1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 /* 43 * init(1M) is the general process spawning program. Its primary job is to 44 * start and restart svc.startd for smf(5). For backwards-compatibility it also 45 * spawns and respawns processes according to /etc/inittab and the current 46 * run-level. It reads /etc/default/inittab for general configuration. 47 * 48 * To change run-levels the system administrator runs init from the command 49 * line with a level name. init signals svc.startd via libscf and directs the 50 * zone's init (pid 1 in the global zone) what to do by sending it a signal; 51 * these signal numbers are commonly refered to in the code as 'states'. Valid 52 * run-levels are [sS0123456]. Additionally, init can be given directives 53 * [qQabc], which indicate actions to be taken pertaining to /etc/inittab. 54 * 55 * When init processes inittab entries, it finds processes that are to be 56 * spawned at various run-levels. inittab contains the set of the levels for 57 * which each inittab entry is valid. 58 * 59 * State File and Restartability 60 * Premature exit by init(1M) is handled as a special case by the kernel: 61 * init(1M) will be immediately re-executed, retaining its original PID. (PID 62 * 1 in the global zone.) To track the processes it has previously spawned, 63 * as well as other mutable state, init(1M) regularly updates a state file 64 * such that its subsequent invocations have knowledge of its various 65 * dependent processes and duties. 66 * 67 * Process Contracts 68 * We start svc.startd(1M) in a contract and transfer inherited contracts when 69 * restarting it. Everything else is started using the legacy contract 70 * template, and the created contracts are abandoned when they become empty. 71 * 72 * utmpx Entry Handling 73 * Because init(1M) no longer governs the startup process, its knowledge of 74 * when utmpx becomes writable is indirect. However, spawned processes 75 * expect to be constructed with valid utmpx entries. As a result, attempts 76 * to write normal entries will be retried until successful. 77 * 78 * Maintenance Mode 79 * In certain failure scenarios, init(1M) will enter a maintenance mode, in 80 * which it invokes sulogin(1M) to allow the operator an opportunity to 81 * repair the system. Normally, this operation is performed as a 82 * fork(2)-exec(2)-waitpid(3C) sequence with the parent waiting for repair or 83 * diagnosis to be completed. In the cases that fork(2) requests themselves 84 * fail, init(1M) will directly execute sulogin(1M), and allow the kernel to 85 * restart init(1M) on exit from the operator session. 86 * 87 * One scenario where init(1M) enters its maintenance mode is when 88 * svc.startd(1M) begins to fail rapidly, defined as when the average time 89 * between recent failures drops below a given threshold. 90 */ 91 92 #include <sys/contract/process.h> 93 #include <sys/ctfs.h> 94 #include <sys/stat.h> 95 #include <sys/statvfs.h> 96 #include <sys/stropts.h> 97 #include <sys/systeminfo.h> 98 #include <sys/time.h> 99 #include <sys/termios.h> 100 #include <sys/tty.h> 101 #include <sys/types.h> 102 #include <sys/utsname.h> 103 104 #include <bsm/adt_event.h> 105 #include <bsm/libbsm.h> 106 #include <security/pam_appl.h> 107 108 #include <assert.h> 109 #include <ctype.h> 110 #include <dirent.h> 111 #include <errno.h> 112 #include <fcntl.h> 113 #include <libcontract.h> 114 #include <libcontract_priv.h> 115 #include <libintl.h> 116 #include <libscf.h> 117 #include <libscf_priv.h> 118 #include <poll.h> 119 #include <procfs.h> 120 #include <signal.h> 121 #include <stdarg.h> 122 #include <stdio.h> 123 #include <stdio_ext.h> 124 #include <stdlib.h> 125 #include <string.h> 126 #include <strings.h> 127 #include <syslog.h> 128 #include <time.h> 129 #include <ulimit.h> 130 #include <unistd.h> 131 #include <utmpx.h> 132 #include <wait.h> 133 #include <zone.h> 134 #include <ucontext.h> 135 136 #undef sleep 137 138 #define fioctl(p, sptr, cmd) ioctl(fileno(p), sptr, cmd) 139 #define min(a, b) (((a) < (b)) ? (a) : (b)) 140 141 #define TRUE 1 142 #define FALSE 0 143 #define FAILURE -1 144 145 #define UT_LINE_SZ 32 /* Size of a utmpx ut_line field */ 146 147 /* 148 * SLEEPTIME The number of seconds "init" sleeps between wakeups if 149 * nothing else requires this "init" wakeup. 150 */ 151 #define SLEEPTIME (5 * 60) 152 153 /* 154 * MAXCMDL The maximum length of a command string in inittab. 155 */ 156 #define MAXCMDL 512 157 158 /* 159 * EXEC The length of the prefix string added to all comamnds 160 * found in inittab. 161 */ 162 #define EXEC (sizeof ("exec ") - 1) 163 164 /* 165 * TWARN The amount of time between warning signal, SIGTERM, 166 * and the fatal kill signal, SIGKILL. 167 */ 168 #define TWARN 5 169 170 #define id_eq(x, y) ((x[0] == y[0] && x[1] == y[1] && x[2] == y[2] &&\ 171 x[3] == y[3]) ? TRUE : FALSE) 172 173 /* 174 * The kernel's default umask is 022 these days; since some processes inherit 175 * their umask from init, init will set it from CMASK in /etc/default/init. 176 * init gets the default umask from the kernel, it sets it to 022 whenever 177 * it wants to create a file and reverts to CMASK afterwards. 178 */ 179 180 static int cmask; 181 182 /* 183 * The following definitions, concluding with the 'lvls' array, provide a 184 * common mapping between level-name (like 'S'), signal number (state), 185 * run-level mask, and specific properties associated with a run-level. 186 * This array should be accessed using the routines lvlname_to_state(), 187 * lvlname_to_mask(), state_to_mask(), and state_to_flags(). 188 */ 189 190 /* 191 * Correspondence of signals to init actions. 192 */ 193 #define LVLQ SIGHUP 194 #define LVL0 SIGINT 195 #define LVL1 SIGQUIT 196 #define LVL2 SIGILL 197 #define LVL3 SIGTRAP 198 #define LVL4 SIGIOT 199 #define LVL5 SIGEMT 200 #define LVL6 SIGFPE 201 #define SINGLE_USER SIGBUS 202 #define LVLa SIGSEGV 203 #define LVLb SIGSYS 204 #define LVLc SIGPIPE 205 206 /* 207 * Bit Mask for each level. Used to determine legal levels. 208 */ 209 #define MASK0 0x0001 210 #define MASK1 0x0002 211 #define MASK2 0x0004 212 #define MASK3 0x0008 213 #define MASK4 0x0010 214 #define MASK5 0x0020 215 #define MASK6 0x0040 216 #define MASKSU 0x0080 217 #define MASKa 0x0100 218 #define MASKb 0x0200 219 #define MASKc 0x0400 220 221 #define MASK_NUMERIC (MASK0 | MASK1 | MASK2 | MASK3 | MASK4 | MASK5 | MASK6) 222 #define MASK_abc (MASKa | MASKb | MASKc) 223 224 /* 225 * Flags to indicate properties of various states. 226 */ 227 #define LSEL_RUNLEVEL 0x0001 /* runlevels you can transition to */ 228 229 typedef struct lvl { 230 int lvl_state; 231 int lvl_mask; 232 char lvl_name; 233 int lvl_flags; 234 } lvl_t; 235 236 static lvl_t lvls[] = { 237 { LVLQ, 0, 'Q', 0 }, 238 { LVLQ, 0, 'q', 0 }, 239 { LVL0, MASK0, '0', LSEL_RUNLEVEL }, 240 { LVL1, MASK1, '1', LSEL_RUNLEVEL }, 241 { LVL2, MASK2, '2', LSEL_RUNLEVEL }, 242 { LVL3, MASK3, '3', LSEL_RUNLEVEL }, 243 { LVL4, MASK4, '4', LSEL_RUNLEVEL }, 244 { LVL5, MASK5, '5', LSEL_RUNLEVEL }, 245 { LVL6, MASK6, '6', LSEL_RUNLEVEL }, 246 { SINGLE_USER, MASKSU, 'S', LSEL_RUNLEVEL }, 247 { SINGLE_USER, MASKSU, 's', LSEL_RUNLEVEL }, 248 { LVLa, MASKa, 'a', 0 }, 249 { LVLb, MASKb, 'b', 0 }, 250 { LVLc, MASKc, 'c', 0 } 251 }; 252 253 #define LVL_NELEMS (sizeof (lvls) / sizeof (lvl_t)) 254 255 /* 256 * Legal action field values. 257 */ 258 #define OFF 0 /* Kill process if on, else ignore */ 259 #define RESPAWN 1 /* Continuously restart process when it dies */ 260 #define ONDEMAND RESPAWN /* Respawn for a, b, c type processes */ 261 #define ONCE 2 /* Start process, do not respawn when dead */ 262 #define WAIT 3 /* Perform once and wait to complete */ 263 #define BOOT 4 /* Start at boot time only */ 264 #define BOOTWAIT 5 /* Start at boot time and wait to complete */ 265 #define POWERFAIL 6 /* Start on powerfail */ 266 #define POWERWAIT 7 /* Start and wait for complete on powerfail */ 267 #define INITDEFAULT 8 /* Default level "init" should start at */ 268 #define SYSINIT 9 /* Actions performed before init speaks */ 269 270 #define M_OFF 0001 271 #define M_RESPAWN 0002 272 #define M_ONDEMAND M_RESPAWN 273 #define M_ONCE 0004 274 #define M_WAIT 0010 275 #define M_BOOT 0020 276 #define M_BOOTWAIT 0040 277 #define M_PF 0100 278 #define M_PWAIT 0200 279 #define M_INITDEFAULT 0400 280 #define M_SYSINIT 01000 281 282 /* States for the inittab parser in getcmd(). */ 283 #define ID 1 284 #define LEVELS 2 285 #define ACTION 3 286 #define COMMAND 4 287 #define COMMENT 5 288 289 /* 290 * Init can be in any of three main states, "normal" mode where it is 291 * processing entries for the lines file in a normal fashion, "boot" mode, 292 * where it is only interested in the boot actions, and "powerfail" mode, 293 * where it is only interested in powerfail related actions. The following 294 * masks declare the legal actions for each mode. 295 */ 296 #define NORMAL_MODES (M_OFF | M_RESPAWN | M_ONCE | M_WAIT) 297 #define BOOT_MODES (M_BOOT | M_BOOTWAIT) 298 #define PF_MODES (M_PF | M_PWAIT) 299 300 struct PROC_TABLE { 301 char p_id[4]; /* Four letter unique id of process */ 302 pid_t p_pid; /* Process id */ 303 short p_count; /* How many respawns of this command in */ 304 /* the current series */ 305 long p_time; /* Start time for a series of respawns */ 306 short p_flags; 307 short p_exit; /* Exit status of a process which died */ 308 }; 309 310 /* 311 * Flags for the "p_flags" word of a PROC_TABLE entry: 312 * 313 * OCCUPIED This slot in init's proc table is in use. 314 * 315 * LIVING Process is alive. 316 * 317 * NOCLEANUP efork() is not allowed to cleanup this entry even 318 * if process is dead. 319 * 320 * NAMED This process has a name, i.e. came from inittab. 321 * 322 * DEMANDREQUEST Process started by a "telinit [abc]" command. Processes 323 * formed this way are respawnable and immune to level 324 * changes as long as their entry exists in inittab. 325 * 326 * TOUCHED Flag used by remv() to determine whether it has looked 327 * at an entry while checking for processes to be killed. 328 * 329 * WARNED Flag used by remv() to mark processes that have been 330 * sent the SIGTERM signal. If they don't die in 5 331 * seconds, they are sent the SIGKILL signal. 332 * 333 * KILLED Flag used by remv() to mark procs that have been sent 334 * the SIGTERM and SIGKILL signals. 335 * 336 * PF_MASK Bitwise or of legal flags, for sanity checking. 337 */ 338 #define OCCUPIED 01 339 #define LIVING 02 340 #define NOCLEANUP 04 341 #define NAMED 010 342 #define DEMANDREQUEST 020 343 #define TOUCHED 040 344 #define WARNED 0100 345 #define KILLED 0200 346 #define PF_MASK 0377 347 348 /* 349 * Respawn limits for processes that are to be respawned: 350 * 351 * SPAWN_INTERVAL The number of seconds over which "init" will try to 352 * respawn a process SPAWN_LIMIT times before it gets mad. 353 * 354 * SPAWN_LIMIT The number of respawns "init" will attempt in 355 * SPAWN_INTERVAL seconds before it generates an 356 * error message and inhibits further tries for 357 * INHIBIT seconds. 358 * 359 * INHIBIT The number of seconds "init" ignores an entry it had 360 * trouble spawning unless a "telinit Q" is received. 361 */ 362 363 #define SPAWN_INTERVAL (2*60) 364 #define SPAWN_LIMIT 10 365 #define INHIBIT (5*60) 366 367 /* 368 * The maximum number of decimal digits for an id_t. (ceil(log10 (max_id))) 369 */ 370 #define ID_MAX_STR_LEN 10 371 372 #define NULLPROC ((struct PROC_TABLE *)(0)) 373 #define NO_ROOM ((struct PROC_TABLE *)(FAILURE)) 374 375 struct CMD_LINE { 376 char c_id[4]; /* Four letter unique id of process to be */ 377 /* affected by action */ 378 short c_levels; /* Mask of legal levels for process */ 379 short c_action; /* Mask for type of action required */ 380 char *c_command; /* Pointer to init command */ 381 }; 382 383 struct pidrec { 384 int pd_type; /* Command type */ 385 pid_t pd_pid; /* pid to add or remove */ 386 }; 387 388 /* 389 * pd_type's 390 */ 391 #define ADDPID 1 392 #define REMPID 2 393 394 static struct pidlist { 395 pid_t pl_pid; /* pid to watch for */ 396 int pl_dflag; /* Flag indicating SIGCLD from this pid */ 397 short pl_exit; /* Exit status of proc */ 398 struct pidlist *pl_next; /* Next in list */ 399 } *Plhead, *Plfree; 400 401 /* 402 * The following structure contains a set of modes for /dev/syscon 403 * and should match the default contents of /etc/ioctl.syscon. 404 */ 405 static struct termios dflt_termios = { 406 BRKINT|ICRNL|IXON|IMAXBEL, /* iflag */ 407 OPOST|ONLCR|TAB3, /* oflag */ 408 CS8|CREAD|B9600, /* cflag */ 409 ISIG|ICANON|ECHO|ECHOE|ECHOK|ECHOCTL|ECHOKE|IEXTEN, /* lflag */ 410 CINTR, CQUIT, CERASE, CKILL, CEOF, 0, 0, 0, 411 0, 0, 0, 0, 0, 0, 0, 0, 412 0, 0, 0 413 }; 414 415 static struct termios stored_syscon_termios; 416 static int write_ioctl = 0; /* Rewrite /etc/ioctl.syscon */ 417 418 static union WAKEUP { 419 struct WAKEFLAGS { 420 unsigned w_usersignal : 1; /* User sent signal to "init" */ 421 unsigned w_childdeath : 1; /* An "init" child died */ 422 unsigned w_powerhit : 1; /* OS experienced powerfail */ 423 } w_flags; 424 int w_mask; 425 } wakeup; 426 427 428 struct init_state { 429 int ist_runlevel; 430 int ist_num_proc; 431 int ist_utmpx_ok; 432 struct PROC_TABLE ist_proc_table[1]; 433 }; 434 435 #define cur_state (g_state->ist_runlevel) 436 #define num_proc (g_state->ist_num_proc) 437 #define proc_table (g_state->ist_proc_table) 438 #define utmpx_ok (g_state->ist_utmpx_ok) 439 440 /* Contract cookies. */ 441 #define ORDINARY_COOKIE 0 442 #define STARTD_COOKIE 1 443 444 445 #ifndef NDEBUG 446 #define bad_error(func, err) { \ 447 (void) fprintf(stderr, "%s:%d: %s() failed with unexpected " \ 448 "error %d. Aborting.\n", __FILE__, __LINE__, (func), (err)); \ 449 abort(); \ 450 } 451 #else 452 #define bad_error(func, err) abort() 453 #endif 454 455 456 /* 457 * Useful file and device names. 458 */ 459 static char *CONSOLE = "/dev/console"; /* Real system console */ 460 static char *INITPIPE_DIR = "/etc"; 461 static char *INITPIPE = "/etc/initpipe"; 462 463 #define INIT_STATE_DIR "/etc/svc/volatile" 464 static const char * const init_state_file = INIT_STATE_DIR "/init.state"; 465 static const char * const init_next_state_file = 466 INIT_STATE_DIR "/init-next.state"; 467 468 static const int init_num_proc = 20; /* Initial size of process table. */ 469 470 static char *UTMPX = UTMPX_FILE; /* Snapshot record file */ 471 static char *WTMPX = WTMPX_FILE; /* Long term record file */ 472 static char *INITTAB = "/etc/inittab"; /* Script file for "init" */ 473 static char *SYSTTY = "/dev/systty"; /* System Console */ 474 static char *SYSCON = "/dev/syscon"; /* Virtual System console */ 475 static char *IOCTLSYSCON = "/etc/ioctl.syscon"; /* Last syscon modes */ 476 static char *ENVFILE = "/etc/default/init"; /* Default env. */ 477 static char *SU = "/etc/sulogin"; /* Super-user program for single user */ 478 static char *SH = "/sbin/sh"; /* Standard shell */ 479 480 /* 481 * Default Path. /sbin is included in path only during sysinit phase 482 */ 483 #define DEF_PATH "PATH=/usr/sbin:/usr/bin" 484 #define INIT_PATH "PATH=/sbin:/usr/sbin:/usr/bin" 485 486 static int prior_state; 487 static int prev_state; /* State "init" was in last time it woke */ 488 static int new_state; /* State user wants "init" to go to. */ 489 static int op_modes = BOOT_MODES; /* Current state of "init" */ 490 static int Gchild = 0; /* Flag to indicate "godchild" died, set in */ 491 /* childeath() and cleared in cleanaux() */ 492 static int Pfd = -1; /* fd to receive pids thru */ 493 static unsigned int spawncnt, pausecnt; 494 static int rsflag; /* Set if a respawn has taken place */ 495 static volatile int time_up; /* Flag set to TRUE by the alarm interrupt */ 496 /* routine each time an alarm interrupt */ 497 /* takes place. */ 498 static int sflg = 0; /* Set if we were booted -s to single user */ 499 static int rflg = 0; /* Set if booted -r, reconfigure devices */ 500 static int bflg = 0; /* Set if booted -b, don't run rc scripts */ 501 static pid_t init_pid; /* PID of "one true" init for current zone */ 502 503 static struct init_state *g_state = NULL; 504 static size_t g_state_sz; 505 static int booting = 1; /* Set while we're booting. */ 506 507 /* 508 * Array for default global environment. 