1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 #pragma ident "%Z%%M% %I% %E% SMI" 23 /* from UCB 5.2 9/11/85 */ 24 25 /* 26 * newfs: friendly front end to mkfs 27 * 28 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <locale.h> 35 #include <sys/stat.h> 36 #include <sys/buf.h> 37 #include <sys/fs/ufs_fs.h> 38 #include <sys/vnode.h> 39 #include <sys/fs/ufs_inode.h> 40 #include <sys/sysmacros.h> 41 42 #include <errno.h> 43 #include <stdio.h> 44 #include <string.h> 45 #include <stdlib.h> 46 #include <stdarg.h> 47 #include <stdio.h> 48 #include <fcntl.h> 49 #include <unistd.h> 50 #include <limits.h> 51 #include <libintl.h> 52 #include <sys/dkio.h> 53 #include <sys/vtoc.h> 54 #include <sys/mkdev.h> 55 #include <sys/efi_partition.h> 56 57 #include <fslib.h> 58 59 static unsigned int number(char *, char *, int, int); 60 static int64_t number64(char *, char *, int, int64_t); 61 static diskaddr_t getdiskbydev(char *); 62 static int yes(void); 63 static int notrand(char *); 64 static void usage(); 65 static diskaddr_t get_device_size(int, char *); 66 static diskaddr_t brute_force_get_device_size(int); 67 static int validate_size(char *disk, diskaddr_t size); 68 static void exenv(void); 69 static struct fs *read_sb(char *); 70 /*PRINTFLIKE1*/ 71 static void fatal(char *fmt, ...); 72 73 #define EPATH "PATH=/usr/sbin:/sbin:" 74 #define CPATH "/sbin" /* an EPATH element */ 75 #define MB (1024 * 1024) 76 #define GBSEC ((1024 * 1024 * 1024) / DEV_BSIZE) /* sectors in a GB */ 77 #define MINFREESEC ((64 * 1024 * 1024) / DEV_BSIZE) /* sectors in 64 MB */ 78 #define MINCPG (16) /* traditional */ 79 #define MAXDEFDENSITY (8 * 1024) /* arbitrary */ 80 #define MINDENSITY (2 * 1024) /* traditional */ 81 #define MIN_MTB_DENSITY (1024 * 1024) 82 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 83 #define SECTORS_PER_TERABYTE (1LL << 31) 84 /* 85 * The following constant specifies an upper limit for file system size 86 * that is actually a lot bigger than we expect to support with UFS. (Since 87 * it's specified in sectors, the file system size would be 2**44 * 512, 88 * which is 2**53, which is 8192 Terabytes.) However, it's useful 89 * for checking the basic sanity of a size value that is input on the 90 * command line. 91 */ 92 #define FS_SIZE_UPPER_LIMIT 0x100000000000LL 93 94 /* For use with number() */ 95 #define NR_NONE 0 96 #define NR_PERCENT 0x01 97 98 /* 99 * The following two constants set the default block and fragment sizes. 100 * Both constants must be a power of 2 and meet the following constraints: 101 * MINBSIZE <= DESBLKSIZE <= MAXBSIZE 102 * DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE 103 * DESBLKSIZE / DESFRAGSIZE <= 8 104 */ 105 #define DESBLKSIZE 8192 106 #define DESFRAGSIZE 1024 107 108 #ifdef DEBUG 109 #define dprintf(x) printf x 110 #else 111 #define dprintf(x) 112 #endif 113 114 static int Nflag; /* run mkfs without writing file system */ 115 static int Tflag; /* set up file system for growth to over 1 TB */ 116 static int verbose; /* show mkfs line before exec */ 117 static int fsize = 0; /* fragment size */ 118 static int fsize_flag = 0; /* fragment size was specified on cmd line */ 119 static int bsize; /* block size */ 120 static int ntracks; /* # tracks/cylinder */ 121 static int ntracks_set = 0; /* true if the user specified ntracks */ 122 static int optim = FS_OPTTIME; /* optimization, t(ime) or s(pace) */ 123 static int nsectors; /* # sectors/track */ 124 static int cpg; /* cylinders/cylinder group */ 125 static int cpg_set = 0; /* true if the user specified cpg */ 126 static int minfree = -1; /* free space threshold */ 127 static int rpm; /* revolutions/minute of drive */ 128 static int rpm_set = 0; /* true if the user specified rpm */ 129 static int nrpos = 8; /* # of distinguished rotational positions */ 130 /* 8 is the historical default */ 131 static int nrpos_set = 0; /* true if the user specified nrpos */ 132 static int density = 0; /* number of bytes per inode */ 133 static int apc; /* alternates per cylinder */ 134 static int apc_set = 0; /* true if the user specified apc */ 135 static int rot = -1; /* rotational delay (msecs) */ 136 static int rot_set = 0; /* true if the user specified rot */ 137 static int maxcontig = -1; /* maximum number of contig blocks */ 138 static int text_sb = 0; /* no disk changes; just final sb text dump */ 139 static int binary_sb = 0; /* no disk changes; just final sb binary dump */ 140 static int label_type; /* see types below */ 141 142 /* 143 * The variable use_efi_dflts is an indicator of whether to use EFI logic 144 * or the geometry logic in laying out the filesystem. This is decided 145 * based on the size of the disk and is used only for non-EFI labeled disks. 