1#!/usr/perl5/bin/perl 2# 3# CDDL HEADER START 4# 5# The contents of this file are subject to the terms of the 6# Common Development and Distribution License (the "License"). 7# You may not use this file except in compliance with the License. 8# 9# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10# or http://www.opensolaris.org/os/licensing. 11# See the License for the specific language governing permissions 12# and limitations under the License. 13# 14# When distributing Covered Code, include this CDDL HEADER in each 15# file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16# If applicable, add the following below this CDDL HEADER, with the 17# fields enclosed by brackets "[]" replaced with your own identifying 18# information: Portions Copyright [yyyy] [name of copyright owner] 19# 20# CDDL HEADER END 21# 22 23# 24# Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 25# 26 27require 5.8.4; 28use strict; 29use warnings; 30use POSIX; 31use File::Basename("basename"); 32 33my $cmdname = basename($0); 34 35my $using_scengen = 0; # 1 if using scenario simulator 36my $debug = 0; 37 38my $normal_sleeptime = 10; # time to sleep between samples 39my $idle_sleeptime = 45; # time to sleep when idle 40my $onecpu_sleeptime = (60 * 15); # used if only 1 CPU on system 41my $sleeptime = $normal_sleeptime; # either normal_ or idle_ or onecpu_ 42 43my $idle_intrload = .1; # idle if interrupt load < 10% 44 45my $timerange_toohi = .01; 46my $statslen = 60; # time period (in secs) to keep in @deltas 47 48 49# Parse arguments. intrd does not accept any public arguments; the two 50# arguments below are meant for testing purposes. -D generates a significant 51# amount of syslog output. -S <filename> loads the filename as a perl 52# script. That file is expected to implement a kstat "simulator" which 53# can be used to feed information to intrd and verify intrd's responses. 54 55while ($_ = shift @ARGV) { 56 if ($_ eq "-S" && $#ARGV != -1) { 57 $using_scengen = 1; 58 do $ARGV[0]; # load simulator 59 shift @ARGV; 60 } elsif ($_ eq "-D") { 61 $debug = 1; 62 } 63} 64 65if ($using_scengen == 0) { 66 require Sun::Solaris::Kstat; 67 require Sun::Solaris::Intrs; 68 import Sun::Solaris::Intrs(qw(intrmove is_apic)); 69 require Sys::Syslog; 70 import Sys::Syslog; 71 openlog($cmdname, 'pid', 'daemon'); 72 setlogmask(Sys::Syslog::LOG_UPTO($debug > 0 ? &Sys::Syslog::LOG_DEBUG : 73 &Sys::Syslog::LOG_INFO)); 74} 75 76my $asserted = 0; 77my $assert_level = 'debug'; # syslog level for assertion failures 78sub VERIFY($@) 79{ 80 my $bad = (shift() == 0); # $_[0] == 0 means assert failed 81 if ($bad) { 82 my $msg = shift(); 83 syslog($assert_level, "VERIFY: $msg", @_); 84 $asserted++; 85 } 86 return ($bad); 87} 88 89 90 91 92sub getstat($$); 93sub generate_delta($$); 94sub compress_deltas($); 95sub dumpdelta($); 96 97sub goodness($); 98sub imbalanced($$); 99sub do_reconfig($); 100 101sub goodness_cpu($$); # private function 102sub move_intr($$$$); # private function 103sub ivecs_to_string(@); # private function 104sub do_find_goal($$$$); # private function 105sub find_goal($$); # private function 106sub do_reconfig_cpu2cpu($$$$); # private function 107sub do_reconfig_cpu($$$); # private function 108 109 110# 111# What follow are the basic data structures routines of intrd. 112# 113# getstat() is responsible for reading the kstats and generating a "stat" hash. 114# 115# generate_delta() is responsible for taking two "stat" hashes and creating 116# a new "delta" hash that represents what has changed over time. 117# 118# compress_deltas() is responsible for taking a list of deltas and generating 119# a single delta hash that encompasses all the time periods described by the 120# deltas. 121 122 123# 124# getstat() is handed a reference to a kstat and generates a hash, returned 125# by reference, containing all the fields from the kstats which we need. 126# If it returns the scalar 0, it failed to gather the kstats, and the caller 127# should react accordingly. 128# 129# getstat() is also responsible for maintaining a reasonable $sleeptime. 130# 131# {"snaptime"} kstat's snaptime 132# {<cpuid>} one hash reference per online cpu 133# ->{"tot"} == cpu:<cpuid>:sys:cpu_nsec_{user + kernel + idle} 134# ->{"crtime"} == cpu:<cpuid>:sys:crtime 135# ->{"ivecs"} 136# ->{<cookie#>} iterates over pci_intrs::<nexus>:cookie 137# ->{"time"} == pci_intrs:<ivec#>:<nexus>:time (in nsec) 138# ->{"pil"} == pci_intrs:<ivec#>:<nexus>:pil 139# ->{"crtime"} == pci_intrs:<ivec#>:<nexus>:crtime 140# ->{"ino"} == pci_intrs:<ivec#>:<nexus>:ino 141# ->{"num_ino"} == num inos of single device instance sharing this entry 142# Will be > 1 on pcplusmp X86 systems for devices 143# with multiple MSI interrupts. 144# ->{"buspath"} == pci_intrs:<ivec#>:<nexus>:buspath 145# ->{"name"} == pci_intrs:<ivec#>:<nexus>:name 146# ->{"ihs"} == pci_intrs:<ivec#>:<nexus>:ihs 147# 148 149sub getstat($$) 150{ 151 my ($ks, $pcplusmp_sys) = @_; 152 153 my $cpucnt = 0; 154 my %stat = (); 155 my ($minsnap, $maxsnap); 156 157 # Hash of hash which matches (MSI device, ino) combos to kstats. 158 my %msidevs = (); 159 160 # kstats are not generated atomically. Each kstat hierarchy will 161 # have been generated within the kernel at a different time. On a 162 # thrashing system, we may not run quickly enough in order to get 163 # coherent kstat timing information across all the kstats. To 164 # determine if this is occurring, $minsnap/$maxsnap are used to 165 # find the breadth between the first and last snaptime of all the 166 # kstats we access. $maxsnap - $minsnap roughly represents the 167 # total time taken up in getstat(). If this time approaches the 168 # time between snapshots, our results may not be useful. 169 170 $minsnap = -1; # snaptime is always a positive number 171 $maxsnap = $minsnap; 172 173 # Iterate over the cpus in cpu:<cpuid>::. Check 174 # cpu_info:<cpuid>:cpu_info<cpuid>:state to make sure the 175 # processor is "on-line". If not, it isn't accepting interrupts 176 # and doesn't concern us. 177 # 178 # Record cpu:<cpuid>:sys:snaptime, and check $minsnap/$maxsnap. 