509 */ 510 #define MAXENVENT 24 /* Max number of default env variables + 1 */ 511 /* init can use three itself, so this leaves */ 512 /* 20 for the administrator in ENVFILE. */ 513 static char *glob_envp[MAXENVENT]; /* Array of environment strings */ 514 static int glob_envn; /* Number of environment strings */ 515 516 517 static struct pollfd poll_fds[1]; 518 static int poll_nfds = 0; /* poll_fds is uninitialized */ 519 520 static int legacy_tmpl = -1; /* fd for legacy contract template */ 521 static int startd_tmpl = -1; /* fd for svc.startd's template */ 522 523 static char startd_cline[256] = ""; /* svc.startd's command line */ 524 static int do_restart_startd = 1; /* Whether to restart svc.startd. */ 525 static char *smf_options = NULL; /* Options to give to startd. */ 526 static int smf_debug = 0; /* Messages for debugging smf(5) */ 527 static time_t init_boot_time; /* Substitute for kernel boot time. */ 528 529 #define NSTARTD_FAILURE_TIMES 3 /* trigger after 3 failures */ 530 #define STARTD_FAILURE_RATE_NS 5000000000LL /* 1 failure/5 seconds */ 531 532 static hrtime_t startd_failure_time[NSTARTD_FAILURE_TIMES]; 533 static uint_t startd_failure_index; 534 535 536 static char *prog_name(char *); 537 static int state_to_mask(int); 538 static int lvlname_to_mask(char, int *); 539 static void lscf_set_runlevel(char); 540 static int state_to_flags(int); 541 static char state_to_name(int); 542 static int lvlname_to_state(char); 543 static int getcmd(struct CMD_LINE *, char *); 544 static int realcon(); 545 static int spawn_processes(); 546 static int get_ioctl_syscon(); 547 static int account(short, struct PROC_TABLE *, char *); 548 static void alarmclk(); 549 static void childeath(int); 550 static void cleanaux(); 551 static void clearent(pid_t, short); 552 static void console(boolean_t, char *, ...); 553 static void init_signals(void); 554 static void setup_pipe(); 555 static void killproc(pid_t); 556 static void init_env(); 557 static void boot_init(); 558 static void powerfail(); 559 static void remv(); 560 static void write_ioctl_syscon(); 561 static void spawn(struct PROC_TABLE *, struct CMD_LINE *); 562 static void setimer(int); 563 static void siglvl(int, siginfo_t *, ucontext_t *); 564 static void sigpoll(int); 565 static void enter_maintenance(void); 566 static void timer(int); 567 static void userinit(int, char **); 568 static void notify_pam_dead(struct utmpx *); 569 static long waitproc(struct PROC_TABLE *); 570 static struct PROC_TABLE *efork(int, struct PROC_TABLE *, int); 571 static struct PROC_TABLE *findpslot(struct CMD_LINE *); 572 static void increase_proc_table_size(); 573 static void st_init(); 574 static void st_write(); 575 static void contracts_init(); 576 static void contract_event(struct pollfd *); 577 static int startd_run(const char *, int, ctid_t); 578 static void startd_record_failure(); 579 static int startd_failure_rate_critical(); 580 static char *audit_boot_msg(); 581 static int audit_put_record(int, int, char *); 582 static void update_boot_archive(int new_state); 583 584 int 585 main(int argc, char *argv[]) 586 { 587 int chg_lvl_flag = FALSE, print_banner = FALSE; 588 int may_need_audit = 1; 589 int c; 590 char *msg; 591 592 /* Get a timestamp for use as boot time, if needed. */ 593 (void) time(&init_boot_time); 594 595 /* Get the default umask */ 596 cmask = umask(022); 597 (void) umask(cmask); 598 599 /* Parse the arguments to init. Check for single user */ 600 opterr = 0; 601 while ((c = getopt(argc, argv, "brsm:")) != EOF) { 602 switch (c) { 603 case 'b': 604 rflg = 0; 605 bflg = 1; 606 if (!sflg) 607 sflg++; 608 break; 609 case 'r': 610 bflg = 0; 611 rflg++; 612 break; 613 case 's': 614 if (!bflg) 615 sflg++; 616 break; 617 case 'm': 618 smf_options = optarg; 619 smf_debug = (strstr(smf_options, "debug") != NULL); 620 break; 621 } 622 } 623 624 /* 625 * Determine if we are the main init, or a user invoked init, whose job 626 * it is to inform init to change levels or perform some other action. 627 */ 628 if (zone_getattr(getzoneid(), ZONE_ATTR_INITPID, &init_pid, 629 sizeof (init_pid)) != sizeof (init_pid)) { 630 (void) fprintf(stderr, "could not get pid for init\n"); 631 return (1); 632 } 633 634 /* 635 * If this PID is not the same as the "true" init for the zone, then we 636 * must be in 'user' mode. 637 */ 638 if (getpid() != init_pid) { 639 userinit(argc, argv); 640 } 641 642 if (getzoneid() != GLOBAL_ZONEID) { 643 print_banner = TRUE; 644 } 645 646 /* 647 * Initialize state (and set "booting"). 648 */ 649 st_init(); 650 651 if (booting && print_banner) { 652 struct utsname un; 653 char buf[BUFSIZ], *isa; 654 long ret; 655 int bits = 32; 656 657 /* 658 * We want to print the boot banner as soon as 659 * possible. In the global zone, the kernel does it, 660 * but we do not have that luxury in non-global zones, 661 * so we will print it here. 662 */ 663 (void) uname(&un); 664 ret = sysinfo(SI_ISALIST, buf, sizeof (buf)); 665 if (ret != -1L && ret <= sizeof (buf)) { 666 for (isa = strtok(buf, " "); isa; 667 isa = strtok(NULL, " ")) { 668 if (strcmp(isa, "sparcv9") == 0 || 669 strcmp(isa, "amd64") == 0) { 670 bits = 64; 671 break; 672 } 673 } 674 } 675 676 console(B_FALSE, 677 "\n\n%s Release %s Version %s %d-bit\r\n", 678 un.sysname, un.release, un.version, bits); 679 console(B_FALSE, 680 "Copyright 1983-2006 Sun Microsystems, Inc. " 681 " All rights reserved.\r\n"); 682 console(B_FALSE, 683 "Use is subject to license terms.\r\n"); 684 } 685 686 /* 687 * Get the ioctl settings for /dev/syscon from /etc/ioctl.syscon 688 * so that it can be brought up in the state it was in when the 689 * system went down; or set to defaults if ioctl.syscon isn't 690 * valid. 691 * 692 * This needs to be done even if we're restarting so reset_modes() 693 * will work in case we need to go down to single user mode. 694 */ 695 write_ioctl = get_ioctl_syscon(); 696 697 /* 698 * Set up all signals to be caught or ignored as appropriate. 699 */ 700 init_signals(); 701 702 /* Load glob_envp from ENVFILE. */ 703 init_env(); 704 705 contracts_init(); 706 707 if (!booting) { 708 /* cur_state should have been read in. */ 709 710 op_modes = NORMAL_MODES; 711 712 /* Rewrite the ioctl file if it was bad. */ 713 if (write_ioctl) 714 write_ioctl_syscon(); 715 } else { 716 /* 717 * It's fine to boot up with state as zero, because 718 * startd will later tell us the real state. 719 */ 720 cur_state = 0; 721 op_modes = BOOT_MODES; 722 723 boot_init(); 724 } 725 726 prev_state = prior_state = cur_state; 727 728 /* 729 * Here is the beginning of the main process loop. 730 */ 731 for (;;) { 732 if (Pfd < 0) 733 setup_pipe(); 734 735 /* 736 * Clean up any accounting records for dead "godchildren". 737 */ 738 if (Gchild) 739 cleanaux(); 740 741 /* 742 * If in "normal" mode, check all living processes and initiate 743 * kill sequence on those that should not be there anymore. 744 */ 745 if (op_modes == NORMAL_MODES && cur_state != LVLa && 746 cur_state != LVLb && cur_state != LVLc) 747 remv(); 748 749 /* 750 * If a change in run levels is the reason we awoke, now do 751 * the accounting to report the change in the utmp file. 752 * Also report the change on the system console. 753 */ 754 if (chg_lvl_flag) { 755 chg_lvl_flag = FALSE; 756 757 if (state_to_flags(cur_state) & LSEL_RUNLEVEL) { 758 char rl = state_to_name(cur_state); 759 760 if (rl != -1) 761 lscf_set_runlevel(rl); 762 } 763 764 may_need_audit = 1; 765 } 766 767 /* 768 * Scan the inittab file and spawn and respawn processes that 769 * should be alive in the current state. If inittab does not 770 * exist default to single user mode. 771 */ 772 if (spawn_processes() == FAILURE) { 773 prior_state = prev_state; 774 cur_state = SINGLE_USER; 775 } 776 777 /* If any respawns occurred, take note. */ 778 if (rsflag) { 779 rsflag = 0; 780 spawncnt++; 781 } 782 783 /* 784 * If a powerfail signal was received during the last 785 * sequence, set mode to powerfail. When spawn_processes() is 786 * entered the first thing it does is to check "powerhit". If 787 * it is in PF_MODES then it clears "powerhit" and does 788 * a powerfail sequence. If it is not in PF_MODES, then it 789 * puts itself in PF_MODES and then clears "powerhit". Should 790 * "powerhit" get set again while spawn_processes() is working 791 * on a powerfail sequence, the following code will see that 792 * spawn_processes() tries to execute the powerfail sequence 793 * again. This guarantees that the powerfail sequence will be 794 * successfully completed before further processing takes 795 * place. 796 */ 797 if (wakeup.w_flags.w_powerhit) { 798 op_modes = PF_MODES; 799 /* 800 * Make sure that cur_state != prev_state so that 801 * ONCE and WAIT types work. 802 */ 803 prev_state = 0; 804 } else if (op_modes != NORMAL_MODES) { 805 /* 806 * If spawn_processes() was not just called while in 807 * normal mode, we set the mode to normal and it will 808 * be called again to check normal modes. If we have 809 * just finished a powerfail sequence with prev_state 810 * equal to zero, we set prev_state equal to cur_state 811 * before the next pass through. 812 */ 813 if (op_modes == PF_MODES) 814 prev_state = cur_state; 815 op_modes = NORMAL_MODES; 816 } else if (cur_state == LVLa || cur_state == LVLb || 817 cur_state == LVLc) { 818 /* 819 * If it was a change of levels that awakened us and the 820 * new level is one of the demand levels then reset 821 * cur_state to the previous state and do another scan 822 * to take care of the usual respawn actions. 823 */ 824 cur_state = prior_state; 825 prior_state = prev_state; 826 prev_state = cur_state; 827 } else { 828 prev_state = cur_state; 829 830 if (wakeup.w_mask == 0) { 831 int ret; 832 833 if (may_need_audit && (cur_state == LVL3)) { 834 msg = audit_boot_msg(); 835 836 may_need_audit = 0; 837 (void) audit_put_record(ADT_SUCCESS, 838 ADT_SUCCESS, msg); 839 free(msg); 840 } 841 842 /* 843 * "init" is finished with all actions for 844 * the current wakeup. 845 */ 846 ret = poll(poll_fds, poll_nfds, 847 SLEEPTIME * MILLISEC); 848 pausecnt++; 849 if (ret > 0) 850 contract_event(&poll_fds[0]); 851 else if (ret < 0 && errno != EINTR) 852 console(B_TRUE, "poll() error: %s\n", 853 strerror(errno)); 854 } 855 856 if (wakeup.w_flags.w_usersignal) { 857 /* 858 * Install the new level. This could be a real 859 * change in levels or a telinit [Q|a|b|c] or 860 * just a telinit to the same level at which 861 * we are running. 862 */ 863 if (new_state != cur_state) { 864 if (new_state == LVLa || 865 new_state == LVLb || 866 new_state == LVLc) { 867 prev_state = prior_state; 868 prior_state = cur_state; 869 cur_state = new_state; 870 } else { 871 prev_state = cur_state; 872 if (cur_state >= 0) 873 prior_state = cur_state; 874 cur_state = new_state; 875 chg_lvl_flag = TRUE; 876 } 877 } 878 879 new_state = 0; 880 } 881 882 if (wakeup.w_flags.w_powerhit) 883 op_modes = PF_MODES; 884 885 /* 886 * Clear all wakeup reasons. 887 */ 888 wakeup.w_mask = 0; 889 } 890 } 891 892 /*NOTREACHED*/ 893 } 894 895 static void 896 update_boot_archive(int new_state) 897 { 898 if (new_state != LVL0 && new_state != LVL5 && new_state != LVL6) 899 return; 900 901 if (getzoneid() != GLOBAL_ZONEID) 902 return; 903 904 (void) system("/sbin/bootadm -a update_all"); 905 } 906 907 /* 908 * void enter_maintenance() 909 * A simple invocation of sulogin(1M), with no baggage, in the case that we 910 * are unable to activate svc.startd(1M). We fork; the child runs sulogin; 911 * we wait for it to exit. 912 */ 913 static void 914 enter_maintenance() 915 { 916 struct PROC_TABLE *su_process; 917 918 console(B_FALSE, "Requesting maintenance mode\n" 919 "(See /lib/svc/share/README for additional information.)\n"); 920 (void) sigset(SIGCLD, SIG_DFL); 921 while ((su_process = efork(M_OFF, NULLPROC, NOCLEANUP)) == NO_ROOM) 922 (void) pause(); 923 (void) sigset(SIGCLD, childeath); 924 if (su_process == NULLPROC) { 925 int fd; 926 927 (void) fclose(stdin); 928 (void) fclose(stdout); 929 (void) fclose(stderr); 930 closefrom(0); 931 932 fd = open(SYSCON, O_RDWR | O_NOCTTY); 933 if (fd >= 0) { 934 (void) dup2(fd, 1); 935 (void) dup2(fd, 2); 936 } else { 937 /* 938 * Need to issue an error message somewhere. 939 */ 940 syslog(LOG_CRIT, "init[%d]: cannot open %s; %s\n", 941 getpid(), SYSCON, strerror(errno)); 942 } 943 944 /* 945 * Execute the "su" program. 946 */ 947 (void) execle(SU, SU, "-", (char *)0, glob_envp); 948 console(B_TRUE, "execle of %s failed: %s\n", SU, 949 strerror(errno)); 950 timer(5); 951 exit(1); 952 } 953 954 /* 955 * If we are the parent, wait around for the child to die 956 * or for "init" to be signaled to change levels. 957 */ 958 while (waitproc(su_process) == FAILURE) { 959 /* 960 * All other reasons for waking are ignored when in 961 * single-user mode. The only child we are interested 962 * in is being waited for explicitly by waitproc(). 963 */ 964 wakeup.w_mask = 0; 965 } 966 } 967 968 /* 969 * remv() scans through "proc_table" and performs cleanup. If 970 * there is a process in the table, which shouldn't be here at 971 * the current run level, then remv() kills the process. 972 */ 973 static void 974 remv() 975 { 976 struct PROC_TABLE *process; 977 struct CMD_LINE cmd; 978 char cmd_string[MAXCMDL]; 979 int change_level; 980 981 change_level = (cur_state != prev_state ? TRUE : FALSE); 982 983 /* 984 * Clear the TOUCHED flag on all entries so that when we have 985 * finished scanning inittab, we will be able to tell if we 986 * have any processes for which there is no entry in inittab. 987 */ 988 for (process = proc_table; 989 (process < proc_table + num_proc); process++) { 990 process->p_flags &= ~TOUCHED; 991 } 992 993 /* 994 * Scan all inittab entries. 995 */ 996 while (getcmd(&cmd, &cmd_string[0]) == TRUE) { 997 /* Scan for process which goes with this entry in inittab. */ 998 for (process = proc_table; 999 (process < proc_table + num_proc); process++) { 1000 if ((process->p_flags & OCCUPIED) == 0 || 1001 !id_eq(process->p_id, cmd.c_id)) 1002 continue; 1003 1004 /* 1005 * This slot contains the process we are looking for. 1006 */ 1007 1008 /* 1009 * Is the cur_state SINGLE_USER or is this process 1010 * marked as "off" or was this proc started by some 1011 * mechanism other than LVL{a|b|c} and the current level 1012 * does not support this process? 1013 */ 1014 if (cur_state == SINGLE_USER || 1015 cmd.c_action == M_OFF || 1016 ((cmd.c_levels & state_to_mask(cur_state)) == 0 && 1017 (process->p_flags & DEMANDREQUEST) == 0)) { 1018 if (process->p_flags & LIVING) { 1019 /* 1020 * Touch this entry so we know we have 1021 * treated it. Note that procs which 1022 * are already dead at this point and 1023 * should not be restarted are left 1024 * untouched. This causes their slot to 1025 * be freed later after dead accounting 1026 * is done. 1027 */ 1028 process->p_flags |= TOUCHED; 1029 1030 if ((process->p_flags & KILLED) == 0) { 1031 if (change_level) { 1032 process->p_flags 1033 |= WARNED; 1034 (void) kill( 1035 process->p_pid, 1036 SIGTERM); 1037 } else { 1038 /* 1039 * Fork a killing proc 1040 * so "init" can 1041 * continue without 1042 * having to pause for 1043 * TWARN seconds. 