1#!/usr/perl5/bin/perl 2# 3# CDDL HEADER START 4# 5# The contents of this file are subject to the terms of the 6# Common Development and Distribution License (the "License"). 7# You may not use this file except in compliance with the License. 8# 9# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10# or http://www.opensolaris.org/os/licensing. 11# See the License for the specific language governing permissions 12# and limitations under the License. 13# 14# When distributing Covered Code, include this CDDL HEADER in each 15# file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16# If applicable, add the following below this CDDL HEADER, with the 17# fields enclosed by brackets "[]" replaced with your own identifying 18# information: Portions Copyright [yyyy] [name of copyright owner] 19# 20# CDDL HEADER END 21# 22 23# 24# Copyright 2008 Sun Microsystems, Inc. All rights reserved. 25# Use is subject to license terms. 26# 27 28require 5.8.4; 29use strict; 30use warnings; 31use POSIX; 32use File::Basename("basename"); 33 34my $cmdname = basename($0); 35 36my $using_scengen = 0; # 1 if using scenario simulator 37my $debug = 0; 38 39my $normal_sleeptime = 10; # time to sleep between samples 40my $idle_sleeptime = 45; # time to sleep when idle 41my $onecpu_sleeptime = (60 * 15); # used if only 1 CPU on system 42my $sleeptime = $normal_sleeptime; # either normal_ or idle_ or onecpu_ 43 44my $idle_intrload = .1; # idle if interrupt load < 10% 45 46my $timerange_toohi = .01; 47my $statslen = 60; # time period (in secs) to keep in @deltas 48 49 50# Parse arguments. intrd does not accept any public arguments; the two 51# arguments below are meant for testing purposes. -D generates a significant 52# amount of syslog output. -S <filename> loads the filename as a perl 53# script. That file is expected to implement a kstat "simulator" which 54# can be used to feed information to intrd and verify intrd's responses. 55 56while ($_ = shift @ARGV) { 57 if ($_ eq "-S" && $#ARGV != -1) { 58 $using_scengen = 1; 59 do $ARGV[0]; # load simulator 60 shift @ARGV; 61 } elsif ($_ eq "-D") { 62 $debug = 1; 63 } 64} 65 66if ($using_scengen == 0) { 67 require Sun::Solaris::Kstat; 68 require Sun::Solaris::Intrs; 69 import Sun::Solaris::Intrs(qw(intrmove is_pcplusmp)); 70 require Sys::Syslog; 71 import Sys::Syslog; 72 openlog($cmdname, 'pid', 'daemon'); 73 setlogmask(Sys::Syslog::LOG_UPTO($debug > 0 ? &Sys::Syslog::LOG_DEBUG : 74 &Sys::Syslog::LOG_INFO)); 75} 76 77my $asserted = 0; 78my $assert_level = 'debug'; # syslog level for assertion failures 79sub VERIFY($@) 80{ 81 my $bad = (shift() == 0); # $_[0] == 0 means assert failed 82 if ($bad) { 83 my $msg = shift(); 84 syslog($assert_level, "VERIFY: $msg", @_); 85 $asserted++; 86 } 87 return ($bad); 88} 89 90 91 92 93sub getstat($$); 94sub generate_delta($$); 95sub compress_deltas($); 96sub dumpdelta($); 97 98sub goodness($); 99sub imbalanced($$); 100sub do_reconfig($); 101 102sub goodness_cpu($$); # private function 103sub move_intr($$$$); # private function 104sub ivecs_to_string(@); # private function 105sub do_find_goal($$$$); # private function 106sub find_goal($$); # private function 107sub do_reconfig_cpu2cpu($$$$); # private function 108sub do_reconfig_cpu($$$); # private function 109 110 111# 112# What follow are the basic data structures routines of intrd. 113# 114# getstat() is responsible for reading the kstats and generating a "stat" hash. 115# 116# generate_delta() is responsible for taking two "stat" hashes and creating 117# a new "delta" hash that represents what has changed over time. 118# 119# compress_deltas() is responsible for taking a list of deltas and generating 120# a single delta hash that encompasses all the time periods described by the 121# deltas. 122 123 124# 125# getstat() is handed a reference to a kstat and generates a hash, returned 126# by reference, containing all the fields from the kstats which we need. 127# If it returns the scalar 0, it failed to gather the kstats, and the caller 128# should react accordingly. 129# 130# getstat() is also responsible for maintaining a reasonable $sleeptime. 131# 132# {"snaptime"} kstat's snaptime 133# {<cpuid>} one hash reference per online cpu 134# ->{"tot"} == cpu:<cpuid>:sys:cpu_nsec_{user + kernel + idle} 135# ->{"crtime"} == cpu:<cpuid>:sys:crtime 136# ->{"ivecs"} 137# ->{<cookie#>} iterates over pci_intrs::<nexus>:cookie 138# ->{"time"} == pci_intrs:<ivec#>:<nexus>:time (in nsec) 139# ->{"pil"} == pci_intrs:<ivec#>:<nexus>:pil 140# ->{"crtime"} == pci_intrs:<ivec#>:<nexus>:crtime 141# ->{"ino"} == pci_intrs:<ivec#>:<nexus>:ino 142# ->{"num_ino"} == num inos of single device instance sharing this entry 143# Will be > 1 on pcplusmp X86 systems for devices 144# with multiple MSI interrupts. 145# ->{"buspath"} == pci_intrs:<ivec#>:<nexus>:buspath 146# ->{"name"} == pci_intrs:<ivec#>:<nexus>:name 147# ->{"ihs"} == pci_intrs:<ivec#>:<nexus>:ihs 148# 149 150sub getstat($$) 151{ 152 my ($ks, $pcplusmp_sys) = @_; 153 154 my $cpucnt = 0; 155 my %stat = (); 156 my ($minsnap, $maxsnap); 157 158 # Hash of hash which matches (MSI device, ino) combos to kstats. 159 my %msidevs = (); 160 161 # kstats are not generated atomically. Each kstat hierarchy will 162 # have been generated within the kernel at a different time. On a 163 # thrashing system, we may not run quickly enough in order to get 164 # coherent kstat timing information across all the kstats. To 165 # determine if this is occurring, $minsnap/$maxsnap are used to 166 # find the breadth between the first and last snaptime of all the 167 # kstats we access. $maxsnap - $minsnap roughly represents the 168 # total time taken up in getstat(). If this time approaches the 169 # time between snapshots, our results may not be useful. 170 171 $minsnap = -1; # snaptime is always a positive number 172 $maxsnap = $minsnap; 173 174 # Iterate over the cpus in cpu:<cpuid>::. Check 175 # cpu_info:<cpuid>:cpu_info<cpuid>:state to make sure the 176 # processor is "on-line". If not, it isn't accepting interrupts 177 # and doesn't concern us. 178 # 179 # Record cpu:<cpuid>:sys:snaptime, and check $minsnap/$maxsnap. 