xref: /titanic_41/usr/src/cmd/fs.d/ufs/mkfs/mkfs.c (revision 3441f6a1af86b9b2f883f3323bf02c9dd0f7a94d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 #pragma ident	"%Z%%M%	%I%	%E% SMI"
40 
41 
42 /*
43  * The maximum supported file system size (in sectors) is the
44  * number of frags that can be represented in an int32_t field
45  * (INT_MAX) times the maximum number of sectors per frag.  Since
46  * the maximum frag size is MAXBSIZE, the maximum number of sectors
47  * per frag is MAXBSIZE/DEV_BSIZE.
48  */
49 #define	FS_MAX	(((diskaddr_t)INT_MAX) * (MAXBSIZE/DEV_BSIZE))
50 
51 /*
52  * make file system for cylinder-group style file systems
53  *
54  * usage:
55  *
56  *    mkfs [-F FSType] [-V] [-G [-P]] [-M dirname] [-m] [options]
57  *	[-o specific_options]  special size
58  *	[nsect ntrack bsize fsize cpg	minfree	rps nbpi opt apc rotdelay
59  *	  2     3      4     5     6	7	8   9	 10  11  12
60  *	nrpos maxcontig mtb]
61  *	13    14	15
62  *
63  *  where specific_options are:
64  *	N - no create
65  *	nsect - The number of sectors per track
66  *	ntrack - The number of tracks per cylinder
67  *	bsize - block size
68  *	fragsize - fragment size
69  *	cgsize - The number of disk cylinders per cylinder group.
70  * 	free - minimum free space
71  *	rps - rotational speed (rev/sec).
72  *	nbpi - number of data bytes per allocated inode
73  *	opt - optimization (space, time)
74  *	apc - number of alternates
75  *	gap - gap size
76  *	nrpos - number of rotational positions
77  *	maxcontig - maximum number of logical blocks that will be
78  *		allocated contiguously before inserting rotational delay
79  *	mtb - if "y", set up file system for eventual growth to over a
80  *		a terabyte
81  * -P Do not grow the file system, but print on stdout the maximal
82  *    size in sectors to which the file system can be increased. The calculated
83  *    size is limited by the value provided by the operand size.
84  *
85  * Note that -P is a project-private interface and together with -G intended
86  * to be used only by the growfs script. It is therefore purposely not
87  * documented in the man page.
88  * The -P option is covered by PSARC case 2003/422.
89  */
90 
91 /*
92  * The following constants set the defaults used for the number
93  * of sectors/track (fs_nsect), and number of tracks/cyl (fs_ntrak).
94  *
95  *			NSECT		NTRAK
96  *	72MB CDC	18		9
97  *	30MB CDC	18		5
98  *	720KB Diskette	9		2
99  *
100  * However the defaults will be different for disks larger than CHSLIMIT.
101  */
102 
103 #define	DFLNSECT	32
104 #define	DFLNTRAK	16
105 
106 /*
107  * The following default sectors and tracks values are used for
108  * non-efi disks that are larger than the CHS addressing limit. The
109  * existing default cpg of 16 (DESCPG) holds good for larger disks too.
110  */
111 #define	DEF_SECTORS_EFI	128
112 #define	DEF_TRACKS_EFI	48
113 
114 /*
115  * The maximum number of cylinders in a group depends upon how much
116  * information can be stored on a single cylinder. The default is to
117  * use 16 cylinders per group.  This is effectively tradition - it was
118  * the largest value acceptable under SunOs 4.1
119  */
120 #define	DESCPG		16	/* desired fs_cpg */
121 
122 /*
123  * The following two constants set the default block and fragment sizes.
124  * Both constants must be a power of 2 and meet the following constraints:
125  *	MINBSIZE <= DESBLKSIZE <= MAXBSIZE
126  *	DEV_BSIZE <= DESFRAGSIZE <= DESBLKSIZE
127  *	DESBLKSIZE / DESFRAGSIZE <= 8
128  */
129 #define	DESBLKSIZE	8192
130 #define	DESFRAGSIZE	1024
131 
132 /*
133  * MINFREE gives the minimum acceptable percentage of file system
134  * blocks which may be free. If the freelist drops below this level
135  * only the superuser may continue to allocate blocks. This may
136  * be set to 0 if no reserve of free blocks is deemed necessary,
137  * however throughput drops by fifty percent if the file system
138  * is run at between 90% and 100% full; thus the default value of
139  * fs_minfree is 10%. With 10% free space, fragmentation is not a
140  * problem, so we choose to optimize for time.
141  */
142 #define	MINFREE		10
143 #define	DEFAULTOPT	FS_OPTTIME
144 
145 /*
146  * ROTDELAY gives the minimum number of milliseconds to initiate
147  * another disk transfer on the same cylinder. It is no longer used
148  * and will always default to 0.
149  */
150 #define	ROTDELAY	0
151 
152 /*
153  * MAXBLKPG determines the maximum number of data blocks which are
154  * placed in a single cylinder group. The default is one indirect
155  * block worth of data blocks.
156  */
157 #define	MAXBLKPG(bsize)	((bsize) / sizeof (daddr32_t))
158 
159 /*
160  * Each file system has a number of inodes statically allocated.
161  * We allocate one inode slot per NBPI bytes, expecting this
162  * to be far more than we will ever need.
163  */
164 #define	NBPI		2048	/* Number Bytes Per Inode */
165 #define	MTB_NBPI	(MB)	/* Number Bytes Per Inode for multi-terabyte */
166 
167 /*
168  * Disks are assumed to rotate at 60HZ, unless otherwise specified.
169  */
170 #define	DEFHZ		60
171 
172 /*
173  * Cylinder group related limits.
174  *
175  * For each cylinder we keep track of the availability of blocks at different
176  * rotational positions, so that we can lay out the data to be picked
177  * up with minimum rotational latency.  NRPOS is the number of rotational
178  * positions which we distinguish.  With NRPOS 8 the resolution of our
179  * summary information is 2ms for a typical 3600 rpm drive.
180  */
181 #define	NRPOS		8	/* number distinct rotational positions */
182 
183 #ifdef DEBUG
184 #define	dprintf(x)	printf x
185 #else
186 #define	dprintf(x)
187 #endif
188 
189 /*
190  * For the -N option, when calculating the backup superblocks, do not print
191  * them if we are not really sure. We may have to try an alternate method of
192  * arriving at the superblocks. So defer printing till a handful of superblocks
193  * look good.
194  */
195 #define	tprintf(x)	if (Nflag && retry) \
196 				(void) strncat(tmpbuf, x, strlen(x)); \
197 			else \
198 				(void) fprintf(stderr, x);
199 
200 #define	ALTSB		32	/* Location of first backup superblock */
201 
202 /*
203  * range_check "user_supplied" flag values.
204  */
205 #define	RC_DEFAULT	0
206 #define	RC_KEYWORD	1
207 #define	RC_POSITIONAL	2
208 
209 /*
210  * ufs hole
211  */
212 #define	UFS_HOLE	-1
213 
214 #ifndef	STANDALONE
215 #include	<stdio.h>
216 #include	<sys/mnttab.h>
217 #endif
218 
219 #include	<stdlib.h>
220 #include	<unistd.h>
221 #include	<malloc.h>
222 #include	<string.h>
223 #include	<strings.h>
224 #include	<ctype.h>
225 #include	<errno.h>
226 #include	<sys/param.h>
227 #include	<time.h>
228 #include	<sys/types.h>
229 #include	<sys/sysmacros.h>
230 #include	<sys/vnode.h>
231 #include	<sys/fs/ufs_fsdir.h>
232 #include	<sys/fs/ufs_inode.h>
233 #include	<sys/fs/ufs_fs.h>
234 #include	<sys/fs/ufs_log.h>
235 #include	<sys/mntent.h>
236 #include	<sys/filio.h>
237 #include	<limits.h>
238 #include	<sys/int_const.h>
239 #include	<signal.h>
240 #include	<sys/efi_partition.h>
241 #include	"roll_log.h"
242 
243 #define	bcopy(f, t, n)    (void) memcpy(t, f, n)
244 #define	bzero(s, n)	(void) memset(s, 0, n)
245 #define	bcmp(s, d, n)	memcmp(s, d, n)
246 
247 #define	index(s, r)	strchr(s, r)
248 #define	rindex(s, r)	strrchr(s, r)
249 
250 #include	<sys/stat.h>
251 #include	<sys/statvfs.h>
252 #include	<locale.h>
253 #include	<fcntl.h>
254 #include 	<sys/isa_defs.h>	/* for ENDIAN defines */
255 #include	<sys/vtoc.h>
256 
257 #include	<sys/dkio.h>
258 #include	<sys/asynch.h>
259 
260 extern offset_t	llseek();
261 extern char	*getfullblkname();
262 extern long	lrand48();
263 
264 extern int	optind;
265 extern char	*optarg;
266 
267 
268 /*
269  * The size of a cylinder group is calculated by CGSIZE. The maximum size
270  * is limited by the fact that cylinder groups are at most one block.
271  * Its size is derived from the size of the maps maintained in the
272  * cylinder group and the (struct cg) size.
273  */
274 #define	CGSIZE(fs) \
275 	/* base cg		*/ (sizeof (struct cg) + \
276 	/* blktot size	*/ (fs)->fs_cpg * sizeof (long) + \
277 	/* blks size	*/ (fs)->fs_cpg * (fs)->fs_nrpos * sizeof (short) + \
278 	/* inode map	*/ howmany((fs)->fs_ipg, NBBY) + \
279 	/* block map */ howmany((fs)->fs_cpg * (fs)->fs_spc / NSPF(fs), NBBY))
280 
281 /*
282  * We limit the size of the inode map to be no more than a
283  * third of the cylinder group space, since we must leave at
284  * least an equal amount of space for the block map.
285  *
286  * N.B.: MAXIpG must be a multiple of INOPB(fs).
287  */
288 #define	MAXIpG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
289 
290 /*
291  * Same as MAXIpG, but parameterized by the block size (b) and the
292  * cylinder group divisor (d), which is the reciprocal of the fraction of the
293  * cylinder group overhead block that is used for the inode map.  So for
294  * example, if d = 5, the macro's computation assumes that 1/5 of the
295  * cylinder group overhead block can be dedicated to the inode map.
296  */
297 #define	MAXIpG_B(b, d)	roundup((b) * NBBY / (d), (b) / sizeof (struct dinode))
298 
299 #define	UMASK		0755
300 #define	MAXINOPB	(MAXBSIZE / sizeof (struct dinode))
301 #define	POWEROF2(num)	(((num) & ((num) - 1)) == 0)
302 #define	MB		(1024*1024)
303 #define	BETWEEN(x, l, h)	((x) >= (l) && (x) <= (h))
304 
305 /*
306  * Used to set the inode generation number. Since both inodes and dinodes
307  * are dealt with, we really need a pointer to an icommon here.
308  */
309 #define	IRANDOMIZE(icp)	(icp)->ic_gen = lrand48();
310 
311 /*
312  * Flags for number()
313  */
314 #define	ALLOW_PERCENT	0x01	/* allow trailing `%' on number */
315 #define	ALLOW_MS1	0x02	/* allow trailing `ms', state 1 */
316 #define	ALLOW_MS2	0x04	/* allow trailing `ms', state 2 */
317 #define	ALLOW_END_ONLY	0x08	/* must be at end of number & suffixes */
318 
319 #define	MAXAIO	1000	/* maximum number of outstanding I/O's we'll manage */
320 #define	BLOCK	1	/* block in aiowait */
321 #define	NOBLOCK	0	/* don't block in aiowait */
322 
323 #define	RELEASE 1	/* free an aio buffer after use */
324 #define	SAVE	0	/* don't free the buffer */
325 
326 typedef struct aio_trans {
327 	aio_result_t resultbuf;
328 	diskaddr_t bno;
329 	char *buffer;
330 	int size;
331 	int release;
332 	struct aio_trans *next;
333 } aio_trans;
334 
335 typedef struct aio_results {
336 	int max;
337 	int outstanding;
338 	int maxpend;
339 	aio_trans *trans;
340 } aio_results;
341 
342 int aio_inited = 0;
343 aio_results results;
344 
345 /*
346  * Allow up to MAXBUF aio requests that each have a unique buffer.
347  * More aio's might be done, but not using memory through the getbuf()
348  * interface.  This can be raised, but you run into the potential of
349  * using more memory than is physically available on the machine,
350  * and if you start swapping, you can forget about performance.
351  * To prevent this, we also limit the total memory used for a given
352  * type of buffer to MAXBUFMEM.
353  *
354  * Tests indicate a cylinder group's worth of inodes takes:
355  *
356  *	NBPI	Size of Inode Buffer
357  *	 2k	1688k
358  *	 8k	 424k
359  *
360  * initcg() stores all the inodes for a cylinder group in one buffer,
361  * so allowing 20 buffers could take 32 MB if not limited by MAXBUFMEM.
362  */
363 #define	MAXBUF		20
364 #define	MAXBUFMEM	(8 * 1024 * 1024)
365 
366 /*
367  * header information for buffers managed by getbuf() and freebuf()
368  */
369 typedef struct bufhdr {
370 	struct bufhdr *head;
371 	struct bufhdr *next;
372 } bufhdr;
373 
374 int bufhdrsize;
375 
376 bufhdr inodebuf = { NULL, NULL };
377 bufhdr cgsumbuf = { NULL, NULL };
378 
379 #define	SECTORS_PER_TERABYTE	(1LL << 31)
380 /*
381  * The following constant specifies an upper limit for file system size
382  * that is actually a lot bigger than we expect to support with UFS. (Since
383  * it's specified in sectors, the file system size would be 2**44 * 512,
384  * which is 2**53, which is 8192 Terabytes.)  However, it's useful
385  * for checking the basic sanity of a size value that is input on the
386  * command line.
387  */
388 #define	FS_SIZE_UPPER_LIMIT	0x100000000000LL
389 
390 /*
391  * Forward declarations
392  */
393 static char *getbuf(bufhdr *bufhead, int size);
394 static void freebuf(char *buf);
395 static void freetrans(aio_trans *transp);
396 static aio_trans *get_aiop();
397 static aio_trans *wait_for_write(int block);
398 static void initcg(int cylno);
399 static void fsinit();
400 static int makedir(struct direct *protodir, int entries);
401 static void iput(struct inode *ip);
402 static void rdfs(diskaddr_t bno, int size, char *bf);
403 static void wtfs(diskaddr_t bno, int size, char *bf);
404 static void awtfs(diskaddr_t bno, int size, char *bf, int release);
405 static void wtfs_breakup(diskaddr_t bno, int size, char *bf);
406 static int isblock(struct fs *fs, unsigned char *cp, int h);
407 static void clrblock(struct fs *fs, unsigned char *cp, int h);
408 static void setblock(struct fs *fs, unsigned char *cp, int h);
409 static void usage();
410 static void dump_fscmd(char *fsys, int fsi);
411 static uint64_t number(uint64_t d_value, char *param, int flags);
412 static int match(char *s);
413 static char checkopt(char *optim);
414 static char checkmtb(char *mtbarg);
415 static void range_check(long *varp, char *name, long minimum,
416     long maximum, long def_val, int user_supplied);
417 static void range_check_64(uint64_t *varp, char *name, uint64_t minimum,
418     uint64_t maximum, uint64_t def_val, int user_supplied);
419 static daddr32_t alloc(int size, int mode);
420 static diskaddr_t get_max_size(int fd);
421 static long get_max_track_size(int fd);
422 static void block_sigint(sigset_t *old_mask);
423 static void unblock_sigint(sigset_t *old_mask);
424 static void recover_from_sigint(int signum);
425 static int confirm_abort(void);
426 static int getline(FILE *fp, char *loc, int maxlen);
427 static void flush_writes(void);
428 static long compute_maxcpg(long, long, long, long, long);
429 static int in_64bit_mode(void);
430 static int validate_size(int fd, diskaddr_t size);
431 static void dump_sblock(void);
432 
433 /*
434  * Workaround for mkfs to function properly on disks attached to XMIT 2.X
435  * controller. If the address is not aligned at 8 byte boundary, mkfs on
436  * disks attached to XMIT 2.X controller exhibts un-predictable behaviour.
437  */
438 #define	XMIT_2_X_ALIGN	8
439 #pragma	align XMIT_2_X_ALIGN(fsun, altfsun, cgun)
440 
441 union {
442 	struct fs fs;
443 	char pad[SBSIZE];
444 } fsun, altfsun;
445 #define	sblock	fsun.fs
446 #define	altsblock	altfsun.fs
447 
448 struct	csum *fscs;
449 
450 union cgun {
451 	struct cg cg;
452 	char pad[MAXBSIZE];
453 } cgun;
454 
455 #define	acg	cgun.cg
456 /*
457  * Size of screen in cols in which to fit output
458  */
459 #define	WIDTH	80
460 
461 struct dinode zino[MAXBSIZE / sizeof (struct dinode)];
462 
463 /*
464  * file descriptors used for rdfs(fsi) and wtfs(fso).
465  * Initialized to an illegal file descriptor number.
466  */
467 int	fsi = -1;
468 int	fso = -1;
469 
470 /*
471  * The BIG parameter is machine dependent.  It should be a longlong integer
472  * constant that can be used by the number parser to check the validity
473  * of numeric parameters.
474  */
475 
476 #define	BIG		0x7fffffffffffffffLL
477 
478 /* Used to indicate to number() that a bogus value should cause us to exit */
479 #define	NO_DEFAULT	LONG_MIN
480 
481 /*
482  * INVALIDSBLIMIT is the number of bad backup superblocks that will be
483  * tolerated before we decide to try arriving at a different set of them
484  * using a different logic. This is applicable for non-EFI disks only.
485  */
486 #define	INVALIDSBLIMIT	10
487 
488 /*
489  * The *_flag variables are used to indicate that the user specified
490  * the values, rather than that we made them up ourselves.  We can
491  * complain about the user giving us bogus values.
492  */
493 
494 /* semi-constants */
495 long	sectorsize = DEV_BSIZE;		/* bytes/sector from param.h */
496 long	bbsize = BBSIZE;		/* boot block size */
497 long	sbsize = SBSIZE;		/* superblock size */
498 
499 /* parameters */
500 diskaddr_t	fssize_db;		/* file system size in disk blocks */
501 diskaddr_t	fssize_frag;		/* file system size in frags */
502 long	cpg;				/* cylinders/cylinder group */
503 int	cpg_flag = RC_DEFAULT;
504 long	rotdelay = -1;			/* rotational delay between blocks */
505 int	rotdelay_flag = RC_DEFAULT;
506 long	maxcontig;			/* max contiguous blocks to allocate */
507 int	maxcontig_flag = RC_DEFAULT;
508 long	nsect = DFLNSECT;		/* sectors per track */
509 int	nsect_flag = RC_DEFAULT;
510 long	ntrack = DFLNTRAK;		/* tracks per cylinder group */
511 int	ntrack_flag = RC_DEFAULT;
512 long	bsize = DESBLKSIZE;		/* filesystem block size */
513 int	bsize_flag = RC_DEFAULT;
514 long	fragsize = DESFRAGSIZE; 	/* filesystem fragment size */
515 int	fragsize_flag = RC_DEFAULT;
516 long	minfree = MINFREE; 		/* fs_minfree */
517 int	minfree_flag = RC_DEFAULT;
518 long	rps = DEFHZ;			/* revolutions/second of drive */
519 int	rps_flag = RC_DEFAULT;
520 long	nbpi = NBPI;			/* number of bytes per inode */
521 int	nbpi_flag = RC_DEFAULT;
522 long	nrpos = NRPOS;			/* number of rotational positions */
523 int	nrpos_flag = RC_DEFAULT;
524 long	apc = 0;			/* alternate sectors per cylinder */
525 int	apc_flag = RC_DEFAULT;
526 char	opt = 't';			/* optimization style, `t' or `s' */
527 char	mtb = 'n';			/* multi-terabyte format, 'y' or 'n' */
528 
529 long	debug = 0;			/* enable debugging output */
530 
531 int	spc_flag = 0;			/* alternate sectors specified or */
532 					/* found */
533 
534 /* global state */
535 int	Nflag;		/* do not write to disk */
536 int	mflag;		/* return the command line used to create this FS */
537 int	rflag;		/* report the superblock in an easily-parsed form */
538 int	Rflag;		/* dump the superblock in binary */
539 char	*fsys;
540 time_t	mkfstime;
541 char	*string;
542 int	label_type;
543 
544 /*
545  * logging support
546  */
547 int	ismdd;			/* true if device is a SVM device */
548 int	islog;			/* true if ufs or SVM logging is enabled */
549 int	islogok;		/* true if ufs/SVM log state is good */
550 
551 static int	isufslog;	/* true if ufs logging is enabled */
552 static int	waslog;		/* true when ufs logging disabled during grow */
553 
554 /*
555  * growfs defines, globals, and forward references
556  */
557 #define	NOTENOUGHSPACE 33
558 int		grow;
559 static int	Pflag;		/* probe to which size the fs can be grown */
560 int		ismounted;
561 char		*directory;
562 diskaddr_t	grow_fssize;
563 long		grow_fs_size;
564 long		grow_fs_ncg;
565 diskaddr_t		grow_fs_csaddr;
566 long		grow_fs_cssize;
567 int		grow_fs_clean;
568 struct csum	*grow_fscs;
569 diskaddr_t		grow_sifrag;
570 int		test;
571 int		testforce;
572 diskaddr_t		testfrags;
573 int		inlockexit;
574 int		isbad;
575 
576 void		lockexit(int);
577 void		randomgeneration(void);
578 void		checksummarysize(void);
579 int		checksblock(struct fs, int);
580 void		growinit(char *);
581 void		checkdev(char *, char  *);
582 void		checkmount(struct mnttab *, char *);
583 struct dinode	*gdinode(ino_t);
584 int		csfraginrange(daddr32_t);
585 struct csfrag	*findcsfrag(daddr32_t, struct csfrag **);
586 void		checkindirect(ino_t, daddr32_t *, daddr32_t, int);
587 void		addcsfrag(ino_t, daddr32_t, struct csfrag **);
588 void		delcsfrag(daddr32_t, struct csfrag **);
589 void		checkdirect(ino_t, daddr32_t *, daddr32_t *, int);
590 void		findcsfragino(void);
591 void		fixindirect(daddr32_t, int);
592 void		fixdirect(caddr_t, daddr32_t, daddr32_t *, int);
593 void		fixcsfragino(void);
594 void		extendsummaryinfo(void);
595 int		notenoughspace(void);
596 void		unalloccsfragino(void);
597 void		unalloccsfragfree(void);
598 void		findcsfragfree(void);
599 void		copycsfragino(void);
600 void		rdcg(long);
601 void		wtcg(void);
602 void		flcg(void);
603 void		allocfrags(long, daddr32_t *, long *);
604 void		alloccsfragino(void);
605 void		alloccsfragfree(void);
606 void		freefrags(daddr32_t, long, long);
607 int		findfreerange(long *, long *);
608 void		resetallocinfo(void);
609 void		extendcg(long);
610 void		ulockfs(void);
611 void		wlockfs(void);
612 void		clockfs(void);
613 void		wtsb(void);
614 static int64_t	checkfragallocated(daddr32_t);
615 static struct csum 	*read_summaryinfo(struct fs *);
616 static diskaddr_t 	probe_summaryinfo();
617 
618 int
619 main(int argc, char *argv[])
620 {
621 	long i, mincpc, mincpg, ibpcl;
622 	long cylno, rpos, blk, j, warn = 0;
623 	long mincpgcnt, maxcpg;
624 	uint64_t used, bpcg, inospercg;
625 	long mapcramped, inodecramped;
626 	long postblsize, rotblsize, totalsbsize;
627 	FILE *mnttab;
628 	struct mnttab mntp;
629 	char *special;
630 	struct statvfs64 fs;
631 	struct dk_geom dkg;
632 	struct dk_cinfo dkcinfo;
633 	char pbuf[sizeof (uint64_t) * 3 + 1];
634 	char *tmpbuf;
635 	int width, plen;
636 	uint64_t num;
637 	int c, saverr;
638 	diskaddr_t max_fssize;
639 	long tmpmaxcontig = -1;
640 	struct sigaction sigact;
641 	uint64_t nbytes64;
642 	int remaining_cg;
643 	int do_dot = 0;
644 	int use_efi_dflts = 0, retry = 0;
645 	int invalid_sb_cnt, ret, skip_this_sb, cg_too_small;
646 	int geom_nsect, geom_ntrack, geom_cpg;
647 
648 	(void) setlocale(LC_ALL, "");
649 
650 #if !defined(TEXT_DOMAIN)
651 #define	TEXT_DOMAIN "SYS_TEST"
652 #endif
653 	(void) textdomain(TEXT_DOMAIN);
654 
655 	while ((c = getopt(argc, argv, "F:bmo:VPGM:T:t:")) != EOF) {
656 		switch (c) {
657 
658 		case 'F':
659 			string = optarg;
660 			if (strcmp(string, "ufs") != 0)
661 				usage();
662 			break;
663 
664 		case 'm':	/* return command line used to create this FS */
665 			mflag++;
666 			break;
667 
668 		case 'o':
669 			/*
670 			 * ufs specific options.