1044 */ 1045 killproc( 1046 process->p_pid); 1047 } 1048 process->p_flags |= KILLED; 1049 } 1050 } 1051 } else { 1052 /* 1053 * Process can exist at current level. If it is 1054 * still alive or a DEMANDREQUEST we touch it so 1055 * it will be left alone. Otherwise we leave it 1056 * untouched so it will be accounted for and 1057 * cleaned up later in remv(). Dead 1058 * DEMANDREQUESTs will be accounted but not 1059 * freed. 1060 */ 1061 if (process->p_flags & 1062 (LIVING|NOCLEANUP|DEMANDREQUEST)) 1063 process->p_flags |= TOUCHED; 1064 } 1065 1066 break; 1067 } 1068 } 1069 1070 st_write(); 1071 1072 /* 1073 * If this was a change of levels call, scan through the 1074 * process table for processes that were warned to die. If any 1075 * are found that haven't left yet, sleep for TWARN seconds and 1076 * then send final terminations to any that haven't died yet. 1077 */ 1078 if (change_level) { 1079 1080 /* 1081 * Set the alarm for TWARN seconds on the assumption 1082 * that there will be some that need to be waited for. 1083 * This won't harm anything except we are guaranteed to 1084 * wakeup in TWARN seconds whether we need to or not. 1085 */ 1086 setimer(TWARN); 1087 1088 /* 1089 * Scan for processes which should be dying. We hope they 1090 * will die without having to be sent a SIGKILL signal. 1091 */ 1092 for (process = proc_table; 1093 (process < proc_table + num_proc); process++) { 1094 /* 1095 * If this process should die, hasn't yet, and the 1096 * TWARN time hasn't expired yet, wait for process 1097 * to die or for timer to expire. 1098 */ 1099 while (time_up == FALSE && 1100 (process->p_flags & (WARNED|LIVING|OCCUPIED)) == 1101 (WARNED|LIVING|OCCUPIED)) 1102 (void) pause(); 1103 1104 if (time_up == TRUE) 1105 break; 1106 } 1107 1108 /* 1109 * If we reached the end of the table without the timer 1110 * expiring, then there are no procs which will have to be 1111 * sent the SIGKILL signal. If the timer has expired, then 1112 * it is necessary to scan the table again and send signals 1113 * to all processes which aren't going away nicely. 1114 */ 1115 if (time_up == TRUE) { 1116 for (process = proc_table; 1117 (process < proc_table + num_proc); process++) { 1118 if ((process->p_flags & 1119 (WARNED|LIVING|OCCUPIED)) == 1120 (WARNED|LIVING|OCCUPIED)) 1121 (void) kill(process->p_pid, SIGKILL); 1122 } 1123 } 1124 setimer(0); 1125 } 1126 1127 /* 1128 * Rescan the proc_table for two kinds of entry, those marked LIVING, 1129 * NAMED, which don't have an entry in inittab (haven't been TOUCHED 1130 * by the above scanning), and haven't been sent kill signals, and 1131 * those entries marked not LIVING, NAMED. The former procs are killed. 1132 * The latter have DEAD_PROCESS accounting done and the slot cleared. 1133 */ 1134 for (process = proc_table; 1135 (process < proc_table + num_proc); process++) { 1136 if ((process->p_flags & (LIVING|NAMED|TOUCHED|KILLED|OCCUPIED)) 1137 == (LIVING|NAMED|OCCUPIED)) { 1138 killproc(process->p_pid); 1139 process->p_flags |= KILLED; 1140 } else if ((process->p_flags & (LIVING|NAMED|OCCUPIED)) == 1141 (NAMED|OCCUPIED)) { 1142 (void) account(DEAD_PROCESS, process, NULL); 1143 /* 1144 * If this named proc hasn't been TOUCHED, then free the 1145 * space. It has either died of it's own accord, but 1146 * isn't respawnable or it was killed because it 1147 * shouldn't exist at this level. 1148 */ 1149 if ((process->p_flags & TOUCHED) == 0) 1150 process->p_flags = 0; 1151 } 1152 } 1153 1154 st_write(); 1155 } 1156 1157 /* 1158 * Extract the svc.startd command line and whether to restart it from its 1159 * inittab entry. 1160 */ 1161 /*ARGSUSED*/ 1162 static void 1163 process_startd_line(struct CMD_LINE *cmd, char *cmd_string) 1164 { 1165 size_t sz; 1166 1167 /* Save the command line. */ 1168 if (sflg || rflg) { 1169 /* Also append -r or -s. */ 1170 (void) strlcpy(startd_cline, cmd_string, sizeof (startd_cline)); 1171 (void) strlcat(startd_cline, " -", sizeof (startd_cline)); 1172 if (sflg) 1173 sz = strlcat(startd_cline, "s", sizeof (startd_cline)); 1174 if (rflg) 1175 sz = strlcat(startd_cline, "r", sizeof (startd_cline)); 1176 } else { 1177 sz = strlcpy(startd_cline, cmd_string, sizeof (startd_cline)); 1178 } 1179 1180 if (sz >= sizeof (startd_cline)) { 1181 console(B_TRUE, 1182 "svc.startd command line too long. Ignoring.\n"); 1183 startd_cline[0] = '\0'; 1184 return; 1185 } 1186 } 1187 1188 /* 1189 * spawn_processes() scans inittab for entries which should be run at this 1190 * mode. Processes which should be running but are not, are started. 1191 */ 1192 static int 1193 spawn_processes() 1194 { 1195 struct PROC_TABLE *pp; 1196 struct CMD_LINE cmd; 1197 char cmd_string[MAXCMDL]; 1198 short lvl_mask; 1199 int status; 1200 1201 /* 1202 * First check the "powerhit" flag. If it is set, make sure the modes 1203 * are PF_MODES and clear the "powerhit" flag. Avoid the possible race 1204 * on the "powerhit" flag by disallowing a new powerfail interrupt 1205 * between the test of the powerhit flag and the clearing of it. 1206 */ 1207 if (wakeup.w_flags.w_powerhit) { 1208 wakeup.w_flags.w_powerhit = 0; 1209 op_modes = PF_MODES; 1210 } 1211 lvl_mask = state_to_mask(cur_state); 1212 1213 /* 1214 * Scan through all the entries in inittab. 1215 */ 1216 while ((status = getcmd(&cmd, &cmd_string[0])) == TRUE) { 1217 if (id_eq(cmd.c_id, "smf")) { 1218 process_startd_line(&cmd, cmd_string); 1219 continue; 1220 } 1221 1222 retry_for_proc_slot: 1223 1224 /* 1225 * Find out if there is a process slot for this entry already. 1226 */ 1227 if ((pp = findpslot(&cmd)) == NULLPROC) { 1228 /* 1229 * we've run out of proc table entries 1230 * increase proc_table. 1231 */ 1232 increase_proc_table_size(); 1233 1234 /* 1235 * Retry now as we have an empty proc slot. 1236 * In case increase_proc_table_size() fails, 1237 * we will keep retrying. 1238 */ 1239 goto retry_for_proc_slot; 1240 } 1241 1242 /* 1243 * If there is an entry, and it is marked as DEMANDREQUEST, 1244 * one of the levels a, b, or c is in its levels mask, and 1245 * the action field is ONDEMAND and ONDEMAND is a permissable 1246 * mode, and the process is dead, then respawn it. 1247 */ 1248 if (((pp->p_flags & (LIVING|DEMANDREQUEST)) == DEMANDREQUEST) && 1249 (cmd.c_levels & MASK_abc) && 1250 (cmd.c_action & op_modes) == M_ONDEMAND) { 1251 spawn(pp, &cmd); 1252 continue; 1253 } 1254 1255 /* 1256 * If the action is not an action we are interested in, 1257 * skip the entry. 1258 */ 1259 if ((cmd.c_action & op_modes) == 0 || pp->p_flags & LIVING || 1260 (cmd.c_levels & lvl_mask) == 0) 1261 continue; 1262 1263 /* 1264 * If the modes are the normal modes (ONCE, WAIT, RESPAWN, OFF, 1265 * ONDEMAND) and the action field is either OFF or the action 1266 * field is ONCE or WAIT and the current level is the same as 1267 * the last level, then skip this entry. ONCE and WAIT only 1268 * get run when the level changes. 1269 */ 1270 if (op_modes == NORMAL_MODES && 1271 (cmd.c_action == M_OFF || 1272 (cmd.c_action & (M_ONCE|M_WAIT)) && 1273 cur_state == prev_state)) 1274 continue; 1275 1276 /* 1277 * At this point we are interested in performing the action for 1278 * this entry. Actions fall into two categories, spinning off 1279 * a process and not waiting, and spinning off a process and 1280 * waiting for it to die. If the action is ONCE, RESPAWN, 1281 * ONDEMAND, POWERFAIL, or BOOT we don't wait for the process 1282 * to die, for all other actions we do wait. 1283 */ 1284 if (cmd.c_action & (M_ONCE | M_RESPAWN | M_PF | M_BOOT)) { 1285 spawn(pp, &cmd); 1286 1287 } else { 1288 spawn(pp, &cmd); 1289 while (waitproc(pp) == FAILURE); 1290 (void) account(DEAD_PROCESS, pp, NULL); 1291 pp->p_flags = 0; 1292 } 1293 } 1294 return (status); 1295 } 1296 1297 /* 1298 * spawn() spawns a shell, inserts the information about the process 1299 * process into the proc_table, and does the startup accounting. 1300 */ 1301 static void 1302 spawn(struct PROC_TABLE *process, struct CMD_LINE *cmd) 1303 { 1304 int i; 1305 int modes, maxfiles; 1306 time_t now; 1307 struct PROC_TABLE tmproc, *oprocess; 1308 1309 /* 1310 * The modes to be sent to efork() are 0 unless we are 1311 * spawning a LVLa, LVLb, or LVLc entry or we will be 1312 * waiting for the death of the child before continuing. 1313 */ 1314 modes = NAMED; 1315 if (process->p_flags & DEMANDREQUEST || cur_state == LVLa || 1316 cur_state == LVLb || cur_state == LVLc) 1317 modes |= DEMANDREQUEST; 1318 if ((cmd->c_action & (M_SYSINIT | M_WAIT | M_BOOTWAIT | M_PWAIT)) != 0) 1319 modes |= NOCLEANUP; 1320 1321 /* 1322 * If this is a respawnable process, check the threshold 1323 * information to avoid excessive respawns. 1324 */ 1325 if (cmd->c_action & M_RESPAWN) { 1326 /* 1327 * Add NOCLEANUP to all respawnable commands so that the 1328 * information about the frequency of respawns isn't lost. 1329 */ 1330 modes |= NOCLEANUP; 1331 (void) time(&now); 1332 1333 /* 1334 * If no time is assigned, then this is the first time 1335 * this command is being processed in this series. Assign 1336 * the current time. 1337 */ 1338 if (process->p_time == 0L) 1339 process->p_time = now; 1340 1341 if (process->p_count++ == SPAWN_LIMIT) { 1342 1343 if ((now - process->p_time) < SPAWN_INTERVAL) { 1344 /* 1345 * Process is respawning too rapidly. Print 1346 * message and refuse to respawn it for now. 1347 */ 1348 console(B_TRUE, "Command is respawning too " 1349 "rapidly. Check for possible errors.\n" 1350 "id:%4s \"%s\"\n", 1351 &cmd->c_id[0], &cmd->c_command[EXEC]); 1352 return; 1353 } 1354 process->p_time = now; 1355 process->p_count = 0; 1356 1357 } else if (process->p_count > SPAWN_LIMIT) { 1358 /* 1359 * If process has been respawning too rapidly and 1360 * the inhibit time limit hasn't expired yet, we 1361 * refuse to respawn. 1362 */ 1363 if (now - process->p_time < SPAWN_INTERVAL + INHIBIT) 1364 return; 1365 process->p_time = now; 1366 process->p_count = 0; 1367 } 1368 rsflag = TRUE; 1369 } 1370 1371 /* 1372 * Spawn a child process to execute this command. 1373 */ 1374 (void) sigset(SIGCLD, SIG_DFL); 1375 oprocess = process; 1376 while ((process = efork(cmd->c_action, oprocess, modes)) == NO_ROOM) 1377 (void) pause(); 1378 1379 if (process == NULLPROC) { 1380 1381 /* 1382 * We are the child. We must make sure we get a different 1383 * file pointer for our references to utmpx. Otherwise our 1384 * seeks and reads will compete with those of the parent. 1385 */ 1386 endutxent(); 1387 1388 /* 1389 * Perform the accounting for the beginning of a process. 1390 * Note that all processes are initially "INIT_PROCESS"es. 1391 */ 1392 tmproc.p_id[0] = cmd->c_id[0]; 1393 tmproc.p_id[1] = cmd->c_id[1]; 1394 tmproc.p_id[2] = cmd->c_id[2]; 1395 tmproc.p_id[3] = cmd->c_id[3]; 1396 tmproc.p_pid = getpid(); 1397 tmproc.p_exit = 0; 1398 (void) account(INIT_PROCESS, &tmproc, 1399 prog_name(&cmd->c_command[EXEC])); 1400 maxfiles = ulimit(UL_GDESLIM, 0); 1401 for (i = 0; i < maxfiles; i++) 1402 (void) fcntl(i, F_SETFD, FD_CLOEXEC); 1403 1404 /* 1405 * Now exec a shell with the -c option and the command 1406 * from inittab. 1407 */ 1408 (void) execle(SH, "INITSH", "-c", cmd->c_command, (char *)0, 1409 glob_envp); 1410 console(B_TRUE, "Command\n\"%s\"\n failed to execute. errno " 1411 "= %d (exec of shell failed)\n", cmd->c_command, errno); 1412 1413 /* 1414 * Don't come back so quickly that "init" doesn't have a 1415 * chance to finish putting this child in "proc_table". 1416 */ 1417 timer(20); 1418 exit(1); 1419 1420 } 1421 1422 /* 1423 * We are the parent. Insert the necessary 1424 * information in the proc_table. 1425 */ 1426 process->p_id[0] = cmd->c_id[0]; 1427 process->p_id[1] = cmd->c_id[1]; 1428 process->p_id[2] = cmd->c_id[2]; 1429 process->p_id[3] = cmd->c_id[3]; 1430 1431 st_write(); 1432 1433 (void) sigset(SIGCLD, childeath); 1434 } 1435 1436 /* 1437 * findpslot() finds the old slot in the process table for the 1438 * command with the same id, or it finds an empty slot. 1439 */ 1440 static struct PROC_TABLE * 1441 findpslot(struct CMD_LINE *cmd) 1442 { 1443 struct PROC_TABLE *process; 1444 struct PROC_TABLE *empty = NULLPROC; 1445 1446 for (process = proc_table; 1447 (process < proc_table + num_proc); process++) { 1448 if (process->p_flags & OCCUPIED && 1449 id_eq(process->p_id, cmd->c_id)) 1450 break; 1451 1452 /* 1453 * If the entry is totally empty and "empty" is still 0, 1454 * remember where this hole is and make sure the slot is 1455 * zeroed out. 1456 */ 1457 if (empty == NULLPROC && (process->p_flags & OCCUPIED) == 0) { 1458 empty = process; 1459 process->p_id[0] = '\0'; 1460 process->p_id[1] = '\0'; 1461 process->p_id[2] = '\0'; 1462 process->p_id[3] = '\0'; 1463 process->p_pid = 0; 1464 process->p_time = 0L; 1465 process->p_count = 0; 1466 process->p_flags = 0; 1467 process->p_exit = 0; 1468 } 1469 } 1470 1471 /* 1472 * If there is no entry for this slot, then there should be an 1473 * empty slot. If there is no empty slot, then we've run out 1474 * of proc_table space. If the latter is true, empty will be 1475 * NULL and the caller will have to complain. 1476 */ 1477 if (process == (proc_table + num_proc)) 1478 process = empty; 1479 1480 return (process); 1481 } 1482 1483 /* 1484 * getcmd() parses lines from inittab. Each time it finds a command line 1485 * it will return TRUE as well as fill the passed CMD_LINE structure and 1486 * the shell command string. When the end of inittab is reached, FALSE 1487 * is returned inittab is automatically opened if it is not currently open 1488 * and is closed when the end of the file is reached. 1489 */ 1490 static FILE *fp_inittab = NULL; 1491 1492 static int 1493 getcmd(struct CMD_LINE *cmd, char *shcmd) 1494 { 1495 char *ptr; 1496 int c, lastc, state; 1497 char *ptr1; 1498 int answer, i, proceed; 1499 struct stat sbuf; 1500 static char *actions[] = { 1501 "off", "respawn", "ondemand", "once", "wait", "boot", 1502 "bootwait", "powerfail", "powerwait", "initdefault", 1503 "sysinit", 1504 }; 1505 static short act_masks[] = { 1506 M_OFF, M_RESPAWN, M_ONDEMAND, M_ONCE, M_WAIT, M_BOOT, 1507 M_BOOTWAIT, M_PF, M_PWAIT, M_INITDEFAULT, M_SYSINIT, 1508 }; 1509 /* 1510 * Only these actions will be allowed for entries which 1511 * are specified for single-user mode. 1512 */ 1513 short su_acts = M_INITDEFAULT | M_PF | M_PWAIT | M_WAIT; 1514 1515 if (fp_inittab == NULL) { 1516 /* 1517 * Before attempting to open inittab we stat it to make 1518 * sure it currently exists and is not empty. We try 1519 * several times because someone may have temporarily 1520 * unlinked or truncated the file. 1521 */ 1522 for (i = 0; i < 3; i++) { 1523 if (stat(INITTAB, &sbuf) == -1) { 1524 if (i == 2) { 1525 console(B_TRUE, 1526 "Cannot stat %s, errno: %d\n", 1527 INITTAB, errno); 1528 return (FAILURE); 1529 } else { 1530 timer(3); 1531 } 1532 } else if (sbuf.st_size < 10) { 1533 if (i == 2) { 1534 console(B_TRUE, 1535 "%s truncated or corrupted\n", 1536 INITTAB); 1537 return (FAILURE); 1538 } else { 1539 timer(3); 1540 } 1541 } else { 1542 break; 1543 } 1544 } 1545 1546 /* 1547 * If unable to open inittab, print error message and 1548 * return FAILURE to caller. 