180 181 while (my ($cpu, $cpst) = each %{$ks->{cpu}}) { 182 next if !exists($ks->{cpu_info}{$cpu}{"cpu_info$cpu"}{state}); 183 #"state" fld of kstat w/ 184 # modname inst name-"cpuinfo0" 185 my $state = $ks->{cpu_info}{$cpu}{"cpu_info$cpu"}{state}; 186 next if ($state !~ /^on-line\0/); 187 my $cpu_sys = $cpst->{sys}; 188 189 $stat{$cpu}{tot} = ($cpu_sys->{cpu_nsec_idle} + 190 $cpu_sys->{cpu_nsec_user} + 191 $cpu_sys->{cpu_nsec_kernel}); 192 $stat{$cpu}{crtime} = $cpu_sys->{crtime}; 193 $stat{$cpu}{ivecs} = {}; 194 195 if ($minsnap == -1 || $cpu_sys->{snaptime} < $minsnap) { 196 $minsnap = $cpu_sys->{snaptime}; 197 } 198 if ($cpu_sys->{snaptime} > $maxsnap) { 199 $maxsnap = $cpu_sys->{snaptime}; 200 } 201 $cpucnt++; 202 } 203 204 if ($cpucnt <= 1) { 205 $sleeptime = $onecpu_sleeptime; 206 return (0); # nothing to do with 1 CPU 207 } 208 209 # Iterate over the ivecs. If the cpu is not on-line, ignore the 210 # ivecs mapped to it, if any. 211 # 212 # Record pci_intrs:{inum}:<nexus>:time, snaptime, crtime, pil, 213 # ino, name, and buspath. Check $minsnap/$maxsnap. 214 215 foreach my $inst (values(%{$ks->{pci_intrs}})) { 216 my $intrcfg = (values(%$inst))[0]; 217 my $cpu = $intrcfg->{cpu}; 218 219 next unless exists $stat{$cpu}; 220 next if ($intrcfg->{type} =~ /^disabled\0/); 221 222 # Perl looks beyond NULL chars in pattern matching. 223 # Truncate name field at the first NULL 224 $intrcfg->{name} =~ s/\0.*$//; 225 226 if ($intrcfg->{snaptime} < $minsnap) { 227 $minsnap = $intrcfg->{snaptime}; 228 } elsif ($intrcfg->{snaptime} > $maxsnap) { 229 $maxsnap = $intrcfg->{snaptime}; 230 } 231 232 my $cookie = "$intrcfg->{buspath} $intrcfg->{ino}"; 233 if (exists $stat{$cpu}{ivecs}{$cookie}) { 234 my $cookiestats = $stat{$cpu}{ivecs}{$cookie}; 235 236 $cookiestats->{time} += $intrcfg->{time}; 237 $cookiestats->{name} .= "/$intrcfg->{name}"; 238 239 # If this new interrupt sharing $cookie represents a 240 # change from an earlier getstat, make sure that 241 # generate_delta will see the change by setting 242 # crtime to the most recent crtime of its components. 243 244 if ($intrcfg->{crtime} > $cookiestats->{crtime}) { 245 $cookiestats->{crtime} = $intrcfg->{crtime}; 246 } 247 $cookiestats->{ihs}++; 248 next; 249 } 250 $stat{$cpu}{ivecs}{$cookie}{time} = $intrcfg->{time}; 251 $stat{$cpu}{ivecs}{$cookie}{crtime} = $intrcfg->{crtime}; 252 $stat{$cpu}{ivecs}{$cookie}{pil} = $intrcfg->{pil}; 253 $stat{$cpu}{ivecs}{$cookie}{ino} = $intrcfg->{ino}; 254 $stat{$cpu}{ivecs}{$cookie}{num_ino} = 1; 255 $stat{$cpu}{ivecs}{$cookie}{buspath} = $intrcfg->{buspath}; 256 $stat{$cpu}{ivecs}{$cookie}{name} = $intrcfg->{name}; 257 $stat{$cpu}{ivecs}{$cookie}{ihs} = 1; 258 259 if ($pcplusmp_sys && ($intrcfg->{type} =~ /^msi\0/)) { 260 if (!(exists($msidevs{$intrcfg->{name}}))) { 261 $msidevs{$intrcfg->{name}} = {}; 262 } 263 $msidevs{$intrcfg->{name}}{$intrcfg->{ino}} = 264 \$stat{$cpu}{ivecs}{$cookie}; 265 } 266 } 267 268 # All MSI interrupts of a device instance share a single MSI address. 269 # On X86 systems with an APIC, this MSI address is interpreted as CPU 270 # routing info by the APIC. For this reason, on these platforms, all 271 # interrupts for MSI devices must be moved to the same CPU at the same 272 # time. 273 # 274 # Since all interrupts will be on the same CPU on these platforms, all 275 # interrupts can be consolidated into one ivec entry. For such devices, 276 # num_ino will be > 1 to denote that a group move is needed. 277 278 # Loop thru all MSI devices on X86 pcplusmp systems. 279 # Nop on other systems. 280 foreach my $msidevkey (sort keys %msidevs) { 281 282 # Loop thru inos of the device, sorted by lowest value first 283 # For each cookie found for a device, incr num_ino for the 284 # lowest cookie and remove other cookies. 285 286 # Assumes PIL is the same for first and current cookies 287 288 my $first_ino = -1; 289 my $first_cookiep; 290 my $curr_cookiep; 291 foreach my $inokey (sort keys %{$msidevs{$msidevkey}}) { 292 $curr_cookiep = $msidevs{$msidevkey}{$inokey}; 293 if ($first_ino == -1) { 294 $first_ino = $inokey; 295 $first_cookiep = $curr_cookiep; 296 } else { 297 $$first_cookiep->{num_ino}++; 298 $$first_cookiep->{time} += 299 $$curr_cookiep->{time}; 300 if ($$curr_cookiep->{crtime} > 301 $$first_cookiep->{crtime}) { 302 $$first_cookiep->{crtime} = 303 $$curr_cookiep->{crtime}; 304 } 305 # Invalidate this cookie, less complicated and 306 # more efficient than deleting it. 307 $$curr_cookiep->{num_ino} = 0; 308 } 309 } 310 } 311 312 # We define the timerange as the amount of time spent gathering the 313 # various kstats, divided by our sleeptime. If we take a lot of time 314 # to access the kstats, and then we create a delta comparing these 315 # kstats with a prior set of kstats, that delta will cover 316 # substaintially different amount of time depending upon which 317 # interrupt or CPU is being examined. 318 # 319 # By checking the timerange here, we guarantee that any deltas 320 # created from these kstats will contain self-consistent data, 321 # in that all CPUs and interrupts cover a similar span of time. 322 # 323 # $timerange_toohi is the upper bound. Any timerange above 324 # this is thrown out as garbage. If the stat is safely within this 325 # bound, we treat the stat as representing an instant in time, rather 326 # than the time range it actually spans. We arbitrarily choose minsnap 327 # as the snaptime of the stat. 328 329 $stat{snaptime} = $minsnap; 330 my $timerange = ($maxsnap - $minsnap) / $sleeptime; 331 return (0) if ($timerange > $timerange_toohi); # i.e. failure 332 return (\%stat); 333} 334 335# 336# dumpdelta takes a reference to our "delta" structure: 337# {"missing"} "1" if the delta's component stats had inconsistencies 338# {"minsnap"} time of the first kstat snaptime used in this delta 339# {"maxsnap"} time of the last kstat snaptime used in this delta 340# {"goodness"} cost function applied to this delta 341# {"avgintrload"} avg of interrupt load across cpus, as a percentage 342# {"avgintrnsec"} avg number of nsec spent in interrupts, per cpu 343# {<cpuid>} iterates over on-line cpus 344# ->{"intrs"} cpu's movable intr time (sum of "time" for each ivec) 345# ->{"tot"} CPU load from all sources in nsec 346# ->{"bigintr"} largest value of {ivecs}{<ivec#>}{time} from below 347# ->{"intrload"} intrs / tot 348# ->{"ivecs"} 349# ->{<ivec#>} iterates over ivecs for this cpu 350# ->{"time"} time used by this interrupt (in nsec) 351# ->{"pil"} pil level of this interrupt 352# ->{"ino"} interrupt number (or base vector if MSI group) 353# ->{"buspath"} filename of the directory of the device's bus 354# ->{"name"} device name 355# ->{"ihs"} number of different handlers sharing this ino 356# ->{"num_ino"} number of interrupt vectors in MSI group 357# 358# It prints out the delta structure in a nice, human readable display. 