671 			 */
672 			string = optarg;
673 			while (*string != '\0') {
674 				if (match("nsect=")) {
675 					nsect = number(DFLNSECT, "nsect", 0);
676 					nsect_flag = RC_KEYWORD;
677 				} else if (match("ntrack=")) {
678 					ntrack = number(DFLNTRAK, "ntrack", 0);
679 					ntrack_flag = RC_KEYWORD;
680 				} else if (match("bsize=")) {
681 					bsize = number(DESBLKSIZE, "bsize", 0);
682 					bsize_flag = RC_KEYWORD;
683 				} else if (match("fragsize=")) {
684 					fragsize = number(DESFRAGSIZE,
685 					    "fragsize", 0);
686 					fragsize_flag = RC_KEYWORD;
687 				} else if (match("cgsize=")) {
688 					cpg = number(DESCPG, "cgsize", 0);
689 					cpg_flag = RC_KEYWORD;
690 				} else if (match("free=")) {
691 					minfree = number(MINFREE, "free",
692 					    ALLOW_PERCENT);
693 					minfree_flag = RC_KEYWORD;
694 				} else if (match("maxcontig=")) {
695 					tmpmaxcontig =
696 					    number(-1, "maxcontig", 0);
697 					maxcontig_flag = RC_KEYWORD;
698 				} else if (match("nrpos=")) {
699 					nrpos = number(NRPOS, "nrpos", 0);
700 					nrpos_flag = RC_KEYWORD;
701 				} else if (match("rps=")) {
702 					rps = number(DEFHZ, "rps", 0);
703 					rps_flag = RC_KEYWORD;
704 				} else if (match("nbpi=")) {
705 					nbpi = number(NBPI, "nbpi", 0);
706 					nbpi_flag = RC_KEYWORD;
707 				} else if (match("opt=")) {
708 					opt = checkopt(string);
709 				} else if (match("mtb=")) {
710 					mtb = checkmtb(string);
711 				} else if (match("apc=")) {
712 					apc = number(0, "apc", 0);
713 					apc_flag = RC_KEYWORD;
714 				} else if (match("gap=")) {
715 					(void) number(0, "gap", ALLOW_MS1);
716 					rotdelay = ROTDELAY;
717 					rotdelay_flag = RC_DEFAULT;
718 				} else if (match("debug=")) {
719 					debug = number(0, "debug", 0);
720 				} else if (match("N")) {
721 					Nflag++;
722 				} else if (match("calcsb")) {
723 					rflag++;
724 					Nflag++;
725 				} else if (match("calcbinsb")) {
726 					rflag++;
727 					Rflag++;
728 					Nflag++;
729 				} else if (*string == '\0') {
730 					break;
731 				} else {
732 					(void) fprintf(stderr, gettext(
733 						"illegal option: %s\n"),
734 						string);
735 					usage();
736 				}
737 
738 				if (*string == ',') string++;
739 				if (*string == ' ') string++;
740 			}
741 			break;
742 
743 		case 'V':
744 			{
745 				char	*opt_text;
746 				int	opt_count;
747 
748 				(void) fprintf(stdout, gettext("mkfs -F ufs "));
749 				for (opt_count = 1; opt_count < argc;
750 								opt_count++) {
751 					opt_text = argv[opt_count];
752 					if (opt_text)
753 					    (void) fprintf(stdout, " %s ",
754 								opt_text);
755 				}
756 				(void) fprintf(stdout, "\n");
757 			}
758 			break;
759 
760 		case 'b':	/* do nothing for this */
761 			break;
762 
763 		case 'M':	/* grow the mounted file system */
764 			directory = optarg;
765 
766 			/* FALLTHROUGH */
767 		case 'G':	/* grow the file system */
768 			grow = 1;
769 			break;
770 		case 'P':	/* probe the file system growing size 	*/
771 			Pflag = 1;
772 			grow = 1; /* probe mode implies fs growing	*/
773 			break;
774 		case 'T':	/* For testing */
775 			testforce = 1;
776 
777 			/* FALLTHROUGH */
778 		case 't':
779 			test = 1;
780 			string = optarg;
781 			testfrags = number(NO_DEFAULT, "testfrags", 0);
782 			break;
783 
784 		case '?':
785 			usage();
786 			break;
787 		}
788 	}
789 #ifdef MKFS_DEBUG
790 	/*
791 	 * Turning on MKFS_DEBUG causes mkfs to produce a filesystem
792 	 * that can be reproduced by setting the time to 0 and seeding
793 	 * the random number generator to a constant.
794 	 */
795 	mkfstime = 0;	/* reproducible results */
796 #else
797 	(void) time(&mkfstime);
798 #endif
799 
800 	if (optind >= (argc - 1)) {
801 		if (optind > (argc - 1)) {
802 			(void) fprintf(stderr,
803 			    gettext("special not specified\n"));
804 			usage();
805 		} else if (mflag == 0) {
806 			(void) fprintf(stderr,
807 			    gettext("size not specified\n"));
808 			usage();
809 		}
810 	}
811 	argc -= optind;
812 	argv = &argv[optind];
813 
814 	fsys = argv[0];
815 	fsi = open64(fsys, O_RDONLY);
816 	if (fsi < 0) {
817 		(void) fprintf(stderr, gettext("%s: cannot open\n"), fsys);
818 		lockexit(32);
819 	}
820 
821 	if (mflag) {
822 		dump_fscmd(fsys, fsi);
823 		lockexit(0);
824 	}
825 
826 	/*
827 	 * The task of setting all of the configuration parameters for a
828 	 * UFS file system is basically a matter of solving n equations
829 	 * in m variables.  Typically, m is greater than n, so there is
830 	 * usually more than one valid solution.  Since this is usually
831 	 * an under-constrained problem, it's not always obvious what the
832 	 * "best" configuration is.
833 	 *
834 	 * In general, the approach is to
835 	 * 1. Determine the values for the file system parameters
836 	 *    that are externally contrained and therefore not adjustable
837 	 *    by mkfs (such as the device's size and maxtransfer size).
838 	 * 2. Acquire the user's requested setting for all configuration
839 	 *    values that can be set on the command line.
840 	 * 3. Determine the final value of all configuration values, by
841 	 *    the following approach:
842 	 *	- set the file system block size (fs_bsize).  Although
843 	 *	  this could be regarded as an adjustable parameter, in
844 	 *	  fact, it's pretty much a constant.  At this time, it's
845 	 *	  generally set to 8k (with older hardware, it can
846 	 *	  sometimes make sense to set it to 4k, but those
847 	 *	  situations are pretty rare now).
848 	 *	- re-adjust the maximum file system size based on the
849 	 *	  value of the file system block size.  Since the
850 	 *	  frag size can't be any larger than a file system
851 	 *	  block, and the number of frags in the file system
852 	 *	  has to fit into 31 bits, the file system block size
853 	 *	  affects the maximum file system size.
854 	 *	- now that the real maximum file system is known, set the
855 	 *	  actual size of the file system to be created to
856 	 *	  MIN(requested size, maximum file system size).
857 	 *	- now validate, and if necessary, adjust the following
858 	 *	  values:
859 	 *		rotdelay
860 	 *		nsect
861 	 *		maxcontig
862 	 *		apc
863 	 *		frag_size
864 	 *		rps
865 	 *		minfree
866 	 *		nrpos
867 	 *		nrack
868 	 *		nbpi
869 	 *	- calculate maxcpg (the maximum value of the cylinders-per-
870 	 *	  cylinder-group configuration parameters).  There are two
871 	 *	  algorithms for calculating maxcpg:  an old one, which is
872 	 *	  used for file systems of less than 1 terabyte, and a
873 	 *	  new one, implemented in the function compute_maxcpg(),
874 	 *	  which is used for file systems of greater than 1 TB.
875 	 *	  The difference between them is that compute_maxcpg()
876 	 *	  really tries to maximize the cpg value.  The old
877 	 *	  algorithm fails to take advantage of smaller frags and
878 	 *	  lower inode density when determining the maximum cpg,
879 	 *	  and thus comes up with much lower numbers in some
880 	 *	  configurations.  At some point, we might use the
881 	 *	  new algorithm for determining maxcpg for all file
882 	 *	  systems, but at this time, the changes implemented for
883 	 *	  multi-terabyte UFS are NOT being automatically applied
884 	 *	  to UFS file systems of less than a terabyte (in the
885 	 *	  interest of not changing existing UFS policy too much
886 	 *	  until the ramifications of the changes are well-understood
887 	 *	  and have been evaluated for their effects on performance.)
888 	 *	- check the current values of the configuration parameters
889 	 *	  against the various constraints imposed by UFS.  These
890 	 *	  include:
891 	 *		* There must be at least one inode in each
892 	 *		  cylinder group.
893 	 *		* The cylinder group overhead block, which
894 	 *		  contains the inode and frag bigmaps, must fit
895 	 *		  within one file system block.
896 	 *		* The space required for inode maps should
897 	 *		  occupy no more than a third of the cylinder
898 	 *		  group overhead block.
899 	 *		* The rotational position tables have to fit
900 	 *		  within the available space in the super block.
901 	 *	  Adjust the configuration values that can be adjusted
902 	 *	  so that these constraints are satisfied.  The
903 	 *	  configuration values that are adjustable are:
904 	 *		* frag size
905 	 *		* cylinders per group
906 	 *		* inode density (can be increased)
907 	 *		* number of rotational positions (the rotational
908 	 *		  position tables are eliminated altogether if
909 	 *		  there isn't enough room for them.)
910 	 * 4. Set the values for all the dependent configuration
911 	 *    values (those that aren't settable on the command
912 	 *    line and which are completely dependent on the
913 	 *    adjustable parameters).  This include cpc (cycles
914 	 *    per cylinder, spc (sectors-per-cylinder), and many others.
915 	 */
916 
917 	max_fssize = get_max_size(fsi);
918 
919 	/*
920 	 * Get and check positional arguments, if any.
921 	 */
922 	switch (argc - 1) {
923 	default:
924 		usage();
925 		/*NOTREACHED*/
926 	case 15:
927 		mtb = checkmtb(argv[15]);
928 		/* FALLTHROUGH */
929 	case 14:
930 		string = argv[14];
931 		tmpmaxcontig = number(-1, "maxcontig", 0);
932 		maxcontig_flag = RC_POSITIONAL;
933 		/* FALLTHROUGH */
934 	case 13:
935 		string = argv[13];
936 		nrpos = number(NRPOS, "nrpos", 0);
937 		nrpos_flag = RC_POSITIONAL;
938 		/* FALLTHROUGH */
939 	case 12:
940 		string = argv[12];
941 		rotdelay = ROTDELAY;
942 		rotdelay_flag = RC_DEFAULT;
943 		/* FALLTHROUGH */
944 	case 11:
945 		string = argv[11];
946 		apc = number(0, "apc", 0);
947 		apc_flag = RC_POSITIONAL;
948 		/* FALLTHROUGH */
949 	case 10:
950 		opt = checkopt(argv[10]);
951 		/* FALLTHROUGH */
952 	case 9:
953 		string = argv[9];
954 		nbpi = number(NBPI, "nbpi", 0);
955 		nbpi_flag = RC_POSITIONAL;
956 		/* FALLTHROUGH */
957 	case 8:
958 		string = argv[8];
959 		rps = number(DEFHZ, "rps", 0);
960 		rps_flag = RC_POSITIONAL;
961 		/* FALLTHROUGH */
962 	case 7:
963 		string = argv[7];
964 		minfree = number(MINFREE, "free", ALLOW_PERCENT);
965 		minfree_flag = RC_POSITIONAL;
966 		/* FALLTHROUGH */
967 	case 6:
968 		string = argv[6];
969 		cpg = number(DESCPG, "cgsize", 0);
970 		cpg_flag = RC_POSITIONAL;
971 		/* FALLTHROUGH */
972 	case 5:
973 		string = argv[5];
974 		fragsize = number(DESFRAGSIZE, "fragsize", 0);
975 		fragsize_flag = RC_POSITIONAL;
976 		/* FALLTHROUGH */
977 	case 4:
978 		string = argv[4];
979 		bsize = number(DESBLKSIZE, "bsize", 0);
980 		bsize_flag = RC_POSITIONAL;
981 		/* FALLTHROUGH */
982 	case 3:
983 		string = argv[3];
984 		ntrack = number(DFLNTRAK, "ntrack", 0);
985 		ntrack_flag = RC_POSITIONAL;
986 		/* FALLTHROUGH */
987 	case 2:
988 		string = argv[2];
989 		nsect = number(DFLNSECT, "nsect", 0);
990 		nsect_flag = RC_POSITIONAL;
991 		/* FALLTHROUGH */
992 	case 1:
993 		string = argv[1];
994 		fssize_db = number(max_fssize, "size", 0);
995 	}
996 
997 
998 	if ((maxcontig_flag == RC_DEFAULT) || (tmpmaxcontig == -1) ||
999 		(maxcontig == -1)) {
1000 		long maxtrax = get_max_track_size(fsi);
1001 		maxcontig = maxtrax / bsize;
1002 
1003 	} else {
1004 		maxcontig = tmpmaxcontig;
1005 	}
1006 	dprintf(("DeBuG maxcontig : %ld\n", maxcontig));
1007 
1008 	if (rotdelay == -1) {	/* default by newfs and mkfs */
1009 		rotdelay = ROTDELAY;
1010 	}
1011 
1012 	if (cpg_flag == RC_DEFAULT) { /* If not explicity set, use default */
1013 		cpg = DESCPG;
1014 	}
1015 	dprintf(("DeBuG cpg : %ld\n", cpg));
1016 
1017 	/*
1018 	 * Now that we have the semi-sane args, either positional, via -o,
1019 	 * or by defaulting, handle inter-dependencies and range checks.
1020 	 */
1021 
1022 	/*
1023 	 * Settle the file system block size first, since it's a fixed
1024 	 * parameter once set and so many other parameters, including
1025 	 * max_fssize, depend on it.
1026 	 */
1027 	range_check(&bsize, "bsize", MINBSIZE, MAXBSIZE, DESBLKSIZE,
1028 	    bsize_flag);
1029 
1030 	if (!POWEROF2(bsize)) {
1031 		(void) fprintf(stderr,
1032 		    gettext("block size must be a power of 2, not %ld\n"),
1033 		    bsize);
1034 		bsize = DESBLKSIZE;
1035 		(void) fprintf(stderr,
1036 		    gettext("mkfs: bsize reset to default %ld\n"),
1037 		    bsize);
1038 	}
1039 
1040 	if (fssize_db > max_fssize && validate_size(fsi, fssize_db)) {
1041 		(void) fprintf(stderr, gettext(
1042 		    "Warning: the requested size of this file system\n"
1043 		    "(%lld sectors) is greater than the size of the\n"
1044 		    "device reported by the driver (%lld sectors).\n"
1045 		    "However, a read of the device at the requested size\n"
1046 		    "does succeed, so the requested size will be used.\n"),
1047 		    fssize_db, max_fssize);
1048 		max_fssize = fssize_db;
1049 	}
1050 	/*
1051 	 * Since the maximum allocatable unit (the frag) must be less than
1052 	 * or equal to bsize, and the number of frags must be less than or
1053 	 * equal to INT_MAX, the total size of the file system (in
1054 	 * bytes) must be less than or equal to bsize * INT_MAX.
1055 	 */
1056 
1057 	if (max_fssize > ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX)
1058 		max_fssize = ((diskaddr_t)bsize/DEV_BSIZE) * INT_MAX;
1059 	range_check_64(&fssize_db, "size", 1024LL, max_fssize, max_fssize, 1);
1060 
1061 	if (fssize_db >= SECTORS_PER_TERABYTE) {
1062 		mtb = 'y';
1063 		if (!in_64bit_mode()) {
1064 			(void) fprintf(stderr, gettext(
1065 "mkfs:  Warning: Creating a file system greater than 1 terabyte on a\n"
1066 "       system running a 32-bit kernel.  This file system will not be\n"
1067 "       accessible until the system is rebooted with a 64-bit kernel.\n"));
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * With newer and much larger disks, the newfs(1M) and mkfs_ufs(1M)
1073 	 * commands had problems in correctly handling the "native" geometries
1074 	 * for various storage devices.
1075 	 *
1076 	 * To handle the new age disks, mkfs_ufs(1M) will use the EFI style
1077 	 * for non-EFI disks that are larger than the CHS addressing limit
1078 	 * ( > 8GB approx ) and ignore the disk geometry information for
1079 	 * these drives. This is what is currently done for multi-terrabyte
1080 	 * filesystems on EFI disks.
1081 	 *
1082 	 * However if the user asked for a specific layout by supplying values
1083 	 * for even one of the three parameters (nsect, ntrack, cpg), honour
1084 	 * the user supplied parameters.
1085 	 *
1086 	 * Choosing EFI style or native geometry style can make a lot of
1087 	 * difference, because the size of a cylinder group is dependent on
1088 	 * this choice. This in turn means that the position of alternate
1089 	 * superblocks varies depending on the style chosen. It is not
1090 	 * necessary that all disks of size > CHSLIMIT have EFI style layout.
1091 	 * There can be disks which are > CHSLIMIT size, but have native
1092 	 * geometry style layout, thereby warranting the need for alternate
1093 	 * logic in superblock detection.
1094 	 */
1095 
1096 	if (mtb != 'y' && label_type == LABEL_TYPE_VTOC &&
1097 	    ((ntrack == -1 || (grow && ntrack_flag == RC_DEFAULT)) ||
1098 	    (nsect_flag == RC_DEFAULT && ntrack_flag == RC_DEFAULT &&
1099 	    cpg_flag == RC_DEFAULT))) {
1100 		/*
1101 		 * "-1" indicates that we were called from newfs and ntracks
1102 		 * was not specified in newfs command line. Calculate nsect
1103 		 * and ntrack in the same manner as newfs.
1104 		 *
1105 		 * This is required because, the defaults for nsect and ntrack
1106 		 * is hardcoded in mkfs, whereas to generate the alternate
1107 		 * superblock locations for the -N option, there is a need for
1108 		 * the geometry based values that newfs would have arrived at.
1109 		 * Newfs would have arrived at these values as below.
1110 		 */
1111 
1112 		if (ioctl(fsi, DKIOCGGEOM, &dkg)) {
1113 		    dprintf(("%s: Unable to read Disk geometry", fsys));
1114 		    perror(gettext("Unable to read Disk geometry"));
1115 		    lockexit(32);
1116 		} else {
1117 		    nsect = dkg.dkg_nsect;
1118 		    ntrack = dkg.dkg_nhead;
1119 #ifdef i386	/* Bug 1170182 */
1120 		    if (ntrack > 32 && (ntrack % 16) != 0) {
1121 			ntrack -= (ntrack % 16);
1122 		    }
1123 #endif
1124 		    if ((dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect)
1125 				> CHSLIMIT) {
1126 			use_efi_dflts = 1;
1127 			retry = 1;
1128 		    }
1129 		}
1130 		dprintf(("DeBuG CHSLIMIT = %d geom = %ld\n", CHSLIMIT,
1131 			dkg.dkg_ncyl * dkg.dkg_nhead * dkg.dkg_nsect));
1132 	}
1133 
1134 	/*
1135 	 * For the newfs -N case, even if the disksize is > CHSLIMIT, do not
1136 	 * blindly follow EFI style. If the fs_version indicates a geometry
1137 	 * based layout, try that one first. If it fails we can always try the
1138 	 * other logic.
1139 	 *
1140 	 * If we were called from growfs, we will have a problem if we mix
1141 	 * and match the filesystem creation and growth styles. For example,
1142 	 * if we create using EFI style, we have to also grow using EFI
1143 	 * style. So follow the style indicated by the fs_version.
1144 	 *
1145 	 * Read and verify the primary superblock. If it looks sane, use the
1146 	 * fs_version from the superblock. If the primary superblock does
1147 	 * not look good, read and verify the first alternate superblock at
1148 	 * ALTSB. Use the fs_version to decide whether to use the
1149 	 * EFI style logic or the old geometry based logic to calculate
1150 	 * the alternate superblock locations.
1151 	 */
1152 	if ((Nflag && use_efi_dflts) || (grow)) {
1153 		if (grow && ntrack_flag != RC_DEFAULT)
1154 			goto start_fs_creation;
1155 		rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize,
1156 			(char *)&altsblock);
1157 		ret = checksblock(altsblock, 1);
1158 
1159 		if (!ret) {
1160 			if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1161 				mtb = 'y';
1162 				goto start_fs_creation;
1163 			}
1164 			use_efi_dflts = (altsblock.fs_version ==
1165 				UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1166 		} else {
1167 			/*
1168 			 * The primary superblock didn't help in determining
1169 			 * the fs_version. Try the first alternate superblock.
1170 			 */
1171 			dprintf(("DeBuG checksblock() failed - error : %d"
1172 				" for sb : %d\n", ret, SBOFF/sectorsize));
1173 			rdfs((diskaddr_t)ALTSB, (int)sbsize,
1174 				(char *)&altsblock);
1175 			ret = checksblock(altsblock, 1);
1176 
1177 			if (!ret) {
1178 			    if (altsblock.fs_magic == MTB_UFS_MAGIC) {
1179 				mtb = 'y';
1180 				goto start_fs_creation;
1181 			    }
1182 			    use_efi_dflts = (altsblock.fs_version ==
1183 				UFS_EFISTYLE4NONEFI_VERSION_2) ? 1 : 0;
1184 			}
1185 			dprintf(("DeBuG checksblock() returned : %d"
1186 				" for sb : %d\n", ret, ALTSB));
1187 		}
1188 	}
1189 
1190 	geom_nsect = nsect;
1191 	geom_ntrack = ntrack;
1192 	geom_cpg = cpg;
1193 	dprintf(("DeBuG geom_nsect=%d, geom_ntrack=%d, geom_cpg=%d\n",
1194 		geom_nsect, geom_ntrack, geom_cpg));
1195 
1196 start_fs_creation:
1197 retry_alternate_logic:
1198 	invalid_sb_cnt = 0;
1199 	cg_too_small = 0;
1200 	if (use_efi_dflts) {
1201 		nsect = DEF_SECTORS_EFI;
1202 		ntrack = DEF_TRACKS_EFI;
1203 		cpg = DESCPG;
1204 		dprintf(("\nDeBuG Using EFI defaults\n"));
1205 	} else {
1206 		nsect = geom_nsect;
1207 		ntrack = geom_ntrack;
1208 		cpg = geom_cpg;
1209 		dprintf(("\nDeBuG Using Geometry\n"));
1210 		/*
1211 		 * 32K based on max block size of 64K, and rotational layout
1212 		 * test of nsect <= (256 * sectors/block).  Current block size
1213 		 * limit is not 64K, but it's growing soon.
1214 		 */
1215 		range_check(&nsect, "nsect", 1, 32768, DFLNSECT, nsect_flag);
1216 		/*
1217 		 * ntrack is the number of tracks per cylinder.
1218 		 * The ntrack value must be between 1 and the total number of
1219 		 * sectors in the file system.
1220 		 */
1221 		range_check(&ntrack, "ntrack", 1,
1222 		    fssize_db > INT_MAX ? INT_MAX : (uint32_t)fssize_db,
1223 		    DFLNTRAK, ntrack_flag);
1224 	}
1225 
1226 	range_check(&apc, "apc", 0, nsect - 1, 0, apc_flag);
1227 
1228 	if (mtb == 'y')
1229 		fragsize = bsize;
1230 
1231 	range_check(&fragsize, "fragsize", sectorsize, bsize,
1232 	    MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize)), fragsize_flag);
1233 
1234 	if ((bsize / MAXFRAG) > fragsize) {
1235 		(void) fprintf(stderr, gettext(
1236 "fragment size %ld is too small, minimum with block size %ld is %ld\n"),
1237 		    fragsize, bsize, bsize / MAXFRAG);
1238 		(void) fprintf(stderr,
1239 		    gettext("mkfs: fragsize reset to minimum %ld\n"),
1240 		    bsize / MAXFRAG);
1241 		fragsize = bsize / MAXFRAG;
1242 	}
1243 
1244 	if (!POWEROF2(fragsize)) {
1245 		(void) fprintf(stderr,
1246 		    gettext("fragment size must be a power of 2, not %ld\n"),
1247 		    fragsize);
1248 		fragsize = MAX(bsize / MAXFRAG, MIN(DESFRAGSIZE, bsize));
1249 		(void) fprintf(stderr,
1250 		    gettext("mkfs: fragsize reset to %ld\n"),
1251 		    fragsize);
1252 	}
1253 
1254 	/* At this point, bsize must be >= fragsize, so no need to check it */
1255 
1256 	if (bsize < PAGESIZE) {
1257 		(void) fprintf(stderr, gettext(
1258 		    "WARNING: filesystem block size (%ld) is smaller than "
1259 		    "memory page size (%ld).\nResulting filesystem can not be "
1260 		    "mounted on this system.\n\n"),
1261 		    bsize, (long)PAGESIZE);
1262 	}
1263 
1264 	range_check(&rps, "rps", 1, 1000, DEFHZ, rps_flag);
1265 	range_check(&minfree, "free", 0, 99, MINFREE, minfree_flag);
1266 	range_check(&nrpos, "nrpos", 1, nsect, MIN(nsect, NRPOS), nrpos_flag);
1267 
1268 	/*
1269 	 * nbpi is variable, but 2MB seems a reasonable upper limit,
1270 	 * as 4MB tends to cause problems (using otherwise-default
1271 	 * parameters).  The true limit is where we end up with one
1272 	 * inode per cylinder group.  If this file system is being
1273 	 * configured for multi-terabyte access, nbpi must be at least 1MB.
1274 	 */
1275 	if (mtb == 'y' && nbpi < MTB_NBPI) {
1276 		(void) fprintf(stderr, gettext("mkfs: bad value for nbpi: "
1277 			"must be at least 1048576 for multi-terabyte, "
1278 			"nbpi reset to default 1048576\n"));
1279 		nbpi = MTB_NBPI;
1280 	}
1281 
1282 	if (mtb == 'y')
1283 		range_check(&nbpi, "nbpi", MTB_NBPI, 2 * MB, MTB_NBPI,
1284 			nbpi_flag);
1285 	else
1286 		range_check(&nbpi, "nbpi", DEV_BSIZE, 2 * MB, NBPI, nbpi_flag);
1287 
1288 	/*
1289 	 * maxcpg is another variably-limited parameter.  Calculate
1290 	 * the limit based on what we've got for its dependent
1291 	 * variables.  Effectively, it's how much space is left in the
1292 	 * superblock after all the other bits are accounted for.  We
1293 	 * only fill in sblock fields so we can use MAXIpG.
1294 	 *
1295 	 * If the calculation of maxcpg below (for the mtb == 'n'
1296 	 * case) is changed, update newfs as well.
1297 	 *
1298 	 * For old-style, non-MTB format file systems, use the old
1299 	 * algorithm for calculating the maximum cylinder group size,
1300 	 * even though it limits the cylinder group more than necessary.
1301 	 * Since layout can affect performance, we don't want to change
1302 	 * the default layout for non-MTB file systems at this time.
1303 	 * However, for MTB file systems, use the new maxcpg calculation,
1304 	 * which really maxes out the cylinder group size.
1305 	 */
1306 
1307 	sblock.fs_bsize = bsize;
1308 	sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1309 
1310 	if (mtb == 'n') {
1311 		maxcpg = (bsize - sizeof (struct cg) -
1312 		    howmany(MAXIpG(&sblock), NBBY)) /
1313 		    (sizeof (long) + nrpos * sizeof (short) +
1314 		    nsect / (MAXFRAG * NBBY));
1315 	} else {
1316 		maxcpg = compute_maxcpg(bsize, fragsize, nbpi, nrpos,
1317 		    nsect * ntrack);
1318 	}
1319 
1320 	dprintf(("DeBuG cpg : %ld\n", cpg));
1321 	if (cpg == -1)
1322 		cpg = maxcpg;
1323 	dprintf(("DeBuG cpg : %ld\n", cpg));
1324 
1325 	/*
1326 	 * mincpg is variable in complex ways, so we really can't
1327 	 * do a sane lower-end limit check at this point.