1549 */ 1550 if ((fp_inittab = fopen(INITTAB, "r")) == NULL) { 1551 console(B_TRUE, "Cannot open %s errno: %d\n", INITTAB, 1552 errno); 1553 return (FAILURE); 1554 } 1555 } 1556 1557 /* 1558 * Keep getting commands from inittab until you find a 1559 * good one or run out of file. 1560 */ 1561 for (answer = FALSE; answer == FALSE; ) { 1562 /* 1563 * Zero out the cmd itself before trying next line. 1564 */ 1565 bzero(cmd, sizeof (struct CMD_LINE)); 1566 1567 /* 1568 * Read in lines of inittab, parsing at colons, until a line is 1569 * read in which doesn't end with a backslash. Do not start if 1570 * the first character read is an EOF. Note that this means 1571 * that lines which don't end in a newline are still processed, 1572 * since the "for" will terminate normally once started, 1573 * regardless of whether line terminates with a newline or EOF. 1574 */ 1575 state = FAILURE; 1576 if ((c = fgetc(fp_inittab)) == EOF) { 1577 answer = FALSE; 1578 (void) fclose(fp_inittab); 1579 fp_inittab = NULL; 1580 break; 1581 } 1582 1583 for (proceed = TRUE, ptr = shcmd, state = ID, lastc = '\0'; 1584 proceed && c != EOF; 1585 lastc = c, c = fgetc(fp_inittab)) { 1586 /* If we're not in the FAILURE state and haven't */ 1587 /* yet reached the shell command field, process */ 1588 /* the line, otherwise just look for a real end */ 1589 /* of line. */ 1590 if (state != FAILURE && state != COMMAND) { 1591 /* 1592 * Squeeze out spaces and tabs. 1593 */ 1594 if (c == ' ' || c == '\t') 1595 continue; 1596 1597 /* 1598 * Ignore characters in a comment, except for the \n. 1599 */ 1600 if (state == COMMENT) { 1601 if (c == '\n') { 1602 lastc = ' '; 1603 break; 1604 } else { 1605 continue; 1606 } 1607 } 1608 1609 /* 1610 * Detect comments (lines whose first non-whitespace 1611 * character is '#') by checking that we're at the 1612 * beginning of a line, have seen a '#', and haven't 1613 * yet accumulated any characters. 1614 */ 1615 if (state == ID && c == '#' && ptr == shcmd) { 1616 state = COMMENT; 1617 continue; 1618 } 1619 1620 /* 1621 * If the character is a ':', then check the 1622 * previous field for correctness and advance 1623 * to the next field. 1624 */ 1625 if (c == ':') { 1626 switch (state) { 1627 1628 case ID : 1629 /* 1630 * Check to see that there are only 1631 * 1 to 4 characters for the id. 1632 */ 1633 if ((i = ptr - shcmd) < 1 || i > 4) { 1634 state = FAILURE; 1635 } else { 1636 bcopy(shcmd, &cmd->c_id[0], i); 1637 ptr = shcmd; 1638 state = LEVELS; 1639 } 1640 break; 1641 1642 case LEVELS : 1643 /* 1644 * Build a mask for all the levels for 1645 * which this command will be legal. 1646 */ 1647 for (cmd->c_levels = 0, ptr1 = shcmd; 1648 ptr1 < ptr; ptr1++) { 1649 int mask; 1650 if (lvlname_to_mask(*ptr1, 1651 &mask) == -1) { 1652 state = FAILURE; 1653 break; 1654 } 1655 cmd->c_levels |= mask; 1656 } 1657 if (state != FAILURE) { 1658 state = ACTION; 1659 ptr = shcmd; /* Reset the buffer */ 1660 } 1661 break; 1662 1663 case ACTION : 1664 /* 1665 * Null terminate the string in shcmd buffer and 1666 * then try to match against legal actions. If 1667 * the field is of length 0, then the default of 1668 * "RESPAWN" is used if the id is numeric, 1669 * otherwise the default is "OFF". 1670 */ 1671 if (ptr == shcmd) { 1672 if (isdigit(cmd->c_id[0]) && 1673 (cmd->c_id[1] == '\0' || 1674 isdigit(cmd->c_id[1])) && 1675 (cmd->c_id[2] == '\0' || 1676 isdigit(cmd->c_id[2])) && 1677 (cmd->c_id[3] == '\0' || 1678 isdigit(cmd->c_id[3]))) 1679 cmd->c_action = M_RESPAWN; 1680 else 1681 cmd->c_action = M_OFF; 1682 } else { 1683 for (cmd->c_action = 0, i = 0, *ptr = '\0'; 1684 i < sizeof (actions)/sizeof (char *); 1685 i++) { 1686 if (strcmp(shcmd, actions[i]) == 0) { 1687 if ((cmd->c_levels & MASKSU) && 1688 !(act_masks[i] & su_acts)) 1689 cmd->c_action = 0; 1690 else 1691 cmd->c_action = act_masks[i]; 1692 break; 1693 } 1694 } 1695 } 1696 1697 /* 1698 * If the action didn't match any legal action, 1699 * set state to FAILURE. 1700 */ 1701 if (cmd->c_action == 0) { 1702 state = FAILURE; 1703 } else { 1704 state = COMMAND; 1705 (void) strcpy(shcmd, "exec "); 1706 } 1707 ptr = shcmd + EXEC; 1708 break; 1709 } 1710 continue; 1711 } 1712 } 1713 1714 /* If the character is a '\n', then this is the end of a */ 1715 /* line. If the '\n' wasn't preceded by a backslash, */ 1716 /* it is also the end of an inittab command. If it was */ 1717 /* preceded by a backslash then the next line is a */ 1718 /* continuation. Note that the continuation '\n' falls */ 1719 /* through and is treated like other characters and is */ 1720 /* stored in the shell command line. */ 1721 if (c == '\n' && lastc != '\\') { 1722 proceed = FALSE; 1723 *ptr = '\0'; 1724 break; 1725 } 1726 1727 /* For all other characters just stuff them into the */ 1728 /* command as long as there aren't too many of them. */ 1729 /* Make sure there is room for a terminating '\0' also. */ 1730 if (ptr >= shcmd + MAXCMDL - 1) 1731 state = FAILURE; 1732 else 1733 *ptr++ = (char)c; 1734 1735 /* If the character we just stored was a quoted */ 1736 /* backslash, then change "c" to '\0', so that this */ 1737 /* backslash will not cause a subsequent '\n' to appear */ 1738 /* quoted. In otherwords '\' '\' '\n' is the real end */ 1739 /* of a command, while '\' '\n' is a continuation. */ 1740 if (c == '\\' && lastc == '\\') 1741 c = '\0'; 1742 } 1743 1744 /* 1745 * Make sure all the fields are properly specified 1746 * for a good command line. 1747 */ 1748 if (state == COMMAND) { 1749 answer = TRUE; 1750 cmd->c_command = shcmd; 1751 1752 /* 1753 * If no default level was supplied, insert 1754 * all numerical levels. 1755 */ 1756 if (cmd->c_levels == 0) 1757 cmd->c_levels = MASK_NUMERIC; 1758 1759 /* 1760 * If no action has been supplied, declare this 1761 * entry to be OFF. 1762 */ 1763 if (cmd->c_action == 0) 1764 cmd->c_action = M_OFF; 1765 1766 /* 1767 * If no shell command has been supplied, make sure 1768 * there is a null string in the command field. 1769 */ 1770 if (ptr == shcmd + EXEC) 1771 *shcmd = '\0'; 1772 } else 1773 answer = FALSE; 1774 1775 /* 1776 * If we have reached the end of inittab, then close it 1777 * and quit trying to find a good command line. 1778 */ 1779 if (c == EOF) { 1780 (void) fclose(fp_inittab); 1781 fp_inittab = NULL; 1782 break; 1783 } 1784 } 1785 return (answer); 1786 } 1787 1788 /* 1789 * lvlname_to_state(): convert the character name of a state to its level 1790 * (its corresponding signal number). 1791 */ 1792 static int 1793 lvlname_to_state(char name) 1794 { 1795 int i; 1796 for (i = 0; i < LVL_NELEMS; i++) { 1797 if (lvls[i].lvl_name == name) 1798 return (lvls[i].lvl_state); 1799 } 1800 return (-1); 1801 } 1802 1803 /* 1804 * state_to_name(): convert the level to the character name. 1805 */ 1806 static char 1807 state_to_name(int state) 1808 { 1809 int i; 1810 for (i = 0; i < LVL_NELEMS; i++) { 1811 if (lvls[i].lvl_state == state) 1812 return (lvls[i].lvl_name); 1813 } 1814 return (-1); 1815 } 1816 1817 /* 1818 * state_to_mask(): return the mask corresponding to a signal number 1819 */ 1820 static int 1821 state_to_mask(int state) 1822 { 1823 int i; 1824 for (i = 0; i < LVL_NELEMS; i++) { 1825 if (lvls[i].lvl_state == state) 1826 return (lvls[i].lvl_mask); 1827 } 1828 return (0); /* return 0, since that represents an empty mask */ 1829 } 1830 1831 /* 1832 * lvlname_to_mask(): return the mask corresponding to a levels character name 1833 */ 1834 static int 1835 lvlname_to_mask(char name, int *mask) 1836 { 1837 int i; 1838 for (i = 0; i < LVL_NELEMS; i++) { 1839 if (lvls[i].lvl_name == name) { 1840 *mask = lvls[i].lvl_mask; 1841 return (0); 1842 } 1843 } 1844 return (-1); 1845 } 1846 1847 /* 1848 * state_to_flags(): return the flags corresponding to a runlevel. These 1849 * indicate properties of that runlevel. 1850 */ 1851 static int 1852 state_to_flags(int state) 1853 { 1854 int i; 1855 for (i = 0; i < LVL_NELEMS; i++) { 1856 if (lvls[i].lvl_state == state) 1857 return (lvls[i].lvl_flags); 1858 } 1859 return (0); 1860 } 1861 1862 /* 1863 * killproc() creates a child which kills the process specified by pid. 1864 */ 1865 void 1866 killproc(pid_t pid) 1867 { 1868 struct PROC_TABLE *process; 1869 1870 (void) sigset(SIGCLD, SIG_DFL); 1871 while ((process = efork(M_OFF, NULLPROC, 0)) == NO_ROOM) 1872 (void) pause(); 1873 (void) sigset(SIGCLD, childeath); 1874 1875 if (process == NULLPROC) { 1876 /* 1877 * efork() sets all signal handlers to the default, so reset 1878 * the ALRM handler to make timer() work as expected. 1879 */ 1880 (void) sigset(SIGALRM, alarmclk); 1881 1882 /* 1883 * We are the child. Try to terminate the process nicely 1884 * first using SIGTERM and if it refuses to die in TWARN 1885 * seconds kill it with SIGKILL. 1886 */ 1887 (void) kill(pid, SIGTERM); 1888 (void) timer(TWARN); 1889 (void) kill(pid, SIGKILL); 1890 (void) exit(0); 1891 } 1892 } 1893 1894 /* 1895 * Set up the default environment for all procs to be forked from init. 1896 * Read the values from the /etc/default/init file, except for PATH. If 1897 * there's not enough room in the environment array, the environment 1898 * lines that don't fit are silently discarded. 1899 */ 1900 void 1901 init_env() 1902 { 1903 char line[MAXCMDL]; 1904 FILE *fp; 1905 int inquotes, length, wslength; 1906 char *tokp, *cp1, *cp2; 1907 1908 glob_envp[0] = malloc((unsigned)(strlen(DEF_PATH)+2)); 1909 (void) strcpy(glob_envp[0], DEF_PATH); 1910 glob_envn = 1; 1911 1912 if (rflg) { 1913 glob_envp[1] = 1914 malloc((unsigned)(strlen("_DVFS_RECONFIG=YES")+2)); 1915 (void) strcpy(glob_envp[1], "_DVFS_RECONFIG=YES"); 1916 ++glob_envn; 1917 } else if (bflg == 1) { 1918 glob_envp[1] = 1919 malloc((unsigned)(strlen("RB_NOBOOTRC=YES")+2)); 1920 (void) strcpy(glob_envp[1], "RB_NOBOOTRC=YES"); 1921 ++glob_envn; 1922 } 1923 1924 if ((fp = fopen(ENVFILE, "r")) == NULL) { 1925 console(B_TRUE, 1926 "Cannot open %s. Environment not initialized.\n", 1927 ENVFILE); 1928 } else { 1929 while (fgets(line, MAXCMDL - 1, fp) != NULL && 1930 glob_envn < MAXENVENT - 2) { 1931 /* 1932 * Toss newline 1933 */ 1934 length = strlen(line); 1935 if (line[length - 1] == '\n') 1936 line[length - 1] = '\0'; 1937 1938 /* 1939 * Ignore blank or comment lines. 1940 */ 1941 if (line[0] == '#' || line[0] == '\0' || 1942 (wslength = strspn(line, " \t\n")) == 1943 strlen(line) || 1944 strchr(line, '#') == line + wslength) 1945 continue; 1946 1947 /* 1948 * First make a pass through the line and change 1949 * any non-quoted semi-colons to blanks so they 1950 * will be treated as token separators below. 1951 */ 1952 inquotes = 0; 1953 for (cp1 = line; *cp1 != '\0'; cp1++) { 1954 if (*cp1 == '"') { 1955 if (inquotes == 0) 1956 inquotes = 1; 1957 else 1958 inquotes = 0; 1959 } else if (*cp1 == ';') { 1960 if (inquotes == 0) 1961 *cp1 = ' '; 1962 } 1963 } 1964 1965 /* 1966 * Tokens within the line are separated by blanks 1967 * and tabs. For each token in the line which 1968 * contains a '=' we strip out any quotes and then 1969 * stick the token in the environment array. 1970 */ 1971 if ((tokp = strtok(line, " \t")) == NULL) 1972 continue; 1973 do { 1974 if (strchr(tokp, '=') == NULL) 1975 continue; 1976 length = strlen(tokp); 1977 while ((cp1 = strpbrk(tokp, "\"\'")) != NULL) { 1978 for (cp2 = cp1; 1979 cp2 < &tokp[length]; cp2++) 1980 *cp2 = *(cp2 + 1); 1981 length--; 1982 } 1983 1984 if (strncmp(tokp, "CMASK=", 1985 sizeof ("CMASK=") - 1) == 0) { 1986 long t; 1987 1988 /* We know there's an = */ 1989 t = strtol(strchr(tokp, '=') + 1, NULL, 1990 8); 1991 1992 /* Sanity */ 1993 if (t <= 077 && t >= 0) 1994 cmask = (int)t; 1995 (void) umask(cmask); 1996 continue; 1997 } 1998 glob_envp[glob_envn] = 1999 malloc((unsigned)(length + 1)); 2000 (void) strcpy(glob_envp[glob_envn], tokp); 2001 if (++glob_envn >= MAXENVENT - 1) 2002 break; 2003 } while ((tokp = strtok(NULL, " \t")) != NULL); 2004 } 2005 2006 /* 2007 * Append a null pointer to the environment array 2008 * to mark its end. 2009 */ 2010 glob_envp[glob_envn] = NULL; 2011 (void) fclose(fp); 2012 } 2013 } 2014 2015 /* 2016 * boot_init(): Do initialization things that should be done at boot. 2017 */ 2018 void 2019 boot_init() 2020 { 2021 int i; 2022 struct PROC_TABLE *process, *oprocess; 2023 struct CMD_LINE cmd; 2024 char line[MAXCMDL]; 2025 char *old_path; 2026 int maxfiles; 2027 2028 /* Use INIT_PATH for sysinit cmds */ 2029 old_path = glob_envp[0]; 2030 glob_envp[0] = malloc((unsigned)(strlen(INIT_PATH)+2)); 2031 (void) strcpy(glob_envp[0], INIT_PATH); 2032 2033 /* 2034 * Scan inittab(4) and process the special svc.startd entry, initdefault 2035 * and sysinit entries. 2036 */ 2037 while (getcmd(&cmd, &line[0]) == TRUE) { 2038 if (startd_tmpl >= 0 && id_eq(cmd.c_id, "smf")) 2039 process_startd_line(&cmd, line); 2040 else if (cmd.c_action == M_INITDEFAULT) { 2041 /* 2042 * initdefault is no longer meaningful, as the SMF 2043 * milestone controls what (legacy) run level we 2044 * boot to. 2045 */ 2046 console(B_TRUE, 2047 "Ignoring legacy \"initdefault\" entry.\n"); 2048 } else if (cmd.c_action == M_SYSINIT) { 2049 /* 2050 * Execute the "sysinit" entry and wait for it to 2051 * complete. No bookkeeping is performed on these 2052 * entries because we avoid writing to the file system 2053 * until after there has been an chance to check it. 2054 */ 2055 if (process = findpslot(&cmd)) { 2056 (void) sigset(SIGCLD, SIG_DFL); 2057 2058 for (oprocess = process; 2059 (process = efork(M_OFF, oprocess, 2060 (NAMED|NOCLEANUP))) == NO_ROOM; 2061 /* CSTYLED */) 2062 ; 2063 (void) sigset(SIGCLD, childeath); 2064 2065 if (process == NULLPROC) { 2066 maxfiles = ulimit(UL_GDESLIM, 0); 2067 2068 for (i = 0; i < maxfiles; i++) 2069 (void) fcntl(i, F_SETFD, 2070 FD_CLOEXEC); 2071 (void) execle(SH, "INITSH", "-c", 2072 cmd.c_command, 2073 (char *)0, glob_envp); 2074 console(B_TRUE, 2075 "Command\n\"%s\"\n failed to execute. errno = %d (exec of shell failed)\n", 2076 cmd.c_command, errno); 2077 exit(1); 2078 } else while (waitproc(process) == FAILURE); 2079 process->p_flags = 0; 2080 st_write(); 2081 } 2082 } 2083 } 2084 2085 /* Restore the path. */ 2086 free(glob_envp[0]); 2087 glob_envp[0] = old_path; 2088 2089 /* 2090 * This will enable st_write() to complain about init_state_file. 2091 */ 2092 booting = 0; 2093 2094 /* 2095 * If the /etc/ioctl.syscon didn't exist or had invalid contents write 2096 * out a correct version. 2097 */ 2098 if (write_ioctl) 2099 write_ioctl_syscon(); 2100 2101 /* 2102 * Start svc.startd(1M), which does most of the work. 2103 */ 2104 if (startd_cline[0] != '\0' && startd_tmpl >= 0) { 2105 /* Start svc.startd. */ 2106 if (startd_run(startd_cline, startd_tmpl, 0) == -1) 2107 cur_state = SINGLE_USER; 2108 } else { 2109 console(B_TRUE, "Absent svc.startd entry or bad " 2110 "contract template. Not starting svc.startd.\n"); 2111 enter_maintenance(); 2112 } 2113 } 2114 2115 /* 2116 * init_signals(): Initialize all signals to either be caught or ignored. 2117 */ 2118 void 2119 init_signals(void) 2120 { 2121 struct sigaction act; 2122 int i; 2123 2124 /* 2125 * Start by ignoring all signals, then selectively re-enable some. 2126 * The SIG_IGN disposition will only affect asynchronous signals: 2127 * any signal that we trigger synchronously that doesn't end up 2128 * being handled by siglvl() will be forcibly delivered by the kernel. 2129 */ 2130 for (i = SIGHUP; i <= SIGRTMAX; i++) 2131 (void) sigset(i, SIG_IGN); 2132 2133 /* 2134 * Handle all level-changing signals using siglvl() and set sa_mask so 2135 * that all level-changing signals are blocked while in siglvl(). 