146 */ 147 static int use_efi_dflts = 0; 148 149 static char device[MAXPATHLEN]; 150 static char cmd[BUFSIZ]; 151 152 extern char *getfullrawname(); /* from libadm */ 153 154 int 155 main(int argc, char *argv[]) 156 { 157 char *special, *name; 158 struct stat64 st; 159 int status; 160 int option; 161 struct fs *sbp; /* Pointer to superblock (if present) */ 162 diskaddr_t actual_fssize; 163 diskaddr_t max_possible_fssize; 164 diskaddr_t req_fssize = 0; 165 diskaddr_t fssize = 0; 166 char *req_fssize_str = NULL; /* requested size argument */ 167 168 (void) setlocale(LC_ALL, ""); 169 170 #if !defined(TEXT_DOMAIN) 171 #define TEXT_DOMAIN "SYS_TEST" 172 #endif 173 (void) textdomain(TEXT_DOMAIN); 174 175 opterr = 0; /* We print our own errors, disable getopt's message */ 176 while ((option = getopt(argc, argv, 177 "vNBSs:C:d:t:o:a:b:f:c:m:n:r:i:T")) != EOF) { 178 switch (option) { 179 case 'S': 180 text_sb++; 181 break; 182 case 'B': 183 binary_sb++; 184 break; 185 case 'v': 186 verbose++; 187 break; 188 189 case 'N': 190 Nflag++; 191 break; 192 193 case 's': 194 /* 195 * The maximum file system size is a lot smaller 196 * than FS_SIZE_UPPER_LIMIT, but until we find out 197 * the device size and block size, we don't know 198 * what it is. So save the requested size in a 199 * string so that we can print it out later if we 200 * determine it's too big. 201 */ 202 req_fssize = number64("fssize", optarg, NR_NONE, 203 FS_SIZE_UPPER_LIMIT); 204 if (req_fssize < 1024) 205 fatal(gettext( 206 "%s: fssize must be at least 1024"), 207 optarg); 208 req_fssize_str = strdup(optarg); 209 if (req_fssize_str == NULL) 210 fatal(gettext( 211 "Insufficient memory for string copy.")); 212 break; 213 214 case 'C': 215 maxcontig = number("maxcontig", optarg, NR_NONE, -1); 216 if (maxcontig < 0) 217 fatal(gettext("%s: bad maxcontig"), optarg); 218 break; 219 220 case 'd': 221 rot = number("rotdelay", optarg, NR_NONE, 0); 222 rot_set = 1; 223 if (rot < 0 || rot > 1000) 224 fatal(gettext( 225 "%s: bad rotational delay"), optarg); 226 break; 227 228 case 't': 229 ntracks = number("ntrack", optarg, NR_NONE, 16); 230 ntracks_set = 1; 231 if ((ntracks < 0) || 232 (ntracks > INT_MAX)) 233 fatal(gettext("%s: bad total tracks"), optarg); 234 break; 235 236 case 'o': 237 if (strcmp(optarg, "space") == 0) 238 optim = FS_OPTSPACE; 239 else if (strcmp(optarg, "time") == 0) 240 optim = FS_OPTTIME; 241 else 242 fatal(gettext( 243 "%s: bad optimization preference (options are `space' or `time')"), 244 optarg); 245 break; 246 247 case 'a': 248 apc = number("apc", optarg, NR_NONE, 0); 249 apc_set = 1; 250 if (apc < 0 || apc > 32768) /* see mkfs.c */ 251 fatal(gettext( 252 "%s: bad alternates per cyl"), optarg); 253 break; 254 255 case 'b': 256 bsize = number("bsize", optarg, NR_NONE, DESBLKSIZE); 257 if (bsize < MINBSIZE || bsize > MAXBSIZE) 258 fatal(gettext( 259 "%s: bad block size"), optarg); 260 break; 261 262 case 'f': 263 fsize = number("fragsize", optarg, NR_NONE, 264 DESFRAGSIZE); 265 fsize_flag++; 266 /* xxx ought to test against bsize for upper limit */ 267 if (fsize < DEV_BSIZE) 268 fatal(gettext("%s: bad frag size"), optarg); 269 break; 270 271 case 'c': 272 cpg = number("cpg", optarg, NR_NONE, 16); 273 cpg_set = 1; 274 if (cpg < 1) 275 fatal(gettext("%s: bad cylinders/group"), 276 optarg); 277 break; 278 279 case 'm': 280 minfree = number("minfree", optarg, NR_PERCENT, 10); 281 if (minfree < 0 || minfree > 99) 282 fatal(gettext("%s: bad free space %%"), optarg); 283 break; 284 285 case 'n': 286 nrpos = number("nrpos", optarg, NR_NONE, 8); 287 nrpos_set = 1; 288 if (nrpos <= 0) 289 fatal(gettext( 290 "%s: bad number of rotational positions"), 291 optarg); 292 break; 293 294 case 'r': 295 rpm = number("rpm", optarg, NR_NONE, 3600); 296 rpm_set = 1; 297 if (rpm < 0) 298 fatal(gettext("%s: bad revs/minute"), optarg); 299 break; 300 301 case 'i': 302 /* xxx ought to test against fsize */ 303 density = number("nbpi", optarg, NR_NONE, 2048); 304 if (density < DEV_BSIZE) 305 fatal(gettext("%s: bad bytes per inode"), 306 optarg); 307 break; 308 309 case 'T': 310 Tflag++; 311 break; 312 313 default: 314 usage(); 315 fatal(gettext("-%c: unknown