359# 360 361sub dumpdelta($) 362{ 363 my ($delta) = @_; 364 365 # print global info 366 367 syslog('debug', "dumpdelta:"); 368 syslog('debug', " RECONFIGURATION IN DELTA") if $delta->{missing} > 0; 369 syslog('debug', " avgintrload: %5.2f%% avgintrnsec: %d", 370 $delta->{avgintrload} * 100, $delta->{avgintrnsec}); 371 syslog('debug', " goodness: %5.2f%%", $delta->{goodness} * 100) 372 if exists($delta->{goodness}); 373 374 # iterate over cpus 375 376 while (my ($cpu, $cpst) = each %$delta) { 377 next if !ref($cpst); # skip non-cpuid entries 378 my $tot = $cpst->{tot}; 379 syslog('debug', " cpu %3d intr %7.3f%% (bigintr %7.3f%%)", 380 $cpu, $cpst->{intrload}*100, $cpst->{bigintr}*100/$tot); 381 syslog('debug', " intrs %d, bigintr %d", 382 $cpst->{intrs}, $cpst->{bigintr}); 383 384 # iterate over ivecs on this cpu 385 386 while (my ($ivec, $ivst) = each %{$cpst->{ivecs}}) { 387 syslog('debug', " %15s:\"%s\": %7.3f%% %d", 388 ($ivst->{ihs} > 1 ? "$ivst->{name}($ivst->{ihs})" : 389 $ivst->{name}), $ivec, 390 $ivst->{time}*100 / $tot, $ivst->{time}); 391 } 392 } 393} 394 395# 396# generate_delta($stat, $newstat) takes two stat references, returned from 397# getstat(), and creates a %delta. %delta (not surprisingly) contains the 398# same basic info as stat and newstat, but with the timestamps as deltas 399# instead of absolute times. We return a reference to the delta. 400# 401 402sub generate_delta($$) 403{ 404 my ($stat, $newstat) = @_; 405 406 my %delta = (); 407 my $intrload; 408 my $intrnsec; 409 my $cpus; 410 411 # Take the worstcase timerange 412 $delta{minsnap} = $stat->{snaptime}; 413 $delta{maxsnap} = $newstat->{snaptime}; 414 if (VERIFY($delta{maxsnap} > $delta{minsnap}, 415 "generate_delta: stats aren't ascending")) { 416 $delta{missing} = 1; 417 return (\%delta); 418 } 419 420 # if there are a different number of cpus in the stats, set missing 421 422 $delta{missing} = (keys(%$stat) != keys(%$newstat)); 423 if (VERIFY($delta{missing} == 0, 424 "generate_delta: number of CPUs changed")) { 425 return (\%delta); 426 } 427 428 # scan through every cpu in %newstat and compare against %stat 429 430 while (my ($cpu, $newcpst) = each %$newstat) { 431 next if !ref($newcpst); # skip non-cpuid fields 432 433 # If %stat is missing a cpu from %newstat, then it was just 434 # onlined. Mark missing. 435 436 if (VERIFY(exists $stat->{$cpu} && 437 $stat->{$cpu}{crtime} == $newcpst->{crtime}, 438 "generate_delta: cpu $cpu changed")) { 439 $delta{missing} = 1; 440 return (\%delta); 441 } 442 my $cpst = $stat->{$cpu}; 443 $delta{$cpu}{tot} = $newcpst->{tot} - $cpst->{tot}; 444 if (VERIFY($delta{$cpu}{tot} >= 0, 445 "generate_delta: deltas are not ascending?")) { 446 $delta{missing} = 1; 447 delete($delta{$cpu}); 448 return (\%delta); 449 } 450 # Avoid remote chance of division by zero 451 $delta{$cpu}{tot} = 1 if $delta{$cpu}{tot} == 0; 452 $delta{$cpu}{intrs} = 0; 453 $delta{$cpu}{bigintr} = 0; 454 455 my %ivecs = (); 456 $delta{$cpu}{ivecs} = \%ivecs; 457 458 # if the number of ivecs differs, set missing 459 460 if (VERIFY(keys(%{$cpst->{ivecs}}) == 461 keys(%{$newcpst->{ivecs}}), 462 "generate_delta: cpu $cpu has more/less". 463 " interrupts")) { 464 $delta{missing} = 1; 465 return (\%delta); 466 } 467 468 while (my ($inum, $newivec) = each %{$newcpst->{ivecs}}) { 469 470 # Unused cookie, corresponding to an MSI vector which 471 # is part of a group. The whole group is accounted for 472 # by a different cookie. 473 next if ($newivec->{num_ino} == 0); 474 475 # If this ivec doesn't exist in $stat, or if $stat 476 # shows a different crtime, set missing. 477 if (VERIFY(exists $cpst->{ivecs}{$inum} && 478 $cpst->{ivecs}{$inum}{crtime} == 479 $newivec->{crtime}, 480 "generate_delta: cpu $cpu inum $inum". 481 " has changed")) { 482 $delta{missing} = 1; 483 return (\%delta); 484 } 485 my $ivec = $cpst->{ivecs}{$inum}; 486 487 # Create $delta{$cpu}{ivecs}{$inum}. 488 489 my %dltivec = (); 490 $delta{$cpu}{ivecs}{$inum} = \%dltivec; 491 492 # calculate time used by this interrupt 493 494 my $time = $newivec->{time} - $ivec->{time}; 495 if (VERIFY($time >= 0, 496 "generate_delta: ivec went backwards?")) { 497 $delta{missing} = 1; 498 delete($delta{$cpu}{ivecs}{$inum}); 499 return (\%delta); 500 } 501 $delta{$cpu}{intrs} += $time; 502 $dltivec{time} = $time; 503 if ($time > $delta{$cpu}{bigintr}) { 504 $delta{$cpu}{bigintr} = $time; 505 } 506 507 # Transfer over basic info about the kstat. We 508 # don't have to worry about discrepancies between 509 # ivec and newivec because we verified that both 510 # have the same crtime. 511 512 $dltivec{pil} = $newivec->{pil}; 513 $dltivec{ino} = $newivec->{ino}; 514 $dltivec{buspath} = $newivec->{buspath}; 515 $dltivec{name} = $newivec->{name}; 516 $dltivec{ihs} = $newivec->{ihs}; 517 $dltivec{num_ino} = $newivec->{num_ino}; 518 } 519 if ($delta{$cpu}{tot} < $delta{$cpu}{intrs}) { 520 # Ewww! Hopefully just a rounding error. 521 # Make something up. 522 $delta{$cpu}{tot} = $delta{$cpu}{intrs}; 523 } 524 $delta{$cpu}{intrload} = 525 $delta{$cpu}{intrs} / $delta{$cpu}{tot}; 526 $intrload += $delta{$cpu}{intrload}; 527 $intrnsec += $delta{$cpu}{intrs}; 528 $cpus++; 529 } 530 if ($cpus > 0) { 531 $delta{avgintrload} = $intrload / $cpus; 532 $delta{avgintrnsec} = $intrnsec / $cpus; 533 } else { 534 $delta{avgintrload} = 0; 535 $delta{avgintrnsec} = 0; 536 } 537 return (\%delta); 538} 539 540 541# compress_delta takes a list of deltas, and returns a single new delta 542# which represents the combined information from all the deltas. The deltas 543# provided are assumed to be sequential in time. The resulting compressed 544# delta looks just like any other delta. This new delta is also more accurate 545# since its statistics are averaged over a longer period than any of the 546# original deltas. 