2136 */ 2137 act.sa_handler = siglvl; 2138 act.sa_flags = SA_SIGINFO; 2139 (void) sigemptyset(&act.sa_mask); 2140 2141 (void) sigaddset(&act.sa_mask, LVLQ); 2142 (void) sigaddset(&act.sa_mask, LVL0); 2143 (void) sigaddset(&act.sa_mask, LVL1); 2144 (void) sigaddset(&act.sa_mask, LVL2); 2145 (void) sigaddset(&act.sa_mask, LVL3); 2146 (void) sigaddset(&act.sa_mask, LVL4); 2147 (void) sigaddset(&act.sa_mask, LVL5); 2148 (void) sigaddset(&act.sa_mask, LVL6); 2149 (void) sigaddset(&act.sa_mask, SINGLE_USER); 2150 (void) sigaddset(&act.sa_mask, LVLa); 2151 (void) sigaddset(&act.sa_mask, LVLb); 2152 (void) sigaddset(&act.sa_mask, LVLc); 2153 2154 (void) sigaction(LVLQ, &act, NULL); 2155 (void) sigaction(LVL0, &act, NULL); 2156 (void) sigaction(LVL1, &act, NULL); 2157 (void) sigaction(LVL2, &act, NULL); 2158 (void) sigaction(LVL3, &act, NULL); 2159 (void) sigaction(LVL4, &act, NULL); 2160 (void) sigaction(LVL5, &act, NULL); 2161 (void) sigaction(LVL6, &act, NULL); 2162 (void) sigaction(SINGLE_USER, &act, NULL); 2163 (void) sigaction(LVLa, &act, NULL); 2164 (void) sigaction(LVLb, &act, NULL); 2165 (void) sigaction(LVLc, &act, NULL); 2166 2167 (void) sigset(SIGALRM, alarmclk); 2168 alarmclk(); 2169 2170 (void) sigset(SIGCLD, childeath); 2171 (void) sigset(SIGPWR, powerfail); 2172 } 2173 2174 /* 2175 * Set up pipe for "godchildren". If the file exists and is a pipe just open 2176 * it. Else, if the file system is r/w create it. Otherwise, defer its 2177 * creation and open until after the sysinit functions have had a chance to 2178 * make the root read/write. 2179 */ 2180 void 2181 setup_pipe() 2182 { 2183 struct stat stat_buf; 2184 struct statvfs statvfs_buf; 2185 2186 if ((stat(INITPIPE, &stat_buf) == 0) && 2187 ((stat_buf.st_mode & (S_IFMT|S_IRUSR)) == (S_IFIFO|S_IRUSR))) 2188 Pfd = open(INITPIPE, O_RDWR | O_NDELAY); 2189 else 2190 if ((statvfs(INITPIPE_DIR, &statvfs_buf) == 0) && 2191 ((statvfs_buf.f_flag & ST_RDONLY) == 0)) { 2192 (void) unlink(INITPIPE); 2193 (void) mknod(INITPIPE, S_IFIFO | 0600, 0); 2194 Pfd = open(INITPIPE, O_RDWR | O_NDELAY); 2195 } 2196 2197 if (Pfd >= 0) { 2198 (void) ioctl(Pfd, I_SETSIG, S_INPUT); 2199 /* 2200 * Read pipe in message discard mode. 2201 */ 2202 (void) ioctl(Pfd, I_SRDOPT, RMSGD); 2203 (void) sigset(SIGPOLL, sigpoll); 2204 } 2205 } 2206 2207 /* 2208 * siglvl - handle an asynchronous signal from init(1M) telling us that we 2209 * should change the current run level. We set new_state accordingly. 2210 */ 2211 void 2212 siglvl(int sig, siginfo_t *sip, ucontext_t *ucp) 2213 { 2214 struct PROC_TABLE *process; 2215 struct sigaction act; 2216 2217 /* 2218 * If the signal was from the kernel (rather than init(1M)) then init 2219 * itself tripped the signal. That is, we might have a bug and tripped 2220 * a real SIGSEGV instead of receiving it as an alias for SIGLVLa. In 2221 * such a case we reset the disposition to SIG_DFL, block all signals 2222 * in uc_mask but the current one, and return to the interrupted ucp 2223 * to effect an appropriate death. The kernel will then restart us. 2224 * 2225 * The one exception to SI_FROMKERNEL() is SIGFPE (a.k.a. LVL6), which 2226 * the kernel can send us when it wants to effect an orderly reboot. 2227 * For this case we must also verify si_code is zero, rather than a 2228 * code such as FPE_INTDIV which a bug might have triggered. 2229 */ 2230 if (sip != NULL && SI_FROMKERNEL(sip) && 2231 (sig != SIGFPE || sip->si_code == 0)) { 2232 2233 (void) sigemptyset(&act.sa_mask); 2234 act.sa_handler = SIG_DFL; 2235 act.sa_flags = 0; 2236 (void) sigaction(sig, &act, NULL); 2237 2238 (void) sigfillset(&ucp->uc_sigmask); 2239 (void) sigdelset(&ucp->uc_sigmask, sig); 2240 ucp->uc_flags |= UC_SIGMASK; 2241 2242 (void) setcontext(ucp); 2243 } 2244 2245 /* 2246 * If the signal received is a LVLQ signal, do not really 2247 * change levels, just restate the current level. If the 2248 * signal is not a LVLQ, set the new level to the signal 2249 * received. 2250 */ 2251 if (sig == LVLQ) 2252 new_state = cur_state; 2253 else 2254 new_state = sig; 2255 2256 /* 2257 * Clear all times and repeat counts in the process table 2258 * since either the level is changing or the user has editted 2259 * the inittab file and wants us to look at it again. 2260 * If the user has fixed a typo, we don't want residual timing 2261 * data preventing the fixed command line from executing. 2262 */ 2263 for (process = proc_table; 2264 (process < proc_table + num_proc); process++) { 2265 process->p_time = 0L; 2266 process->p_count = 0; 2267 } 2268 2269 /* 2270 * Set the flag to indicate that a "user signal" was received. 2271 */ 2272 wakeup.w_flags.w_usersignal = 1; 2273 } 2274 2275 2276 /* 2277 * alarmclk 2278 */ 2279 static void 2280 alarmclk() 2281 { 2282 time_up = TRUE; 2283 } 2284 2285 /* 2286 * childeath_single(): 2287 * 2288 * This used to be the SIGCLD handler and it was set with signal() 2289 * (as opposed to sigset()). When a child exited we'd come to the 2290 * handler, wait for the child, and reenable the handler with 2291 * signal() just before returning. The implementation of signal() 2292 * checks with waitid() for waitable children and sends a SIGCLD 2293 * if there are some. If children are exiting faster than the 2294 * handler can run we keep sending signals and the handler never 2295 * gets to return and eventually the stack runs out and init dies. 2296 * To prevent that we set the handler with sigset() so the handler 2297 * doesn't need to be reset, and in childeath() (see below) we 2298 * call childeath_single() as long as there are children to be 2299 * waited for. If a child exits while init is in the handler a 2300 * SIGCLD will be pending and delivered on return from the handler. 2301 * If the child was already waited for the handler will have nothing 2302 * to do and return, otherwise the child will be waited for. 2303 */ 2304 static void 2305 childeath_single() 2306 { 2307 struct PROC_TABLE *process; 2308 struct pidlist *pp; 2309 pid_t pid; 2310 int status; 2311 2312 /* 2313 * Perform wait to get the process id of the child that died and 2314 * then scan the process table to see if we are interested in 2315 * this process. NOTE: if a super-user sends the SIGCLD signal 2316 * to init, the following wait will not immediately return and 2317 * init will be inoperative until one of its child really does die. 2318 */ 2319 pid = wait(&status); 2320 2321 for (process = proc_table; 2322 (process < proc_table + num_proc); process++) { 2323 if ((process->p_flags & (LIVING|OCCUPIED)) == 2324 (LIVING|OCCUPIED) && process->p_pid == pid) { 2325 2326 /* 2327 * Mark this process as having died and store the exit 2328 * status. Also set the wakeup flag for a dead child 2329 * and break out of the loop. 2330 */ 2331 process->p_flags &= ~LIVING; 2332 process->p_exit = (short)status; 2333 wakeup.w_flags.w_childdeath = 1; 2334 2335 return; 2336 } 2337 } 2338 2339 /* 2340 * No process was found above, look through auxiliary list. 2341 */ 2342 (void) sighold(SIGPOLL); 2343 pp = Plhead; 2344 while (pp) { 2345 if (pid > pp->pl_pid) { 2346 /* 2347 * Keep on looking. 2348 */ 2349 pp = pp->pl_next; 2350 continue; 2351 } else if (pid < pp->pl_pid) { 2352 /* 2353 * Not in the list. 2354 */ 2355 break; 2356 } else { 2357 /* 2358 * This is a dead "godchild". 2359 */ 2360 pp->pl_dflag = 1; 2361 pp->pl_exit = (short)status; 2362 wakeup.w_flags.w_childdeath = 1; 2363 Gchild = 1; /* Notice to call cleanaux(). */ 2364 break; 2365 } 2366 } 2367 2368 (void) sigrelse(SIGPOLL); 2369 } 2370 2371 /* ARGSUSED */ 2372 static void 2373 childeath(int signo) 2374 { 2375 siginfo_t info; 2376 2377 while ((waitid(P_ALL, (id_t)0, &info, WEXITED|WNOHANG|WNOWAIT) == 0) && 2378 info.si_pid != 0) 2379 childeath_single(); 2380 } 2381 2382 static void 2383 powerfail() 2384 { 2385 (void) nice(-19); 2386 wakeup.w_flags.w_powerhit = 1; 2387 } 2388 2389 /* 2390 * efork() forks a child and the parent inserts the process in its table 2391 * of processes that are directly a result of forks that it has performed. 2392 * The child just changes the "global" with the process id for this process 2393 * to it's new value. 2394 * If efork() is called with a pointer into the proc_table it uses that slot, 2395 * otherwise it searches for a free slot. Regardless of how it was called, 2396 * it returns the pointer to the proc_table entry 2397 * 2398 * The SIGCLD handler is set to default (SIG_DFL) before calling efork(). 2399 * This relies on the somewhat obscure SVR2 SIGCLD/SIG_DFL semantic 2400 * implied by the use of signal(3c). While the meaning of SIG_DFL for 2401 * SIGCLD is nominally to ignore the signal, once the signal disposition 2402 * is set to childeath(), the kernel will post a SIGCLD if a child 2403 * exited during the period the disposition was SIG_DFL. It acts more 2404 * like a signal block. 2405 * 2406 * Ideally, this should be rewritten to use modern signal semantics. 2407 */ 2408 static struct PROC_TABLE * 2409 efork(int action, struct PROC_TABLE *process, int modes) 2410 { 2411 pid_t childpid; 2412 struct PROC_TABLE *proc; 2413 int i; 2414 void (*oldroutine)(); 2415 /* 2416 * Freshen up the proc_table, removing any entries for dead processes 2417 * that don't have NOCLEANUP set. Perform the necessary accounting. 2418 */ 2419 for (proc = proc_table; (proc < proc_table + num_proc); proc++) { 2420 if ((proc->p_flags & (OCCUPIED|LIVING|NOCLEANUP)) == 2421 (OCCUPIED)) { 2422 /* 2423 * Is this a named process? 2424 * If so, do the necessary bookkeeping. 2425 */ 2426 if (proc->p_flags & NAMED) 2427 (void) account(DEAD_PROCESS, proc, NULL); 2428 2429 /* 2430 * Free this entry for new usage. 2431 */ 2432 proc->p_flags = 0; 2433 } 2434 } 2435 2436 while ((childpid = fork()) == FAILURE) { 2437 /* 2438 * Shorten the alarm timer in case someone else's child dies 2439 * and free up a slot in the process table. 2440 */ 2441 setimer(5); 2442 2443 /* 2444 * Wait for some children to die. Since efork() is normally 2445 * called with SIGCLD in the default state, reset it to catch 2446 * so that child death signals can come in. 2447 */ 2448 oldroutine = sigset(SIGCLD, childeath); 2449 (void) pause(); 2450 (void) sigset(SIGCLD, oldroutine); 2451 setimer(0); 2452 } 2453 2454 if (childpid != 0) { 2455 2456 if (process == NULLPROC) { 2457 /* 2458 * No proc table pointer specified so search 2459 * for a free slot. 2460 */ 2461 for (process = proc_table; process->p_flags != 0 && 2462 (process < proc_table + num_proc); process++) 2463 ; 2464 2465 if (process == (proc_table + num_proc)) { 2466 int old_proc_table_size = num_proc; 2467 2468 /* Increase the process table size */ 2469 increase_proc_table_size(); 2470 if (old_proc_table_size == num_proc) { 2471 /* didn't grow: memory failure */ 2472 return (NO_ROOM); 2473 } else { 2474 process = 2475 proc_table + old_proc_table_size; 2476 } 2477 } 2478 2479 process->p_time = 0L; 2480 process->p_count = 0; 2481 } 2482 process->p_id[0] = '\0'; 2483 process->p_id[1] = '\0'; 2484 process->p_id[2] = '\0'; 2485 process->p_id[3] = '\0'; 2486 process->p_pid = childpid; 2487 process->p_flags = (LIVING | OCCUPIED | modes); 2488 process->p_exit = 0; 2489 2490 st_write(); 2491 } else { 2492 if ((action & (M_WAIT | M_BOOTWAIT)) == 0) 2493 (void) setpgrp(); 2494 2495 process = NULLPROC; 2496 2497 /* 2498 * Reset all signals to the system defaults. 2499 */ 2500 for (i = SIGHUP; i <= SIGRTMAX; i++) 2501 (void) sigset(i, SIG_DFL); 2502 2503 /* 2504 * POSIX B.2.2.2 advises that init should set SIGTTOU, 2505 * SIGTTIN, and SIGTSTP to SIG_IGN. 2506 * 2507 * Make sure that SIGXCPU and SIGXFSZ also remain ignored, 2508 * for backward compatibility. 2509 */ 2510 (void) sigset(SIGTTIN, SIG_IGN); 2511 (void) sigset(SIGTTOU, SIG_IGN); 2512 (void) sigset(SIGTSTP, SIG_IGN); 2513 (void) sigset(SIGXCPU, SIG_IGN); 2514 (void) sigset(SIGXFSZ, SIG_IGN); 2515 } 2516 return (process); 2517 } 2518 2519 2520 /* 2521 * waitproc() waits for a specified process to die. For this function to 2522 * work, the specified process must already in the proc_table. waitproc() 2523 * returns the exit status of the specified process when it dies. 2524 */ 2525 static long 2526 waitproc(struct PROC_TABLE *process) 2527 { 2528 int answer; 2529 sigset_t oldmask, newmask, zeromask; 2530 2531 (void) sigemptyset(&zeromask); 2532 (void) sigemptyset(&newmask); 2533 2534 (void) sigaddset(&newmask, SIGCLD); 2535 2536 /* Block SIGCLD and save the current signal mask */ 2537 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0) 2538 perror("SIG_BLOCK error"); 2539 2540 /* 2541 * Wait around until the process dies. 2542 */ 2543 if (process->p_flags & LIVING) 2544 (void) sigsuspend(&zeromask); 2545 2546 /* Reset signal mask to unblock SIGCLD */ 2547 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 2548 perror("SIG_SETMASK error"); 2549 2550 if (process->p_flags & LIVING) 2551 return (FAILURE); 2552 2553 /* 2554 * Make sure to only return 16 bits so that answer will always 2555 * be positive whenever the process of interest really died. 2556 */ 2557 answer = (process->p_exit & 0xffff); 2558 2559 /* 2560 * Free the slot in the proc_table. 2561 */ 2562 process->p_flags = 0; 2563 return (answer); 2564 } 2565 2566 /* 2567 * notify_pam_dead(): calls into the PAM framework to close the given session. 2568 */ 2569 static void 2570 notify_pam_dead(struct utmpx *up) 2571 { 2572 pam_handle_t *pamh; 2573 char user[sizeof (up->ut_user) + 1]; 2574 char ttyn[sizeof (up->ut_line) + 1]; 2575 char host[sizeof (up->ut_host) + 1]; 2576 2577 /* 2578 * PAM does not take care of updating utmpx/wtmpx. 2579 */ 2580 (void) snprintf(user, sizeof (user), "%s", up->ut_user); 2581 (void) snprintf(ttyn, sizeof (ttyn), "%s", up->ut_line); 2582 (void) snprintf(host, sizeof (host), "%s", up->ut_host); 2583 2584 if (pam_start("init", user, NULL, &pamh) == PAM_SUCCESS) { 2585 (void) pam_set_item(pamh, PAM_TTY, ttyn); 2586 (void) pam_set_item(pamh, PAM_RHOST, host); 2587 (void) pam_close_session(pamh, 0); 2588 (void) pam_end(pamh, PAM_SUCCESS); 2589 } 2590 } 2591 2592 /* 2593 * Check you can access utmpx (As / may be read-only and 2594 * /var may not be mounted yet). 2595 */ 2596 static int 2597 access_utmpx(void) 2598 { 2599 do { 2600 utmpx_ok = (access(UTMPX, R_OK|W_OK) == 0); 2601 } while (!utmpx_ok && errno == EINTR); 2602 2603 return (utmpx_ok); 2604 } 2605 2606 /* 2607 * account() updates entries in utmpx and appends new entries to the end of 2608 * wtmpx (assuming they exist). The program argument indicates the name of 2609 * program if INIT_PROCESS, otherwise should be NULL. 2610 * 2611 * account() only blocks for INIT_PROCESS requests. 2612 * 2613 * Returns non-zero if write failed. 2614 */ 2615 static int 2616 account(short state, struct PROC_TABLE *process, char *program) 2617 { 2618 struct utmpx utmpbuf, *u, *oldu; 2619 int tmplen; 2620 char fail_buf[UT_LINE_SZ]; 2621 sigset_t block, unblock; 2622 2623 if (!utmpx_ok && !access_utmpx()) { 2624 return (-1); 2625 } 2626 2627 /* 2628 * Set up the prototype for the utmp structure we want to write. 2629 */ 2630 u = &utmpbuf; 2631 (void) memset(u, 0, sizeof (struct utmpx)); 2632 2633 /* 2634 * Fill in the various fields of the utmp structure. 2635 */ 2636 u->ut_id[0] = process->p_id[0]; 2637 u->ut_id[1] = process->p_id[1]; 2638 u->ut_id[2] = process->p_id[2]; 2639 u->ut_id[3] = process->p_id[3]; 2640 u->ut_pid = process->p_pid; 2641 2642 /* 2643 * Fill the "ut_exit" structure. 2644 */ 2645 u->ut_exit.e_termination = WTERMSIG(process->p_exit); 2646 u->ut_exit.e_exit = WEXITSTATUS(process->p_exit); 2647 u->ut_type = state; 2648 2649 (void) time(&u->ut_tv.tv_sec); 2650 2651 /* 2652 * Block signals for utmp update. 2653 */ 2654 (void) sigfillset(&block); 2655 (void) sigprocmask(SIG_BLOCK, &block, &unblock); 2656 2657 /* 2658 * See if there already is such an entry in the "utmpx" file. 2659 */ 2660 setutxent(); /* Start at beginning of utmpx file. */ 2661 2662 if ((oldu = getutxid(u)) != NULL) { 2663 /* 2664 * Copy in the old "user", "line" and "host" fields 2665 * to our new structure. 