconds as arguments to" 1586 " -t|a|b. Note that\n ticks are less accurate and may not" 1587 " match other tick times (ie: lbolt).\n" 1588 " -D : display exiration time as delta from current time\n" 1589 " -S seqid : limit display to callouts for this cpu sequence id\n" 1590 " -C addr : limit display to callouts for this cpu pointer\n" 1591 " -f name|addr : limit display to callouts with this function\n" 1592 " -p name|addr : limit display to callouts functions with this" 1593 " parameter\n" 1594 " -T : display the callout table itself, instead of callouts\n" 1595 " -L : display callout lists instead of callouts\n" 1596 " -E : with -T or L, display empty data structures.\n" 1597 " -i : traverse callouts by id hash instead of list hash\n" 1598 " -F : walk free callout list (free list with -i) instead\n" 1599 " -v : display more info for each item\n" 1600 " -V : show details of each level of info as it is traversed\n" 1601 " -H : limit display to callouts in the callout heap\n" 1602 " -Q : limit display to callouts in the callout queue\n" 1603 " -A : show only addresses. Useful for pipelines.\n"); 1604 } 1605 1606 void 1607 calloutid_help(void) 1608 { 1609 mdb_printf("calloutid: display callout by id.\n" 1610 "Given an extended callout id, display the callout infomation.\n" 1611 "options:\n" 1612 " -d : do not dereference callout, just decode the id.\n" 1613 " -v : verbose display more info about the callout\n"); 1614 } 1615 1616 /*ARGSUSED*/ 1617 int 1618 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1619 { 1620 long num_classes, i; 1621 sclass_t *class_tbl; 1622 GElf_Sym g_sclass; 1623 char class_name[PC_CLNMSZ]; 1624 size_t tbl_size; 1625 1626 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1627 mdb_warn("failed to find symbol sclass\n"); 1628 return (DCMD_ERR); 1629 } 1630 1631 tbl_size = (size_t)g_sclass.st_size; 1632 num_classes = tbl_size / (sizeof (sclass_t)); 1633 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1634 1635 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1636 mdb_warn("failed to read sclass"); 1637 return (DCMD_ERR); 1638 } 1639 1640 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1641 "INIT FCN", "CLASS FCN"); 1642 1643 for (i = 0; i < num_classes; i++) { 1644 if (mdb_vread(class_name, sizeof (class_name), 1645 (uintptr_t)class_tbl[i].cl_name) == -1) 1646 (void) strcpy(class_name, "???"); 1647 1648 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1649 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1650 } 1651 1652 return (DCMD_OK); 1653 } 1654 1655 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1656 1657 int 1658 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1659 { 1660 uintptr_t rootdir; 1661 vnode_t vn; 1662 char buf[MAXPATHLEN]; 1663 1664 uint_t opt_F = FALSE; 1665 1666 if (mdb_getopts(argc, argv, 1667 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1668 return (DCMD_USAGE); 1669 1670 if (!(flags & DCMD_ADDRSPEC)) { 1671 mdb_warn("expected explicit vnode_t address before ::\n"); 1672 return (DCMD_USAGE); 1673 } 1674 1675 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1676 mdb_warn("failed to read rootdir"); 1677 return (DCMD_ERR); 1678 } 1679 1680 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1681 return (DCMD_ERR); 1682 1683 if (*buf == '\0') { 1684 mdb_printf("??\n"); 1685 return (DCMD_OK); 1686 } 1687 1688 mdb_printf("%s", buf); 1689 if (opt_F && buf[strlen(buf)-1] != '/' && 1690 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1691 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1692 mdb_printf("\n"); 1693 1694 return (DCMD_OK); 1695 } 1696 1697 int 1698 ld_walk_init(mdb_walk_state_t *wsp) 1699 { 1700 wsp->walk_data = (void *)wsp->walk_addr; 1701 return (WALK_NEXT); 1702 } 1703 1704 int 1705 ld_walk_step(mdb_walk_state_t *wsp) 1706 { 1707 int status; 1708 lock_descriptor_t ld; 1709 1710 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1711 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1712 wsp->walk_addr); 1713 return (WALK_ERR); 1714 } 1715 1716 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1717 if (status == WALK_ERR) 1718 return (WALK_ERR); 1719 1720 wsp->walk_addr = (uintptr_t)ld.l_next; 1721 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1722 return (WALK_DONE); 1723 1724 return (status); 1725 } 1726 1727 int 1728 lg_walk_init(mdb_walk_state_t *wsp) 1729 { 1730 GElf_Sym sym; 1731 1732 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1733 mdb_warn("failed to find symbol 'lock_graph'\n"); 1734 return (WALK_ERR); 1735 } 1736 1737 wsp->walk_addr = (uintptr_t)sym.st_value; 1738 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1739 1740 return (WALK_NEXT); 1741 } 1742 1743 typedef struct lg_walk_data { 1744 uintptr_t startaddr; 1745 mdb_walk_cb_t callback; 1746 void *data; 1747 } lg_walk_data_t; 1748 1749 /* 1750 * We can't use ::walk lock_descriptor directly, because the head of each graph 1751 * is really a dummy lock. Rather than trying to dynamically determine if this 1752 * is a dummy node or not, we just filter out the initial element of the 1753 * list. 1754 */ 1755 static int 1756 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1757 { 1758 lg_walk_data_t *lw = priv; 1759 1760 if (addr != lw->startaddr) 1761 return (lw->callback(addr, data, lw->data)); 1762 1763 return (WALK_NEXT); 1764 } 1765 1766 int 1767 lg_walk_step(mdb_walk_state_t *wsp) 1768 { 1769 graph_t *graph; 1770 lg_walk_data_t lw; 1771 1772 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1773 return (WALK_DONE); 1774 1775 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1776 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1777 return (WALK_ERR); 1778 } 1779 1780 wsp->walk_addr += sizeof (graph); 1781 1782 if (graph == NULL) 1783 return (WALK_NEXT); 1784 1785 lw.callback = wsp->walk_callback; 1786 lw.data = wsp->walk_cbdata; 1787 1788 lw.startaddr = (uintptr_t)&(graph->active_locks); 1789 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1790 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1791 return (WALK_ERR); 1792 } 1793 1794 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1795 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1796 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1797 return (WALK_ERR); 1798 } 1799 1800 return (WALK_NEXT); 1801 } 1802 1803 /* 1804 * The space available for the path corresponding to the locked vnode depends 1805 * on whether we are printing 32- or 64-bit addresses. 1806 */ 1807 #ifdef _LP64 1808 #define LM_VNPATHLEN 20 1809 #else 1810 #define LM_VNPATHLEN 30 1811 #endif 1812 1813 /*ARGSUSED*/ 1814 static int 1815 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1816 { 1817 const lock_descriptor_t *ld = data; 1818 char buf[LM_VNPATHLEN]; 1819 proc_t p; 1820 1821 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1822 addr, ld->l_type == F_RDLCK ? "RD" : 1823 ld->l_type == F_WRLCK ? "WR" : "??", 1824 ld->l_state, ld->l_flock.l_pid, 1825 ld->l_flock.l_pid == 0 ? "<kernel>" : 1826 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1827 "<defunct>" : p.p_user.u_comm, 1828 ld->l_vnode); 1829 1830 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1831 sizeof (buf)); 1832 mdb_printf("%s\n", buf); 1833 1834 return (WALK_NEXT); 1835 } 1836 1837 /*ARGSUSED*/ 1838 int 1839 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1840 { 1841 if (DCMD_HDRSPEC(flags)) 1842 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1843 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1844 1845 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1846 } 1847 1848 /*ARGSUSED*/ 1849 int 1850 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1851 { 1852 if ((uintptr_t)f->f_vnode == *target) { 1853 mdb_printf("file %p\n", addr); 1854 *target = NULL; 1855 } 1856 1857 return (WALK_NEXT); 1858 } 1859 1860 /*ARGSUSED*/ 1861 int 1862 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1863 { 1864 uintptr_t t = *target; 1865 1866 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1867 mdb_warn("couldn't file walk proc %p", addr); 1868 return (WALK_ERR); 1869 } 1870 1871 if (t == NULL) 1872 mdb_printf("%p\n", addr); 1873 1874 return (WALK_NEXT); 1875 } 1876 1877 /*ARGSUSED*/ 1878 int 1879 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1880 { 1881 uintptr_t target = addr; 1882 1883 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1884 return (DCMD_USAGE); 1885 1886 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1887 mdb_warn("can't proc walk"); 1888 return (DCMD_ERR); 1889 } 1890 1891 return (DCMD_OK); 1892 } 1893 1894 typedef struct datafmt { 1895 char *hdr1; 1896 char *hdr2; 1897 char *dashes; 1898 char *fmt; 1899 } datafmt_t; 1900 1901 static datafmt_t kmemfmt[] = { 1902 { "cache ", "name ", 1903 "-------------------------", "%-25s " }, 1904 { " buf", " size", "------", "%6u " }, 1905 { " buf", "in use", "------", "%6u " }, 1906 { " buf", " total", "------", "%6u " }, 1907 { " memory", " in use", "----------", "%10lu%c " }, 1908 { " alloc", " succeed", "---------", "%9u " }, 1909 { "alloc", " fail", "-----", "%5u " }, 1910 { NULL, NULL, NULL, NULL } 1911 }; 1912 1913 static datafmt_t vmemfmt[] = { 1914 { "vmem ", "name ", 1915 "-------------------------", "%-*s " }, 1916 { " memory", " in use", "----------", "%9llu%c " }, 1917 { " memory", " total", "-----------", "%10llu%c " }, 1918 { " memory", " import", "----------", "%9llu%c " }, 1919 { " alloc", " succeed", "---------", "%9llu " }, 1920 { "alloc", " fail", "-----", "%5llu " }, 1921 { NULL, NULL, NULL, NULL } 1922 }; 1923 1924 /*ARGSUSED*/ 1925 static int 1926 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1927 { 1928 short rounds, prounds; 1929 1930 if (KMEM_DUMPCC(ccp)) { 1931 rounds = ccp->cc_dump_rounds; 1932 prounds = ccp->cc_dump_prounds; 1933 } else { 1934 rounds = ccp->cc_rounds; 1935 prounds = ccp->cc_prounds; 1936 } 1937 if (rounds > 0) 1938 *avail += rounds; 1939 if (prounds > 0) 1940 *avail += prounds; 1941 1942 return (WALK_NEXT); 1943 } 1944 1945 /*ARGSUSED*/ 1946 static int 1947 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1948 { 1949 *alloc += ccp->cc_alloc; 1950 1951 return (WALK_NEXT); 1952 } 1953 1954 /*ARGSUSED*/ 1955 static int 1956 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1957 { 1958 *avail += sp->slab_chunks - sp->slab_refcnt; 1959 1960 return (WALK_NEXT); 1961 } 1962 1963 typedef struct kmastat_vmem { 1964 uintptr_t kv_addr; 1965 struct kmastat_vmem *kv_next; 1966 size_t kv_meminuse; 1967 int kv_alloc; 1968 int kv_fail; 1969 } kmastat_vmem_t; 1970 1971 typedef struct kmastat_args { 1972 kmastat_vmem_t **ka_kvpp; 1973 uint_t ka_shift; 1974 } kmastat_args_t; 1975 1976 static int 1977 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1978 { 1979 kmastat_vmem_t **kvpp = kap->ka_kvpp; 1980 kmastat_vmem_t *kv; 1981 datafmt_t *dfp = kmemfmt; 1982 int magsize; 1983 1984 int avail, alloc, total; 1985 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1986 cp->cache_slabsize; 1987 1988 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1989 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1990 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1991 1992 magsize = kmem_get_magsize(cp); 1993 1994 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1995 avail = cp->cache_full.ml_total * magsize; 1996 total = cp->cache_buftotal; 1997 1998 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1999 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 2000 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2001 2002 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2003 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2004 goto out; 2005 } 2006 2007 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2008 kv->kv_next = *kvpp; 2009 kv->kv_addr = (uintptr_t)cp->cache_arena; 2010 *kvpp = kv; 2011 out: 2012 kv->kv_meminuse += meminuse; 2013 kv->kv_alloc += alloc; 2014 kv->kv_fail += cp->cache_alloc_fail; 2015 2016 mdb_printf((dfp++)->fmt, cp->cache_name); 2017 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2018 mdb_printf((dfp++)->fmt, total - avail); 2019 mdb_printf((dfp++)->fmt, total); 2020 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2021 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2022 kap->ka_shift == KILOS ? 