179 180 while (my ($cpu, $cpst) = each %{$ks->{cpu}}) { 181 next if !exists($ks->{cpu_info}{$cpu}{"cpu_info$cpu"}{state}); 182 #"state" fld of kstat w/ 183 # modname inst name-"cpuinfo0" 184 my $state = $ks->{cpu_info}{$cpu}{"cpu_info$cpu"}{state}; 185 next if ($state !~ /^on-line\0/); 186 my $cpu_sys = $cpst->{sys}; 187 188 $stat{$cpu}{tot} = ($cpu_sys->{cpu_nsec_idle} + 189 $cpu_sys->{cpu_nsec_user} + 190 $cpu_sys->{cpu_nsec_kernel}); 191 $stat{$cpu}{crtime} = $cpu_sys->{crtime}; 192 $stat{$cpu}{ivecs} = {}; 193 194 if ($minsnap == -1 || $cpu_sys->{snaptime} < $minsnap) { 195 $minsnap = $cpu_sys->{snaptime}; 196 } 197 if ($cpu_sys->{snaptime} > $maxsnap) { 198 $maxsnap = $cpu_sys->{snaptime}; 199 } 200 $cpucnt++; 201 } 202 203 if ($cpucnt <= 1) { 204 $sleeptime = $onecpu_sleeptime; 205 return (0); # nothing to do with 1 CPU 206 } 207 208 # Iterate over the ivecs. If the cpu is not on-line, ignore the 209 # ivecs mapped to it, if any. 210 # 211 # Record pci_intrs:{inum}:<nexus>:time, snaptime, crtime, pil, 212 # ino, name, and buspath. Check $minsnap/$maxsnap. 213 214 foreach my $inst (values(%{$ks->{pci_intrs}})) { 215 my $intrcfg = (values(%$inst))[0]; 216 my $cpu = $intrcfg->{cpu}; 217 218 next unless exists $stat{$cpu}; 219 next if ($intrcfg->{type} =~ /^disabled\0/); 220 221 # Perl looks beyond NULL chars in pattern matching. 222 # Truncate name field at the first NULL 223 $intrcfg->{name} =~ s/\0.*$//; 224 225 if ($intrcfg->{snaptime} < $minsnap) { 226 $minsnap = $intrcfg->{snaptime}; 227 } elsif ($intrcfg->{snaptime} > $maxsnap) { 228 $maxsnap = $intrcfg->{snaptime}; 229 } 230 231 my $cookie = "$intrcfg->{buspath} $intrcfg->{ino}"; 232 if (exists $stat{$cpu}{ivecs}{$cookie}) { 233 my $cookiestats = $stat{$cpu}{ivecs}{$cookie}; 234 235 $cookiestats->{time} += $intrcfg->{time}; 236 $cookiestats->{name} .= "/$intrcfg->{name}"; 237 238 # If this new interrupt sharing $cookie represents a 239 # change from an earlier getstat, make sure that 240 # generate_delta will see the change by setting 241 # crtime to the most recent crtime of its components. 242 243 if ($intrcfg->{crtime} > $cookiestats->{crtime}) { 244 $cookiestats->{crtime} = $intrcfg->{crtime}; 245 } 246 $cookiestats->{ihs}++; 247 next; 248 } 249 $stat{$cpu}{ivecs}{$cookie}{time} = $intrcfg->{time}; 250 $stat{$cpu}{ivecs}{$cookie}{crtime} = $intrcfg->{crtime}; 251 $stat{$cpu}{ivecs}{$cookie}{pil} = $intrcfg->{pil}; 252 $stat{$cpu}{ivecs}{$cookie}{ino} = $intrcfg->{ino}; 253 $stat{$cpu}{ivecs}{$cookie}{num_ino} = 1; 254 $stat{$cpu}{ivecs}{$cookie}{buspath} = $intrcfg->{buspath}; 255 $stat{$cpu}{ivecs}{$cookie}{name} = $intrcfg->{name}; 256 $stat{$cpu}{ivecs}{$cookie}{ihs} = 1; 257 258 if ($pcplusmp_sys && ($intrcfg->{type} =~ /^msi\0/)) { 259 if (!(exists($msidevs{$intrcfg->{name}}))) { 260 $msidevs{$intrcfg->{name}} = {}; 261 } 262 $msidevs{$intrcfg->{name}}{$intrcfg->{ino}} = 263 \$stat{$cpu}{ivecs}{$cookie}; 264 } 265 } 266 267 # All MSI interrupts of a device instance share a single MSI address. 268 # On X86 systems with an APIC, this MSI address is interpreted as CPU 269 # routing info by the APIC. For this reason, on these platforms, all 270 # interrupts for MSI devices must be moved to the same CPU at the same 271 # time. 272 # 273 # Since all interrupts will be on the same CPU on these platforms, all 274 # interrupts can be consolidated into one ivec entry. For such devices, 275 # num_ino will be > 1 to denote that a group move is needed. 276 277 # Loop thru all MSI devices on X86 pcplusmp systems. 278 # Nop on other systems. 279 foreach my $msidevkey (sort keys %msidevs) { 280 281 # Loop thru inos of the device, sorted by lowest value first 282 # For each cookie found for a device, incr num_ino for the 283 # lowest cookie and remove other cookies. 284 285 # Assumes PIL is the same for first and current cookies 286 287 my $first_ino = -1; 288 my $first_cookiep; 289 my $curr_cookiep; 290 foreach my $inokey (sort keys %{$msidevs{$msidevkey}}) { 291 $curr_cookiep = $msidevs{$msidevkey}{$inokey}; 292 if ($first_ino == -1) { 293 $first_ino = $inokey; 294 $first_cookiep = $curr_cookiep; 295 } else { 296 $$first_cookiep->{num_ino}++; 297 $$first_cookiep->{time} += 298 $$curr_cookiep->{time}; 299 if ($$curr_cookiep->{crtime} > 300 $$first_cookiep->{crtime}) { 301 $$first_cookiep->{crtime} = 302 $$curr_cookiep->{crtime}; 303 } 304 # Invalidate this cookie, less complicated and 305 # more efficient than deleting it. 306 $$curr_cookiep->{num_ino} = 0; 307 } 308 } 309 } 310 311 # We define the timerange as the amount of time spent gathering the 312 # various kstats, divided by our sleeptime. If we take a lot of time 313 # to access the kstats, and then we create a delta comparing these 314 # kstats with a prior set of kstats, that delta will cover 315 # substaintially different amount of time depending upon which 316 # interrupt or CPU is being examined. 317 # 318 # By checking the timerange here, we guarantee that any deltas 319 # created from these kstats will contain self-consistent data, 320 # in that all CPUs and interrupts cover a similar span of time. 321 # 322 # $timerange_toohi is the upper bound. Any timerange above 323 # this is thrown out as garbage. If the stat is safely within this 324 # bound, we treat the stat as representing an instant in time, rather 325 # than the time range it actually spans. We arbitrarily choose minsnap 326 # as the snaptime of the stat. 327 328 $stat{snaptime} = $minsnap; 329 my $timerange = ($maxsnap - $minsnap) / $sleeptime; 330 return (0) if ($timerange > $timerange_toohi); # i.e. failure 331 return (\%stat); 332} 333 334# 335# dumpdelta takes a reference to our "delta" structure: 336# {"missing"} "1" if the delta's component stats had inconsistencies 337# {"minsnap"} time of the first kstat snaptime used in this delta 338# {"maxsnap"} time of the last kstat snaptime used in this delta 339# {"goodness"} cost function applied to this delta 340# {"avgintrload"} avg of interrupt load across cpus, as a percentage 341# {"avgintrnsec"} avg number of nsec spent in interrupts, per cpu 342# {<cpuid>} iterates over on-line cpus 343# ->{"intrs"} cpu's movable intr time (sum of "time" for each ivec) 344# ->{"tot"} CPU load from all sources in nsec 345# ->{"bigintr"} largest value of {ivecs}{<ivec#>}{time} from below 346# ->{"intrload"} intrs / tot 347# ->{"ivecs"} 348# ->{<ivec#>} iterates over ivecs for this cpu 349# ->{"time"} time used by this interrupt (in nsec) 350# ->{"pil"} pil level of this interrupt 351# ->{"ino"} interrupt number (or base vector if MSI group) 352# ->{"buspath"} filename of the directory of the device's bus 353# ->{"name"} device name 354# ->{"ihs"} number of different handlers sharing this ino 355# ->{"num_ino"} number of interrupt vectors in MSI group 356# 357# It prints out the delta structure in a nice, human readable display. 