2666 */ 2667 bcopy(oldu->ut_user, u->ut_user, sizeof (u->ut_user)); 2668 bcopy(oldu->ut_line, u->ut_line, sizeof (u->ut_line)); 2669 bcopy(oldu->ut_host, u->ut_host, sizeof (u->ut_host)); 2670 u->ut_syslen = (tmplen = strlen(u->ut_host)) ? 2671 min(tmplen + 1, sizeof (u->ut_host)) : 0; 2672 2673 if (oldu->ut_type == USER_PROCESS && state == DEAD_PROCESS) { 2674 notify_pam_dead(oldu); 2675 } 2676 } 2677 2678 /* 2679 * Perform special accounting. Insert the special string into the 2680 * ut_line array. For INIT_PROCESSes put in the name of the 2681 * program in the "ut_user" field. 2682 */ 2683 switch (state) { 2684 case INIT_PROCESS: 2685 (void) strncpy(u->ut_user, program, sizeof (u->ut_user)); 2686 (void) strcpy(fail_buf, "INIT_PROCESS"); 2687 break; 2688 2689 default: 2690 (void) strlcpy(fail_buf, u->ut_id, sizeof (u->ut_id) + 1); 2691 break; 2692 } 2693 2694 /* 2695 * Write out the updated entry to utmpx file. 2696 */ 2697 if (pututxline(u) == NULL) { 2698 console(B_TRUE, "Failed write of utmpx entry: \"%s\": %s\n", 2699 fail_buf, strerror(errno)); 2700 endutxent(); 2701 (void) sigprocmask(SIG_SETMASK, &unblock, NULL); 2702 return (-1); 2703 } 2704 2705 /* 2706 * If we're able to write to utmpx, then attempt to add to the 2707 * end of the wtmpx file. 2708 */ 2709 updwtmpx(WTMPX, u); 2710 2711 endutxent(); 2712 2713 (void) sigprocmask(SIG_SETMASK, &unblock, NULL); 2714 2715 return (0); 2716 } 2717 2718 static void 2719 clearent(pid_t pid, short status) 2720 { 2721 struct utmpx *up; 2722 sigset_t block, unblock; 2723 2724 /* 2725 * Block signals for utmp update. 2726 */ 2727 (void) sigfillset(&block); 2728 (void) sigprocmask(SIG_BLOCK, &block, &unblock); 2729 2730 /* 2731 * No error checking for now. 2732 */ 2733 2734 setutxent(); 2735 while (up = getutxent()) { 2736 if (up->ut_pid == pid) { 2737 if (up->ut_type == DEAD_PROCESS) { 2738 /* 2739 * Cleaned up elsewhere. 2740 */ 2741 continue; 2742 } 2743 2744 notify_pam_dead(up); 2745 2746 up->ut_type = DEAD_PROCESS; 2747 up->ut_exit.e_termination = WTERMSIG(status); 2748 up->ut_exit.e_exit = WEXITSTATUS(status); 2749 (void) time(&up->ut_tv.tv_sec); 2750 2751 (void) pututxline(up); 2752 /* 2753 * Now attempt to add to the end of the 2754 * wtmp and wtmpx files. Do not create 2755 * if they don't already exist. 2756 */ 2757 updwtmpx(WTMPX, up); 2758 2759 break; 2760 } 2761 } 2762 2763 endutxent(); 2764 (void) sigprocmask(SIG_SETMASK, &unblock, NULL); 2765 } 2766 2767 /* 2768 * prog_name() searches for the word or unix path name and 2769 * returns a pointer to the last element of the pathname. 2770 */ 2771 static char * 2772 prog_name(char *string) 2773 { 2774 char *ptr, *ptr2; 2775 /* XXX - utmp - fix name length */ 2776 static char word[_POSIX_LOGIN_NAME_MAX]; 2777 2778 /* 2779 * Search for the first word skipping leading spaces and tabs. 2780 */ 2781 while (*string == ' ' || *string == '\t') 2782 string++; 2783 2784 /* 2785 * If the first non-space non-tab character is not one allowed in 2786 * a word, return a pointer to a null string, otherwise parse the 2787 * pathname. 2788 */ 2789 if (*string != '.' && *string != '/' && *string != '_' && 2790 (*string < 'a' || *string > 'z') && 2791 (*string < 'A' || * string > 'Z') && 2792 (*string < '0' || *string > '9')) 2793 return (""); 2794 2795 /* 2796 * Parse the pathname looking forward for '/', ' ', '\t', '\n' or 2797 * '\0'. Each time a '/' is found, move "ptr" to one past the 2798 * '/', thus when a ' ', '\t', '\n', or '\0' is found, "ptr" will 2799 * point to the last element of the pathname. 2800 */ 2801 for (ptr = string; 2802 *string != ' ' && *string != '\t' && *string != '\n' && 2803 *string != '\0'; 2804 string++) { 2805 if (*string == '/') 2806 ptr = string+1; 2807 } 2808 2809 /* 2810 * Copy out up to the size of the "ut_user" array into "word", 2811 * null terminate it and return a pointer to it. 2812 */ 2813 /* XXX - utmp - fix name length */ 2814 for (ptr2 = &word[0]; ptr2 < &word[_POSIX_LOGIN_NAME_MAX - 1] && 2815 ptr < string; /* CSTYLED */) 2816 *ptr2++ = *ptr++; 2817 2818 *ptr2 = '\0'; 2819 return (&word[0]); 2820 } 2821 2822 2823 /* 2824 * realcon() returns a nonzero value if there is a character device 2825 * associated with SYSCON that has the same device number as CONSOLE. 2826 */ 2827 static int 2828 realcon() 2829 { 2830 struct stat sconbuf, conbuf; 2831 2832 if (stat(SYSCON, &sconbuf) != -1 && 2833 stat(CONSOLE, &conbuf) != -1 && 2834 S_ISCHR(sconbuf.st_mode) && 2835 S_ISCHR(conbuf.st_mode) && 2836 sconbuf.st_rdev == conbuf.st_rdev) { 2837 return (1); 2838 } else { 2839 return (0); 2840 } 2841 } 2842 2843 2844 /* 2845 * get_ioctl_syscon() retrieves the SYSCON settings from the IOCTLSYSCON file. 2846 * Returns true if the IOCTLSYSCON file needs to be written (with 2847 * write_ioctl_syscon() below) 2848 */ 2849 static int 2850 get_ioctl_syscon() 2851 { 2852 FILE *fp; 2853 unsigned int iflags, oflags, cflags, lflags, ldisc, cc[18]; 2854 int i, valid_format = 0; 2855 2856 /* 2857 * Read in the previous modes for SYSCON from IOCTLSYSCON. 2858 */ 2859 if ((fp = fopen(IOCTLSYSCON, "r")) == NULL) { 2860 stored_syscon_termios = dflt_termios; 2861 console(B_TRUE, 2862 "warning:%s does not exist, default settings assumed\n", 2863 IOCTLSYSCON); 2864 } else { 2865 2866 i = fscanf(fp, 2867 "%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x", 2868 &iflags, &oflags, &cflags, &lflags, 2869 &cc[0], &cc[1], &cc[2], &cc[3], &cc[4], &cc[5], &cc[6], 2870 &cc[7], &cc[8], &cc[9], &cc[10], &cc[11], &cc[12], &cc[13], 2871 &cc[14], &cc[15], &cc[16], &cc[17]); 2872 2873 if (i == 22) { 2874 stored_syscon_termios.c_iflag = iflags; 2875 stored_syscon_termios.c_oflag = oflags; 2876 stored_syscon_termios.c_cflag = cflags; 2877 stored_syscon_termios.c_lflag = lflags; 2878 for (i = 0; i < 18; i++) 2879 stored_syscon_termios.c_cc[i] = (char)cc[i]; 2880 valid_format = 1; 2881 } else if (i == 13) { 2882 rewind(fp); 2883 i = fscanf(fp, "%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x:%x", 2884 &iflags, &oflags, &cflags, &lflags, &ldisc, &cc[0], &cc[1], 2885 &cc[2], &cc[3], &cc[4], &cc[5], &cc[6], &cc[7]); 2886 2887 /* 2888 * If the file is formatted properly, use the values to 2889 * initialize the console terminal condition. 2890 */ 2891 stored_syscon_termios.c_iflag = (ushort_t)iflags; 2892 stored_syscon_termios.c_oflag = (ushort_t)oflags; 2893 stored_syscon_termios.c_cflag = (ushort_t)cflags; 2894 stored_syscon_termios.c_lflag = (ushort_t)lflags; 2895 for (i = 0; i < 8; i++) 2896 stored_syscon_termios.c_cc[i] = (char)cc[i]; 2897 valid_format = 1; 2898 } 2899 (void) fclose(fp); 2900 2901 /* If the file is badly formatted, use the default settings. */ 2902 if (!valid_format) 2903 stored_syscon_termios = dflt_termios; 2904 } 2905 2906 /* If the file had a bad format, rewrite it later. */ 2907 return (!valid_format); 2908 } 2909 2910 2911 static void 2912 write_ioctl_syscon() 2913 { 2914 FILE *fp; 2915 int i; 2916 2917 (void) unlink(SYSCON); 2918 (void) link(SYSTTY, SYSCON); 2919 (void) umask(022); 2920 fp = fopen(IOCTLSYSCON, "w"); 2921 2922 (void) fprintf(fp, "%x:%x:%x:%x:0", stored_syscon_termios.c_iflag, 2923 stored_syscon_termios.c_oflag, stored_syscon_termios.c_cflag, 2924 stored_syscon_termios.c_lflag); 2925 for (i = 0; i < 8; ++i) 2926 (void) fprintf(fp, ":%x", stored_syscon_termios.c_cc[i]); 2927 (void) putc('\n', fp); 2928 2929 (void) fflush(fp); 2930 (void) fsync(fileno(fp)); 2931 (void) fclose(fp); 2932 (void) umask(cmask); 2933 } 2934 2935 2936 /* 2937 * void console(boolean_t, char *, ...) 2938 * Outputs the requested message to the system console. Note that the number 2939 * of arguments passed to console() should be determined by the print format. 2940 * 2941 * The "prefix" parameter indicates whether or not "INIT: " should precede the 2942 * message. 2943 * 2944 * To make sure we write to the console in a sane fashion, we use the modes 2945 * we keep in stored_syscon_termios (which we read out of /etc/ioctl.syscon). 2946 * Afterwards we restore whatever modes were already there. 2947 */ 2948 /* PRINTFLIKE2 */ 2949 static void 2950 console(boolean_t prefix, char *format, ...) 2951 { 2952 char outbuf[BUFSIZ]; 2953 va_list args; 2954 int fd, getret; 2955 struct termios old_syscon_termios; 2956 FILE *f; 2957 2958 /* 2959 * We open SYSCON anew each time in case it has changed (see 2960 * userinit()). 2961 */ 2962 if ((fd = open(SYSCON, O_RDWR | O_NOCTTY)) < 0 || 2963 (f = fdopen(fd, "r+")) == NULL) { 2964 if (prefix) 2965 syslog(LOG_WARNING, "INIT: "); 2966 va_start(args, format); 2967 vsyslog(LOG_WARNING, format, args); 2968 va_end(args); 2969 if (fd >= 0) 2970 (void) close(fd); 2971 return; 2972 } 2973 setbuf(f, &outbuf[0]); 2974 2975 getret = tcgetattr(fd, &old_syscon_termios); 2976 old_syscon_termios.c_cflag &= ~HUPCL; 2977 if (realcon()) 2978 /* Don't overwrite cflag of real console. */ 2979 stored_syscon_termios.c_cflag = old_syscon_termios.c_cflag; 2980 2981 stored_syscon_termios.c_cflag &= ~HUPCL; 2982 2983 (void) tcsetattr(fd, TCSANOW, &stored_syscon_termios); 2984 2985 if (prefix) 2986 (void) fprintf(f, "\nINIT: "); 2987 va_start(args, format); 2988 (void) vfprintf(f, format, args); 2989 va_end(args); 2990 2991 if (getret == 0) 2992 (void) tcsetattr(fd, TCSADRAIN, &old_syscon_termios); 2993 2994 (void) fclose(f); 2995 } 2996 2997 /* 2998 * timer() is a substitute for sleep() which uses alarm() and pause(). 2999 */ 3000 static void 3001 timer(int waitime) 3002 { 3003 setimer(waitime); 3004 while (time_up == FALSE) 3005 (void) pause(); 3006 } 3007 3008 static void 3009 setimer(int timelimit) 3010 { 3011 alarmclk(); 3012 (void) alarm(timelimit); 3013 time_up = (timelimit ? FALSE : TRUE); 3014 } 3015 3016 /* 3017 * Fails with 3018 * ENOMEM - out of memory 3019 * ECONNABORTED - repository connection broken 3020 * EPERM - permission denied 3021 * EACCES - backend access denied 3022 * EROFS - backend readonly 3023 */ 3024 static int 3025 get_or_add_startd(scf_instance_t *inst) 3026 { 3027 scf_handle_t *h; 3028 scf_scope_t *scope = NULL; 3029 scf_service_t *svc = NULL; 3030 int ret = 0; 3031 3032 h = scf_instance_handle(inst); 3033 3034 if (scf_handle_decode_fmri(h, SCF_SERVICE_STARTD, NULL, NULL, inst, 3035 NULL, NULL, SCF_DECODE_FMRI_EXACT) == 0) 3036 return (0); 3037 3038 switch (scf_error()) { 3039 case SCF_ERROR_CONNECTION_BROKEN: 3040 return (ECONNABORTED); 3041 3042 case SCF_ERROR_NOT_FOUND: 3043 break; 3044 3045 case SCF_ERROR_HANDLE_MISMATCH: 3046 case SCF_ERROR_INVALID_ARGUMENT: 3047 case SCF_ERROR_CONSTRAINT_VIOLATED: 3048 default: 3049 bad_error("scf_handle_decode_fmri", scf_error()); 3050 } 3051 3052 /* Make sure we're right, since we're adding piece-by-piece. */ 3053 assert(strcmp(SCF_SERVICE_STARTD, 3054 "svc:/system/svc/restarter:default") == 0); 3055 3056 if ((scope = scf_scope_create(h)) == NULL || 3057 (svc = scf_service_create(h)) == NULL) { 3058 ret = ENOMEM; 3059 goto out; 3060 } 3061 3062 get_scope: 3063 if (scf_handle_get_scope(h, SCF_SCOPE_LOCAL, scope) != 0) { 3064 switch (scf_error()) { 3065 case SCF_ERROR_CONNECTION_BROKEN: 3066 ret = ECONNABORTED; 3067 goto out; 3068 3069 case SCF_ERROR_NOT_FOUND: 3070 (void) fputs(gettext( 3071 "smf(5) repository missing local scope.\n"), 3072 stderr); 3073 exit(1); 3074 /* NOTREACHED */ 3075 3076 case SCF_ERROR_HANDLE_MISMATCH: 3077 case SCF_ERROR_INVALID_ARGUMENT: 3078 default: 3079 bad_error("scf_handle_get_scope", scf_error()); 3080 } 3081 } 3082 3083 get_svc: 3084 if (scf_scope_get_service(scope, "system/svc/restarter", svc) != 0) { 3085 switch (scf_error()) { 3086 case SCF_ERROR_CONNECTION_BROKEN: 3087 ret = ECONNABORTED; 3088 goto out; 3089 3090 case SCF_ERROR_DELETED: 3091 goto get_scope; 3092 3093 case SCF_ERROR_NOT_FOUND: 3094 break; 3095 3096 case SCF_ERROR_HANDLE_MISMATCH: 3097 case SCF_ERROR_INVALID_ARGUMENT: 3098 case SCF_ERROR_NOT_SET: 3099 default: 3100 bad_error("scf_scope_get_service", scf_error()); 3101 } 3102 3103 add_svc: 3104 if (scf_scope_add_service(scope, "system/svc/restarter", svc) != 3105 0) { 3106 switch (scf_error()) { 3107 case SCF_ERROR_CONNECTION_BROKEN: 3108 ret = ECONNABORTED; 3109 goto out; 3110 3111 case SCF_ERROR_EXISTS: 3112 goto get_svc; 3113 3114 case SCF_ERROR_PERMISSION_DENIED: 3115 ret = EPERM; 3116 goto out; 3117 3118 case SCF_ERROR_BACKEND_ACCESS: 3119 ret = EACCES; 3120 goto out; 3121 3122 case SCF_ERROR_BACKEND_READONLY: 3123 ret = EROFS; 3124 goto out; 3125 3126 case SCF_ERROR_HANDLE_MISMATCH: 3127 case SCF_ERROR_INVALID_ARGUMENT: 3128 case SCF_ERROR_NOT_SET: 3129 default: 3130 bad_error("scf_scope_add_service", scf_error()); 3131 } 3132 } 3133 } 3134 3135 get_inst: 3136 if (scf_service_get_instance(svc, "default", inst) != 0) { 3137 switch (scf_error()) { 3138 case SCF_ERROR_CONNECTION_BROKEN: 3139 ret = ECONNABORTED; 3140 goto out; 3141 3142 case SCF_ERROR_DELETED: 3143 goto add_svc; 3144 3145 case SCF_ERROR_NOT_FOUND: 3146 break; 3147 3148 case SCF_ERROR_HANDLE_MISMATCH: 3149 case SCF_ERROR_INVALID_ARGUMENT: 3150 case SCF_ERROR_NOT_SET: 3151 default: 3152 bad_error("scf_service_get_instance", scf_error()); 3153 } 3154 3155 if (scf_service_add_instance(svc, "default", inst) != 3156 0) { 3157 switch (scf_error()) { 3158 case SCF_ERROR_CONNECTION_BROKEN: 3159 ret = ECONNABORTED; 3160 goto out; 3161 3162 case SCF_ERROR_DELETED: 3163 goto add_svc; 3164 3165 case SCF_ERROR_EXISTS: 3166 goto get_inst; 3167 3168 case SCF_ERROR_PERMISSION_DENIED: 3169 ret = EPERM; 3170 goto out; 3171 3172 case SCF_ERROR_BACKEND_ACCESS: 3173 ret = EACCES; 3174 goto out; 3175 3176 case SCF_ERROR_BACKEND_READONLY: 3177 ret = EROFS; 3178 goto out; 3179 3180 case SCF_ERROR_HANDLE_MISMATCH: 3181 case SCF_ERROR_INVALID_ARGUMENT: 3182 case SCF_ERROR_NOT_SET: 3183 default: 3184 bad_error("scf_service_add_instance", 3185 scf_error()); 3186 } 3187 } 3188 } 3189 3190 ret = 0; 3191 3192 out: 3193 scf_service_destroy(svc); 3194 scf_scope_destroy(scope); 3195 return (ret); 3196 } 3197 3198 /* 3199 * Fails with 3200 * ECONNABORTED - repository connection broken 3201 * ECANCELED - the transaction's property group was deleted 3202 */ 3203 static int 3204 transaction_add_set(scf_transaction_t *tx, scf_transaction_entry_t *ent, 3205 const char *pname, scf_type_t type) 3206 { 3207 change_type: 3208 if (scf_transaction_property_change_type(tx, ent, pname, type) == 0) 3209 return (0); 3210 3211 switch (scf_error()) { 3212 case SCF_ERROR_CONNECTION_BROKEN: 3213 return (ECONNABORTED); 3214 3215 case SCF_ERROR_DELETED: 3216 return (ECANCELED); 3217 3218 case SCF_ERROR_NOT_FOUND: 3219 goto new; 3220 3221 case SCF_ERROR_HANDLE_MISMATCH: 3222 case SCF_ERROR_INVALID_ARGUMENT: 3223 case SCF_ERROR_NOT_BOUND: 3224 case SCF_ERROR_NOT_SET: 3225 default: 3226 bad_error("scf_transaction_property_change_type", scf_error()); 3227 } 3228 3229 new: 3230 if (scf_transaction_property_new(tx, ent, pname, type) == 0) 3231 return (0); 3232 3233 switch (scf_error()) { 3234 case SCF_ERROR_CONNECTION_BROKEN: 3235 return (ECONNABORTED); 3236 3237 case SCF_ERROR_DELETED: 3238 return (ECANCELED); 3239 3240 case SCF_ERROR_EXISTS: 3241 goto change_type; 3242 3243 case SCF_ERROR_HANDLE_MISMATCH: 3244 case SCF_ERROR_INVALID_ARGUMENT: 3245 case SCF_ERROR_NOT_BOUND: 3246 case SCF_ERROR_NOT_SET: 3247 default: 3248 bad_error("scf_transaction_property_new", scf_error()); 3249 /* NOTREACHED */ 3250 } 3251 } 3252 3253 static void 3254 scferr(void) 3255 { 3256 switch (scf_error()) { 3257 case SCF_ERROR_NO_MEMORY: 3258 console(B_TRUE, gettext("Out of memory.