'K' : 'B'); 2023 mdb_printf((dfp++)->fmt, alloc); 2024 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2025 mdb_printf("\n"); 2026 2027 return (WALK_NEXT); 2028 } 2029 2030 static int 2031 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2032 { 2033 kmastat_vmem_t *kv = *kap->ka_kvpp; 2034 size_t len; 2035 2036 while (kv != NULL && kv->kv_addr != addr) 2037 kv = kv->kv_next; 2038 2039 if (kv == NULL || kv->kv_alloc == 0) 2040 return (WALK_NEXT); 2041 2042 len = MIN(17, strlen(v->vm_name)); 2043 2044 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2045 17 - len, "", "", "", "", 2046 kv->kv_meminuse >> kap->ka_shift, 2047 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2048 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2049 2050 return (WALK_NEXT); 2051 } 2052 2053 /*ARGSUSED*/ 2054 static int 2055 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2056 { 2057 datafmt_t *dfp = vmemfmt; 2058 const vmem_kstat_t *vkp = &v->vm_kstat; 2059 uintptr_t paddr; 2060 vmem_t parent; 2061 int ident = 0; 2062 2063 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2064 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2065 mdb_warn("couldn't trace %p's ancestry", addr); 2066 ident = 0; 2067 break; 2068 } 2069 paddr = (uintptr_t)parent.vm_source; 2070 } 2071 2072 mdb_printf("%*s", ident, ""); 2073 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2074 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2075 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2076 *shiftp == KILOS ? 'K' : 'B'); 2077 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2078 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2079 *shiftp == KILOS ? 'K' : 'B'); 2080 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2081 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2082 *shiftp == KILOS ? 'K' : 'B'); 2083 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2084 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2085 2086 mdb_printf("\n"); 2087 2088 return (WALK_NEXT); 2089 } 2090 2091 /*ARGSUSED*/ 2092 int 2093 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2094 { 2095 kmastat_vmem_t *kv = NULL; 2096 datafmt_t *dfp; 2097 kmastat_args_t ka; 2098 2099 ka.ka_shift = 0; 2100 if (mdb_getopts(argc, argv, 2101 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2102 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2103 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2104 return (DCMD_USAGE); 2105 2106 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2107 mdb_printf("%s ", dfp->hdr1); 2108 mdb_printf("\n"); 2109 2110 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2111 mdb_printf("%s ", dfp->hdr2); 2112 mdb_printf("\n"); 2113 2114 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2115 mdb_printf("%s ", dfp->dashes); 2116 mdb_printf("\n"); 2117 2118 ka.ka_kvpp = &kv; 2119 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2120 mdb_warn("can't walk 'kmem_cache'"); 2121 return (DCMD_ERR); 2122 } 2123 2124 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2125 mdb_printf("%s ", dfp->dashes); 2126 mdb_printf("\n"); 2127 2128 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2129 mdb_warn("can't walk 'vmem'"); 2130 return (DCMD_ERR); 2131 } 2132 2133 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2134 mdb_printf("%s ", dfp->dashes); 2135 mdb_printf("\n"); 2136 2137 mdb_printf("\n"); 2138 2139 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2140 mdb_printf("%s ", dfp->hdr1); 2141 mdb_printf("\n"); 2142 2143 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2144 mdb_printf("%s ", dfp->hdr2); 2145 mdb_printf("\n"); 2146 2147 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2148 mdb_printf("%s ", dfp->dashes); 2149 mdb_printf("\n"); 2150 2151 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2152 mdb_warn("can't walk 'vmem'"); 2153 return (DCMD_ERR); 2154 } 2155 2156 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2157 mdb_printf("%s ", dfp->dashes); 2158 mdb_printf("\n"); 2159 return (DCMD_OK); 2160 } 2161 2162 /* 2163 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2164 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2165 * unfortunately, a few of the segs are both large and sparse, so we could 2166 * spend quite a bit of time scanning VAs which have no backing pages. 2167 * 2168 * So for the few very sparse segs, we skip the segment itself, and scan 2169 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2170 * Currently, we do this for: 2171 * 2172 * SEG VMEM ARENA 2173 * kvseg heap_arena 2174 * kvseg32 heap32_arena 2175 * kvseg_core heap_core_arena 2176 * 2177 * In addition, we skip the segkpm segment in its entirety, since it is very 2178 * sparse, and contains no new kernel data. 2179 */ 2180 typedef struct kgrep_walk_data { 2181 kgrep_cb_func *kg_cb; 2182 void *kg_cbdata; 2183 uintptr_t kg_kvseg; 2184 uintptr_t kg_kvseg32; 2185 uintptr_t kg_kvseg_core; 2186 uintptr_t kg_segkpm; 2187 uintptr_t kg_heap_lp_base; 2188 uintptr_t kg_heap_lp_end; 2189 } kgrep_walk_data_t; 2190 2191 static int 2192 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2193 { 2194 uintptr_t base = (uintptr_t)seg->s_base; 2195 2196 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2197 addr == kg->kg_kvseg_core) 2198 return (WALK_NEXT); 2199 2200 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2201 return (WALK_NEXT); 2202 2203 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2204 } 2205 2206 /*ARGSUSED*/ 2207 static int 2208 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2209 { 2210 /* 2211 * skip large page heap address range - it is scanned by walking 2212 * allocated vmem_segs in the heap_lp_arena 2213 */ 2214 if (seg->vs_start == kg->kg_heap_lp_base && 2215 seg->vs_end == kg->kg_heap_lp_end) 2216 return (WALK_NEXT); 2217 2218 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2219 } 2220 2221 /*ARGSUSED*/ 2222 static int 2223 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2224 { 2225 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2226 } 2227 2228 static int 2229 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2230 { 2231 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2232 2233 if (strcmp(vmem->vm_name, "heap") != 0 && 2234 strcmp(vmem->vm_name, "heap32") != 0 && 2235 strcmp(vmem->vm_name, "heap_core") != 0 && 2236 strcmp(vmem->vm_name, "heap_lp") != 0) 2237 return (WALK_NEXT); 2238 2239 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2240 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2241 2242 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2243 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2244 return (WALK_ERR); 2245 } 2246 2247 return (WALK_NEXT); 2248 } 2249 2250 int 2251 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2252 { 2253 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2254 kgrep_walk_data_t kg; 2255 2256 if (mdb_get_state() == MDB_STATE_RUNNING) { 2257 mdb_warn("kgrep can only be run on a system " 2258 "dump or under kmdb; see dumpadm(1M)\n"); 2259 return (DCMD_ERR); 2260 } 2261 2262 if (mdb_lookup_by_name("kas", &kas) == -1) { 2263 mdb_warn("failed to locate 'kas' symbol\n"); 2264 return (DCMD_ERR); 2265 } 2266 2267 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2268 mdb_warn("failed to locate 'kvseg' symbol\n"); 2269 return (DCMD_ERR); 2270 } 2271 2272 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2273 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2274 return (DCMD_ERR); 2275 } 2276 2277 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2278 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2279 return (DCMD_ERR); 2280 } 2281 2282 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2283 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2284 return (DCMD_ERR); 2285 } 2286 2287 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2288 mdb_warn("failed to read 'heap_lp_base'\n"); 2289 return (DCMD_ERR); 2290 } 2291 2292 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2293 mdb_warn("failed to read 'heap_lp_end'\n"); 2294 return (DCMD_ERR); 2295 } 2296 2297 kg.kg_cb = cb; 2298 kg.kg_cbdata = cbdata; 2299 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2300 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2301 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2302 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2303 2304 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2305 &kg, kas.st_value) == -1) { 2306 mdb_warn("failed to walk kas segments"); 2307 return (DCMD_ERR); 2308 } 2309 2310 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2311 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2312 return (DCMD_ERR); 2313 } 2314 2315 return (DCMD_OK); 2316 } 2317 2318 size_t 2319 kgrep_subr_pagesize(void) 2320 { 2321 return (PAGESIZE); 2322 } 2323 2324 typedef struct file_walk_data { 2325 struct uf_entry *fw_flist; 2326 int fw_flistsz; 2327 int fw_ndx; 2328 int fw_nofiles; 2329 } file_walk_data_t; 2330 2331 int 2332 file_walk_init(mdb_walk_state_t *wsp) 2333 { 2334 file_walk_data_t *fw; 2335 proc_t p; 2336 2337 if (wsp->walk_addr == NULL) { 2338 mdb_warn("file walk doesn't support global walks\n"); 2339 return (WALK_ERR); 2340 } 2341 2342 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2343 2344 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2345 mdb_free(fw, sizeof (file_walk_data_t)); 2346 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2347 return (WALK_ERR); 2348 } 2349 2350 if (p.p_user.u_finfo.fi_nfiles == 0) { 2351 mdb_free(fw, sizeof (file_walk_data_t)); 2352 return (WALK_DONE); 2353 } 2354 2355 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2356 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2357 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2358 2359 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2360 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2361 mdb_warn("failed to read file array at %p", 2362 p.p_user.u_finfo.fi_list); 2363 mdb_free(fw->fw_flist, fw->fw_flistsz); 2364 mdb_free(fw, sizeof (file_walk_data_t)); 2365 return (WALK_ERR); 2366 } 2367 2368 fw->fw_ndx = 0; 2369 wsp->walk_data = fw; 2370 2371 return (WALK_NEXT); 2372 } 2373 2374 int 2375 file_walk_step(mdb_walk_state_t *wsp) 2376 { 2377 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2378 struct file file; 2379 uintptr_t fp; 2380 2381 again: 2382 if (fw->fw_ndx == fw->fw_nofiles) 2383 return (WALK_DONE); 2384 2385 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2386 goto again; 2387 2388 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2389 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2390 } 2391 2392 int 2393 allfile_walk_step(mdb_walk_state_t *wsp) 2394 { 2395 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2396 struct