1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <mdb/mdb_param.h> 26 #include <mdb/mdb_modapi.h> 27 #include <mdb/mdb_ks.h> 28 #include <mdb/mdb_ctf.h> 29 30 #include <sys/types.h> 31 #include <sys/thread.h> 32 #include <sys/session.h> 33 #include <sys/user.h> 34 #include <sys/proc.h> 35 #include <sys/var.h> 36 #include <sys/t_lock.h> 37 #include <sys/callo.h> 38 #include <sys/priocntl.h> 39 #include <sys/class.h> 40 #include <sys/regset.h> 41 #include <sys/stack.h> 42 #include <sys/cpuvar.h> 43 #include <sys/vnode.h> 44 #include <sys/vfs.h> 45 #include <sys/flock_impl.h> 46 #include <sys/kmem_impl.h> 47 #include <sys/vmem_impl.h> 48 #include <sys/kstat.h> 49 #include <sys/dditypes.h> 50 #include <sys/ddi_impldefs.h> 51 #include <sys/sysmacros.h> 52 #include <sys/sysconf.h> 53 #include <sys/task.h> 54 #include <sys/project.h> 55 #include <sys/errorq_impl.h> 56 #include <sys/cred_impl.h> 57 #include <sys/zone.h> 58 #include <sys/panic.h> 59 #include <regex.h> 60 #include <sys/port_impl.h> 61 62 #include "avl.h" 63 #include "bio.h" 64 #include "bitset.h" 65 #include "combined.h" 66 #include "contract.h" 67 #include "cpupart_mdb.h" 68 #include "ctxop.h" 69 #include "cyclic.h" 70 #include "damap.h" 71 #include "devinfo.h" 72 #include "findstack.h" 73 #include "fm.h" 74 #include "group.h" 75 #include "irm.h" 76 #include "kgrep.h" 77 #include "kmem.h" 78 #include "ldi.h" 79 #include "leaky.h" 80 #include "lgrp.h" 81 #include "list.h" 82 #include "log.h" 83 #include "mdi.h" 84 #include "memory.h" 85 #include "mmd.h" 86 #include "modhash.h" 87 #include "ndievents.h" 88 #include "net.h" 89 #include "netstack.h" 90 #include "nvpair.h" 91 #include "pg.h" 92 #include "rctl.h" 93 #include "sobj.h" 94 #include "streams.h" 95 #include "sysevent.h" 96 #include "taskq.h" 97 #include "thread.h" 98 #include "tsd.h" 99 #include "tsol.h" 100 #include "typegraph.h" 101 #include "vfs.h" 102 #include "zone.h" 103 #include "hotplug.h" 104 105 /* 106 * Surely this is defined somewhere... 107 */ 108 #define NINTR 16 109 110 #define KILOS 10 111 #define MEGS 20 112 #define GIGS 30 113 114 #ifndef STACK_BIAS 115 #define STACK_BIAS 0 116 #endif 117 118 static char 119 pstat2ch(uchar_t state) 120 { 121 switch (state) { 122 case SSLEEP: return ('S'); 123 case SRUN: return ('R'); 124 case SZOMB: return ('Z'); 125 case SIDL: return ('I'); 126 case SONPROC: return ('O'); 127 case SSTOP: return ('T'); 128 case SWAIT: return ('W'); 129 default: return ('?'); 130 } 131 } 132 133 #define PS_PRTTHREADS 0x1 134 #define PS_PRTLWPS 0x2 135 #define PS_PSARGS 0x4 136 #define PS_TASKS 0x8 137 #define PS_PROJECTS 0x10 138 #define PS_ZONES 0x20 139 140 static int 141 ps_threadprint(uintptr_t addr, const void *data, void *private) 142 { 143 const kthread_t *t = (const kthread_t *)data; 144 uint_t prt_flags = *((uint_t *)private); 145 146 static const mdb_bitmask_t t_state_bits[] = { 147 { "TS_FREE", UINT_MAX, TS_FREE }, 148 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 149 { "TS_RUN", TS_RUN, TS_RUN }, 150 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 151 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 152 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 153 { "TS_WAIT", TS_WAIT, TS_WAIT }, 154 { NULL, 0, 0 } 155 }; 156 157 if (prt_flags & PS_PRTTHREADS) 158 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 159 160 if (prt_flags & PS_PRTLWPS) 161 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 162 163 return (WALK_NEXT); 164 } 165 166 int 167 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 168 { 169 uint_t prt_flags = 0; 170 proc_t pr; 171 struct pid pid, pgid, sid; 172 sess_t session; 173 cred_t cred; 174 task_t tk; 175 kproject_t pj; 176 zone_t zn; 177 178 if (!(flags & DCMD_ADDRSPEC)) { 179 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 180 mdb_warn("can't walk 'proc'"); 181 return (DCMD_ERR); 182 } 183 return (DCMD_OK); 184 } 185 186 if (mdb_getopts(argc, argv, 187 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 188 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 189 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 190 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 191 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 192 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 193 return (DCMD_USAGE); 194 195 if (DCMD_HDRSPEC(flags)) { 196 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 197 "S", "PID", "PPID", "PGID", "SID"); 198 if (prt_flags & PS_TASKS) 199 mdb_printf("%5s ", "TASK"); 200 if (prt_flags & PS_PROJECTS) 201 mdb_printf("%5s ", "PROJ"); 202 if (prt_flags & PS_ZONES) 203 mdb_printf("%5s ", "ZONE"); 204 mdb_printf("%6s %10s %?s %s%</u>\n", 205 "UID", "FLAGS", "ADDR", "NAME"); 206 } 207 208 mdb_vread(&pr, sizeof (pr), addr); 209 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 210 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 211 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 212 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 213 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 214 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 215 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 216 if (prt_flags & PS_PROJECTS) 217 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 218 if (prt_flags & PS_ZONES) 219 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 220 221 mdb_printf("%c %6d %6d %6d %6d ", 222 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 223 sid.pid_id); 224 if (prt_flags & PS_TASKS) 225 mdb_printf("%5d ", tk.tk_tkid); 226 if (prt_flags & PS_PROJECTS) 227 mdb_printf("%5d ", pj.kpj_id); 228 if (prt_flags & PS_ZONES) 229 mdb_printf("%5d ", zn.zone_id); 230 mdb_printf("%6d 0x%08x %0?p %s\n", 231 cred.cr_uid, pr.p_flag, addr, 232 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 233 234 if (prt_flags & ~PS_PSARGS) 235 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 236 237 return (DCMD_OK); 238 } 239 240 #define PG_NEWEST 0x0001 241 #define PG_OLDEST 0x0002 242 #define PG_PIPE_OUT 0x0004 243 #define PG_EXACT_MATCH 0x0008 244 245 typedef struct pgrep_data { 246 uint_t pg_flags; 247 uint_t pg_psflags; 248 uintptr_t pg_xaddr; 249 hrtime_t pg_xstart; 250 const char *pg_pat; 251 #ifndef _KMDB 252 regex_t pg_reg; 253 #endif 254 } pgrep_data_t; 255 256 /*ARGSUSED*/ 257 static int 258 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 259 { 260 const proc_t *prp = pdata; 261 pgrep_data_t *pgp = data; 262 #ifndef _KMDB 263 regmatch_t pmatch; 264 #endif 265 266 /* 267 * kmdb doesn't have access to the reg* functions, so we fall back 268 * to strstr/strcmp. 269 */ 270 #ifdef _KMDB 271 if ((pgp->pg_flags & PG_EXACT_MATCH) ? 272 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) : 273 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL)) 274 return (WALK_NEXT); 275 #else 276 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 277 return (WALK_NEXT); 278 279 if ((pgp->pg_flags & PG_EXACT_MATCH) && 280 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0')) 281 return (WALK_NEXT); 282 #endif 283 284 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 285 hrtime_t start; 286 287 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 288 prp->p_user.u_start.tv_nsec; 289 290 if (pgp->pg_flags & PG_NEWEST) { 291 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 292 pgp->pg_xaddr = addr; 293 pgp->pg_xstart = start; 294 } 295 } else { 296 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 297 pgp->pg_xaddr = addr; 298 pgp->pg_xstart = start; 299 } 300 } 301 302 } else if (pgp->pg_flags & PG_PIPE_OUT) { 303 mdb_printf("%p\n", addr); 304 305 } else { 306 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 307 mdb_warn("can't invoke 'ps'"); 308 return (WALK_DONE); 309 } 310 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 311 } 312 313 return (WALK_NEXT); 314 } 315 316 /*ARGSUSED*/ 317 int 318 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 319 { 320 pgrep_data_t pg; 321 int i; 322 #ifndef _KMDB 323 int err; 324 #endif 325 326 if (flags & DCMD_ADDRSPEC) 327 return (DCMD_USAGE); 328 329 pg.pg_flags = 0; 330 pg.pg_xaddr = 0; 331 332 i = mdb_getopts(argc, argv, 333 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 334 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 335 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags, 336 NULL); 337 338 argc -= i; 339 argv += i; 340 341 if (argc != 1) 342 return (DCMD_USAGE); 343 344 /* 345 * -n and -o are mutually exclusive. 346 */ 347 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 348 return (DCMD_USAGE); 349 350 if (argv->a_type != MDB_TYPE_STRING) 351 return (DCMD_USAGE); 352 353 if (flags & DCMD_PIPE_OUT) 354 pg.pg_flags |= PG_PIPE_OUT; 355 356 pg.pg_pat = argv->a_un.a_str; 357 if (DCMD_HDRSPEC(flags)) 358 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 359 else 360 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 361 362 #ifndef _KMDB 363 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 364 size_t nbytes; 365 char *buf; 366 367 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 368 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 369 (void) regerror(err, &pg.pg_reg, buf, nbytes); 370 mdb_warn("%s\n", buf); 371 372 return (DCMD_ERR); 373 } 374 #endif 375 376 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 377 mdb_warn("can't walk 'proc'"); 378 return (DCMD_ERR); 379 } 380 381 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 382 if (pg.pg_flags & PG_PIPE_OUT) { 383 mdb_printf("%p\n", pg.pg_xaddr); 384 } else { 385 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 386 0, NULL) != 0) { 387 mdb_warn("can't invoke 'ps'"); 388 return (DCMD_ERR); 389 } 390 } 391 } 392 393 return (DCMD_OK); 394 } 395 396 int 397 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 398 { 399 task_t tk; 400 kproject_t pj; 401 402 if (!(flags & DCMD_ADDRSPEC)) { 403 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 404 mdb_warn("can't walk task_cache"); 405 return (DCMD_ERR); 406 } 407 return (DCMD_OK); 408 } 409 if (DCMD_HDRSPEC(flags)) { 410 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 411 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 412 } 413 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 414 mdb_warn("can't read task_t structure at %p", addr); 415 return (DCMD_ERR); 416 } 417 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 418 mdb_warn("can't read project_t structure at %p", addr); 419 return (DCMD_ERR); 420 } 421 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 422 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 423 tk.tk_flags); 424 return (DCMD_OK); 425 } 426 427 int 428 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 429 { 430 kproject_t pj; 431 432 if (!(flags & DCMD_ADDRSPEC)) { 433 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 434 mdb_warn("can't walk projects"); 435 return (DCMD_ERR); 436 } 437 return (DCMD_OK); 438 } 439 if (DCMD_HDRSPEC(flags)) { 440 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 441 "ADDR", "PROJID", "ZONEID", "REFCNT"); 442 } 443 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 444 mdb_warn("can't read kproject_t structure at %p", addr); 445 return (DCMD_ERR); 446 } 447 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 448 pj.kpj_count); 449 return (DCMD_OK); 450 } 451 452 /* walk callouts themselves, either by list or id hash. */ 453 int 454 callout_walk_init(mdb_walk_state_t *wsp) 455 { 456 if (wsp->walk_addr == NULL) { 457 mdb_warn("callout doesn't support global walk"); 458 return (WALK_ERR); 459 } 460 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP); 461 return (WALK_NEXT); 462 } 463 464 #define CALLOUT_WALK_BYLIST 0 465 #define CALLOUT_WALK_BYID 1 466 467 /* the walker arg switches between walking by list (0) and walking by id (1). */ 468 int 469 callout_walk_step(mdb_walk_state_t *wsp) 470 { 471 int retval; 472 473 if (wsp->walk_addr == NULL) { 474 return (WALK_DONE); 475 } 476 if (mdb_vread(wsp->walk_data, sizeof (callout_t), 477 wsp->walk_addr) == -1) { 478 mdb_warn("failed to read callout at %p", wsp->walk_addr); 479 return (WALK_DONE); 480 } 481 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 482 wsp->walk_cbdata); 483 484 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) { 485 wsp->walk_addr = 486 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext); 487 } else { 488 wsp->walk_addr = 489 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext); 490 } 491 492 return (retval); 493 } 494 495 void 496 callout_walk_fini(mdb_walk_state_t *wsp) 497 { 498 mdb_free(wsp->walk_data, sizeof (callout_t)); 499 } 500 501 /* 502 * walker for callout lists. This is different from hashes and callouts. 503 * Thankfully, it's also simpler. 504 */ 505 int 506 callout_list_walk_init(mdb_walk_state_t *wsp) 507 { 508 if (wsp->walk_addr == NULL) { 509 mdb_warn("callout list doesn't support global walk"); 510 return (WALK_ERR); 511 } 512 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP); 513 return (WALK_NEXT); 514 } 515 516 int 517 callout_list_walk_step(mdb_walk_state_t *wsp) 518 { 519 int retval; 520 521 if (wsp->walk_addr == NULL) { 522 return (WALK_DONE); 523 } 524 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t), 525 wsp->walk_addr) != sizeof (callout_list_t)) { 526 mdb_warn("failed to read callout_list at %p", wsp->walk_addr); 527 return (WALK_ERR); 528 } 529 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, 530 wsp->walk_cbdata); 531 532 wsp->walk_addr = (uintptr_t) 533 (((callout_list_t *)wsp->walk_data)->cl_next); 534 535 return (retval); 536 } 537 538 void 539 callout_list_walk_fini(mdb_walk_state_t *wsp) 540 { 541 mdb_free(wsp->walk_data, sizeof (callout_list_t)); 542 } 543 544 /* routines/structs to walk callout table(s) */ 545 typedef struct cot_data { 546 callout_table_t *ct0; 547 callout_table_t ct; 548 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 549 callout_hash_t cot_clhash[CALLOUT_BUCKETS]; 550 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS]; 551 int cotndx; 552 int cotsize; 553 } cot_data_t; 554 555 int 556 callout_table_walk_init(mdb_walk_state_t *wsp) 557 { 558 int max_ncpus; 559 cot_data_t *cot_walk_data; 560 561 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP); 562 563 if (wsp->walk_addr == NULL) { 564 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) { 565 mdb_warn("failed to read 'callout_table'"); 566 return (WALK_ERR); 567 } 568 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 569 mdb_warn("failed to get callout_table array size"); 570 return (WALK_ERR); 571 } 572 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus; 573 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0; 574 } else { 575 /* not a global walk */ 576 cot_walk_data->cotsize = 1; 577 } 578 579 cot_walk_data->cotndx = 0; 580 wsp->walk_data = cot_walk_data; 581 582 return (WALK_NEXT); 583 } 584 585 int 586 callout_table_walk_step(mdb_walk_state_t *wsp) 587 { 588 int retval; 589 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data; 590 size_t size; 591 592 if (cotwd->cotndx >= cotwd->cotsize) { 593 return (WALK_DONE); 594 } 595 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t), 596 wsp->walk_addr) != sizeof (callout_table_t)) { 597 mdb_warn("failed to read callout_table at %p", wsp->walk_addr); 598 return (WALK_ERR); 599 } 600 601 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 602 if (cotwd->ct.ct_idhash != NULL) { 603 if (mdb_vread(cotwd->cot_idhash, size, 604 (uintptr_t)(cotwd->ct.ct_idhash)) != size) { 605 mdb_warn("failed to read id_hash at %p", 606 cotwd->ct.ct_idhash); 607 return (WALK_ERR); 608 } 609 } 610 if (cotwd->ct.ct_clhash != NULL) { 611 if (mdb_vread(&(cotwd->cot_clhash), size, 612 (uintptr_t)cotwd->ct.ct_clhash) == -1) { 613 mdb_warn("failed to read cl_hash at %p", 614 cotwd->ct.ct_clhash); 615 return (WALK_ERR); 616 } 617 } 618 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS; 619 if (cotwd->ct.ct_kstat_data != NULL) { 620 if (mdb_vread(&(cotwd->ct_kstat_data), size, 621 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) { 622 mdb_warn("failed to read kstats at %p", 623 cotwd->ct.ct_kstat_data); 624 return (WALK_ERR); 625 } 626 } 627 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd, 628 wsp->walk_cbdata); 629 630 cotwd->cotndx++; 631 if (cotwd->cotndx >= cotwd->cotsize) { 632 return (WALK_DONE); 633 } 634 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr + 635 sizeof (callout_table_t)); 636 637 return (retval); 638 } 639 640 void 641 callout_table_walk_fini(mdb_walk_state_t *wsp) 642 { 643 mdb_free(wsp->walk_data, sizeof (cot_data_t)); 644 } 645 646 static const char *co_typenames[] = { "R", "N" }; 647 648 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK) 649 650 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS) 651 652 /* callout flags, in no particular order */ 653 #define COF_REAL 0x00000001 654 #define COF_NORM 0x00000002 655 #define COF_LONG 0x00000004 656 #define COF_SHORT 0x00000008 657 #define COF_EMPTY 0x00000010 658 #define COF_TIME 0x00000020 659 #define COF_BEFORE 0x00000040 660 #define COF_AFTER 0x00000080 661 #define COF_SEQID 0x00000100 662 #define COF_FUNC 0x00000200 663 #define COF_ADDR 0x00000400 664 #define COF_EXEC 0x00000800 665 #define COF_HIRES 0x00001000 666 #define COF_ABS 0x00002000 667 #define COF_TABLE 0x00004000 668 #define COF_BYIDH 0x00008000 669 #define COF_FREE 0x00010000 670 #define COF_LIST 0x00020000 671 #define COF_EXPREL 0x00040000 672 #define COF_HDR 0x00080000 673 #define COF_VERBOSE 0x00100000 674 #define COF_LONGLIST 0x00200000 675 #define COF_THDR 0x00400000 676 #define COF_LHDR 0x00800000 677 #define COF_CHDR 0x01000000 678 #define COF_PARAM 0x02000000 679 #define COF_DECODE 0x04000000 680 #define COF_HEAP 0x08000000 681 #define COF_QUEUE 0x10000000 682 683 /* show real and normal, short and long, expired and unexpired. */ 684 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT) 685 686 #define COF_LIST_FLAGS \ 687 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE) 688 689 /* private callout data for callback functions */ 690 typedef struct callout_data { 691 uint_t flags; /* COF_* */ 692 cpu_t *cpu; /* cpu pointer if given */ 693 int seqid; /* cpu seqid, or -1 */ 694 hrtime_t time; /* expiration time value */ 695 hrtime_t atime; /* expiration before value */ 696 hrtime_t btime; /* expiration after value */ 697 uintptr_t funcaddr; /* function address or NULL */ 698 uintptr_t param; /* parameter to function or NULL */ 699 hrtime_t now; /* current system time */ 700 int nsec_per_tick; /* for conversions */ 701 ulong_t ctbits; /* for decoding xid */ 702 callout_table_t *co_table; /* top of callout table array */ 703 int ndx; /* table index. */ 704 int bucket; /* which list/id bucket are we in */ 705 hrtime_t exp; /* expire time */ 706 int list_flags; /* copy of cl_flags */ 707 } callout_data_t; 708 709 /* this callback does the actual callback itself (finally). */ 710 /*ARGSUSED*/ 711 static int 712 callouts_cb(uintptr_t addr, const void *data, void *priv) 713 { 714 callout_data_t *coargs = (callout_data_t *)priv; 715 callout_t *co = (callout_t *)data; 716 int tableid, list_flags; 717 callout_id_t coid; 718 719 if ((coargs == NULL) || (co == NULL)) { 720 return (WALK_ERR); 721 } 722 723 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) { 724 /* 725 * The callout must have been reallocated. No point in 726 * walking any more. 727 */ 728 return (WALK_DONE); 729 } 730 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) { 731 /* 732 * The callout must have been freed. No point in 733 * walking any more. 734 */ 735 return (WALK_DONE); 736 } 737 if ((coargs->flags & COF_FUNC) && 738 (coargs->funcaddr != (uintptr_t)co->c_func)) { 739 return (WALK_NEXT); 740 } 741 if ((coargs->flags & COF_PARAM) && 742 (coargs->param != (uintptr_t)co->c_arg)) { 743 return (WALK_NEXT); 744 } 745 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) { 746 return (WALK_NEXT); 747 } 748 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) { 749 return (WALK_NEXT); 750 } 751 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) { 752 return (WALK_NEXT); 753 } 754 /* it is possible we don't have the exp time or flags */ 755 if (coargs->flags & COF_BYIDH) { 756 if (!(coargs->flags & COF_FREE)) { 757 /* we have to fetch the expire time ourselves. */ 758 if (mdb_vread(&coargs->exp, sizeof (hrtime_t), 759 (uintptr_t)co->c_list + offsetof(callout_list_t, 760 cl_expiration)) == -1) { 761 mdb_warn("failed to read expiration " 762 "time from %p", co->c_list); 763 coargs->exp = 0; 764 } 765 /* and flags. */ 766 if (mdb_vread(&coargs->list_flags, sizeof (int), 767 (uintptr_t)co->c_list + offsetof(callout_list_t, 768 cl_flags)) == -1) { 769 mdb_warn("failed to read list flags" 770 "from %p", co->c_list); 771 coargs->list_flags = 0; 772 } 773 } else { 774 /* free callouts can't use list pointer. */ 775 coargs->exp = 0; 776 coargs->list_flags = 0; 777 } 778 if (coargs->exp != 0) { 779 if ((coargs->flags & COF_TIME) && 780 (coargs->exp != coargs->time)) { 781 return (WALK_NEXT); 782 } 783 if ((coargs->flags & COF_BEFORE) && 784 (coargs->exp > coargs->btime)) { 785 return (WALK_NEXT); 786 } 787 if ((coargs->flags & COF_AFTER) && 788 (coargs->exp < coargs->atime)) { 789 return (WALK_NEXT); 790 } 791 } 792 /* tricky part, since both HIRES and ABS can be set */ 793 list_flags = coargs->list_flags; 794 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 795 /* both flags are set, only skip "regular" ones */ 796 if (! (list_flags & COF_LIST_FLAGS)) { 797 return (WALK_NEXT); 798 } 799 } else { 800 /* individual flags, or no flags */ 801 if ((coargs->flags & COF_HIRES) && 802 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 803 return (WALK_NEXT); 804 } 805 if ((coargs->flags & COF_ABS) && 806 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 807 return (WALK_NEXT); 808 } 809 } 810 /* 811 * We do the checks for COF_HEAP and COF_QUEUE here only if we 812 * are traversing BYIDH. If the traversal is by callout list, 813 * we do this check in callout_list_cb() to be more 814 * efficient. 815 */ 816 if ((coargs->flags & COF_HEAP) && 817 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 818 return (WALK_NEXT); 819 } 820 821 if ((coargs->flags & COF_QUEUE) && 822 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 823 return (WALK_NEXT); 824 } 825 } 826 827 #define callout_table_mask ((1 << coargs->ctbits) - 1) 828 tableid = CALLOUT_ID_TO_TABLE(co->c_xid); 829 #undef callout_table_mask 830 coid = CO_PLAIN_ID(co->c_xid); 831 832 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) { 833 /* 834 * We need to print the headers. If walking by id, then 835 * the list header isn't printed, so we must include 836 * that info here. 837 */ 838 if (!(coargs->flags & COF_VERBOSE)) { 839 mdb_printf("%<u>%3s %-1s %-14s %</u>", 840 "SEQ", "T", "EXP"); 841 } else if (coargs->flags & COF_BYIDH) { 842 mdb_printf("%<u>%-14s %</u>", "EXP"); 843 } 844 mdb_printf("%<u>%-4s %-?s %-20s%</u>", 845 "XHAL", "XID", "FUNC(ARG)"); 846 if (coargs->flags & COF_LONGLIST) { 847 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>", 848 "PREVID", "NEXTID", "PREVL", "NEXTL"); 849 mdb_printf("%<u> %-?s %-4s %-?s%</u>", 850 "DONE", "UTOS", "THREAD"); 851 } 852 mdb_printf("\n"); 853 coargs->flags &= ~COF_CHDR; 854 coargs->flags |= (COF_THDR | COF_LHDR); 855 } 856 857 if (!(coargs->flags & COF_ADDR)) { 858 if (!(coargs->flags & COF_VERBOSE)) { 859 mdb_printf("%-3d %1s %-14llx ", 860 TABLE_TO_SEQID(tableid), 861 co_typenames[tableid & CALLOUT_TYPE_MASK], 862 (coargs->flags & COF_EXPREL) ? 863 coargs->exp - coargs->now : coargs->exp); 864 } else if (coargs->flags & COF_BYIDH) { 865 mdb_printf("%-14x ", 866 (coargs->flags & COF_EXPREL) ? 867 coargs->exp - coargs->now : coargs->exp); 868 } 869 list_flags = coargs->list_flags; 870 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)", 871 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ", 872 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ", 873 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ", 874 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ", 875 (long long)coid, co->c_func, co->c_arg); 876 if (coargs->flags & COF_LONGLIST) { 877 mdb_printf(" %-?p %-?p %-?p %-?p", 878 co->c_idprev, co->c_idnext, co->c_clprev, 879 co->c_clnext); 880 mdb_printf(" %-?p %-4d %-0?p", 881 co->c_done, co->c_waiting, co->c_executor); 882 } 883 } else { 884 /* address only */ 885 mdb_printf("%-0p", addr); 886 } 887 mdb_printf("\n"); 888 return (WALK_NEXT); 889 } 890 891 /* this callback is for callout list handling. idhash is done by callout_t_cb */ 892 /*ARGSUSED*/ 893 static int 894 callout_list_cb(uintptr_t addr, const void *data, void *priv) 895 { 896 callout_data_t *coargs = (callout_data_t *)priv; 897 callout_list_t *cl = (callout_list_t *)data; 898 callout_t *coptr; 899 int list_flags; 900 901 if ((coargs == NULL) || (cl == NULL)) { 902 return (WALK_ERR); 903 } 904 905 coargs->exp = cl->cl_expiration; 906 coargs->list_flags = cl->cl_flags; 907 if ((coargs->flags & COF_FREE) && 908 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 909 /* 910 * The callout list must have been reallocated. No point in 911 * walking any more. 912 */ 913 return (WALK_DONE); 914 } 915 if (!(coargs->flags & COF_FREE) && 916 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) { 917 /* 918 * The callout list must have been freed. No point in 919 * walking any more. 920 */ 921 return (WALK_DONE); 922 } 923 if ((coargs->flags & COF_TIME) && 924 (cl->cl_expiration != coargs->time)) { 925 return (WALK_NEXT); 926 } 927 if ((coargs->flags & COF_BEFORE) && 928 (cl->cl_expiration > coargs->btime)) { 929 return (WALK_NEXT); 930 } 931 if ((coargs->flags & COF_AFTER) && 932 (cl->cl_expiration < coargs->atime)) { 933 return (WALK_NEXT); 934 } 935 if (!(coargs->flags & COF_EMPTY) && 936 (cl->cl_callouts.ch_head == NULL)) { 937 return (WALK_NEXT); 938 } 939 /* FOUR cases, each different, !A!B, !AB, A!B, AB */ 940 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) { 941 /* both flags are set, only skip "regular" ones */ 942 if (! (cl->cl_flags & COF_LIST_FLAGS)) { 943 return (WALK_NEXT); 944 } 945 } else { 946 if ((coargs->flags & COF_HIRES) && 947 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) { 948 return (WALK_NEXT); 949 } 950 if ((coargs->flags & COF_ABS) && 951 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) { 952 return (WALK_NEXT); 953 } 954 } 955 956 if ((coargs->flags & COF_HEAP) && 957 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) { 958 return (WALK_NEXT); 959 } 960 961 if ((coargs->flags & COF_QUEUE) && 962 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) { 963 return (WALK_NEXT); 964 } 965 966 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) && 967 (coargs->flags & (COF_LIST | COF_VERBOSE))) { 968 if (!(coargs->flags & COF_VERBOSE)) { 969 /* don't be redundant again */ 970 mdb_printf("%<u>SEQ T %</u>"); 971 } 972 mdb_printf("%<u>EXP HA BUCKET " 973 "CALLOUTS %</u>"); 974 975 if (coargs->flags & COF_LONGLIST) { 976 mdb_printf("%<u> %-?s %-?s%</u>", 977 "PREV", "NEXT"); 978 } 979 mdb_printf("\n"); 980 coargs->flags &= ~COF_LHDR; 981 coargs->flags |= (COF_THDR | COF_CHDR); 982 } 983 if (coargs->flags & (COF_LIST | COF_VERBOSE)) { 984 if (!(coargs->flags & COF_ADDR)) { 985 if (!(coargs->flags & COF_VERBOSE)) { 986 mdb_printf("%3d %1s ", 987 TABLE_TO_SEQID(coargs->ndx), 988 co_typenames[coargs->ndx & 989 CALLOUT_TYPE_MASK]); 990 } 991 992 list_flags = coargs->list_flags; 993 mdb_printf("%-14llx %1s%1s %-6d %-0?p ", 994 (coargs->flags & COF_EXPREL) ? 995 coargs->exp - coargs->now : coargs->exp, 996 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? 997 "H" : " ", 998 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? 999 "A" : " ", 1000 coargs->bucket, cl->cl_callouts.ch_head); 1001 1002 if (coargs->flags & COF_LONGLIST) { 1003 mdb_printf(" %-?p %-?p", 1004 cl->cl_prev, cl->cl_next); 1005 } 1006 } else { 1007 /* address only */ 1008 mdb_printf("%-0p", addr); 1009 } 1010 mdb_printf("\n"); 1011 if (coargs->flags & COF_LIST) { 1012 return (WALK_NEXT); 1013 } 1014 } 1015 /* yet another layer as we walk the actual callouts via list. */ 1016 if (cl->cl_callouts.ch_head == NULL) { 1017 return (WALK_NEXT); 1018 } 1019 /* free list structures do not have valid callouts off of them. */ 1020 if (coargs->flags & COF_FREE) { 1021 return (WALK_NEXT); 1022 } 1023 coptr = (callout_t *)cl->cl_callouts.ch_head; 1024 1025 if (coargs->flags & COF_VERBOSE) { 1026 mdb_inc_indent(4); 1027 } 1028 /* 1029 * walk callouts using yet another callback routine. 1030 * we use callouts_bytime because id hash is handled via 1031 * the callout_t_cb callback. 1032 */ 1033 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs, 1034 (uintptr_t)coptr) == -1) { 1035 mdb_warn("cannot walk callouts at %p", coptr); 1036 return (WALK_ERR); 1037 } 1038 if (coargs->flags & COF_VERBOSE) { 1039 mdb_dec_indent(4); 1040 } 1041 1042 return (WALK_NEXT); 1043 } 1044 1045 /* this callback handles the details of callout table walking. */ 1046 static int 1047 callout_t_cb(uintptr_t addr, const void *data, void *priv) 1048 { 1049 callout_data_t *coargs = (callout_data_t *)priv; 1050 cot_data_t *cotwd = (cot_data_t *)data; 1051 callout_table_t *ct = &(cotwd->ct); 1052 int index, seqid, cotype; 1053 int i; 1054 callout_list_t *clptr; 1055 callout_t *coptr; 1056 1057 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) { 1058 return (WALK_ERR); 1059 } 1060 1061 index = ((char *)addr - (char *)coargs->co_table) / 1062 sizeof (callout_table_t); 1063 cotype = index & CALLOUT_TYPE_MASK; 1064 seqid = TABLE_TO_SEQID(index); 1065 1066 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) { 1067 return (WALK_NEXT); 1068 } 1069 1070 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) { 1071 return (WALK_NEXT); 1072 } 1073 1074 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) { 1075 return (WALK_NEXT); 1076 } 1077 1078 if (!(coargs->flags & COF_EMPTY) && ( 1079 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) { 1080 return (WALK_NEXT); 1081 } 1082 1083 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) && 1084 (coargs->flags & (COF_TABLE | COF_VERBOSE))) { 1085 /* print table hdr */ 1086 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>", 1087 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP"); 1088 coargs->flags &= ~COF_THDR; 1089 coargs->flags |= (COF_LHDR | COF_CHDR); 1090 if (coargs->flags & COF_LONGLIST) { 1091 /* more info! */ 1092 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s" 1093 " %-?s %-?s %-?s%</u>", 1094 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE", 1095 "PEND", "FREE", "LOCK"); 1096 } 1097 mdb_printf("\n"); 1098 } 1099 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) { 1100 if (!(coargs->flags & COF_ADDR)) { 1101 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p", 1102 seqid, co_typenames[cotype], 1103 ct->ct_free, ct->ct_lfree, ct->ct_cyclic, 1104 ct->ct_heap); 1105 if (coargs->flags & COF_LONGLIST) { 1106 /* more info! */ 1107 mdb_printf(" %-7d %-7d %-?p %-?p %-?p" 1108 " %-?lld %-?lld %-?p", 1109 ct->ct_heap_num, ct->ct_heap_max, 1110 ct->ct_taskq, ct->ct_expired.ch_head, 1111 ct->ct_queue.ch_head, 1112 cotwd->ct_timeouts_pending, 1113 cotwd->ct_allocations - 1114 cotwd->ct_timeouts_pending, 1115 ct->ct_mutex); 1116 } 1117 } else { 1118 /* address only */ 1119 mdb_printf("%-0?p", addr); 1120 } 1121 mdb_printf("\n"); 1122 if (coargs->flags & COF_TABLE) { 1123 return (WALK_NEXT); 1124 } 1125 } 1126 1127 coargs->ndx = index; 1128 if (coargs->flags & COF_VERBOSE) { 1129 mdb_inc_indent(4); 1130 } 1131 /* keep digging. */ 1132 if (!(coargs->flags & COF_BYIDH)) { 1133 /* walk the list hash table */ 1134 if (coargs->flags & COF_FREE) { 1135 clptr = ct->ct_lfree; 1136 coargs->bucket = 0; 1137 if (clptr == NULL) { 1138 return (WALK_NEXT); 1139 } 1140 if (mdb_pwalk("callout_list", callout_list_cb, coargs, 1141 (uintptr_t)clptr) == -1) { 1142 mdb_warn("cannot walk callout free list at %p", 1143 clptr); 1144 return (WALK_ERR); 1145 } 1146 } else { 1147 /* first print the expired list. */ 1148 clptr = (callout_list_t *)ct->ct_expired.ch_head; 1149 if (clptr != NULL) { 1150 coargs->bucket = -1; 1151 if (mdb_pwalk("callout_list", callout_list_cb, 1152 coargs, (uintptr_t)clptr) == -1) { 1153 mdb_warn("cannot walk callout_list" 1154 " at %p", clptr); 1155 return (WALK_ERR); 1156 } 1157 } 1158 /* then, print the callout queue */ 1159 clptr = (callout_list_t *)ct->ct_queue.ch_head; 1160 if (clptr != NULL) { 1161 coargs->bucket = -1; 1162 if (mdb_pwalk("callout_list", callout_list_cb, 1163 coargs, (uintptr_t)clptr) == -1) { 1164 mdb_warn("cannot walk callout_list" 1165 " at %p", clptr); 1166 return (WALK_ERR); 1167 } 1168 } 1169 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1170 if (ct->ct_clhash == NULL) { 1171 /* nothing to do */ 1172 break; 1173 } 1174 if (cotwd->cot_clhash[i].ch_head == NULL) { 1175 continue; 1176 } 1177 clptr = (callout_list_t *) 1178 cotwd->cot_clhash[i].ch_head; 1179 coargs->bucket = i; 1180 /* walk list with callback routine. */ 1181 if (mdb_pwalk("callout_list", callout_list_cb, 1182 coargs, (uintptr_t)clptr) == -1) { 1183 mdb_warn("cannot walk callout_list" 1184 " at %p", clptr); 1185 return (WALK_ERR); 1186 } 1187 } 1188 } 1189 } else { 1190 /* walk the id hash table. */ 1191 if (coargs->flags & COF_FREE) { 1192 coptr = ct->ct_free; 1193 coargs->bucket = 0; 1194 if (coptr == NULL) { 1195 return (WALK_NEXT); 1196 } 1197 if (mdb_pwalk("callouts_byid", callouts_cb, coargs, 1198 (uintptr_t)coptr) == -1) { 1199 mdb_warn("cannot walk callout id free list" 1200 " at %p", coptr); 1201 return (WALK_ERR); 1202 } 1203 } else { 1204 for (i = 0; i < CALLOUT_BUCKETS; i++) { 1205 if (ct->ct_idhash == NULL) { 1206 break; 1207 } 1208 coptr = (callout_t *) 1209 cotwd->cot_idhash[i].ch_head; 1210 if (coptr == NULL) { 1211 continue; 1212 } 1213 coargs->bucket = i; 1214 1215 /* 1216 * walk callouts directly by id. For id 1217 * chain, the callout list is just a header, 1218 * so there's no need to walk it. 1219 */ 1220 if (mdb_pwalk("callouts_byid", callouts_cb, 1221 coargs, (uintptr_t)coptr) == -1) { 1222 mdb_warn("cannot walk callouts at %p", 1223 coptr); 1224 return (WALK_ERR); 1225 } 1226 } 1227 } 1228 } 1229 if (coargs->flags & COF_VERBOSE) { 1230 mdb_dec_indent(4); 1231 } 1232 return (WALK_NEXT); 1233 } 1234 1235 /* 1236 * initialize some common info for both callout dcmds. 