547 548sub compress_deltas ($) 549{ 550 my ($deltas) = @_; 551 552 my %newdelta = (); 553 my ($intrs, $tot); 554 my $cpus = 0; 555 my ($high_intrload) = 0; 556 557 if (VERIFY($#$deltas != -1, 558 "compress_deltas: list of delta is empty?")) { 559 return (0); 560 } 561 $newdelta{minsnap} = $deltas->[0]{minsnap}; 562 $newdelta{maxsnap} = $deltas->[$#$deltas]{maxsnap}; 563 $newdelta{missing} = 0; 564 565 foreach my $delta (@$deltas) { 566 if (VERIFY($delta->{missing} == 0, 567 "compressing bad deltas?")) { 568 return (0); 569 } 570 while (my ($cpuid, $cpu) = each %$delta) { 571 next if !ref($cpu); 572 573 $intrs += $cpu->{intrs}; 574 $tot += $cpu->{tot}; 575 $newdelta{$cpuid}{intrs} += $cpu->{intrs}; 576 $newdelta{$cpuid}{tot} += $cpu->{tot}; 577 if (!exists $newdelta{$cpuid}{ivecs}) { 578 my %ivecs = (); 579 $newdelta{$cpuid}{ivecs} = \%ivecs; 580 } 581 while (my ($inum, $ivec) = each %{$cpu->{ivecs}}) { 582 my $newivecs = $newdelta{$cpuid}{ivecs}; 583 $newivecs->{$inum}{time} += $ivec->{time}; 584 $newivecs->{$inum}{pil} = $ivec->{pil}; 585 $newivecs->{$inum}{ino} = $ivec->{ino}; 586 $newivecs->{$inum}{buspath} = $ivec->{buspath}; 587 $newivecs->{$inum}{name} = $ivec->{name}; 588 $newivecs->{$inum}{ihs} = $ivec->{ihs}; 589 $newivecs->{$inum}{num_ino} = $ivec->{num_ino}; 590 } 591 } 592 } 593 foreach my $cpu (values(%newdelta)) { 594 next if !ref($cpu); # ignore non-cpu fields 595 $cpus++; 596 597 my $bigintr = 0; 598 foreach my $ivec (values(%{$cpu->{ivecs}})) { 599 if ($ivec->{time} > $bigintr) { 600 $bigintr = $ivec->{time}; 601 } 602 } 603 $cpu->{bigintr} = $bigintr; 604 $cpu->{intrload} = $cpu->{intrs} / $cpu->{tot}; 605 if ($high_intrload < $cpu->{intrload}) { 606 $high_intrload = $cpu->{intrload}; 607 } 608 $cpu->{tot} = 1 if $cpu->{tot} <= 0; 609 } 610 if ($cpus == 0) { 611 $newdelta{avgintrnsec} = 0; 612 $newdelta{avgintrload} = 0; 613 } else { 614 $newdelta{avgintrnsec} = $intrs / $cpus; 615 $newdelta{avgintrload} = $intrs / $tot; 616 } 617 $sleeptime = ($high_intrload < $idle_intrload) ? $idle_sleeptime : 618 $normal_sleeptime; 619 return (\%newdelta); 620} 621 622 623 624 625 626# What follow are the core functions responsible for examining the deltas 627# generated above and deciding what to do about them. 628# 629# goodness() and its helper goodness_cpu() return a heuristic which describe 630# how good (or bad) the current interrupt balance is. The value returned will 631# be between 0 and 1, with 0 representing maximum goodness, and 1 representing 632# maximum badness. 633# 634# imbalanced() compares a current and historical value of goodness, and 635# determines if there has been enough change to warrant evaluating a 636# reconfiguration of the interrupts 637# 638# do_reconfig(), and its helpers, do_reconfig_cpu(), do_reconfig_cpu2cpu(), 639# find_goal(), do_find_goal(), and move_intr(), are responsible for examining 640# a delta and determining the best possible assignment of interrupts to CPUs. 641# 642# It is important that do_reconfig() be in alignment with goodness(). If 643# do_reconfig were to generate a new interrupt distribution that worsened 644# goodness, we could get into a pathological loop with intrd fighting itself, 645# constantly deciding that things are imbalanced, and then changing things 646# only to make them worse. 647 648 649 650# any goodness over $goodness_unsafe_load is considered really bad 651# goodness must drop by at least $goodness_mindelta for a reconfig 652 653my $goodness_unsafe_load = .9; 654my $goodness_mindelta = .1; 655 656# goodness(%delta) examines a delta and return its "goodness". goodness will 657# be between 0 (best) and 1 (major bad). goodness is determined by evaluating 658# the goodness of each individual cpu, and returning the worst case. This 659# helps on systems with many CPUs, where otherwise a single pathological CPU 660# might otherwise be ignored because the average was OK. 661# 662# To calculate the goodness of an individual CPU, we start by looking at its 663# load due to interrupts. If the load is above a certain high threshold and 664# there is more than one interrupt assigned to this CPU, we set goodness 665# to worst-case. If the load is below the average interrupt load of all CPUs, 666# then we return best-case, since what's to complain about? 667# 668# Otherwise we look at how much the load is above the average, and return 669# that as the goodness, with one caveat: we never return more than the CPU's 670# interrupt load ignoring its largest single interrupt source. This is 671# because a CPU with one high-load interrupt, and no other interrupts, is 672# perfectly balanced. Nothing can be done to improve the situation, and thus 673# it is perfectly balanced even if the interrupt's load is 100%. 674 675sub goodness($) 676{ 677 my ($delta) = @_; 678 679 return (1) if $delta->{missing} > 0; 680 681 my $high_goodness = 0; 682 my $goodness; 683 684 foreach my $cpu (values(%$delta)) { 685 next if !ref($cpu); # skip non-cpuid fields 686 687 $goodness = goodness_cpu($cpu, $delta->{avgintrload}); 688 if (VERIFY($goodness >= 0 && $goodness <= 1, 689 "goodness: cpu goodness out of range?")) { 690 dumpdelta($delta); 691 return (1); 692 } 693 if ($goodness == 1) { 694 return (1); # worst case, no need to continue 695 } 696 if ($goodness > $high_goodness) { 697 $high_goodness = $goodness; 698 } 699 } 700 return ($high_goodness); 701} 702 703sub goodness_cpu($$) # private function 704{ 705 my ($cpu, $avgintrload) = @_; 706 707 my $goodness; 708 my $load = $cpu->{intrs} / $cpu->{tot}; 709 710 return (0) if ($load < $avgintrload); # low loads are perfectly good 711 712 # Calculate $load_no_bigintr, which represents the load 713 # due to interrupts, excluding the one biggest interrupt. 