file file; 2397 uintptr_t fp; 2398 2399 if (fw->fw_ndx == fw->fw_nofiles) 2400 return (WALK_DONE); 2401 2402 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2403 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2404 else 2405 bzero(&file, sizeof (file)); 2406 2407 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2408 } 2409 2410 void 2411 file_walk_fini(mdb_walk_state_t *wsp) 2412 { 2413 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2414 2415 mdb_free(fw->fw_flist, fw->fw_flistsz); 2416 mdb_free(fw, sizeof (file_walk_data_t)); 2417 } 2418 2419 int 2420 port_walk_init(mdb_walk_state_t *wsp) 2421 { 2422 if (wsp->walk_addr == NULL) { 2423 mdb_warn("port walk doesn't support global walks\n"); 2424 return (WALK_ERR); 2425 } 2426 2427 if (mdb_layered_walk("file", wsp) == -1) { 2428 mdb_warn("couldn't walk 'file'"); 2429 return (WALK_ERR); 2430 } 2431 return (WALK_NEXT); 2432 } 2433 2434 int 2435 port_walk_step(mdb_walk_state_t *wsp) 2436 { 2437 struct vnode vn; 2438 uintptr_t vp; 2439 uintptr_t pp; 2440 struct port port; 2441 2442 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2443 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2444 mdb_warn("failed to read vnode_t at %p", vp); 2445 return (WALK_ERR); 2446 } 2447 if (vn.v_type != VPORT) 2448 return (WALK_NEXT); 2449 2450 pp = (uintptr_t)vn.v_data; 2451 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2452 mdb_warn("failed to read port_t at %p", pp); 2453 return (WALK_ERR); 2454 } 2455 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2456 } 2457 2458 typedef struct portev_walk_data { 2459 list_node_t *pev_node; 2460 list_node_t *pev_last; 2461 size_t pev_offset; 2462 } portev_walk_data_t; 2463 2464 int 2465 portev_walk_init(mdb_walk_state_t *wsp) 2466 { 2467 portev_walk_data_t *pevd; 2468 struct port port; 2469 struct vnode vn; 2470 struct list *list; 2471 uintptr_t vp; 2472 2473 if (wsp->walk_addr == NULL) { 2474 mdb_warn("portev walk doesn't support global walks\n"); 2475 return (WALK_ERR); 2476 } 2477 2478 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2479 2480 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2481 mdb_free(pevd, sizeof (portev_walk_data_t)); 2482 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2483 return (WALK_ERR); 2484 } 2485 2486 vp = (uintptr_t)port.port_vnode; 2487 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2488 mdb_free(pevd, sizeof (portev_walk_data_t)); 2489 mdb_warn("failed to read vnode_t at %p", vp); 2490 return (WALK_ERR); 2491 } 2492 2493 if (vn.v_type != VPORT) { 2494 mdb_free(pevd, sizeof (portev_walk_data_t)); 2495 mdb_warn("input address (%p) does not point to an event port", 2496 wsp->walk_addr); 2497 return (WALK_ERR); 2498 } 2499 2500 if (port.port_queue.portq_nent == 0) { 2501 mdb_free(pevd, sizeof (portev_walk_data_t)); 2502 return (WALK_DONE); 2503 } 2504 list = &port.port_queue.portq_list; 2505 pevd->pev_offset = list->list_offset; 2506 pevd->pev_last = list->list_head.list_prev; 2507 pevd->pev_node = list->list_head.list_next; 2508 wsp->walk_data = pevd; 2509 return (WALK_NEXT); 2510 } 2511 2512 int 2513 portev_walk_step(mdb_walk_state_t *wsp) 2514 { 2515 portev_walk_data_t *pevd; 2516 struct port_kevent ev; 2517 uintptr_t evp; 2518 2519 pevd = (portev_walk_data_t *)wsp->walk_data; 2520 2521 if (pevd->pev_last == NULL) 2522 return (WALK_DONE); 2523 if (pevd->pev_node == pevd->pev_last) 2524 pevd->pev_last = NULL; /* last round */ 2525 2526 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2527 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2528 mdb_warn("failed to read port_kevent at %p", evp); 2529 return (WALK_DONE); 2530 } 2531 pevd->pev_node = ev.portkev_node.list_next; 2532 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2533 } 2534 2535 void 2536 portev_walk_fini(mdb_walk_state_t *wsp) 2537 { 2538 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2539 2540 if (pevd != NULL) 2541 mdb_free(pevd, sizeof (portev_walk_data_t)); 2542 } 2543 2544 typedef struct proc_walk_data { 2545 uintptr_t *pw_stack; 2546 int pw_depth; 2547 int pw_max; 2548 } proc_walk_data_t; 2549 2550 int 2551 proc_walk_init(mdb_walk_state_t *wsp) 2552 { 2553 GElf_Sym sym; 2554 proc_walk_data_t *pw; 2555 2556 if (wsp->walk_addr == NULL) { 2557 if (mdb_lookup_by_name("p0", &sym) == -1) { 2558 mdb_warn("failed to read 'practive'"); 2559 return (WALK_ERR); 2560 } 2561 wsp->walk_addr = (uintptr_t)sym.st_value; 2562 } 2563 2564 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2565 2566 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2567 mdb_warn("failed to read 'nproc'"); 2568 mdb_free(pw, sizeof (pw)); 2569 return (WALK_ERR); 2570 } 2571 2572 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2573 wsp->walk_data = pw; 2574 2575 return (WALK_NEXT); 2576 } 2577 2578 int 2579 proc_walk_step(mdb_walk_state_t *wsp) 2580 { 2581 proc_walk_data_t *pw = wsp->walk_data; 2582 uintptr_t addr = wsp->walk_addr; 2583 uintptr_t cld, sib; 2584 2585 int status; 2586 proc_t pr; 2587 2588 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2589 mdb_warn("failed to read proc at %p", addr); 2590 return (WALK_DONE); 2591 } 2592 2593 cld = (uintptr_t)pr.p_child; 2594 sib = (uintptr_t)pr.p_sibling; 2595 2596 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2597 pw->pw_depth--; 2598 goto sib; 2599 } 2600 2601 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2602 2603 if (status != WALK_NEXT) 2604 return (status); 2605 2606 if ((wsp->walk_addr = cld) != NULL) { 2607 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2608 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2609 addr, cld); 2610 goto sib; 2611 } 2612 2613 pw->pw_stack[pw->pw_depth++] = addr; 2614 2615 if (pw->pw_depth == pw->pw_max) { 2616 mdb_warn("depth %d exceeds max depth; try again\n", 2617 pw->pw_depth); 2618 return (WALK_DONE); 2619 } 2620 return (WALK_NEXT); 2621 } 2622 2623 sib: 2624 /* 2625 * We know that p0 has no siblings, and if another starting proc 2626 * was given, we don't want to walk its siblings anyway. 2627 */ 2628 if (pw->pw_depth == 0) 2629 return (WALK_DONE); 2630 2631 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2632 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2633 addr, sib); 2634 sib = NULL; 2635 } 2636 2637 if ((wsp->walk_addr = sib) == NULL) { 2638 if (pw->pw_depth > 0) { 2639 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2640 return (WALK_NEXT); 2641 } 2642 return (WALK_DONE); 2643 } 2644 2645 return (WALK_NEXT); 2646 } 2647 2648 void 2649 proc_walk_fini(mdb_walk_state_t *wsp) 2650 { 2651 proc_walk_data_t *pw = wsp->walk_data; 2652 2653 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2654 mdb_free(pw, sizeof (proc_walk_data_t)); 2655 } 2656 2657 int 2658 task_walk_init(mdb_walk_state_t *wsp) 2659 { 2660 task_t task; 2661 2662 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2663 mdb_warn("failed to read task at %p", wsp->walk_addr); 2664 return (WALK_ERR); 2665 } 2666 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2667 wsp->walk_data = task.tk_memb_list; 2668 return (WALK_NEXT); 2669 } 2670 2671 int 2672 task_walk_step(mdb_walk_state_t *wsp) 2673 { 2674 proc_t proc; 2675 int status; 2676 2677 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2678 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2679 return (WALK_DONE); 2680 } 2681 2682 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2683 2684 if (proc.p_tasknext == wsp->walk_data) 2685 return (WALK_DONE); 2686 2687 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2688 return (status); 2689 } 2690 2691 int 2692 project_walk_init(mdb_walk_state_t *wsp) 2693 { 2694 if (wsp->walk_addr == NULL) { 2695 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2696 mdb_warn("failed to read 'proj0p'"); 2697 return (WALK_ERR); 2698 } 2699 } 2700 wsp->walk_data = (void *)wsp->walk_addr; 2701 return (WALK_NEXT); 2702 } 2703 2704 int 2705 project_walk_step(mdb_walk_state_t *wsp) 2706 { 2707 uintptr_t addr = wsp->walk_addr; 2708 kproject_t pj; 2709 int status; 2710 2711 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2712 mdb_warn("failed to read project at %p", addr); 2713 return (WALK_DONE); 2714 } 2715 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2716 if (status != WALK_NEXT) 2717 return (status); 2718 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2719 if ((void *)wsp->walk_addr == wsp->walk_data) 2720 return (WALK_DONE); 2721 return (WALK_NEXT); 2722 } 2723 2724 static int 2725 generic_walk_step(mdb_walk_state_t *wsp) 2726 { 2727 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2728 wsp->walk_cbdata)); 2729 } 2730 2731 static int 2732 cpu_walk_cmp(const void *l, const void *r) 2733 { 2734 uintptr_t lhs = *((uintptr_t *)l); 2735 uintptr_t rhs = *((uintptr_t *)r); 2736 cpu_t lcpu, rcpu; 2737 2738 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2739 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2740 2741 if (lcpu.cpu_id < rcpu.cpu_id) 2742 return (-1); 2743 2744 if (lcpu.cpu_id > rcpu.cpu_id) 2745 return (1); 2746 2747 return (0); 2748 } 2749 2750 typedef struct cpu_walk { 2751 uintptr_t *cw_array; 2752 int cw_ndx; 2753 } cpu_walk_t; 2754 2755 int 2756 cpu_walk_init(mdb_walk_state_t *wsp) 2757 { 2758 cpu_walk_t *cw; 2759 int max_ncpus, i = 0; 2760 uintptr_t current, first; 2761 cpu_t cpu, panic_cpu; 2762 uintptr_t panicstr, addr; 2763 GElf_Sym sym; 2764 2765 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2766 2767 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2768 mdb_warn("failed to read 'max_ncpus'"); 2769 return (WALK_ERR); 2770 } 2771 2772 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2773 mdb_warn("failed to read 'panicstr'"); 2774 return (WALK_ERR); 2775 } 2776 2777 if (panicstr != NULL) { 2778 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2779 mdb_warn("failed to find 'panic_cpu'"); 2780 return (WALK_ERR); 2781 } 2782 2783 addr = (uintptr_t)sym.st_value; 2784 2785 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2786 mdb_warn("failed to read 'panic_cpu'"); 2787 return (WALK_ERR); 2788 } 2789 } 2790 2791 /* 2792 * Unfortunately, there is no platform-independent way to walk 2793 * CPUs in ID order. We therefore loop through in cpu_next order, 2794 * building an array of CPU pointers which will subsequently be 2795 * sorted. 