358# 359 360sub dumpdelta($) 361{ 362 my ($delta) = @_; 363 364 # print global info 365 366 syslog('debug', "dumpdelta:"); 367 syslog('debug', " RECONFIGURATION IN DELTA") if $delta->{missing} > 0; 368 syslog('debug', " avgintrload: %5.2f%% avgintrnsec: %d", 369 $delta->{avgintrload} * 100, $delta->{avgintrnsec}); 370 syslog('debug', " goodness: %5.2f%%", $delta->{goodness} * 100) 371 if exists($delta->{goodness}); 372 373 # iterate over cpus 374 375 while (my ($cpu, $cpst) = each %$delta) { 376 next if !ref($cpst); # skip non-cpuid entries 377 my $tot = $cpst->{tot}; 378 syslog('debug', " cpu %3d intr %7.3f%% (bigintr %7.3f%%)", 379 $cpu, $cpst->{intrload}*100, $cpst->{bigintr}*100/$tot); 380 syslog('debug', " intrs %d, bigintr %d", 381 $cpst->{intrs}, $cpst->{bigintr}); 382 383 # iterate over ivecs on this cpu 384 385 while (my ($ivec, $ivst) = each %{$cpst->{ivecs}}) { 386 syslog('debug', " %15s:\"%s\": %7.3f%% %d", 387 ($ivst->{ihs} > 1 ? "$ivst->{name}($ivst->{ihs})" : 388 $ivst->{name}), $ivec, 389 $ivst->{time}*100 / $tot, $ivst->{time}); 390 } 391 } 392} 393 394# 395# generate_delta($stat, $newstat) takes two stat references, returned from 396# getstat(), and creates a %delta. %delta (not surprisingly) contains the 397# same basic info as stat and newstat, but with the timestamps as deltas 398# instead of absolute times. We return a reference to the delta. 399# 400 401sub generate_delta($$) 402{ 403 my ($stat, $newstat) = @_; 404 405 my %delta = (); 406 my $intrload; 407 my $intrnsec; 408 my $cpus; 409 410 # Take the worstcase timerange 411 $delta{minsnap} = $stat->{snaptime}; 412 $delta{maxsnap} = $newstat->{snaptime}; 413 if (VERIFY($delta{maxsnap} > $delta{minsnap}, 414 "generate_delta: stats aren't ascending")) { 415 $delta{missing} = 1; 416 return (\%delta); 417 } 418 419 # if there are a different number of cpus in the stats, set missing 420 421 $delta{missing} = (keys(%$stat) != keys(%$newstat)); 422 if (VERIFY($delta{missing} == 0, 423 "generate_delta: number of CPUs changed")) { 424 return (\%delta); 425 } 426 427 # scan through every cpu in %newstat and compare against %stat 428 429 while (my ($cpu, $newcpst) = each %$newstat) { 430 next if !ref($newcpst); # skip non-cpuid fields 431 432 # If %stat is missing a cpu from %newstat, then it was just 433 # onlined. Mark missing. 434 435 if (VERIFY(exists $stat->{$cpu} && 436 $stat->{$cpu}{crtime} == $newcpst->{crtime}, 437 "generate_delta: cpu $cpu changed")) { 438 $delta{missing} = 1; 439 return (\%delta); 440 } 441 my $cpst = $stat->{$cpu}; 442 $delta{$cpu}{tot} = $newcpst->{tot} - $cpst->{tot}; 443 if (VERIFY($delta{$cpu}{tot} >= 0, 444 "generate_delta: deltas are not ascending?")) { 445 $delta{missing} = 1; 446 delete($delta{$cpu}); 447 return (\%delta); 448 } 449 # Avoid remote chance of division by zero 450 $delta{$cpu}{tot} = 1 if $delta{$cpu}{tot} == 0; 451 $delta{$cpu}{intrs} = 0; 452 $delta{$cpu}{bigintr} = 0; 453 454 my %ivecs = (); 455 $delta{$cpu}{ivecs} = \%ivecs; 456 457 # if the number of ivecs differs, set missing 458 459 if (VERIFY(keys(%{$cpst->{ivecs}}) == 460 keys(%{$newcpst->{ivecs}}), 461 "generate_delta: cpu $cpu has more/less". 462 " interrupts")) { 463 $delta{missing} = 1; 464 return (\%delta); 465 } 466 467 while (my ($inum, $newivec) = each %{$newcpst->{ivecs}}) { 468 469 # Unused cookie, corresponding to an MSI vector which 470 # is part of a group. The whole group is accounted for 471 # by a different cookie. 472 next if ($newivec->{num_ino} == 0); 473 474 # If this ivec doesn't exist in $stat, or if $stat 475 # shows a different crtime, set missing. 476 if (VERIFY(exists $cpst->{ivecs}{$inum} && 477 $cpst->{ivecs}{$inum}{crtime} == 478 $newivec->{crtime}, 479 "generate_delta: cpu $cpu inum $inum". 480 " has changed")) { 481 $delta{missing} = 1; 482 return (\%delta); 483 } 484 my $ivec = $cpst->{ivecs}{$inum}; 485 486 # Create $delta{$cpu}{ivecs}{$inum}. 487 488 my %dltivec = (); 489 $delta{$cpu}{ivecs}{$inum} = \%dltivec; 490 491 # calculate time used by this interrupt 492 493 my $time = $newivec->{time} - $ivec->{time}; 494 if (VERIFY($time >= 0, 495 "generate_delta: ivec went backwards?")) { 496 $delta{missing} = 1; 497 delete($delta{$cpu}{ivecs}{$inum}); 498 return (\%delta); 499 } 500 $delta{$cpu}{intrs} += $time; 501 $dltivec{time} = $time; 502 if ($time > $delta{$cpu}{bigintr}) { 503 $delta{$cpu}{bigintr} = $time; 504 } 505 506 # Transfer over basic info about the kstat. We 507 # don't have to worry about discrepancies between 508 # ivec and newivec because we verified that both 509 # have the same crtime. 510 511 $dltivec{pil} = $newivec->{pil}; 512 $dltivec{ino} = $newivec->{ino}; 513 $dltivec{buspath} = $newivec->{buspath}; 514 $dltivec{name} = $newivec->{name}; 515 $dltivec{ihs} = $newivec->{ihs}; 516 $dltivec{num_ino} = $newivec->{num_ino}; 517 } 518 if ($delta{$cpu}{tot} < $delta{$cpu}{intrs}) { 519 # Ewww! Hopefully just a rounding error. 520 # Make something up. 521 $delta{$cpu}{tot} = $delta{$cpu}{intrs}; 522 } 523 $delta{$cpu}{intrload} = 524 $delta{$cpu}{intrs} / $delta{$cpu}{tot}; 525 $intrload += $delta{$cpu}{intrload}; 526 $intrnsec += $delta{$cpu}{intrs}; 527 $cpus++; 528 } 529 if ($cpus > 0) { 530 $delta{avgintrload} = $intrload / $cpus; 531 $delta{avgintrnsec} = $intrnsec / $cpus; 532 } else { 533 $delta{avgintrload} = 0; 534 $delta{avgintrnsec} = 0; 535 } 536 return (\%delta); 537} 538 539 540# compress_delta takes a list of deltas, and returns a single new delta 541# which represents the combined information from all the deltas. The deltas 542# provided are assumed to be sequential in time. The resulting compressed 543# delta looks just like any other delta. This new delta is also more accurate 544# since its statistics are averaged over a longer period than any of the 545# original deltas. 