flag"), optopt); 316 } 317 } 318 319 /* At this point, there should only be one argument left: */ 320 /* The raw-special-device itself. If not, print usage message. */ 321 if ((argc - optind) != 1) { 322 usage(); 323 exit(1); 324 } 325 326 name = argv[optind]; 327 328 special = getfullrawname(name); 329 if (special == NULL) { 330 (void) fprintf(stderr, gettext("newfs: malloc failed\n")); 331 exit(1); 332 } 333 334 if (*special == '\0') { 335 if (strchr(name, '/') != NULL) { 336 if (stat64(name, &st) < 0) { 337 (void) fprintf(stderr, 338 gettext("newfs: %s: %s\n"), 339 name, strerror(errno)); 340 exit(2); 341 } 342 fatal(gettext("%s: not a raw disk device"), name); 343 } 344 (void) sprintf(device, "/dev/rdsk/%s", name); 345 if ((special = getfullrawname(device)) == NULL) { 346 (void) fprintf(stderr, 347 gettext("newfs: malloc failed\n")); 348 exit(1); 349 } 350 351 if (*special == '\0') { 352 (void) sprintf(device, "/dev/%s", name); 353 if ((special = getfullrawname(device)) == NULL) { 354 (void) fprintf(stderr, 355 gettext("newfs: malloc failed\n")); 356 exit(1); 357 } 358 if (*special == '\0') 359 fatal(gettext( 360 "%s: not a raw disk device"), name); 361 } 362 } 363 364 /* 365 * getdiskbydev() determines the characteristics of the special 366 * device on which the file system will be built. In the case 367 * of devices with SMI labels (that is, non-EFI labels), the 368 * following characteristics are set (if they were not already 369 * set on the command line, since the command line settings 370 * take precedence): 371 * 372 * nsectors - sectors per track 373 * ntracks - tracks per cylinder 374 * rpm - disk revolutions per minute 375 * 376 * apc is NOT set 377 * 378 * getdiskbydev() also sets the following quantities for all 379 * devices, if not already set: 380 * 381 * bsize - file system block size 382 * maxcontig 383 * label_type (efi, vtoc, or other) 384 * 385 * getdiskbydev() returns the actual size of the device, in 386 * sectors. 387 */ 388 389 actual_fssize = getdiskbydev(special); 390 391 if (req_fssize == 0) { 392 fssize = actual_fssize; 393 } else { 394 /* 395 * If the user specified a size larger than what we've 396 * determined as the actual size of the device, see if the 397 * size specified by the user can be read. If so, use it, 398 * since some devices and volume managers may not support 399 * the vtoc and EFI interfaces we use to determine device 400 * size. 401 */ 402 if (req_fssize > actual_fssize && 403 validate_size(special, req_fssize)) { 404 (void) fprintf(stderr, gettext( 405 "Warning: the requested size of this file system\n" 406 "(%lld sectors) is greater than the size of the\n" 407 "device reported by the driver (%lld sectors).\n" 408 "However, a read of the device at the requested size\n" 409 "does succeed, so the requested size will be used.\n"), 410 req_fssize, actual_fssize); 411 fssize = req_fssize; 412 } else { 413 fssize = MIN(req_fssize, actual_fssize); 414 } 415 } 416 417 if (label_type == LABEL_TYPE_VTOC) { 418 if (nsectors < 0) 419 fatal(gettext("%s: no default #sectors/track"), 420 special); 421 if (!use_efi_dflts) { 422 if (ntracks < 0) 423 fatal(gettext("%s: no default #tracks"), 424 special); 425 } 426 if (rpm < 0) 427 fatal(gettext( 428 "%s: no default revolutions/minute value"), 429 special); 430 if (rpm < 60) { 431 (void) fprintf(stderr, 432 gettext("Warning: setting rpm to 60\n")); 433 rpm = 60; 434 } 435 } 436 if (label_type == LABEL_TYPE_EFI || label_type == LABEL_TYPE_OTHER) { 437 if (ntracks_set) 438 (void) fprintf(stderr, gettext( 439 "Warning: ntracks is obsolete for this device and will be ignored.\n")); 440 if (cpg_set) 441 (void) fprintf(stderr, gettext( 442 "Warning: cylinders/group is obsolete for this device and will be ignored.\n")); 443 if (rpm_set) 444 (void) fprintf(stderr, gettext( 445 "Warning: rpm is obsolete for this device and will be ignored.\n")); 446 if (rot_set) 447 (void) fprintf(stderr, gettext( 448 "Warning: rotational delay is obsolete for this device and" 449 " will be ignored.\n")); 450 if (nrpos_set) 451 (void) fprintf(stderr, gettext( 452 "Warning: number of rotational positions is obsolete for this device and\n" 453 "will be ignored.\n")); 454 if (apc_set) 455 (void) fprintf(stderr, gettext( 456 "Warning: number of alternate sectors per cylinder is obsolete for this\n" 457 "device and will be ignored.\n")); 458 459 /* 460 * We need these for the call to mkfs, even though they are 461 * meaningless. 