2796 */ 2797 cw->cw_array = 2798 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2799 2800 if (mdb_readvar(&first, "cpu_list") == -1) { 2801 mdb_warn("failed to read 'cpu_list'"); 2802 return (WALK_ERR); 2803 } 2804 2805 current = first; 2806 do { 2807 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2808 mdb_warn("failed to read cpu at %p", current); 2809 return (WALK_ERR); 2810 } 2811 2812 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2813 cw->cw_array[i++] = addr; 2814 } else { 2815 cw->cw_array[i++] = current; 2816 } 2817 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2818 2819 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2820 wsp->walk_data = cw; 2821 2822 return (WALK_NEXT); 2823 } 2824 2825 int 2826 cpu_walk_step(mdb_walk_state_t *wsp) 2827 { 2828 cpu_walk_t *cw = wsp->walk_data; 2829 cpu_t cpu; 2830 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2831 2832 if (addr == NULL) 2833 return (WALK_DONE); 2834 2835 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2836 mdb_warn("failed to read cpu at %p", addr); 2837 return (WALK_DONE); 2838 } 2839 2840 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2841 } 2842 2843 typedef struct cpuinfo_data { 2844 intptr_t cid_cpu; 2845 uintptr_t **cid_ithr; 2846 char cid_print_head; 2847 char cid_print_thr; 2848 char cid_print_ithr; 2849 char cid_print_flags; 2850 } cpuinfo_data_t; 2851 2852 int 2853 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2854 { 2855 cpu_t c; 2856 int id; 2857 uint8_t pil; 2858 2859 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2860 return (WALK_NEXT); 2861 2862 if (thr->t_bound_cpu == NULL) { 2863 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2864 return (WALK_NEXT); 2865 } 2866 2867 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2868 2869 if ((id = c.cpu_id) >= NCPU) { 2870 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2871 thr->t_bound_cpu, id, NCPU); 2872 return (WALK_NEXT); 2873 } 2874 2875 if ((pil = thr->t_pil) >= NINTR) { 2876 mdb_warn("thread %p has pil (%d) greater than %d\n", 2877 addr, pil, NINTR); 2878 return (WALK_NEXT); 2879 } 2880 2881 if (cid->cid_ithr[id][pil] != NULL) { 2882 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2883 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2884 return (WALK_NEXT); 2885 } 2886 2887 cid->cid_ithr[id][pil] = addr; 2888 2889 return (WALK_NEXT); 2890 } 2891 2892 #define CPUINFO_IDWIDTH 3 2893 #define CPUINFO_FLAGWIDTH 9 2894 2895 #ifdef _LP64 2896 #if defined(__amd64) 2897 #define CPUINFO_TWIDTH 16 2898 #define CPUINFO_CPUWIDTH 16 2899 #else 2900 #define CPUINFO_CPUWIDTH 11 2901 #define CPUINFO_TWIDTH 11 2902 #endif 2903 #else 2904 #define CPUINFO_CPUWIDTH 8 2905 #define CPUINFO_TWIDTH 8 2906 #endif 2907 2908 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2909 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2910 #define CPUINFO_ITHRDELT 4 2911 2912 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2913 flagline < nflaglines ? flagbuf[flagline++] : "") 2914 2915 int 2916 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2917 { 2918 kthread_t t; 2919 disp_t disp; 2920 proc_t p; 2921 uintptr_t pinned; 2922 char **flagbuf; 2923 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2924 2925 const char *flags[] = { 2926 "RUNNING", "READY", "QUIESCED", "EXISTS", 2927 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2928 "SPARE", "FAULTED", NULL 2929 }; 2930 2931 if (cid->cid_cpu != -1) { 2932 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2933 return (WALK_NEXT); 2934 2935 /* 2936 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2937 */ 2938 cid->cid_cpu = -1; 2939 rval = WALK_DONE; 2940 } 2941 2942 if (cid->cid_print_head) { 2943 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2944 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2945 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2946 "PROC"); 2947 cid->cid_print_head = FALSE; 2948 } 2949 2950 bspl = cpu->cpu_base_spl; 2951 2952 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2953 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2954 return (WALK_ERR); 2955 } 2956 2957 mdb_printf("%3d %0*p %3x %4d %4d ", 2958 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2959 disp.disp_nrunnable, bspl); 2960 2961 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2962 mdb_printf("%3d ", t.t_pri); 2963 } else { 2964 mdb_printf("%3s ", "-"); 2965 } 2966 2967 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2968 cpu->cpu_kprunrun ? "yes" : "no"); 2969 2970 if (cpu->cpu_last_swtch) { 2971 mdb_printf("t-%-4d ", 2972 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2973 } else { 2974 mdb_printf("%-6s ", "-"); 2975 } 2976 2977 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2978 2979 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2980 mdb_printf(" (idle)\n"); 2981 else if (cpu->cpu_thread == NULL) 2982 mdb_printf(" -\n"); 2983 else { 2984 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2985 mdb_printf(" %s\n", p.p_user.u_comm); 2986 } else { 2987 mdb_printf(" ?\n"); 2988 } 2989 } 2990 2991 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2992 2993 if (cid->cid_print_flags) { 2994 int first = 1, i, j, k; 2995 char *s; 2996 2997 cid->cid_print_head = TRUE; 2998 2999 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 3000 if (!(cpu->cpu_flags & i)) 3001 continue; 3002 3003 if (first) { 3004 s = mdb_alloc(CPUINFO_THRDELT + 1, 3005 UM_GC | UM_SLEEP); 3006 3007 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3008 "%*s|%*s", CPUINFO_FLAGDELT, "", 3009 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3010 flagbuf[nflaglines++] = s; 3011 } 3012 3013 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3014 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3015 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3016 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3017 first ? "<--+" : ""); 3018 3019 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3020 s[k] = ' '; 3021 s[k] = '\0'; 3022 3023 flagbuf[nflaglines++] = s; 3024 first = 0; 3025 } 3026 } 3027 3028 if (cid->cid_print_ithr) { 3029 int i, found_one = FALSE; 3030 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3031 3032 for (i = NINTR - 1; i >= 0; i--) { 3033 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3034 3035 if (iaddr == NULL) 3036 continue; 3037 3038 if (!found_one) { 3039 found_one = TRUE; 3040 3041 CPUINFO_INDENT; 3042 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3043 CPUINFO_ITHRDELT, ""); 3044 3045 CPUINFO_INDENT; 3046 mdb_printf("%c%*s+--> %3s %s\n", 3047 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3048 "", "PIL", "THREAD"); 3049 } 3050 3051 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3052 mdb_warn("failed to read kthread_t at %p", 3053 iaddr); 3054 return (WALK_ERR); 3055 } 3056 3057 CPUINFO_INDENT; 3058 mdb_printf("%c%*s %3d %0*p\n", 3059 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3060 t.t_pil, CPUINFO_TWIDTH, iaddr); 3061 3062 pinned = (uintptr_t)t.t_intr; 3063 } 3064 3065 if (found_one && pinned != NULL) { 3066 cid->cid_print_head = TRUE; 3067 (void) strcpy(p.p_user.u_comm, "?"); 3068 3069 if (mdb_vread(&t, sizeof (t), 3070 (uintptr_t)pinned) == -1) { 3071 mdb_warn("failed to read kthread_t at %p", 3072 pinned); 3073 return (WALK_ERR); 3074 } 3075 if (mdb_vread(&p, sizeof (p), 3076 (uintptr_t)t.t_procp) == -1) { 3077 mdb_warn("failed to read proc_t at %p", 3078 t.t_procp); 3079 return (WALK_ERR); 3080 } 3081 3082 CPUINFO_INDENT; 3083 mdb_printf("%c%*s %3s %0*p %s\n", 3084 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3085 CPUINFO_TWIDTH, pinned, 3086 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3087 "(idle)" : p.p_user.u_comm); 3088 } 3089 } 3090 3091 if (disp.disp_nrunnable && cid->cid_print_thr) { 3092 dispq_t *dq; 3093 3094 int i, npri = disp.disp_npri; 3095 3096 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3097 3098 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3099 (uintptr_t)disp.disp_q) == -1) { 3100 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3101 return (WALK_ERR); 3102 } 3103 3104 CPUINFO_INDENT; 3105 mdb_printf("|\n"); 3106 3107 CPUINFO_INDENT; 3108 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3109 CPUINFO_TWIDTH, "THREAD", "PROC"); 3110 3111 for (i = npri - 1; i >= 0; i--) { 3112 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3113 3114 while (taddr != NULL) { 3115 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3116 mdb_warn("failed to read kthread_t " 3117 "at %p", taddr); 3118 return (WALK_ERR); 3119 } 3120 if (mdb_vread(&p, sizeof (p), 3121 (uintptr_t)t.t_procp) == -1) { 3122 mdb_warn("failed to read proc_t at %p", 3123 t.t_procp); 3124 return (WALK_ERR); 3125 } 3126 3127 CPUINFO_INDENT; 3128 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3129 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3130 3131 taddr = (uintptr_t)t.t_link; 3132 } 3133 } 3134 cid->cid_print_head = TRUE; 3135 } 3136 3137 while (flagline < nflaglines) 3138 mdb_printf("%s\n", flagbuf[flagline++]); 3139 3140 if (cid->cid_print_head) 3141 mdb_printf("\n"); 3142 3143 return (rval); 3144 } 3145 3146 int 3147 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3148 { 3149 uint_t verbose = FALSE; 3150 cpuinfo_data_t cid; 3151 3152 cid.cid_print_ithr = FALSE; 3153 cid.cid_print_thr = FALSE; 3154 cid.cid_print_flags = FALSE; 3155 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3156 cid.cid_cpu = -1; 3157 3158 if (flags & DCMD_ADDRSPEC) 3159 cid.cid_cpu = addr; 3160 3161 if (mdb_getopts(argc, argv, 3162 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3163 return (DCMD_USAGE); 3164 3165 if (verbose) { 3166 cid.cid_print_ithr = TRUE; 3167 cid.cid_print_thr = TRUE; 3168 cid.cid_print_flags = TRUE; 3169 cid.cid_print_head = TRUE; 3170 } 3171 3172 if (cid.cid_print_ithr) { 3173 int i; 3174 3175 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3176 * NCPU, UM_SLEEP | UM_GC); 3177 3178 for (i = 0; i < NCPU; i++) 3179 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3180 NINTR, UM_SLEEP | UM_GC); 3181 3182 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3183 &cid) == -1) { 3184 mdb_warn("couldn't walk thread"); 3185 return (DCMD_ERR); 3186 } 3187 } 3188 3189 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3190 mdb_warn("can't walk cpus"); 3191 return (DCMD_ERR); 3192 } 3193 3194 if (cid.cid_cpu != -1) { 3195 /* 3196 * We didn't find this CPU when we walked through the CPUs 3197 * (i.e. the address specified doesn't show up in the "cpu" 3198 * walk). However, the specified address may still correspond 3199 * to a valid cpu_t (for example, if the specified address is 3200 * the actual panicking cpu_t and not the cached panic_cpu). 3201 * Point is: even if we didn't find it, we still want to try 3202 * to print the specified address as a cpu_t. 3203 */ 3204 cpu_t cpu; 3205 3206 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3207 mdb_warn("%p is neither a valid CPU ID nor a " 3208 "valid cpu_t address\n", cid.cid_cpu); 3209 return (DCMD_ERR); 3210 } 3211 3212 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3213 } 3214 3215 return (DCMD_OK); 3216 } 3217 3218 /*ARGSUSED*/ 3219 int 3220 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3221 { 3222 int i; 3223 3224 if (!(flags & DCMD_ADDRSPEC)) 3225 return (DCMD_USAGE); 3226 3227 for (i = 0; i < sizeof (addr) * NBBY; i++) 3228 mdb_printf("%p\n", addr ^ (1UL << i)); 3229 3230 return (DCMD_OK); 3231 } 3232 3233 int 3234 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3235 { 3236 if (p->p_as == *asp) 3237 mdb_printf("%p\n", addr); 3238 return (WALK_NEXT); 3239 } 3240 3241 /*ARGSUSED*/ 3242 int 3243 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3244 { 3245 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3246 return (DCMD_USAGE); 3247 3248 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3249 mdb_warn("failed to walk proc"); 3250 return (DCMD_ERR); 3251 } 3252 3253 return (DCMD_OK); 3254 } 3255 3256 /*ARGSUSED*/ 3257 int 3258 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3259 { 3260 proc_t parent; 3261 int ident = 0; 3262 uintptr_t paddr; 3263 3264 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3265 mdb_vread(&parent, sizeof (parent), paddr); 3266 paddr = (uintptr_t)parent.p_parent; 3267 } 3268 3269 mdb_inc_indent(ident); 3270 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3271 mdb_dec_indent(ident); 3272 3273 return (WALK_NEXT); 3274 } 3275 3276 void 3277 ptree_ancestors(uintptr_t addr, uintptr_t start) 3278 { 3279 proc_t p; 3280 3281 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3282 mdb_warn("couldn't read ancestor at %p", addr); 3283 return; 3284 } 3285 3286 if (p.p_parent != NULL) 3287 ptree_ancestors((uintptr_t)p.p_parent, start); 3288 3289 if (addr != start) 3290 (void) ptree_walk(addr, &p, NULL); 3291 } 3292 3293 /*ARGSUSED*/ 3294 int 3295 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3296 { 3297 if (!