1237 */ 1238 int 1239 callout_common_init(callout_data_t *coargs) 1240 { 1241 /* we need a couple of things */ 1242 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) { 1243 mdb_warn("failed to read 'callout_table'"); 1244 return (DCMD_ERR); 1245 } 1246 /* need to get now in nsecs. Approximate with hrtime vars */ 1247 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") != 1248 sizeof (hrtime_t)) { 1249 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), 1250 "hrtime_base") != sizeof (hrtime_t)) { 1251 mdb_warn("Could not determine current system time"); 1252 return (DCMD_ERR); 1253 } 1254 } 1255 1256 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) { 1257 mdb_warn("failed to read 'callout_table_bits'"); 1258 return (DCMD_ERR); 1259 } 1260 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) { 1261 mdb_warn("failed to read 'nsec_per_tick'"); 1262 return (DCMD_ERR); 1263 } 1264 return (DCMD_OK); 1265 } 1266 1267 /* 1268 * dcmd to print callouts. Optional addr limits to specific table. 1269 * Parses lots of options that get passed to callbacks for walkers. 1270 * Has it's own help function. 1271 */ 1272 /*ARGSUSED*/ 1273 int 1274 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1275 { 1276 callout_data_t coargs; 1277 /* getopts doesn't help much with stuff like this */ 1278 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag; 1279 char *funcname = NULL; 1280 char *paramstr = NULL; 1281 uintptr_t Stmp, Ctmp; /* for getopt. */ 1282 int retval; 1283 1284 coargs.flags = COF_DEFAULT; 1285 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE; 1286 coargs.seqid = -1; 1287 1288 if (mdb_getopts(argc, argv, 1289 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags, 1290 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags, 1291 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags, 1292 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags, 1293 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags, 1294 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags, 1295 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags, 1296 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags, 1297 'd', MDB_OPT_SETBITS, 1, &dflag, 1298 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp, 1299 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp, 1300 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time, 1301 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime, 1302 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime, 1303 'k', MDB_OPT_SETBITS, 1, &kflag, 1304 'f', MDB_OPT_STR, &funcname, 1305 'p', MDB_OPT_STR, ¶mstr, 1306 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags, 1307 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags, 1308 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags, 1309 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags, 1310 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1311 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags, 1312 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags, 1313 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags, 1314 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags, 1315 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags, 1316 NULL) != argc) { 1317 return (DCMD_USAGE); 1318 } 1319 1320 /* initialize from kernel variables */ 1321 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1322 return (retval); 1323 } 1324 1325 /* do some option post-processing */ 1326 if (kflag) { 1327 coargs.time *= coargs.nsec_per_tick; 1328 coargs.atime *= coargs.nsec_per_tick; 1329 coargs.btime *= coargs.nsec_per_tick; 1330 } 1331 1332 if (dflag) { 1333 coargs.time += coargs.now; 1334 coargs.atime += coargs.now; 1335 coargs.btime += coargs.now; 1336 } 1337 if (Sflag) { 1338 if (flags & DCMD_ADDRSPEC) { 1339 mdb_printf("-S option conflicts with explicit" 1340 " address\n"); 1341 return (DCMD_USAGE); 1342 } 1343 coargs.flags |= COF_SEQID; 1344 coargs.seqid = (int)Stmp; 1345 } 1346 if (Cflag) { 1347 if (flags & DCMD_ADDRSPEC) { 1348 mdb_printf("-C option conflicts with explicit" 1349 " address\n"); 1350 return (DCMD_USAGE); 1351 } 1352 if (coargs.flags & COF_SEQID) { 1353 mdb_printf("-C and -S are mutually exclusive\n"); 1354 return (DCMD_USAGE); 1355 } 1356 coargs.cpu = (cpu_t *)Ctmp; 1357 if (mdb_vread(&coargs.seqid, sizeof (processorid_t), 1358 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) { 1359 mdb_warn("failed to read cpu_t at %p", Ctmp); 1360 return (DCMD_ERR); 1361 } 1362 coargs.flags |= COF_SEQID; 1363 } 1364 /* avoid null outputs. */ 1365 if (!(coargs.flags & (COF_REAL | COF_NORM))) { 1366 coargs.flags |= COF_REAL | COF_NORM; 1367 } 1368 if (!(coargs.flags & (COF_LONG | COF_SHORT))) { 1369 coargs.flags |= COF_LONG | COF_SHORT; 1370 } 1371 if (tflag) { 1372 if (aflag || bflag) { 1373 mdb_printf("-t and -a|b are mutually exclusive\n"); 1374 return (DCMD_USAGE); 1375 } 1376 coargs.flags |= COF_TIME; 1377 } 1378 if (aflag) { 1379 coargs.flags |= COF_AFTER; 1380 } 1381 if (bflag) { 1382 coargs.flags |= COF_BEFORE; 1383 } 1384 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) { 1385 mdb_printf("value for -a must be earlier than the value" 1386 " for -b.\n"); 1387 return (DCMD_USAGE); 1388 } 1389 1390 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) { 1391 mdb_printf("-H and -Q are mutually exclusive\n"); 1392 return (DCMD_USAGE); 1393 } 1394 1395 if (funcname != NULL) { 1396 GElf_Sym sym; 1397 1398 if (mdb_lookup_by_name(funcname, &sym) != 0) { 1399 coargs.funcaddr = mdb_strtoull(funcname); 1400 } else { 1401 coargs.funcaddr = sym.st_value; 1402 } 1403 coargs.flags |= COF_FUNC; 1404 } 1405 1406 if (paramstr != NULL) { 1407 GElf_Sym sym; 1408 1409 if (mdb_lookup_by_name(paramstr, &sym) != 0) { 1410 coargs.param = mdb_strtoull(paramstr); 1411 } else { 1412 coargs.param = sym.st_value; 1413 } 1414 coargs.flags |= COF_PARAM; 1415 } 1416 1417 if (!(flags & DCMD_ADDRSPEC)) { 1418 /* don't pass "dot" if no addr. */ 1419 addr = NULL; 1420 } 1421 if (addr != NULL) { 1422 /* 1423 * a callout table was specified. Ignore -r|n option 1424 * to avoid null output. 1425 */ 1426 coargs.flags |= (COF_REAL | COF_NORM); 1427 } 1428 1429 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) { 1430 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR; 1431 } 1432 if (coargs.flags & COF_FREE) { 1433 coargs.flags |= COF_EMPTY; 1434 /* -F = free callouts, -FL = free lists */ 1435 if (!(coargs.flags & COF_LIST)) { 1436 coargs.flags |= COF_BYIDH; 1437 } 1438 } 1439 1440 /* walk table, using specialized callback routine. */ 1441 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) { 1442 mdb_warn("cannot walk callout_table"); 1443 return (DCMD_ERR); 1444 } 1445 return (DCMD_OK); 1446 } 1447 1448 1449 /* 1450 * Given an extended callout id, dump its information. 1451 */ 1452 /*ARGSUSED*/ 1453 int 1454 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1455 { 1456 callout_data_t coargs; 1457 callout_table_t *ctptr; 1458 callout_table_t ct; 1459 callout_id_t coid; 1460 callout_t *coptr; 1461 int tableid; 1462 callout_id_t xid; 1463 ulong_t idhash; 1464 int i, retval; 1465 const mdb_arg_t *arg; 1466 size_t size; 1467 callout_hash_t cot_idhash[CALLOUT_BUCKETS]; 1468 1469 coargs.flags = COF_DEFAULT | COF_BYIDH; 1470 i = mdb_getopts(argc, argv, 1471 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags, 1472 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags, 1473 NULL); 1474 argc -= i; 1475 argv += i; 1476 1477 if (argc != 1) { 1478 return (DCMD_USAGE); 1479 } 1480 arg = &argv[0]; 1481 1482 if (arg->a_type == MDB_TYPE_IMMEDIATE) { 1483 xid = arg->a_un.a_val; 1484 } else { 1485 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str); 1486 } 1487 1488 if (DCMD_HDRSPEC(flags)) { 1489 coargs.flags |= COF_CHDR; 1490 } 1491 1492 1493 /* initialize from kernel variables */ 1494 if ((retval = callout_common_init(&coargs)) != DCMD_OK) { 1495 return (retval); 1496 } 1497 1498 /* we must massage the environment so that the macros will play nice */ 1499 #define callout_table_mask ((1 << coargs.ctbits) - 1) 1500 #define callout_table_bits coargs.ctbits 1501 #define nsec_per_tick coargs.nsec_per_tick 1502 tableid = CALLOUT_ID_TO_TABLE(xid); 1503 idhash = CALLOUT_IDHASH(xid); 1504 #undef callouts_table_bits 1505 #undef callout_table_mask 1506 #undef nsec_per_tick 1507 coid = CO_PLAIN_ID(xid); 1508 1509 if (flags & DCMD_ADDRSPEC) { 1510 mdb_printf("calloutid does not accept explicit address.\n"); 1511 return (DCMD_USAGE); 1512 } 1513 1514 if (coargs.flags & COF_DECODE) { 1515 if (DCMD_HDRSPEC(flags)) { 1516 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n", 1517 "SEQ", "T", "XL", "XID", "IDHASH"); 1518 } 1519 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n", 1520 TABLE_TO_SEQID(tableid), 1521 co_typenames[tableid & CALLOUT_TYPE_MASK], 1522 (xid & CALLOUT_EXECUTING) ? "X" : " ", 1523 (xid & CALLOUT_LONGTERM) ? "L" : " ", 1524 (long long)coid, idhash); 1525 return (DCMD_OK); 1526 } 1527 1528 /* get our table. Note this relies on the types being correct */ 1529 ctptr = coargs.co_table + tableid; 1530 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) { 1531 mdb_warn("failed to read callout_table at %p", ctptr); 1532 return (DCMD_ERR); 1533 } 1534 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS; 1535 if (ct.ct_idhash != NULL) { 1536 if (mdb_vread(&(cot_idhash), size, 1537 (uintptr_t)ct.ct_idhash) == -1) { 1538 mdb_warn("failed to read id_hash at %p", 1539 ct.ct_idhash); 1540 return (WALK_ERR); 1541 } 1542 } 1543 1544 /* callout at beginning of hash chain */ 1545 if (ct.ct_idhash == NULL) { 1546 mdb_printf("id hash chain for this xid is empty\n"); 1547 return (DCMD_ERR); 1548 } 1549 coptr = (callout_t *)cot_idhash[idhash].ch_head; 1550 if (coptr == NULL) { 1551 mdb_printf("id hash chain for this xid is empty\n"); 1552 return (DCMD_ERR); 1553 } 1554 1555 coargs.ndx = tableid; 1556 coargs.bucket = idhash; 1557 1558 /* use the walker, luke */ 1559 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs, 1560 (uintptr_t)coptr) == -1) { 1561 mdb_warn("cannot walk callouts at %p", coptr); 1562 return (WALK_ERR); 1563 } 1564 1565 return (DCMD_OK); 1566 } 1567 1568 void 1569 callout_help(void) 1570 { 1571 mdb_printf("callout: display callouts.\n" 1572 "Given a callout table address, display callouts from table.\n" 1573 "Without an address, display callouts from all tables.\n" 1574 "options:\n" 1575 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n" 1576 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n" 1577 " -x : limit display to callouts which are executing\n" 1578 " -h : limit display to callouts based on hrestime\n" 1579 " -B : limit display to callouts based on absolute time\n" 1580 " -t|a|b nsec: limit display to callouts that expire a(t) time," 1581 " (a)fter time,\n or (b)efore time. Use -a and -b together " 1582 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n" 1583 " -d : interpret time option to -t|a|b as delta from current time\n" 1584 " -k : use ticks instead of nanoseconds as arguments to" 1585 " -t|a|b. Note that\n ticks are less accurate and may not" 1586 " match other tick times (ie: lbolt).\n" 1587 " -D : display exiration time as delta from current time\n" 1588 " -S seqid : limit display to callouts for this cpu sequence id\n" 1589 " -C addr : limit display to callouts for this cpu pointer\n" 1590 " -f name|addr : limit display to callouts with this function\n" 1591 " -p name|addr : limit display to callouts functions with this" 1592 " parameter\n" 1593 " -T : display the callout table itself, instead of callouts\n" 1594 " -L : display callout lists instead of callouts\n" 1595 " -E : with -T or L, display empty data structures.\n" 1596 " -i : traverse callouts by id hash instead of list hash\n" 1597 " -F : walk free callout list (free list with -i) instead\n" 1598 " -v : display more info for each item\n" 1599 " -V : show details of each level of info as it is traversed\n" 1600 " -H : limit display to callouts in the callout heap\n" 1601 " -Q : limit display to callouts in the callout queue\n" 1602 " -A : show only addresses. Useful for pipelines.\n"); 1603 } 1604 1605 void 1606 calloutid_help(void) 1607 { 1608 mdb_printf("calloutid: display callout by id.\n" 1609 "Given an extended callout id, display the callout infomation.\n" 1610 "options:\n" 1611 " -d : do not dereference callout, just decode the id.\n" 1612 " -v : verbose display more info about the callout\n"); 1613 } 1614 1615 /*ARGSUSED*/ 1616 int 1617 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1618 { 1619 long num_classes, i; 1620 sclass_t *class_tbl; 1621 GElf_Sym g_sclass; 1622 char class_name[PC_CLNMSZ]; 1623 size_t tbl_size; 1624 1625 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 1626 mdb_warn("failed to find symbol sclass\n"); 1627 return (DCMD_ERR); 1628 } 1629 1630 tbl_size = (size_t)g_sclass.st_size; 1631 num_classes = tbl_size / (sizeof (sclass_t)); 1632 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 1633 1634 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 1635 mdb_warn("failed to read sclass"); 1636 return (DCMD_ERR); 1637 } 1638 1639 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 1640 "INIT FCN", "CLASS FCN"); 1641 1642 for (i = 0; i < num_classes; i++) { 1643 if (mdb_vread(class_name, sizeof (class_name), 1644 (uintptr_t)class_tbl[i].cl_name) == -1) 1645 (void) strcpy(class_name, "???"); 1646 1647 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 1648 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 1649 } 1650 1651 return (DCMD_OK); 1652 } 1653 1654 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 1655 1656 int 1657 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1658 { 1659 uintptr_t rootdir; 1660 vnode_t vn; 1661 char buf[MAXPATHLEN]; 1662 1663 uint_t opt_F = FALSE; 1664 1665 if (mdb_getopts(argc, argv, 1666 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 1667 return (DCMD_USAGE); 1668 1669 if (!(flags & DCMD_ADDRSPEC)) { 1670 mdb_warn("expected explicit vnode_t address before ::\n"); 1671 return (DCMD_USAGE); 1672 } 1673 1674 if (mdb_readvar(&rootdir, "rootdir") == -1) { 1675 mdb_warn("failed to read rootdir"); 1676 return (DCMD_ERR); 1677 } 1678 1679 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 1680 return (DCMD_ERR); 1681 1682 if (*buf == '\0') { 1683 mdb_printf("??\n"); 1684 return (DCMD_OK); 1685 } 1686 1687 mdb_printf("%s", buf); 1688 if (opt_F && buf[strlen(buf)-1] != '/' && 1689 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 1690 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 1691 mdb_printf("\n"); 1692 1693 return (DCMD_OK); 1694 } 1695 1696 int 1697 ld_walk_init(mdb_walk_state_t *wsp) 1698 { 1699 wsp->walk_data = (void *)wsp->walk_addr; 1700 return (WALK_NEXT); 1701 } 1702 1703 int 1704 ld_walk_step(mdb_walk_state_t *wsp) 1705 { 1706 int status; 1707 lock_descriptor_t ld; 1708 1709 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 1710 mdb_warn("couldn't read lock_descriptor_t at %p\n", 1711 wsp->walk_addr); 1712 return (WALK_ERR); 1713 } 1714 1715 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 1716 if (status == WALK_ERR) 1717 return (WALK_ERR); 1718 1719 wsp->walk_addr = (uintptr_t)ld.l_next; 1720 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 1721 return (WALK_DONE); 1722 1723 return (status); 1724 } 1725 1726 int 1727 lg_walk_init(mdb_walk_state_t *wsp) 1728 { 1729 GElf_Sym sym; 1730 1731 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 1732 mdb_warn("failed to find symbol 'lock_graph'\n"); 1733 return (WALK_ERR); 1734 } 1735 1736 wsp->walk_addr = (uintptr_t)sym.st_value; 1737 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size); 1738 1739 return (WALK_NEXT); 1740 } 1741 1742 typedef struct lg_walk_data { 1743 uintptr_t startaddr; 1744 mdb_walk_cb_t callback; 1745 void *data; 1746 } lg_walk_data_t; 1747 1748 /* 1749 * We can't use ::walk lock_descriptor directly, because the head of each graph 1750 * is really a dummy lock. Rather than trying to dynamically determine if this 1751 * is a dummy node or not, we just filter out the initial element of the 1752 * list. 1753 */ 1754 static int 1755 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 1756 { 1757 lg_walk_data_t *lw = priv; 1758 1759 if (addr != lw->startaddr) 1760 return (lw->callback(addr, data, lw->data)); 1761 1762 return (WALK_NEXT); 1763 } 1764 1765 int 1766 lg_walk_step(mdb_walk_state_t *wsp) 1767 { 1768 graph_t *graph; 1769 lg_walk_data_t lw; 1770 1771 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 1772 return (WALK_DONE); 1773 1774 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 1775 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 1776 return (WALK_ERR); 1777 } 1778 1779 wsp->walk_addr += sizeof (graph); 1780 1781 if (graph == NULL) 1782 return (WALK_NEXT); 1783 1784 lw.callback = wsp->walk_callback; 1785 lw.data = wsp->walk_cbdata; 1786 1787 lw.startaddr = (uintptr_t)&(graph->active_locks); 1788 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1789 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1790 return (WALK_ERR); 1791 } 1792 1793 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 1794 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 1795 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 1796 return (WALK_ERR); 1797 } 1798 1799 return (WALK_NEXT); 1800 } 1801 1802 /* 1803 * The space available for the path corresponding to the locked vnode depends 1804 * on whether we are printing 32- or 64-bit addresses. 