\n")); 3259 break; 3260 3261 case SCF_ERROR_CONNECTION_BROKEN: 3262 console(B_TRUE, gettext( 3263 "Connection to smf(5) repository server broken.\n")); 3264 break; 3265 3266 case SCF_ERROR_NO_RESOURCES: 3267 console(B_TRUE, gettext( 3268 "smf(5) repository server is out of memory.\n")); 3269 break; 3270 3271 case SCF_ERROR_PERMISSION_DENIED: 3272 console(B_TRUE, gettext("Insufficient privileges.\n")); 3273 break; 3274 3275 default: 3276 console(B_TRUE, gettext("libscf error: %s\n"), 3277 scf_strerror(scf_error())); 3278 } 3279 } 3280 3281 static void 3282 lscf_set_runlevel(char rl) 3283 { 3284 scf_handle_t *h; 3285 scf_instance_t *inst = NULL; 3286 scf_propertygroup_t *pg = NULL; 3287 scf_transaction_t *tx = NULL; 3288 scf_transaction_entry_t *ent = NULL; 3289 scf_value_t *val = NULL; 3290 char buf[2]; 3291 int r; 3292 3293 h = scf_handle_create(SCF_VERSION); 3294 if (h == NULL) { 3295 scferr(); 3296 return; 3297 } 3298 3299 if (scf_handle_bind(h) != 0) { 3300 switch (scf_error()) { 3301 case SCF_ERROR_NO_SERVER: 3302 console(B_TRUE, 3303 gettext("smf(5) repository server not running.\n")); 3304 goto bail; 3305 3306 default: 3307 scferr(); 3308 goto bail; 3309 } 3310 } 3311 3312 if ((inst = scf_instance_create(h)) == NULL || 3313 (pg = scf_pg_create(h)) == NULL || 3314 (val = scf_value_create(h)) == NULL || 3315 (tx = scf_transaction_create(h)) == NULL || 3316 (ent = scf_entry_create(h)) == NULL) { 3317 scferr(); 3318 goto bail; 3319 } 3320 3321 get_inst: 3322 r = get_or_add_startd(inst); 3323 switch (r) { 3324 case 0: 3325 break; 3326 3327 case ENOMEM: 3328 case ECONNABORTED: 3329 case EPERM: 3330 case EACCES: 3331 case EROFS: 3332 scferr(); 3333 goto bail; 3334 default: 3335 bad_error("get_or_add_startd", r); 3336 } 3337 3338 get_pg: 3339 if (scf_instance_get_pg(inst, SCF_PG_OPTIONS_OVR, pg) != 0) { 3340 switch (scf_error()) { 3341 case SCF_ERROR_CONNECTION_BROKEN: 3342 scferr(); 3343 goto bail; 3344 3345 case SCF_ERROR_DELETED: 3346 goto get_inst; 3347 3348 case SCF_ERROR_NOT_FOUND: 3349 break; 3350 3351 case SCF_ERROR_HANDLE_MISMATCH: 3352 case SCF_ERROR_INVALID_ARGUMENT: 3353 case SCF_ERROR_NOT_SET: 3354 default: 3355 bad_error("scf_instance_get_pg", scf_error()); 3356 } 3357 3358 add_pg: 3359 if (scf_instance_add_pg(inst, SCF_PG_OPTIONS_OVR, 3360 SCF_PG_OPTIONS_OVR_TYPE, SCF_PG_OPTIONS_OVR_FLAGS, pg) != 3361 0) { 3362 switch (scf_error()) { 3363 case SCF_ERROR_CONNECTION_BROKEN: 3364 case SCF_ERROR_PERMISSION_DENIED: 3365 case SCF_ERROR_BACKEND_ACCESS: 3366 scferr(); 3367 goto bail; 3368 3369 case SCF_ERROR_DELETED: 3370 goto get_inst; 3371 3372 case SCF_ERROR_EXISTS: 3373 goto get_pg; 3374 3375 case SCF_ERROR_HANDLE_MISMATCH: 3376 case SCF_ERROR_INVALID_ARGUMENT: 3377 case SCF_ERROR_NOT_SET: 3378 default: 3379 bad_error("scf_instance_add_pg", scf_error()); 3380 } 3381 } 3382 } 3383 3384 buf[0] = rl; 3385 buf[1] = '\0'; 3386 r = scf_value_set_astring(val, buf); 3387 assert(r == 0); 3388 3389 for (;;) { 3390 if (scf_transaction_start(tx, pg) != 0) { 3391 switch (scf_error()) { 3392 case SCF_ERROR_CONNECTION_BROKEN: 3393 case SCF_ERROR_PERMISSION_DENIED: 3394 case SCF_ERROR_BACKEND_ACCESS: 3395 scferr(); 3396 goto bail; 3397 3398 case SCF_ERROR_DELETED: 3399 goto add_pg; 3400 3401 case SCF_ERROR_HANDLE_MISMATCH: 3402 case SCF_ERROR_NOT_BOUND: 3403 case SCF_ERROR_IN_USE: 3404 case SCF_ERROR_NOT_SET: 3405 default: 3406 bad_error("scf_transaction_start", scf_error()); 3407 } 3408 } 3409 3410 r = transaction_add_set(tx, ent, "runlevel", SCF_TYPE_ASTRING); 3411 switch (r) { 3412 case 0: 3413 break; 3414 3415 case ECONNABORTED: 3416 scferr(); 3417 goto bail; 3418 3419 case ECANCELED: 3420 scf_transaction_reset(tx); 3421 goto add_pg; 3422 3423 default: 3424 bad_error("transaction_add_set", r); 3425 } 3426 3427 r = scf_entry_add_value(ent, val); 3428 assert(r == 0); 3429 3430 r = scf_transaction_commit(tx); 3431 if (r == 1) 3432 break; 3433 3434 if (r != 0) { 3435 switch (scf_error()) { 3436 case SCF_ERROR_CONNECTION_BROKEN: 3437 case SCF_ERROR_PERMISSION_DENIED: 3438 case SCF_ERROR_BACKEND_ACCESS: 3439 case SCF_ERROR_BACKEND_READONLY: 3440 scferr(); 3441 goto bail; 3442 3443 case SCF_ERROR_DELETED: 3444 scf_transaction_reset(tx); 3445 goto add_pg; 3446 3447 case SCF_ERROR_INVALID_ARGUMENT: 3448 case SCF_ERROR_NOT_BOUND: 3449 case SCF_ERROR_NOT_SET: 3450 default: 3451 bad_error("scf_transaction_commit", 3452 scf_error()); 3453 } 3454 } 3455 3456 scf_transaction_reset(tx); 3457 (void) scf_pg_update(pg); 3458 } 3459 3460 bail: 3461 scf_transaction_destroy(tx); 3462 scf_entry_destroy(ent); 3463 scf_value_destroy(val); 3464 scf_pg_destroy(pg); 3465 scf_instance_destroy(inst); 3466 3467 (void) scf_handle_unbind(h); 3468 scf_handle_destroy(h); 3469 } 3470 3471 /* 3472 * Function to handle requests from users to main init running as process 1. 3473 */ 3474 static void 3475 userinit(int argc, char **argv) 3476 { 3477 FILE *fp; 3478 char *ln; 3479 int init_signal; 3480 struct stat sconbuf, conbuf; 3481 const char *usage_msg = "Usage: init [0123456SsQqabc]\n"; 3482 3483 /* 3484 * We are a user invoked init. Is there an argument and is it 3485 * a single character? If not, print usage message and quit. 3486 */ 3487 if (argc != 2 || argv[1][1] != '\0') { 3488 (void) fprintf(stderr, usage_msg); 3489 exit(0); 3490 } 3491 3492 if ((init_signal = lvlname_to_state((char)argv[1][0])) == -1) { 3493 (void) fprintf(stderr, usage_msg); 3494 (void) audit_put_record(ADT_FAILURE, ADT_FAIL_VALUE_BAD_CMD, 3495 argv[1]); 3496 exit(1); 3497 } 3498 3499 if (init_signal == SINGLE_USER) { 3500 /* 3501 * Make sure this process is talking to a legal tty line 3502 * and that /dev/syscon is linked to this line. 3503 */ 3504 ln = ttyname(0); /* Get the name of tty */ 3505 if (ln == NULL) { 3506 (void) fprintf(stderr, 3507 "Standard input not a tty line\n"); 3508 (void) audit_put_record(ADT_FAILURE, 3509 ADT_FAIL_VALUE_BAD_TTY, argv[1]); 3510 exit(1); 3511 } 3512 if (stat(ln, &sconbuf) != -1 && 3513 stat(SYSCON, &conbuf) != -1 && 3514 sconbuf.st_rdev != conbuf.st_rdev && 3515 sconbuf.st_ino != conbuf.st_ino) { 3516 /* 3517 * Unlink /dev/syscon and relink it to the current line. 3518 */ 3519 if (unlink(SYSCON) == FAILURE) { 3520 perror("Can't unlink /dev/syscon"); 3521 (void) fprintf(stderr, 3522 "Run command on the system console.\n"); 3523 (void) audit_put_record(ADT_FAILURE, 3524 ADT_FAIL_VALUE_PROGRAM, argv[1]); 3525 exit(1); 3526 } 3527 if (link(ln, SYSCON) == FAILURE) { 3528 (void) fprintf(stderr, 3529 "Can't link /dev/syscon to %s: %s", ln, 3530 strerror(errno)); 3531 3532 /* Try to leave a syscon */ 3533 (void) link(SYSTTY, SYSCON); 3534 (void) audit_put_record(ADT_FAILURE, 3535 ADT_FAIL_VALUE_PROGRAM, argv[1]); 3536 exit(1); 3537 } 3538 3539 /* 3540 * Try to leave a message on system console saying where 3541 * /dev/syscon is currently connected. 3542 */ 3543 if ((fp = fopen(SYSTTY, "r+")) != NULL) { 3544 (void) fprintf(fp, 3545 "\n**** SYSCON CHANGED TO %s ****\n", 3546 ln); 3547 (void) fclose(fp); 3548 } 3549 } 3550 } 3551 3552 update_boot_archive(init_signal); 3553 3554 (void) audit_put_record(ADT_SUCCESS, ADT_SUCCESS, argv[1]); 3555 3556 /* 3557 * Signal init; init will take care of telling svc.startd. 3558 */ 3559 if (kill(init_pid, init_signal) == FAILURE) { 3560 (void) fprintf(stderr, "Must be super-user\n"); 3561 (void) audit_put_record(ADT_FAILURE, 3562 ADT_FAIL_VALUE_AUTH, argv[1]); 3563 exit(1); 3564 } 3565 3566 exit(0); 3567 } 3568 3569 3570 #define DELTA 25 /* Number of pidlist elements to allocate at a time */ 3571 3572 /* ARGSUSED */ 3573 void 3574 sigpoll(int n) 3575 { 3576 struct pidrec prec; 3577 struct pidrec *p = ≺ 3578 struct pidlist *plp; 3579 struct pidlist *tp, *savetp; 3580 int i; 3581 3582 if (Pfd < 0) { 3583 return; 3584 } 3585 (void) sigset(SIGCLD, SIG_DFL); 3586 for (;;) { 3587 /* 3588 * Important Note: Either read will really fail (in which case 3589 * return is all we can do) or will get EAGAIN (Pfd was opened 3590 * O_NDELAY), in which case we also want to return. 3591 * Always return from here! 3592 */ 3593 if (read(Pfd, p, sizeof (struct pidrec)) != 3594 sizeof (struct pidrec)) { 3595 (void) sigset(SIGCLD, childeath); 3596 return; 3597 } 3598 switch (p->pd_type) { 3599 3600 case ADDPID: 3601 /* 3602 * New "godchild", add to list. 3603 */ 3604 if (Plfree == NULL) { 3605 plp = (struct pidlist *)calloc(DELTA, 3606 sizeof (struct pidlist)); 3607 if (plp == NULL) { 3608 /* Can't save pid */ 3609 break; 3610 } 3611 /* 3612 * Point at 2nd record allocated, we'll use plp. 3613 */ 3614 tp = plp + 1; 3615 /* 3616 * Link them into a chain. 3617 */ 3618 Plfree = tp; 3619 for (i = 0; i < DELTA - 2; i++) { 3620 tp->pl_next = tp + 1; 3621 tp++; 3622 } 3623 } else { 3624 plp = Plfree; 3625 Plfree = plp->pl_next; 3626 } 3627 plp->pl_pid = p->pd_pid; 3628 plp->pl_dflag = 0; 3629 plp->pl_next = NULL; 3630 /* 3631 * Note - pid list is kept in increasing order of pids. 3632 */ 3633 if (Plhead == NULL) { 3634 Plhead = plp; 3635 /* Back up to read next record */ 3636 break; 3637 } else { 3638 savetp = tp = Plhead; 3639 while (tp) { 3640 if (plp->pl_pid > tp->pl_pid) { 3641 savetp = tp; 3642 tp = tp->pl_next; 3643 continue; 3644 } else if (plp->pl_pid < tp->pl_pid) { 3645 if (tp == Plhead) { 3646 plp->pl_next = Plhead; 3647 Plhead = plp; 3648 } else { 3649 plp->pl_next = 3650 savetp->pl_next; 3651 savetp->pl_next = plp; 3652 } 3653 break; 3654 } else { 3655 /* Already in list! */ 3656 plp->pl_next = Plfree; 3657 Plfree = plp; 3658 break; 3659 } 3660 } 3661 if (tp == NULL) { 3662 /* Add to end of list */ 3663 savetp->pl_next = plp; 3664 } 3665 } 3666 /* Back up to read next record. */ 3667 break; 3668 3669 case REMPID: 3670 /* 3671 * This one was handled by someone else, 3672 * purge it from the list. 3673 */ 3674 if (Plhead == NULL) { 3675 /* Back up to read next record. */ 3676 break; 3677 } 3678 savetp = tp = Plhead; 3679 while (tp) { 3680 if (p->pd_pid > tp->pl_pid) { 3681 /* Keep on looking. */ 3682 savetp = tp; 3683 tp = tp->pl_next; 3684 continue; 3685 } else if (p->pd_pid < tp->pl_pid) { 3686 /* Not in list. */ 3687 break; 3688 } else { 3689 /* Found it. */ 3690 if (tp == Plhead) 3691 Plhead = tp->pl_next; 3692 else 3693 savetp->pl_next = tp->pl_next; 3694 tp->pl_next = Plfree; 3695 Plfree = tp; 3696 break; 3697 } 3698 } 3699 /* Back up to read next record. */ 3700 break; 3701 default: 3702 console(B_TRUE, "Bad message on initpipe\n"); 3703 break; 3704 } 3705 } 3706 } 3707 3708 3709 static void 3710 cleanaux() 3711 { 3712 struct pidlist *savep, *p; 3713 pid_t pid; 3714 short status; 3715 3716 (void) sigset(SIGCLD, SIG_DFL); 3717 Gchild = 0; /* Note - Safe to do this here since no SIGCLDs */ 3718 (void) sighold(SIGPOLL); 3719 savep = p = Plhead; 3720 while (p) { 3721 if (p->pl_dflag) { 3722 /* 3723 * Found an entry to delete, 3724 * remove it from list first. 3725 */ 3726 pid = p->pl_pid; 3727 status = p->pl_exit; 3728 if (p == Plhead) { 3729 Plhead = p->pl_next; 3730 p->pl_next = Plfree; 3731 Plfree = p; 3732 savep = p = Plhead; 3733 } else { 3734 savep->pl_next = p->pl_next; 3735 p->pl_next = Plfree; 3736 Plfree = p; 3737 p = savep->pl_next; 3738 } 3739 clearent(pid, status); 3740 continue; 3741 } 3742 savep = p; 3743 p = p->pl_next; 3744 } 3745 (void) sigrelse(SIGPOLL); 3746 (void) sigset(SIGCLD, childeath); 3747 } 3748 3749 3750 /* 3751 * /etc/inittab has more entries and we have run out of room in the proc_table 3752 * array. Double the size of proc_table to accomodate the extra entries. 3753 */ 3754 static void 3755 increase_proc_table_size() 3756 { 3757 sigset_t block, unblock; 3758 void *ptr; 3759 size_t delta = num_proc * sizeof (struct PROC_TABLE); 3760 3761 3762 /* 3763 * Block signals for realloc. 3764 */ 3765 (void) sigfillset(&block); 3766 (void) sigprocmask(SIG_BLOCK, &block, &unblock); 3767 3768 3769 /* 3770 * On failure we just return because callers of this function check 3771 * for failure. 3772 */ 3773 do 3774 ptr = realloc(g_state, g_state_sz + delta); 3775 while (ptr == NULL && errno == EAGAIN); 3776 3777 if (ptr != NULL) { 3778 /* ensure that the new part is initialized to zero */ 3779 bzero((caddr_t)ptr + g_state_sz, delta); 3780 3781 g_state = ptr; 3782 g_state_sz += delta; 3783 num_proc <<= 1; 3784 } 3785 3786 3787 /* unblock our signals before returning */ 3788 (void) sigprocmask(SIG_SETMASK, &unblock, NULL); 3789 } 3790 3791 3792 3793 /* 3794 * Sanity check g_state. 3795 */ 3796 static int 3797 st_sane() 3798 { 3799 int i; 3800 struct PROC_TABLE *ptp; 3801 3802 3803 /* Note: cur_state is encoded as a signal number */ 3804 if (cur_state < 1 || cur_state == 9 || cur_state > 13) 3805 return (0); 3806 3807 /* Check num_proc */ 3808 if (g_state_sz != sizeof (struct init_state) + (num_proc - 1) * 3809 sizeof (struct PROC_TABLE)) 3810 return (0); 3811 3812 /* Check proc_table */ 3813 for (i = 0, ptp = proc_table; i < num_proc; ++i, ++ptp) { 3814 /* skip unoccupied entries */ 3815 if (!(ptp->p_flags & OCCUPIED)) 3816 continue; 3817 3818 /* p_flags has no bits outside of PF_MASK */ 3819 if (ptp->p_flags & ~(PF_MASK)) 3820 return (0); 3821 3822 /* 5 <= pid <= MAXPID */ 3823 if (ptp->p_pid < 5 || ptp->p_pid > MAXPID) 3824 return (0); 3825 3826 /* p_count >= 0 */ 3827 if (ptp->p_count < 0) 3828 return (0); 3829 3830 /* p_time >= 0 */ 3831 if (ptp->p_time < 0) 3832 return (0); 3833 } 3834 3835 return (1); 3836 } 3837 3838 /* 3839 * Initialize our state. 3840 * 3841 * If the system just booted, then init_state_file, which is located on an 3842 * everpresent tmpfs filesystem, should not exist. 3843 * 3844 * If we were restarted, then init_state_file should exist, in 3845 * which case we'll read it in, sanity check it, and use it. 3846 * 3847 * Note: You can't call console() until proc_table is ready. 3848 */ 3849 void 3850 st_init() 3851 { 3852 struct stat stb; 3853 int ret, st_fd, insane = 0; 3854 size_t to_be_read; 3855 char *ptr; 3856 3857 3858 booting = 1; 3859 3860 do { 3861 /* 3862 * If we can exclusively create the file, then we're the 3863 * initial invocation of init(1M). 3864 */ 3865 st_fd = open(init_state_file, O_RDWR | O_CREAT | O_EXCL, 3866 S_IRUSR | S_IWUSR); 3867 } while (st_fd == -1 && errno == EINTR); 3868 if (st_fd != -1) 3869 goto new_state; 3870 3871 booting = 0; 3872 3873 do { 3874 st_fd = open(init_state_file, O_RDWR, S_IRUSR | S_IWUSR); 3875 } while (st_fd == -1 && errno == EINTR); 3876 if (st_fd == -1) 3877 goto new_state; 3878 3879 /* Get the size of the file. */ 3880 do 3881 ret = fstat(st_fd, &stb); 3882 while (ret == -1 && errno == EINTR); 3883 if (ret == -1) 3884 goto new_state; 3885 3886 do 3887 g_state = malloc(stb.st_size); 3888 while (g_state == NULL && errno == EAGAIN); 3889 if (g_state == NULL) 3890 goto new_state; 3891 3892 to_be_read = stb.st_size; 3893 ptr = (char *)g_state; 3894 while (to_be_read > 0) { 3895 ssize_t read_ret; 3896 3897 read_ret = read(st_fd, ptr, to_be_read); 3898 if (read_ret < 0) { 3899 if (errno == EINTR) 3900 continue; 3901 3902 goto new_state; 3903 } 3904 3905 to_be_read -= read_ret; 3906 ptr += read_ret; 3907 } 3908 3909 (void) close(st_fd); 3910 3911 g_state_sz = stb.st_size; 3912 3913 if (st_sane()) { 3914 console(B_TRUE, "Restarting.\n"); 3915 return; 3916 } 3917 3918 insane = 1; 3919 3920 new_state: 3921 if (st_fd >= 0) 3922 (void) close(st_fd); 3923 else 3924 (void) unlink(init_state_file); 3925 3926 if (g_state != NULL) 3927 free(g_state); 3928 3929 /* Something went wrong, so allocate new state. */ 3930 g_state_sz = sizeof (struct init_state) + 3931 ((init_num_proc - 1) * sizeof (struct PROC_TABLE)); 3932 do 3933 g_state = calloc(1, g_state_sz); 3934 while (g_state == NULL && errno == EAGAIN); 3935 if (g_state == NULL) { 3936 /* Fatal error! */ 3937 exit(errno); 3938 } 3939 3940 g_state->ist_runlevel = -1; 3941 num_proc = init_num_proc; 3942 3943 if (!booting) { 3944 console(B_TRUE, "Restarting.