546 547sub compress_deltas ($) 548{ 549 my ($deltas) = @_; 550 551 my %newdelta = (); 552 my ($intrs, $tot); 553 my $cpus = 0; 554 my ($high_intrload) = 0; 555 556 if (VERIFY($#$deltas != -1, 557 "compress_deltas: list of delta is empty?")) { 558 return (0); 559 } 560 $newdelta{minsnap} = $deltas->[0]{minsnap}; 561 $newdelta{maxsnap} = $deltas->[$#$deltas]{maxsnap}; 562 $newdelta{missing} = 0; 563 564 foreach my $delta (@$deltas) { 565 if (VERIFY($delta->{missing} == 0, 566 "compressing bad deltas?")) { 567 return (0); 568 } 569 while (my ($cpuid, $cpu) = each %$delta) { 570 next if !ref($cpu); 571 572 $intrs += $cpu->{intrs}; 573 $tot += $cpu->{tot}; 574 $newdelta{$cpuid}{intrs} += $cpu->{intrs}; 575 $newdelta{$cpuid}{tot} += $cpu->{tot}; 576 if (!exists $newdelta{$cpuid}{ivecs}) { 577 my %ivecs = (); 578 $newdelta{$cpuid}{ivecs} = \%ivecs; 579 } 580 while (my ($inum, $ivec) = each %{$cpu->{ivecs}}) { 581 my $newivecs = $newdelta{$cpuid}{ivecs}; 582 $newivecs->{$inum}{time} += $ivec->{time}; 583 $newivecs->{$inum}{pil} = $ivec->{pil}; 584 $newivecs->{$inum}{ino} = $ivec->{ino}; 585 $newivecs->{$inum}{buspath} = $ivec->{buspath}; 586 $newivecs->{$inum}{name} = $ivec->{name}; 587 $newivecs->{$inum}{ihs} = $ivec->{ihs}; 588 $newivecs->{$inum}{num_ino} = $ivec->{num_ino}; 589 } 590 } 591 } 592 foreach my $cpu (values(%newdelta)) { 593 next if !ref($cpu); # ignore non-cpu fields 594 $cpus++; 595 596 my $bigintr = 0; 597 foreach my $ivec (values(%{$cpu->{ivecs}})) { 598 if ($ivec->{time} > $bigintr) { 599 $bigintr = $ivec->{time}; 600 } 601 } 602 $cpu->{bigintr} = $bigintr; 603 $cpu->{intrload} = $cpu->{intrs} / $cpu->{tot}; 604 if ($high_intrload < $cpu->{intrload}) { 605 $high_intrload = $cpu->{intrload}; 606 } 607 $cpu->{tot} = 1 if $cpu->{tot} <= 0; 608 } 609 if ($cpus == 0) { 610 $newdelta{avgintrnsec} = 0; 611 $newdelta{avgintrload} = 0; 612 } else { 613 $newdelta{avgintrnsec} = $intrs / $cpus; 614 $newdelta{avgintrload} = $intrs / $tot; 615 } 616 $sleeptime = ($high_intrload < $idle_intrload) ? $idle_sleeptime : 617 $normal_sleeptime; 618 return (\%newdelta); 619} 620 621 622 623 624 625# What follow are the core functions responsible for examining the deltas 626# generated above and deciding what to do about them. 627# 628# goodness() and its helper goodness_cpu() return a heuristic which describe 629# how good (or bad) the current interrupt balance is. The value returned will 630# be between 0 and 1, with 0 representing maximum goodness, and 1 representing 631# maximum badness. 632# 633# imbalanced() compares a current and historical value of goodness, and 634# determines if there has been enough change to warrant evaluating a 635# reconfiguration of the interrupts 636# 637# do_reconfig(), and its helpers, do_reconfig_cpu(), do_reconfig_cpu2cpu(), 638# find_goal(), do_find_goal(), and move_intr(), are responsible for examining 639# a delta and determining the best possible assignment of interrupts to CPUs. 640# 641# It is important that do_reconfig() be in alignment with goodness(). If 642# do_reconfig were to generate a new interrupt distribution that worsened 643# goodness, we could get into a pathological loop with intrd fighting itself, 644# constantly deciding that things are imbalanced, and then changing things 645# only to make them worse. 646 647 648 649# any goodness over $goodness_unsafe_load is considered really bad 650# goodness must drop by at least $goodness_mindelta for a reconfig 651 652my $goodness_unsafe_load = .9; 653my $goodness_mindelta = .1; 654 655# goodness(%delta) examines a delta and return its "goodness". goodness will 656# be between 0 (best) and 1 (major bad). goodness is determined by evaluating 657# the goodness of each individual cpu, and returning the worst case. This 658# helps on systems with many CPUs, where otherwise a single pathological CPU 659# might otherwise be ignored because the average was OK. 660# 661# To calculate the goodness of an individual CPU, we start by looking at its 662# load due to interrupts. If the load is above a certain high threshold and 663# there is more than one interrupt assigned to this CPU, we set goodness 664# to worst-case. If the load is below the average interrupt load of all CPUs, 665# then we return best-case, since what's to complain about? 666# 667# Otherwise we look at how much the load is above the average, and return 668# that as the goodness, with one caveat: we never return more than the CPU's 669# interrupt load ignoring its largest single interrupt source. This is 670# because a CPU with one high-load interrupt, and no other interrupts, is 671# perfectly balanced. Nothing can be done to improve the situation, and thus 672# it is perfectly balanced even if the interrupt's load is 100%. 673 674sub goodness($) 675{ 676 my ($delta) = @_; 677 678 return (1) if $delta->{missing} > 0; 679 680 my $high_goodness = 0; 681 my $goodness; 682 683 foreach my $cpu (values(%$delta)) { 684 next if !ref($cpu); # skip non-cpuid fields 685 686 $goodness = goodness_cpu($cpu, $delta->{avgintrload}); 687 if (VERIFY($goodness >= 0 && $goodness <= 1, 688 "goodness: cpu goodness out of range?")) { 689 dumpdelta($delta); 690 return (1); 691 } 692 if ($goodness == 1) { 693 return (1); # worst case, no need to continue 694 } 695 if ($goodness > $high_goodness) { 696 $high_goodness = $goodness; 697 } 698 } 699 return ($high_goodness); 700} 701 702sub goodness_cpu($$) # private function 703{ 704 my ($cpu, $avgintrload) = @_; 705 706 my $goodness; 707 my $load = $cpu->{intrs} / $cpu->{tot}; 708 709 return (0) if ($load < $avgintrload); # low loads are perfectly good 710 711 # Calculate $load_no_bigintr, which represents the load 712 # due to interrupts, excluding the one biggest interrupt. 