1805 */ 1806 #ifdef _LP64 1807 #define LM_VNPATHLEN 20 1808 #else 1809 #define LM_VNPATHLEN 30 1810 #endif 1811 1812 /*ARGSUSED*/ 1813 static int 1814 lminfo_cb(uintptr_t addr, const void *data, void *priv) 1815 { 1816 const lock_descriptor_t *ld = data; 1817 char buf[LM_VNPATHLEN]; 1818 proc_t p; 1819 1820 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 1821 addr, ld->l_type == F_RDLCK ? "RD" : 1822 ld->l_type == F_WRLCK ? "WR" : "??", 1823 ld->l_state, ld->l_flock.l_pid, 1824 ld->l_flock.l_pid == 0 ? "<kernel>" : 1825 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 1826 "<defunct>" : p.p_user.u_comm, 1827 ld->l_vnode); 1828 1829 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 1830 sizeof (buf)); 1831 mdb_printf("%s\n", buf); 1832 1833 return (WALK_NEXT); 1834 } 1835 1836 /*ARGSUSED*/ 1837 int 1838 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1839 { 1840 if (DCMD_HDRSPEC(flags)) 1841 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 1842 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 1843 1844 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 1845 } 1846 1847 /*ARGSUSED*/ 1848 int 1849 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1850 { 1851 if ((uintptr_t)f->f_vnode == *target) { 1852 mdb_printf("file %p\n", addr); 1853 *target = NULL; 1854 } 1855 1856 return (WALK_NEXT); 1857 } 1858 1859 /*ARGSUSED*/ 1860 int 1861 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1862 { 1863 uintptr_t t = *target; 1864 1865 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1866 mdb_warn("couldn't file walk proc %p", addr); 1867 return (WALK_ERR); 1868 } 1869 1870 if (t == NULL) 1871 mdb_printf("%p\n", addr); 1872 1873 return (WALK_NEXT); 1874 } 1875 1876 /*ARGSUSED*/ 1877 int 1878 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1879 { 1880 uintptr_t target = addr; 1881 1882 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1883 return (DCMD_USAGE); 1884 1885 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1886 mdb_warn("can't proc walk"); 1887 return (DCMD_ERR); 1888 } 1889 1890 return (DCMD_OK); 1891 } 1892 1893 typedef struct datafmt { 1894 char *hdr1; 1895 char *hdr2; 1896 char *dashes; 1897 char *fmt; 1898 } datafmt_t; 1899 1900 static datafmt_t kmemfmt[] = { 1901 { "cache ", "name ", 1902 "-------------------------", "%-25s " }, 1903 { " buf", " size", "------", "%6u " }, 1904 { " buf", "in use", "------", "%6u " }, 1905 { " buf", " total", "------", "%6u " }, 1906 { " memory", " in use", "----------", "%10lu%c " }, 1907 { " alloc", " succeed", "---------", "%9u " }, 1908 { "alloc", " fail", "-----", "%5u " }, 1909 { NULL, NULL, NULL, NULL } 1910 }; 1911 1912 static datafmt_t vmemfmt[] = { 1913 { "vmem ", "name ", 1914 "-------------------------", "%-*s " }, 1915 { " memory", " in use", "----------", "%9llu%c " }, 1916 { " memory", " total", "-----------", "%10llu%c " }, 1917 { " memory", " import", "----------", "%9llu%c " }, 1918 { " alloc", " succeed", "---------", "%9llu " }, 1919 { "alloc", " fail", "-----", "%5llu " }, 1920 { NULL, NULL, NULL, NULL } 1921 }; 1922 1923 /*ARGSUSED*/ 1924 static int 1925 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1926 { 1927 short rounds, prounds; 1928 1929 if (KMEM_DUMPCC(ccp)) { 1930 rounds = ccp->cc_dump_rounds; 1931 prounds = ccp->cc_dump_prounds; 1932 } else { 1933 rounds = ccp->cc_rounds; 1934 prounds = ccp->cc_prounds; 1935 } 1936 if (rounds > 0) 1937 *avail += rounds; 1938 if (prounds > 0) 1939 *avail += prounds; 1940 1941 return (WALK_NEXT); 1942 } 1943 1944 /*ARGSUSED*/ 1945 static int 1946 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1947 { 1948 *alloc += ccp->cc_alloc; 1949 1950 return (WALK_NEXT); 1951 } 1952 1953 /*ARGSUSED*/ 1954 static int 1955 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1956 { 1957 *avail += sp->slab_chunks - sp->slab_refcnt; 1958 1959 return (WALK_NEXT); 1960 } 1961 1962 typedef struct kmastat_vmem { 1963 uintptr_t kv_addr; 1964 struct kmastat_vmem *kv_next; 1965 size_t kv_meminuse; 1966 int kv_alloc; 1967 int kv_fail; 1968 } kmastat_vmem_t; 1969 1970 typedef struct kmastat_args { 1971 kmastat_vmem_t **ka_kvpp; 1972 uint_t ka_shift; 1973 } kmastat_args_t; 1974 1975 static int 1976 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap) 1977 { 1978 kmastat_vmem_t **kvpp = kap->ka_kvpp; 1979 kmastat_vmem_t *kv; 1980 datafmt_t *dfp = kmemfmt; 1981 int magsize; 1982 1983 int avail, alloc, total; 1984 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1985 cp->cache_slabsize; 1986 1987 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1988 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1989 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1990 1991 magsize = kmem_get_magsize(cp); 1992 1993 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1994 avail = cp->cache_full.ml_total * magsize; 1995 total = cp->cache_buftotal; 1996 1997 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1998 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1999 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 2000 2001 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) { 2002 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 2003 goto out; 2004 } 2005 2006 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 2007 kv->kv_next = *kvpp; 2008 kv->kv_addr = (uintptr_t)cp->cache_arena; 2009 *kvpp = kv; 2010 out: 2011 kv->kv_meminuse += meminuse; 2012 kv->kv_alloc += alloc; 2013 kv->kv_fail += cp->cache_alloc_fail; 2014 2015 mdb_printf((dfp++)->fmt, cp->cache_name); 2016 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 2017 mdb_printf((dfp++)->fmt, total - avail); 2018 mdb_printf((dfp++)->fmt, total); 2019 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift, 2020 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2021 kap->ka_shift == KILOS ? 'K' : 'B'); 2022 mdb_printf((dfp++)->fmt, alloc); 2023 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 2024 mdb_printf("\n"); 2025 2026 return (WALK_NEXT); 2027 } 2028 2029 static int 2030 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap) 2031 { 2032 kmastat_vmem_t *kv = *kap->ka_kvpp; 2033 size_t len; 2034 2035 while (kv != NULL && kv->kv_addr != addr) 2036 kv = kv->kv_next; 2037 2038 if (kv == NULL || kv->kv_alloc == 0) 2039 return (WALK_NEXT); 2040 2041 len = MIN(17, strlen(v->vm_name)); 2042 2043 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name, 2044 17 - len, "", "", "", "", 2045 kv->kv_meminuse >> kap->ka_shift, 2046 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' : 2047 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail); 2048 2049 return (WALK_NEXT); 2050 } 2051 2052 /*ARGSUSED*/ 2053 static int 2054 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp) 2055 { 2056 datafmt_t *dfp = vmemfmt; 2057 const vmem_kstat_t *vkp = &v->vm_kstat; 2058 uintptr_t paddr; 2059 vmem_t parent; 2060 int ident = 0; 2061 2062 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 2063 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 2064 mdb_warn("couldn't trace %p's ancestry", addr); 2065 ident = 0; 2066 break; 2067 } 2068 paddr = (uintptr_t)parent.vm_source; 2069 } 2070 2071 mdb_printf("%*s", ident, ""); 2072 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 2073 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp, 2074 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2075 *shiftp == KILOS ? 'K' : 'B'); 2076 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp, 2077 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2078 *shiftp == KILOS ? 'K' : 'B'); 2079 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp, 2080 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' : 2081 *shiftp == KILOS ? 'K' : 'B'); 2082 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 2083 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 2084 2085 mdb_printf("\n"); 2086 2087 return (WALK_NEXT); 2088 } 2089 2090 /*ARGSUSED*/ 2091 int 2092 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2093 { 2094 kmastat_vmem_t *kv = NULL; 2095 datafmt_t *dfp; 2096 kmastat_args_t ka; 2097 2098 ka.ka_shift = 0; 2099 if (mdb_getopts(argc, argv, 2100 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift, 2101 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift, 2102 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc) 2103 return (DCMD_USAGE); 2104 2105 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2106 mdb_printf("%s ", dfp->hdr1); 2107 mdb_printf("\n"); 2108 2109 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2110 mdb_printf("%s ", dfp->hdr2); 2111 mdb_printf("\n"); 2112 2113 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2114 mdb_printf("%s ", dfp->dashes); 2115 mdb_printf("\n"); 2116 2117 ka.ka_kvpp = &kv; 2118 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) { 2119 mdb_warn("can't walk 'kmem_cache'"); 2120 return (DCMD_ERR); 2121 } 2122 2123 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2124 mdb_printf("%s ", dfp->dashes); 2125 mdb_printf("\n"); 2126 2127 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) { 2128 mdb_warn("can't walk 'vmem'"); 2129 return (DCMD_ERR); 2130 } 2131 2132 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 2133 mdb_printf("%s ", dfp->dashes); 2134 mdb_printf("\n"); 2135 2136 mdb_printf("\n"); 2137 2138 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2139 mdb_printf("%s ", dfp->hdr1); 2140 mdb_printf("\n"); 2141 2142 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2143 mdb_printf("%s ", dfp->hdr2); 2144 mdb_printf("\n"); 2145 2146 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2147 mdb_printf("%s ", dfp->dashes); 2148 mdb_printf("\n"); 2149 2150 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) { 2151 mdb_warn("can't walk 'vmem'"); 2152 return (DCMD_ERR); 2153 } 2154 2155 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 2156 mdb_printf("%s ", dfp->dashes); 2157 mdb_printf("\n"); 2158 return (DCMD_OK); 2159 } 2160 2161 /* 2162 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 2163 * up of a set of 'struct seg's. We could just scan each seg en masse, but 2164 * unfortunately, a few of the segs are both large and sparse, so we could 2165 * spend quite a bit of time scanning VAs which have no backing pages. 2166 * 2167 * So for the few very sparse segs, we skip the segment itself, and scan 2168 * the allocated vmem_segs in the vmem arena which manages that part of kas. 2169 * Currently, we do this for: 2170 * 2171 * SEG VMEM ARENA 2172 * kvseg heap_arena 2173 * kvseg32 heap32_arena 2174 * kvseg_core heap_core_arena 2175 * 2176 * In addition, we skip the segkpm segment in its entirety, since it is very 2177 * sparse, and contains no new kernel data. 2178 */ 2179 typedef struct kgrep_walk_data { 2180 kgrep_cb_func *kg_cb; 2181 void *kg_cbdata; 2182 uintptr_t kg_kvseg; 2183 uintptr_t kg_kvseg32; 2184 uintptr_t kg_kvseg_core; 2185 uintptr_t kg_segkpm; 2186 uintptr_t kg_heap_lp_base; 2187 uintptr_t kg_heap_lp_end; 2188 } kgrep_walk_data_t; 2189 2190 static int 2191 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 2192 { 2193 uintptr_t base = (uintptr_t)seg->s_base; 2194 2195 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 2196 addr == kg->kg_kvseg_core) 2197 return (WALK_NEXT); 2198 2199 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 2200 return (WALK_NEXT); 2201 2202 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 2203 } 2204 2205 /*ARGSUSED*/ 2206 static int 2207 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2208 { 2209 /* 2210 * skip large page heap address range - it is scanned by walking 2211 * allocated vmem_segs in the heap_lp_arena 2212 */ 2213 if (seg->vs_start == kg->kg_heap_lp_base && 2214 seg->vs_end == kg->kg_heap_lp_end) 2215 return (WALK_NEXT); 2216 2217 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2218 } 2219 2220 /*ARGSUSED*/ 2221 static int 2222 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 2223 { 2224 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 2225 } 2226 2227 static int 2228 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 2229 { 2230 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg; 2231 2232 if (strcmp(vmem->vm_name, "heap") != 0 && 2233 strcmp(vmem->vm_name, "heap32") != 0 && 2234 strcmp(vmem->vm_name, "heap_core") != 0 && 2235 strcmp(vmem->vm_name, "heap_lp") != 0) 2236 return (WALK_NEXT); 2237 2238 if (strcmp(vmem->vm_name, "heap_lp") == 0) 2239 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg; 2240 2241 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) { 2242 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 2243 return (WALK_ERR); 2244 } 2245 2246 return (WALK_NEXT); 2247 } 2248 2249 int 2250 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 2251 { 2252 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 2253 kgrep_walk_data_t kg; 2254 2255 if (mdb_get_state() == MDB_STATE_RUNNING) { 2256 mdb_warn("kgrep can only be run on a system " 2257 "dump or under kmdb; see dumpadm(1M)\n"); 2258 return (DCMD_ERR); 2259 } 2260 2261 if (mdb_lookup_by_name("kas", &kas) == -1) { 2262 mdb_warn("failed to locate 'kas' symbol\n"); 2263 return (DCMD_ERR); 2264 } 2265 2266 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 2267 mdb_warn("failed to locate 'kvseg' symbol\n"); 2268 return (DCMD_ERR); 2269 } 2270 2271 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 2272 mdb_warn("failed to locate 'kvseg32' symbol\n"); 2273 return (DCMD_ERR); 2274 } 2275 2276 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 2277 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 2278 return (DCMD_ERR); 2279 } 2280 2281 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 2282 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 2283 return (DCMD_ERR); 2284 } 2285 2286 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) { 2287 mdb_warn("failed to read 'heap_lp_base'\n"); 2288 return (DCMD_ERR); 2289 } 2290 2291 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) { 2292 mdb_warn("failed to read 'heap_lp_end'\n"); 2293 return (DCMD_ERR); 2294 } 2295 2296 kg.kg_cb = cb; 2297 kg.kg_cbdata = cbdata; 2298 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 2299 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 2300 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 2301 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 2302 2303 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 2304 &kg, kas.st_value) == -1) { 2305 mdb_warn("failed to walk kas segments"); 2306 return (DCMD_ERR); 2307 } 2308 2309 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 2310 mdb_warn("failed to walk heap/heap32 vmem arenas"); 2311 return (DCMD_ERR); 2312 } 2313 2314 return (DCMD_OK); 2315 } 2316 2317 size_t 2318 kgrep_subr_pagesize(void) 2319 { 2320 return (PAGESIZE); 2321 } 2322 2323 typedef struct file_walk_data { 2324 struct uf_entry *fw_flist; 2325 int fw_flistsz; 2326 int fw_ndx; 2327 int fw_nofiles; 2328 } file_walk_data_t; 2329 2330 int 2331 file_walk_init(mdb_walk_state_t *wsp) 2332 { 2333 file_walk_data_t *fw; 2334 proc_t p; 2335 2336 if (wsp->walk_addr == NULL) { 2337 mdb_warn("file walk doesn't support global walks\n"); 2338 return (WALK_ERR); 2339 } 2340 2341 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 2342 2343 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 2344 mdb_free(fw, sizeof (file_walk_data_t)); 2345 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 2346 return (WALK_ERR); 2347 } 2348 2349 if (p.p_user.u_finfo.fi_nfiles == 0) { 2350 mdb_free(fw, sizeof (file_walk_data_t)); 2351 return (WALK_DONE); 2352 } 2353 2354 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 2355 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 2356 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 2357 2358 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 2359 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 2360 mdb_warn("failed to read file array at %p", 2361 p.p_user.u_finfo.fi_list); 2362 mdb_free(fw->fw_flist, fw->fw_flistsz); 2363 mdb_free(fw, sizeof (file_walk_data_t)); 2364 return (WALK_ERR); 2365 } 2366 2367 fw->fw_ndx = 0; 2368 wsp->walk_data = fw; 2369 2370 return (WALK_NEXT); 2371 } 2372 2373 int 2374 file_walk_step(mdb_walk_state_t *wsp) 2375 { 2376 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2377 struct file file; 2378 uintptr_t fp; 2379 2380 again: 2381 if (fw->fw_ndx == fw->fw_nofiles) 2382 return (WALK_DONE); 2383 2384 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 2385 goto again; 2386 2387 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2388 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2389 } 2390 2391 int 2392 allfile_walk_step(mdb_walk_state_t *wsp) 2393 { 2394 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2395 struct file file; 2396 uintptr_t fp; 2397 2398 if (fw->fw_ndx == fw->fw_nofiles) 2399 return (WALK_DONE); 2400 2401 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 2402 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 2403 else 2404 bzero(&file, sizeof (file)); 2405 2406 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 2407 } 2408 2409 void 2410 file_walk_fini(mdb_walk_state_t *wsp) 2411 { 2412 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 2413 2414 mdb_free(fw->fw_flist, fw->fw_flistsz); 2415 mdb_free(fw, sizeof (file_walk_data_t)); 2416 } 2417 2418 int 2419 port_walk_init(mdb_walk_state_t *wsp) 2420 { 2421 if (wsp->walk_addr == NULL) { 2422 mdb_warn("port walk doesn't support global walks\n"); 2423 return (WALK_ERR); 2424 } 2425 2426 if (mdb_layered_walk("file", wsp) == -1) { 2427 mdb_warn("couldn't walk 'file'"); 2428 return (WALK_ERR); 2429 } 2430 return (WALK_NEXT); 2431 } 2432 2433 int 2434 port_walk_step(mdb_walk_state_t *wsp) 2435 { 2436 struct vnode vn; 2437 uintptr_t vp; 2438 uintptr_t pp; 2439 struct port port; 2440 2441 