(flags & DCMD_ADDRSPEC)) 3298 addr = NULL; 3299 else 3300 ptree_ancestors(addr, addr); 3301 3302 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3303 mdb_warn("couldn't walk 'proc'"); 3304 return (DCMD_ERR); 3305 } 3306 3307 return (DCMD_OK); 3308 } 3309 3310 /*ARGSUSED*/ 3311 static int 3312 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3313 { 3314 int fdnum; 3315 const mdb_arg_t *argp = &argv[0]; 3316 proc_t p; 3317 uf_entry_t uf; 3318 3319 if ((flags & DCMD_ADDRSPEC) == 0) { 3320 mdb_warn("fd doesn't give global information\n"); 3321 return (DCMD_ERR); 3322 } 3323 if (argc != 1) 3324 return (DCMD_USAGE); 3325 3326 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3327 fdnum = argp->a_un.a_val; 3328 else 3329 fdnum = mdb_strtoull(argp->a_un.a_str); 3330 3331 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3332 mdb_warn("couldn't read proc_t at %p", addr); 3333 return (DCMD_ERR); 3334 } 3335 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3336 mdb_warn("process %p only has %d files open.\n", 3337 addr, p.p_user.u_finfo.fi_nfiles); 3338 return (DCMD_ERR); 3339 } 3340 if (mdb_vread(&uf, sizeof (uf_entry_t), 3341 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3342 mdb_warn("couldn't read uf_entry_t at %p", 3343 &p.p_user.u_finfo.fi_list[fdnum]); 3344 return (DCMD_ERR); 3345 } 3346 3347 mdb_printf("%p\n", uf.uf_file); 3348 return (DCMD_OK); 3349 } 3350 3351 /*ARGSUSED*/ 3352 static int 3353 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3354 { 3355 pid_t pid = (pid_t)addr; 3356 3357 if (argc != 0) 3358 return (DCMD_USAGE); 3359 3360 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3361 mdb_warn("PID 0t%d not found\n", pid); 3362 return (DCMD_ERR); 3363 } 3364 3365 mdb_printf("%p\n", addr); 3366 return (DCMD_OK); 3367 } 3368 3369 static char *sysfile_cmd[] = { 3370 "exclude:", 3371 "include:", 3372 "forceload:", 3373 "rootdev:", 3374 "rootfs:", 3375 "swapdev:", 3376 "swapfs:", 3377 "moddir:", 3378 "set", 3379 "unknown", 3380 }; 3381 3382 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3383 3384 /*ARGSUSED*/ 3385 static int 3386 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3387 { 3388 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3389 *target = NULL; 3390 return (WALK_DONE); 3391 } 3392 return (WALK_NEXT); 3393 } 3394 3395 /*ARGSUSED*/ 3396 static int 3397 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3398 { 3399 struct sysparam *sysp, sys; 3400 char var[256]; 3401 char modname[256]; 3402 char val[256]; 3403 char strval[256]; 3404 vmem_t *mod_sysfile_arena; 3405 void *straddr; 3406 3407 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3408 mdb_warn("failed to read sysparam_hd"); 3409 return (DCMD_ERR); 3410 } 3411 3412 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3413 mdb_warn("failed to read mod_sysfile_arena"); 3414 return (DCMD_ERR); 3415 } 3416 3417 while (sysp != NULL) { 3418 var[0] = '\0'; 3419 val[0] = '\0'; 3420 modname[0] = '\0'; 3421 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3422 mdb_warn("couldn't read sysparam %p", sysp); 3423 return (DCMD_ERR); 3424 } 3425 if (sys.sys_modnam != NULL && 3426 mdb_readstr(modname, 256, 3427 (uintptr_t)sys.sys_modnam) == -1) { 3428 mdb_warn("couldn't read modname in %p", sysp); 3429 return (DCMD_ERR); 3430 } 3431 if (sys.sys_ptr != NULL && 3432 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3433 mdb_warn("couldn't read ptr in %p", sysp); 3434 return (DCMD_ERR); 3435 } 3436 if (sys.sys_op != SETOP_NONE) { 3437 /* 3438 * Is this an int or a string? We determine this 3439 * by checking whether straddr is contained in 3440 * mod_sysfile_arena. If so, the walker will set 3441 * straddr to NULL. 3442 */ 3443 straddr = (void *)(uintptr_t)sys.sys_info; 3444 if (sys.sys_op == SETOP_ASSIGN && 3445 sys.sys_info != 0 && 3446 mdb_pwalk("vmem_seg", 3447 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3448 (uintptr_t)mod_sysfile_arena) == 0 && 3449 straddr == NULL && 3450 mdb_readstr(strval, 256, 3451 (uintptr_t)sys.sys_info) != -1) { 3452 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3453 strval); 3454 } else { 3455 (void) mdb_snprintf(val, sizeof (val), 3456 "0x%llx [0t%llu]", sys.sys_info, 3457 sys.sys_info); 3458 } 3459 } 3460 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3461 modname, modname[0] == '\0' ? "" : ":", 3462 var, sysfile_ops[sys.sys_op], val); 3463 3464 sysp = sys.sys_next; 3465 } 3466 3467 return (DCMD_OK); 3468 } 3469 3470 int 3471 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3472 { 3473 3474 if (*didp == thr->t_did) { 3475 mdb_printf("%p\n", addr); 3476 return (WALK_DONE); 3477 } else 3478 return (WALK_NEXT); 3479 } 3480 3481 /*ARGSUSED*/ 3482 int 3483 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3484 { 3485 const mdb_arg_t *argp = &argv[0]; 3486 kt_did_t did; 3487 3488 if (argc != 1) 3489 return (DCMD_USAGE); 3490 3491 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3492 3493 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3494 mdb_warn("failed to walk thread"); 3495 return (DCMD_ERR); 3496 3497 } 3498 return (DCMD_OK); 3499 3500 } 3501 3502 static int 3503 errorq_walk_init(mdb_walk_state_t *wsp) 3504 { 3505 if (wsp->walk_addr == NULL && 3506 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3507 mdb_warn("failed to read errorq_list"); 3508 return (WALK_ERR); 3509 } 3510 3511 return (WALK_NEXT); 3512 } 3513 3514 static int 3515 errorq_walk_step(mdb_walk_state_t *wsp) 3516 { 3517 uintptr_t addr = wsp->walk_addr; 3518 errorq_t eq; 3519 3520 if (addr == NULL) 3521 return (WALK_DONE); 3522 3523 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3524 mdb_warn("failed to read errorq at %p", addr); 3525 return (WALK_ERR); 3526 } 3527 3528 wsp->walk_addr = (uintptr_t)eq.eq_next; 3529 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3530 } 3531 3532 typedef struct eqd_walk_data { 3533 uintptr_t *eqd_stack; 3534 void *eqd_buf; 3535 ulong_t eqd_qpos; 3536 ulong_t eqd_qlen; 3537 size_t eqd_size; 3538 } eqd_walk_data_t; 3539 3540 /* 3541 * In order to walk the list of pending error queue elements, we push the 3542 * addresses of the corresponding data buffers in to the eqd_stack array. 3543 * The error lists are in reverse chronological order when iterating using 3544 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3545 * walker client gets addresses in order from oldest error to newest error. 3546 */ 3547 static void 3548 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3549 { 3550 errorq_elem_t eqe; 3551 3552 while (addr != NULL) { 3553 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3554 mdb_warn("failed to read errorq element at %p", addr); 3555 break; 3556 } 3557 3558 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3559 mdb_warn("errorq is overfull -- more than %lu " 3560 "elems found\n", eqdp->eqd_qlen); 3561 break; 3562 } 3563 3564 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3565 addr = (uintptr_t)eqe.eqe_prev; 3566 } 3567 } 3568 3569 static int 3570 eqd_walk_init(mdb_walk_state_t *wsp) 3571 { 3572 eqd_walk_data_t *eqdp; 3573 errorq_elem_t eqe, *addr; 3574 errorq_t eq; 3575 ulong_t i; 3576 3577 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3578 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3579 return (WALK_ERR); 3580 } 3581 3582 if (eq.eq_ptail != NULL && 3583 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3584 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3585 return (WALK_ERR); 3586 } 3587 3588 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3589 wsp->walk_data = eqdp; 3590 3591 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3592 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3593 eqdp->eqd_qlen = eq.eq_qlen; 3594 eqdp->eqd_qpos = 0; 3595 eqdp->eqd_size = eq.eq_size; 3596 3597 /* 3598 * The newest elements in the queue are on the pending list, so we 3599 * push those on to our stack first. 3600 */ 3601 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3602 3603 /* 3604 * If eq_ptail is set, it may point to a subset of the errors on the 3605 * pending list in the event a casptr() failed; if ptail's data is 3606 * already in our stack, NULL out eq_ptail and ignore it. 3607 */ 3608 if (eq.eq_ptail != NULL) { 3609 for (i = 0; i < eqdp->eqd_qpos; i++) { 3610 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3611 eq.eq_ptail = NULL; 3612 break; 3613 } 3614 } 3615 } 3616 3617 /* 3618 * If eq_phead is set, it has the processing list in order from oldest 3619 * to newest. Use this to recompute eq_ptail as best we can and then 3620 * we nicely fall into eqd_push_list() of eq_ptail below. 3621 */ 3622 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3623 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3624 eq.eq_ptail = addr; 3625 3626 /* 3627 * The oldest elements in the queue are on the processing list, subject 3628 * to machinations in the if-clauses above. Push any such elements. 3629 */ 3630 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3631 return (WALK_NEXT); 3632 } 3633 3634 static int 3635 eqd_walk_step(mdb_walk_state_t *wsp) 3636 { 3637 eqd_walk_data_t *eqdp = wsp->walk_data; 3638 uintptr_t addr; 3639 3640 if (eqdp->eqd_qpos == 0) 3641 return (WALK_DONE); 3642 3643 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3644 3645 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3646 mdb_warn("failed to read errorq data at %p", addr); 3647 return (WALK_ERR); 3648 } 3649 3650 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3651 } 3652 3653 static void 3654 eqd_walk_fini(mdb_walk_state_t *wsp) 3655 { 3656 eqd_walk_data_t *eqdp = wsp->walk_data; 3657 3658 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3659 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3660 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3661 } 3662 3663 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3664 3665 static int 3666 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3667 { 3668 int i; 3669 errorq_t eq; 3670 uint_t opt_v = FALSE; 3671 3672 if (!