1328 	 */
1329 	range_check(&cpg, "cgsize", 1, maxcpg, MIN(maxcpg, DESCPG), cpg_flag);
1330 
1331 	/*
1332 	 * get the controller info
1333 	 */
1334 	ismdd = 0;
1335 	islog = 0;
1336 	islogok = 0;
1337 	waslog = 0;
1338 
1339 	if (ioctl(fsi, DKIOCINFO, &dkcinfo) == 0)
1340 		/*
1341 		 * if it is an MDD (disksuite) device
1342 		 */
1343 		if (dkcinfo.dki_ctype == DKC_MD) {
1344 			ismdd++;
1345 			/*
1346 			 * check the logging device
1347 			 */
1348 			if (ioctl(fsi, _FIOISLOG, NULL) == 0) {
1349 				islog++;
1350 				if (ioctl(fsi, _FIOISLOGOK, NULL) == 0)
1351 					islogok++;
1352 			}
1353 		}
1354 
1355 	/*
1356 	 * Do not grow the file system, but print on stdout the maximum
1357 	 * size in sectors to which the file system can be increased.
1358 	 * The calculated size is limited by fssize_db.
1359 	 * Note that we don't lock the filesystem and therefore under rare
1360 	 * conditions (the filesystem is mounted, the free block count is
1361 	 * almost zero, and the superuser is still changing it) the calculated
1362 	 * size can be imprecise.
1363 	 */
1364 	if (Pflag) {
1365 		(void) printf("%llu\n", probe_summaryinfo());
1366 		exit(0);
1367 	}
1368 
1369 	/*
1370 	 * If we're growing an existing filesystem, then we're about
1371 	 * to start doing things that can require recovery efforts if
1372 	 * we get interrupted, so make sure we get a chance to do so.
1373 	 */
1374 	if (grow) {
1375 		sigact.sa_handler = recover_from_sigint;
1376 		sigemptyset(&sigact.sa_mask);
1377 		sigact.sa_flags = SA_RESTART;
1378 
1379 		if (sigaction(SIGINT, &sigact, (struct sigaction *)NULL) < 0) {
1380 			perror(gettext("Could not register SIGINT handler"));
1381 			lockexit(3);
1382 		}
1383 	}
1384 
1385 	if (!Nflag) {
1386 		/*
1387 		 * Check if MNTTAB is trustable
1388 		 */
1389 		if (statvfs64(MNTTAB, &fs) < 0) {
1390 			(void) fprintf(stderr, gettext("can't statvfs %s\n"),
1391 				MNTTAB);
1392 			exit(32);
1393 		}
1394 
1395 		if (strcmp(MNTTYPE_MNTFS, fs.f_basetype) != 0) {
1396 			(void) fprintf(stderr, gettext(
1397 				"%s file system type is not %s, can't mkfs\n"),
1398 				MNTTAB, MNTTYPE_MNTFS);
1399 			exit(32);
1400 		}
1401 
1402 		special = getfullblkname(fsys);
1403 		checkdev(fsys, special);
1404 
1405 		/*
1406 		 * If we found the block device name,
1407 		 * then check the mount table.
1408 		 * if mounted, and growing write lock the file system
1409 		 *
1410 		 */
1411 		if ((special != NULL) && (*special != '\0')) {
1412 			if ((mnttab = fopen(MNTTAB, "r")) == NULL) {
1413 				(void) fprintf(stderr, gettext(
1414 					"can't open %s\n"), MNTTAB);
1415 				exit(32);
1416 			}
1417 			while ((getmntent(mnttab, &mntp)) == NULL) {
1418 				if (grow) {
1419 					checkmount(&mntp, special);
1420 					continue;
1421 				}
1422 				if (strcmp(special, mntp.mnt_special) == 0) {
1423 					(void) fprintf(stderr, gettext(
1424 					    "%s is mounted, can't mkfs\n"),
1425 					    special);
1426 					exit(32);
1427 				}
1428 			}
1429 			(void) fclose(mnttab);
1430 		}
1431 
1432 		if (directory && (ismounted == 0)) {
1433 			(void) fprintf(stderr, gettext("%s is not mounted\n"),
1434 			    special);
1435 			lockexit(32);
1436 		}
1437 
1438 		fso = (grow) ? open64(fsys, O_WRONLY) : creat64(fsys, 0666);
1439 		if (fso < 0) {
1440 			saverr = errno;
1441 			(void) fprintf(stderr,
1442 			    gettext("%s: cannot create: %s\n"),
1443 			    fsys, strerror(saverr));
1444 			lockexit(32);
1445 		}
1446 
1447 	} else {
1448 
1449 		/*
1450 		 * For the -N case, a file descriptor is needed for the llseek()
1451 		 * in wtfs(). See the comment in wtfs() for more information.
1452 		 *
1453 		 * Get a file descriptor that's read-only so that this code
1454 		 * doesn't accidentally write to the file.
1455 		 */
1456 		fso = open64(fsys, O_RDONLY);
1457 		if (fso < 0) {
1458 			saverr = errno;
1459 			(void) fprintf(stderr, gettext("%s: cannot open: %s\n"),
1460 			    fsys, strerror(saverr));
1461 			lockexit(32);
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * seed random # generator (for ic_generation)
1467 	 */
1468 #ifdef MKFS_DEBUG
1469 	srand48(12962);	/* reproducible results */
1470 #else
1471 	srand48((long)(time((time_t *)NULL) + getpid()));
1472 #endif
1473 
1474 	if (grow) {
1475 		growinit(fsys);
1476 		goto grow00;
1477 	}
1478 
1479 	/*
1480 	 * Validate the given file system size.
1481 	 * Verify that its last block can actually be accessed.
1482 	 *
1483 	 * Note: it's ok to use sblock as a buffer because it is immediately
1484 	 * overwritten by the rdfs() of the superblock in the next line.
1485 	 *
1486 	 * ToDo: Because the size checking is done in rdfs()/wtfs(), the
1487 	 * error message for specifying an illegal size is very unfriendly.
1488 	 * In the future, one could replace the rdfs()/wtfs() calls
1489 	 * below with in-line calls to read() or write(). This allows better
1490 	 * error messages to be put in place.
1491 	 */
1492 	rdfs(fssize_db - 1, (int)sectorsize, (char *)&sblock);
1493 
1494 	/*
1495 	 * make the fs unmountable
1496 	 */
1497 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1498 	sblock.fs_magic = -1;
1499 	sblock.fs_clean = FSBAD;
1500 	sblock.fs_state = FSOKAY - sblock.fs_time;
1501 	wtfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
1502 	bzero(&sblock, (size_t)sbsize);
1503 
1504 	sblock.fs_nsect = nsect;
1505 	sblock.fs_ntrak = ntrack;
1506 
1507 	/*
1508 	 * Validate specified/determined spc
1509 	 * and calculate minimum cylinders per group.
1510 	 */
1511 
1512 	/*
1513 	 * sectors/cyl = tracks/cyl * sectors/track
1514 	 */
1515 	sblock.fs_spc = sblock.fs_ntrak * sblock.fs_nsect;
1516 
1517 grow00:
1518 	if (apc_flag) {
1519 		sblock.fs_spc -= apc;
1520 	}
1521 	/*
1522 	 * Have to test for this separately from apc_flag, due to
1523 	 * the growfs case....
1524 	 */
1525 	if (sblock.fs_spc != sblock.fs_ntrak * sblock.fs_nsect) {
1526 		spc_flag = 1;
1527 	}
1528 	if (grow)
1529 		goto grow10;
1530 
1531 	sblock.fs_nrpos = nrpos;
1532 	sblock.fs_bsize = bsize;
1533 	sblock.fs_fsize = fragsize;
1534 	sblock.fs_minfree = minfree;
1535 
1536 grow10:
1537 	if (nbpi < sblock.fs_fsize) {
1538 		(void) fprintf(stderr, gettext(
1539 		"warning: wasteful data byte allocation / inode (nbpi):\n"));
1540 		(void) fprintf(stderr, gettext(
1541 		    "%ld smaller than allocatable fragment size of %d\n"),
1542 		    nbpi, sblock.fs_fsize);
1543 	}
1544 	if (grow)
1545 		goto grow20;
1546 
1547 	if (opt == 's')
1548 		sblock.fs_optim = FS_OPTSPACE;
1549 	else
1550 		sblock.fs_optim = FS_OPTTIME;
1551 
1552 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
1553 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
1554 	/*
1555 	 * Planning now for future expansion.
1556 	 */
1557 #if defined(_BIG_ENDIAN)
1558 		sblock.fs_qbmask.val[0] = 0;
1559 		sblock.fs_qbmask.val[1] = ~sblock.fs_bmask;
1560 		sblock.fs_qfmask.val[0] = 0;
1561 		sblock.fs_qfmask.val[1] = ~sblock.fs_fmask;
1562 #endif
1563 #if defined(_LITTLE_ENDIAN)
1564 		sblock.fs_qbmask.val[0] = ~sblock.fs_bmask;
1565 		sblock.fs_qbmask.val[1] = 0;
1566 		sblock.fs_qfmask.val[0] = ~sblock.fs_fmask;
1567 		sblock.fs_qfmask.val[1] = 0;
1568 #endif
1569 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
1570 		sblock.fs_bshift++;
1571 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
1572 		sblock.fs_fshift++;
1573 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
1574 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
1575 		sblock.fs_fragshift++;
1576 	if (sblock.fs_frag > MAXFRAG) {
1577 		(void) fprintf(stderr, gettext(
1578 	"fragment size %d is too small, minimum with block size %d is %d\n"),
1579 		    sblock.fs_fsize, sblock.fs_bsize,
1580 		    sblock.fs_bsize / MAXFRAG);
1581 		lockexit(32);
1582 	}
1583 	sblock.fs_nindir = sblock.fs_bsize / sizeof (daddr32_t);
1584 	sblock.fs_inopb = sblock.fs_bsize / sizeof (struct dinode);
1585 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
1586 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
1587 		sblock.fs_fsbtodb++;
1588 
1589 	/*
1590 	 * Compute the super-block, cylinder group, and inode blocks.
1591 	 * Note that these "blkno" are really fragment addresses.
1592 	 * For example, on an 8K/1K (block/fragment) system, fs_sblkno is 16,
1593 	 * fs_cblkno is 24, and fs_iblkno is 32. This is why CGSIZE is so
1594 	 * important: only 1 FS block is allocated for the cg struct (fragment
1595 	 * numbers 24 through 31).
1596 	 */
1597 	sblock.fs_sblkno =
1598 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
1599 	sblock.fs_cblkno = (daddr32_t)(sblock.fs_sblkno +
1600 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
1601 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
1602 
1603 	sblock.fs_cgoffset = roundup(
1604 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
1605 	for (sblock.fs_cgmask = -1, i = sblock.fs_ntrak; i > 1; i >>= 1)
1606 		sblock.fs_cgmask <<= 1;
1607 	if (!POWEROF2(sblock.fs_ntrak))
1608 		sblock.fs_cgmask <<= 1;
1609 	/*
1610 	 * Validate specified/determined spc
1611 	 * and calculate minimum cylinders per group.
1612 	 */
1613 
1614 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
1615 	    sblock.fs_cpc > 1 && (i & 1) == 0;
1616 	    sblock.fs_cpc >>= 1, i >>= 1)
1617 		/* void */;
1618 	mincpc = sblock.fs_cpc;
1619 
1620 	/* if these calculations are changed, check dump_fscmd also */
1621 	bpcg = (uint64_t)sblock.fs_spc * sectorsize;
1622 	inospercg = (uint64_t)roundup(bpcg / sizeof (struct dinode),
1623 	    INOPB(&sblock));
1624 	if (inospercg > MAXIpG(&sblock))
1625 		inospercg = MAXIpG(&sblock);
1626 	used = (uint64_t)(sblock.fs_iblkno + inospercg /
1627 	    INOPF(&sblock)) * NSPF(&sblock);
1628 	mincpgcnt = (long)howmany((uint64_t)sblock.fs_cgoffset *
1629 	    (~sblock.fs_cgmask) + used, sblock.fs_spc);
1630 	mincpg = roundup(mincpgcnt, mincpc);
1631 	/*
1632 	 * Insure that cylinder group with mincpg has enough space
1633 	 * for block maps
1634 	 */
1635 	sblock.fs_cpg = mincpg;
1636 	sblock.fs_ipg = (int32_t)inospercg;
1637 	mapcramped = 0;
1638 
1639 	/*
1640 	 * Make sure the cg struct fits within the file system block.
1641 	 * Use larger block sizes until it fits
1642 	 */
1643 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
1644 		mapcramped = 1;
1645 		if (sblock.fs_bsize < MAXBSIZE) {
1646 			sblock.fs_bsize <<= 1;
1647 			if ((i & 1) == 0) {
1648 				i >>= 1;
1649 			} else {
1650 				sblock.fs_cpc <<= 1;
1651 				mincpc <<= 1;
1652 				mincpg = roundup(mincpgcnt, mincpc);
1653 				sblock.fs_cpg = mincpg;
1654 			}
1655 			sblock.fs_frag <<= 1;
1656 			sblock.fs_fragshift += 1;
1657 			if (sblock.fs_frag <= MAXFRAG)
1658 				continue;
1659 		}
1660 
1661 		/*
1662 		 * Looped far enough. The fragment is now as large as the
1663 		 * filesystem block!
1664 		 */
1665 		if (sblock.fs_fsize == sblock.fs_bsize) {
1666 			(void) fprintf(stderr, gettext(
1667 		    "There is no block size that can support this disk\n"));
1668 			lockexit(32);
1669 		}
1670 
1671 		/*
1672 		 * Try a larger fragment. Double the fragment size.
1673 		 */
1674 		sblock.fs_frag >>= 1;
1675 		sblock.fs_fragshift -= 1;
1676 		sblock.fs_fsize <<= 1;
1677 		sblock.fs_nspf <<= 1;
1678 	}
1679 	/*
1680 	 * Insure that cylinder group with mincpg has enough space for inodes
1681 	 */
1682 	inodecramped = 0;
1683 	used *= sectorsize;
1684 	nbytes64 = (uint64_t)mincpg * bpcg - used;
1685 	inospercg = (uint64_t)roundup((nbytes64 / nbpi), INOPB(&sblock));
1686 	sblock.fs_ipg = (int32_t)inospercg;
1687 	while (inospercg > MAXIpG(&sblock)) {
1688 		inodecramped = 1;
1689 		if (mincpc == 1 || sblock.fs_frag == 1 ||
1690 		    sblock.fs_bsize == MINBSIZE)
1691 			break;
1692 		nbytes64 = (uint64_t)mincpg * bpcg - used;
1693 		(void) fprintf(stderr,
1694 		    gettext("With a block size of %d %s %lu\n"),
1695 		    sblock.fs_bsize, gettext("minimum bytes per inode is"),
1696 		    (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1697 		sblock.fs_bsize >>= 1;
1698 		sblock.fs_frag >>= 1;
1699 		sblock.fs_fragshift -= 1;
1700 		mincpc >>= 1;
1701 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
1702 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
1703 			sblock.fs_bsize <<= 1;
1704 			break;
1705 		}
1706 		mincpg = sblock.fs_cpg;
1707 		nbytes64 = (uint64_t)mincpg * bpcg - used;
1708 		inospercg = (uint64_t)roundup((nbytes64 / nbpi),
1709 			INOPB(&sblock));
1710 		sblock.fs_ipg = (int32_t)inospercg;
1711 	}
1712 	if (inodecramped) {
1713 		if (inospercg > MAXIpG(&sblock)) {
1714 			nbytes64 = (uint64_t)mincpg * bpcg - used;
1715 			(void) fprintf(stderr, gettext(
1716 			    "Minimum bytes per inode is %d\n"),
1717 			    (uint32_t)(nbytes64 / MAXIpG(&sblock) + 1));
1718 		} else if (!mapcramped) {
1719 			(void) fprintf(stderr, gettext(
1720 	    "With %ld bytes per inode, minimum cylinders per group is %ld\n"),
1721 			    nbpi, mincpg);
1722 		}
1723 	}
1724 	if (mapcramped) {
1725 		(void) fprintf(stderr, gettext(
1726 		    "With %d sectors per cylinder, minimum cylinders "
1727 		    "per group is %ld\n"),
1728 		    sblock.fs_spc, mincpg);
1729 	}
1730 	if (inodecramped || mapcramped) {
1731 		/*
1732 		 * To make this at least somewhat comprehensible in
1733 		 * the world of i18n, figure out what we're going to
1734 		 * say and then say it all at one time.  The days of
1735 		 * needing to scrimp on string space are behind us....
1736 		 */
1737 		if ((sblock.fs_bsize != bsize) &&
1738 		    (sblock.fs_fsize != fragsize)) {
1739 			(void) fprintf(stderr, gettext(
1740 	    "This requires the block size to be changed from %ld to %d\n"
1741 	    "and the fragment size to be changed from %ld to %d\n"),
1742 			    bsize, sblock.fs_bsize,
1743 			    fragsize, sblock.fs_fsize);
1744 		} else if (sblock.fs_bsize != bsize) {
1745 			(void) fprintf(stderr, gettext(
1746 	    "This requires the block size to be changed from %ld to %d\n"),
1747 			    bsize, sblock.fs_bsize);
1748 		} else if (sblock.fs_fsize != fragsize) {
1749 			(void) fprintf(stderr, gettext(
1750 	    "This requires the fragment size to be changed from %ld to %d\n"),
1751 			    fragsize, sblock.fs_fsize);
1752 		} else {
1753 			(void) fprintf(stderr, gettext(
1754 	    "Unable to make filesystem fit with the given constraints\n"));
1755 		}
1756 		(void) fprintf(stderr, gettext(
1757 		    "Please re-run mkfs with corrected parameters\n"));
1758 		lockexit(32);
1759 	}
1760 	/*
1761 	 * Calculate the number of cylinders per group
1762 	 */
1763 	sblock.fs_cpg = cpg;
1764 	if (sblock.fs_cpg % mincpc != 0) {
1765 		(void) fprintf(stderr, gettext(
1766 		    "Warning: cylinder groups must have a multiple "
1767 		    "of %ld cylinders with the given\n         parameters\n"),
1768 		    mincpc);
1769 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
1770 		(void) fprintf(stderr, gettext("Rounded cgsize up to %d\n"),
1771 		    sblock.fs_cpg);
1772 	}
1773 	/*
1774 	 * Must insure there is enough space for inodes
1775 	 */
1776 	/* if these calculations are changed, check dump_fscmd also */
1777 	nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1778 	sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi), INOPB(&sblock));
1779 
1780 	/*
1781 	 * Slim down cylinders per group, until the inodes can fit.
1782 	 */
1783 	while (sblock.fs_ipg > MAXIpG(&sblock)) {
1784 		inodecramped = 1;
1785 		sblock.fs_cpg -= mincpc;
1786 		nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1787 		sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1788 			INOPB(&sblock));
1789 	}
1790 	/*
1791 	 * Must insure there is enough space to hold block map.
1792 	 * Cut down on cylinders per group, until the cg struct fits in a
1793 	 * filesystem block.
1794 	 */
1795 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
1796 		mapcramped = 1;
1797 		sblock.fs_cpg -= mincpc;
1798 		nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
1799 		sblock.fs_ipg = roundup((uint32_t)(nbytes64 / nbpi),
1800 			INOPB(&sblock));
1801 	}
1802 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
1803 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
1804 		(void) fprintf(stderr,
1805 		gettext("newfs: panic (fs_cpg * fs_spc) %% NSPF != 0\n"));
1806 		lockexit(32);
1807 	}
1808 	if (sblock.fs_cpg < mincpg) {
1809 		(void) fprintf(stderr, gettext(
1810 "With the given parameters, cgsize must be at least %ld; please re-run mkfs\n"),
1811 			mincpg);
1812 		lockexit(32);
1813 	}
1814 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
1815 grow20:
1816 	/*
1817 	 * Now have size for file system and nsect and ntrak.
1818 	 * Determine number of cylinders and blocks in the file system.
1819 	 */
1820 	fssize_frag = (int64_t)dbtofsb(&sblock, fssize_db);
1821 	if (fssize_frag > INT_MAX) {
1822 		(void) fprintf(stderr, gettext(
1823 "There are too many fragments in the system, increase fragment size\n"),
1824 		    mincpg);
1825 		lockexit(32);
1826 	}
1827 	sblock.fs_size = (int32_t)fssize_frag;
1828 	sblock.fs_ncyl = (int32_t)(fssize_frag * NSPF(&sblock) / sblock.fs_spc);
1829 	if (fssize_frag * NSPF(&sblock) >
1830 	    (uint64_t)sblock.fs_ncyl * sblock.fs_spc) {
1831 		sblock.fs_ncyl++;
1832 		warn = 1;
1833 	}
1834 	if (sblock.fs_ncyl < 1) {
1835 		(void) fprintf(stderr, gettext(
1836 			"file systems must have at least one cylinder\n"));
1837 		lockexit(32);
1838 	}
1839 	if (grow)
1840 		goto grow30;
1841 	/*
1842 	 * Determine feasability/values of rotational layout tables.
1843 	 *
1844 	 * The size of the rotational layout tables is limited by the size
1845 	 * of the file system block, fs_bsize.  The amount of space
1846 	 * available for tables is calculated as (fs_bsize - sizeof (struct
1847 	 * fs)).  The size of these tables is inversely proportional to the
1848 	 * block size of the file system. The size increases if sectors per
1849 	 * track are not powers of two, because more cylinders must be
1850 	 * described by the tables before the rotational pattern repeats
1851 	 * (fs_cpc).
1852 	 */
1853 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
1854 	sblock.fs_sbsize = fragroundup(&sblock, sizeof (struct fs));
1855 	sblock.fs_npsect = sblock.fs_nsect;
1856 	if (sblock.fs_ntrak == 1) {
1857 		sblock.fs_cpc = 0;
1858 		goto next;
1859 	}
1860 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof (short);
1861 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
1862 	totalsbsize = sizeof (struct fs) + rotblsize;
1863 
1864 	/* do static allocation if nrpos == 8 and fs_cpc == 16  */
1865 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
1866 		/* use old static table space */
1867 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
1868 		    (char *)(&sblock.fs_link);
1869 		sblock.fs_rotbloff = &sblock.fs_space[0] -
1870 		    (uchar_t *)(&sblock.fs_link);
1871 	} else {
1872 		/* use 4.3 dynamic table space */
1873 		sblock.fs_postbloff = &sblock.fs_space[0] -
1874 		    (uchar_t *)(&sblock.fs_link);
1875 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
1876 		totalsbsize += postblsize;
1877 	}
1878 	if (totalsbsize > sblock.fs_bsize ||
1879 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
1880 		(void) fprintf(stderr, gettext(
1881 		    "Warning: insufficient space in super block for\n"
1882 		    "rotational layout tables with nsect %d, ntrack %d, "
1883 		    "and nrpos %d.\nOmitting tables - file system "
1884 		    "performance may be impaired.\n"),
1885 		    sblock.fs_nsect, sblock.fs_ntrak, sblock.fs_nrpos);
1886 
1887 		/*
1888 		 * Setting fs_cpc to 0 tells alloccgblk() in ufs_alloc.c to
1889 		 * ignore the positional layout table and rotational
1890 		 * position table.
1891 		 */
1892 		sblock.fs_cpc = 0;
1893 		goto next;
1894 	}
1895 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
1896 
1897 
1898 	/*
1899 	 * calculate the available blocks for each rotational position
1900 	 */
1901 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
1902 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
1903 			fs_postbl(&sblock, cylno)[rpos] = -1;
1904 	for (i = (rotblsize - 1) * sblock.fs_frag;
1905 	    i >= 0; i -= sblock.fs_frag) {
1906 		cylno = cbtocylno(&sblock, i);
1907 		rpos = cbtorpos(&sblock, i);
1908 		blk = fragstoblks(&sblock, i);
1909 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
1910 			fs_rotbl(&sblock)[blk] = 0;
1911 		else
1912 			fs_rotbl(&sblock)[blk] =
1913 			    fs_postbl(&sblock, cylno)[rpos] - blk;
1914 		fs_postbl(&sblock, cylno)[rpos] = blk;
1915 	}
1916 next:
1917 grow30:
1918 	/*
1919 	 * Compute/validate number of cylinder groups.
1920 	 * Note that if an excessively large filesystem is specified
1921 	 * (e.g., more than 16384 cylinders for an 8K filesystem block), it
1922 	 * does not get detected until checksummarysize()
1923 	 */
1924 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
1925 	if (sblock.fs_ncyl % sblock.fs_cpg)
1926 		sblock.fs_ncg++;
1927 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
1928 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
1929 	ibpcl = cgdmin(&sblock, i) - cgbase(&sblock, i);
1930 	if (ibpcl >= sblock.fs_fpg) {
1931 		(void) fprintf(stderr, gettext(
1932 		    "inode blocks/cyl group (%d) >= data blocks (%d)\n"),
1933 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
1934 		    sblock.fs_fpg / sblock.fs_frag);
1935 		if ((ibpcl < 0) || (sblock.fs_fpg < 0)) {
1936 			(void) fprintf(stderr, gettext(
1937 	    "number of cylinders per cylinder group (%d) must be decreased.\n"),
1938 			    sblock.fs_cpg);
1939 		} else {
1940 			(void) fprintf(stderr, gettext(
1941 	    "number of cylinders per cylinder group (%d) must be increased.\n"),
1942 			    sblock.fs_cpg);
1943 		}
1944 		(void) fprintf(stderr, gettext(
1945 "Note that cgsize may have been adjusted to allow struct cg to fit.\n"));
1946 		lockexit(32);
1947 	}
1948 	j = sblock.fs_ncg - 1;
1949 	if ((i = fssize_frag - j * sblock.fs_fpg) < sblock.fs_fpg &&
1950 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
1951 		(void) fprintf(stderr, gettext(
1952 		    "Warning: inode blocks/cyl group (%d) >= data "
1953 		    "blocks (%ld) in last\n    cylinder group. This "
1954 		    "implies %ld sector(s) cannot be allocated.\n"),
1955 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
1956 		    i / sblock.fs_frag, i * NSPF(&sblock));
1957 		/*
1958 		 * If there is only one cylinder group and that is not even
1959 		 * big enough to hold the inodes, exit.
1960 		 */
1961 		if (sblock.fs_ncg == 1)
1962 			cg_too_small = 1;
1963 		sblock.fs_ncg--;
1964 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
1965 		sblock.fs_size = fssize_frag =
1966 		    (int64_t)sblock.fs_ncyl * (int64_t)sblock.fs_spc /
1967 		    (int64_t)NSPF(&sblock);
1968 		warn = 0;
1969 	}
1970 	if (warn && !spc_flag) {
1971 		(void) fprintf(stderr, gettext(
1972 		    "Warning: %d sector(s) in last cylinder unallocated\n"),
1973 		    sblock.fs_spc - (uint32_t)(fssize_frag * NSPF(&sblock) -
1974 		    (uint64_t)(sblock.fs_ncyl - 1) * sblock.fs_spc));
1975 	}
1976 	/*
1977 	 * fill in remaining fields of the super block
1978 	 */
1979 
1980 	/*
1981 	 * The csum records are stored in cylinder group 0, starting at
1982 	 * cgdmin, the first data block.