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 2442 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2443 mdb_warn("failed to read vnode_t at %p", vp); 2444 return (WALK_ERR); 2445 } 2446 if (vn.v_type != VPORT) 2447 return (WALK_NEXT); 2448 2449 pp = (uintptr_t)vn.v_data; 2450 if (mdb_vread(&port, sizeof (port), pp) == -1) { 2451 mdb_warn("failed to read port_t at %p", pp); 2452 return (WALK_ERR); 2453 } 2454 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 2455 } 2456 2457 typedef struct portev_walk_data { 2458 list_node_t *pev_node; 2459 list_node_t *pev_last; 2460 size_t pev_offset; 2461 } portev_walk_data_t; 2462 2463 int 2464 portev_walk_init(mdb_walk_state_t *wsp) 2465 { 2466 portev_walk_data_t *pevd; 2467 struct port port; 2468 struct vnode vn; 2469 struct list *list; 2470 uintptr_t vp; 2471 2472 if (wsp->walk_addr == NULL) { 2473 mdb_warn("portev walk doesn't support global walks\n"); 2474 return (WALK_ERR); 2475 } 2476 2477 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 2478 2479 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 2480 mdb_free(pevd, sizeof (portev_walk_data_t)); 2481 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 2482 return (WALK_ERR); 2483 } 2484 2485 vp = (uintptr_t)port.port_vnode; 2486 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 2487 mdb_free(pevd, sizeof (portev_walk_data_t)); 2488 mdb_warn("failed to read vnode_t at %p", vp); 2489 return (WALK_ERR); 2490 } 2491 2492 if (vn.v_type != VPORT) { 2493 mdb_free(pevd, sizeof (portev_walk_data_t)); 2494 mdb_warn("input address (%p) does not point to an event port", 2495 wsp->walk_addr); 2496 return (WALK_ERR); 2497 } 2498 2499 if (port.port_queue.portq_nent == 0) { 2500 mdb_free(pevd, sizeof (portev_walk_data_t)); 2501 return (WALK_DONE); 2502 } 2503 list = &port.port_queue.portq_list; 2504 pevd->pev_offset = list->list_offset; 2505 pevd->pev_last = list->list_head.list_prev; 2506 pevd->pev_node = list->list_head.list_next; 2507 wsp->walk_data = pevd; 2508 return (WALK_NEXT); 2509 } 2510 2511 int 2512 portev_walk_step(mdb_walk_state_t *wsp) 2513 { 2514 portev_walk_data_t *pevd; 2515 struct port_kevent ev; 2516 uintptr_t evp; 2517 2518 pevd = (portev_walk_data_t *)wsp->walk_data; 2519 2520 if (pevd->pev_last == NULL) 2521 return (WALK_DONE); 2522 if (pevd->pev_node == pevd->pev_last) 2523 pevd->pev_last = NULL; /* last round */ 2524 2525 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 2526 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 2527 mdb_warn("failed to read port_kevent at %p", evp); 2528 return (WALK_DONE); 2529 } 2530 pevd->pev_node = ev.portkev_node.list_next; 2531 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 2532 } 2533 2534 void 2535 portev_walk_fini(mdb_walk_state_t *wsp) 2536 { 2537 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 2538 2539 if (pevd != NULL) 2540 mdb_free(pevd, sizeof (portev_walk_data_t)); 2541 } 2542 2543 typedef struct proc_walk_data { 2544 uintptr_t *pw_stack; 2545 int pw_depth; 2546 int pw_max; 2547 } proc_walk_data_t; 2548 2549 int 2550 proc_walk_init(mdb_walk_state_t *wsp) 2551 { 2552 GElf_Sym sym; 2553 proc_walk_data_t *pw; 2554 2555 if (wsp->walk_addr == NULL) { 2556 if (mdb_lookup_by_name("p0", &sym) == -1) { 2557 mdb_warn("failed to read 'practive'"); 2558 return (WALK_ERR); 2559 } 2560 wsp->walk_addr = (uintptr_t)sym.st_value; 2561 } 2562 2563 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 2564 2565 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 2566 mdb_warn("failed to read 'nproc'"); 2567 mdb_free(pw, sizeof (pw)); 2568 return (WALK_ERR); 2569 } 2570 2571 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 2572 wsp->walk_data = pw; 2573 2574 return (WALK_NEXT); 2575 } 2576 2577 int 2578 proc_walk_step(mdb_walk_state_t *wsp) 2579 { 2580 proc_walk_data_t *pw = wsp->walk_data; 2581 uintptr_t addr = wsp->walk_addr; 2582 uintptr_t cld, sib; 2583 2584 int status; 2585 proc_t pr; 2586 2587 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 2588 mdb_warn("failed to read proc at %p", addr); 2589 return (WALK_DONE); 2590 } 2591 2592 cld = (uintptr_t)pr.p_child; 2593 sib = (uintptr_t)pr.p_sibling; 2594 2595 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 2596 pw->pw_depth--; 2597 goto sib; 2598 } 2599 2600 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 2601 2602 if (status != WALK_NEXT) 2603 return (status); 2604 2605 if ((wsp->walk_addr = cld) != NULL) { 2606 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 2607 mdb_warn("proc %p has invalid p_child %p; skipping\n", 2608 addr, cld); 2609 goto sib; 2610 } 2611 2612 pw->pw_stack[pw->pw_depth++] = addr; 2613 2614 if (pw->pw_depth == pw->pw_max) { 2615 mdb_warn("depth %d exceeds max depth; try again\n", 2616 pw->pw_depth); 2617 return (WALK_DONE); 2618 } 2619 return (WALK_NEXT); 2620 } 2621 2622 sib: 2623 /* 2624 * We know that p0 has no siblings, and if another starting proc 2625 * was given, we don't want to walk its siblings anyway. 2626 */ 2627 if (pw->pw_depth == 0) 2628 return (WALK_DONE); 2629 2630 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 2631 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 2632 addr, sib); 2633 sib = NULL; 2634 } 2635 2636 if ((wsp->walk_addr = sib) == NULL) { 2637 if (pw->pw_depth > 0) { 2638 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 2639 return (WALK_NEXT); 2640 } 2641 return (WALK_DONE); 2642 } 2643 2644 return (WALK_NEXT); 2645 } 2646 2647 void 2648 proc_walk_fini(mdb_walk_state_t *wsp) 2649 { 2650 proc_walk_data_t *pw = wsp->walk_data; 2651 2652 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 2653 mdb_free(pw, sizeof (proc_walk_data_t)); 2654 } 2655 2656 int 2657 task_walk_init(mdb_walk_state_t *wsp) 2658 { 2659 task_t task; 2660 2661 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 2662 mdb_warn("failed to read task at %p", wsp->walk_addr); 2663 return (WALK_ERR); 2664 } 2665 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 2666 wsp->walk_data = task.tk_memb_list; 2667 return (WALK_NEXT); 2668 } 2669 2670 int 2671 task_walk_step(mdb_walk_state_t *wsp) 2672 { 2673 proc_t proc; 2674 int status; 2675 2676 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 2677 mdb_warn("failed to read proc at %p", wsp->walk_addr); 2678 return (WALK_DONE); 2679 } 2680 2681 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 2682 2683 if (proc.p_tasknext == wsp->walk_data) 2684 return (WALK_DONE); 2685 2686 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 2687 return (status); 2688 } 2689 2690 int 2691 project_walk_init(mdb_walk_state_t *wsp) 2692 { 2693 if (wsp->walk_addr == NULL) { 2694 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 2695 mdb_warn("failed to read 'proj0p'"); 2696 return (WALK_ERR); 2697 } 2698 } 2699 wsp->walk_data = (void *)wsp->walk_addr; 2700 return (WALK_NEXT); 2701 } 2702 2703 int 2704 project_walk_step(mdb_walk_state_t *wsp) 2705 { 2706 uintptr_t addr = wsp->walk_addr; 2707 kproject_t pj; 2708 int status; 2709 2710 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 2711 mdb_warn("failed to read project at %p", addr); 2712 return (WALK_DONE); 2713 } 2714 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 2715 if (status != WALK_NEXT) 2716 return (status); 2717 wsp->walk_addr = (uintptr_t)pj.kpj_next; 2718 if ((void *)wsp->walk_addr == wsp->walk_data) 2719 return (WALK_DONE); 2720 return (WALK_NEXT); 2721 } 2722 2723 static int 2724 generic_walk_step(mdb_walk_state_t *wsp) 2725 { 2726 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 2727 wsp->walk_cbdata)); 2728 } 2729 2730 static int 2731 cpu_walk_cmp(const void *l, const void *r) 2732 { 2733 uintptr_t lhs = *((uintptr_t *)l); 2734 uintptr_t rhs = *((uintptr_t *)r); 2735 cpu_t lcpu, rcpu; 2736 2737 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2738 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2739 2740 if (lcpu.cpu_id < rcpu.cpu_id) 2741 return (-1); 2742 2743 if (lcpu.cpu_id > rcpu.cpu_id) 2744 return (1); 2745 2746 return (0); 2747 } 2748 2749 typedef struct cpu_walk { 2750 uintptr_t *cw_array; 2751 int cw_ndx; 2752 } cpu_walk_t; 2753 2754 int 2755 cpu_walk_init(mdb_walk_state_t *wsp) 2756 { 2757 cpu_walk_t *cw; 2758 int max_ncpus, i = 0; 2759 uintptr_t current, first; 2760 cpu_t cpu, panic_cpu; 2761 uintptr_t panicstr, addr; 2762 GElf_Sym sym; 2763 2764 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2765 2766 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2767 mdb_warn("failed to read 'max_ncpus'"); 2768 return (WALK_ERR); 2769 } 2770 2771 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2772 mdb_warn("failed to read 'panicstr'"); 2773 return (WALK_ERR); 2774 } 2775 2776 if (panicstr != NULL) { 2777 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2778 mdb_warn("failed to find 'panic_cpu'"); 2779 return (WALK_ERR); 2780 } 2781 2782 addr = (uintptr_t)sym.st_value; 2783 2784 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2785 mdb_warn("failed to read 'panic_cpu'"); 2786 return (WALK_ERR); 2787 } 2788 } 2789 2790 /* 2791 * Unfortunately, there is no platform-independent way to walk 2792 * CPUs in ID order. We therefore loop through in cpu_next order, 2793 * building an array of CPU pointers which will subsequently be 2794 * sorted. 2795 */ 2796 cw->cw_array = 2797 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2798 2799 if (mdb_readvar(&first, "cpu_list") == -1) { 2800 mdb_warn("failed to read 'cpu_list'"); 2801 return (WALK_ERR); 2802 } 2803 2804 current = first; 2805 do { 2806 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2807 mdb_warn("failed to read cpu at %p", current); 2808 return (WALK_ERR); 2809 } 2810 2811 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2812 cw->cw_array[i++] = addr; 2813 } else { 2814 cw->cw_array[i++] = current; 2815 } 2816 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2817 2818 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2819 wsp->walk_data = cw; 2820 2821 return (WALK_NEXT); 2822 } 2823 2824 int 2825 cpu_walk_step(mdb_walk_state_t *wsp) 2826 { 2827 cpu_walk_t *cw = wsp->walk_data; 2828 cpu_t cpu; 2829 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2830 2831 if (addr == NULL) 2832 return (WALK_DONE); 2833 2834 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2835 mdb_warn("failed to read cpu at %p", addr); 2836 return (WALK_DONE); 2837 } 2838 2839 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2840 } 2841 2842 typedef struct cpuinfo_data { 2843 intptr_t cid_cpu; 2844 uintptr_t **cid_ithr; 2845 char cid_print_head; 2846 char cid_print_thr; 2847 char cid_print_ithr; 2848 char cid_print_flags; 2849 } cpuinfo_data_t; 2850 2851 int 2852 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2853 { 2854 cpu_t c; 2855 int id; 2856 uint8_t pil; 2857 2858 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2859 return (WALK_NEXT); 2860 2861 if (thr->t_bound_cpu == NULL) { 2862 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2863 return (WALK_NEXT); 2864 } 2865 2866 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2867 2868 if ((id = c.cpu_id) >= NCPU) { 2869 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2870 thr->t_bound_cpu, id, NCPU); 2871 return (WALK_NEXT); 2872 } 2873 2874 if ((pil = thr->t_pil) >= NINTR) { 2875 mdb_warn("thread %p has pil (%d) greater than %d\n", 2876 addr, pil, NINTR); 2877 return (WALK_NEXT); 2878 } 2879 2880 if (cid->cid_ithr[id][pil] != NULL) { 2881 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2882 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2883 return (WALK_NEXT); 2884 } 2885 2886 cid->cid_ithr[id][pil] = addr; 2887 2888 return (WALK_NEXT); 2889 } 2890 2891 #define CPUINFO_IDWIDTH 3 2892 #define CPUINFO_FLAGWIDTH 9 2893 2894 #ifdef _LP64 2895 #if defined(__amd64) 2896 #define CPUINFO_TWIDTH 16 2897 #define CPUINFO_CPUWIDTH 16 2898 #else 2899 #define CPUINFO_CPUWIDTH 11 2900 #define CPUINFO_TWIDTH 11 2901 #endif 2902 #else 2903 #define CPUINFO_CPUWIDTH 8 2904 #define CPUINFO_TWIDTH 8 2905 #endif 2906 2907 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2908 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2909 #define CPUINFO_ITHRDELT 4 2910 2911 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2912 flagline < nflaglines ? flagbuf[flagline++] : "") 2913 2914 int 2915 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2916 { 2917 kthread_t t; 2918 disp_t disp; 2919 proc_t p; 2920 uintptr_t pinned; 2921 char **flagbuf; 2922 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2923 2924 const char *flags[] = { 2925 "RUNNING", "READY", "QUIESCED", "EXISTS", 2926 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2927 "SPARE", "FAULTED", NULL 2928 }; 2929 2930 if (cid->cid_cpu != -1) { 2931 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2932 return (WALK_NEXT); 2933 2934 /* 2935 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2936 */ 2937 cid->cid_cpu = -1; 2938 rval = WALK_DONE; 2939 } 2940 2941 if (cid->cid_print_head) { 2942 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2943 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2944 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2945 "PROC"); 2946 cid->cid_print_head = FALSE; 2947 } 2948 2949 bspl = cpu->cpu_base_spl; 2950 2951 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2952 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2953 return (WALK_ERR); 2954 } 2955 2956 mdb_printf("%3d %0*p %3x %4d %4d ", 2957 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2958 disp.disp_nrunnable, bspl); 2959 2960 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2961 mdb_printf("%3d ", t.t_pri); 2962 } else { 2963 mdb_printf("%3s ", "-"); 2964 } 2965 2966 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2967 cpu->cpu_kprunrun ? "yes" : "no"); 2968 2969 if (cpu->cpu_last_swtch) { 2970 mdb_printf("t-%-4d ", 2971 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch); 2972 } else { 2973 mdb_printf("%-6s ", "-"); 2974 } 2975 2976 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2977 2978 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2979 mdb_printf(" (idle)\n"); 2980 else if (cpu->cpu_thread == NULL) 2981 mdb_printf(" -\n"); 2982 else { 2983 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2984 mdb_printf(" %s\n", p.p_user.u_comm); 2985 } else { 2986 mdb_printf(" ?\n"); 2987 } 2988 } 2989 2990 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2991 2992 if (cid->cid_print_flags) { 2993 int first = 1, i, j, k; 2994 char *s; 2995 2996 cid->cid_print_head = TRUE; 2997 2998 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2999 if (!(cpu->cpu_flags & i)) 3000 continue; 3001 3002 if (first) { 3003 s = mdb_alloc(CPUINFO_THRDELT + 1, 3004 UM_GC | UM_SLEEP); 3005 3006 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 3007 "%*s|%*s", CPUINFO_FLAGDELT, "", 3008 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 3009 flagbuf[nflaglines++] = s; 3010 } 3011 3012 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 3013 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 3014 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 3015 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 3016 first ? "<--+" : ""); 3017 3018 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 3019 s[k] = ' '; 3020 s[k] = '\0'; 3021 3022 flagbuf[nflaglines++] = s; 3023 first = 0; 3024 } 3025 } 3026 3027 if (cid->cid_print_ithr) { 3028 int i, found_one = FALSE; 3029 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 3030 3031 for (i = NINTR - 1; i >= 0; i--) { 3032 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 3033 3034 if (iaddr == NULL) 3035 continue; 3036 3037 if (!found_one) { 3038 found_one = TRUE; 3039 3040 CPUINFO_INDENT; 3041 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 3042 CPUINFO_ITHRDELT, ""); 3043 3044 CPUINFO_INDENT; 3045 mdb_printf("%c%*s+--> %3s %s\n", 3046 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 3047 "", "PIL", "THREAD"); 3048 } 3049 3050 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 3051 mdb_warn("failed to read kthread_t at %p", 3052 iaddr); 3053 return (WALK_ERR); 3054 } 3055 3056 CPUINFO_INDENT; 3057 mdb_printf("%c%*s %3d %0*p\n", 3058 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 3059 t.t_pil, CPUINFO_TWIDTH, iaddr); 3060 3061 pinned = (uintptr_t)t.t_intr; 3062 } 3063 3064 if (found_one && pinned != NULL) { 3065 cid->cid_print_head = TRUE; 3066 (void) strcpy(p.p_user.u_comm, "?"); 3067 3068 if (mdb_vread(&t, sizeof (t), 3069 (uintptr_t)pinned) == -1) { 3070 mdb_warn("failed to read kthread_t at %p", 3071 pinned); 3072 return (WALK_ERR); 3073 } 3074 if (mdb_vread(&p, sizeof (p), 3075 (uintptr_t)t.t_procp) == -1) { 3076 mdb_warn("failed to read proc_t at %p", 3077 t.t_procp); 3078 return (WALK_ERR); 3079 } 3080 3081 CPUINFO_INDENT; 3082 mdb_printf("%c%*s %3s %0*p %s\n", 3083 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 3084 CPUINFO_TWIDTH, pinned, 3085 pinned == (uintptr_t)cpu->cpu_idle_thread ? 