714 # This is the most gain we can get on this CPU from 715 # offloading interrupts. 716 717 my $load_no_bigintr = ($cpu->{intrs} - $cpu->{bigintr}) / $cpu->{tot}; 718 719 # A major imbalance is indicated if a CPU is saturated 720 # with interrupt handling, and it has more than one 721 # source of interrupts. Those other interrupts could be 722 # starved if of a lower pil. Return a goodness of 1, 723 # which is the worst possible return value, 724 # which will effectively contaminate this entire delta. 725 726 my $cnt = keys(%{$cpu->{ivecs}}); 727 728 if ($load > $goodness_unsafe_load && $cnt > 1) { 729 return (1); 730 } 731 $goodness = $load - $avgintrload; 732 if ($goodness > $load_no_bigintr) { 733 $goodness = $load_no_bigintr; 734 } 735 return ($goodness); 736} 737 738 739# imbalanced() is used by the main routine to determine if the goodness 740# has shifted far enough from our last baseline to warrant a reassignment 741# of interrupts. A very high goodness indicates that a CPU is way out of 742# whack. If the goodness has varied too much since the baseline, then 743# perhaps a reconfiguration is worth considering. 744 745sub imbalanced ($$) 746{ 747 my ($goodness, $baseline) = @_; 748 749 # Return 1 if we are pathological, or creeping away from the baseline 750 751 return (1) if $goodness > .50; 752 return (1) if abs($goodness - $baseline) > $goodness_mindelta; 753 return (0); 754} 755 756# do_reconfig(), do_reconfig_cpu(), and do_reconfig_cpu2cpu(), are the 757# decision-making functions responsible for generating a new interrupt 758# distribution. They are designed with the definition of goodness() in 759# mind, i.e. they use the same definition of "good distribution" as does 760# goodness(). 761# 762# do_reconfig() is responsible for deciding whether a redistribution is 763# actually warranted. If the goodness is already pretty good, it doesn't 764# waste the CPU time to generate a new distribution. If it 765# calculates a new distribution and finds that it is not sufficiently 766# improved from the prior distirbution, it will not do the redistribution, 767# mainly to avoid the disruption to system performance caused by 768# rejuggling interrupts. 769# 770# Its main loop works by going through a list of cpus sorted from 771# highest to lowest interrupt load. It removes the highest-load cpus 772# one at a time and hands them off to do_reconfig_cpu(). This function 773# then re-sorts the remaining CPUs from lowest to highest interrupt load, 774# and one at a time attempts to rejuggle interrupts between the original 775# high-load CPU and the low-load CPU. Rejuggling on a high-load CPU is 776# considered finished as soon as its interrupt load is within 777# $goodness_mindelta of the average interrupt load. Such a CPU will have 778# a goodness of below the $goodness_mindelta threshold. 779 780# 781# move_intr(\%delta, $inum, $oldcpu, $newcpu) 782# used by reconfiguration code to move an interrupt between cpus within 783# a delta. This manipulates data structures, and does not actually move 784# the interrupt on the running system. 785# 786sub move_intr($$$$) # private function 787{ 788 my ($delta, $inum, $oldcpuid, $newcpuid) = @_; 789 790 my $ivec = $delta->{$oldcpuid}{ivecs}{$inum}; 791 792 # Remove ivec from old cpu 793 794 my $oldcpu = $delta->{$oldcpuid}; 795 $oldcpu->{intrs} -= $ivec->{time}; 796 $oldcpu->{intrload} = $oldcpu->{intrs} / $oldcpu->{tot}; 797 delete($oldcpu->{ivecs}{$inum}); 798 799 VERIFY($oldcpu->{intrs} >= 0, "move_intr: intr's time > total time?"); 800 VERIFY($ivec->{time} <= $oldcpu->{bigintr}, 801 "move_intr: intr's time > bigintr?"); 802 803 if ($ivec->{time} >= $oldcpu->{bigintr}) { 804 my $bigtime = 0; 805 806 foreach my $ivec (values(%{$oldcpu->{ivecs}})) { 807 $bigtime = $ivec->{time} if $ivec->{time} > $bigtime; 808 } 809 $oldcpu->{bigintr} = $bigtime; 810 } 811 812 # Add ivec onto new cpu 813 814 my $newcpu = $delta->{$newcpuid}; 815 816 $ivec->{nowcpu} = $newcpuid; 817 $newcpu->{intrs} += $ivec->{time}; 818 $newcpu->{intrload} = $newcpu->{intrs} / $newcpu->{tot}; 819 $newcpu->{ivecs}{$inum} = $ivec; 820 821 $newcpu->{bigintr} = $ivec->{time} 822 if $ivec->{time} > $newcpu->{bigintr}; 823} 824 825sub move_intr_check($$$) # private function 826{ 827 my ($delta, $oldcpuid, $newcpuid) = @_; 828 829 VERIFY($delta->{$oldcpuid}{tot} >= $delta->{$oldcpuid}{intrs}, 830 "Moved interrupts left 100+%% load on src cpu"); 831 VERIFY($delta->{$newcpuid}{tot} >= $delta->{$newcpuid}{intrs}, 832 "Moved interrupts left 100+%% load on tgt cpu"); 833} 834 835sub ivecs_to_string(@) # private function 836{ 837 my $str = ""; 838 foreach my $ivec (@_) { 839 $str = "$str $ivec->{inum}"; 840 } 841 return ($str); 842} 843 844 845sub do_reconfig($) 846{ 847 my ($delta) = @_; 848 849 my $goodness = $delta->{goodness}; 850 851 # We can't improve goodness to better than 0. We should stop here 852 # if, even if we achieve a goodness of 0, the improvement is still 853 # too small to merit the action. 854 855 if ($goodness - 0 < $goodness_mindelta) { 856 syslog('debug', "goodness good enough, don't reconfig"); 857 return (0); 858 } 859 860 syslog('notice', "Optimizing interrupt assignments"); 861 862 if (VERIFY ($delta->{missing} == 0, "RECONFIG Aborted: should not ". 863 "have a delta with missing")) { 864 return (-1); 865 } 866 867 # Make a list of all cpuids, and also add some extra information 868 # to the ivec structures. 869 870 my @cpusortlist = (); 871 872 while (my ($cpuid, $cpu) = each %$delta) { 873 next if !ref($cpu); # skip non-cpu entries 874 875 push(@cpusortlist, $cpuid); 876 while (my ($inum, $ivec) = each %{$cpu->{ivecs}}) { 877 $ivec->{origcpu} = $cpuid; 878 $ivec->{nowcpu} = $cpuid; 879 $ivec->{inum} = $inum; 880 } 881 } 882 883 # Sort the list of CPUs from highest to lowest interrupt load. 884 # Remove the top CPU from that list and attempt to redistribute 885 # its interrupts. If the CPU has a goodness below a threshold, 886 # just ignore the CPU and move to the next one. If the CPU's 887 # load falls below the average load plus that same threshold, 888 # then there are no CPUs left worth reconfiguring, and we're done. 889 890 while (@cpusortlist) { 891 # Re-sort cpusortlist each time, since do_reconfig_cpu can 892 # move interrupts around. 