\n"); 3945 3946 /* Overwrite the bad state file. */ 3947 st_write(); 3948 3949 if (!insane) { 3950 console(B_TRUE, 3951 "Error accessing persistent state file `%s'. " 3952 "Ignored.\n", init_state_file); 3953 } else { 3954 console(B_TRUE, 3955 "Persistent state file `%s' is invalid and was " 3956 "ignored.\n", init_state_file); 3957 } 3958 } 3959 } 3960 3961 /* 3962 * Write g_state out to the state file. 3963 */ 3964 void 3965 st_write() 3966 { 3967 static int complained = 0; 3968 3969 int st_fd; 3970 char *cp; 3971 size_t sz; 3972 ssize_t ret; 3973 3974 3975 do { 3976 st_fd = open(init_next_state_file, 3977 O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR); 3978 } while (st_fd < 0 && errno == EINTR); 3979 if (st_fd < 0) 3980 goto err; 3981 3982 cp = (char *)g_state; 3983 sz = g_state_sz; 3984 while (sz > 0) { 3985 ret = write(st_fd, cp, sz); 3986 if (ret < 0) { 3987 if (errno == EINTR) 3988 continue; 3989 3990 goto err; 3991 } 3992 3993 sz -= ret; 3994 cp += ret; 3995 } 3996 3997 (void) close(st_fd); 3998 st_fd = -1; 3999 if (rename(init_next_state_file, init_state_file)) { 4000 (void) unlink(init_next_state_file); 4001 goto err; 4002 } 4003 complained = 0; 4004 4005 return; 4006 4007 err: 4008 if (st_fd >= 0) 4009 (void) close(st_fd); 4010 4011 if (!booting && !complained) { 4012 /* 4013 * Only complain after the filesystem should have come up. 4014 * And only do it once so we don't loop between console() 4015 * & efork(). 4016 */ 4017 complained = 1; 4018 if (st_fd) 4019 console(B_TRUE, "Couldn't write persistent state " 4020 "file `%s'.\n", init_state_file); 4021 else 4022 console(B_TRUE, "Couldn't move persistent state " 4023 "file `%s' to `%s'.\n", init_next_state_file, 4024 init_state_file); 4025 } 4026 } 4027 4028 /* 4029 * Create a contract with these parameters. 4030 */ 4031 static int 4032 contract_make_template(uint_t info, uint_t critical, uint_t fatal, 4033 uint64_t cookie) 4034 { 4035 int fd, err; 4036 4037 char *ioctl_tset_emsg = 4038 "Couldn't set \"%s\" contract template parameter: %s.\n"; 4039 4040 do 4041 fd = open64(CTFS_ROOT "/process/template", O_RDWR); 4042 while (fd < 0 && errno == EINTR); 4043 if (fd < 0) { 4044 console(B_TRUE, "Couldn't create process template: %s.\n", 4045 strerror(errno)); 4046 return (-1); 4047 } 4048 4049 if (err = ct_pr_tmpl_set_param(fd, CT_PR_INHERIT | CT_PR_REGENT)) 4050 console(B_TRUE, "Contract set template inherit, regent " 4051 "failed.\n"); 4052 4053 /* 4054 * These errors result in a misconfigured template, which is better 4055 * than no template at all, so warn but don't abort. 4056 */ 4057 if (err = ct_tmpl_set_informative(fd, info)) 4058 console(B_TRUE, ioctl_tset_emsg, "informative", strerror(err)); 4059 4060 if (err = ct_tmpl_set_critical(fd, critical)) 4061 console(B_TRUE, ioctl_tset_emsg, "critical", strerror(err)); 4062 4063 if (err = ct_pr_tmpl_set_fatal(fd, fatal)) 4064 console(B_TRUE, ioctl_tset_emsg, "fatal", strerror(err)); 4065 4066 if (err = ct_tmpl_set_cookie(fd, cookie)) 4067 console(B_TRUE, ioctl_tset_emsg, "cookie", strerror(err)); 4068 4069 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 4070 4071 return (fd); 4072 } 4073 4074 /* 4075 * Create the templates and open an event file descriptor. We use dup2(2) to 4076 * get these descriptors away from the stdin/stdout/stderr group. 4077 */ 4078 static void 4079 contracts_init() 4080 { 4081 int err, fd; 4082 4083 /* 4084 * Create & configure a legacy template. We only want empty events so 4085 * we know when to abandon them. 4086 */ 4087 legacy_tmpl = contract_make_template(0, CT_PR_EV_EMPTY, CT_PR_EV_HWERR, 4088 ORDINARY_COOKIE); 4089 if (legacy_tmpl >= 0) { 4090 err = ct_tmpl_activate(legacy_tmpl); 4091 if (err != 0) { 4092 (void) close(legacy_tmpl); 4093 legacy_tmpl = -1; 4094 console(B_TRUE, 4095 "Couldn't activate legacy template (%s); " 4096 "legacy services will be in init's contract.\n", 4097 strerror(err)); 4098 } 4099 } else 4100 console(B_TRUE, 4101 "Legacy services will be in init's contract.\n"); 4102 4103 if (dup2(legacy_tmpl, 255) == -1) { 4104 console(B_TRUE, "Could not duplicate legacy template: %s.\n", 4105 strerror(errno)); 4106 } else { 4107 (void) close(legacy_tmpl); 4108 legacy_tmpl = 255; 4109 } 4110 4111 (void) fcntl(legacy_tmpl, F_SETFD, FD_CLOEXEC); 4112 4113 startd_tmpl = contract_make_template(0, CT_PR_EV_EMPTY, 4114 CT_PR_EV_HWERR | CT_PR_EV_SIGNAL | CT_PR_EV_CORE, STARTD_COOKIE); 4115 4116 if (dup2(startd_tmpl, 254) == -1) { 4117 console(B_TRUE, "Could not duplicate startd template: %s.\n", 4118 strerror(errno)); 4119 } else { 4120 (void) close(startd_tmpl); 4121 startd_tmpl = 254; 4122 } 4123 4124 (void) fcntl(startd_tmpl, F_SETFD, FD_CLOEXEC); 4125 4126 if (legacy_tmpl < 0 && startd_tmpl < 0) { 4127 /* The creation errors have already been reported. */ 4128 console(B_TRUE, 4129 "Ignoring contract events. Core smf(5) services will not " 4130 "be restarted.\n"); 4131 return; 4132 } 4133 4134 /* 4135 * Open an event endpoint. 4136 */ 4137 do 4138 fd = open64(CTFS_ROOT "/process/pbundle", O_RDONLY); 4139 while (fd < 0 && errno == EINTR); 4140 if (fd < 0) { 4141 console(B_TRUE, 4142 "Couldn't open process pbundle: %s. Core smf(5) services " 4143 "will not be restarted.\n", strerror(errno)); 4144 return; 4145 } 4146 4147 if (dup2(fd, 253) == -1) { 4148 console(B_TRUE, "Could not duplicate process bundle: %s.\n", 4149 strerror(errno)); 4150 } else { 4151 (void) close(fd); 4152 fd = 253; 4153 } 4154 4155 (void) fcntl(fd, F_SETFD, FD_CLOEXEC); 4156 4157 /* Reset in case we've been restarted. */ 4158 (void) ct_event_reset(fd); 4159 4160 poll_fds[0].fd = fd; 4161 poll_fds[0].events = POLLIN; 4162 poll_nfds = 1; 4163 } 4164 4165 static int 4166 contract_getfile(ctid_t id, const char *name, int oflag) 4167 { 4168 int fd; 4169 4170 do 4171 fd = contract_open(id, "process", name, oflag); 4172 while (fd < 0 && errno == EINTR); 4173 4174 if (fd < 0) 4175 console(B_TRUE, "Couldn't open %s for contract %ld: %s.\n", 4176 name, id, strerror(errno)); 4177 4178 return (fd); 4179 } 4180 4181 static int 4182 contract_cookie(ctid_t id, uint64_t *cp) 4183 { 4184 int fd, err; 4185 ct_stathdl_t sh; 4186 4187 fd = contract_getfile(id, "status", O_RDONLY); 4188 if (fd < 0) 4189 return (-1); 4190 4191 err = ct_status_read(fd, CTD_COMMON, &sh); 4192 if (err != 0) { 4193 console(B_TRUE, "Couldn't read status of contract %ld: %s.\n", 4194 id, strerror(err)); 4195 (void) close(fd); 4196 return (-1); 4197 } 4198 4199 (void) close(fd); 4200 4201 *cp = ct_status_get_cookie(sh); 4202 4203 ct_status_free(sh); 4204 return (0); 4205 } 4206 4207 static void 4208 contract_ack(ct_evthdl_t e) 4209 { 4210 int fd; 4211 4212 if (ct_event_get_flags(e) & CTE_INFO) 4213 return; 4214 4215 fd = contract_getfile(ct_event_get_ctid(e), "ctl", O_WRONLY); 4216 if (fd < 0) 4217 return; 4218 4219 (void) ct_ctl_ack(fd, ct_event_get_evid(e)); 4220 (void) close(fd); 4221 } 4222 4223 /* 4224 * Process a contract event. 4225 */ 4226 static void 4227 contract_event(struct pollfd *poll) 4228 { 4229 ct_evthdl_t e; 4230 int err; 4231 ctid_t ctid; 4232 4233 if (!(poll->revents & POLLIN)) { 4234 if (poll->revents & POLLERR) 4235 console(B_TRUE, 4236 "Unknown poll error on my process contract " 4237 "pbundle.\n"); 4238 return; 4239 } 4240 4241 err = ct_event_read(poll->fd, &e); 4242 if (err != 0) { 4243 console(B_TRUE, "Error retrieving contract event: %s.\n", 4244 strerror(err)); 4245 return; 4246 } 4247 4248 ctid = ct_event_get_ctid(e); 4249 4250 if (ct_event_get_type(e) == CT_PR_EV_EMPTY) { 4251 uint64_t cookie; 4252 int ret, abandon = 1; 4253 4254 /* If it's svc.startd, restart it. Else, abandon. */ 4255 ret = contract_cookie(ctid, &cookie); 4256 4257 if (ret == 0) { 4258 if (cookie == STARTD_COOKIE && 4259 do_restart_startd) { 4260 if (smf_debug) 4261 console(B_TRUE, "Restarting " 4262 "svc.startd.\n"); 4263 4264 /* 4265 * Account for the failure. If the failure rate 4266 * exceeds a threshold, then drop to maintenance 4267 * mode. 4268 */ 4269 startd_record_failure(); 4270 if (startd_failure_rate_critical()) 4271 enter_maintenance(); 4272 4273 if (startd_tmpl < 0) 4274 console(B_TRUE, 4275 "Restarting svc.startd in " 4276 "improper contract (bad " 4277 "template).\n"); 4278 4279 (void) startd_run(startd_cline, startd_tmpl, 4280 ctid); 4281 4282 abandon = 0; 4283 } 4284 } 4285 4286 if (abandon && (err = contract_abandon_id(ctid))) { 4287 console(B_TRUE, "Couldn't abandon contract %ld: %s.\n", 4288 ctid, strerror(err)); 4289 } 4290 4291 /* 4292 * No need to acknowledge the event since either way the 4293 * originating contract should be abandoned. 4294 */ 4295 } else { 4296 console(B_TRUE, 4297 "Received contract event of unexpected type %d from " 4298 "contract %ld.\n", ct_event_get_type(e), ctid); 4299 4300 if ((ct_event_get_flags(e) & (CTE_INFO | CTE_ACK)) == 0) 4301 /* Allow unexpected critical events to be released. */ 4302 contract_ack(e); 4303 } 4304 4305 ct_event_free(e); 4306 } 4307 4308 /* 4309 * svc.startd(1M) Management 4310 */ 4311 4312 /* 4313 * (Re)start svc.startd(1M). old_ctid should be the contract ID of the old 4314 * contract, or 0 if we're starting it for the first time. If wait is true 4315 * we'll wait for and return the exit value of the child. 4316 */ 4317 static int 4318 startd_run(const char *cline, int tmpl, ctid_t old_ctid) 4319 { 4320 int err, i, ret, did_activate; 4321 pid_t pid; 4322 struct stat sb; 4323 4324 if (cline[0] == '\0') 4325 return (-1); 4326 4327 /* 4328 * Don't restart startd if the system is rebooting or shutting down. 4329 */ 4330 do { 4331 ret = stat("/etc/svc/volatile/resetting", &sb); 4332 } while (ret == -1 && errno == EINTR); 4333 4334 if (ret == 0) { 4335 if (smf_debug) 4336 console(B_TRUE, "Quiescing for reboot.\n"); 4337 (void) pause(); 4338 return (-1); 4339 } 4340 4341 err = ct_pr_tmpl_set_transfer(tmpl, old_ctid); 4342 if (err == EINVAL) { 4343 console(B_TRUE, "Remake startd_tmpl; reattempt transfer.\n"); 4344 tmpl = startd_tmpl = contract_make_template(0, CT_PR_EV_EMPTY, 4345 CT_PR_EV_HWERR, STARTD_COOKIE); 4346 4347 err = ct_pr_tmpl_set_transfer(tmpl, old_ctid); 4348 } 4349 if (err != 0) { 4350 console(B_TRUE, 4351 "Couldn't set transfer parameter of contract template: " 4352 "%s.\n", strerror(err)); 4353 } 4354 4355 did_activate = !(ct_tmpl_activate(tmpl)); 4356 if (!did_activate) 4357 console(B_TRUE, 4358 "Template activation failed; not starting \"%s\" in " 4359 "proper contract.\n", cline); 4360 4361 /* Hold SIGCHLD so we can wait if necessary. */ 4362 (void) sighold(SIGCHLD); 4363 4364 while ((pid = fork()) < 0) { 4365 if (errno == EPERM) { 4366 console(B_TRUE, "Insufficient permission to fork.\n"); 4367 4368 /* Now that's a doozy. */ 4369 exit(1); 4370 } 4371 4372 console(B_TRUE, 4373 "fork() for svc.startd failed: %s. Will retry in 1 " 4374 "second...\n", strerror(errno)); 4375 4376 (void) sleep(1); 4377 4378 /* Eventually give up? */ 4379 } 4380 4381 if (pid == 0) { 4382 /* child */ 4383 4384 /* See the comment in efork() */ 4385 for (i = SIGHUP; i <= SIGRTMAX; ++i) { 4386 if (i == SIGTTOU || i == SIGTTIN || i == SIGTSTP) 4387 (void) sigset(i, SIG_IGN); 4388 else 4389 (void) sigset(i, SIG_DFL); 4390 } 4391 4392 if (smf_options != NULL) { 4393 /* Put smf_options in the environment. */ 4394 glob_envp[glob_envn] = 4395 malloc(sizeof ("SMF_OPTIONS=") - 1 + 4396 strlen(smf_options) + 1); 4397 4398 if (glob_envp[glob_envn] != NULL) { 4399 /* LINTED */ 4400 (void) sprintf(glob_envp[glob_envn], 4401 "SMF_OPTIONS=%s", smf_options); 4402 glob_envp[glob_envn+1] = NULL; 4403 } else { 4404 console(B_TRUE, 4405 "Could not set SMF_OPTIONS (%s).\n", 4406 strerror(errno)); 4407 } 4408 } 4409 4410 if (smf_debug) 4411 console(B_TRUE, "Executing svc.startd\n"); 4412 4413 (void) execle(SH, "INITSH", "-c", cline, NULL, glob_envp); 4414 4415 console(B_TRUE, "Could not exec \"%s\" (%s).\n", SH, 4416 strerror(errno)); 4417 4418 exit(1); 4419 } 4420 4421 /* parent */ 4422 4423 if (did_activate) { 4424 if (legacy_tmpl < 0 || ct_tmpl_activate(legacy_tmpl) != 0) 4425 (void) ct_tmpl_clear(tmpl); 4426 } 4427 4428 /* Clear the old_ctid reference so the kernel can reclaim it. */ 4429 if (old_ctid != 0) 4430 (void) ct_pr_tmpl_set_transfer(tmpl, 0); 4431 4432 (void) sigrelse(SIGCHLD); 4433 4434 return (0); 4435 } 4436 4437 /* 4438 * void startd_record_failure(void) 4439 * Place the current time in our circular array of svc.startd failures. 4440 */ 4441 void 4442 startd_record_failure() 4443 { 4444 int index = startd_failure_index++ % NSTARTD_FAILURE_TIMES; 4445 4446 startd_failure_time[index] = gethrtime(); 4447 } 4448 4449 /* 4450 * int startd_failure_rate_critical(void) 4451 * Return true if the average failure interval is less than the permitted 4452 * interval. Implicit success if insufficient measurements for an average 4453 * exist. 4454 */ 4455 int 4456 startd_failure_rate_critical() 4457 { 4458 int n = startd_failure_index; 4459 hrtime_t avg_ns = 0; 4460 4461 if (startd_failure_index < NSTARTD_FAILURE_TIMES) 4462 return (0); 4463 4464 avg_ns = 4465 (startd_failure_time[(n - 1) % NSTARTD_FAILURE_TIMES] - 4466 startd_failure_time[n % NSTARTD_FAILURE_TIMES]) / 4467 NSTARTD_FAILURE_TIMES; 4468 4469 return (avg_ns < STARTD_FAILURE_RATE_NS); 4470 } 4471 4472 /* 4473 * returns string that must be free'd 4474 */ 4475 4476 static char 4477 *audit_boot_msg() 4478 { 4479 char *b, *p; 4480 char desc[] = "booted"; 4481 zoneid_t zid = getzoneid(); 4482 4483 b = malloc(sizeof (desc) + MAXNAMELEN + 3); 4484 if (b == NULL) 4485 return (b); 4486 4487 p = b; 4488 p += strlcpy(p, desc, sizeof (desc)); 4489 if (zid != GLOBAL_ZONEID) { 4490 p += strlcpy(p, ": ", 3); 4491 (void) getzonenamebyid(zid, p, MAXNAMELEN); 4492 } 4493 return (b); 4494 } 4495 4496 /* 4497 * Generate AUE_init_solaris audit record. Return 1 if 4498 * auditing is enabled in case the caller cares. 4499 * 4500 * In the case of userint() or a local zone invocation of 4501 * one_true_init, the process initially contains the audit 4502 * characteristics of the process that invoked init. The first pass 4503 * through here uses those characteristics then for the case of 4504 * one_true_init in a local zone, clears them so subsequent system 4505 * state changes won't be attributed to the person who booted the 4506 * zone. 4507 */ 4508 static int 4509 audit_put_record(int pass_fail, int status, char *msg) 4510 { 4511 adt_session_data_t *ah; 4512 adt_event_data_t *event; 4513 4514 if (!adt_audit_enabled()) 4515 return (0); 4516 4517 /* 4518 * the PROC_DATA picks up the context to tell whether this is 4519 * an attributed record (auid = -2 is unattributed) 4520 */ 4521 if (adt_start_session(&ah, NULL, ADT_USE_PROC_DATA)) { 4522 console(B_TRUE, "audit failure: %s\n", strerror(errno)); 4523 return (1); 4524 } 4525 event = adt_alloc_event(ah, ADT_init_solaris); 4526 if (event == NULL) { 4527 console(B_TRUE, "audit failure: %s\n", strerror(errno)); 4528 (void) adt_end_session(ah); 4529 return (1); 4530 } 4531 event->adt_init_solaris.info = msg; /* NULL is ok here */ 4532 4533 if (adt_put_event(event, pass_fail, status)) { 4534 console(B_TRUE, "audit failure: %s\n", strerror(errno)); 4535 (void) adt_end_session(ah); 4536 return (1); 4537 } 4538 adt_free_event(event); 4539 4540 (void) adt_end_session(ah); 4541 4542 return (1); 4543 } 4544