3086 "(idle)" : p.p_user.u_comm); 3087 } 3088 } 3089 3090 if (disp.disp_nrunnable && cid->cid_print_thr) { 3091 dispq_t *dq; 3092 3093 int i, npri = disp.disp_npri; 3094 3095 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 3096 3097 if (mdb_vread(dq, sizeof (dispq_t) * npri, 3098 (uintptr_t)disp.disp_q) == -1) { 3099 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 3100 return (WALK_ERR); 3101 } 3102 3103 CPUINFO_INDENT; 3104 mdb_printf("|\n"); 3105 3106 CPUINFO_INDENT; 3107 mdb_printf("+--> %3s %-*s %s\n", "PRI", 3108 CPUINFO_TWIDTH, "THREAD", "PROC"); 3109 3110 for (i = npri - 1; i >= 0; i--) { 3111 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 3112 3113 while (taddr != NULL) { 3114 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 3115 mdb_warn("failed to read kthread_t " 3116 "at %p", taddr); 3117 return (WALK_ERR); 3118 } 3119 if (mdb_vread(&p, sizeof (p), 3120 (uintptr_t)t.t_procp) == -1) { 3121 mdb_warn("failed to read proc_t at %p", 3122 t.t_procp); 3123 return (WALK_ERR); 3124 } 3125 3126 CPUINFO_INDENT; 3127 mdb_printf(" %3d %0*p %s\n", t.t_pri, 3128 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 3129 3130 taddr = (uintptr_t)t.t_link; 3131 } 3132 } 3133 cid->cid_print_head = TRUE; 3134 } 3135 3136 while (flagline < nflaglines) 3137 mdb_printf("%s\n", flagbuf[flagline++]); 3138 3139 if (cid->cid_print_head) 3140 mdb_printf("\n"); 3141 3142 return (rval); 3143 } 3144 3145 int 3146 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3147 { 3148 uint_t verbose = FALSE; 3149 cpuinfo_data_t cid; 3150 3151 cid.cid_print_ithr = FALSE; 3152 cid.cid_print_thr = FALSE; 3153 cid.cid_print_flags = FALSE; 3154 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 3155 cid.cid_cpu = -1; 3156 3157 if (flags & DCMD_ADDRSPEC) 3158 cid.cid_cpu = addr; 3159 3160 if (mdb_getopts(argc, argv, 3161 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 3162 return (DCMD_USAGE); 3163 3164 if (verbose) { 3165 cid.cid_print_ithr = TRUE; 3166 cid.cid_print_thr = TRUE; 3167 cid.cid_print_flags = TRUE; 3168 cid.cid_print_head = TRUE; 3169 } 3170 3171 if (cid.cid_print_ithr) { 3172 int i; 3173 3174 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 3175 * NCPU, UM_SLEEP | UM_GC); 3176 3177 for (i = 0; i < NCPU; i++) 3178 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 3179 NINTR, UM_SLEEP | UM_GC); 3180 3181 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 3182 &cid) == -1) { 3183 mdb_warn("couldn't walk thread"); 3184 return (DCMD_ERR); 3185 } 3186 } 3187 3188 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 3189 mdb_warn("can't walk cpus"); 3190 return (DCMD_ERR); 3191 } 3192 3193 if (cid.cid_cpu != -1) { 3194 /* 3195 * We didn't find this CPU when we walked through the CPUs 3196 * (i.e. the address specified doesn't show up in the "cpu" 3197 * walk). However, the specified address may still correspond 3198 * to a valid cpu_t (for example, if the specified address is 3199 * the actual panicking cpu_t and not the cached panic_cpu). 3200 * Point is: even if we didn't find it, we still want to try 3201 * to print the specified address as a cpu_t. 3202 */ 3203 cpu_t cpu; 3204 3205 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 3206 mdb_warn("%p is neither a valid CPU ID nor a " 3207 "valid cpu_t address\n", cid.cid_cpu); 3208 return (DCMD_ERR); 3209 } 3210 3211 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 3212 } 3213 3214 return (DCMD_OK); 3215 } 3216 3217 /*ARGSUSED*/ 3218 int 3219 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3220 { 3221 int i; 3222 3223 if (!(flags & DCMD_ADDRSPEC)) 3224 return (DCMD_USAGE); 3225 3226 for (i = 0; i < sizeof (addr) * NBBY; i++) 3227 mdb_printf("%p\n", addr ^ (1UL << i)); 3228 3229 return (DCMD_OK); 3230 } 3231 3232 int 3233 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 3234 { 3235 if (p->p_as == *asp) 3236 mdb_printf("%p\n", addr); 3237 return (WALK_NEXT); 3238 } 3239 3240 /*ARGSUSED*/ 3241 int 3242 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3243 { 3244 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 3245 return (DCMD_USAGE); 3246 3247 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 3248 mdb_warn("failed to walk proc"); 3249 return (DCMD_ERR); 3250 } 3251 3252 return (DCMD_OK); 3253 } 3254 3255 /*ARGSUSED*/ 3256 int 3257 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 3258 { 3259 proc_t parent; 3260 int ident = 0; 3261 uintptr_t paddr; 3262 3263 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 3264 mdb_vread(&parent, sizeof (parent), paddr); 3265 paddr = (uintptr_t)parent.p_parent; 3266 } 3267 3268 mdb_inc_indent(ident); 3269 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 3270 mdb_dec_indent(ident); 3271 3272 return (WALK_NEXT); 3273 } 3274 3275 void 3276 ptree_ancestors(uintptr_t addr, uintptr_t start) 3277 { 3278 proc_t p; 3279 3280 if (mdb_vread(&p, sizeof (p), addr) == -1) { 3281 mdb_warn("couldn't read ancestor at %p", addr); 3282 return; 3283 } 3284 3285 if (p.p_parent != NULL) 3286 ptree_ancestors((uintptr_t)p.p_parent, start); 3287 3288 if (addr != start) 3289 (void) ptree_walk(addr, &p, NULL); 3290 } 3291 3292 /*ARGSUSED*/ 3293 int 3294 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3295 { 3296 if (!(flags & DCMD_ADDRSPEC)) 3297 addr = NULL; 3298 else 3299 ptree_ancestors(addr, addr); 3300 3301 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 3302 mdb_warn("couldn't walk 'proc'"); 3303 return (DCMD_ERR); 3304 } 3305 3306 return (DCMD_OK); 3307 } 3308 3309 /*ARGSUSED*/ 3310 static int 3311 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3312 { 3313 int fdnum; 3314 const mdb_arg_t *argp = &argv[0]; 3315 proc_t p; 3316 uf_entry_t uf; 3317 3318 if ((flags & DCMD_ADDRSPEC) == 0) { 3319 mdb_warn("fd doesn't give global information\n"); 3320 return (DCMD_ERR); 3321 } 3322 if (argc != 1) 3323 return (DCMD_USAGE); 3324 3325 if (argp->a_type == MDB_TYPE_IMMEDIATE) 3326 fdnum = argp->a_un.a_val; 3327 else 3328 fdnum = mdb_strtoull(argp->a_un.a_str); 3329 3330 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 3331 mdb_warn("couldn't read proc_t at %p", addr); 3332 return (DCMD_ERR); 3333 } 3334 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 3335 mdb_warn("process %p only has %d files open.\n", 3336 addr, p.p_user.u_finfo.fi_nfiles); 3337 return (DCMD_ERR); 3338 } 3339 if (mdb_vread(&uf, sizeof (uf_entry_t), 3340 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 3341 mdb_warn("couldn't read uf_entry_t at %p", 3342 &p.p_user.u_finfo.fi_list[fdnum]); 3343 return (DCMD_ERR); 3344 } 3345 3346 mdb_printf("%p\n", uf.uf_file); 3347 return (DCMD_OK); 3348 } 3349 3350 /*ARGSUSED*/ 3351 static int 3352 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3353 { 3354 pid_t pid = (pid_t)addr; 3355 3356 if (argc != 0) 3357 return (DCMD_USAGE); 3358 3359 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 3360 mdb_warn("PID 0t%d not found\n", pid); 3361 return (DCMD_ERR); 3362 } 3363 3364 mdb_printf("%p\n", addr); 3365 return (DCMD_OK); 3366 } 3367 3368 static char *sysfile_cmd[] = { 3369 "exclude:", 3370 "include:", 3371 "forceload:", 3372 "rootdev:", 3373 "rootfs:", 3374 "swapdev:", 3375 "swapfs:", 3376 "moddir:", 3377 "set", 3378 "unknown", 3379 }; 3380 3381 static char *sysfile_ops[] = { "", "=", "&", "|" }; 3382 3383 /*ARGSUSED*/ 3384 static int 3385 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 3386 { 3387 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 3388 *target = NULL; 3389 return (WALK_DONE); 3390 } 3391 return (WALK_NEXT); 3392 } 3393 3394 /*ARGSUSED*/ 3395 static int 3396 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3397 { 3398 struct sysparam *sysp, sys; 3399 char var[256]; 3400 char modname[256]; 3401 char val[256]; 3402 char strval[256]; 3403 vmem_t *mod_sysfile_arena; 3404 void *straddr; 3405 3406 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 3407 mdb_warn("failed to read sysparam_hd"); 3408 return (DCMD_ERR); 3409 } 3410 3411 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 3412 mdb_warn("failed to read mod_sysfile_arena"); 3413 return (DCMD_ERR); 3414 } 3415 3416 while (sysp != NULL) { 3417 var[0] = '\0'; 3418 val[0] = '\0'; 3419 modname[0] = '\0'; 3420 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 3421 mdb_warn("couldn't read sysparam %p", sysp); 3422 return (DCMD_ERR); 3423 } 3424 if (sys.sys_modnam != NULL && 3425 mdb_readstr(modname, 256, 3426 (uintptr_t)sys.sys_modnam) == -1) { 3427 mdb_warn("couldn't read modname in %p", sysp); 3428 return (DCMD_ERR); 3429 } 3430 if (sys.sys_ptr != NULL && 3431 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 3432 mdb_warn("couldn't read ptr in %p", sysp); 3433 return (DCMD_ERR); 3434 } 3435 if (sys.sys_op != SETOP_NONE) { 3436 /* 3437 * Is this an int or a string? We determine this 3438 * by checking whether straddr is contained in 3439 * mod_sysfile_arena. If so, the walker will set 3440 * straddr to NULL. 3441 */ 3442 straddr = (void *)(uintptr_t)sys.sys_info; 3443 if (sys.sys_op == SETOP_ASSIGN && 3444 sys.sys_info != 0 && 3445 mdb_pwalk("vmem_seg", 3446 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 3447 (uintptr_t)mod_sysfile_arena) == 0 && 3448 straddr == NULL && 3449 mdb_readstr(strval, 256, 3450 (uintptr_t)sys.sys_info) != -1) { 3451 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 3452 strval); 3453 } else { 3454 (void) mdb_snprintf(val, sizeof (val), 3455 "0x%llx [0t%llu]", sys.sys_info, 3456 sys.sys_info); 3457 } 3458 } 3459 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 3460 modname, modname[0] == '\0' ? "" : ":", 3461 var, sysfile_ops[sys.sys_op], val); 3462 3463 sysp = sys.sys_next; 3464 } 3465 3466 return (DCMD_OK); 3467 } 3468 3469 int 3470 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3471 { 3472 3473 if (*didp == thr->t_did) { 3474 mdb_printf("%p\n", addr); 3475 return (WALK_DONE); 3476 } else 3477 return (WALK_NEXT); 3478 } 3479 3480 /*ARGSUSED*/ 3481 int 3482 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3483 { 3484 const mdb_arg_t *argp = &argv[0]; 3485 kt_did_t did; 3486 3487 if (argc != 1) 3488 return (DCMD_USAGE); 3489 3490 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3491 3492 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3493 mdb_warn("failed to walk thread"); 3494 return (DCMD_ERR); 3495 3496 } 3497 return (DCMD_OK); 3498 3499 } 3500 3501 static int 3502 errorq_walk_init(mdb_walk_state_t *wsp) 3503 { 3504 if (wsp->walk_addr == NULL && 3505 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3506 mdb_warn("failed to read errorq_list"); 3507 return (WALK_ERR); 3508 } 3509 3510 return (WALK_NEXT); 3511 } 3512 3513 static int 3514 errorq_walk_step(mdb_walk_state_t *wsp) 3515 { 3516 uintptr_t addr = wsp->walk_addr; 3517 errorq_t eq; 3518 3519 if (addr == NULL) 3520 return (WALK_DONE); 3521 3522 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3523 mdb_warn("failed to read errorq at %p", addr); 3524 return (WALK_ERR); 3525 } 3526 3527 wsp->walk_addr = (uintptr_t)eq.eq_next; 3528 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3529 } 3530 3531 typedef struct eqd_walk_data { 3532 uintptr_t *eqd_stack; 3533 void *eqd_buf; 3534 ulong_t eqd_qpos; 3535 ulong_t eqd_qlen; 3536 size_t eqd_size; 3537 } eqd_walk_data_t; 3538 3539 /* 3540 * In order to walk the list of pending error queue elements, we push the 3541 * addresses of the corresponding data buffers in to the eqd_stack array. 3542 * The error lists are in reverse chronological order when iterating using 3543 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3544 * walker client gets addresses in order from oldest error to newest error. 3545 */ 3546 static void 3547 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3548 { 3549 errorq_elem_t eqe; 3550 3551 while (addr != NULL) { 3552 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3553 mdb_warn("failed to read errorq element at %p", addr); 3554 break; 3555 } 3556 3557 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3558 mdb_warn("errorq is overfull -- more than %lu " 3559 "elems found\n", eqdp->eqd_qlen); 3560 break; 3561 } 3562 3563 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3564 addr = (uintptr_t)eqe.eqe_prev; 3565 } 3566 } 3567 3568 static int 3569 eqd_walk_init(mdb_walk_state_t *wsp) 3570 { 3571 eqd_walk_data_t *eqdp; 3572 errorq_elem_t eqe, *addr; 3573 errorq_t eq; 3574 ulong_t i; 3575 3576 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3577 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3578 return (WALK_ERR); 3579 } 3580 3581 if (eq.eq_ptail != NULL && 3582 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3583 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3584 return (WALK_ERR); 3585 } 3586 3587 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3588 wsp->walk_data = eqdp; 3589 3590 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3591 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3592 eqdp->eqd_qlen = eq.eq_qlen; 3593 eqdp->eqd_qpos = 0; 3594 eqdp->eqd_size = eq.eq_size; 3595 3596 /* 3597 * The newest elements in the queue are on the pending list, so we 3598 * push those on to our stack first. 3599 */ 3600 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3601 3602 /* 3603 * If eq_ptail is set, it may point to a subset of the errors on the 3604 * pending list in the event a casptr() failed; if ptail's data is 3605 * already in our stack, NULL out eq_ptail and ignore it. 3606 */ 3607 if (eq.eq_ptail != NULL) { 3608 for (i = 0; i < eqdp->eqd_qpos; i++) { 3609 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3610 eq.eq_ptail = NULL; 3611 break; 3612 } 3613 } 3614 } 3615 3616 /* 3617 * If eq_phead is set, it has the processing list in order from oldest 3618 * to newest. Use this to recompute eq_ptail as best we can and then 3619 * we nicely fall into eqd_push_list() of eq_ptail below. 3620 */ 3621 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3622 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3623 eq.eq_ptail = addr; 3624 3625 /* 3626 * The oldest elements in the queue are on the processing list, subject 3627 * to machinations in the if-clauses above. Push any such elements. 3628 */ 3629 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3630 return (WALK_NEXT); 3631 } 3632 3633 static int 3634 eqd_walk_step(mdb_walk_state_t *wsp) 3635 { 3636 eqd_walk_data_t *eqdp = wsp->walk_data; 3637 uintptr_t addr; 3638 3639 if (eqdp->eqd_qpos == 0) 3640 return (WALK_DONE); 3641 3642 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3643 3644 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3645 mdb_warn("failed to read errorq data at %p", addr); 3646 return (WALK_ERR); 3647 } 3648 3649 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3650 } 3651 3652 static void 3653 eqd_walk_fini(mdb_walk_state_t *wsp) 3654 { 3655 eqd_walk_data_t *eqdp = wsp->walk_data; 3656 3657 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3658 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3659 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3660 } 3661 3662 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3663 3664 static int 3665 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3666 { 3667 int i; 3668 errorq_t eq; 3669 uint_t opt_v = FALSE; 3670 3671 if (!(flags & DCMD_ADDRSPEC)) { 3672 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3673 mdb_warn("can't walk 'errorq'"); 3674 return (DCMD_ERR); 3675 } 3676 return (DCMD_OK); 3677 } 3678 3679 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3680 argc -= i; 3681 argv += i; 3682 3683 if (argc != 0) 3684 return (DCMD_USAGE); 3685 3686 if (opt_v || DCMD_HDRSPEC(flags)) { 3687 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3688 "ADDR", "NAME", "S", "V", "N"); 3689 if (!opt_v) { 3690 mdb_printf("%7s %7s %7s%</u>\n", 3691 "ACCEPT", "DROP", "LOG"); 3692 } else { 3693 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3694 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3695 } 3696 } 3697 3698 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3699 mdb_warn("failed to read errorq at %p", addr); 3700 return (DCMD_ERR); 3701 } 3702 3703 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3704 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3705 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3706 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3707 3708 if (!opt_v) { 3709 mdb_printf("%7llu %7llu %7llu\n", 3710 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3711 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3712 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3713 } else { 3714 mdb_printf("%5s %6lu %6lu %3u %a\n", 3715 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3716 mdb_printf("%38s\n%41s" 3717 "%12s %llu\n" 3718 "%53s %llu\n" 3719 "%53s %llu\n" 3720 "%53s %llu\n" 3721 "%53s %llu\n" 3722 "%53s %llu\n" 3723 "%53s %llu\n" 3724 "%53s %llu\n\n", 3725 "|", "+-> ", 3726 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3727 "DROPPED", EQKSVAL(eq, eqk_dropped), 3728 "LOGGED", EQKSVAL(eq, eqk_logged), 3729 "RESERVED", EQKSVAL(eq, eqk_reserved), 3730 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3731 "COMMITTED", EQKSVAL(eq, eqk_committed), 3732 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3733 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3734 } 3735 3736 return (DCMD_OK); 3737 } 3738 3739 /*ARGSUSED*/ 3740 static int 3741 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3742 { 3743 cpu_t panic_cpu; 3744 kthread_t *panic_thread; 3745 void *buf; 3746 panic_data_t *pd; 3747 int i, n; 3748 3749 if (!mdb_prop_postmortem) { 3750 mdb_warn("panicinfo can only be run on a system " 3751 "dump; see dumpadm(1M)\n"); 3752 return (DCMD_ERR); 3753 } 3754 3755 if (flags & DCMD_ADDRSPEC || argc != 0) 3756 return (DCMD_USAGE); 3757 3758 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3759 mdb_warn("failed to read 'panic_cpu'"); 3760 else 3761 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3762 3763 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3764 mdb_warn("failed to read 'panic_thread'"); 3765 else 3766 mdb_printf("%16s %?p\n", "thread", panic_thread); 3767 3768 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3769 pd = (panic_data_t *)buf; 3770 3771 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 || 3772 pd->pd_version != PANICBUFVERS) { 3773 mdb_warn("failed to read 'panicbuf'"); 3774 mdb_free(buf, PANICBUFSIZE); 3775 return (DCMD_ERR); 3776 } 3777 3778 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff); 3779 3780 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3781 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3782 3783 for (i = 0; i < n; i++) 3784 mdb_printf("%16s %?llx\n", 3785 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3786 3787 mdb_free(buf, PANICBUFSIZE); 3788 return (DCMD_OK); 3789 } 3790 3791 /* 3792 * ::time dcmd, which will print a hires timestamp of when we entered the 3793 * debugger, or the lbolt value if used with the -l option. 