(flags & DCMD_ADDRSPEC)) { 3673 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3674 mdb_warn("can't walk 'errorq'"); 3675 return (DCMD_ERR); 3676 } 3677 return (DCMD_OK); 3678 } 3679 3680 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3681 argc -= i; 3682 argv += i; 3683 3684 if (argc != 0) 3685 return (DCMD_USAGE); 3686 3687 if (opt_v || DCMD_HDRSPEC(flags)) { 3688 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3689 "ADDR", "NAME", "S", "V", "N"); 3690 if (!opt_v) { 3691 mdb_printf("%7s %7s %7s%</u>\n", 3692 "ACCEPT", "DROP", "LOG"); 3693 } else { 3694 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3695 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3696 } 3697 } 3698 3699 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3700 mdb_warn("failed to read errorq at %p", addr); 3701 return (DCMD_ERR); 3702 } 3703 3704 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3705 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3706 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3707 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3708 3709 if (!opt_v) { 3710 mdb_printf("%7llu %7llu %7llu\n", 3711 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3712 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3713 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3714 } else { 3715 mdb_printf("%5s %6lu %6lu %3u %a\n", 3716 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3717 mdb_printf("%38s\n%41s" 3718 "%12s %llu\n" 3719 "%53s %llu\n" 3720 "%53s %llu\n" 3721 "%53s %llu\n" 3722 "%53s %llu\n" 3723 "%53s %llu\n" 3724 "%53s %llu\n" 3725 "%53s %llu\n\n", 3726 "|", "+-> ", 3727 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3728 "DROPPED", EQKSVAL(eq, eqk_dropped), 3729 "LOGGED", EQKSVAL(eq, eqk_logged), 3730 "RESERVED", EQKSVAL(eq, eqk_reserved), 3731 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3732 "COMMITTED", EQKSVAL(eq, eqk_committed), 3733 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3734 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3735 } 3736 3737 return (DCMD_OK); 3738 } 3739 3740 /*ARGSUSED*/ 3741 static int 3742 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3743 { 3744 cpu_t panic_cpu; 3745 kthread_t *panic_thread; 3746 void *buf; 3747 panic_data_t *pd; 3748 int i, n; 3749 3750 if (!mdb_prop_postmortem) { 3751 mdb_warn("panicinfo can only be run on a system " 3752 "dump; see dumpadm(1M)\n"); 3753 return (DCMD_ERR); 3754 } 3755 3756 if (flags & DCMD_ADDRSPEC || argc != 0) 3757 return (DCMD_USAGE); 3758 3759 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3760 mdb_warn("failed to read 'panic_cpu'"); 3761 else 3762 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3763 3764 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3765 mdb_warn("failed to read 'panic_thread'"); 3766 else 3767 mdb_printf("%16s %?p\n", "thread", panic_thread); 3768 3769 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3770 pd = (panic_data_t *)buf; 3771 3772 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3773 pd->pd_version != PANICBUFVERS) { 3774 mdb_warn("failed to read 'panicbuf'"); 3775 mdb_free(buf, PANICBUFSIZE); 3776 return (DCMD_ERR); 3777 } 3778 3779 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3780 3781 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3782 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3783 3784 for (i = 0; i < n; i++) 3785 mdb_printf("%16s %?llx\n", 3786 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3787 3788 mdb_free(buf, PANICBUFSIZE); 3789 return (DCMD_OK); 3790 } 3791 3792 /* 3793 * ::time dcmd, which will print a hires timestamp of when we entered the 3794 * debugger, or the lbolt value if used with the -l option. 3795 * 3796 */ 3797 /*ARGSUSED*/ 3798 static int 3799 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3800 { 3801 uint_t opt_lbolt = FALSE; 3802 3803 if (mdb_getopts(argc, argv, 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3804 NULL) != argc) 3805 return (DCMD_USAGE); 3806 3807 if (opt_lbolt) 3808 mdb_printf("%ld\n", mdb_get_lbolt()); 3809 else 3810 mdb_printf("%lld\n", mdb_gethrtime()); 3811 3812 return (DCMD_OK); 3813 } 3814 3815 void 3816 time_help(void) 3817 { 3818 mdb_printf("Prints the system time in nanoseconds.\n\n" 3819 "::time will return the timestamp at which we dropped into, \n" 3820 "if called from, kmdb(1); the core dump's high resolution \n" 3821 "time if inspecting one; or the running hires time if we're \n" 3822 "looking at a live system.\n\n" 3823 "Switches:\n" 3824 " -l prints the number of clock ticks since system boot\n"); 3825 } 3826 3827 static const mdb_dcmd_t dcmds[] = { 3828 3829 /* from genunix.c */ 3830 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3831 { "binding_hash_entry", ":", "print driver names hash table entry", 3832 binding_hash_entry }, 3833 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3834 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3835 " [-FivVA]", 3836 "display callouts", callout, callout_help }, 3837 { "calloutid", "[-d|v] xid", "print callout by extended id", 3838 calloutid, calloutid_help }, 3839 { "class", NULL, "print process scheduler classes", class }, 3840 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3841 { "did2thread", "? kt_did", "find kernel thread for this id", 3842 did2thread }, 3843 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3844 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3845 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3846 { "lminfo", NULL, "print lock manager information", lminfo }, 3847 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3848 { "panicinfo", NULL, "print panic information", panicinfo }, 3849 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3850 { "project", NULL, "display kernel project(s)", project }, 3851 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3852 { "pgrep", "[-x] [-n | -o] pattern", 3853 "pattern match against all processes", pgrep }, 3854 { "ptree", NULL, "print process tree", ptree }, 3855 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3856 sysevent}, 3857 { "sysevent_channel", "?", "print sysevent channel database", 3858 sysevent_channel}, 3859 { "sysevent_class_list", ":", "print sysevent class list", 3860 sysevent_class_list}, 3861 { "sysevent_subclass_list", ":", 3862 "print sysevent subclass list", sysevent_subclass_list}, 3863 { "system", NULL, "print contents of /etc/system file", sysfile }, 3864 { "task", NULL, "display kernel task(s)", task }, 3865 { "time", "[-l]", "display system time", time, time_help }, 3866 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3867 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3868 whereopen }, 3869 3870 /* from bio.c */ 3871 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3872 3873 /* from bitset.c */ 3874 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3875 3876 /* from contract.c */ 3877 { "contract", "?", "display a contract", cmd_contract }, 3878 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3879 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3880 3881 /* from cpupart.c */ 3882 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3883 3884 /* from cyclic.c */ 3885 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3886 { "cycid", "?", "dump a cyclic id", cycid }, 3887 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3888 { "cyclic", ":", "developer information", cyclic }, 3889 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3890 3891 /* from damap.c */ 3892 { "damap", ":", "display a damap_t", damap, damap_help }, 3893 3894 /* from devinfo.c */ 3895 { "devbindings", "?[-qs] [device-name | major-num]", 3896 "print devinfo nodes bound to device-name or major-num", 3897 devbindings, devinfo_help }, 3898 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3899 devinfo_help }, 3900 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3901 devinfo_audit }, 3902 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3903 devinfo_audit_log }, 3904 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3905 devinfo_audit_node }, 3906 { "devinfo2driver", ":", "find driver name for this devinfo node", 3907 devinfo2driver }, 3908 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3909 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3910 dev2major }, 3911 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3912 dev2minor }, 3913 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3914 devt }, 3915 { "major2name", "?<major-num>", "convert major number to dev name", 3916 major2name }, 3917 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3918 minornodes }, 3919 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3920 modctl2devinfo }, 3921 { "name2major", "<dev-name>", "convert dev name to major number", 3922 name2major }, 3923 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3924 { "softstate", ":<instance>", "retrieve soft-state pointer", 3925 softstate }, 3926 { "devinfo_fm", ":", "devinfo fault managment configuration", 3927 devinfo_fm }, 3928 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3929 devinfo_fmce}, 3930 3931 /* from findstack.c */ 3932 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3933 { "findstack_debug", NULL, "toggle findstack debugging", 3934 findstack_debug }, 3935 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3936 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3937 "print unique kernel thread stacks", 3938 stacks, stacks_help }, 3939 3940 /* from fm.c */ 3941 { "ereport", "[-v]", "print ereports logged in dump", 3942 ereport }, 3943 3944 /* from group.c */ 3945 { "group", "?[-q]", "display a group", group}, 3946 3947 /* from hotplug.c */ 3948 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3949 hotplug, hotplug_help }, 3950 3951 /* from irm.c */ 3952 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3953 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3954 irmreqs_dcmd }, 3955 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3956 3957 /* from kgrep.c + genunix.c */ 3958 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3959 kgrep_help }, 3960 3961 /* from kmem.c */ 3962 { "allocdby", ":", "given a thread, print its allocated buffers", 3963 allocdby }, 3964 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3965 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3966 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3967 { "kmalog", "?[ fail | slab ]", 3968 "display kmem transaction log and stack traces", kmalog }, 3969 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3970 kmastat }, 3971 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3972 "of the kmem allocator", kmausers, kmausers_help }, 3973 { "kmem_cache", "?[-n name]", 3974 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3975 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3976 "[-B minbinsize]", "display slab usage per kmem cache", 3977 kmem_slabs, kmem_slabs_help }, 3978 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3979 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3980 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3981 kmem_verify }, 3982 { "vmem", "?", "print a vmem_t", vmem }, 3983 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3984 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3985 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3986 { "whatthread", ":[-v]", "print threads whose stack contains the " 3987 "given address", whatthread }, 3988 3989 /* from ldi.c */ 3990 { "ldi_handle", "?[-i]", "display a layered driver handle", 3991 ldi_handle, ldi_handle_help }, 3992 { "ldi_ident", NULL, "display a layered driver identifier", 3993 ldi_ident, ldi_ident_help }, 3994 3995 /* from leaky.c + leaky_subr.c */ 3996 { "findleaks", FINDLEAKS_USAGE, 3997 "search for potential kernel memory leaks", findleaks, 3998 findleaks_help }, 3999 4000 /* from lgrp.c */ 4001 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4002 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4003 4004 /* from log.c */ 4005 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4006 4007 /* from mdi.c */ 4008 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4009 "and detailed pi_prop list", mdipi }, 4010 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4011 mdiprops }, 4012 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4013 "list all paths", mdiphci }, 4014 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4015 "all phcis", mdivhci }, 4016 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4017 "client links", mdiclient_paths }, 4018 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4019 "phci links", mdiphci_paths }, 4020 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4021 mdiphcis }, 4022 4023 /* from memory.c */ 4024 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4025 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4026 { "memstat", NULL, "display memory usage summary", memstat }, 4027 { "page", "?", "display a summarized page_t", page }, 4028 { "pagelookup", "?