1983 	 */
1984 	sblock.fs_csaddr = cgdmin(&sblock, 0);
1985 	sblock.fs_cssize =
1986 	    fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum));
1987 	i = sblock.fs_bsize / sizeof (struct csum);
1988 	sblock.fs_csmask = ~(i - 1);
1989 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
1990 		sblock.fs_csshift++;
1991 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
1992 
1993 	checksummarysize();
1994 	if (mtb == 'y') {
1995 		sblock.fs_magic = MTB_UFS_MAGIC;
1996 		sblock.fs_version = MTB_UFS_VERSION_1;
1997 	} else {
1998 		sblock.fs_magic = FS_MAGIC;
1999 		if (use_efi_dflts)
2000 			sblock.fs_version = UFS_EFISTYLE4NONEFI_VERSION_2;
2001 		else
2002 			sblock.fs_version = UFS_VERSION_MIN;
2003 	}
2004 
2005 	if (grow) {
2006 		bcopy((caddr_t)grow_fscs, (caddr_t)fscs, (int)grow_fs_cssize);
2007 		extendsummaryinfo();
2008 		goto grow40;
2009 	}
2010 	sblock.fs_rotdelay = rotdelay;
2011 	sblock.fs_maxcontig = maxcontig;
2012 	sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
2013 
2014 	sblock.fs_rps = rps;
2015 	sblock.fs_cgrotor = 0;
2016 	sblock.fs_cstotal.cs_ndir = 0;
2017 	sblock.fs_cstotal.cs_nbfree = 0;
2018 	sblock.fs_cstotal.cs_nifree = 0;
2019 	sblock.fs_cstotal.cs_nffree = 0;
2020 	sblock.fs_fmod = 0;
2021 	sblock.fs_ronly = 0;
2022 	sblock.fs_time = mkfstime;
2023 	sblock.fs_state = FSOKAY - sblock.fs_time;
2024 	sblock.fs_clean = FSCLEAN;
2025 grow40:
2026 
2027 	/*
2028 	 * If all that's needed is a dump of the superblock we
2029 	 * would use by default, we've got it now.  So, splat it
2030 	 * out and leave.
2031 	 */
2032 	if (rflag) {
2033 		dump_sblock();
2034 		lockexit(0);
2035 	}
2036 	/*
2037 	 * Dump out summary information about file system.
2038 	 */
2039 	(void) fprintf(stderr, gettext(
2040 	    "%s:\t%lld sectors in %d cylinders of %d tracks, %d sectors\n"),
2041 	    fsys, (uint64_t)sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
2042 	    sblock.fs_ntrak, sblock.fs_nsect);
2043 	(void) fprintf(stderr, gettext(
2044 	    "\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n"),
2045 	    (float)sblock.fs_size * sblock.fs_fsize / MB, sblock.fs_ncg,
2046 	    sblock.fs_cpg, (float)sblock.fs_fpg * sblock.fs_fsize / MB,
2047 	    sblock.fs_ipg);
2048 
2049 	tmpbuf = calloc(sblock.fs_ncg / 50 + 500, 1);
2050 	if (tmpbuf == NULL) {
2051 		perror("calloc");
2052 		lockexit(32);
2053 	}
2054 	if (cg_too_small) {
2055 		(void) fprintf(stderr, gettext("File system creation failed. "
2056 			"There is only one cylinder group and\nthat is "
2057 			"not even big enough to hold the inodes.\n"));
2058 		lockexit(32);
2059 	}
2060 	/*
2061 	 * Now build the cylinders group blocks and
2062 	 * then print out indices of cylinder groups.
2063 	 */
2064 	tprintf(gettext(
2065 	    "super-block backups (for fsck -F ufs -o b=#) at:\n"));
2066 	for (width = cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++) {
2067 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2068 			initcg(cylno);
2069 		num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2070 		/*
2071 		 * If Nflag and if the disk is larger than the CHSLIMIT,
2072 		 * then sanity test the superblocks before reporting. If there
2073 		 * are too many superblocks which look insane, we have
2074 		 * to retry with alternate logic. If both methods have
2075 		 * failed, then our efforts to arrive at alternate
2076 		 * superblocks failed, so complain and exit.
2077 		 */
2078 		if (Nflag && retry) {
2079 		    skip_this_sb = 0;
2080 		    rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2081 		    ret = checksblock(altsblock, 1);
2082 		    if (ret) {
2083 			skip_this_sb = 1;
2084 			invalid_sb_cnt++;
2085 			dprintf(("DeBuG checksblock() failed - error : %d"
2086 			    " for sb : %llu invalid_sb_cnt : %d\n",
2087 			    ret, num, invalid_sb_cnt));
2088 		    } else {
2089 			/*
2090 			 * Though the superblock looks sane, verify if the
2091 			 * fs_version in the superblock and the logic that
2092 			 * we are using to arrive at the superblocks match.
2093 			 */
2094 			if (use_efi_dflts && altsblock.fs_version
2095 			    != UFS_EFISTYLE4NONEFI_VERSION_2) {
2096 				skip_this_sb = 1;
2097 				invalid_sb_cnt++;
2098 			}
2099 		    }
2100 		    if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2101 			if (retry > 1) {
2102 			    (void) fprintf(stderr, gettext(
2103 				"Error determining alternate "
2104 				"superblock locations\n"));
2105 			    free(tmpbuf);
2106 			    lockexit(32);
2107 			}
2108 			retry++;
2109 			use_efi_dflts = !use_efi_dflts;
2110 			free(tmpbuf);
2111 			goto retry_alternate_logic;
2112 		    }
2113 		    if (skip_this_sb)
2114 			continue;
2115 		}
2116 		(void) sprintf(pbuf, " %llu,", num);
2117 		plen = strlen(pbuf);
2118 		if ((width + plen) > (WIDTH - 1)) {
2119 			width = plen;
2120 			tprintf("\n");
2121 		} else {
2122 			width += plen;
2123 		}
2124 		if (Nflag && retry)
2125 			(void) strncat(tmpbuf, pbuf, strlen(pbuf));
2126 		else
2127 			(void) fprintf(stderr, "%s", pbuf);
2128 	}
2129 	tprintf("\n");
2130 
2131 	remaining_cg = sblock.fs_ncg - cylno;
2132 
2133 	/*
2134 	 * If there are more than 300 cylinder groups still to be
2135 	 * initialized, print a "." for every 50 cylinder groups.
2136 	 */
2137 	if (remaining_cg > 300) {
2138 		tprintf(gettext("Initializing cylinder groups:\n"));
2139 		do_dot = 1;
2140 	}
2141 
2142 	/*
2143 	 * Now initialize all cylinder groups between the first ten
2144 	 * and the last ten.
2145 	 *
2146 	 * If the number of cylinder groups was less than 10, all of the
2147 	 * cylinder group offsets would have printed in the last loop
2148 	 * and cylno will already be equal to sblock.fs_ncg and so this
2149 	 * loop will not be entered.  If there are less than 20 cylinder
2150 	 * groups, cylno is already less than fs_ncg - 10, so this loop
2151 	 * won't be entered in that case either.
2152 	 */
2153 
2154 	i = 0;
2155 	for (; cylno < sblock.fs_ncg - 10; cylno++) {
2156 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2157 			initcg(cylno);
2158 		if (do_dot && cylno % 50 == 0) {
2159 			tprintf(".");
2160 			i++;
2161 			if (i == WIDTH - 1) {
2162 				tprintf("\n");
2163 				i = 0;
2164 			}
2165 		}
2166 	}
2167 
2168 	/*
2169 	 * Now print the cylinder group offsets for the last 10
2170 	 * cylinder groups, if any are left.
2171 	 */
2172 
2173 	if (do_dot) {
2174 		tprintf(gettext(
2175 	    "\nsuper-block backups for last 10 cylinder groups at:\n"));
2176 	}
2177 	for (width = 0; cylno < sblock.fs_ncg; cylno++) {
2178 		if ((grow == 0) || (cylno >= grow_fs_ncg))
2179 			initcg(cylno);
2180 		num = fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno));
2181 		if (Nflag && retry) {
2182 		    skip_this_sb = 0;
2183 		    rdfs((diskaddr_t)num, sbsize, (char *)&altsblock);
2184 		    ret = checksblock(altsblock, 1);
2185 		    if (ret) {
2186 			skip_this_sb = 1;
2187 			invalid_sb_cnt++;
2188 			dprintf(("DeBuG checksblock() failed - error : %d"
2189 			    " for sb : %llu invalid_sb_cnt : %d\n",
2190 			    ret, num, invalid_sb_cnt));
2191 		    } else {
2192 			/*
2193 			 * Though the superblock looks sane, verify if the
2194 			 * fs_version in the superblock and the logic that
2195 			 * we are using to arrive at the superblocks match.
2196 			 */
2197 			if (use_efi_dflts && altsblock.fs_version
2198 			    != UFS_EFISTYLE4NONEFI_VERSION_2) {
2199 				skip_this_sb = 1;
2200 				invalid_sb_cnt++;
2201 			}
2202 		    }
2203 		    if (invalid_sb_cnt >= INVALIDSBLIMIT) {
2204 			if (retry > 1) {
2205 			    (void) fprintf(stderr, gettext(
2206 				"Error determining alternate "
2207 				"superblock locations\n"));
2208 			    free(tmpbuf);
2209 			    lockexit(32);
2210 			}
2211 			retry++;
2212 			use_efi_dflts = !use_efi_dflts;
2213 			free(tmpbuf);
2214 			goto retry_alternate_logic;
2215 		    }
2216 		    if (skip_this_sb)
2217 			continue;
2218 		}
2219 		/* Don't print ',' for the last superblock */
2220 		if (cylno == sblock.fs_ncg-1)
2221 			(void) sprintf(pbuf, " %llu", num);
2222 		else
2223 			(void) sprintf(pbuf, " %llu,", num);
2224 		plen = strlen(pbuf);
2225 		if ((width + plen) > (WIDTH - 1)) {
2226 			width = plen;
2227 			tprintf("\n");
2228 		} else {
2229 			width += plen;
2230 		}
2231 		if (Nflag && retry)
2232 			(void) strncat(tmpbuf, pbuf, strlen(pbuf));
2233 		else
2234 			(void) fprintf(stderr, "%s", pbuf);
2235 	}
2236 	tprintf("\n");
2237 	if (Nflag) {
2238 		if (retry)
2239 			(void) fprintf(stderr, "%s", tmpbuf);
2240 		free(tmpbuf);
2241 		lockexit(0);
2242 	}
2243 
2244 	free(tmpbuf);
2245 	if (grow)
2246 		goto grow50;
2247 
2248 	/*
2249 	 * Now construct the initial file system,
2250 	 * then write out the super-block.
2251 	 */
2252 	fsinit();
2253 grow50:
2254 	/*
2255 	 * write the superblock and csum information
2256 	 */
2257 	wtsb();
2258 
2259 	/*
2260 	 * extend the last cylinder group in the original file system
2261 	 */
2262 	if (grow) {
2263 		extendcg(grow_fs_ncg-1);
2264 		wtsb();
2265 	}
2266 
2267 	/*
2268 	 * Write out the duplicate super blocks to the first 10
2269 	 * cylinder groups (or fewer, if there are fewer than 10
2270 	 * cylinder groups).
2271 	 */
2272 	for (cylno = 0; cylno < sblock.fs_ncg && cylno < 10; cylno++)
2273 		awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2274 		    (int)sbsize, (char *)&sblock, SAVE);
2275 
2276 	/*
2277 	 * Now write out duplicate super blocks to the remaining
2278 	 * cylinder groups.  In the case of multi-terabyte file
2279 	 * systems, just write out the super block to the last ten
2280 	 * cylinder groups (or however many are left).
2281 	 */
2282 	if (mtb == 'y') {
2283 		if (sblock.fs_ncg <= 10)
2284 			cylno = sblock.fs_ncg;
2285 		else if (sblock.fs_ncg <= 20)
2286 			cylno = 10;
2287 		else
2288 			cylno = sblock.fs_ncg - 10;
2289 	}
2290 
2291 	for (; cylno < sblock.fs_ncg; cylno++)
2292 		awtfs(fsbtodb(&sblock, (uint64_t)cgsblock(&sblock, cylno)),
2293 		    (int)sbsize, (char *)&sblock, SAVE);
2294 
2295 	/*
2296 	 * Flush out all the AIO writes we've done.  It's not
2297 	 * necessary to do this explicitly, but it's the only
2298 	 * way to report any errors from those writes.
2299 	 */
2300 	flush_writes();
2301 
2302 	/*
2303 	 * set clean flag
2304 	 */
2305 	if (grow)
2306 		sblock.fs_clean = grow_fs_clean;
2307 	else
2308 		sblock.fs_clean = FSCLEAN;
2309 	sblock.fs_time = mkfstime;
2310 	sblock.fs_state = FSOKAY - sblock.fs_time;
2311 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
2312 	isbad = 0;
2313 
2314 	if (fsync(fso) == -1) {
2315 		saverr = errno;
2316 		(void) fprintf(stderr,
2317 		    gettext("mkfs: fsync failed on write disk: %s\n"),
2318 		    strerror(saverr));
2319 		/* we're just cleaning up, so keep going */
2320 	}
2321 	if (close(fsi) == -1) {
2322 		saverr = errno;
2323 		(void) fprintf(stderr,
2324 		    gettext("mkfs: close failed on read disk: %s\n"),
2325 		    strerror(saverr));
2326 		/* we're just cleaning up, so keep going */
2327 	}
2328 	if (close(fso) == -1) {
2329 		saverr = errno;
2330 		(void) fprintf(stderr,
2331 		    gettext("mkfs: close failed on write disk: %s\n"),
2332 		    strerror(saverr));
2333 		/* we're just cleaning up, so keep going */
2334 	}
2335 	fsi = fso = -1;
2336 
2337 #ifndef STANDALONE
2338 	lockexit(0);
2339 #endif
2340 
2341 	return (0);
2342 }
2343 
2344 /*
2345  * Figure out how big the partition we're dealing with is.
2346  * The value returned is in disk blocks (sectors);
2347  */
2348 static diskaddr_t
2349 get_max_size(int fd)
2350 {
2351 	struct vtoc vtoc;
2352 	dk_gpt_t *efi_vtoc;
2353 	diskaddr_t	slicesize;
2354 
2355 	int index = read_vtoc(fd, &vtoc);
2356 
2357 	if (index >= 0) {
2358 		label_type = LABEL_TYPE_VTOC;
2359 	} else {
2360 		if (index == VT_ENOTSUP || index == VT_ERROR) {
2361 			/* it might be an EFI label */
2362 			index = efi_alloc_and_read(fd, &efi_vtoc);
2363 			label_type = LABEL_TYPE_EFI;
2364 		}
2365 	}
2366 
2367 	if (index < 0) {
2368 		switch (index) {
2369 		case VT_ERROR:
2370 			break;
2371 		case VT_EIO:
2372 			errno = EIO;
2373 			break;
2374 		case VT_EINVAL:
2375 			errno = EINVAL;
2376 		}
2377 		perror(gettext("Can not determine partition size"));
2378 		lockexit(32);
2379 	}
2380 
2381 	if (label_type == LABEL_TYPE_EFI) {
2382 		slicesize = efi_vtoc->efi_parts[index].p_size;
2383 		efi_free(efi_vtoc);
2384 	} else {
2385 		/*
2386 		 * In the vtoc struct, p_size is a 32-bit signed quantity.
2387 		 * In the dk_gpt struct (efi's version of the vtoc), p_size
2388 		 * is an unsigned 64-bit quantity.  By casting the vtoc's
2389 		 * psize to an unsigned 32-bit quantity, it will be copied
2390 		 * to 'slicesize' (an unsigned 64-bit diskaddr_t) without
2391 		 * sign extension.
2392 		 */
2393 
2394 		slicesize = (uint32_t)vtoc.v_part[index].p_size;
2395 	}
2396 
2397 	dprintf(("DeBuG get_max_size index = %d, p_size = %lld, dolimit = %d\n",
2398 	    index, slicesize, (slicesize > FS_MAX)));
2399 
2400 	/*
2401 	 * The next line limits a UFS file system to the maximum
2402 	 * supported size.
2403 	 */
2404 
2405 	if (slicesize > FS_MAX)
2406 		return (FS_MAX);
2407 	return (slicesize);
2408 }
2409 
2410 static long
2411 get_max_track_size(int fd)
2412 {
2413 	struct dk_cinfo ci;
2414 	long track_size = -1;
2415 
2416 	if (ioctl(fd, DKIOCINFO, &ci) == 0) {
2417 		track_size = ci.dki_maxtransfer * DEV_BSIZE;
2418 	}
2419 
2420 	if ((track_size < 0)) {
2421 		int	error = 0;
2422 		int	maxphys;
2423 		int	gotit = 0;
2424 
2425 		gotit = fsgetmaxphys(&maxphys, &error);
2426 		if (gotit) {
2427 			track_size = MIN(MB, maxphys);
2428 		} else {
2429 			(void) fprintf(stderr, gettext(
2430 "Warning: Could not get system value for maxphys. The value for\n"
2431 "maxcontig will default to 1MB.\n"));
2432 			track_size = MB;
2433 		}
2434 	}
2435 	return (track_size);
2436 }
2437 
2438 /*
2439  * Initialize a cylinder group.
2440  */
2441 static void
2442 initcg(int cylno)
2443 {
2444 	diskaddr_t cbase, d;
2445 	diskaddr_t dlower;	/* last data block before cg metadata */
2446 	diskaddr_t dupper;	/* first data block after cg metadata */
2447 	diskaddr_t dmax;
2448 	int64_t i;
2449 	struct csum *cs;
2450 	struct dinode *inode_buffer;
2451 	int size;
2452 
2453 	/*
2454 	 * Variables used to store intermediate results as a part of
2455 	 * the internal implementation of the cbtocylno() macros.
2456 	 */
2457 	diskaddr_t bno;		/* UFS block number (not sector number) */
2458 	int	cbcylno;	/* current cylinder number */
2459 	int	cbcylno_sect;	/* sector offset within cylinder */
2460 	int	cbsect_incr;	/* amount to increment sector offset */
2461 
2462 	/*
2463 	 * Variables used to store intermediate results as a part of
2464 	 * the internal implementation of the cbtorpos() macros.
2465 	 */
2466 	short	*cgblks;	/* pointer to array of free blocks in cg */
2467 	int	trackrpos;	/* tmp variable for rotation position */
2468 	int	trackoff;	/* offset within a track */
2469 	int	trackoff_incr;	/* amount to increment trackoff */
2470 	int	rpos;		/* rotation position of current block */
2471 	int	rpos_incr;	/* amount to increment rpos per block */
2472 
2473 	union cgun *icgun;	/* local pointer to a cg summary block */
2474 #define	icg	(icgun->cg)
2475 
2476 	icgun = (union cgun *)getbuf(&cgsumbuf, sizeof (union cgun));
2477 
2478 	/*
2479 	 * Determine block bounds for cylinder group.
2480 	 * Allow space for super block summary information in first
2481 	 * cylinder group.
2482 	 */
2483 	cbase = cgbase(&sblock, cylno);
2484 	dmax = cbase + sblock.fs_fpg;
2485 	if (dmax > sblock.fs_size)	/* last cg may be smaller than normal */
2486 		dmax = sblock.fs_size;
2487 	dlower = cgsblock(&sblock, cylno) - cbase;
2488 	dupper = cgdmin(&sblock, cylno) - cbase;
2489 	if (cylno == 0)
2490 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
2491 	cs = fscs + cylno;
2492 	icg.cg_time = mkfstime;
2493 	icg.cg_magic = CG_MAGIC;
2494 	icg.cg_cgx = cylno;
2495 	/* last one gets whatever's left */
2496 	if (cylno == sblock.fs_ncg - 1)
2497 		icg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
2498 	else
2499 		icg.cg_ncyl = sblock.fs_cpg;
2500 	icg.cg_niblk = sblock.fs_ipg;
2501 	icg.cg_ndblk = dmax - cbase;
2502 	icg.cg_cs.cs_ndir = 0;
2503 	icg.cg_cs.cs_nffree = 0;
2504 	icg.cg_cs.cs_nbfree = 0;
2505 	icg.cg_cs.cs_nifree = 0;
2506 	icg.cg_rotor = 0;
2507 	icg.cg_frotor = 0;
2508 	icg.cg_irotor = 0;
2509 	icg.cg_btotoff = &icg.cg_space[0] - (uchar_t *)(&icg.cg_link);
2510 	icg.cg_boff = icg.cg_btotoff + sblock.fs_cpg * sizeof (long);
2511 	icg.cg_iusedoff = icg.cg_boff +
2512 		sblock.fs_cpg * sblock.fs_nrpos * sizeof (short);
2513 	icg.cg_freeoff = icg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
2514 	icg.cg_nextfreeoff = icg.cg_freeoff +
2515 		howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
2516 	for (i = 0; i < sblock.fs_frag; i++) {
2517 		icg.cg_frsum[i] = 0;
2518 	}
2519 	bzero((caddr_t)cg_inosused(&icg), icg.cg_freeoff - icg.cg_iusedoff);
2520 	icg.cg_cs.cs_nifree += sblock.fs_ipg;
2521 	if (cylno == 0)
2522 		for (i = 0; i < UFSROOTINO; i++) {
2523 			setbit(cg_inosused(&icg), i);
2524 			icg.cg_cs.cs_nifree--;
2525 		}
2526 
2527 	/*
2528 	 * Initialize all the inodes in the cylinder group using
2529 	 * random numbers.
2530 	 */
2531 	size = sblock.fs_ipg * sizeof (struct dinode);
2532 	inode_buffer = (struct dinode *)getbuf(&inodebuf, size);
2533 
2534 	for (i = 0; i < sblock.fs_ipg; i++) {
2535 		IRANDOMIZE(&(inode_buffer[i].di_ic));
2536 	}
2537 
2538 	/*
2539 	 * Write all inodes in a single write for performance.
2540 	 */
2541 	awtfs(fsbtodb(&sblock, (uint64_t)cgimin(&sblock, cylno)), (int)size,
2542 	    (char *)inode_buffer, RELEASE);
2543 
2544 	bzero((caddr_t)cg_blktot(&icg), icg.cg_boff - icg.cg_btotoff);
2545 	bzero((caddr_t)cg_blks(&sblock, &icg, 0),
2546 	    icg.cg_iusedoff - icg.cg_boff);
2547 	bzero((caddr_t)cg_blksfree(&icg), icg.cg_nextfreeoff - icg.cg_freeoff);
2548 
2549 	if (cylno > 0) {
2550 		for (d = 0; d < dlower; d += sblock.fs_frag) {
2551 			setblock(&sblock, cg_blksfree(&icg), d/sblock.fs_frag);
2552 			icg.cg_cs.cs_nbfree++;
2553 			cg_blktot(&icg)[cbtocylno(&sblock, d)]++;
2554 			cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2555 			    [cbtorpos(&sblock, d)]++;
2556 		}
2557 		sblock.fs_dsize += dlower;
2558 	}
2559 	sblock.fs_dsize += icg.cg_ndblk - dupper;
2560 	if ((i = dupper % sblock.fs_frag) != 0) {
2561 		icg.cg_frsum[sblock.fs_frag - i]++;
2562 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
2563 			setbit(cg_blksfree(&icg), dupper);
2564 			icg.cg_cs.cs_nffree++;
2565 		}
2566 	}
2567 
2568 	/*
2569 	 * WARNING: The following code is somewhat confusing, but
2570 	 * results in a substantial performance improvement in mkfs.
2571 	 *
2572 	 * Instead of using cbtocylno() and cbtorpos() macros, we
2573 	 * keep track of all the intermediate state of those macros
2574 	 * in some variables.  This allows simple addition to be
2575 	 * done to calculate the results as we step through the
2576 	 * blocks in an orderly fashion instead of the slower
2577 	 * multiplication and division the macros are forced to
2578 	 * used so they can support random input.  (Multiplication,
2579 	 * division, and remainder operations typically take about
2580 	 * 10x as many processor cycles as other operations.)
2581 	 *
2582 	 * The basic idea is to take code:
2583 	 *
2584 	 *	for (x = starting_x; x < max; x++)
2585 	 *		y = (x * c) / z
2586 	 *
2587 	 * and rewrite it to take advantage of the fact that
2588 	 * the variable x is incrementing in an orderly way:
2589 	 *
2590 	 *	intermediate = starting_x * c
2591 	 *	yval = intermediate / z
2592 	 *	for (x = starting_x; x < max; x++) {
2593 	 *		y = yval;
2594 	 *		intermediate += c
2595 	 *		if (intermediate > z) {
2596 	 *			yval++;
2597 	 *			intermediate -= z
2598 	 *		}
2599 	 *	}
2600 	 *
2601 	 * Performance has improved as much as 4X using this code.
2602 	 */
2603 
2604 	/*
2605 	 * Initialize the starting points for all the cbtocylno()
2606 	 * macro variables and figure out the increments needed each
2607 	 * time through the loop.
2608 	 */
2609 	cbcylno_sect = dupper * NSPF(&sblock);
2610 	cbsect_incr = sblock.fs_frag * NSPF(&sblock);
2611 	cbcylno = cbcylno_sect / sblock.fs_spc;
2612 	cbcylno_sect %= sblock.fs_spc;
2613 	cgblks = cg_blks(&sblock, &icg, cbcylno);
2614 	bno = dupper / sblock.fs_frag;
2615 
2616 	/*
2617 	 * Initialize the starting points for all the cbtorpos()
2618 	 * macro variables and figure out the increments needed each
2619 	 * time through the loop.
2620 	 *
2621 	 * It's harder to simplify the cbtorpos() macro if there were
2622 	 * alternate sectors specified (or if they previously existed
2623 	 * in the growfs case).  Since this is rare, we just revert to
2624 	 * using the macros in this case and skip the variable setup.
2625 	 */
2626 	if (!spc_flag) {
2627 		trackrpos = (cbcylno_sect % sblock.fs_nsect) * sblock.fs_nrpos;
2628 		rpos = trackrpos / sblock.fs_nsect;
2629 		trackoff = trackrpos % sblock.fs_nsect;
2630 		trackoff_incr = cbsect_incr * sblock.fs_nrpos;
2631 		rpos_incr = (trackoff_incr / sblock.fs_nsect) % sblock.fs_nrpos;
2632 		trackoff_incr = trackoff_incr % sblock.fs_nsect;
2633 	}
2634 
2635 	/*
2636 	 * Loop through all the blocks, marking them free and
2637 	 * updating totals kept in the superblock and cg summary.