3794 * 3795 */ 3796 /*ARGSUSED*/ 3797 static int 3798 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3799 { 3800 uint_t opt_dec = FALSE; 3801 uint_t opt_lbolt = FALSE; 3802 uint_t opt_hex = FALSE; 3803 const char *fmt; 3804 hrtime_t result; 3805 3806 if (mdb_getopts(argc, argv, 3807 'd', MDB_OPT_SETBITS, TRUE, &opt_dec, 3808 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt, 3809 'x', MDB_OPT_SETBITS, TRUE, &opt_hex, 3810 NULL) != argc) 3811 return (DCMD_USAGE); 3812 3813 if (opt_dec && opt_hex) 3814 return (DCMD_USAGE); 3815 3816 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime(); 3817 fmt = 3818 opt_hex ? "0x%llx\n" : 3819 opt_dec ? "0t%lld\n" : "%#llr\n"; 3820 3821 mdb_printf(fmt, result); 3822 return (DCMD_OK); 3823 } 3824 3825 void 3826 time_help(void) 3827 { 3828 mdb_printf("Prints the system time in nanoseconds.\n\n" 3829 "::time will return the timestamp at which we dropped into, \n" 3830 "if called from, kmdb(1); the core dump's high resolution \n" 3831 "time if inspecting one; or the running hires time if we're \n" 3832 "looking at a live system.\n\n" 3833 "Switches:\n" 3834 " -d report times in decimal\n" 3835 " -l prints the number of clock ticks since system boot\n" 3836 " -x report times in hexadecimal\n"); 3837 } 3838 3839 static const mdb_dcmd_t dcmds[] = { 3840 3841 /* from genunix.c */ 3842 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3843 { "binding_hash_entry", ":", "print driver names hash table entry", 3844 binding_hash_entry }, 3845 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]" 3846 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]" 3847 " [-FivVA]", 3848 "display callouts", callout, callout_help }, 3849 { "calloutid", "[-d|v] xid", "print callout by extended id", 3850 calloutid, calloutid_help }, 3851 { "class", NULL, "print process scheduler classes", class }, 3852 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3853 { "did2thread", "? kt_did", "find kernel thread for this id", 3854 did2thread }, 3855 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3856 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3857 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3858 { "lminfo", NULL, "print lock manager information", lminfo }, 3859 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3860 { "panicinfo", NULL, "print panic information", panicinfo }, 3861 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3862 { "project", NULL, "display kernel project(s)", project }, 3863 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3864 { "pgrep", "[-x] [-n | -o] pattern", 3865 "pattern match against all processes", pgrep }, 3866 { "ptree", NULL, "print process tree", ptree }, 3867 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3868 sysevent}, 3869 { "sysevent_channel", "?", "print sysevent channel database", 3870 sysevent_channel}, 3871 { "sysevent_class_list", ":", "print sysevent class list", 3872 sysevent_class_list}, 3873 { "sysevent_subclass_list", ":", 3874 "print sysevent subclass list", sysevent_subclass_list}, 3875 { "system", NULL, "print contents of /etc/system file", sysfile }, 3876 { "task", NULL, "display kernel task(s)", task }, 3877 { "time", "[-dlx]", "display system time", time, time_help }, 3878 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3879 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3880 whereopen }, 3881 3882 /* from bio.c */ 3883 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3884 3885 /* from bitset.c */ 3886 { "bitset", ":", "display a bitset", bitset, bitset_help }, 3887 3888 /* from contract.c */ 3889 { "contract", "?", "display a contract", cmd_contract }, 3890 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3891 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3892 3893 /* from cpupart.c */ 3894 { "cpupart", "?[-v]", "print cpu partition info", cpupart }, 3895 3896 /* from cyclic.c */ 3897 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3898 { "cycid", "?", "dump a cyclic id", cycid }, 3899 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3900 { "cyclic", ":", "developer information", cyclic }, 3901 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3902 3903 /* from damap.c */ 3904 { "damap", ":", "display a damap_t", damap, damap_help }, 3905 3906 /* from devinfo.c */ 3907 { "devbindings", "?[-qs] [device-name | major-num]", 3908 "print devinfo nodes bound to device-name or major-num", 3909 devbindings, devinfo_help }, 3910 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3911 devinfo_help }, 3912 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3913 devinfo_audit }, 3914 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3915 devinfo_audit_log }, 3916 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3917 devinfo_audit_node }, 3918 { "devinfo2driver", ":", "find driver name for this devinfo node", 3919 devinfo2driver }, 3920 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3921 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3922 dev2major }, 3923 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3924 dev2minor }, 3925 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3926 devt }, 3927 { "major2name", "?<major-num>", "convert major number to dev name", 3928 major2name }, 3929 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3930 minornodes }, 3931 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3932 modctl2devinfo }, 3933 { "name2major", "<dev-name>", "convert dev name to major number", 3934 name2major }, 3935 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3936 { "softstate", ":<instance>", "retrieve soft-state pointer", 3937 softstate }, 3938 { "devinfo_fm", ":", "devinfo fault managment configuration", 3939 devinfo_fm }, 3940 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3941 devinfo_fmce}, 3942 3943 /* from findstack.c */ 3944 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3945 { "findstack_debug", NULL, "toggle findstack debugging", 3946 findstack_debug }, 3947 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] " 3948 "[-s sobj | -S sobj] [-t tstate | -T tstate]", 3949 "print unique kernel thread stacks", 3950 stacks, stacks_help }, 3951 3952 /* from fm.c */ 3953 { "ereport", "[-v]", "print ereports logged in dump", 3954 ereport }, 3955 3956 /* from group.c */ 3957 { "group", "?[-q]", "display a group", group}, 3958 3959 /* from hotplug.c */ 3960 { "hotplug", "?[-p]", "display a registered hotplug attachment", 3961 hotplug, hotplug_help }, 3962 3963 /* from irm.c */ 3964 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd }, 3965 { "irmreqs", NULL, "display interrupt requests in an interrupt pool", 3966 irmreqs_dcmd }, 3967 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd }, 3968 3969 /* from kgrep.c + genunix.c */ 3970 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep, 3971 kgrep_help }, 3972 3973 /* from kmem.c */ 3974 { "allocdby", ":", "given a thread, print its allocated buffers", 3975 allocdby }, 3976 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3977 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3978 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3979 { "kmalog", "?[ fail | slab ]", 3980 "display kmem transaction log and stack traces", kmalog }, 3981 { "kmastat", "[-kmg]", "kernel memory allocator stats", 3982 kmastat }, 3983 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3984 "of the kmem allocator", kmausers, kmausers_help }, 3985 { "kmem_cache", "?[-n name]", 3986 "print kernel memory caches", kmem_cache, kmem_cache_help}, 3987 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] " 3988 "[-B minbinsize]", "display slab usage per kmem cache", 3989 kmem_slabs, kmem_slabs_help }, 3990 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3991 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3992 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3993 kmem_verify }, 3994 { "vmem", "?", "print a vmem_t", vmem }, 3995 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3996 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3997 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3998 { "whatthread", ":[-v]", "print threads whose stack contains the " 3999 "given address", whatthread }, 4000 4001 /* from ldi.c */ 4002 { "ldi_handle", "?[-i]", "display a layered driver handle", 4003 ldi_handle, ldi_handle_help }, 4004 { "ldi_ident", NULL, "display a layered driver identifier", 4005 ldi_ident, ldi_ident_help }, 4006 4007 /* from leaky.c + leaky_subr.c */ 4008 { "findleaks", FINDLEAKS_USAGE, 4009 "search for potential kernel memory leaks", findleaks, 4010 findleaks_help }, 4011 4012 /* from lgrp.c */ 4013 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 4014 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set}, 4015 4016 /* from log.c */ 4017 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 4018 4019 /* from mdi.c */ 4020 { "mdipi", NULL, "given a path, dump mdi_pathinfo " 4021 "and detailed pi_prop list", mdipi }, 4022 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list", 4023 mdiprops }, 4024 { "mdiphci", NULL, "given a phci, dump mdi_phci and " 4025 "list all paths", mdiphci }, 4026 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list " 4027 "all phcis", mdivhci }, 4028 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo " 4029 "client links", mdiclient_paths }, 4030 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo " 4031 "phci links", mdiphci_paths }, 4032 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links", 4033 mdiphcis }, 4034 4035 /* from memory.c */ 4036 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 4037 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 4038 { "memstat", NULL, "display memory usage summary", memstat }, 4039 { "page", "?", "display a summarized page_t", page }, 4040 { "pagelookup", "?[-v vp] [-o offset]", 4041 "find the page_t with the name {vp, offset}", 4042 pagelookup, pagelookup_help }, 4043 { "page_num2pp", ":", "find the page_t for a given page frame number", 4044 page_num2pp }, 4045 { "pmap", ":[-q]", "print process memory map", pmap }, 4046 { "seg", ":", "print address space segment", seg }, 4047 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 4048 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 4049 4050 /* from mmd.c */ 4051 { "multidata", ":[-sv]", "display a summarized multidata_t", 4052 multidata }, 4053 { "pattbl", ":", "display a summarized multidata attribute table", 4054 pattbl }, 4055 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 4056 pattr2multidata }, 4057 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 4058 pdesc2slab }, 4059 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 4060 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 4061 slab2multidata }, 4062 4063 /* from modhash.c */ 4064 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 4065 "display information about one or all mod_hash structures", 4066 modhash, modhash_help }, 4067 { "modent", ":[-k | -v | -t type]", 4068 "display information about a mod_hash_entry", modent, 4069 modent_help }, 4070 4071 /* from net.c */ 4072 { "dladm", "?<sub-command> [flags]", "show data link information", 4073 dladm, dladm_help }, 4074 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 4075 mi }, 4076 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]", 4077 "show network statistics", netstat }, 4078 { "sonode", "?[-f inet | inet6 | unix | #] " 4079 "[-t stream | dgram | raw | #] [-p #]", 4080 "filter and display sonode", sonode }, 4081 4082 /* from netstack.c */ 4083 { "netstack", "", "show stack instances", netstack }, 4084 4085 /* from nvpair.c */ 4086 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 4087 nvpair_print }, 4088 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR, 4089 print_nvlist }, 4090 4091 /* from pg.c */ 4092 { "pg", "?[-q]", "display a pg", pg}, 4093 4094 /* from rctl.c */ 4095 { "rctl_dict", "?", "print systemwide default rctl definitions", 4096 rctl_dict }, 4097 { "rctl_list", ":[handle]", "print rctls for the given proc", 4098 rctl_list }, 4099 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 4100 rctl }, 4101 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 4102 "sequence", rctl_validate }, 4103 4104 /* from sobj.c */ 4105 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 4106 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 4107 mutex_help }, 4108 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 4109 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 4110 { "turnstile", "?", "display a turnstile", turnstile }, 4111 4112 /* from stream.c */ 4113 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 4114 "print an mblk", mblk_prt, mblk_help }, 4115 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 4116 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 4117 mblk2dblk }, 4118 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 4119 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 4120 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 4121 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 4122 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 4123 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 4124 "filter and display STREAM queue", queue, queue_help }, 4125 { "stdata", ":[-q|v] [-f flag] [-F flag]", 4126 "filter and display STREAM head", stdata, stdata_help }, 4127 { "str2mate", ":", "print mate of this stream", str2mate }, 4128 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 4129 { "stream", ":", "display STREAM", stream }, 4130 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 4131 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 4132 "filter and display STREAM sync queue", syncq, syncq_help }, 4133 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 4134 4135 /* from taskq.c */ 4136 { "taskq", ":[-atT] [-m min_maxq] [-n name]", 4137 "display a taskq", taskq, taskq_help }, 4138 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 4139 4140 /* from thread.c */ 4141 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 4142 thread_help }, 4143 { "threadlist", "?[-t] [-v [count]]", 4144 "display threads and associated C stack traces", threadlist, 4145 threadlist_help }, 4146 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo, 4147 stackinfo_help }, 4148 4149 /* from tsd.c */ 4150 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 4151 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 4152 4153 /* 4154 * typegraph does not work under kmdb, as it requires too much memory 4155 * for its internal data structures. 4156 */ 4157 #ifndef _KMDB 4158 /* from typegraph.c */ 4159 { "findlocks", ":", "find locks held by specified thread", findlocks }, 4160 { "findfalse", "?