[-v vp] [-o offset]", 4029 "find the page_t with the name {vp, offset}", 4030 pagelookup, pagelookup_help }, 4031 { "page_num2pp", ":", "find the page_t for a given page frame number", 4032 page_num2pp }, 4033 { "pmap", ":[-q]", "print process memory map", pmap }, 4034 { "seg", ":", "print address space segment", seg }, 4035 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4036 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4037 4038 /* from mmd.c */ 4039 { "multidata", ":[-sv]", "display a summarized multidata_t", 4040 multidata }, 4041 { "pattbl", ":", "display a summarized multidata attribute table", 4042 pattbl }, 4043 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4044 pattr2multidata }, 4045 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4046 pdesc2slab }, 4047 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4048 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4049 slab2multidata }, 4050 4051 /* from modhash.c */ 4052 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4053 "display information about one or all mod_hash structures", 4054 modhash, modhash_help }, 4055 { "modent", ":[-k | -v | -t type]", 4056 "display information about a mod_hash_entry", modent, 4057 modent_help }, 4058 4059 /* from net.c */ 4060 { "dladm", "?<sub-command> [flags]", "show data link information", 4061 dladm, dladm_help }, 4062 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4063 mi }, 4064 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4065 "show network statistics", netstat }, 4066 { "sonode", "?[-f inet | inet6 | unix | #] " 4067 "[-t stream | dgram | raw | #] [-p #]", 4068 "filter and display sonode", sonode }, 4069 4070 /* from netstack.c */ 4071 { "netstack", "", "show stack instances", netstack }, 4072 4073 /* from nvpair.c */ 4074 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4075 nvpair_print }, 4076 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4077 print_nvlist }, 4078 4079 /* from pg.c */ 4080 { "pg", "?[-q]", "display a pg", pg}, 4081 4082 /* from rctl.c */ 4083 { "rctl_dict", "?", "print systemwide default rctl definitions", 4084 rctl_dict }, 4085 { "rctl_list", ":[handle]", "print rctls for the given proc", 4086 rctl_list }, 4087 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4088 rctl }, 4089 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4090 "sequence", rctl_validate }, 4091 4092 /* from sobj.c */ 4093 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4094 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4095 mutex_help }, 4096 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4097 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4098 { "turnstile", "?", "display a turnstile", turnstile }, 4099 4100 /* from stream.c */ 4101 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4102 "print an mblk", mblk_prt, mblk_help }, 4103 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4104 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4105 mblk2dblk }, 4106 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4107 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4108 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4109 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4110 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4111 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4112 "filter and display STREAM queue", queue, queue_help }, 4113 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4114 "filter and display STREAM head", stdata, stdata_help }, 4115 { "str2mate", ":", "print mate of this stream", str2mate }, 4116 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4117 { "stream", ":", "display STREAM", stream }, 4118 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4119 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4120 "filter and display STREAM sync queue", syncq, syncq_help }, 4121 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4122 4123 /* from taskq.c */ 4124 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4125 "display a taskq", taskq, taskq_help }, 4126 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4127 4128 /* from thread.c */ 4129 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4130 thread_help }, 4131 { "threadlist", "?[-t] [-v [count]]", 4132 "display threads and associated C stack traces", threadlist, 4133 threadlist_help }, 4134 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4135 stackinfo_help }, 4136 4137 /* from tsd.c */ 4138 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4139 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4140 4141 /* 4142 * typegraph does not work under kmdb, as it requires too much memory 4143 * for its internal data structures. 4144 */ 4145 #ifndef _KMDB 4146 /* from typegraph.c */ 4147 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4148 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4149 findfalse }, 4150 { "typegraph", NULL, "build type graph", typegraph }, 4151 { "istype", ":type", "manually set object type", istype }, 4152 { "notype", ":", "manually clear object type", notype }, 4153 { "whattype", ":", "determine object type", whattype }, 4154 #endif 4155 4156 /* from vfs.c */ 4157 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4158 { "pfiles", ":[-fp]", "print process file information", pfiles, 4159 pfiles_help }, 4160 4161 /* from zone.c */ 4162 { "zone", "?", "display kernel zone(s)", zoneprt }, 4163 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4164 "selected zones", zsd }, 4165 4166 { NULL } 4167 }; 4168 4169 static const mdb_walker_t walkers[] = { 4170 4171 /* from genunix.c */ 4172 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4173 callout_walk_init, callout_walk_step, callout_walk_fini, 4174 (void *)CALLOUT_WALK_BYLIST }, 4175 { "callouts_byid", "walk callouts by id hash chain", 4176 callout_walk_init, callout_walk_step, callout_walk_fini, 4177 (void *)CALLOUT_WALK_BYID }, 4178 { "callout_list", "walk a callout list", callout_list_walk_init, 4179 callout_list_walk_step, callout_list_walk_fini }, 4180 { "callout_table", "walk callout table array", callout_table_walk_init, 4181 callout_table_walk_step, callout_table_walk_fini }, 4182 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4183 { "ereportq_dump", "walk list of ereports in dump error queue", 4184 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4185 { "ereportq_pend", "walk list of ereports in pending error queue", 4186 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4187 { "errorq", "walk list of system error queues", 4188 errorq_walk_init, errorq_walk_step, NULL }, 4189 { "errorq_data", "walk pending error queue data buffers", 4190 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4191 { "allfile", "given a proc pointer, list all file pointers", 4192 file_walk_init, allfile_walk_step, file_walk_fini }, 4193 { "file", "given a proc pointer, list of open file pointers", 4194 file_walk_init, file_walk_step, file_walk_fini }, 4195 { "lock_descriptor", "walk lock_descriptor_t structures", 4196 ld_walk_init, ld_walk_step, NULL }, 4197 { "lock_graph", "walk lock graph", 4198 lg_walk_init, lg_walk_step, NULL }, 4199 { "port", "given a proc pointer, list of created event ports", 4200 port_walk_init, port_walk_step, NULL }, 4201 { "portev", "given a port pointer, list of events in the queue", 4202 portev_walk_init, portev_walk_step, portev_walk_fini }, 4203 { "proc", "list of active proc_t structures", 4204 proc_walk_init, proc_walk_step, proc_walk_fini }, 4205 { "projects", "walk a list of kernel projects", 4206 project_walk_init, project_walk_step, NULL }, 4207 { "sysevent_pend", "walk sysevent pending queue", 4208 sysevent_pend_walk_init, sysevent_walk_step, 4209 sysevent_walk_fini}, 4210 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4211 sysevent_walk_step, sysevent_walk_fini}, 4212 { "sysevent_channel", "walk sysevent channel subscriptions", 4213 sysevent_channel_walk_init, sysevent_channel_walk_step, 4214 sysevent_channel_walk_fini}, 4215 { "sysevent_class_list", "walk sysevent subscription's class list", 4216 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4217 sysevent_class_list_walk_fini}, 4218 { "sysevent_subclass_list", 4219 "walk sysevent subscription's subclass list", 4220 sysevent_subclass_list_walk_init, 4221 sysevent_subclass_list_walk_step, 4222 sysevent_subclass_list_walk_fini}, 4223 { "task", "given a task pointer, walk its processes", 4224 task_walk_init, task_walk_step, NULL }, 4225 4226 /* from avl.c */ 4227 { AVL_WALK_NAME, AVL_WALK_DESC, 4228 avl_walk_init, avl_walk_step, avl_walk_fini }, 4229 4230 /* from bio.c */ 4231 { "buf", "walk the bio buf hash", 4232 buf_walk_init, buf_walk_step, buf_walk_fini }, 4233 4234 /* from contract.c */ 4235 { "contract", "walk all contracts, or those of the specified type", 4236 ct_walk_init, generic_walk_step, NULL }, 4237 { "ct_event", "walk events on a contract event queue", 4238 ct_event_walk_init, generic_walk_step, NULL }, 4239 { "ct_listener", "walk contract event queue listeners", 4240 ct_listener_walk_init, generic_walk_step, NULL }, 4241 4242 /* from cpupart.c */ 4243 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4244 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4245 NULL }, 4246 { "cpupart_walk", "walk the set of cpu partitions", 4247 cpupart_walk_init, cpupart_walk_step, NULL }, 4248 4249 /* from ctxop.c */ 4250 { "ctxop", "walk list of context ops on a thread", 4251 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4252 4253 /* from cyclic.c */ 4254 { "cyccpu", "walk per-CPU cyc_cpu structures", 4255 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4256 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4257 cycomni_walk_init, cycomni_walk_step, NULL }, 4258 { "cyctrace", "walk cyclic trace buffer", 4259 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4260 4261 /* from devinfo.c */ 4262 { "binding_hash", "walk all entries in binding hash table", 4263 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4264 { "devinfo", "walk devinfo tree or subtree", 4265 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4266 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4267 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4268 devinfo_audit_log_walk_fini}, 4269 { "devinfo_audit_node", "walk per-devinfo audit history", 4270 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4271 devinfo_audit_node_walk_fini}, 4272 { "devinfo_children", "walk children of devinfo node", 4273 devinfo_children_walk_init, devinfo_children_walk_step, 4274 devinfo_children_walk_fini }, 4275 { "devinfo_parents", "walk ancestors of devinfo node", 4276 devinfo_parents_walk_init, devinfo_parents_walk_step, 4277 devinfo_parents_walk_fini }, 4278 { "devinfo_siblings", "walk siblings of devinfo node", 4279 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4280 { "devi_next", "walk devinfo list", 4281 NULL, devi_next_walk_step, NULL }, 4282 { "devnames", "walk devnames array", 4283 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4284 { "minornode", "given a devinfo node, walk minor nodes", 4285 minornode_walk_init, minornode_walk_step, NULL }, 4286 { "softstate", 4287 "given an i_ddi_soft_state*, list all in-use driver stateps", 4288 