893 894 @cpusortlist = 895 sort({$delta->{$b}{intrload} <=> $delta->{$a}{intrload}} 896 @cpusortlist); 897 898 my $cpu = shift(@cpusortlist); 899 if (($delta->{$cpu}{intrload} <= $goodness_unsafe_load) && 900 ($delta->{$cpu}{intrload} <= 901 $delta->{avgintrload} + $goodness_mindelta)) { 902 syslog('debug', "finished reconfig: cpu $cpu load ". 903 "$delta->{$cpu}{intrload} avgload ". 904 "$delta->{avgintrload}"); 905 last; 906 } 907 if (goodness_cpu($delta->{$cpu}, $delta->{avgintrload}) < 908 $goodness_mindelta) { 909 next; 910 } 911 do_reconfig_cpu($delta, \@cpusortlist, $cpu); 912 } 913 914 # How good a job did we do? If the improvement was minimal, and 915 # our goodness wasn't pathological (and thus needing any help it 916 # can get), then don't bother moving the interrupts. 917 918 my $newgoodness = goodness($delta); 919 VERIFY($newgoodness <= $goodness, 920 "reconfig: result has worse goodness?"); 921 922 if (($goodness != 1 || $newgoodness == 1) && 923 $goodness - $newgoodness < $goodness_mindelta) { 924 syslog('debug', "goodness already near optimum, ". 925 "don't reconfig"); 926 return (0); 927 } 928 syslog('debug', "goodness %5.2f%% --> %5.2f%%", $goodness*100, 929 $newgoodness*100); 930 931 # Time to move those interrupts! 932 933 my $ret = 1; 934 my $warned = 0; 935 while (my ($cpuid, $cpu) = each %$delta) { 936 next if $cpuid =~ /\D/; 937 while (my ($inum, $ivec) = each %{$cpu->{ivecs}}) { 938 next if ($ivec->{origcpu} == $cpuid); 939 940 if (!intrmove($ivec->{buspath}, $ivec->{ino}, 941 $cpuid, $ivec->{num_ino})) { 942 syslog('warning', "Unable to move interrupts") 943 if $warned++ == 0; 944 syslog('debug', "Unable to move buspath ". 945 "$ivec->{buspath} ino $ivec->{ino} to ". 946 "cpu $cpuid"); 947 $ret = -1; 948 } 949 } 950 } 951 952 syslog('notice', "Interrupt assignments optimized"); 953 return ($ret); 954} 955 956sub do_reconfig_cpu($$$) # private function 957{ 958 my ($delta, $cpusortlist, $oldcpuid) = @_; 959 960 # We have been asked to rejuggle interrupts between $oldcpuid and 961 # other CPUs found on $cpusortlist so as to improve the load on 962 # $oldcpuid. We reverse $cpusortlist to get our own copy of the 963 # list, sorted from lowest to highest interrupt load. One at a 964 # time, shift a CPU off of this list of CPUs, and attempt to 965 # rejuggle interrupts between the two CPUs. Don't do this if the 966 # other CPU has a higher load than oldcpuid. We're done rejuggling 967 # once $oldcpuid's goodness falls below a threshold. 968 969 syslog('debug', "reconfiguring $oldcpuid"); 970 971 my $cpu = $delta->{$oldcpuid}; 972 my $avgintrload = $delta->{avgintrload}; 973 974 my @cputargetlist = reverse(@$cpusortlist); # make a copy of the list 975 while ($#cputargetlist != -1) { 976 last if goodness_cpu($cpu, $avgintrload) < $goodness_mindelta; 977 978 my $tgtcpuid = shift(@cputargetlist); 979 my $tgt = $delta->{$tgtcpuid}; 980 my $load = $cpu->{intrload}; 981 my $tgtload = $tgt->{intrload}; 982 last if $tgtload > $load; 983 do_reconfig_cpu2cpu($delta, $oldcpuid, $tgtcpuid, $load); 984 } 985} 986 987sub do_reconfig_cpu2cpu($$$$) # private function 988{ 989 my ($delta, $srccpuid, $tgtcpuid, $srcload) = @_; 990 991 # We've been asked to consider interrupt juggling between srccpuid 992 # (with a high interrupt load) and tgtcpuid (with a lower interrupt 993 # load). First, make a single list with all of the ivecs from both 994 # CPUs, and sort the list from highest to lowest load. 995 996 syslog('debug', "exchanging intrs between $srccpuid and $tgtcpuid"); 997 998 # Gather together all the ivecs and sort by load 999 1000 my @ivecs = (values(%{$delta->{$srccpuid}{ivecs}}), 1001 values(%{$delta->{$tgtcpuid}{ivecs}})); 1002 return if $#ivecs == -1; 1003 1004 @ivecs = sort({$b->{time} <=> $a->{time}} @ivecs); 1005 1006 # Our "goal" load for srccpuid is the average load across all CPUs. 1007 # find_goal() will find determine the optimum selection of the 1008 # available interrupts which comes closest to this goal without 1009 # falling below the goal. 1010 1011 my $goal = $delta->{avgintrnsec}; 1012 1013 # We know that the interrupt load on tgtcpuid is less than that on 1014 # srccpuid, but its load could still be above avgintrnsec. Don't 1015 # choose a goal which would bring srccpuid below the load on tgtcpuid. 1016 1017 my $avgnsec = 1018 ($delta->{$srccpuid}{intrs} + $delta->{$tgtcpuid}{intrs}) / 2; 1019 if ($goal < $avgnsec) { 1020 $goal = $avgnsec; 1021 } 1022 1023 # If the largest of the interrupts is on srccpuid, leave it there. 1024 # This can help minimize the disruption caused by moving interrupts. 1025 1026 if ($ivecs[0]->{origcpu} == $srccpuid) { 1027 syslog('debug', "Keeping $ivecs[0]->{inum} on $srccpuid"); 1028 $goal -= $ivecs[0]->{time}; 1029 shift(@ivecs); 1030 } 1031 1032 syslog('debug', "GOAL: inums should total $goal"); 1033 find_goal(\@ivecs, $goal); 1034 1035 # find_goal() returned its results to us by setting $ivec->{goal} if 1036 # the ivec should be on srccpuid, or clearing it for tgtcpuid. 1037 # Call move_intr() to update our $delta with the new results. 1038 1039 foreach my $ivec (@ivecs) { 1040 syslog('debug', "ivec $ivec->{inum} goal $ivec->{goal}"); 1041 VERIFY($ivec->{nowcpu} == $srccpuid || 1042 $ivec->{nowcpu} == $tgtcpuid, "cpu2cpu found an ". 1043 "interrupt not currently on src or tgt cpu"); 1044 1045 if ($ivec->{goal} && $ivec->{nowcpu} != $srccpuid) { 1046 move_intr($delta, $ivec->{inum}, $ivec->{nowcpu}, 1047 $srccpuid); 1048 } elsif ($ivec->{goal} == 0 && $ivec->{nowcpu} != $tgtcpuid) { 1049 move_intr($delta, $ivec->{inum}, $ivec->{nowcpu}, 1050 $tgtcpuid); 1051 } 1052 } 1053 move_intr_check($delta, $srccpuid, $tgtcpuid); # asserts 1054 1055 my $newload = $delta->{$srccpuid}{intrs} / $delta->{$srccpuid}{tot}; 1056 VERIFY($newload <= $srcload && $newload > $delta->{avgintrload}, 1057 "cpu2cpu: new load didn't end up in expected range"); 1058} 1059 1060 1061# find_goal() and its helper do_find_goal() are used to find the best 1062# combination of interrupts in order to generate a load that is as close 1063# as possible to a goal load without falling below that goal. Before returning 1064# to its caller, find_goal() sets a new value in the hash of each interrupt, 1065# {goal}, which if set signifies that this interrupt is one of the interrupts 1066# identified as part of the set of interrupts which best meet the goal. 1067# 1068# The arguments to find_goal are a list of ivecs (hash references), sorted 1069# by descending {time}, and the goal load. The goal is relative to {time}. 