713 # This is the most gain we can get on this CPU from 714 # offloading interrupts. 715 716 my $load_no_bigintr = ($cpu->{intrs} - $cpu->{bigintr}) / $cpu->{tot}; 717 718 # A major imbalance is indicated if a CPU is saturated 719 # with interrupt handling, and it has more than one 720 # source of interrupts. Those other interrupts could be 721 # starved if of a lower pil. Return a goodness of 1, 722 # which is the worst possible return value, 723 # which will effectively contaminate this entire delta. 724 725 my $cnt = keys(%{$cpu->{ivecs}}); 726 727 if ($load > $goodness_unsafe_load && $cnt > 1) { 728 return (1); 729 } 730 $goodness = $load - $avgintrload; 731 if ($goodness > $load_no_bigintr) { 732 $goodness = $load_no_bigintr; 733 } 734 return ($goodness); 735} 736 737 738# imbalanced() is used by the main routine to determine if the goodness 739# has shifted far enough from our last baseline to warrant a reassignment 740# of interrupts. A very high goodness indicates that a CPU is way out of 741# whack. If the goodness has varied too much since the baseline, then 742# perhaps a reconfiguration is worth considering. 743 744sub imbalanced ($$) 745{ 746 my ($goodness, $baseline) = @_; 747 748 # Return 1 if we are pathological, or creeping away from the baseline 749 750 return (1) if $goodness > .50; 751 return (1) if abs($goodness - $baseline) > $goodness_mindelta; 752 return (0); 753} 754 755# do_reconfig(), do_reconfig_cpu(), and do_reconfig_cpu2cpu(), are the 756# decision-making functions responsible for generating a new interrupt 757# distribution. They are designed with the definition of goodness() in 758# mind, i.e. they use the same definition of "good distribution" as does 759# goodness(). 760# 761# do_reconfig() is responsible for deciding whether a redistribution is 762# actually warranted. If the goodness is already pretty good, it doesn't 763# waste the CPU time to generate a new distribution. If it 764# calculates a new distribution and finds that it is not sufficiently 765# improved from the prior distirbution, it will not do the redistribution, 766# mainly to avoid the disruption to system performance caused by 767# rejuggling interrupts. 768# 769# Its main loop works by going through a list of cpus sorted from 770# highest to lowest interrupt load. It removes the highest-load cpus 771# one at a time and hands them off to do_reconfig_cpu(). This function 772# then re-sorts the remaining CPUs from lowest to highest interrupt load, 773# and one at a time attempts to rejuggle interrupts between the original 774# high-load CPU and the low-load CPU. Rejuggling on a high-load CPU is 775# considered finished as soon as its interrupt load is within 776# $goodness_mindelta of the average interrupt load. Such a CPU will have 777# a goodness of below the $goodness_mindelta threshold. 778 779# 780# move_intr(\%delta, $inum, $oldcpu, $newcpu) 781# used by reconfiguration code to move an interrupt between cpus within 782# a delta. This manipulates data structures, and does not actually move 783# the interrupt on the running system. 784# 785sub move_intr($$$$) # private function 786{ 787 my ($delta, $inum, $oldcpuid, $newcpuid) = @_; 788 789 my $ivec = $delta->{$oldcpuid}{ivecs}{$inum}; 790 791 # Remove ivec from old cpu 792 793 my $oldcpu = $delta->{$oldcpuid}; 794 $oldcpu->{intrs} -= $ivec->{time}; 795 $oldcpu->{intrload} = $oldcpu->{intrs} / $oldcpu->{tot}; 796 delete($oldcpu->{ivecs}{$inum}); 797 798 VERIFY($oldcpu->{intrs} >= 0, "move_intr: intr's time > total time?"); 799 VERIFY($ivec->{time} <= $oldcpu->{bigintr}, 800 "move_intr: intr's time > bigintr?"); 801 802 if ($ivec->{time} >= $oldcpu->{bigintr}) { 803 my $bigtime = 0; 804 805 foreach my $ivec (values(%{$oldcpu->{ivecs}})) { 806 $bigtime = $ivec->{time} if $ivec->{time} > $bigtime; 807 } 808 $oldcpu->{bigintr} = $bigtime; 809 } 810 811 # Add ivec onto new cpu 812 813 my $newcpu = $delta->{$newcpuid}; 814 815 $ivec->{nowcpu} = $newcpuid; 816 $newcpu->{intrs} += $ivec->{time}; 817 $newcpu->{intrload} = $newcpu->{intrs} / $newcpu->{tot}; 818 $newcpu->{ivecs}{$inum} = $ivec; 819 820 $newcpu->{bigintr} = $ivec->{time} 821 if $ivec->{time} > $newcpu->{bigintr}; 822} 823 824sub move_intr_check($$$) # private function 825{ 826 my ($delta, $oldcpuid, $newcpuid) = @_; 827 828 VERIFY($delta->{$oldcpuid}{tot} >= $delta->{$oldcpuid}{intrs}, 829 "Moved interrupts left 100+%% load on src cpu"); 830 VERIFY($delta->{$newcpuid}{tot} >= $delta->{$newcpuid}{intrs}, 831 "Moved interrupts left 100+%% load on tgt cpu"); 832} 833 834sub ivecs_to_string(@) # private function 835{ 836 my $str = ""; 837 foreach my $ivec (@_) { 838 $str = "$str $ivec->{inum}"; 839 } 840 return ($str); 841} 842 843 844sub do_reconfig($) 845{ 846 my ($delta) = @_; 847 848 my $goodness = $delta->{goodness}; 849 850 # We can't improve goodness to better than 0. We should stop here 851 # if, even if we achieve a goodness of 0, the improvement is still 852 # too small to merit the action. 853 854 if ($goodness - 0 < $goodness_mindelta) { 855 syslog('debug', "goodness good enough, don't reconfig"); 856 return (0); 857 } 858 859 syslog('notice', "Optimizing interrupt assignments"); 860 861 if (VERIFY ($delta->{missing} == 0, "RECONFIG Aborted: should not ". 862 "have a delta with missing")) { 863 return (-1); 864 } 865 866 # Make a list of all cpuids, and also add some extra information 867 # to the ivec structures. 868 869 my @cpusortlist = (); 870 871 while (my ($cpuid, $cpu) = each %$delta) { 872 next if !ref($cpu); # skip non-cpu entries 873 874 push(@cpusortlist, $cpuid); 875 while (my ($inum, $ivec) = each %{$cpu->{ivecs}}) { 876 $ivec->{origcpu} = $cpuid; 877 $ivec->{nowcpu} = $cpuid; 878 $ivec->{inum} = $inum; 879 } 880 } 881 882 # Sort the list of CPUs from highest to lowest interrupt load. 883 # Remove the top CPU from that list and attempt to redistribute 884 # its interrupts. If the CPU has a goodness below a threshold, 885 # just ignore the CPU and move to the next one. If the CPU's 886 # load falls below the average load plus that same threshold, 887 # then there are no CPUs left worth reconfiguring, and we're done. 888 889 while (@cpusortlist) { 890 # Re-sort cpusortlist each time, since do_reconfig_cpu can 891 # move interrupts around. 