soft_state_walk_init, soft_state_walk_step, 4289 NULL, NULL }, 4290 { "softstate_all", 4291 "given an i_ddi_soft_state*, list all driver stateps", 4292 soft_state_walk_init, soft_state_all_walk_step, 4293 NULL, NULL }, 4294 { "devinfo_fmc", 4295 "walk a fault management handle cache active list", 4296 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4297 4298 /* from group.c */ 4299 { "group", "walk all elements of a group", 4300 group_walk_init, group_walk_step, NULL }, 4301 4302 /* from irm.c */ 4303 { "irmpools", "walk global list of interrupt pools", 4304 irmpools_walk_init, list_walk_step, list_walk_fini }, 4305 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4306 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4307 4308 /* from kmem.c */ 4309 { "allocdby", "given a thread, walk its allocated bufctls", 4310 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4311 { "bufctl", "walk a kmem cache's bufctls", 4312 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4313 { "bufctl_history", "walk the available history of a bufctl", 4314 bufctl_history_walk_init, bufctl_history_walk_step, 4315 bufctl_history_walk_fini }, 4316 { "freedby", "given a thread, walk its freed bufctls", 4317 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4318 { "freectl", "walk a kmem cache's free bufctls", 4319 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4320 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4321 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4322 { "freemem", "walk a kmem cache's free memory", 4323 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4324 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4325 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4326 { "kmem", "walk a kmem cache", 4327 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4328 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4329 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4330 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4331 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4332 { "kmem_log", "walk the kmem transaction log", 4333 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4334 { "kmem_slab", "given a kmem cache, walk its slabs", 4335 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4336 { "kmem_slab_partial", 4337 "given a kmem cache, walk its partially allocated slabs (min 1)", 4338 kmem_slab_walk_partial_init, combined_walk_step, 4339 combined_walk_fini }, 4340 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4341 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4342 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4343 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4344 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4345 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4346 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4347 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4348 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4349 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4350 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4351 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4352 4353 /* from ldi.c */ 4354 { "ldi_handle", "walk the layered driver handle hash", 4355 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4356 { "ldi_ident", "walk the layered driver identifier hash", 4357 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4358 4359 /* from leaky.c + leaky_subr.c */ 4360 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4361 "stack trace", 4362 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4363 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4364 "leaks w/ same stack trace", 4365 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4366 4367 /* from lgrp.c */ 4368 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4369 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4370 { "lgrptbl", "walk lgroup table", 4371 lgrp_walk_init, lgrp_walk_step, NULL }, 4372 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4373 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4374 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4375 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4376 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4377 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4378 4379 /* from list.c */ 4380 { LIST_WALK_NAME, LIST_WALK_DESC, 4381 list_walk_init, list_walk_step, list_walk_fini }, 4382 4383 /* from mdi.c */ 4384 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4385 mdi_pi_client_link_walk_init, 4386 mdi_pi_client_link_walk_step, 4387 mdi_pi_client_link_walk_fini }, 4388 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4389 mdi_pi_phci_link_walk_init, 4390 mdi_pi_phci_link_walk_step, 4391 mdi_pi_phci_link_walk_fini }, 4392 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4393 mdi_phci_ph_next_walk_init, 4394 mdi_phci_ph_next_walk_step, 4395 mdi_phci_ph_next_walk_fini }, 4396 4397 /* from memory.c */ 4398 { "allpages", "walk all pages, including free pages", 4399 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4400 { "anon", "given an amp, list of anon structures", 4401 anon_walk_init, anon_walk_step, anon_walk_fini }, 4402 { "memlist", "walk specified memlist", 4403 NULL, memlist_walk_step, NULL }, 4404 { "page", "walk all pages, or those from the specified vnode", 4405 page_walk_init, page_walk_step, page_walk_fini }, 4406 { "seg", "given an as, list of segments", 4407 seg_walk_init, avl_walk_step, avl_walk_fini }, 4408 { "swapinfo", "walk swapinfo structures", 4409 swap_walk_init, swap_walk_step, NULL }, 4410 4411 /* from mmd.c */ 4412 { "pattr", "walk pattr_t structures", pattr_walk_init, 4413 mmdq_walk_step, mmdq_walk_fini }, 4414 { "pdesc", "walk pdesc_t structures", 4415 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4416 { "pdesc_slab", "walk pdesc_slab_t structures", 4417 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4418 4419 /* from modhash.c */ 4420 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4421 modhash_walk_step, NULL }, 4422 { "modent", "walk list of entries in a given mod_hash", 4423 modent_walk_init, modent_walk_step, modent_walk_fini }, 4424 { "modchain", "walk list of entries in a given mod_hash_entry", 4425 NULL, modchain_walk_step, NULL }, 4426 4427 /* from net.c */ 4428 { "icmp", "walk ICMP control structures using MI for all stacks", 4429 mi_payload_walk_init, mi_payload_walk_step, NULL, 4430 &mi_icmp_arg }, 4431 { "mi", "given a MI_O, walk the MI", 4432 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4433 { "sonode", "given a sonode, walk its children", 4434 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4435 { "icmp_stacks", "walk all the icmp_stack_t", 4436 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4437 { "tcp_stacks", "walk all the tcp_stack_t", 4438 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4439 { "udp_stacks", "walk all the udp_stack_t", 4440 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4441 4442 /* from netstack.c */ 4443 { "netstack", "walk a list of kernel netstacks", 4444 netstack_walk_init, netstack_walk_step, NULL }, 4445 4446 /* from nvpair.c */ 4447 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4448 nvpair_walk_init, nvpair_walk_step, NULL }, 4449 4450 /* from rctl.c */ 4451 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4452 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4453 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4454 rctl_set_walk_step, NULL }, 4455 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4456 rctl_val_walk_init, rctl_val_walk_step }, 4457 4458 /* from sobj.c */ 4459 { "blocked", "walk threads blocked on a given sobj", 4460 blocked_walk_init, blocked_walk_step, NULL }, 4461 { "wchan", "given a wchan, list of blocked threads", 4462 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4463 4464 /* from stream.c */ 4465 { "b_cont", "walk mblk_t list using b_cont", 4466 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4467 { "b_next", "walk mblk_t list using b_next", 4468 mblk_walk_init, b_next_step, mblk_walk_fini }, 4469 { "qlink", "walk queue_t list using q_link", 4470 queue_walk_init, queue_link_step, queue_walk_fini }, 4471 { "qnext", "walk queue_t list using q_next", 4472 queue_walk_init, queue_next_step, queue_walk_fini }, 4473 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4474 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4475 { "readq", "walk read queue side of stdata", 4476 str_walk_init, strr_walk_step, str_walk_fini }, 4477 { "writeq", "walk write queue side of stdata", 4478 str_walk_init, strw_walk_step, str_walk_fini }, 4479 4480 /* from taskq.c */ 4481 { "taskq_thread", "given a taskq_t, list all of its threads", 4482 taskq_thread_walk_init, 4483 taskq_thread_walk_step, 4484 taskq_thread_walk_fini }, 4485 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4486 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4487 4488 /* from thread.c */ 4489 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4490 deathrow_walk_init, deathrow_walk_step, NULL }, 4491 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4492 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4493 { "cpupart_dispq", 4494 "given a cpupart_t, walk threads in dispatcher queues", 4495 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4496 { "lwp_deathrow", "walk lwp_deathrow", 4497 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4498 { "thread", "global or per-process kthread_t structures", 4499 thread_walk_init, thread_walk_step, thread_walk_fini }, 4500 { "thread_deathrow", "walk threads on thread_deathrow", 4501 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4502 4503 /* from tsd.c */ 4504 { "tsd", "walk list of thread-specific data", 4505 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4506 4507 /* from tsol.c */ 4508 { "tnrh", "walk remote host cache structures", 4509 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4510 { "tnrhtp", "walk remote host template structures", 4511 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4512 4513 /* 4514 * typegraph does not work under kmdb, as it requires too much memory 4515 * for its internal data structures. 4516 */ 4517 #ifndef _KMDB 4518 /* from typegraph.c */ 4519 { "typeconflict", "walk buffers with conflicting type inferences", 4520 typegraph_walk_init, typeconflict_walk_step }, 4521 { "typeunknown", "walk buffers with unknown types", 4522 typegraph_walk_init, typeunknown_walk_step }, 4523 #endif 4524 4525 /* from vfs.c */ 4526 { "vfs", "walk file system list", 4527 vfs_walk_init, vfs_walk_step }, 4528 4529 /* from zone.c */ 4530 { "zone", "walk a list of kernel zones", 4531 zone_walk_init, zone_walk_step, NULL }, 4532 { "zsd", "walk list of zsd entries for a zone", 4533 zsd_walk_init, zsd_walk_step, NULL }, 4534 4535 { NULL } 4536 }; 4537 4538 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4539 4540 /*ARGSUSED*/ 4541 static void 4542 genunix_statechange_cb(void *ignored) 4543 { 4544 /* 4545 * Force ::findleaks and ::stacks to let go any cached state. 4546 */ 4547 leaky_cleanup(1); 4548 stacks_cleanup(1); 4549 4550 kmem_statechange(); /* notify kmem */ 4551 } 4552 4553 const mdb_modinfo_t * 4554 _mdb_init(void) 4555 { 4556 kmem_init(); 4557 4558 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4559 genunix_statechange_cb, NULL); 4560 4561 return (&modinfo); 4562 } 4563 4564 void 4565 _mdb_fini(void) 4566 { 4567 leaky_cleanup(1); 4568 stacks_cleanup(1); 4569 } 4570