462 */ 463 rpm = 60; 464 nrpos = 1; 465 apc = 0; 466 rot = -1; 467 468 /* 469 * These values are set to produce a file system with 470 * a cylinder group size of 48MB. For disks with 471 * non-EFI labels, most geometries result in cylinder 472 * groups of around 40 - 50 MB, so we arbitrarily choose 473 * 48MB for disks with EFI labels. mkfs will reduce 474 * cylinders per group even further if necessary. 475 */ 476 477 cpg = 16; 478 nsectors = 128; 479 ntracks = 48; 480 481 /* 482 * mkfs produces peculiar results for file systems 483 * that are smaller than one cylinder so don't allow 484 * them to be created (this check is only made for 485 * disks with EFI labels. Eventually, it should probably 486 * be enforced for all disks.) 487 */ 488 489 if (fssize < nsectors * ntracks) { 490 fatal(gettext( 491 "file system size must be at least %d sectors"), 492 nsectors * ntracks); 493 } 494 } 495 496 if (fssize > INT_MAX) 497 Tflag = 1; 498 499 /* 500 * If the user requested that the file system be set up for 501 * eventual growth to over a terabyte, or if it's already greater 502 * than a terabyte, set the inode density (nbpi) to MIN_MTB_DENSITY 503 * (unless the user has specified a larger nbpi), set the frag size 504 * equal to the block size, and set the cylinders-per-group value 505 * passed to mkfs to -1, which tells mkfs to make cylinder groups 506 * as large as possible. 507 */ 508 if (Tflag) { 509 if (density < MIN_MTB_DENSITY) 510 density = MIN_MTB_DENSITY; 511 fsize = bsize; 512 cpg = -1; /* says make cyl groups as big as possible */ 513 } else { 514 if (fsize == 0) 515 fsize = DESFRAGSIZE; 516 } 517 518 if (!POWEROF2(fsize)) { 519 (void) fprintf(stderr, gettext( 520 "newfs: fragment size must a power of 2, not %d\n"), fsize); 521 fsize = bsize/8; 522 (void) fprintf(stderr, gettext( 523 "newfs: fragsize reset to %ld\n"), fsize); 524 } 525 526 /* 527 * The file system is limited in size by the fragment size. 528 * The number of fragments in the file system must fit into 529 * a signed 32-bit quantity, so the number of sectors in the 530 * file system is INT_MAX * the number of sectors in a frag. 531 */ 532 533 max_possible_fssize = ((uint64_t)fsize)/DEV_BSIZE * INT_MAX; 534 if (fssize > max_possible_fssize) 535 fssize = max_possible_fssize; 536 537 /* 538 * Now fssize is the final size of the file system (in sectors). 539 * If it's less than what the user requested, print a message. 540 */ 541 if (fssize < req_fssize) { 542 (void) fprintf(stderr, gettext( 543 "newfs: requested size of %s disk blocks is too large.\n"), 544 req_fssize_str); 545 (void) fprintf(stderr, gettext( 546 "newfs: Resetting size to %lld\n"), fssize); 547 } 548 549 /* 550 * fssize now equals the size (in sectors) of the file system 551 * that will be created. 552 */ 553 554 /* XXX - following defaults are both here and in mkfs */ 555 if (density <= 0) { 556 if (fssize < GBSEC) 557 density = MINDENSITY; 558 else 559 density = (int)((((longlong_t)fssize + (GBSEC - 1)) / 560 GBSEC) * MINDENSITY); 561 if (density <= 0) 562 density = MINDENSITY; 563 if (density > MAXDEFDENSITY) 564 density = MAXDEFDENSITY; 565 } 566 if (cpg == 0) { 567 /* 568 * maxcpg calculation adapted from mkfs 569 * In the case of disks with EFI labels, cpg has 570 * already been set, so we won't enter this code. 571 */ 572 long maxcpg, maxipg; 573 574 maxipg = roundup(bsize * NBBY / 3, 575 bsize / sizeof (struct inode)); 576 maxcpg = (bsize - sizeof (struct cg) - howmany(maxipg, NBBY)) / 577 (sizeof (long) + nrpos * sizeof (short) + 578 nsectors / (MAXFRAG * NBBY)); 579 cpg = (fssize / GBSEC) * 32; 580 if (cpg > maxcpg) 581 cpg = maxcpg; 582 if (cpg <= 0) 583 cpg = MINCPG; 584 } 585 if (minfree < 0) { 586 minfree = ((float)MINFREESEC / fssize) * 100; 587 if (minfree > 10) 588 minfree = 10; 589 if (minfree <= 0) 590 minfree = 1; 591 } 592 #ifdef i386 /* Bug 1170182 */ 593 if (ntracks > 32 && (ntracks % 16) != 0) { 594 ntracks -= (ntracks % 16); 595 } 596 #endif 597 /* 598 * Confirmation 599 */ 600 if (isatty(fileno(stdin)) && !Nflag) { 601 /* 602 * If we can read a valid superblock, report the mount 603 * point on which this filesystem was last mounted. 604 */ 605 if (((sbp = read_sb(special)) != 0) && 606 (*sbp->fs_fsmnt != '\0')) { 607 (void) printf(gettext( 608 "newfs: %s last mounted as %s\n"), 609 special, sbp->fs_fsmnt); 610 } 611 (void) printf(gettext( 612 "newfs: construct a new file system %s: (y/n)? "), 613 special); 614 (void) fflush(stdout); 615 if (!yes()) 616 exit(0); 617 } 618 dprintf(("DeBuG newfs : nsect=%d ntrak=%d cpg=%d\n", 619 nsectors, ntracks, cpg)); 620 /* 621 * If alternates-per-cylinder is ever implemented: 622 * need to get apc from dp->d_apc if no -a switch??? 