892 893 @cpusortlist = 894 sort({$delta->{$b}{intrload} <=> $delta->{$a}{intrload}} 895 @cpusortlist); 896 897 my $cpu = shift(@cpusortlist); 898 if (($delta->{$cpu}{intrload} <= $goodness_unsafe_load) && 899 ($delta->{$cpu}{intrload} <= 900 $delta->{avgintrload} + $goodness_mindelta)) { 901 syslog('debug', "finished reconfig: cpu $cpu load ". 902 "$delta->{$cpu}{intrload} avgload ". 903 "$delta->{avgintrload}"); 904 last; 905 } 906 if (goodness_cpu($delta->{$cpu}, $delta->{avgintrload}) < 907 $goodness_mindelta) { 908 next; 909 } 910 do_reconfig_cpu($delta, \@cpusortlist, $cpu); 911 } 912 913 # How good a job did we do? If the improvement was minimal, and 914 # our goodness wasn't pathological (and thus needing any help it 915 # can get), then don't bother moving the interrupts. 916 917 my $newgoodness = goodness($delta); 918 VERIFY($newgoodness <= $goodness, 919 "reconfig: result has worse goodness?"); 920 921 if (($goodness != 1 || $newgoodness == 1) && 922 $goodness - $newgoodness < $goodness_mindelta) { 923 syslog('debug', "goodness already near optimum, ". 924 "don't reconfig"); 925 return (0); 926 } 927 syslog('debug', "goodness %5.2f%% --> %5.2f%%", $goodness*100, 928 $newgoodness*100); 929 930 # Time to move those interrupts! 931 932 my $ret = 1; 933 my $warned = 0; 934 while (my ($cpuid, $cpu) = each %$delta) { 935 next if $cpuid =~ /\D/; 936 while (my ($inum, $ivec) = each %{$cpu->{ivecs}}) { 937 next if ($ivec->{origcpu} == $cpuid); 938 939 if (!intrmove($ivec->{buspath}, $ivec->{origcpu}, 940 $ivec->{ino}, $cpuid, $ivec->{num_ino})) { 941 syslog('warning', "Unable to move interrupts") 942 if $warned++ == 0; 943 syslog('debug', "Unable to move buspath ". 944 "$ivec->{buspath} ino $ivec->{ino} to ". 945 "cpu $cpuid"); 946 $ret = -1; 947 } 948 } 949 } 950 951 syslog('notice', "Interrupt assignments optimized"); 952 return ($ret); 953} 954 955sub do_reconfig_cpu($$$) # private function 956{ 957 my ($delta, $cpusortlist, $oldcpuid) = @_; 958 959 # We have been asked to rejuggle interrupts between $oldcpuid and 960 # other CPUs found on $cpusortlist so as to improve the load on 961 # $oldcpuid. We reverse $cpusortlist to get our own copy of the 962 # list, sorted from lowest to highest interrupt load. One at a 963 # time, shift a CPU off of this list of CPUs, and attempt to 964 # rejuggle interrupts between the two CPUs. Don't do this if the 965 # other CPU has a higher load than oldcpuid. We're done rejuggling 966 # once $oldcpuid's goodness falls below a threshold. 967 968 syslog('debug', "reconfiguring $oldcpuid"); 969 970 my $cpu = $delta->{$oldcpuid}; 971 my $avgintrload = $delta->{avgintrload}; 972 973 my @cputargetlist = reverse(@$cpusortlist); # make a copy of the list 974 while ($#cputargetlist != -1) { 975 last if goodness_cpu($cpu, $avgintrload) < $goodness_mindelta; 976 977 my $tgtcpuid = shift(@cputargetlist); 978 my $tgt = $delta->{$tgtcpuid}; 979 my $load = $cpu->{intrload}; 980 my $tgtload = $tgt->{intrload}; 981 last if $tgtload > $load; 982 do_reconfig_cpu2cpu($delta, $oldcpuid, $tgtcpuid, $load); 983 } 984} 985 986sub do_reconfig_cpu2cpu($$$$) # private function 987{ 988 my ($delta, $srccpuid, $tgtcpuid, $srcload) = @_; 989 990 # We've been asked to consider interrupt juggling between srccpuid 991 # (with a high interrupt load) and tgtcpuid (with a lower interrupt 992 # load). First, make a single list with all of the ivecs from both 993 # CPUs, and sort the list from highest to lowest load. 994 995 syslog('debug', "exchanging intrs between $srccpuid and $tgtcpuid"); 996 997 # Gather together all the ivecs and sort by load 998 999 my @ivecs = (values(%{$delta->{$srccpuid}{ivecs}}), 1000 values(%{$delta->{$tgtcpuid}{ivecs}})); 1001 return if $#ivecs == -1; 1002 1003 @ivecs = sort({$b->{time} <=> $a->{time}} @ivecs); 1004 1005 # Our "goal" load for srccpuid is the average load across all CPUs. 1006 # find_goal() will find determine the optimum selection of the 1007 # available interrupts which comes closest to this goal without 1008 # falling below the goal. 1009 1010 my $goal = $delta->{avgintrnsec}; 1011 1012 # We know that the interrupt load on tgtcpuid is less than that on 1013 # srccpuid, but its load could still be above avgintrnsec. Don't 1014 # choose a goal which would bring srccpuid below the load on tgtcpuid. 1015 1016 my $avgnsec = 1017 ($delta->{$srccpuid}{intrs} + $delta->{$tgtcpuid}{intrs}) / 2; 1018 if ($goal < $avgnsec) { 1019 $goal = $avgnsec; 1020 } 1021 1022 # If the largest of the interrupts is on srccpuid, leave it there. 1023 # This can help minimize the disruption caused by moving interrupts. 1024 1025 if ($ivecs[0]->{origcpu} == $srccpuid) { 1026 syslog('debug', "Keeping $ivecs[0]->{inum} on $srccpuid"); 1027 $goal -= $ivecs[0]->{time}; 1028 shift(@ivecs); 1029 } 1030 1031 syslog('debug', "GOAL: inums should total $goal"); 1032 find_goal(\@ivecs, $goal); 1033 1034 # find_goal() returned its results to us by setting $ivec->{goal} if 1035 # the ivec should be on srccpuid, or clearing it for tgtcpuid. 1036 # Call move_intr() to update our $delta with the new results. 1037 1038 foreach my $ivec (@ivecs) { 1039 syslog('debug', "ivec $ivec->{inum} goal $ivec->{goal}"); 1040 VERIFY($ivec->{nowcpu} == $srccpuid || 1041 $ivec->{nowcpu} == $tgtcpuid, "cpu2cpu found an ". 1042 "interrupt not currently on src or tgt cpu"); 1043 1044 if ($ivec->{goal} && $ivec->{nowcpu} != $srccpuid) { 1045 move_intr($delta, $ivec->{inum}, $ivec->{nowcpu}, 1046 $srccpuid); 1047 } elsif ($ivec->{goal} == 0 && $ivec->{nowcpu} != $tgtcpuid) { 1048 move_intr($delta, $ivec->{inum}, $ivec->{nowcpu}, 1049 $tgtcpuid); 1050 } 1051 } 1052 move_intr_check($delta, $srccpuid, $tgtcpuid); # asserts 1053 1054 my $newload = $delta->{$srccpuid}{intrs} / $delta->{$srccpuid}{tot}; 1055 VERIFY($newload <= $srcload && $newload > $delta->{avgintrload}, 1056 "cpu2cpu: new load didn't end up in expected range"); 1057} 1058 1059 1060# find_goal() and its helper do_find_goal() are used to find the best 1061# combination of interrupts in order to generate a load that is as close 1062# as possible to a goal load without falling below that goal. Before returning 1063# to its caller, find_goal() sets a new value in the hash of each interrupt, 1064# {goal}, which if set signifies that this interrupt is one of the interrupts 1065# identified as part of the set of interrupts which best meet the goal. 1066# 1067# The arguments to find_goal are a list of ivecs (hash references), sorted 1068# by descending {time}, and the goal load. The goal is relative to {time}. 