2638 	 */
2639 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
2640 		setblock(&sblock, cg_blksfree(&icg),  bno);
2641 		icg.cg_cs.cs_nbfree++;
2642 
2643 		cg_blktot(&icg)[cbcylno]++;
2644 
2645 		if (!spc_flag)
2646 			cgblks[rpos]++;
2647 		else
2648 			cg_blks(&sblock, &icg, cbtocylno(&sblock, d))
2649 			    [cbtorpos(&sblock, d)]++;
2650 
2651 		d += sblock.fs_frag;
2652 		bno++;
2653 
2654 		/*
2655 		 * Increment the sector offset within the cylinder
2656 		 * for the cbtocylno() macro reimplementation.  If
2657 		 * we're beyond the end of the cylinder, update the
2658 		 * cylinder number, calculate the offset in the
2659 		 * new cylinder, and update the cgblks pointer
2660 		 * to the next rotational position.
2661 		 */
2662 		cbcylno_sect += cbsect_incr;
2663 		if (cbcylno_sect >= sblock.fs_spc) {
2664 			cbcylno++;
2665 			cbcylno_sect -= sblock.fs_spc;
2666 			cgblks += sblock.fs_nrpos;
2667 		}
2668 
2669 		/*
2670 		 * If there aren't alternate sectors, increment the
2671 		 * rotational position variables for the cbtorpos()
2672 		 * reimplementation.  Note that we potentially
2673 		 * increment rpos twice.  Once by rpos_incr, and one
2674 		 * more time when we wrap to a new track because
2675 		 * trackoff >= fs_nsect.
2676 		 */
2677 		if (!spc_flag) {
2678 			trackoff += trackoff_incr;
2679 			rpos += rpos_incr;
2680 			if (trackoff >= sblock.fs_nsect) {
2681 				trackoff -= sblock.fs_nsect;
2682 				rpos++;
2683 			}
2684 			if (rpos >= sblock.fs_nrpos)
2685 				rpos -= sblock.fs_nrpos;
2686 		}
2687 	}
2688 
2689 	if (d < dmax - cbase) {
2690 		icg.cg_frsum[dmax - cbase - d]++;
2691 		for (; d < dmax - cbase; d++) {
2692 			setbit(cg_blksfree(&icg), d);
2693 			icg.cg_cs.cs_nffree++;
2694 		}
2695 	}
2696 	sblock.fs_cstotal.cs_ndir += icg.cg_cs.cs_ndir;
2697 	sblock.fs_cstotal.cs_nffree += icg.cg_cs.cs_nffree;
2698 	sblock.fs_cstotal.cs_nbfree += icg.cg_cs.cs_nbfree;
2699 	sblock.fs_cstotal.cs_nifree += icg.cg_cs.cs_nifree;
2700 	*cs = icg.cg_cs;
2701 	awtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, cylno)),
2702 		sblock.fs_bsize, (char *)&icg, RELEASE);
2703 }
2704 
2705 /*
2706  * initialize the file system
2707  */
2708 struct inode node;
2709 
2710 #define	LOSTDIR
2711 #ifdef LOSTDIR
2712 #define	PREDEFDIR 3
2713 #else
2714 #define	PREDEFDIR 2
2715 #endif
2716 
2717 struct direct root_dir[] = {
2718 	{ UFSROOTINO, sizeof (struct direct), 1, "." },
2719 	{ UFSROOTINO, sizeof (struct direct), 2, ".." },
2720 #ifdef LOSTDIR
2721 	{ LOSTFOUNDINO, sizeof (struct direct), 10, "lost+found" },
2722 #endif
2723 };
2724 #ifdef LOSTDIR
2725 struct direct lost_found_dir[] = {
2726 	{ LOSTFOUNDINO, sizeof (struct direct), 1, "." },
2727 	{ UFSROOTINO, sizeof (struct direct), 2, ".." },
2728 	{ 0, DIRBLKSIZ, 0, 0 },
2729 };
2730 #endif
2731 char buf[MAXBSIZE];
2732 
2733 static void
2734 fsinit()
2735 {
2736 	int i;
2737 
2738 
2739 	/*
2740 	 * initialize the node
2741 	 */
2742 	node.i_atime = mkfstime;
2743 	node.i_mtime = mkfstime;
2744 	node.i_ctime = mkfstime;
2745 #ifdef LOSTDIR
2746 	/*
2747 	 * create the lost+found directory
2748 	 */
2749 	(void) makedir(lost_found_dir, 2);
2750 	for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ) {
2751 		bcopy(&lost_found_dir[2], &buf[i], DIRSIZ(&lost_found_dir[2]));
2752 	}
2753 	node.i_number = LOSTFOUNDINO;
2754 	node.i_smode = node.i_mode = IFDIR | 0700;
2755 	node.i_nlink = 2;
2756 	node.i_size = sblock.fs_bsize;
2757 	node.i_db[0] = alloc((int)node.i_size, node.i_mode);
2758 	node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2759 	IRANDOMIZE(&node.i_ic);
2760 	wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), (int)node.i_size, buf);
2761 	iput(&node);
2762 #endif
2763 	/*
2764 	 * create the root directory
2765 	 */
2766 	node.i_number = UFSROOTINO;
2767 	node.i_mode = node.i_smode = IFDIR | UMASK;
2768 	node.i_nlink = PREDEFDIR;
2769 	node.i_size = makedir(root_dir, PREDEFDIR);
2770 	node.i_db[0] = alloc(sblock.fs_fsize, node.i_mode);
2771 	/* i_size < 2GB because we are initializing the file system */
2772 	node.i_blocks = btodb(fragroundup(&sblock, (int)node.i_size));
2773 	IRANDOMIZE(&node.i_ic);
2774 	wtfs(fsbtodb(&sblock, (uint64_t)node.i_db[0]), sblock.fs_fsize, buf);
2775 	iput(&node);
2776 }
2777 
2778 /*
2779  * construct a set of directory entries in "buf".
2780  * return size of directory.
2781  */
2782 static int
2783 makedir(struct direct *protodir, int entries)
2784 {
2785 	char *cp;
2786 	int i;
2787 	ushort_t spcleft;
2788 
2789 	spcleft = DIRBLKSIZ;
2790 	for (cp = buf, i = 0; i < entries - 1; i++) {
2791 		protodir[i].d_reclen = DIRSIZ(&protodir[i]);
2792 		bcopy(&protodir[i], cp, protodir[i].d_reclen);
2793 		cp += protodir[i].d_reclen;
2794 		spcleft -= protodir[i].d_reclen;
2795 	}
2796 	protodir[i].d_reclen = spcleft;
2797 	bcopy(&protodir[i], cp, DIRSIZ(&protodir[i]));
2798 	return (DIRBLKSIZ);
2799 }
2800 
2801 /*
2802  * allocate a block or frag
2803  */
2804 static daddr32_t
2805 alloc(int size, int mode)
2806 {
2807 	int i, frag;
2808 	daddr32_t d;
2809 
2810 	rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2811 	    (char *)&acg);
2812 	if (acg.cg_magic != CG_MAGIC) {
2813 		(void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2814 		lockexit(32);
2815 	}
2816 	if (acg.cg_cs.cs_nbfree == 0) {
2817 		(void) fprintf(stderr,
2818 			gettext("first cylinder group ran out of space\n"));
2819 		lockexit(32);
2820 	}
2821 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
2822 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
2823 			goto goth;
2824 	(void) fprintf(stderr,
2825 	    gettext("internal error: can't find block in cyl 0\n"));
2826 	lockexit(32);
2827 goth:
2828 	clrblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag);
2829 	acg.cg_cs.cs_nbfree--;
2830 	sblock.fs_cstotal.cs_nbfree--;
2831 	fscs[0].cs_nbfree--;
2832 	if (mode & IFDIR) {
2833 		acg.cg_cs.cs_ndir++;
2834 		sblock.fs_cstotal.cs_ndir++;
2835 		fscs[0].cs_ndir++;
2836 	}
2837 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
2838 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
2839 	if (size != sblock.fs_bsize) {
2840 		frag = howmany(size, sblock.fs_fsize);
2841 		fscs[0].cs_nffree += sblock.fs_frag - frag;
2842 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
2843 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
2844 		acg.cg_frsum[sblock.fs_frag - frag]++;
2845 		for (i = frag; i < sblock.fs_frag; i++)
2846 			setbit(cg_blksfree(&acg), d + i);
2847 	}
2848 	wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2849 	    (char *)&acg);
2850 	return (d);
2851 }
2852 
2853 /*
2854  * Allocate an inode on the disk
2855  */
2856 static void
2857 iput(struct inode *ip)
2858 {
2859 	struct dinode buf[MAXINOPB];
2860 	diskaddr_t d;
2861 
2862 	rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2863 	    (char *)&acg);
2864 	if (acg.cg_magic != CG_MAGIC) {
2865 		(void) fprintf(stderr, gettext("cg 0: bad magic number\n"));
2866 		lockexit(32);
2867 	}
2868 	acg.cg_cs.cs_nifree--;
2869 	setbit(cg_inosused(&acg), ip->i_number);
2870 	wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, 0)), sblock.fs_cgsize,
2871 	    (char *)&acg);
2872 	sblock.fs_cstotal.cs_nifree--;
2873 	fscs[0].cs_nifree--;
2874 	if ((int)ip->i_number >= sblock.fs_ipg * sblock.fs_ncg) {
2875 		(void) fprintf(stderr,
2876 			gettext("fsinit: inode value out of range (%d).\n"),
2877 			ip->i_number);
2878 		lockexit(32);
2879 	}
2880 	d = fsbtodb(&sblock, (uint64_t)itod(&sblock, (int)ip->i_number));
2881 	rdfs(d, sblock.fs_bsize, (char *)buf);
2882 	buf[itoo(&sblock, (int)ip->i_number)].di_ic = ip->i_ic;
2883 	wtfs(d, sblock.fs_bsize, (char *)buf);
2884 }
2885 
2886 /*
2887  * getbuf()	-- Get a buffer for use in an AIO operation.  Buffer
2888  *		is zero'd the first time returned, left with whatever
2889  *		was in memory after that.  This function actually gets
2890  *		enough memory the first time it's called to support
2891  *		MAXBUF buffers like a slab allocator.  When all the
2892  *		buffers are in use, it waits for an aio to complete
2893  *		and make a buffer available.
2894  *
2895  *		Never returns an error.  Either succeeds or exits.
2896  */
2897 static char *
2898 getbuf(bufhdr *bufhead, int size)
2899 {
2900 	bufhdr *pbuf;
2901 	bufhdr *prev;
2902 	int i;
2903 	int buf_size, max_bufs;
2904 
2905 	/*
2906 	 * Initialize all the buffers
2907 	 */
2908 	if (bufhead->head == NULL) {
2909 		/*
2910 		 * round up the size of our buffer header to a
2911 		 * 16 byte boundary so the address we return to
2912 		 * the caller is "suitably aligned".
2913 		 */
2914 		bufhdrsize = (sizeof (bufhdr) + 15) & ~15;
2915 
2916 		/*
2917 		 * Add in our header to the buffer and round it all up to
2918 		 * a 16 byte boundry so each member of the slab is aligned.
2919 		 */
2920 		buf_size = (size + bufhdrsize + 15) & ~15;
2921 
2922 		/*
2923 		 * Limit number of buffers to lesser of MAXBUFMEM's worth
2924 		 * or MAXBUF, whichever is less.
2925 		 */
2926 		max_bufs = MAXBUFMEM / buf_size;
2927 		if (max_bufs > MAXBUF)
2928 			max_bufs = MAXBUF;
2929 
2930 		pbuf = (bufhdr *)calloc(max_bufs, buf_size);
2931 		if (pbuf == NULL) {
2932 			perror("calloc");
2933 			lockexit(32);
2934 		}
2935 
2936 		bufhead->head = bufhead;
2937 		prev = bufhead;
2938 		for (i = 0; i < max_bufs; i++) {
2939 			pbuf->head = bufhead;
2940 			prev->next = pbuf;
2941 			prev = pbuf;
2942 			pbuf = (bufhdr *)((char *)pbuf + buf_size);
2943 		}
2944 	}
2945 
2946 	/*
2947 	 * Get an available buffer, waiting for I/O if necessary
2948 	 */
2949 	wait_for_write(NOBLOCK);
2950 	while (bufhead->next == NULL)
2951 		wait_for_write(BLOCK);
2952 
2953 	/*
2954 	 * Take the buffer off the list
2955 	 */
2956 	pbuf = bufhead->next;
2957 	bufhead->next = pbuf->next;
2958 	pbuf->next = NULL;
2959 
2960 	/*
2961 	 * return the empty buffer space just past the header
2962 	 */
2963 	return ((char *)pbuf + bufhdrsize);
2964 }
2965 
2966 /*
2967  * freebuf()	-- Free a buffer gotten previously through getbuf.
2968  *		Puts the buffer back on the appropriate list for
2969  *		later use.  Never calls free().
2970  *
2971  * Assumes that SIGINT is blocked.
2972  */
2973 static void
2974 freebuf(char *buf)
2975 {
2976 	bufhdr *pbuf;
2977 	bufhdr *bufhead;
2978 
2979 	/*
2980 	 * get the header for this buffer
2981 	 */
2982 	pbuf = (bufhdr *)(buf - bufhdrsize);
2983 
2984 	/*
2985 	 * Put it back on the list of available buffers
2986 	 */
2987 	bufhead = pbuf->head;
2988 	pbuf->next = bufhead->next;
2989 	bufhead->next = pbuf;
2990 }
2991 
2992 /*
2993  * freetrans()	-- Free a transaction gotten previously through getaiop.
2994  *		Puts the transaction struct back on the appropriate list for
2995  *		later use.  Never calls free().
2996  *
2997  * Assumes that SIGINT is blocked.
2998  */
2999 static void
3000 freetrans(aio_trans *transp)
3001 {
3002 	/*
3003 	 * free the buffer associated with this AIO if needed
3004 	 */
3005 	if (transp->release == RELEASE)
3006 		freebuf(transp->buffer);
3007 
3008 	/*
3009 	 * Put transaction on the free list
3010 	 */
3011 	transp->next = results.trans;
3012 	results.trans = transp;
3013 }
3014 
3015 /*
3016  * wait_for_write()	-- Wait for an aio write to complete.  Return
3017  *			the transaction structure for that write.
3018  *
3019  * Blocks SIGINT if necessary.
3020  */
3021 aio_trans *
3022 wait_for_write(int block)
3023 {
3024 	aio_trans	*transp;
3025 	aio_result_t	*resultp;
3026 	static struct timeval  zero_wait = { 0, 0 };
3027 	sigset_t	old_mask;
3028 
3029 	/*
3030 	 * If we know there aren't any outstanding transactions, just return
3031 	 */
3032 	if (results.outstanding == 0)
3033 		return ((aio_trans *) 0);
3034 
3035 	block_sigint(&old_mask);
3036 
3037 	resultp = aiowait(block ? NULL : &zero_wait);
3038 	if (resultp == NULL ||
3039 	    (resultp == (aio_result_t *)-1 && errno == EINVAL)) {
3040 		unblock_sigint(&old_mask);
3041 		return ((aio_trans *) 0);
3042 	}
3043 
3044 	results.outstanding--;
3045 	transp = (aio_trans *)resultp;
3046 
3047 	if (resultp->aio_return != transp->size) {
3048 		if (resultp->aio_return == -1) {
3049 			/*
3050 			 * The aiowrite() may have failed because the
3051 			 * kernel didn't have enough memory to do the job.
3052 			 * Flush all pending writes and try a normal
3053 			 * write().  wtfs_breakup() will call exit if it
3054 			 * fails, so we don't worry about errors here.
3055 			 */
3056 			flush_writes();
3057 			wtfs_breakup(transp->bno, transp->size, transp->buffer);
3058 		} else {
3059 			(void) fprintf(stderr, gettext(
3060 			    "short write (%d of %d bytes) on sector %lld\n"),
3061 			    resultp->aio_return, transp->size,
3062 			    transp->bno);
3063 			/*
3064 			 * Don't unblock SIGINT, to avoid potential
3065 			 * looping due to queued interrupts and
3066 			 * error handling.
3067 			 */
3068 			lockexit(32);
3069 		}
3070 	}
3071 
3072 	resultp->aio_return = 0;
3073 	freetrans(transp);
3074 	unblock_sigint(&old_mask);
3075 	return (transp);
3076 }
3077 
3078 /*
3079  * flush_writes()	-- flush all the outstanding aio writes.
3080  */
3081 static void
3082 flush_writes(void)
3083 {
3084 	while (wait_for_write(BLOCK))
3085 		;
3086 }
3087 
3088 /*
3089  * get_aiop()	-- find and return an aio_trans structure on which a new
3090  *		aio can be done.  Blocks on aiowait() if needed.  Reaps
3091  *		all outstanding completed aio's.
3092  *
3093  * Assumes that SIGINT is blocked.
3094  */
3095 aio_trans *
3096 get_aiop()
3097 {
3098 	int i;
3099 	aio_trans *transp;
3100 	aio_trans *prev;
3101 
3102 	/*
3103 	 * initialize aio stuff
3104 	 */
3105 	if (!aio_inited) {
3106 		aio_inited = 1;
3107 
3108 		results.maxpend = 0;
3109 		results.outstanding = 0;
3110 		results.max = MAXAIO;
3111 
3112 		results.trans = (aio_trans *)calloc(results.max,
3113 						sizeof (aio_trans));
3114 		if (results.trans == NULL) {
3115 			perror("calloc");
3116 			lockexit(32);
3117 		}
3118 
3119 		/*
3120 		 * Initialize the linked list of aio transaction
3121 		 * structures.  Note that the final "next" pointer
3122 		 * will be NULL since we got the buffer from calloc().
3123 		 */
3124 		prev = results.trans;
3125 		for (i = 1; i < results.max; i++) {
3126 			prev->next = &(results.trans[i]);
3127 			prev = prev->next;
3128 		}
3129 	}
3130 
3131 	wait_for_write(NOBLOCK);
3132 	while (results.trans == NULL)
3133 		wait_for_write(BLOCK);
3134 	transp = results.trans;
3135 	results.trans = results.trans->next;
3136 
3137 	transp->next = 0;
3138 	transp->resultbuf.aio_return = AIO_INPROGRESS;
3139 	return (transp);
3140 }
3141 
3142 /*
3143  * read a block from the file system
3144  */
3145 static void
3146 rdfs(diskaddr_t bno, int size, char *bf)
3147 {
3148 	int n, saverr;
3149 
3150 	/*
3151 	 * In case we need any data that's pending in an aiowrite(),
3152 	 * we wait for them all to complete before doing a read.
3153 	 */
3154 	flush_writes();
3155 
3156 	/*
3157 	 * Note: the llseek() can succeed, even if the offset is out of range.
3158 	 * It's not until the file i/o operation (the read()) that one knows
3159 	 * for sure if the raw device can handle the offset.
3160 	 */
3161 	if (llseek(fsi, (offset_t)bno * sectorsize, 0) < 0) {
3162 		saverr = errno;
3163 		(void) fprintf(stderr,
3164 		    gettext("seek error on sector %lld: %s\n"),
3165 		    bno, strerror(saverr));
3166 		lockexit(32);
3167 	}
3168 	n = read(fsi, bf, size);
3169 	if (n != size) {
3170 		saverr = errno;
3171 		if (n == -1)
3172 			(void) fprintf(stderr,
3173 			    gettext("read error on sector %lld: %s\n"),
3174 			    bno, strerror(saverr));
3175 		else
3176 			(void) fprintf(stderr, gettext(
3177 			    "short read (%d of %d bytes) on sector %lld\n"),
3178 			    n, size, bno);
3179 		lockexit(32);
3180 	}
3181 }
3182 
3183 /*
3184  * write a block to the file system
3185  */
3186 static void
3187 wtfs(diskaddr_t bno, int size, char *bf)
3188 {
3189 	int n, saverr;
3190 
3191 	if (fso == -1)
3192 		return;
3193 
3194 	/*
3195 	 * Note: the llseek() can succeed, even if the offset is out of range.
3196 	 * It's not until the file i/o operation (the write()) that one knows
3197 	 * for sure if the raw device can handle the offset.
3198 	 */
3199 	if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3200 		saverr = errno;
3201 		(void) fprintf(stderr,
3202 		    gettext("seek error on sector %lld: %s\n"),
3203 		    bno, strerror(saverr));
3204 		lockexit(32);
3205 	}
3206 	if (Nflag)
3207 		return;
3208 	n = write(fso, bf, size);
3209 	if (n != size) {
3210 		saverr = errno;
3211 		if (n == -1)
3212 			(void) fprintf(stderr,
3213 			    gettext("write error on sector %lld: %s\n"),
3214 			    bno, strerror(saverr));
3215 		else
3216 			(void) fprintf(stderr, gettext(
3217 			    "short write (%d of %d bytes) on sector %lld\n"),
3218 			    n, size, bno);
3219 		lockexit(32);
3220 	}
3221 }
3222 
3223 /*
3224  * write a block to the file system -- buffered with aio
3225  */
3226 static void
3227 awtfs(diskaddr_t bno, int size, char *bf, int release)
3228 {
3229 	int n;
3230 	aio_trans 	*transp;
3231 	sigset_t 	old_mask;
3232 
3233 	if (fso == -1)
3234 		return;
3235 
3236 	/*
3237 	 * We need to keep things consistent if we get interrupted,
3238 	 * so defer any expected interrupts for the time being.
3239 	 */
3240 	block_sigint(&old_mask);
3241 
3242 	if (Nflag) {
3243 		if (release == RELEASE)
3244 			freebuf(bf);
3245 	} else {
3246 		transp = get_aiop();
3247 		transp->bno = bno;
3248 		transp->buffer = bf;
3249 		transp->size = size;
3250 		transp->release = release;
3251 
3252 		n = aiowrite(fso, bf, size, (off_t)bno * sectorsize,
3253 				SEEK_SET, &transp->resultbuf);
3254 
3255 		if (n < 0) {
3256 			/*
3257 			 * The aiowrite() may have failed because the
3258 			 * kernel didn't have enough memory to do the job.
3259 			 * Flush all pending writes and try a normal
3260 			 * write().  wtfs_breakup() will call exit if it
3261 			 * fails, so we don't worry about errors here.
3262 			 */
3263 			flush_writes();
3264 			wtfs_breakup(transp->bno, transp->size, transp->buffer);
3265 			freetrans(transp);
3266 		} else {
3267 			/*
3268 			 * Keep track of our pending writes.
3269 			 */
3270 			results.outstanding++;
3271 			if (results.outstanding > results.maxpend)
3272 			    results.maxpend = results.outstanding;
3273 		}
3274 	}
3275 
3276 	unblock_sigint(&old_mask);
3277 }
3278 
3279 
3280 /*
3281  * write a block to the file system, but break it up into sbsize
3282  * chunks to avoid forcing a large amount of memory to be locked down.
3283  * Only used as a fallback when an aio write has failed.
3284  */
3285 static void
3286 wtfs_breakup(diskaddr_t bno, int size, char *bf)
3287 {
3288 	int n, saverr;
3289 	int wsize;
3290 	int block_incr = sbsize / sectorsize;
3291 
3292 	if (size < sbsize)
3293 		wsize = size;
3294 	else
3295 		wsize = sbsize;
3296 
3297 	n = 0;
3298 	while (size) {
3299 		/*
3300 		 * Note: the llseek() can succeed, even if the offset is
3301 		 * out of range.  It's not until the file i/o operation
3302 		 * (the write()) that one knows for sure if the raw device
3303 		 * can handle the offset.
3304 		 */
3305 		if (llseek(fso, (offset_t)bno * sectorsize, 0) < 0) {
3306 			saverr = errno;
3307 			(void) fprintf(stderr,
3308 			    gettext("seek error on sector %lld: %s\n"),
3309 			    bno, strerror(saverr));
3310 			lockexit(32);
3311 		}
3312 
3313 		n = write(fso, bf, wsize);
3314 		if (n == -1) {
3315 			saverr = errno;
3316 			(void) fprintf(stderr,
3317 			    gettext("write error on sector %lld: %s\n"),
3318 			    bno, strerror(saverr));
3319 			lockexit(32);
3320 		}
3321 		if (n != wsize) {
3322 			saverr = errno;
3323 			(void) fprintf(stderr, gettext(
3324 			    "short write (%d of %d bytes) on sector %lld\n"),
3325 			    n, size, bno);
3326 			lockexit(32);
3327 		}
3328 
3329 		bno += block_incr;
3330 		bf += wsize;
3331 		size -= wsize;
3332 		if (size < wsize)
3333 			wsize = size;
3334 	}
3335 }
3336 
3337 
3338 /*
3339  * check if a block is available
3340  */
3341 static int
3342 isblock(struct fs *fs, unsigned char *cp, int h)
3343 {
3344 	unsigned char mask;
3345 
3346 	switch (fs->fs_frag) {
3347 	case 8:
3348 		return (cp[h] == 0xff);
3349 	case 4:
3350 		mask = 0x0f << ((h & 0x1) << 2);
3351 		return ((cp[h >> 1] & mask) == mask);
3352 	case 2:
3353 		mask = 0x03 << ((h & 0x3) << 1);
3354 		return ((cp[h >> 2] & mask) == mask);
3355 	case 1:
3356 		mask = 0x01 << (h & 0x7);
3357 		return ((cp[h >> 3] & mask) == mask);
3358 	default:
3359 		(void) fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
3360 		return (0);
3361 	}
3362 }
3363 
3364 /*
3365  * take a block out of the map
3366  */
3367 static void
3368 clrblock(struct fs *fs, unsigned char *cp, int h)
3369 {
3370 	switch ((fs)->fs_frag) {
3371 	case 8:
3372 		cp[h] = 0;
3373 		return;
3374 	case 4:
3375 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
3376 		return;
3377 	case 2:
3378 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
3379 		return;
3380 	case 1:
3381 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
3382 		return;
3383 	default:
3384 		(void) fprintf(stderr,
3385 		    gettext("clrblock: bad fs_frag value %d\n"), fs->fs_frag);
3386 		return;
3387 	}
3388 }
3389 
3390 /*
3391  * put a block into the map
3392  */
3393 static void
3394 setblock(struct fs *fs, unsigned char *cp, int h)
3395 {
3396 	switch (fs->fs_frag) {
3397 	case 8:
3398 		cp[h] = 0xff;
3399 		return;
3400 	case 4:
3401 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
3402 		return;
3403 	case 2:
3404 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
3405 		return;
3406 	case 1:
3407 		cp[h >> 3] |= (0x01 << (h & 0x7));
3408 		return;
3409 	default:
3410 		(void) fprintf(stderr,
3411 		    gettext("setblock: bad fs_frag value %d\n"), fs->fs_frag);
3412 		return;
3413 	}
3414 }
3415 
3416 static void
3417 usage()
3418 {
3419 	(void) fprintf(stderr,
3420 	    gettext("ufs usage: mkfs [-F FSType] [-V] [-m] [-o options] "
3421 		"special "			/* param 0 */
3422 		"size(sectors) \\ \n"));	/* param 1 */
3423 	(void) fprintf(stderr,
3424 		"[nsect "			/* param 2 */
3425 		"ntrack "			/* param 3 */
3426 		"bsize "			/* param 4 */
3427 		"fragsize "			/* param 5 */
3428 		"cpg "				/* param 6 */
3429 		"free "				/* param 7 */
3430 		"rps "				/* param 8 */
3431 		"nbpi "				/* param 9 */
3432 		"opt "				/* param 10 */
3433 		"apc "				/* param 11 */
3434 		"gap "				/* param 12 */
3435 		"nrpos "			/* param 13 */
3436 		"maxcontig "			/* param 14 */
3437 		"mtb]\n");			/* param 15 */
3438 	(void) fprintf(stderr,
3439 		gettext(" -m : dump fs cmd line used to make this partition\n"
3440 		" -V :print this command line and return\n"
3441 		" -o :ufs options: :nsect=%d,ntrack=%d,bsize=%d,fragsize=%d\n"
3442 		" -o :ufs options: :cgsize=%d,free=%d,rps=%d,nbpi=%d,opt=%c\n"
3443 		" -o :ufs options: :apc=%d,gap=%d,nrpos=%d,maxcontig=%d\n"
3444 		" -o :ufs options: :mtb=%c,calcsb,calcbinsb\n"
3445 "NOTE that all -o suboptions: must be separated only by commas so as to\n"
3446 "be parsed as a single argument\n"),
3447 		nsect, ntrack, bsize, fragsize, cpg, sblock.fs_minfree, rps,
3448 		nbpi, opt, apc, (rotdelay == -1) ? 0 : rotdelay,
3449 		sblock.fs_nrpos, maxcontig, mtb);
3450 	lockexit(32);
3451 }
3452 
3453 /*ARGSUSED*/
3454 static void
3455 dump_fscmd(char *fsys, int fsi)
3456 {
3457 	int64_t used, bpcg, inospercg;
3458 	int64_t nbpi;
3459 	uint64_t nbytes64;
3460 
3461 	bzero((char *)&sblock, sizeof (sblock));
3462 	rdfs((diskaddr_t)SBLOCK, SBSIZE, (char *)&sblock);
3463 
3464 	/*
3465 	 * ensure a valid file system and if not, exit with error or else
3466 	 * we will end up computing block numbers etc and dividing by zero
3467 	 * which will cause floating point errors in this routine.