[-v]", "find potentially falsely shared structures", 4161 findfalse }, 4162 { "typegraph", NULL, "build type graph", typegraph }, 4163 { "istype", ":type", "manually set object type", istype }, 4164 { "notype", ":", "manually clear object type", notype }, 4165 { "whattype", ":", "determine object type", whattype }, 4166 #endif 4167 4168 /* from vfs.c */ 4169 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 4170 { "pfiles", ":[-fp]", "print process file information", pfiles, 4171 pfiles_help }, 4172 4173 /* from zone.c */ 4174 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt }, 4175 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for " 4176 "selected zones", zsd }, 4177 4178 { NULL } 4179 }; 4180 4181 static const mdb_walker_t walkers[] = { 4182 4183 /* from genunix.c */ 4184 { "callouts_bytime", "walk callouts by list chain (expiration time)", 4185 callout_walk_init, callout_walk_step, callout_walk_fini, 4186 (void *)CALLOUT_WALK_BYLIST }, 4187 { "callouts_byid", "walk callouts by id hash chain", 4188 callout_walk_init, callout_walk_step, callout_walk_fini, 4189 (void *)CALLOUT_WALK_BYID }, 4190 { "callout_list", "walk a callout list", callout_list_walk_init, 4191 callout_list_walk_step, callout_list_walk_fini }, 4192 { "callout_table", "walk callout table array", callout_table_walk_init, 4193 callout_table_walk_step, callout_table_walk_fini }, 4194 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 4195 { "ereportq_dump", "walk list of ereports in dump error queue", 4196 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL }, 4197 { "ereportq_pend", "walk list of ereports in pending error queue", 4198 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL }, 4199 { "errorq", "walk list of system error queues", 4200 errorq_walk_init, errorq_walk_step, NULL }, 4201 { "errorq_data", "walk pending error queue data buffers", 4202 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 4203 { "allfile", "given a proc pointer, list all file pointers", 4204 file_walk_init, allfile_walk_step, file_walk_fini }, 4205 { "file", "given a proc pointer, list of open file pointers", 4206 file_walk_init, file_walk_step, file_walk_fini }, 4207 { "lock_descriptor", "walk lock_descriptor_t structures", 4208 ld_walk_init, ld_walk_step, NULL }, 4209 { "lock_graph", "walk lock graph", 4210 lg_walk_init, lg_walk_step, NULL }, 4211 { "port", "given a proc pointer, list of created event ports", 4212 port_walk_init, port_walk_step, NULL }, 4213 { "portev", "given a port pointer, list of events in the queue", 4214 portev_walk_init, portev_walk_step, portev_walk_fini }, 4215 { "proc", "list of active proc_t structures", 4216 proc_walk_init, proc_walk_step, proc_walk_fini }, 4217 { "projects", "walk a list of kernel projects", 4218 project_walk_init, project_walk_step, NULL }, 4219 { "sysevent_pend", "walk sysevent pending queue", 4220 sysevent_pend_walk_init, sysevent_walk_step, 4221 sysevent_walk_fini}, 4222 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 4223 sysevent_walk_step, sysevent_walk_fini}, 4224 { "sysevent_channel", "walk sysevent channel subscriptions", 4225 sysevent_channel_walk_init, sysevent_channel_walk_step, 4226 sysevent_channel_walk_fini}, 4227 { "sysevent_class_list", "walk sysevent subscription's class list", 4228 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 4229 sysevent_class_list_walk_fini}, 4230 { "sysevent_subclass_list", 4231 "walk sysevent subscription's subclass list", 4232 sysevent_subclass_list_walk_init, 4233 sysevent_subclass_list_walk_step, 4234 sysevent_subclass_list_walk_fini}, 4235 { "task", "given a task pointer, walk its processes", 4236 task_walk_init, task_walk_step, NULL }, 4237 4238 /* from avl.c */ 4239 { AVL_WALK_NAME, AVL_WALK_DESC, 4240 avl_walk_init, avl_walk_step, avl_walk_fini }, 4241 4242 /* from bio.c */ 4243 { "buf", "walk the bio buf hash", 4244 buf_walk_init, buf_walk_step, buf_walk_fini }, 4245 4246 /* from contract.c */ 4247 { "contract", "walk all contracts, or those of the specified type", 4248 ct_walk_init, generic_walk_step, NULL }, 4249 { "ct_event", "walk events on a contract event queue", 4250 ct_event_walk_init, generic_walk_step, NULL }, 4251 { "ct_listener", "walk contract event queue listeners", 4252 ct_listener_walk_init, generic_walk_step, NULL }, 4253 4254 /* from cpupart.c */ 4255 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 4256 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 4257 NULL }, 4258 { "cpupart_walk", "walk the set of cpu partitions", 4259 cpupart_walk_init, cpupart_walk_step, NULL }, 4260 4261 /* from ctxop.c */ 4262 { "ctxop", "walk list of context ops on a thread", 4263 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 4264 4265 /* from cyclic.c */ 4266 { "cyccpu", "walk per-CPU cyc_cpu structures", 4267 cyccpu_walk_init, cyccpu_walk_step, NULL }, 4268 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 4269 cycomni_walk_init, cycomni_walk_step, NULL }, 4270 { "cyctrace", "walk cyclic trace buffer", 4271 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 4272 4273 /* from devinfo.c */ 4274 { "binding_hash", "walk all entries in binding hash table", 4275 binding_hash_walk_init, binding_hash_walk_step, NULL }, 4276 { "devinfo", "walk devinfo tree or subtree", 4277 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 4278 { "devinfo_audit_log", "walk devinfo audit system-wide log", 4279 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 4280 devinfo_audit_log_walk_fini}, 4281 { "devinfo_audit_node", "walk per-devinfo audit history", 4282 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 4283 devinfo_audit_node_walk_fini}, 4284 { "devinfo_children", "walk children of devinfo node", 4285 devinfo_children_walk_init, devinfo_children_walk_step, 4286 devinfo_children_walk_fini }, 4287 { "devinfo_parents", "walk ancestors of devinfo node", 4288 devinfo_parents_walk_init, devinfo_parents_walk_step, 4289 devinfo_parents_walk_fini }, 4290 { "devinfo_siblings", "walk siblings of devinfo node", 4291 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 4292 { "devi_next", "walk devinfo list", 4293 NULL, devi_next_walk_step, NULL }, 4294 { "devnames", "walk devnames array", 4295 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 4296 { "minornode", "given a devinfo node, walk minor nodes", 4297 minornode_walk_init, minornode_walk_step, NULL }, 4298 { "softstate", 4299 "given an i_ddi_soft_state*, list all in-use driver stateps", 4300 soft_state_walk_init, soft_state_walk_step, 4301 NULL, NULL }, 4302 { "softstate_all", 4303 "given an i_ddi_soft_state*, list all driver stateps", 4304 soft_state_walk_init, soft_state_all_walk_step, 4305 NULL, NULL }, 4306 { "devinfo_fmc", 4307 "walk a fault management handle cache active list", 4308 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 4309 4310 /* from group.c */ 4311 { "group", "walk all elements of a group", 4312 group_walk_init, group_walk_step, NULL }, 4313 4314 /* from irm.c */ 4315 { "irmpools", "walk global list of interrupt pools", 4316 irmpools_walk_init, list_walk_step, list_walk_fini }, 4317 { "irmreqs", "walk list of interrupt requests in an interrupt pool", 4318 irmreqs_walk_init, list_walk_step, list_walk_fini }, 4319 4320 /* from kmem.c */ 4321 { "allocdby", "given a thread, walk its allocated bufctls", 4322 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4323 { "bufctl", "walk a kmem cache's bufctls", 4324 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 4325 { "bufctl_history", "walk the available history of a bufctl", 4326 bufctl_history_walk_init, bufctl_history_walk_step, 4327 bufctl_history_walk_fini }, 4328 { "freedby", "given a thread, walk its freed bufctls", 4329 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 4330 { "freectl", "walk a kmem cache's free bufctls", 4331 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 4332 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 4333 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4334 { "freemem", "walk a kmem cache's free memory", 4335 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 4336 { "freemem_constructed", "walk a kmem cache's constructed free memory", 4337 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 4338 { "kmem", "walk a kmem cache", 4339 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 4340 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 4341 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 4342 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 4343 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 4344 { "kmem_log", "walk the kmem transaction log", 4345 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 4346 { "kmem_slab", "given a kmem cache, walk its slabs", 4347 kmem_slab_walk_init, combined_walk_step, combined_walk_fini }, 4348 { "kmem_slab_partial", 4349 "given a kmem cache, walk its partially allocated slabs (min 1)", 4350 kmem_slab_walk_partial_init, combined_walk_step, 4351 combined_walk_fini }, 4352 { "vmem", "walk vmem structures in pre-fix, depth-first order", 4353 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 4354 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 4355 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4356 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 4357 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4358 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 4359 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 4360 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 4361 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4362 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 4363 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 4364 4365 /* from ldi.c */ 4366 { "ldi_handle", "walk the layered driver handle hash", 4367 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 4368 { "ldi_ident", "walk the layered driver identifier hash", 4369 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 4370 4371 /* from leaky.c + leaky_subr.c */ 4372 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 4373 "stack trace", 4374 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 4375 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 4376 "leaks w/ same stack trace", 4377 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 4378 4379 /* from lgrp.c */ 4380 { "lgrp_cpulist", "walk CPUs in a given lgroup", 4381 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL }, 4382 { "lgrptbl", "walk lgroup table", 4383 lgrp_walk_init, lgrp_walk_step, NULL }, 4384 { "lgrp_parents", "walk up lgroup lineage from given lgroup", 4385 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL }, 4386 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup", 4387 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL }, 4388 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup", 4389 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL }, 4390 4391 /* from list.c */ 4392 { LIST_WALK_NAME, LIST_WALK_DESC, 4393 list_walk_init, list_walk_step, list_walk_fini }, 4394 4395 /* from mdi.c */ 4396 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link", 4397 mdi_pi_client_link_walk_init, 4398 mdi_pi_client_link_walk_step, 4399 mdi_pi_client_link_walk_fini }, 4400 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link", 4401 mdi_pi_phci_link_walk_init, 4402 mdi_pi_phci_link_walk_step, 4403 mdi_pi_phci_link_walk_fini }, 4404 { "mdiphci_list", "Walker for mdi_phci ph_next link", 4405 mdi_phci_ph_next_walk_init, 4406 mdi_phci_ph_next_walk_step, 4407 mdi_phci_ph_next_walk_fini }, 4408 4409 /* from memory.c */ 4410 { "allpages", "walk all pages, including free pages", 4411 allpages_walk_init, allpages_walk_step, allpages_walk_fini }, 4412 { "anon", "given an amp, list allocated anon structures", 4413 anon_walk_init, anon_walk_step, anon_walk_fini, 4414 ANON_WALK_ALLOC }, 4415 { "anon_all", "given an amp, list contents of all anon slots", 4416 anon_walk_init, anon_walk_step, anon_walk_fini, 4417 ANON_WALK_ALL }, 4418 { "memlist", "walk specified memlist", 4419 NULL, memlist_walk_step, NULL }, 4420 { "page", "walk all pages, or those from the specified vnode", 4421 page_walk_init, page_walk_step, page_walk_fini }, 4422 { "seg", "given an as, list of segments", 4423 seg_walk_init, avl_walk_step, avl_walk_fini }, 4424 { "segvn_anon", 4425 "given a struct segvn_data, list allocated anon structures", 4426 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4427 ANON_WALK_ALLOC }, 4428 { "segvn_anon_all", 4429 "given a struct segvn_data, list contents of all anon slots", 4430 segvn_anon_walk_init, anon_walk_step, anon_walk_fini, 4431 ANON_WALK_ALL }, 4432 { "segvn_pages", 4433 "given a struct segvn_data, list resident pages in " 4434 "offset order", 4435 segvn_pages_walk_init, segvn_pages_walk_step, 4436 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT }, 4437 { "segvn_pages_all", 4438 "for each offset in a struct segvn_data, give page_t pointer " 4439 "(if resident), or NULL.", 4440 segvn_pages_walk_init, segvn_pages_walk_step, 4441 segvn_pages_walk_fini, SEGVN_PAGES_ALL }, 4442 { "swapinfo", "walk swapinfo structures", 4443 swap_walk_init, swap_walk_step, NULL }, 4444 4445 /* from mmd.c */ 4446 { "pattr", "walk pattr_t structures", pattr_walk_init, 4447 mmdq_walk_step, mmdq_walk_fini }, 4448 { "pdesc", "walk pdesc_t structures", 4449 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4450 { "pdesc_slab", "walk pdesc_slab_t structures", 4451 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 4452 4453 /* from modhash.c */ 4454 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 4455 modhash_walk_step, NULL }, 4456 { "modent", "walk list of entries in a given mod_hash", 4457 modent_walk_init, modent_walk_step, modent_walk_fini }, 4458 { "modchain", "walk list of entries in a given mod_hash_entry", 4459 NULL, modchain_walk_step, NULL }, 4460 4461 /* from net.c */ 4462 { "icmp", "walk ICMP control structures using MI for all stacks", 4463 mi_payload_walk_init, mi_payload_walk_step, NULL, 4464 &mi_icmp_arg }, 4465 { "mi", "given a MI_O, walk the MI", 4466 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 4467 { "sonode", "given a sonode, walk its children", 4468 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 4469 { "icmp_stacks", "walk all the icmp_stack_t", 4470 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL }, 4471 { "tcp_stacks", "walk all the tcp_stack_t", 4472 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL }, 4473 { "udp_stacks", "walk all the udp_stack_t", 4474 udp_stacks_walk_init, udp_stacks_walk_step, NULL }, 4475 4476 /* from netstack.c */ 4477 { "netstack", "walk a list of kernel netstacks", 4478 netstack_walk_init, netstack_walk_step, NULL }, 4479 4480 /* from nvpair.c */ 4481 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 4482 nvpair_walk_init, nvpair_walk_step, NULL }, 4483 4484 /* from rctl.c */ 4485 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 4486 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 4487 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 4488 rctl_set_walk_step, NULL }, 4489 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 4490 rctl_val_walk_init, rctl_val_walk_step }, 4491 4492 /* from sobj.c */ 4493 { "blocked", "walk threads blocked on a given sobj", 4494 blocked_walk_init, blocked_walk_step, NULL }, 4495 { "wchan", "given a wchan, list of blocked threads", 4496 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 4497 4498 /* from stream.c */ 4499 { "b_cont", "walk mblk_t list using b_cont", 4500 mblk_walk_init, b_cont_step, mblk_walk_fini }, 4501 { "b_next", "walk mblk_t list using b_next", 4502 mblk_walk_init, b_next_step, mblk_walk_fini }, 4503 { "qlink", "walk queue_t list using q_link", 4504 queue_walk_init, queue_link_step, queue_walk_fini }, 4505 { "qnext", "walk queue_t list using q_next", 4506 queue_walk_init, queue_next_step, queue_walk_fini }, 4507 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 4508 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 4509 { "readq", "walk read queue side of stdata", 4510 str_walk_init, strr_walk_step, str_walk_fini }, 4511 { "writeq", "walk write queue side of stdata", 4512 str_walk_init, strw_walk_step, str_walk_fini }, 4513 4514 /* from taskq.c */ 4515 { "taskq_thread", "given a taskq_t, list all of its threads", 4516 taskq_thread_walk_init, 4517 taskq_thread_walk_step, 4518 taskq_thread_walk_fini }, 4519 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 4520 taskq_ent_walk_init, taskq_ent_walk_step, NULL }, 4521 4522 /* from thread.c */ 4523 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 4524 deathrow_walk_init, deathrow_walk_step, NULL }, 4525 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 4526 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4527 { "cpupart_dispq", 4528 "given a cpupart_t, walk threads in dispatcher queues", 4529 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 4530 { "lwp_deathrow", "walk lwp_deathrow", 4531 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 4532 { "thread", "global or per-process kthread_t structures", 4533 thread_walk_init, thread_walk_step, thread_walk_fini }, 4534 { "thread_deathrow", "walk threads on thread_deathrow", 4535 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 4536 4537 /* from tsd.c */ 4538 { "tsd", "walk list of thread-specific data", 4539 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 4540 4541 /* from tsol.c */ 4542 { "tnrh", "walk remote host cache structures", 4543 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini }, 4544 { "tnrhtp", "walk remote host template structures", 4545 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini }, 4546 4547 /* 4548 * typegraph does not work under kmdb, as it requires too much memory 4549 * for its internal data structures. 4550 */ 4551 #ifndef _KMDB 4552 /* from typegraph.c */ 4553 { "typeconflict", "walk buffers with conflicting type inferences", 4554 typegraph_walk_init, typeconflict_walk_step }, 4555 { "typeunknown", "walk buffers with unknown types", 4556 typegraph_walk_init, typeunknown_walk_step }, 4557 #endif 4558 4559 /* from vfs.c */ 4560 { "vfs", "walk file system list", 4561 vfs_walk_init, vfs_walk_step }, 4562 4563 /* from zone.c */ 4564 { "zone", "walk a list of kernel zones", 4565 zone_walk_init, zone_walk_step, NULL }, 4566 { "zsd", "walk list of zsd entries for a zone", 4567 zsd_walk_init, zsd_walk_step, NULL }, 4568 4569 { NULL } 4570 }; 4571 4572 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 4573 4574 /*ARGSUSED*/ 4575 static void 4576 genunix_statechange_cb(void *ignored) 4577 { 4578 /* 4579 * Force ::findleaks and ::stacks to let go any cached state. 4580 */ 4581 leaky_cleanup(1); 4582 stacks_cleanup(1); 4583 4584 kmem_statechange(); /* notify kmem */ 4585 } 4586 4587 const mdb_modinfo_t * 4588 _mdb_init(void) 4589 { 4590 kmem_init(); 4591 4592 (void) mdb_callback_add(MDB_CALLBACK_STCHG, 4593 genunix_statechange_cb, NULL); 4594 4595 return (&modinfo); 4596 } 4597 4598 void 4599 _mdb_fini(void) 4600 { 4601 leaky_cleanup(1); 4602 stacks_cleanup(1); 4603 } 4604