1070# The best fit is determined by performing a depth-first search. do_find_goal 1071# is the recursive subroutine which carries out the search. 1072# 1073# It is passed an index as an argument, originally 0. On a given invocation, 1074# it is only to consider interrupts in the ivecs array starting at that index. 1075# It then considers two possibilities: 1076# 1) What is the best goal-fit if I include ivecs[index]? 1077# 2) What is the best goal-fit if I exclude ivecs[index]? 1078# To determine case 1, it subtracts the load of ivecs[index] from the goal, 1079# and calls itself recursively with that new goal and index++. 1080# To determine case 2, it calls itself recursively with the same goal and 1081# index++. 1082# 1083# It then compares the two results, decide which one best meets the goals, 1084# and returns the result. The return value is the best-fit's interrupt load, 1085# followed by a list of all the interrupts which make up that best-fit. 1086# 1087# As an optimization, a second array loads[] is created which mirrors ivecs[]. 1088# loads[i] will equal the total loads of all ivecs[i..$#ivecs]. This is used 1089# by do_find_goal to avoid recursing all the way to the end of the ivecs 1090# array if including all remaining interrupts will still leave the best-fit 1091# at below goal load. If so, it then includes all remaining interrupts on 1092# the goal list and returns. 1093# 1094sub find_goal($$) # private function 1095{ 1096 my ($ivecs, $goal) = @_; 1097 1098 my @goals; 1099 my $load; 1100 my $ivec; 1101 1102 if ($goal <= 0) { 1103 @goals = (); # the empty set will best meet the goal 1104 } else { 1105 syslog('debug', "finding goal from intrs %s", 1106 ivecs_to_string(@$ivecs)); 1107 1108 # Generate @loads array 1109 1110 my $tot = 0; 1111 foreach $ivec (@$ivecs) { 1112 $tot += $ivec->{time}; 1113 } 1114 my @loads = (); 1115 foreach $ivec (@$ivecs) { 1116 push(@loads, $tot); 1117 $tot -= $ivec->{time}; 1118 } 1119 ($load, @goals) = do_find_goal($ivecs, \@loads, $goal, 0); 1120 VERIFY($load >= $goal, "find_goal didn't meet goals"); 1121 } 1122 syslog('debug', "goals found: %s", ivecs_to_string(@goals)); 1123 1124 # Set or clear $ivec->{goal} for each ivec, based on returned @goals 1125 1126 foreach $ivec (@$ivecs) { 1127 if ($#goals > -1 && $ivec == $goals[0]) { 1128 syslog('debug', "inum $ivec->{inum} on source cpu"); 1129 $ivec->{goal} = 1; 1130 shift(@goals); 1131 } else { 1132 syslog('debug', "inum $ivec->{inum} on target cpu"); 1133 $ivec->{goal} = 0; 1134 } 1135 } 1136} 1137 1138 1139sub do_find_goal($$$$) # private function 1140{ 1141 my ($ivecs, $loads, $goal, $idx) = @_; 1142 1143 if ($idx > $#{$ivecs}) { 1144 return (0); 1145 } 1146 syslog('debug', "$idx: finding goal $goal inum $ivecs->[$idx]{inum}"); 1147 1148 my $load = $ivecs->[$idx]{time}; 1149 my @goals_with = (); 1150 my @goals_without = (); 1151 my ($with, $without); 1152 1153 # If we include all remaining items and we're still below goal, 1154 # stop here. We can just return a result that includes $idx and all 1155 # subsequent ivecs. Since this will still be below goal, there's 1156 # nothing better to be done. 1157 1158 if ($loads->[$idx] <= $goal) { 1159 syslog('debug', 1160 "$idx: including all remaining intrs %s with load %d", 1161 ivecs_to_string(@$ivecs[$idx .. $#{$ivecs}]), 1162 $loads->[$idx]); 1163 return ($loads->[$idx], @$ivecs[$idx .. $#{$ivecs}]); 1164 } 1165 1166 # Evaluate the "with" option, i.e. the best matching goal which 1167 # includes $ivecs->[$idx]. If idx's load is more than our goal load, 1168 # stop here. Once we're above the goal, there is no need to consider 1169 # further interrupts since they'll only take us further from the goal. 1170 1171 if ($goal <= $load) { 1172 $with = $load; # stop here 1173 } else { 1174 ($with, @goals_with) = 1175 do_find_goal($ivecs, $loads, $goal - $load, $idx + 1); 1176 $with += $load; 1177 } 1178 syslog('debug', "$idx: with-load $with intrs %s", 1179 ivecs_to_string($ivecs->[$idx], @goals_with)); 1180 1181 # Evaluate the "without" option, i.e. the best matching goal which 1182 # excludes $ivecs->[$idx]. 1183 1184 ($without, @goals_without) = 1185 &do_find_goal($ivecs, $loads, $goal, $idx + 1); 1186 syslog('debug', "$idx: without-load $without intrs %s", 1187 ivecs_to_string(@goals_without)); 1188 1189 # We now have our "with" and "without" options, and we choose which 1190 # best fits the goal. If one is greater than goal and the other is 1191 # below goal, we choose the one that is greater. If they are both 1192 # below goal, then we choose the one that is greater. If they are 1193 # both above goal, then we choose the smaller. 1194 1195 my $which; # 0 == with, 1 == without 1196 if ($with >= $goal && $without < $goal) { 1197 $which = 0; 1198 } elsif ($with < $goal && $without >= $goal) { 1199 $which = 1; 1200 } elsif ($with >= $goal && $without >= $goal) { 1201 $which = ($without < $with); 1202 } else { 1203 $which = ($without > $with); 1204 } 1205 1206 # Return the load of our best case scenario, followed by all the ivecs 1207 # which compose that goal. 1208 1209 if ($which == 1) { # without 1210 syslog('debug', "$idx: going without"); 1211 return ($without, @goals_without); 1212 } else { 1213 syslog('debug', "$idx: going with"); 1214 return ($with, $ivecs->[$idx], @goals_with); 1215 } 1216 # Not reached 1217} 1218 1219 1220 1221 1222syslog('debug', "intrd is starting".