3468 	 */
3469 
3470 	if ((sblock.fs_magic != FS_MAGIC) &&
3471 	    (sblock.fs_magic != MTB_UFS_MAGIC)) {
3472 	    (void) fprintf(stderr, gettext(
3473 		"[not currently a valid file system - bad superblock]\n"));
3474 		lockexit(32);
3475 	}
3476 
3477 	if (sblock.fs_magic == FS_MAGIC &&
3478 	    (sblock.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3479 	    sblock.fs_version != UFS_VERSION_MIN)) {
3480 	    (void) fprintf(stderr, gettext(
3481 		"Unknown version of UFS format: %d\n"), sblock.fs_version);
3482 		lockexit(32);
3483 	}
3484 
3485 	if (sblock.fs_magic == MTB_UFS_MAGIC &&
3486 	    (sblock.fs_version > MTB_UFS_VERSION_1 ||
3487 	    sblock.fs_version < MTB_UFS_VERSION_MIN)) {
3488 	    (void) fprintf(stderr, gettext(
3489 		"Unknown version of UFS format: %d\n"), sblock.fs_version);
3490 		lockexit(32);
3491 	}
3492 
3493 	/*
3494 	 * Compute a reasonable nbpi value.
3495 	 * The algorithm for "used" is copied from code
3496 	 * in main() verbatim.
3497 	 * The nbpi equation is taken from main where the
3498 	 * fs_ipg value is set for the last time.  The INOPB(...) - 1
3499 	 * is used to account for the roundup.
3500 	 * The problem is that a range of nbpi values map to
3501 	 * the same file system layout.  So it is not possible
3502 	 * to calculate the exact value specified when the file
3503 	 * system was created.  So instead we determine the top
3504 	 * end of the range of values.
3505 	 */
3506 	bpcg = sblock.fs_spc * sectorsize;
3507 	inospercg = (int64_t)roundup(bpcg / sizeof (struct dinode),
3508 	    INOPB(&sblock));
3509 	if (inospercg > MAXIpG(&sblock))
3510 		inospercg = MAXIpG(&sblock);
3511 	used = (int64_t)
3512 	    (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
3513 	used *= sectorsize;
3514 	nbytes64 = (uint64_t)sblock.fs_cpg * bpcg - used;
3515 
3516 	/*
3517 	 * The top end of the range of values for nbpi may not be
3518 	 * a valid command line value for mkfs. Report the bottom
3519 	 * end instead.
3520 	 */
3521 	nbpi = (int64_t)(nbytes64 / (sblock.fs_ipg));
3522 
3523 	(void) fprintf(stdout, gettext("mkfs -F ufs -o "), fsys);
3524 	(void) fprintf(stdout, "nsect=%d,ntrack=%d,",
3525 	    sblock.fs_nsect, sblock.fs_ntrak);
3526 	(void) fprintf(stdout, "bsize=%d,fragsize=%d,cgsize=%d,free=%d,",
3527 	    sblock.fs_bsize, sblock.fs_fsize, sblock.fs_cpg, sblock.fs_minfree);
3528 	(void) fprintf(stdout, "rps=%d,nbpi=%lld,opt=%c,apc=%d,gap=%d,",
3529 	    sblock.fs_rps, nbpi, (sblock.fs_optim == FS_OPTSPACE) ? 's' : 't',
3530 	    (sblock.fs_ntrak * sblock.fs_nsect) - sblock.fs_spc,
3531 	    sblock.fs_rotdelay);
3532 	(void) fprintf(stdout, "nrpos=%d,maxcontig=%d,mtb=%c ",
3533 	    sblock.fs_nrpos, sblock.fs_maxcontig,
3534 	    ((sblock.fs_magic == MTB_UFS_MAGIC) ? 'y' : 'n'));
3535 	(void) fprintf(stdout, "%s %lld\n", fsys,
3536 	    fsbtodb(&sblock, sblock.fs_size));
3537 
3538 	bzero((char *)&sblock, sizeof (sblock));
3539 }
3540 
3541 /* number ************************************************************* */
3542 /*									*/
3543 /* Convert a numeric string arg to binary				*/
3544 /*									*/
3545 /* Args:	d_value - default value, if have parse error		*/
3546 /*		param - the name of the argument, for error messages	*/
3547 /*		flags - parser state and what's allowed in the arg	*/
3548 /* Global arg:  string - pointer to command arg				*/
3549 /*									*/
3550 /* Valid forms: 123 | 123k | 123*123 | 123x123				*/
3551 /*									*/
3552 /* Return:	converted number					*/
3553 /*									*/
3554 /* ******************************************************************** */
3555 
3556 static uint64_t
3557 number(uint64_t d_value, char *param, int flags)
3558 {
3559 	char *cs;
3560 	uint64_t n, t;
3561 	uint64_t cut = BIG / 10;    /* limit to avoid overflow */
3562 	int minus = 0;
3563 
3564 	cs = string;
3565 	if (*cs == '-') {
3566 		minus = 1;
3567 		cs += 1;
3568 	}
3569 	if ((*cs < '0') || (*cs > '9')) {
3570 		goto bail_out;
3571 	}
3572 	n = 0;
3573 	while ((*cs >= '0') && (*cs <= '9') && (n <= cut)) {
3574 		n = n*10 + *cs++ - '0';
3575 	}
3576 	if (minus)
3577 	    n = -n;
3578 	for (;;) {
3579 		switch (*cs++) {
3580 		case 'k':
3581 			if (flags & ALLOW_END_ONLY)
3582 				goto bail_out;
3583 			if (n > (BIG / 1024))
3584 				goto overflow;
3585 			n *= 1024;
3586 			continue;
3587 
3588 		case '*':
3589 		case 'x':
3590 			if (flags & ALLOW_END_ONLY)
3591 				goto bail_out;
3592 			string = cs;
3593 			t = number(d_value, param, flags);
3594 			if (n > (BIG / t))
3595 				goto overflow;
3596 			n *= t;
3597 			cs = string + 1; /* adjust for -- below */
3598 
3599 			/* recursion has read rest of expression */
3600 			/* FALLTHROUGH */
3601 
3602 		case ',':
3603 		case '\0':
3604 			cs--;
3605 			string = cs;
3606 			return (n);
3607 
3608 		case '%':
3609 			if (flags & ALLOW_END_ONLY)
3610 				goto bail_out;
3611 			if (flags & ALLOW_PERCENT) {
3612 				flags &= ~ALLOW_PERCENT;
3613 				flags |= ALLOW_END_ONLY;
3614 				continue;
3615 			}
3616 			goto bail_out;
3617 
3618 		case 'm':
3619 			if (flags & ALLOW_END_ONLY)
3620 				goto bail_out;
3621 			if (flags & ALLOW_MS1) {
3622 				flags &= ~ALLOW_MS1;
3623 				flags |= ALLOW_MS2;
3624 				continue;
3625 			}
3626 			goto bail_out;
3627 
3628 		case 's':
3629 			if (flags & ALLOW_END_ONLY)
3630 				goto bail_out;
3631 			if (flags & ALLOW_MS2) {
3632 				flags &= ~ALLOW_MS2;
3633 				flags |= ALLOW_END_ONLY;
3634 				continue;
3635 			}
3636 			goto bail_out;
3637 
3638 		case '0': case '1': case '2': case '3': case '4':
3639 		case '5': case '6': case '7': case '8': case '9':
3640 overflow:
3641 			(void) fprintf(stderr,
3642 			    gettext("mkfs: value for %s overflowed\n"),
3643 			    param);
3644 			while ((*cs != '\0') && (*cs != ','))
3645 				cs++;
3646 			string = cs;
3647 			return (BIG);
3648 
3649 		default:
3650 bail_out:
3651 			(void) fprintf(stderr, gettext(
3652 			    "mkfs: bad numeric arg for %s: \"%s\"\n"),
3653 			    param, string);
3654 			while ((*cs != '\0') && (*cs != ','))
3655 				cs++;
3656 			string = cs;
3657 			if (d_value != NO_DEFAULT) {
3658 				(void) fprintf(stderr,
3659 				    gettext("mkfs: %s reset to default %lld\n"),
3660 				    param, d_value);
3661 				return (d_value);
3662 			}
3663 			lockexit(2);
3664 
3665 		}
3666 	} /* never gets here */
3667 }
3668 
3669 /* match ************************************************************** */
3670 /*									*/
3671 /* Compare two text strings for equality				*/
3672 /*									*/
3673 /* Arg:	 s - pointer to string to match with a command arg		*/
3674 /* Global arg:  string - pointer to command arg				*/
3675 /*									*/
3676 /* Return:	1 if match, 0 if no match				*/
3677 /*		If match, also reset `string' to point to the text	*/
3678 /*		that follows the matching text.				*/
3679 /*									*/
3680 /* ******************************************************************** */
3681 
3682 static int
3683 match(char *s)
3684 {
3685 	char *cs;
3686 
3687 	cs = string;
3688 	while (*cs++ == *s) {
3689 		if (*s++ == '\0') {
3690 			goto true;
3691 		}
3692 	}
3693 	if (*s != '\0') {
3694 		return (0);
3695 	}
3696 
3697 true:
3698 	cs--;
3699 	string = cs;
3700 	return (1);
3701 }
3702 
3703 /*
3704  * GROWFS ROUTINES
3705  */
3706 
3707 /* ARGSUSED */
3708 void
3709 lockexit(int exitstatus)
3710 {
3711 	if (Pflag) {
3712 		/* the probe mode neither changes nor locks the filesystem */
3713 		exit(exitstatus);
3714 	}
3715 
3716 	/*
3717 	 * flush the dirty cylinder group
3718 	 */
3719 	if (inlockexit == 0) {
3720 		inlockexit = 1;
3721 		flcg();
3722 	}
3723 
3724 	if (aio_inited) {
3725 		flush_writes();
3726 	}
3727 
3728 	/*
3729 	 * make sure the file system is unlocked before exiting
3730 	 */
3731 	if ((inlockexit == 1) && (!isbad)) {
3732 		inlockexit = 2;
3733 		ulockfs();
3734 		/*
3735 		 * if logging was enabled, then re-enable it
3736 		 */
3737 		if (waslog) {
3738 			if (rl_log_control(fsys, _FIOLOGENABLE) != RL_SUCCESS) {
3739 				(void) fprintf(stderr, gettext(
3740 					"failed to re-enable logging\n"));
3741 			}
3742 		}
3743 	} else if (grow) {
3744 		if (isbad) {
3745 			(void) fprintf(stderr, gettext(
3746 				"Filesystem is currently inconsistent.  It "
3747 				"must be repaired with fsck(1M)\nbefore being "
3748 				"used.  Use the following command to "
3749 				"do this:\n\n\tfsck %s\n\n"),
3750 					fsys);
3751 
3752 			if (ismounted) {
3753 				(void) fprintf(stderr, gettext(
3754 					"You will be told that the filesystem "
3755 					"is already mounted, and asked if you\n"
3756 					"wish to continue.  Answer `yes' to "
3757 					"this question.\n\n"));
3758 			}
3759 
3760 			(void) fprintf(stderr, gettext(
3761 					"One problem should be reported, that "
3762 					"the summary information is bad.\n"
3763 					"You will then be asked if it "
3764 					"should be salvaged.  Answer `yes' "
3765 					"to\nthis question.\n\n"));
3766 		}
3767 
3768 		if (ismounted) {
3769 			/*
3770 			 * In theory, there's no way to get here without
3771 			 * isbad also being set, but be robust in the
3772 			 * face of future code changes.
3773 			 */
3774 			(void) fprintf(stderr, gettext(
3775 				"The filesystem is currently mounted "
3776 				"read-only and write-locked.  "));
3777 			if (isbad) {
3778 				(void) fprintf(stderr, gettext(
3779 					"After\nrunning fsck, unlock the "
3780 					"filesystem and "));
3781 			} else {
3782 				(void) fprintf(stderr, gettext(
3783 					"Unlock the filesystem\nand "));
3784 			}
3785 
3786 			(void) fprintf(stderr, gettext(
3787 				"re-enable writing with\nthe following "
3788 				"command:\n\n\tlockfs -u %s\n\n"),
3789 					directory);
3790 		}
3791 	}
3792 
3793 	exit(exitstatus);
3794 }
3795 
3796 void
3797 randomgeneration()
3798 {
3799 	int		 i;
3800 	struct dinode	*dp;
3801 
3802 	/*
3803 	 * always perform fsirand(1) function... newfs will notice that
3804 	 * the inodes have been randomized and will not call fsirand itself
3805 	 */
3806 	for (i = 0, dp = zino; i < sblock.fs_inopb; ++i, ++dp)
3807 		IRANDOMIZE(&dp->di_ic);
3808 }
3809 
3810 /*
3811  * Check the size of the summary information.
3812  * Fields in sblock are not changed in this function.
3813  *
3814  * For an 8K filesystem block, the maximum number of cylinder groups is 16384.
3815  *     MAXCSBUFS {32}  *   8K  {FS block size}
3816  *                         divided by (sizeof csum) {16}
3817  *
3818  * Note that MAXCSBUFS is not used in the kernel; as of Solaris 2.6 build 32,
3819  * this is the only place where it's referenced.
3820  */
3821 void
3822 checksummarysize()
3823 {
3824 	diskaddr_t	dmax;
3825 	diskaddr_t	dmin;
3826 	int64_t	cg0frags;
3827 	int64_t	cg0blocks;
3828 	int64_t	maxncg;
3829 	int64_t	maxfrags;
3830 	uint64_t	fs_size;
3831 	uint64_t maxfs_blocks; /* filesystem blocks for max filesystem size */
3832 
3833 	/*
3834 	 * compute the maximum summary info size
3835 	 */
3836 	dmin = cgdmin(&sblock, 0);
3837 	dmax = cgbase(&sblock, 0) + sblock.fs_fpg;
3838 	fs_size = (grow) ? grow_fs_size : sblock.fs_size;
3839 	if (dmax > fs_size)
3840 		dmax = fs_size;
3841 	cg0frags  = dmax - dmin;
3842 	cg0blocks = cg0frags / sblock.fs_frag;
3843 	cg0frags = cg0blocks * sblock.fs_frag;
3844 	maxncg   = (longlong_t)cg0blocks *
3845 	    (longlong_t)(sblock.fs_bsize / sizeof (struct csum));
3846 
3847 	maxfs_blocks = FS_MAX;
3848 
3849 	if (maxncg > ((longlong_t)maxfs_blocks / (longlong_t)sblock.fs_fpg) + 1)
3850 		maxncg = ((longlong_t)maxfs_blocks /
3851 		    (longlong_t)sblock.fs_fpg) + 1;
3852 
3853 	maxfrags = maxncg * (longlong_t)sblock.fs_fpg;
3854 
3855 	if (maxfrags > maxfs_blocks)
3856 		maxfrags = maxfs_blocks;
3857 
3858 
3859 	/*
3860 	 * remember for later processing in extendsummaryinfo()
3861 	 */
3862 	if (test)
3863 		grow_sifrag = dmin + (cg0blocks * sblock.fs_frag);
3864 	if (testfrags == 0)
3865 		testfrags = cg0frags;
3866 	if (testforce)
3867 		if (testfrags > cg0frags) {
3868 			(void) fprintf(stderr,
3869 				gettext("Too many test frags (%lld); "
3870 				"try %lld\n"), testfrags, cg0frags);
3871 			lockexit(32);
3872 		}
3873 
3874 	/*
3875 	 * if summary info is too large (too many cg's) tell the user and exit
3876 	 */
3877 	if ((longlong_t)sblock.fs_size > maxfrags) {
3878 		(void) fprintf(stderr, gettext(
3879 		    "Too many cylinder groups with %llu sectors;\n    try "
3880 		    "increasing cgsize, or decreasing fssize to %llu\n"),
3881 		    fsbtodb(&sblock, (uint64_t)sblock.fs_size),
3882 		    fsbtodb(&sblock, (uint64_t)maxfrags));
3883 		lockexit(32);
3884 	}
3885 }
3886 
3887 /*
3888  * checksblock() has two uses:
3889  *	- One is to sanity test the superblock and is used when newfs(1M)
3890  *	  is invoked with the "-N" option. If any discrepancy was found,
3891  *	  just return whatever error was found and do not exit.
3892  *	- the other use of it is in places where you expect the superblock
3893  *	  to be sane, and if it isn't, then we exit.
3894  * Which of the above two actions to take is indicated with the second argument.
3895  */
3896 
3897 int
3898 checksblock(struct fs sb, int proceed)
3899 {
3900 	int err = 0;
3901 	char *errmsg;
3902 
3903 	if ((sb.fs_magic != FS_MAGIC) && (sb.fs_magic != MTB_UFS_MAGIC)) {
3904 	    err = 1;
3905 	    errmsg = gettext("Bad superblock; magic number wrong\n");
3906 	} else if ((sb.fs_magic == FS_MAGIC &&
3907 		(sb.fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
3908 		sb.fs_version != UFS_VERSION_MIN)) ||
3909 		(sb.fs_magic == MTB_UFS_MAGIC &&
3910 		(sb.fs_version > MTB_UFS_VERSION_1 ||
3911 		sb.fs_version < MTB_UFS_VERSION_MIN))) {
3912 	    err = 2;
3913 	    errmsg = gettext("Unrecognized version of UFS\n");
3914 	} else if (sb.fs_ncg < 1) {
3915 	    err = 3;
3916 	    errmsg = gettext("Bad superblock; ncg out of range\n");
3917 	} else if (sb.fs_cpg < 1) {
3918 	    err = 4;
3919 	    errmsg = gettext("Bad superblock; cpg out of range\n");
3920 	} else if (sb.fs_ncg * sb.fs_cpg < sb.fs_ncyl ||
3921 		(sb.fs_ncg - 1) * sb.fs_cpg >= sb.fs_ncyl) {
3922 	    err = 5;
3923 	    errmsg = gettext("Bad superblock; ncyl out of range\n");
3924 	} else if (sb.fs_sbsize <= 0 || sb.fs_sbsize > sb.fs_bsize) {
3925 	    err = 6;
3926 	    errmsg = gettext("Bad superblock; superblock size out of range\n");
3927 	}
3928 
3929 	if (proceed) {
3930 		if (err) dprintf(("%s", errmsg));
3931 		return (err);
3932 	}
3933 
3934 	if (err) {
3935 		fprintf(stderr, "%s", errmsg);
3936 		lockexit(32);
3937 	}
3938 	return (32);
3939 }
3940 
3941 /*
3942  * Roll the embedded log, if any, and set up the global variables
3943  * islog, islogok and isufslog.
3944  */
3945 static void
3946 logsetup(char *devstr)
3947 {
3948 	void		*buf, *ud_buf;
3949 	extent_block_t	*ebp;
3950 	ml_unit_t	*ul;
3951 	ml_odunit_t	*ud;
3952 
3953 	/*
3954 	 * Does the superblock indicate that we are supposed to have a log ?
3955 	 */
3956 	if (sblock.fs_logbno == 0) {
3957 		/*
3958 		 * No log present, nothing to do.
3959 		 */
3960 		islogok = 0;
3961 		islog = 0;
3962 		isufslog = 0;
3963 		return;
3964 	} else {
3965 		/*
3966 		 * There's a log in a yet unknown state, attempt to roll it.
3967 		 */
3968 		islog = 1;
3969 		islogok = 0;
3970 		isufslog = 0;
3971 
3972 		/*
3973 		 * We failed to roll the log, bail out.
3974 		 */
3975 		if (rl_roll_log(devstr) != RL_SUCCESS)
3976 			return;
3977 
3978 		isufslog = 1;
3979 
3980 		/* log is not okay; check the fs */
3981 		if ((FSOKAY != (sblock.fs_state + sblock.fs_time)) ||
3982 		    (sblock.fs_clean != FSLOG))
3983 			return;
3984 
3985 		/* get the log allocation block */
3986 		buf = (void *)malloc(DEV_BSIZE);
3987 		if (buf == (void *) NULL)
3988 			return;
3989 
3990 		ud_buf = (void *)malloc(DEV_BSIZE);
3991 		if (ud_buf == (void *) NULL) {
3992 			free(buf);
3993 			return;
3994 		}
3995 
3996 		rdfs((diskaddr_t)logbtodb(&sblock, sblock.fs_logbno),
3997 		    DEV_BSIZE, buf);
3998 		ebp = (extent_block_t *)buf;
3999 
4000 		/* log allocation block is not okay; check the fs */
4001 		if (ebp->type != LUFS_EXTENTS) {
4002 			free(buf);
4003 			free(ud_buf);
4004 			return;
4005 		}
4006 
4007 		/* get the log state block(s) */
4008 		rdfs((diskaddr_t)logbtodb(&sblock, ebp->extents[0].pbno),
4009 		    DEV_BSIZE, ud_buf);
4010 		ud = (ml_odunit_t *)ud_buf;
4011 		ul = (ml_unit_t *)malloc(sizeof (*ul));
4012 		ul->un_ondisk = *ud;
4013 
4014 		/* log state is okay */
4015 		if ((ul->un_chksum == ul->un_head_ident + ul->un_tail_ident) &&
4016 		    (ul->un_version == LUFS_VERSION_LATEST) &&
4017 		    (ul->un_badlog == 0))
4018 			islogok = 1;
4019 		free(ud_buf);
4020 		free(buf);
4021 		free(ul);
4022 	}
4023 }
4024 
4025 void
4026 growinit(char *devstr)
4027 {
4028 	int	i;
4029 	char	buf[DEV_BSIZE];
4030 
4031 	/*
4032 	 * Read and verify the superblock
4033 	 */
4034 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4035 	(void) checksblock(sblock, 0);
4036 	if (sblock.fs_postblformat != FS_DYNAMICPOSTBLFMT) {
4037 		(void) fprintf(stderr,
4038 			gettext("old file system format; can't growfs\n"));
4039 		lockexit(32);
4040 	}
4041 
4042 	/*
4043 	 * can't shrink a file system
4044 	 */
4045 	grow_fssize = fsbtodb(&sblock, (uint64_t)sblock.fs_size);
4046 	if (fssize_db < grow_fssize) {
4047 		(void) fprintf(stderr,
4048 		    gettext("%lld sectors < current size of %lld sectors\n"),
4049 		    fssize_db, grow_fssize);
4050 		lockexit(32);
4051 	}
4052 
4053 	/*
4054 	 * can't grow a system to over a terabyte unless it was set up
4055 	 * as an MTB UFS file system.