1069# The best fit is determined by performing a depth-first search. do_find_goal 1070# is the recursive subroutine which carries out the search. 1071# 1072# It is passed an index as an argument, originally 0. On a given invocation, 1073# it is only to consider interrupts in the ivecs array starting at that index. 1074# It then considers two possibilities: 1075# 1) What is the best goal-fit if I include ivecs[index]? 1076# 2) What is the best goal-fit if I exclude ivecs[index]? 1077# To determine case 1, it subtracts the load of ivecs[index] from the goal, 1078# and calls itself recursively with that new goal and index++. 1079# To determine case 2, it calls itself recursively with the same goal and 1080# index++. 1081# 1082# It then compares the two results, decide which one best meets the goals, 1083# and returns the result. The return value is the best-fit's interrupt load, 1084# followed by a list of all the interrupts which make up that best-fit. 1085# 1086# As an optimization, a second array loads[] is created which mirrors ivecs[]. 1087# loads[i] will equal the total loads of all ivecs[i..$#ivecs]. This is used 1088# by do_find_goal to avoid recursing all the way to the end of the ivecs 1089# array if including all remaining interrupts will still leave the best-fit 1090# at below goal load. If so, it then includes all remaining interrupts on 1091# the goal list and returns. 1092# 1093sub find_goal($$) # private function 1094{ 1095 my ($ivecs, $goal) = @_; 1096 1097 my @goals; 1098 my $load; 1099 my $ivec; 1100 1101 if ($goal <= 0) { 1102 @goals = (); # the empty set will best meet the goal 1103 } else { 1104 syslog('debug', "finding goal from intrs %s", 1105 ivecs_to_string(@$ivecs)); 1106 1107 # Generate @loads array 1108 1109 my $tot = 0; 1110 foreach $ivec (@$ivecs) { 1111 $tot += $ivec->{time}; 1112 } 1113 my @loads = (); 1114 foreach $ivec (@$ivecs) { 1115 push(@loads, $tot); 1116 $tot -= $ivec->{time}; 1117 } 1118 ($load, @goals) = do_find_goal($ivecs, \@loads, $goal, 0); 1119 VERIFY($load >= $goal, "find_goal didn't meet goals"); 1120 } 1121 syslog('debug', "goals found: %s", ivecs_to_string(@goals)); 1122 1123 # Set or clear $ivec->{goal} for each ivec, based on returned @goals 1124 1125 foreach $ivec (@$ivecs) { 1126 if ($#goals > -1 && $ivec == $goals[0]) { 1127 syslog('debug', "inum $ivec->{inum} on source cpu"); 1128 $ivec->{goal} = 1; 1129 shift(@goals); 1130 } else { 1131 syslog('debug', "inum $ivec->{inum} on target cpu"); 1132 $ivec->{goal} = 0; 1133 } 1134 } 1135} 1136 1137 1138sub do_find_goal($$$$) # private function 1139{ 1140 my ($ivecs, $loads, $goal, $idx) = @_; 1141 1142 if ($idx > $#{$ivecs}) { 1143 return (0); 1144 } 1145 syslog('debug', "$idx: finding goal $goal inum $ivecs->[$idx]{inum}"); 1146 1147 my $load = $ivecs->[$idx]{time}; 1148 my @goals_with = (); 1149 my @goals_without = (); 1150 my ($with, $without); 1151 1152 # If we include all remaining items and we're still below goal, 1153 # stop here. We can just return a result that includes $idx and all 1154 # subsequent ivecs. Since this will still be below goal, there's 1155 # nothing better to be done. 1156 1157 if ($loads->[$idx] <= $goal) { 1158 syslog('debug', 1159 "$idx: including all remaining intrs %s with load %d", 1160 ivecs_to_string(@$ivecs[$idx .. $#{$ivecs}]), 1161 $loads->[$idx]); 1162 return ($loads->[$idx], @$ivecs[$idx .. $#{$ivecs}]); 1163 } 1164 1165 # Evaluate the "with" option, i.e. the best matching goal which 1166 # includes $ivecs->[$idx]. If idx's load is more than our goal load, 1167 # stop here. Once we're above the goal, there is no need to consider 1168 # further interrupts since they'll only take us further from the goal. 1169 1170 if ($goal <= $load) { 1171 $with = $load; # stop here 1172 } else { 1173 ($with, @goals_with) = 1174 do_find_goal($ivecs, $loads, $goal - $load, $idx + 1); 1175 $with += $load; 1176 } 1177 syslog('debug', "$idx: with-load $with intrs %s", 1178 ivecs_to_string($ivecs->[$idx], @goals_with)); 1179 1180 # Evaluate the "without" option, i.e. the best matching goal which 1181 # excludes $ivecs->[$idx]. 1182 1183 ($without, @goals_without) = 1184 &do_find_goal($ivecs, $loads, $goal, $idx + 1); 1185 syslog('debug', "$idx: without-load $without intrs %s", 1186 ivecs_to_string(@goals_without)); 1187 1188 # We now have our "with" and "without" options, and we choose which 1189 # best fits the goal. If one is greater than goal and the other is 1190 # below goal, we choose the one that is greater. If they are both 1191 # below goal, then we choose the one that is greater. If they are 1192 # both above goal, then we choose the smaller. 1193 1194 my $which; # 0 == with, 1 == without 1195 if ($with >= $goal && $without < $goal) { 1196 $which = 0; 1197 } elsif ($with < $goal && $without >= $goal) { 1198 $which = 1; 1199 } elsif ($with >= $goal && $without >= $goal) { 1200 $which = ($without < $with); 1201 } else { 1202 $which = ($without > $with); 1203 } 1204 1205 # Return the load of our best case scenario, followed by all the ivecs 1206 # which compose that goal. 1207 1208 if ($which == 1) { # without 1209 syslog('debug', "$idx: going without"); 1210 return ($without, @goals_without); 1211 } else { 1212 syslog('debug', "$idx: going with"); 1213 return ($with, $ivecs->[$idx], @goals_with); 1214 } 1215 # Not reached 1216} 1217 1218 1219 1220 1221syslog('debug', "intrd is starting".