623 */ 624 (void) sprintf(cmd, 625 "mkfs -F ufs %s%s%s%s %lld %d %d %d %d %d %d %d %d %s %d %d %d %d %s", 626 Nflag ? "-o N " : "", binary_sb ? "-o calcbinsb " : "", 627 text_sb ? "-o calcsb " : "", special, 628 fssize, nsectors, ntracks, bsize, fsize, cpg, minfree, rpm/60, 629 density, optim == FS_OPTSPACE ? "s" : "t", apc, rot, nrpos, 630 maxcontig, Tflag ? "y" : "n"); 631 if (verbose) { 632 (void) printf("%s\n", cmd); 633 (void) fflush(stdout); 634 } 635 exenv(); 636 if (status = system(cmd)) 637 exit(status >> 8); 638 if (Nflag) 639 exit(0); 640 (void) sprintf(cmd, "/usr/sbin/fsirand %s", special); 641 if (notrand(special) && (status = system(cmd)) != 0) 642 (void) fprintf(stderr, 643 gettext("%s: failed, status = %d\n"), 644 cmd, status); 645 return (0); 646 } 647 648 static void 649 exenv(void) 650 { 651 char *epath; /* executable file path */ 652 char *cpath; /* current path */ 653 654 if ((cpath = getenv("PATH")) == NULL) { 655 (void) fprintf(stderr, gettext("newfs: no PATH in env\n")); 656 /* 657 * Background: the Bourne shell interpolates "." into 658 * the path where said path starts with a colon, ends 659 * with a colon, or has two adjacent colons. Thus, 660 * the path ":/sbin::/usr/sbin:" is equivalent to 661 * ".:/sbin:.:/usr/sbin:.". Now, we have no cpath, 662 * and epath ends in a colon (to make for easy 663 * catenation in the normal case). By the above, if 664 * we use "", then "." becomes part of path. That's 665 * bad, so use CPATH (which is just a duplicate of some 666 * element in EPATH). No point in opening ourselves 667 * up to a Trojan horse attack when we don't have to.... 668 */ 669 cpath = CPATH; 670 } 671 if ((epath = malloc(strlen(EPATH) + strlen(cpath) + 1)) == NULL) { 672 (void) fprintf(stderr, gettext("newfs: malloc failed\n")); 673 exit(1); 674 } 675 (void) strcpy(epath, EPATH); 676 (void) strcat(epath, cpath); 677 if (putenv(epath) < 0) { 678 (void) fprintf(stderr, gettext("newfs: putenv failed\n")); 679 exit(1); 680 } 681 } 682 683 static int 684 yes(void) 685 { 686 int i, b; 687 688 i = b = getchar(); 689 while (b != '\n' && b != '\0' && b != EOF) 690 b = getchar(); 691 return (i == 'y'); 692 } 693 694 /* 695 * xxx Caller must run fmt through gettext(3) for us, if we ever 696 * xxx go the i18n route.... 697 */ 698 static void 699 fatal(char *fmt, ...) 700 { 701 va_list pvar; 702 703 (void) fprintf(stderr, "newfs: "); 704 va_start(pvar, fmt); 705 (void) vfprintf(stderr, fmt, pvar); 706 va_end(pvar); 707 (void) putc('\n', stderr); 708 exit(10); 709 } 710 711 static diskaddr_t 712 getdiskbydev(char *disk) 713 { 714 struct dk_geom g; 715 struct dk_cinfo ci; 716 diskaddr_t actual_size; 717 int fd; 718 719 if ((fd = open64(disk, 0)) < 0) { 720 perror(disk); 721 exit(1); 722 } 723 724 /* 725 * get_device_size() determines the actual size of the 726 * device, and also the disk's attributes, such as geometry. 727 */ 728 actual_size = get_device_size(fd, disk); 729 730 if (label_type == LABEL_TYPE_VTOC) { 731 if (ioctl(fd, DKIOCGGEOM, &g)) 732 fatal(gettext( 733 "%s: Unable to read Disk geometry"), disk); 734 dprintf(("DeBuG newfs : geom=%ld, CHSLIMIT=%d\n", 735 g.dkg_ncyl * g.dkg_nhead * g.dkg_nsect, CHSLIMIT)); 736 if (((g.dkg_ncyl * g.dkg_nhead * g.dkg_nsect) > CHSLIMIT) && 737 !Tflag) { 738 dprintf(("DeBuG newfs : geom > CHSLIMIT\n")); 739 use_efi_dflts = 1; 740 } 741 /* 742 * The ntracks that is passed to mkfs is decided here based 743 * on 'use_efi_dflts' and whether ntracks was specified as a 744 * command line parameter to newfs. 745 * If ntracks of -1 is passed to mkfs, mkfs uses DEF_TRACKS_EFI 746 * and DEF_SECTORS_EFI for ntracks and nsectors respectively. 747 */ 748 if (nsectors == 0) 749 nsectors = g.dkg_nsect; 750 if (ntracks == 0) 751 ntracks = use_efi_dflts ? -1 : g.dkg_nhead; 752 if (rpm == 0) 753 rpm = ((int)g.dkg_rpm <= 0) ? 3600: g.dkg_rpm; 754 } 755 756 if (bsize == 0) 757 bsize = DESBLKSIZE; 758 /* 759 * Adjust maxcontig by the device's maxtransfer. If maxtransfer 760 * information is not available, default to the min of a MB and 761 * maxphys. 