4056 	 */
4057 	if (mtb == 'y' && sblock.fs_magic != MTB_UFS_MAGIC) {
4058 		if (fssize_db >= SECTORS_PER_TERABYTE) {
4059 			(void) fprintf(stderr, gettext(
4060 "File system was not set up with the multi-terabyte format.\n"));
4061 			(void) fprintf(stderr, gettext(
4062 "Its size cannot be increased to a terabyte or more.\n"));
4063 		} else {
4064 			(void) fprintf(stderr, gettext(
4065 "Cannot convert file system to multi-terabyte format.\n"));
4066 		}
4067 		lockexit(32);
4068 	}
4069 
4070 	logsetup(devstr);
4071 
4072 	/*
4073 	 * can't growfs when logging device has errors
4074 	 */
4075 	if ((islog && !islogok) ||
4076 	    ((FSOKAY == (sblock.fs_state + sblock.fs_time)) &&
4077 	    (sblock.fs_clean == FSLOG && !islog))) {
4078 		(void) fprintf(stderr,
4079 			gettext("logging device has errors; can't growfs\n"));
4080 		lockexit(32);
4081 	}
4082 
4083 	/*
4084 	 * disable ufs logging for growing
4085 	 */
4086 	if (isufslog) {
4087 		if (rl_log_control(devstr, _FIOLOGDISABLE) != RL_SUCCESS) {
4088 			(void) fprintf(stderr, gettext(
4089 				"failed to disable logging\n"));
4090 			lockexit(32);
4091 		}
4092 		islog = 0;
4093 		waslog = 1;
4094 	}
4095 
4096 	/*
4097 	 * if mounted write lock the file system to be grown
4098 	 */
4099 	if (ismounted)
4100 		wlockfs();
4101 
4102 	/*
4103 	 * refresh dynamic superblock state - disabling logging will have
4104 	 * changed the amount of free space available in the file system
4105 	 */
4106 	rdfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4107 
4108 	/*
4109 	 * make sure device is big enough
4110 	 */
4111 	rdfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4112 	wtfs((diskaddr_t)fssize_db - 1, DEV_BSIZE, buf);
4113 
4114 	/*
4115 	 * read current summary information
4116 	 */
4117 	grow_fscs = read_summaryinfo(&sblock);
4118 
4119 	/*
4120 	 * save some current size related fields from the superblock
4121 	 * These are used in extendsummaryinfo()
4122 	 */
4123 	grow_fs_size	= sblock.fs_size;
4124 	grow_fs_ncg	= sblock.fs_ncg;
4125 	grow_fs_csaddr	= (diskaddr_t)sblock.fs_csaddr;
4126 	grow_fs_cssize	= sblock.fs_cssize;
4127 
4128 	/*
4129 	 * save and reset the clean flag
4130 	 */
4131 	if (FSOKAY == (sblock.fs_state + sblock.fs_time))
4132 		grow_fs_clean = sblock.fs_clean;
4133 	else
4134 		grow_fs_clean = FSBAD;
4135 	sblock.fs_clean = FSBAD;
4136 	sblock.fs_state = FSOKAY - sblock.fs_time;
4137 	isbad = 1;
4138 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
4139 }
4140 
4141 void
4142 checkdev(char *rdev, char *bdev)
4143 {
4144 	struct stat64	statarea;
4145 
4146 	if (stat64(bdev, &statarea) < 0) {
4147 		(void) fprintf(stderr, gettext("can't check mount point; "));
4148 		(void) fprintf(stderr, gettext("can't stat %s\n"), bdev);
4149 		lockexit(32);
4150 	}
4151 	if ((statarea.st_mode & S_IFMT) != S_IFBLK) {
4152 		(void) fprintf(stderr, gettext(
4153 		    "can't check mount point; %s is not a block device\n"),
4154 		    bdev);
4155 		lockexit(32);
4156 	}
4157 	if (stat64(rdev, &statarea) < 0) {
4158 		(void) fprintf(stderr, gettext("can't stat %s\n"), rdev);
4159 		lockexit(32);
4160 	}
4161 	if ((statarea.st_mode & S_IFMT) != S_IFCHR) {
4162 		(void) fprintf(stderr,
4163 			gettext("%s is not a character device\n"), rdev);
4164 		lockexit(32);
4165 	}
4166 }
4167 
4168 void
4169 checkmount(struct mnttab *mntp, char *bdevname)
4170 {
4171 	struct stat64	statdir;
4172 	struct stat64	statdev;
4173 
4174 	if (strcmp(bdevname, mntp->mnt_special) == 0) {
4175 		if (stat64(mntp->mnt_mountp, &statdir) == -1) {
4176 			(void) fprintf(stderr, gettext("can't stat %s\n"),
4177 				mntp->mnt_mountp);
4178 			lockexit(32);
4179 		}
4180 		if (stat64(mntp->mnt_special, &statdev) == -1) {
4181 			(void) fprintf(stderr, gettext("can't stat %s\n"),
4182 				mntp->mnt_special);
4183 			lockexit(32);
4184 		}
4185 		if (statdir.st_dev != statdev.st_rdev) {
4186 			(void) fprintf(stderr, gettext(
4187 				"%s is not mounted on %s; mnttab(4) wrong\n"),
4188 				mntp->mnt_special, mntp->mnt_mountp);
4189 			lockexit(32);
4190 		}
4191 		ismounted = 1;
4192 		if (directory) {
4193 			if (strcmp(mntp->mnt_mountp, directory) != 0) {
4194 				(void) fprintf(stderr,
4195 				gettext("%s is mounted on %s, not %s\n"),
4196 				    bdevname, mntp->mnt_mountp, directory);
4197 				lockexit(32);
4198 			}
4199 		} else {
4200 			if (grow)
4201 				(void) fprintf(stderr, gettext(
4202 				    "%s is mounted on %s; can't growfs\n"),
4203 				    bdevname, mntp->mnt_mountp);
4204 			else
4205 				(void) fprintf(stderr,
4206 				    gettext("%s is mounted, can't mkfs\n"),
4207 				    bdevname);
4208 			lockexit(32);
4209 		}
4210 	}
4211 }
4212 
4213 struct dinode	*dibuf	= 0;
4214 diskaddr_t	difrag	= 0;
4215 
4216 struct dinode *
4217 gdinode(ino_t ino)
4218 {
4219 	/*
4220 	 * read the block of inodes containing inode number ino
4221 	 */
4222 	if (dibuf == 0)
4223 		dibuf = (struct dinode *)malloc((unsigned)sblock.fs_bsize);
4224 	if (itod(&sblock, ino) != difrag) {
4225 		difrag = itod(&sblock, ino);
4226 		rdfs(fsbtodb(&sblock, (uint64_t)difrag), (int)sblock.fs_bsize,
4227 			(char *)dibuf);
4228 	}
4229 	return (dibuf + (ino % INOPB(&sblock)));
4230 }
4231 
4232 /*
4233  * structure that manages the frags we need for extended summary info
4234  *	These frags can be:
4235  *		free
4236  *		data  block
4237  *		alloc block
4238  */
4239 struct csfrag {
4240 	struct csfrag	*next;		/* next entry */
4241 	daddr32_t	 ofrag;		/* old frag */
4242 	daddr32_t	 nfrag;		/* new frag */
4243 	long		 cylno;		/* cylno of nfrag */
4244 	long		 frags;		/* number of frags */
4245 	long		 size;		/* size in bytes */
4246 	ino_t		 ino;		/* inode number */
4247 	long		 fixed;		/* Boolean - Already fixed? */
4248 };
4249 struct csfrag	*csfrag;		/* state unknown */
4250 struct csfrag	*csfragino;		/* frags belonging to an inode */
4251 struct csfrag	*csfragfree;		/* frags that are free */
4252 
4253 daddr32_t maxcsfrag	= 0;		/* maximum in range */
4254 daddr32_t mincsfrag	= 0x7fffffff;	/* minimum in range */
4255 
4256 int
4257 csfraginrange(daddr32_t frag)
4258 {
4259 	return ((frag >= mincsfrag) && (frag <= maxcsfrag));
4260 }
4261 
4262 struct csfrag *
4263 findcsfrag(daddr32_t frag, struct csfrag **cfap)
4264 {
4265 	struct csfrag	*cfp;
4266 
4267 	if (!csfraginrange(frag))
4268 		return (NULL);
4269 
4270 	for (cfp = *cfap; cfp; cfp = cfp->next)
4271 		if (cfp->ofrag == frag)
4272 			return (cfp);
4273 	return (NULL);
4274 }
4275 
4276 void
4277 checkindirect(ino_t ino, daddr32_t *fragsp, daddr32_t frag, int level)
4278 {
4279 	int			i;
4280 	int			ne	= sblock.fs_bsize / sizeof (daddr32_t);
4281 	daddr32_t			fsb[MAXBSIZE / sizeof (daddr32_t)];
4282 
4283 	if (frag == 0)
4284 		return;
4285 
4286 	rdfs(fsbtodb(&sblock, frag), (int)sblock.fs_bsize,
4287 	    (char *)fsb);
4288 
4289 	checkdirect(ino, fragsp, fsb, sblock.fs_bsize / sizeof (daddr32_t));
4290 
4291 	if (level)
4292 		for (i = 0; i < ne && *fragsp; ++i)
4293 			checkindirect(ino, fragsp, fsb[i], level-1);
4294 }
4295 
4296 void
4297 addcsfrag(ino_t ino, daddr32_t frag, struct csfrag **cfap)
4298 {
4299 	struct csfrag	*cfp, *curr, *prev;
4300 
4301 	/*
4302 	 * establish a range for faster checking in csfraginrange()
4303 	 */
4304 	if (frag > maxcsfrag)
4305 		maxcsfrag = frag;
4306 	if (frag < mincsfrag)
4307 		mincsfrag = frag;
4308 
4309 	/*
4310 	 * if this frag belongs to an inode and is not the start of a block
4311 	 *	then see if it is part of a frag range for this inode
4312 	 */
4313 	if (ino && (frag % sblock.fs_frag))
4314 		for (cfp = *cfap; cfp; cfp = cfp->next) {
4315 			if (ino != cfp->ino)
4316 				continue;
4317 			if (frag != cfp->ofrag + cfp->frags)
4318 				continue;
4319 			cfp->frags++;
4320 			cfp->size += sblock.fs_fsize;
4321 			return;
4322 		}
4323 	/*
4324 	 * allocate a csfrag entry and insert it in an increasing order into the
4325 	 * specified list
4326 	 */
4327 	cfp = (struct csfrag *)calloc(1, sizeof (struct csfrag));
4328 	cfp->ino	= ino;
4329 	cfp->ofrag	= frag;
4330 	cfp->frags	= 1;
4331 	cfp->size	= sblock.fs_fsize;
4332 	for (prev = NULL, curr = *cfap; curr != NULL;
4333 		prev = curr, curr = curr->next) {
4334 		if (frag < curr->ofrag) {
4335 			cfp->next = curr;
4336 			if (prev)
4337 				prev->next = cfp;	/* middle element */
4338 			else
4339 				*cfap = cfp;		/* first element */
4340 			break;
4341 		}
4342 		if (curr->next == NULL) {
4343 			curr->next = cfp;		/* last element	*/
4344 			break;
4345 		}
4346 	}
4347 	if (*cfap == NULL)	/* will happen only once */
4348 		*cfap = cfp;
4349 }
4350 
4351 void
4352 delcsfrag(daddr32_t frag, struct csfrag **cfap)
4353 {
4354 	struct csfrag	*cfp;
4355 	struct csfrag	**cfpp;
4356 
4357 	/*
4358 	 * free up entry whose beginning frag matches
4359 	 */
4360 	for (cfpp = cfap; *cfpp; cfpp = &(*cfpp)->next) {
4361 		if (frag == (*cfpp)->ofrag) {
4362 			cfp = *cfpp;
4363 			*cfpp = (*cfpp)->next;
4364 			free((char *)cfp);
4365 			return;
4366 		}
4367 	}
4368 }
4369 
4370 /*
4371  * See whether any of the direct blocks in the array pointed by "db" and of
4372  * length "ne" are within the range of frags needed to extend the cylinder
4373  * summary. If so, remove those frags from the "as-yet-unclassified" list
4374  * (csfrag) and add them to the "owned-by-inode" list (csfragino).
4375  * For each such frag found, decrement the frag count pointed to by fragsp.
4376  * "ino" is the inode that contains (either directly or indirectly) the frags
4377  * being checked.
4378  */
4379 void
4380 checkdirect(ino_t ino, daddr32_t *fragsp, daddr32_t *db, int ne)
4381 {
4382 	int	 i;
4383 	int	 j;
4384 	int	 found;
4385 	diskaddr_t	 frag;
4386 
4387 	/*
4388 	 * scan for allocation within the new summary info range
4389 	 */
4390 	for (i = 0; i < ne && *fragsp; ++i) {
4391 		if ((frag = *db++) != 0) {
4392 			found = 0;
4393 			for (j = 0; j < sblock.fs_frag && *fragsp; ++j) {
4394 				if (found || (found = csfraginrange(frag))) {
4395 					addcsfrag(ino, frag, &csfragino);
4396 					delcsfrag(frag, &csfrag);
4397 				}
4398 				++frag;
4399 				--(*fragsp);
4400 			}
4401 		}
4402 	}
4403 }
4404 
4405 void
4406 findcsfragino()
4407 {
4408 	int		 i;
4409 	int		 j;
4410 	daddr32_t		 frags;
4411 	struct dinode	*dp;
4412 
4413 	/*
4414 	 * scan all old inodes looking for allocations in the new
4415 	 * summary info range.  Move the affected frag from the
4416 	 * generic csfrag list onto the `owned-by-inode' list csfragino.
4417 	 */
4418 	for (i = UFSROOTINO; i < grow_fs_ncg*sblock.fs_ipg && csfrag; ++i) {
4419 		dp = gdinode((ino_t)i);
4420 		switch (dp->di_mode & IFMT) {
4421 			case IFSHAD	:
4422 			case IFLNK 	:
4423 			case IFDIR 	:
4424 			case IFREG 	: break;
4425 			default		: continue;
4426 		}
4427 
4428 		frags   = dbtofsb(&sblock, dp->di_blocks);
4429 
4430 		checkdirect((ino_t)i, &frags, &dp->di_db[0], NDADDR+NIADDR);
4431 		for (j = 0; j < NIADDR && frags; ++j) {
4432 			/* Negate the block if its an fallocate'd block */
4433 			if (dp->di_ib[j] < 0 && dp->di_ib[j] != UFS_HOLE)
4434 				checkindirect((ino_t)i, &frags,
4435 				    -(dp->di_ib[j]), j);
4436 			else
4437 				checkindirect((ino_t)i, &frags,
4438 				    dp->di_ib[j], j);
4439 		}
4440 	}
4441 }
4442 
4443 void
4444 fixindirect(daddr32_t frag, int level)
4445 {
4446 	int			 i;
4447 	int			 ne	= sblock.fs_bsize / sizeof (daddr32_t);
4448 	daddr32_t			fsb[MAXBSIZE / sizeof (daddr32_t)];
4449 
4450 	if (frag == 0)
4451 		return;
4452 
4453 	rdfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4454 	    (char *)fsb);
4455 
4456 	fixdirect((caddr_t)fsb, frag, fsb, ne);
4457 
4458 	if (level)
4459 		for (i = 0; i < ne; ++i)
4460 			fixindirect(fsb[i], level-1);
4461 }
4462 
4463 void
4464 fixdirect(caddr_t bp, daddr32_t frag, daddr32_t *db, int ne)
4465 {
4466 	int	 i;
4467 	struct csfrag	*cfp;
4468 
4469 	for (i = 0; i < ne; ++i, ++db) {
4470 		if (*db == 0)
4471 			continue;
4472 		if ((cfp = findcsfrag(*db, &csfragino)) == NULL)
4473 			continue;
4474 		*db = cfp->nfrag;
4475 		cfp->fixed = 1;
4476 		wtfs(fsbtodb(&sblock, (uint64_t)frag), (int)sblock.fs_bsize,
4477 		    bp);
4478 	}
4479 }
4480 
4481 void
4482 fixcsfragino()
4483 {
4484 	int		 i;
4485 	struct dinode	*dp;
4486 	struct csfrag	*cfp;
4487 
4488 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4489 		if (cfp->fixed)
4490 			continue;
4491 		dp = gdinode((ino_t)cfp->ino);
4492 		fixdirect((caddr_t)dibuf, difrag, dp->di_db, NDADDR+NIADDR);
4493 		for (i = 0; i < NIADDR; ++i)
4494 			fixindirect(dp->di_ib[i], i);
4495 	}
4496 }
4497 
4498 /*
4499  * Read the cylinders summary information specified by settings in the
4500  * passed 'fs' structure into a new allocated array of csum structures.
4501  * The caller is responsible for freeing the returned array.
4502  * Return a pointer to an array of csum structures.
4503  */
4504 static struct csum *
4505 read_summaryinfo(struct	fs *fsp)
4506 {
4507 	struct csum 	*csp;
4508 	int		i;
4509 
4510 	if ((csp = malloc((size_t)fsp->fs_cssize)) == NULL) {
4511 		(void) fprintf(stderr, gettext("cannot create csum list,"
4512 			" not enough memory\n"));
4513 		exit(32);
4514 	}
4515 
4516 	for (i = 0; i < fsp->fs_cssize; i += fsp->fs_bsize) {
4517 		rdfs(fsbtodb(fsp,
4518 			(uint64_t)(fsp->fs_csaddr + numfrags(fsp, i))),
4519 			(int)(fsp->fs_cssize - i < fsp->fs_bsize ?
4520 			fsp->fs_cssize - i : fsp->fs_bsize),
4521 			((caddr_t)csp) + i);
4522 	}
4523 
4524 	return (csp);
4525 }
4526 
4527 /*
4528  * Check the allocation of fragments that are to be made part of a csum block.
4529  * A fragment is allocated if it is either in the csfragfree list or, it is
4530  * in the csfragino list and has new frags associated with it.
4531  * Return the number of allocated fragments.
4532  */
4533 int64_t
4534 checkfragallocated(daddr32_t frag)
4535 {
4536 	struct 	csfrag	*cfp;
4537 	/*
4538 	 * Since the lists are sorted we can break the search if the asked
4539 	 * frag is smaller then the one in the list.
4540 	 */
4541 	for (cfp = csfragfree; cfp != NULL && frag >= cfp->ofrag;
4542 		cfp = cfp->next) {
4543 		if (frag == cfp->ofrag)
4544 			return (1);
4545 	}
4546 	for (cfp = csfragino; cfp != NULL && frag >= cfp->ofrag;
4547 		cfp = cfp->next) {
4548 		if (frag == cfp->ofrag && cfp->nfrag != 0)
4549 			return (cfp->frags);
4550 	}
4551 
4552 	return (0);
4553 }
4554 
4555 /*
4556  * Figure out how much the filesystem can be grown. The limiting factor is
4557  * the available free space needed to extend the cg summary info block.
4558  * The free space is determined in three steps:
4559  * - Try to extend the cg summary block to the required size.
4560  * - Find free blocks in last cg.
4561  * - Find free space in the last already allocated fragment of the summary info
4562  *   block, and use it for additional csum structures.
4563  * Return the maximum size of the new filesystem or 0 if it can't be grown.
4564  * Please note that this function leaves the global list pointers csfrag,
4565  * csfragfree, and csfragino initialized, and the caller is responsible for
4566  * freeing the lists.
4567  */
4568 diskaddr_t
4569 probe_summaryinfo()
4570 {
4571 	/* fragments by which the csum block can be extended. */
4572 	int64_t 	growth_csum_frags = 0;
4573 	/* fragments by which the filesystem can be extended. */
4574 	int64_t		growth_fs_frags = 0;
4575 	int64_t		new_fs_cssize;	/* size of csum blk in the new FS */
4576 	int64_t		new_fs_ncg;	/* number of cg in the new FS */
4577 	int64_t 	spare_csum;
4578 	daddr32_t	oldfrag_daddr;
4579 	daddr32_t	newfrag_daddr;
4580 	daddr32_t	daddr;
4581 	int		i;
4582 
4583 	/*
4584 	 * read and verify the superblock
4585 	 */
4586 	rdfs((diskaddr_t)(SBOFF / sectorsize), (int)sbsize, (char *)&sblock);
4587 	(void) checksblock(sblock, 0);
4588 
4589 	/*
4590 	 * check how much we can extend the cg summary info block
4591 	 */
4592 
4593 	/*
4594 	 * read current summary information
4595 	 */
4596 	fscs = read_summaryinfo(&sblock);
4597 
4598 	/*
4599 	 * build list of frags needed for cg summary info block extension
4600 	 */
4601 	oldfrag_daddr = howmany(sblock.fs_cssize, sblock.fs_fsize) +
4602 		sblock.fs_csaddr;
4603 	new_fs_ncg = howmany(dbtofsb(&sblock, fssize_db), sblock.fs_fpg);
4604 	new_fs_cssize = fragroundup(&sblock, new_fs_ncg * sizeof (struct csum));
4605 	newfrag_daddr = howmany(new_fs_cssize, sblock.fs_fsize) +
4606 		sblock.fs_csaddr;
4607 	/*
4608 	 * add all of the frags that are required to grow the cyl summary to the
4609 	 * csfrag list, which is the generic/unknown list, since at this point
4610 	 * we don't yet know the state of those frags.
4611 	 */
4612 	for (daddr = oldfrag_daddr; daddr < newfrag_daddr; daddr++)
4613 		addcsfrag((ino_t)0, daddr, &csfrag);
4614 
4615 	/*
4616 	 * filter free fragments and allocate them. Note that the free frags
4617 	 * must be allocated first otherwise they could be grabbed by
4618 	 * alloccsfragino() for data frags.
4619 	 */
4620 	findcsfragfree();
4621 	alloccsfragfree();
4622 
4623 	/*
4624 	 * filter fragments owned by inodes and allocate them
4625 	 */
4626 	grow_fs_ncg = sblock.fs_ncg; /* findcsfragino() needs this glob. var. */
4627 	findcsfragino();
4628 	alloccsfragino();
4629 
4630 	if (notenoughspace()) {
4631 		/*
4632 		 * check how many consecutive fragments could be allocated
4633 		 * in both lists.
4634 		 */
4635 		int64_t tmp_frags;
4636 		for (daddr = oldfrag_daddr; daddr < newfrag_daddr;
4637 			daddr += tmp_frags) {
4638 			if ((tmp_frags = checkfragallocated(daddr)) > 0)
4639 				growth_csum_frags += tmp_frags;
4640 			else
4641 				break;
4642 		}
4643 	} else {
4644 		/*
4645 		 * We have all we need for the new desired size,
4646 		 * so clean up and report back.
4647 		 */
4648 		return (fssize_db);
4649 	}
4650 
4651 	/*
4652 	 * given the number of fragments by which the csum block can be grown
4653 	 * compute by how many new fragments the FS can be increased.
4654 	 * It is the number of csum instances per fragment multiplied by
4655 	 * `growth_csum_frags' and the number of fragments per cylinder group.
4656 	 */
4657 	growth_fs_frags = howmany(sblock.fs_fsize, sizeof (struct csum)) *
4658 		growth_csum_frags * sblock.fs_fpg;
4659 
4660 	/*
4661 	 * compute free fragments in the last cylinder group
4662 	 */
4663 	rdcg(sblock.fs_ncg - 1);
4664 	growth_fs_frags += sblock.fs_fpg - acg.cg_ndblk;
4665 
4666 	/*
4667 	 * compute how many csum instances are unused in the old csum block.
4668 	 * For each unused csum instance the FS can be grown by one cylinder
4669 	 * group without extending the csum block.
4670 	 */
4671 	spare_csum = howmany(sblock.fs_cssize, sizeof (struct csum)) -
4672 		sblock.fs_ncg;
4673 	if (spare_csum > 0)
4674 		growth_fs_frags += spare_csum * sblock.fs_fpg;
4675 
4676 	/*
4677 	 * recalculate the new filesystem size in sectors, shorten it by
4678 	 * the requested size `fssize_db' if necessary.
4679 	 */
4680 	if (growth_fs_frags > 0) {
4681 		diskaddr_t sect;
4682 		sect = (sblock.fs_size + growth_fs_frags) * sblock.fs_nspf;
4683 		return ((sect > fssize_db) ? fssize_db : sect);
4684 	}
4685 
4686 	return (0);
4687 }
4688 
4689 void
4690 extendsummaryinfo()
4691 {
4692 	int64_t		i;
4693 	int		localtest	= test;
4694 	int64_t		frags;
4695 	daddr32_t		oldfrag;
4696 	daddr32_t		newfrag;
4697 
4698 	/*
4699 	 * if no-write (-N), don't bother
4700 	 */
4701 	if (Nflag)
4702 		return;
4703 
4704 again:
4705 	flcg();
4706 	/*
4707 	 * summary info did not change size -- do nothing unless in test mode
4708 	 */
4709 	if (grow_fs_cssize == sblock.fs_cssize)
4710 		if (!localtest)
4711 			return;
4712 
4713 	/*
4714 	 * build list of frags needed for additional summary information
4715 	 */
4716 	oldfrag = howmany(grow_fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4717 	newfrag = howmany(sblock.fs_cssize, sblock.fs_fsize) + grow_fs_csaddr;
4718 	/*
4719 	 * add all of the frags that are required to grow the cyl summary to the
4720 	 * csfrag list, which is the generic/unknown list, since at this point
4721 	 * we don't yet know the state of those frags.
4722 	 */
4723 	for (i = oldfrag, frags = 0; i < newfrag; ++i, ++frags)
4724 		addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4725 	/*
4726 	 * reduce the number of data blocks in the file system (fs_dsize) by
4727 	 * the number of frags that need to be added to the cyl summary
4728 	 */
4729 	sblock.fs_dsize -= (newfrag - oldfrag);
4730 
4731 	/*
4732 	 * In test mode, we move more data than necessary from
4733 	 * cylinder group 0.  The lookup/allocate/move code can be
4734 	 * better stressed without having to create HUGE file systems.
4735 	 */
4736 	if (localtest)
4737 		for (i = newfrag; i < grow_sifrag; ++i) {
4738 			if (frags >= testfrags)
4739 				break;
4740 			frags++;
4741 			addcsfrag((ino_t)0, (diskaddr_t)i, &csfrag);
4742 		}
4743 
4744 	/*
4745 	 * move frags to free or inode lists, depending on owner
4746 	 */
4747 	findcsfragfree();
4748 	findcsfragino();
4749 
4750 	/*
4751 	 * if not all frags can be located, file system must be inconsistent
4752 	 */
4753 	if (csfrag) {
4754 		isbad = 1;	/* should already be set, but make sure */
4755 		lockexit(32);
4756 	}
4757 
4758 	/*
4759 	 * allocate the free frags. Note that the free frags must be allocated
4760 	 * first otherwise they could be grabbed by alloccsfragino() for data
4761 	 * frags.
4762 	 */
4763 	alloccsfragfree();
4764 	/*
4765 	 * allocate extra space for inode frags
4766 	 */
4767 	alloccsfragino();
4768 
4769 	/*
4770 	 * not enough space
4771 	 */
4772 	if (notenoughspace()) {
4773 		unalloccsfragfree();
4774 		unalloccsfragino();
4775 		if (localtest && !testforce) {
4776 			localtest = 0;
4777 			goto again;
4778 		}
4779 		(void) fprintf(stderr, gettext("Not enough free space\n"));
4780 		lockexit(NOTENOUGHSPACE);
4781 	}
4782 
4783 	/*
4784 	 * copy the data from old frags to new frags
4785 	 */
4786 	copycsfragino();
4787 
4788 	/*
4789 	 * fix the inodes to point to the new frags
4790 	 */
4791 	fixcsfragino();
4792 
4793 	/*
4794 	 * We may have moved more frags than we needed.  Free them.
4795 	 */
4796 	rdcg((long)0);
4797 	for (i = newfrag; i <= maxcsfrag; ++i)
4798 		setbit(cg_blksfree(&acg), i-cgbase(&sblock, 0));
4799 	wtcg();
4800 
4801 	flcg();
4802 }
4803 
4804 /*
4805  * Check if all fragments in the `csfragino' list were reallocated.