($debug ? " (debug)" : "")); 1222 1223my @deltas = (); 1224my $deltas_tottime = 0; # sum of maxsnap-minsnap across @deltas 1225my $avggoodness; 1226my $baseline_goodness = 0; 1227my $compdelta; 1228 1229my $do_reconfig; 1230 1231# temp variables 1232my $goodness; 1233my $deltatime; 1234my $olddelta; 1235my $olddeltatime; 1236my $delta; 1237my $newstat; 1238my $below_statslen; 1239my $newtime; 1240my $ret; 1241 1242 1243my $gotsig = 0; 1244$SIG{INT} = sub { $gotsig = 1; }; # don't die in the middle of retargeting 1245$SIG{HUP} = $SIG{INT}; 1246$SIG{TERM} = $SIG{INT}; 1247 1248my $ks; 1249if ($using_scengen == 0) { 1250 $ks = Sun::Solaris::Kstat->new(); 1251} else { 1252 $ks = myks_update(); # supplied by the simulator 1253} 1254 1255# If no pci_intrs kstats were found, we need to exit, but we can't because 1256# SMF will restart us and/or report an error to the administrator. But 1257# there's nothing an administrator can do. So print out a message for SMF 1258# logs and silently pause forever. 1259 1260if (!exists($ks->{pci_intrs})) { 1261 print STDERR "$cmdname: no interrupts were found; ". 1262 "your PCI bus may not yet be supported\n"; 1263 pause() while $gotsig == 0; 1264 exit 0; 1265} 1266 1267# See if this is a system with a pcplusmp APIC. 1268# Such systems will get special handling. 1269# Assume that if one bus has a pcplusmp APIC that they all do. 1270 1271# Get a list of pci_intrs kstats. 1272my @elem = values(%{$ks->{pci_intrs}}); 1273my $elem0 = $elem[0]; 1274my $elemval = (values(%$elem0))[0]; 1275 1276# Use its buspath to query the system. It is assumed that either all or none 1277# of the busses on a system are hosted by the pcplusmp APIC or APIX. 1278my $pcplusmp_sys = is_apic($elemval->{buspath}); 1279 1280my $stat = getstat($ks, $pcplusmp_sys); 1281 1282for (;;) { 1283 sub clear_deltas { 1284 @deltas = (); 1285 $deltas_tottime = 0; 1286 $stat = 0; # prevent next gen_delta() from setting {missing} 1287 } 1288 1289 # 1. Sleep, update the kstats, and save the new stats in $newstat. 1290 1291 exit 0 if $gotsig; # if we got ^C / SIGTERM, exit 1292 if ($using_scengen == 0) { 1293 sleep($sleeptime); 1294 exit 0 if $gotsig; # if we got ^C / SIGTERM, exit 1295 $ks->update(); 1296 } else { 1297 $ks = myks_update(); 1298 } 1299 $newstat = getstat($ks, $pcplusmp_sys); 1300 1301 # $stat or $newstat could be zero if they're uninitialized, or if 1302 # getstat() failed. If $stat is zero, move $newstat to $stat, sleep 1303 # and try again. If $newstat is zero, then we also sleep and try 1304 # again, hoping the problem will clear up. 1305 1306 next if (!ref $newstat); 1307 if (!ref $stat) { 1308 $stat = $newstat; 1309 next; 1310 } 1311 1312 # 2. Compare $newstat with the prior set of values, result in %$delta. 1313 1314 $delta = generate_delta($stat, $newstat); 1315 dumpdelta($delta) if $debug; # Dump most recent stats to stdout. 1316 $stat = $newstat; # The new stats now become the old stats. 1317 1318 1319 # 3. If $delta->{missing}, then there has been a reconfiguration of 1320 # either cpus or interrupts (probably both). We need to toss out our 1321 # old set of statistics and start from scratch. 1322 # 1323 # Also, if the delta covers a very long range of time, then we've 1324 # been experiencing a system overload that has resulted in intrd 1325 # not being allowed to run effectively for a while now. As above, 1326 # toss our old statistics and start from scratch. 1327 1328 $deltatime = $delta->{maxsnap} - $delta->{minsnap}; 1329 if ($delta->{missing} > 0 || $deltatime > $statslen) { 1330 clear_deltas(); 1331 syslog('debug', "evaluating interrupt assignments"); 1332 next; 1333 } 1334 1335 1336 # 4. Incorporate new delta into the list of deltas, and associated 1337 # statistics. If we've just now received $statslen deltas, then it's 1338 # time to evaluate a reconfiguration. 1339 1340 $below_statslen = ($deltas_tottime < $statslen); 1341 $deltas_tottime += $deltatime; 1342 $do_reconfig = ($below_statslen && $deltas_tottime >= $statslen); 1343 push(@deltas, $delta); 1344 1345 # 5. Remove old deltas if total time is more than $statslen. We use 1346 # @deltas as a moving average of the last $statslen seconds. Shift 1347 # off the olders deltas, but only if that doesn't cause us to fall 1348 # below $statslen seconds. 1349 1350 while (@deltas > 1) { 1351 $olddelta = $deltas[0]; 1352 $olddeltatime = $olddelta->{maxsnap} - $olddelta->{minsnap}; 1353 $newtime = $deltas_tottime - $olddeltatime; 1354 last if ($newtime < $statslen); 1355 1356 shift(@deltas); 1357 $deltas_tottime = $newtime; 1358 } 1359 1360 # 6. The brains of the operation are here. First, check if we're 1361 # imbalanced, and if so set $do_reconfig. If $do_reconfig is set, 1362 # either because of imbalance or above in step 4, we evaluate a 1363 # new configuration. 1364 # 1365 # First, take @deltas and generate a single "compressed" delta 1366 # which summarizes them all. Pass that to do_reconfig and see 1367 # what it does with it: 1368 # 1369 # $ret == -1 : failure 1370 # $ret == 0 : current config is optimal (or close enough) 1371 # $ret == 1 : reconfiguration has occurred 1372 # 1373 # If $ret is -1 or 1, dump all our deltas and start from scratch. 1374 # Step 4 above will set do_reconfig soon thereafter. 1375 # 1376 # If $ret is 0, then nothing has happened because we're already 1377 # good enough. Set baseline_goodness to current goodness. 1378 1379 $compdelta = compress_deltas(\@deltas); 1380 if (VERIFY(ref($compdelta) eq "HASH", "couldn't compress deltas")) { 1381 clear_deltas(); 1382 next; 1383 } 1384 $compdelta->{goodness} = goodness($compdelta); 1385 dumpdelta($compdelta) if $debug; 1386 1387 $goodness = $compdelta->{goodness}; 1388 syslog('debug', "GOODNESS: %5.2f%%", $goodness * 100); 1389 1390 if ($deltas_tottime >= $statslen && 1391 imbalanced($goodness, $baseline_goodness)) { 1392 $do_reconfig = 1; 1393 } 1394 1395 if ($do_reconfig) { 1396 $ret = do_reconfig($compdelta); 1397 1398 if ($ret != 0) { 1399 clear_deltas(); 1400 syslog('debug', "do_reconfig FAILED!") if $ret == -1; 1401 } else { 1402 syslog('debug', "setting new baseline of $goodness"); 1403 $baseline_goodness = $goodness; 1404 } 1405 } 1406 syslog('debug', "---------------------------------------"); 1407} 1408