762 */ 763 if (maxcontig == -1 && ioctl(fd, DKIOCINFO, &ci) == 0) { 764 maxcontig = ci.dki_maxtransfer * DEV_BSIZE; 765 if (maxcontig < 0) { 766 int error, gotit, maxphys; 767 gotit = fsgetmaxphys(&maxphys, &error); 768 769 /* 770 * If we cannot get the maxphys value, default 771 * to ufs_maxmaxphys (MB). 772 */ 773 if (gotit) { 774 maxcontig = MIN(maxphys, MB); 775 } else { 776 (void) fprintf(stderr, gettext( 777 "Warning: Could not get system value for maxphys. The value for maxcontig\n" 778 "will default to 1MB.\n")); 779 maxcontig = MB; 780 } 781 } 782 maxcontig /= bsize; 783 } 784 (void) close(fd); 785 return (actual_size); 786 } 787 788 /* 789 * Figure out how big the partition we're dealing with is. 790 */ 791 static diskaddr_t 792 get_device_size(int fd, char *name) 793 { 794 struct vtoc vtoc; 795 dk_gpt_t *efi_vtoc; 796 diskaddr_t slicesize; 797 798 int index = read_vtoc(fd, &vtoc); 799 800 if (index >= 0) { 801 label_type = LABEL_TYPE_VTOC; 802 } else { 803 if (index == VT_ENOTSUP || index == VT_ERROR) { 804 /* it might be an EFI label */ 805 index = efi_alloc_and_read(fd, &efi_vtoc); 806 if (index >= 0) 807 label_type = LABEL_TYPE_EFI; 808 } 809 } 810 811 if (index < 0) { 812 /* 813 * Since both attempts to read the label failed, we're 814 * going to fall back to a brute force approach to 815 * determining the device's size: see how far out we can 816 * perform reads on the device. 817 */ 818 819 slicesize = brute_force_get_device_size(fd); 820 if (slicesize == 0) { 821 switch (index) { 822 case VT_ERROR: 823 (void) fprintf(stderr, gettext( 824 "newfs: %s: %s\n"), name, strerror(errno)); 825 exit(10); 826 /*NOTREACHED*/ 827 case VT_EIO: 828 fatal(gettext( 829 "%s: I/O error accessing VTOC"), name); 830 /*NOTREACHED*/ 831 case VT_EINVAL: 832 fatal(gettext( 833 "%s: Invalid field in VTOC"), name); 834 /*NOTREACHED*/ 835 default: 836 fatal(gettext( 837 "%s: unknown error accessing VTOC"), 838 name); 839 /*NOTREACHED*/ 840 } 841 } else { 842 label_type = LABEL_TYPE_OTHER; 843 } 844 } 845 846 if (label_type == LABEL_TYPE_EFI) { 847 slicesize = efi_vtoc->efi_parts[index].p_size; 848 efi_free(efi_vtoc); 849 } else if (label_type == LABEL_TYPE_VTOC) { 850 /* 851 * In the vtoc struct, p_size is a 32-bit signed quantity. 852 * In the dk_gpt struct (efi's version of the vtoc), p_size 853 * is an unsigned 64-bit quantity. By casting the vtoc's 854 * psize to an unsigned 32-bit quantity, it will be copied 855 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without 856 * sign extension. 857 */ 858 859 slicesize = (uint32_t)vtoc.v_part[index].p_size; 860 } 861 862 return (slicesize); 863 } 864 865 /* 866 * brute_force_get_device_size 867 * 868 * Determine the size of the device by seeing how far we can 869 * read. Doing an llseek( , , SEEK_END) would probably work 870 * in most cases, but we've seen at least one third-party driver 871 * which doesn't correctly support the SEEK_END option when the 872 * the device is greater than a terabyte. 873 */ 874 875 static diskaddr_t 876 brute_force_get_device_size(int fd) 877 { 878 diskaddr_t min_fail = 0; 879 diskaddr_t max_succeed = 0; 880 diskaddr_t cur_db_off; 881 char buf[DEV_BSIZE]; 882 883 /* 884 * First, see if we can read the device at all, just to 885 * eliminate errors that have nothing to do with the 886 * device's size. 887 */ 888 889 if (((llseek(fd, (offset_t)0, SEEK_SET)) == -1) || 890 ((read(fd, buf, DEV_BSIZE)) == -1)) 891 return (0); /* can't determine size */ 892 893 /* 894 * Now, go sequentially through the multiples of 4TB 895 * to find the first read that fails (this isn't strictly 896 * the most efficient way to find the actual size if the 897 * size really could be anything between 0 and 2**64 bytes. 898 * We expect the sizes to be less than 16 TB for some time, 899 * so why do a bunch of reads that are larger than that? 900 * However, this algorithm *will* work for sizes of greater 901 * than 16 TB. We're just not optimizing for those sizes.) 902 */ 903 904 for (cur_db_off = SECTORS_PER_TERABYTE * 4; 905 min_fail == 0 && cur_db_off < FS_SIZE_UPPER_LIMIT; 906 cur_db_off += 4 * SECTORS_PER_TERABYTE) { 907 if (((llseek(fd, (offset_t)(cur_db_off * DEV_BSIZE), 908 SEEK_SET)) == -1) || 909 ((read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)) 910 min_fail = cur_db_off; 911 else 912 max_succeed = cur_db_off; 913 } 914 915 if (min_fail == 0) 916 return (0); 917 918 /* 919 * We now know that the size of the device is less than 920 * min_fail and greater than or equal to max_succeed. Now 921 * keep splitting the difference until the actual size in 922 * sectors in known. We also know that the difference 923 * between max_succeed and min_fail at this time is 924 * 4 * SECTORS_PER_TERABYTE, which is a power of two, which 925 * simplifies the math below. 