($debug ? " (debug)" : "")); 1223 1224my @deltas = (); 1225my $deltas_tottime = 0; # sum of maxsnap-minsnap across @deltas 1226my $avggoodness; 1227my $baseline_goodness = 0; 1228my $compdelta; 1229 1230my $do_reconfig; 1231 1232# temp variables 1233my $goodness; 1234my $deltatime; 1235my $olddelta; 1236my $olddeltatime; 1237my $delta; 1238my $newstat; 1239my $below_statslen; 1240my $newtime; 1241my $ret; 1242 1243 1244my $gotsig = 0; 1245$SIG{INT} = sub { $gotsig = 1; }; # don't die in the middle of retargeting 1246$SIG{HUP} = $SIG{INT}; 1247$SIG{TERM} = $SIG{INT}; 1248 1249my $ks; 1250if ($using_scengen == 0) { 1251 $ks = Sun::Solaris::Kstat->new(); 1252} else { 1253 $ks = myks_update(); # supplied by the simulator 1254} 1255 1256# If no pci_intrs kstats were found, we need to exit, but we can't because 1257# SMF will restart us and/or report an error to the administrator. But 1258# there's nothing an administrator can do. So print out a message for SMF 1259# logs and silently pause forever. 1260 1261if (!exists($ks->{pci_intrs})) { 1262 print STDERR "$cmdname: no interrupts were found; ". 1263 "your PCI bus may not yet be supported\n"; 1264 pause() while $gotsig == 0; 1265 exit 0; 1266} 1267 1268# See if this is a system with a pcplusmp APIC. 1269# Such systems will get special handling. 1270# Assume that if one bus has a pcplusmp APIC that they all do. 1271 1272# Get a list of pci_intrs kstats. 1273my @elem = values(%{$ks->{pci_intrs}}); 1274my $elem0 = $elem[0]; 1275my $elemval = (values(%$elem0))[0]; 1276 1277# Use its buspath to query the system. It is assumed that either all or none 1278# of the busses on a system are hosted by the pcplusmp APIC. 1279my $pcplusmp_sys = is_pcplusmp($elemval->{buspath}); 1280 1281my $stat = getstat($ks, $pcplusmp_sys); 1282 1283for (;;) { 1284 sub clear_deltas { 1285 @deltas = (); 1286 $deltas_tottime = 0; 1287 $stat = 0; # prevent next gen_delta() from setting {missing} 1288 } 1289 1290 # 1. Sleep, update the kstats, and save the new stats in $newstat. 1291 1292 exit 0 if $gotsig; # if we got ^C / SIGTERM, exit 1293 if ($using_scengen == 0) { 1294 sleep($sleeptime); 1295 exit 0 if $gotsig; # if we got ^C / SIGTERM, exit 1296 $ks->update(); 1297 } else { 1298 $ks = myks_update(); 1299 } 1300 $newstat = getstat($ks, $pcplusmp_sys); 1301 1302 # $stat or $newstat could be zero if they're uninitialized, or if 1303 # getstat() failed. If $stat is zero, move $newstat to $stat, sleep 1304 # and try again. If $newstat is zero, then we also sleep and try 1305 # again, hoping the problem will clear up. 1306 1307 next if (!ref $newstat); 1308 if (!ref $stat) { 1309 $stat = $newstat; 1310 next; 1311 } 1312 1313 # 2. Compare $newstat with the prior set of values, result in %$delta. 1314 1315 $delta = generate_delta($stat, $newstat); 1316 dumpdelta($delta) if $debug; # Dump most recent stats to stdout. 1317 $stat = $newstat; # The new stats now become the old stats. 1318 1319 1320 # 3. If $delta->{missing}, then there has been a reconfiguration of 1321 # either cpus or interrupts (probably both). We need to toss out our 1322 # old set of statistics and start from scratch. 1323 # 1324 # Also, if the delta covers a very long range of time, then we've 1325 # been experiencing a system overload that has resulted in intrd 1326 # not being allowed to run effectively for a while now. As above, 1327 # toss our old statistics and start from scratch. 1328 1329 $deltatime = $delta->{maxsnap} - $delta->{minsnap}; 1330 if ($delta->{missing} > 0 || $deltatime > $statslen) { 1331 clear_deltas(); 1332 syslog('debug', "evaluating interrupt assignments"); 1333 next; 1334 } 1335 1336 1337 # 4. Incorporate new delta into the list of deltas, and associated 1338 # statistics. If we've just now received $statslen deltas, then it's 1339 # time to evaluate a reconfiguration. 1340 1341 $below_statslen = ($deltas_tottime < $statslen); 1342 $deltas_tottime += $deltatime; 1343 $do_reconfig = ($below_statslen && $deltas_tottime >= $statslen); 1344 push(@deltas, $delta); 1345 1346 # 5. Remove old deltas if total time is more than $statslen. We use 1347 # @deltas as a moving average of the last $statslen seconds. Shift 1348 # off the olders deltas, but only if that doesn't cause us to fall 1349 # below $statslen seconds. 1350 1351 while (@deltas > 1) { 1352 $olddelta = $deltas[0]; 1353 $olddeltatime = $olddelta->{maxsnap} - $olddelta->{minsnap}; 1354 $newtime = $deltas_tottime - $olddeltatime; 1355 last if ($newtime < $statslen); 1356 1357 shift(@deltas); 1358 $deltas_tottime = $newtime; 1359 } 1360 1361 # 6. The brains of the operation are here. First, check if we're 1362 # imbalanced, and if so set $do_reconfig. If $do_reconfig is set, 1363 # either because of imbalance or above in step 4, we evaluate a 1364 # new configuration. 1365 # 1366 # First, take @deltas and generate a single "compressed" delta 1367 # which summarizes them all. Pass that to do_reconfig and see 1368 # what it does with it: 1369 # 1370 # $ret == -1 : failure 1371 # $ret == 0 : current config is optimal (or close enough) 1372 # $ret == 1 : reconfiguration has occurred 1373 # 1374 # If $ret is -1 or 1, dump all our deltas and start from scratch. 1375 # Step 4 above will set do_reconfig soon thereafter. 1376 # 1377 # If $ret is 0, then nothing has happened because we're already 1378 # good enough. Set baseline_goodness to current goodness. 1379 1380 $compdelta = compress_deltas(\@deltas); 1381 if (VERIFY(ref($compdelta) eq "HASH", "couldn't compress deltas")) { 1382 clear_deltas(); 1383 next; 1384 } 1385 $compdelta->{goodness} = goodness($compdelta); 1386 dumpdelta($compdelta) if $debug; 1387 1388 $goodness = $compdelta->{goodness}; 1389 syslog('debug', "GOODNESS: %5.2f%%", $goodness * 100); 1390 1391 if ($deltas_tottime >= $statslen && 1392 imbalanced($goodness, $baseline_goodness)) { 1393 $do_reconfig = 1; 1394 } 1395 1396 if ($do_reconfig) { 1397 $ret = do_reconfig($compdelta); 1398 1399 if ($ret != 0) { 1400 clear_deltas(); 1401 syslog('debug', "do_reconfig FAILED!") if $ret == -1; 1402 } else { 1403 syslog('debug', "setting new baseline of $goodness"); 1404 $baseline_goodness = $goodness; 1405 } 1406 } 1407 syslog('debug', "---------------------------------------"); 1408} 1409