926 */ 927 928 while (min_fail - max_succeed > 1) { 929 cur_db_off = max_succeed + (min_fail - max_succeed)/2; 930 if (((llseek(fd, (offset_t)(cur_db_off * DEV_BSIZE), 931 SEEK_SET)) == -1) || 932 ((read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)) 933 min_fail = cur_db_off; 934 else 935 max_succeed = cur_db_off; 936 } 937 938 /* the size is the last successfully read sector offset plus one */ 939 return (max_succeed + 1); 940 } 941 942 /* 943 * validate_size 944 * 945 * Return 1 if the device appears to be at least "size" sectors long. 946 * Return 0 if it's shorter or we can't read it. 947 */ 948 949 static int 950 validate_size(char *disk, diskaddr_t size) 951 { 952 char buf[DEV_BSIZE]; 953 int fd, rc; 954 955 if ((fd = open64(disk, O_RDONLY)) < 0) { 956 perror(disk); 957 exit(1); 958 } 959 960 if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) || 961 (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE) 962 rc = 0; 963 else 964 rc = 1; 965 (void) close(fd); 966 return (rc); 967 } 968 969 /* 970 * read_sb(char * rawdev) - Attempt to read the superblock from a raw device 971 * 972 * Returns: 973 * 0 : 974 * Could not read a valid superblock for a variety of reasons. 975 * Since 'newfs' handles any fatal conditions, we're not going 976 * to make any guesses as to why this is failing or what should 977 * be done about it. 978 * 979 * struct fs *: 980 * A pointer to (what we think is) a valid superblock. The 981 * space for the superblock is static (inside the function) 982 * since we will only be reading the values from it. 983 */ 984 985 struct fs * 986 read_sb(char *fsdev) 987 { 988 static struct fs sblock; 989 struct stat64 statb; 990 int dskfd; 991 char *bufp = NULL; 992 int bufsz = 0; 993 994 if (stat64(fsdev, &statb) < 0) 995 return (0); 996 997 if ((dskfd = open64(fsdev, O_RDONLY)) < 0) 998 return (0); 999 1000 /* 1001 * We need a buffer whose size is a multiple of DEV_BSIZE in order 1002 * to read from a raw device (which we were probably passed). 1003 */ 1004 bufsz = ((sizeof (sblock) / DEV_BSIZE) + 1) * DEV_BSIZE; 1005 if ((bufp = malloc(bufsz)) == NULL) { 1006 (void) close(dskfd); 1007 return (0); 1008 } 1009 1010 if (llseek(dskfd, (offset_t)SBOFF, SEEK_SET) < 0 || 1011 read(dskfd, bufp, bufsz) < 0) { 1012 (void) close(dskfd); 1013 free(bufp); 1014 return (0); 1015 } 1016 (void) close(dskfd); /* Done with the file */ 1017 1018 (void) memcpy(&sblock, bufp, sizeof (sblock)); 1019 free(bufp); /* Don't need this anymore */ 1020 1021 if (((sblock.fs_magic != FS_MAGIC) && 1022 (sblock.fs_magic != MTB_UFS_MAGIC)) || 1023 sblock.fs_ncg < 1 || sblock.fs_cpg < 1) 1024 return (0); 1025 1026 if (sblock.fs_ncg * sblock.fs_cpg < sblock.fs_ncyl || 1027 (sblock.fs_ncg - 1) * sblock.fs_cpg >= sblock.fs_ncyl) 1028 return (0); 1029 1030 if (sblock.fs_sbsize < 0 || sblock.fs_sbsize > SBSIZE) 1031 return (0); 1032 1033 return (&sblock); 1034 } 1035 1036 /* 1037 * Read the UFS file system on the raw device SPECIAL. If it does not 1038 * appear to be a UFS file system, return non-zero, indicating that 1039 * fsirand should be called (and it will spit out an error message). 1040 * If it is a UFS file system, take a look at the inodes in the first 1041 * cylinder group. If they appear to be randomized (non-zero), return 1042 * zero, which will cause fsirand to not be called. If the inode generation 1043 * counts are all zero, then we must call fsirand, so return non-zero. 1044 */ 1045 1046 #define RANDOMIZED 0 1047 #define NOT_RANDOMIZED 1 1048 1049 static int 1050 notrand(char *special) 1051 { 1052 long fsbuf[SBSIZE / sizeof (long)]; 1053 struct dinode dibuf[MAXBSIZE/sizeof (struct dinode)]; 1054 struct fs *fs; 1055 struct dinode *dip; 1056 offset_t seekaddr; 1057 int bno, inum; 1058 int fd; 1059 1060 fs = (struct fs *)fsbuf; 1061 if ((fd = open64(special, 0)) == -1) 1062 return (NOT_RANDOMIZED); 1063 if (llseek(fd, (offset_t)SBLOCK * DEV_BSIZE, 0) == -1 || 1064 read(fd, (char *)fs, SBSIZE) != SBSIZE || 1065 ((fs->fs_magic != FS_MAGIC) && (fs->fs_magic != MTB_UFS_MAGIC))) { 1066 (void) close(fd); 1067 return (NOT_RANDOMIZED); 1068 } 1069 1070 /* looks like a UFS file system; read the first cylinder group */ 1071 bsize = INOPB(fs) * sizeof (struct dinode); 1072 inum = 0; 1073 while (inum < fs->fs_ipg) { 1074 bno = itod(fs, inum); 1075 seekaddr = (offset_t)fsbtodb(fs, bno) * DEV_BSIZE; 1076 if (llseek(fd, seekaddr, 0) == -1 || 1077 read(fd, (char *)dibuf, bsize) != bsize) { 1078 (void) close(fd); 1079 return (NOT_RANDOMIZED); 1080 } 1081 for (dip = dibuf; dip < &dibuf[INOPB(fs)]; dip++) { 1082 if (dip->di_gen != 0) { 1083 (void) close(fd); 1084 return (RANDOMIZED); 1085 } 1086 inum++; 1087 } 1088 } 1089 (void) close(fd); 1090 return (NOT_RANDOMIZED); 1091 } 1092 1093 static void 1094 usage(void) 1095 { 1096 (void) fprintf(stderr, gettext( 1097 "usage: newfs [ -v ] [ mkfs-options ] raw-special-device\n")); 1098 (void) fprintf(stderr, gettext("where mkfs-options are:\n")); 1099 (void) fprintf(stderr, gettext( 1100 "\t-N do not create file system, just print out parameters\n")); 1101 (void) fprintf(stderr, gettext( 1102 "\t-T configure file system for eventual growth to over a terabyte\n")); 1103 (void) fprintf(stderr, gettext("\t-s file system size (sectors)\n")); 1104 (void) fprintf(stderr, gettext("\t-b block size\n")); 1105 (void) fprintf(stderr, gettext("\t-f frag size\n")); 1106 (void) fprintf(stderr, gettext("\t-t tracks/cylinder\n")); 1107 (void) fprintf(stderr, gettext("\t-c cylinders/group\n")); 1108 (void) fprintf(stderr, gettext("\t-m minimum free space %%\n")); 1109 (void) fprintf(stderr, gettext( 1110 "\t-o optimization preference (`space' or `time')\n")); 1111 (void) fprintf(stderr, gettext("\t-r revolutions/minute\n")); 1112 (void) fprintf(stderr, gettext("\t-i number of bytes per inode\n")); 1113 (void) fprintf(stderr, gettext( 1114 "\t-a number of alternates per cylinder\n")); 1115 (void) fprintf(stderr, gettext("\t-C maxcontig\n")); 1116 (void) fprintf(stderr, gettext("\t-d rotational delay\n")); 1117 (void) fprintf(stderr, gettext( 1118 "\t-n number of rotational positions\n")); 1119 (void) fprintf(stderr, gettext( 1120 "\t-S print a textual version of the calculated superblock to stdout\n")); 1121 (void) fprintf(stderr, gettext( 1122 "\t-B dump a binary version of the calculated superblock to stdout\n")); 1123 } 1124 1125 /* 1126 * Error-detecting version of atoi(3). Adapted from mkfs' number(). 1127 */ 1128 static unsigned int 1129 number(char *param, char *value, int flags, int def_value) 1130 { 1131 char *cs; 1132 int n; 1133 int cut = INT_MAX / 10; /* limit to avoid overflow */ 1134 int minus = 0; 1135 1136 cs = value; 1137 if (*cs == '-') { 1138 minus = 1; 1139 cs += 1; 1140 } 1141 if ((*cs < '0') || (*cs > '9')) { 1142 goto bail_out; 1143 } 1144 n = 0; 1145 while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) { 1146 n = n*10 + *cs++ - '0'; 1147 } 1148 if (minus) 1149 n = -n; 1150 for (;;) { 1151 switch (*cs++) { 1152 case '\0': 1153 return (n); 1154 1155 case '0': case '1': case '2': case '3': case '4': 1156 case '5': case '6': case '7': case '8': case '9': 1157 (void) fprintf(stderr, gettext( 1158 "newfs: value for %s overflowed, using %d\n"), 1159 param, def_value); 1160 return (def_value); 1161 1162 case '%': 1163 if (flags & NR_PERCENT) 1164 break; 1165 /* FALLTHROUGH */ 1166 1167 default: 1168 bail_out: 1169 fatal(gettext("bad numeric arg for %s: \"%s\""), 1170 param, value); 1171 1172 } 1173 } 1174 /* NOTREACHED */ 1175 } 1176 1177 /* 1178 * Error-detecting version of atoi(3). Adapted from mkfs' number(). 1179 */ 1180 static int64_t 1181 number64(char *param, char *value, int flags, int64_t def_value) 1182 { 1183 char *cs; 1184 int64_t n; 1185 int64_t cut = FS_SIZE_UPPER_LIMIT/ 10; /* limit to avoid overflow */ 1186 int minus = 0; 1187 1188 cs = value; 1189 if (*cs == '-') { 1190 minus = 1; 1191 cs += 1; 1192 } 1193 if ((*cs < '0') || (*cs > '9')) { 1194 goto bail_out; 1195 } 1196 n = 0; 1197 while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) { 1198 n = n*10 + *cs++ - '0'; 1199 } 1200 if (minus) 1201 n = -n; 1202 for (;;) { 1203 switch (*cs++) { 1204 case '\0': 1205 return (n); 1206 1207 case '0': case '1': case '2': case '3': case '4': 1208 case '5': case '6': case '7': case '8': case '9': 1209 (void) fprintf(stderr, gettext( 1210 "newfs: value for %s overflowed, using %d\n"), 1211 param, def_value); 1212 return (def_value); 1213 1214 case '%': 1215 if (flags & NR_PERCENT) 1216 break; 1217 /* FALLTHROUGH */ 1218 1219 default: 1220 bail_out: 1221 fatal(gettext("bad numeric arg for %s: \"%s\""), 1222 param, value); 1223 1224 } 1225 } 1226 /* NOTREACHED */ 1227 } 1228