4806  */
4807 int
4808 notenoughspace()
4809 {
4810 	struct csfrag	*cfp;
4811 
4812 	/*
4813 	 * If any element in the csfragino array has a "new frag location"
4814 	 * of 0, the allocfrags() function was unsuccessful in allocating
4815 	 * space for moving the frag represented by this array element.
4816 	 */
4817 	for (cfp = csfragino; cfp; cfp = cfp->next)
4818 		if (cfp->nfrag == 0)
4819 			return (1);
4820 	return (0);
4821 }
4822 
4823 void
4824 unalloccsfragino()
4825 {
4826 	struct csfrag	*cfp;
4827 
4828 	while ((cfp = csfragino) != NULL) {
4829 		if (cfp->nfrag)
4830 			freefrags(cfp->nfrag, cfp->frags, cfp->cylno);
4831 		delcsfrag(cfp->ofrag, &csfragino);
4832 	}
4833 }
4834 
4835 void
4836 unalloccsfragfree()
4837 {
4838 	struct csfrag	*cfp;
4839 
4840 	while ((cfp = csfragfree) != NULL) {
4841 		freefrags(cfp->ofrag, cfp->frags, cfp->cylno);
4842 		delcsfrag(cfp->ofrag, &csfragfree);
4843 	}
4844 }
4845 
4846 /*
4847  * For each frag in the "as-yet-unclassified" list (csfrag), see if
4848  * it's free (i.e., its bit is set in the free frag bit map).  If so,
4849  * move it from the "as-yet-unclassified" list to the csfragfree list.
4850  */
4851 void
4852 findcsfragfree()
4853 {
4854 	struct csfrag	*cfp;
4855 	struct csfrag	*cfpnext;
4856 
4857 	/*
4858 	 * move free frags onto the free-frag list
4859 	 */
4860 	rdcg((long)0);
4861 	for (cfp = csfrag; cfp; cfp = cfpnext) {
4862 		cfpnext = cfp->next;
4863 		if (isset(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0))) {
4864 			addcsfrag(cfp->ino, cfp->ofrag, &csfragfree);
4865 			delcsfrag(cfp->ofrag, &csfrag);
4866 		}
4867 	}
4868 }
4869 
4870 void
4871 copycsfragino()
4872 {
4873 	struct csfrag	*cfp;
4874 	char		buf[MAXBSIZE];
4875 
4876 	/*
4877 	 * copy data from old frags to newly allocated frags
4878 	 */
4879 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4880 		rdfs(fsbtodb(&sblock, (uint64_t)cfp->ofrag), (int)cfp->size,
4881 		    buf);
4882 		wtfs(fsbtodb(&sblock, (uint64_t)cfp->nfrag), (int)cfp->size,
4883 		    buf);
4884 	}
4885 }
4886 
4887 long	curcylno	= -1;
4888 int	cylnodirty	= 0;
4889 
4890 void
4891 rdcg(long cylno)
4892 {
4893 	if (cylno != curcylno) {
4894 		flcg();
4895 		curcylno = cylno;
4896 		rdfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4897 			(int)sblock.fs_cgsize, (char *)&acg);
4898 	}
4899 }
4900 
4901 void
4902 flcg()
4903 {
4904 	if (cylnodirty) {
4905 		if (debug && Pflag) {
4906 			(void) fprintf(stderr,
4907 				"Assert: cylnodirty set in probe mode\n");
4908 			return;
4909 		}
4910 		resetallocinfo();
4911 		wtfs(fsbtodb(&sblock, (uint64_t)cgtod(&sblock, curcylno)),
4912 			(int)sblock.fs_cgsize, (char *)&acg);
4913 		cylnodirty = 0;
4914 	}
4915 	curcylno = -1;
4916 }
4917 
4918 void
4919 wtcg()
4920 {
4921 	if (!Pflag) {
4922 		/* probe mode should never write to disk */
4923 		cylnodirty = 1;
4924 	}
4925 }
4926 
4927 void
4928 allocfrags(long frags, daddr32_t *fragp, long *cylnop)
4929 {
4930 	int	 i;
4931 	int	 j;
4932 	long	 bits;
4933 	long	 bit;
4934 
4935 	/*
4936 	 * Allocate a free-frag range in an old cylinder group
4937 	 */
4938 	for (i = 0, *fragp = 0; i < grow_fs_ncg; ++i) {
4939 		if (((fscs+i)->cs_nffree < frags) && ((fscs+i)->cs_nbfree == 0))
4940 			continue;
4941 		rdcg((long)i);
4942 		bit = bits = 0;
4943 		while (findfreerange(&bit, &bits)) {
4944 			if (frags <= bits)  {
4945 				for (j = 0; j < frags; ++j)
4946 					clrbit(cg_blksfree(&acg), bit+j);
4947 				wtcg();
4948 				*cylnop = i;
4949 				*fragp  = bit + cgbase(&sblock, i);
4950 				return;
4951 			}
4952 			bit += bits;
4953 		}
4954 	}
4955 }
4956 
4957 /*
4958  * Allocate space for frags that need to be moved in order to free up space for
4959  * expanding the cylinder summary info.
4960  * For each frag that needs to be moved (each frag or range of frags in
4961  * the csfragino list), allocate a new location and store the frag number
4962  * of that new location in the nfrag field of the csfrag struct.
4963  * If a new frag can't be allocated for any element in the csfragino list,
4964  * set the new frag number for that element to 0 and return immediately.
4965  * The notenoughspace() function will detect this condition.
4966  */
4967 void
4968 alloccsfragino()
4969 {
4970 	struct csfrag	*cfp;
4971 
4972 	/*
4973 	 * allocate space for inode frag ranges
4974 	 */
4975 	for (cfp = csfragino; cfp; cfp = cfp->next) {
4976 		allocfrags(cfp->frags, &cfp->nfrag, &cfp->cylno);
4977 		if (cfp->nfrag == 0)
4978 			break;
4979 	}
4980 }
4981 
4982 void
4983 alloccsfragfree()
4984 {
4985 	struct csfrag	*cfp;
4986 
4987 	/*
4988 	 * allocate the free frags needed for extended summary info
4989 	 */
4990 	rdcg((long)0);
4991 
4992 	for (cfp = csfragfree; cfp; cfp = cfp->next)
4993 		clrbit(cg_blksfree(&acg), cfp->ofrag - cgbase(&sblock, 0));
4994 
4995 	wtcg();
4996 }
4997 
4998 void
4999 freefrags(daddr32_t frag, long frags, long cylno)
5000 {
5001 	int	i;
5002 
5003 	/*
5004 	 * free frags
5005 	 */
5006 	rdcg(cylno);
5007 	for (i = 0; i < frags; ++i) {
5008 		setbit(cg_blksfree(&acg), (frag+i) - cgbase(&sblock, cylno));
5009 	}
5010 	wtcg();
5011 }
5012 
5013 int
5014 findfreerange(long *bitp, long *bitsp)
5015 {
5016 	long	 bit;
5017 
5018 	/*
5019 	 * find a range of free bits in a cylinder group bit map
5020 	 */
5021 	for (bit = *bitp, *bitsp = 0; bit < acg.cg_ndblk; ++bit)
5022 		if (isset(cg_blksfree(&acg), bit))
5023 			break;
5024 
5025 	if (bit >= acg.cg_ndblk)
5026 		return (0);
5027 
5028 	*bitp  = bit;
5029 	*bitsp = 1;
5030 	for (++bit; bit < acg.cg_ndblk; ++bit, ++(*bitsp)) {
5031 		if ((bit % sblock.fs_frag) == 0)
5032 			break;
5033 		if (isclr(cg_blksfree(&acg), bit))
5034 			break;
5035 	}
5036 	return (1);
5037 }
5038 
5039 void
5040 resetallocinfo()
5041 {
5042 	long	cno;
5043 	long	bit;
5044 	long	bits;
5045 
5046 	/*
5047 	 * Compute the free blocks/frags info and update the appropriate
5048 	 * inmemory superblock, summary info, and cylinder group fields
5049 	 */
5050 	sblock.fs_cstotal.cs_nffree -= acg.cg_cs.cs_nffree;
5051 	sblock.fs_cstotal.cs_nbfree -= acg.cg_cs.cs_nbfree;
5052 
5053 	acg.cg_cs.cs_nffree = 0;
5054 	acg.cg_cs.cs_nbfree = 0;
5055 
5056 	bzero((caddr_t)acg.cg_frsum, sizeof (acg.cg_frsum));
5057 	bzero((caddr_t)cg_blktot(&acg), (int)(acg.cg_iusedoff-acg.cg_btotoff));
5058 
5059 	bit = bits = 0;
5060 	while (findfreerange(&bit, &bits)) {
5061 		if (bits == sblock.fs_frag) {
5062 			acg.cg_cs.cs_nbfree++;
5063 			cno = cbtocylno(&sblock, bit);
5064 			cg_blktot(&acg)[cno]++;
5065 			cg_blks(&sblock, &acg, cno)[cbtorpos(&sblock, bit)]++;
5066 		} else {
5067 			acg.cg_cs.cs_nffree += bits;
5068 			acg.cg_frsum[bits]++;
5069 		}
5070 		bit += bits;
5071 	}
5072 
5073 	*(fscs + acg.cg_cgx) = acg.cg_cs;
5074 
5075 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
5076 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
5077 }
5078 
5079 void
5080 extendcg(long cylno)
5081 {
5082 	int	i;
5083 	diskaddr_t	dupper;
5084 	diskaddr_t	cbase;
5085 	diskaddr_t	dmax;
5086 
5087 	/*
5088 	 * extend the cylinder group at the end of the old file system
5089 	 * if it was partially allocated becase of lack of space
5090 	 */
5091 	flcg();
5092 	rdcg(cylno);
5093 
5094 	dupper = acg.cg_ndblk;
5095 	if (cylno == sblock.fs_ncg - 1)
5096 		acg.cg_ncyl = sblock.fs_ncyl - (sblock.fs_cpg * cylno);
5097 	else
5098 		acg.cg_ncyl = sblock.fs_cpg;
5099 	cbase = cgbase(&sblock, cylno);
5100 	dmax = cbase + sblock.fs_fpg;
5101 	if (dmax > sblock.fs_size)
5102 		dmax = sblock.fs_size;
5103 	acg.cg_ndblk = dmax - cbase;
5104 
5105 	for (i = dupper; i < acg.cg_ndblk; ++i)
5106 		setbit(cg_blksfree(&acg), i);
5107 
5108 	sblock.fs_dsize += (acg.cg_ndblk - dupper);
5109 
5110 	wtcg();
5111 	flcg();
5112 }
5113 
5114 struct lockfs	lockfs;
5115 int		lockfd;
5116 int		islocked;
5117 int		lockfskey;
5118 char		lockfscomment[128];
5119 
5120 void
5121 ulockfs()
5122 {
5123 	/*
5124 	 * if the file system was locked, unlock it before exiting
5125 	 */
5126 	if (islocked == 0)
5127 		return;
5128 
5129 	/*
5130 	 * first, check if the lock held
5131 	 */
5132 	lockfs.lf_flags = LOCKFS_MOD;
5133 	if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5134 		perror(directory);
5135 		lockexit(32);
5136 	}
5137 
5138 	if (LOCKFS_IS_MOD(&lockfs)) {
5139 		(void) fprintf(stderr,
5140 			gettext("FILE SYSTEM CHANGED DURING GROWFS!\n"));
5141 		(void) fprintf(stderr,
5142 			gettext("   See lockfs(1), umount(1), and fsck(1)\n"));
5143 		lockexit(32);
5144 	}
5145 	/*
5146 	 * unlock the file system
5147 	 */
5148 	lockfs.lf_lock  = LOCKFS_ULOCK;
5149 	lockfs.lf_flags = 0;
5150 	lockfs.lf_key   = lockfskey;
5151 	clockfs();
5152 	if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5153 		perror(directory);
5154 		lockexit(32);
5155 	}
5156 }
5157 
5158 void
5159 wlockfs()
5160 {
5161 
5162 	/*
5163 	 * if no-write (-N), don't bother
5164 	 */
5165 	if (Nflag)
5166 		return;
5167 	/*
5168 	 * open the mountpoint, and write lock the file system
5169 	 */
5170 	if ((lockfd = open64(directory, O_RDONLY)) == -1) {
5171 		perror(directory);
5172 		lockexit(32);
5173 	}
5174 
5175 	/*
5176 	 * check if it is already locked
5177 	 */
5178 	if (ioctl(lockfd, _FIOLFSS, &lockfs) == -1) {
5179 		perror(directory);
5180 		lockexit(32);
5181 	}
5182 
5183 	if (lockfs.lf_lock != LOCKFS_WLOCK) {
5184 		lockfs.lf_lock  = LOCKFS_WLOCK;
5185 		lockfs.lf_flags = 0;
5186 		lockfs.lf_key   = 0;
5187 		clockfs();
5188 		if (ioctl(lockfd, _FIOLFS, &lockfs) == -1) {
5189 			perror(directory);
5190 			lockexit(32);
5191 		}
5192 	}
5193 	islocked = 1;
5194 	lockfskey = lockfs.lf_key;
5195 }
5196 
5197 void
5198 clockfs()
5199 {
5200 	time_t	t;
5201 	char	*ct;
5202 
5203 	(void) time(&t);
5204 	ct = ctime(&t);
5205 	ct[strlen(ct)-1] = '\0';
5206 
5207 	(void) sprintf(lockfscomment, "%s -- mkfs pid %d", ct, getpid());
5208 	lockfs.lf_comlen  = strlen(lockfscomment)+1;
5209 	lockfs.lf_comment = lockfscomment;
5210 }
5211 
5212 /*
5213  * Write the csum records and the superblock
5214  */
5215 void
5216 wtsb()
5217 {
5218 	long	i;
5219 
5220 	/*
5221 	 * write summary information
5222 	 */
5223 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
5224 		wtfs(fsbtodb(&sblock, (uint64_t)(sblock.fs_csaddr +
5225 			numfrags(&sblock, i))),
5226 			(int)(sblock.fs_cssize - i < sblock.fs_bsize ?
5227 			sblock.fs_cssize - i : sblock.fs_bsize),
5228 			((char *)fscs) + i);
5229 
5230 	/*
5231 	 * write superblock
5232 	 */
5233 	sblock.fs_time = mkfstime;
5234 	wtfs((diskaddr_t)(SBOFF / sectorsize), sbsize, (char *)&sblock);
5235 }
5236 
5237 /*
5238  * Verify that the optimization selection is reasonable, and advance
5239  * the global "string" appropriately.
5240  */
5241 static char
5242 checkopt(char *optim)
5243 {
5244 	char	opt;
5245 	int	limit = strcspn(optim, ",");
5246 
5247 	switch (limit) {
5248 	case 0:	/* missing indicator (have comma or nul) */
5249 		(void) fprintf(stderr, gettext(
5250 		    "mkfs: missing optimization flag reset to `t' (time)\n"));
5251 		opt = 't';
5252 		break;
5253 
5254 	case 1: /* single-character indicator */
5255 		opt = *optim;
5256 		if ((opt != 's') && (opt != 't')) {
5257 			(void) fprintf(stderr, gettext(
5258 		    "mkfs: bad optimization value `%c' reset to `t' (time)\n"),
5259 			    opt);
5260 			opt = 't';
5261 		}
5262 		break;
5263 
5264 	default: /* multi-character indicator */
5265 		(void) fprintf(stderr, gettext(
5266 	    "mkfs: bad optimization value `%*.*s' reset to `t' (time)\n"),
5267 		    limit, limit, optim);
5268 		opt = 't';
5269 		break;
5270 	}
5271 
5272 	string += limit;
5273 
5274 	return (opt);
5275 }
5276 
5277 /*
5278  * Verify that the mtb selection is reasonable, and advance
5279  * the global "string" appropriately.
5280  */
5281 static char
5282 checkmtb(char *mtbarg)
5283 {
5284 	char	mtbc;
5285 	int	limit = strcspn(mtbarg, ",");
5286 
5287 	switch (limit) {
5288 	case 0:	/* missing indicator (have comma or nul) */
5289 		(void) fprintf(stderr, gettext(
5290 		    "mkfs: missing mtb flag reset to `n' (no mtb support)\n"));
5291 		mtbc = 'n';
5292 		break;
5293 
5294 	case 1: /* single-character indicator */
5295 		mtbc = tolower(*mtbarg);
5296 		if ((mtbc != 'y') && (mtbc != 'n')) {
5297 			(void) fprintf(stderr, gettext(
5298 		    "mkfs: bad mtb value `%c' reset to `n' (no mtb support)\n"),
5299 			    mtbc);
5300 			mtbc = 'n';
5301 		}
5302 		break;
5303 
5304 	default: /* multi-character indicator */
5305 		(void) fprintf(stderr, gettext(
5306 	    "mkfs: bad mtb value `%*.*s' reset to `n' (no mtb support)\n"),
5307 		    limit, limit, mtbarg);
5308 		opt = 'n';
5309 		break;
5310 	}
5311 
5312 	string += limit;
5313 
5314 	return (mtbc);
5315 }
5316 
5317 /*
5318  * Verify that a value is in a range.  If it is not, resets it to
5319  * its default value if one is supplied, exits otherwise.
5320  *
5321  * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5322  */
5323 static void
5324 range_check(long *varp, char *name, long minimum, long maximum,
5325     long def_val, int user_supplied)
5326 {
5327 	dprintf(("DeBuG %s : %ld (%ld %ld %ld)\n",
5328 		name, *varp, minimum, maximum, def_val));
5329 
5330 	if ((*varp < minimum) || (*varp > maximum)) {
5331 		if (user_supplied != RC_DEFAULT) {
5332 			(void) fprintf(stderr, gettext(
5333 	    "mkfs: bad value for %s: %ld must be between %ld and %ld\n"),
5334 			    name, *varp, minimum, maximum);
5335 		}
5336 		if (def_val != NO_DEFAULT) {
5337 			if (user_supplied) {
5338 				(void) fprintf(stderr,
5339 				    gettext("mkfs: %s reset to default %ld\n"),
5340 				    name, def_val);
5341 			}
5342 			*varp = def_val;
5343 			dprintf(("DeBuG %s : %ld\n", name, *varp));
5344 			return;
5345 		}
5346 		lockexit(2);
5347 		/*NOTREACHED*/
5348 	}
5349 }
5350 
5351 /*
5352  * Verify that a value is in a range.  If it is not, resets it to
5353  * its default value if one is supplied, exits otherwise.
5354  *
5355  * When testing, can compare user_supplied to RC_KEYWORD or RC_POSITIONAL.
5356  */
5357 static void
5358 range_check_64(uint64_t *varp, char *name, uint64_t minimum, uint64_t maximum,
5359     uint64_t def_val, int user_supplied)
5360 {
5361 	if ((*varp < minimum) || (*varp > maximum)) {
5362 		if (user_supplied != RC_DEFAULT) {
5363 			(void) fprintf(stderr, gettext(
5364 	    "mkfs: bad value for %s: %lld must be between %lld and %lld\n"),
5365 			    name, *varp, minimum, maximum);
5366 		}
5367 		if (def_val != NO_DEFAULT) {
5368 			if (user_supplied) {
5369 				(void) fprintf(stderr,
5370 				    gettext("mkfs: %s reset to default %lld\n"),
5371 				    name, def_val);
5372 			}
5373 			*varp = def_val;
5374 			return;
5375 		}
5376 		lockexit(2);
5377 		/*NOTREACHED*/
5378 	}
5379 }
5380 
5381 /*
5382  * Blocks SIGINT from delivery.  Returns the previous mask in the
5383  * buffer provided, so that mask may be later restored.
5384  */
5385 static void
5386 block_sigint(sigset_t *old_mask)
5387 {
5388 	sigset_t block_mask;
5389 
5390 	if (sigemptyset(&block_mask) < 0) {
5391 		fprintf(stderr, gettext("Could not clear signal mask\n"));
5392 		lockexit(3);
5393 	}
5394 	if (sigaddset(&block_mask, SIGINT) < 0) {
5395 		fprintf(stderr, gettext("Could not set signal mask\n"));
5396 		lockexit(3);
5397 	}
5398 	if (sigprocmask(SIG_BLOCK, &block_mask, old_mask) < 0) {
5399 		fprintf(stderr, gettext("Could not block SIGINT\n"));
5400 		lockexit(3);
5401 	}
5402 }
5403 
5404 /*
5405  * Restores the signal mask that was in force before a call
5406  * to block_sigint().  This may actually still have SIGINT blocked,
5407  * if we've been recursively invoked.
5408  */
5409 static void
5410 unblock_sigint(sigset_t *old_mask)
5411 {
5412 	if (sigprocmask(SIG_UNBLOCK, old_mask, (sigset_t *)NULL) < 0) {
5413 		fprintf(stderr, gettext("Could not restore signal mask\n"));
5414 		lockexit(3);
5415 	}
5416 }
5417 
5418 /*
5419  * Attempt to be somewhat graceful about being interrupted, rather than
5420  * just silently leaving the filesystem in an unusable state.
5421  *
5422  * The kernel has blocked SIGINT upon entry, so we don't have to worry
5423  * about recursion if the user starts pounding on the keyboard.
5424  */
5425 static void
5426 recover_from_sigint(int signum)
5427 {
5428 	if (fso > -1) {
5429 		if ((Nflag != 0) || confirm_abort()) {
5430 			lockexit(4);
5431 		}
5432 	}
5433 }
5434 
5435 static int
5436 confirm_abort(void)
5437 {
5438 	char line[80];
5439 
5440 	printf(gettext("\n\nAborting at this point will leave the filesystem "
5441 		"in an inconsistent\nstate.  If you do choose to stop, "
5442 		"you will be given instructions on how to\nrecover "
5443 		"the filesystem.  Do you wish to cancel the filesystem "
5444 		"grow\noperation (y/n)?"));
5445 	if (getline(stdin, line, sizeof (line)) == EOF)
5446 		line[0] = 'y';
5447 
5448 	printf("\n");
5449 	if (line[0] == 'y' || line[0] == 'Y')
5450 		return (1);
5451 	else {
5452 		return (0);
5453 	}
5454 }
5455 
5456 static int
5457 getline(FILE *fp, char *loc, int maxlen)
5458 {
5459 	int n;
5460 	char *p, *lastloc;
5461 
5462 	p = loc;
5463 	lastloc = &p[maxlen-1];
5464 	while ((n = getc(fp)) != '\n') {
5465 		if (n == EOF)
5466 			return (EOF);
5467 		if (!isspace(n) && p < lastloc)
5468 			*p++ = n;
5469 	}
5470 	*p = 0;
5471 	return (p - loc);
5472 }
5473 
5474 /*
5475  * Calculate the maximum value of cylinders-per-group for a file
5476  * system with the characteristics:
5477  *
5478  *	bsize - file system block size
5479  *	fragsize - frag size
5480  *	nbpi - number of bytes of disk space per inode
5481  *	nrpos - number of rotational positions
5482  *	spc - sectors per cylinder
5483  *
5484  * These five characteristic are not adjustable (by this function).
5485  * The only attribute of the file system which IS adjusted by this
5486  * function in order to maximize cylinders-per-group is the proportion
5487  * of the cylinder group overhead block used for the inode map.  The
5488  * inode map cannot occupy more than one-third of the cylinder group
5489  * overhead block, but it's OK for it to occupy less than one-third
5490  * of the overhead block.
5491  *
5492  * The setting of nbpi determines one possible value for the maximum
5493  * size of a cylinder group.  It does so because it determines the total
5494  * number of inodes in the file system (file system size is fixed, and
5495  * nbpi is fixed, so the total number of inodes is fixed too).  The
5496  * cylinder group has to be small enough so that the number of inodes
5497  * in the cylinder group is less than or equal to the number of bits
5498  * in one-third (or whatever proportion is assumed) of a file system
5499  * block.  The details of the calculation are:
5500  *
5501  *     The macro MAXIpG_B(bsize, inode_divisor) determines the maximum
5502  *     number of inodes that can be in a cylinder group, given the
5503  *     proportion of the cylinder group overhead block used for the
5504  *     inode bitmaps (an inode_divisor of 3 means that 1/3 of the
5505  *     block is used for inode bitmaps; an inode_divisor of 12 means
5506  *     that 1/12 of the block is used for inode bitmaps.)
5507  *
5508  *     Once the number of inodes per cylinder group is known, the
5509  *     maximum value of cylinders-per-group (determined by nbpi)
5510  *     is calculated by the formula
5511  *
5512  *     maxcpg_given_nbpi = (size of a cylinder group)/(size of a cylinder)
5513  *
5514  *			 = (inodes-per-cg * nbpi)/(spc * DEV_BSIZE)
5515  *
5516  *     (Interestingly, the size of the file system never enters
5517  *     into this calculation.)
5518  *
5519  * Another possible value for the maximum cylinder group size is determined
5520  * by frag_size and nrpos.  The frags in the cylinder group must be
5521  * representable in the frag bitmaps in the cylinder overhead block and the
5522  * rotational positions for each cylinder must be represented in the
5523  * rotational position tables.  The calculation of the maximum cpg
5524  * value, given the frag and nrpos vales, is:
5525  *
5526  *     maxcpg_given_fragsize =
5527  *	  (available space in the overhead block) / (size of per-cylinder data)
5528  *
5529  *     The available space in the overhead block =
5530  *	  bsize - sizeof (struct cg) - space_used_for_inode_bitmaps
5531  *
5532  *     The size of the per-cylinder data is:
5533  *	    sizeof(long)            # for the "blocks avail per cylinder" field
5534  *	    + nrpos * sizeof(short)   # for the rotational position table entry
5535  *	    + frags-per-cylinder/NBBY # number of bytes to represent this
5536  *				      # cylinder in the frag bitmap
5537  *
5538  * The two calculated maximum values of cylinder-per-group will typically
5539  * turn out to be different, since they are derived from two different
5540  * constraints.  Usually, maxcpg_given_nbpi is much bigger than
5541  * maxcpg_given_fragsize.  But they can be brought together by
5542  * adjusting the proportion of the overhead block dedicated to
5543  * the inode bitmaps.  Decreasing the proportion of the cylinder
5544  * group overhead block used for inode maps will decrease
5545  * maxcpg_given_nbpi and increase maxcpg_given_fragsize.
5546  *
5547  * This function calculates the initial values of maxcpg_given_nbpi
5548  * and maxcpg_given_fragsize assuming that 1/3 of the cg overhead
5549  * block is used for inode bitmaps.  Then it decreases the proportion
5550  * of the cg overhead block used for inode bitmaps (by increasing
5551  * the value of inode_divisor) until maxcpg_given_nbpi and
5552  * maxcpg_given_fragsize are the same, or stop changing, or
5553  * maxcpg_given_nbpi is less than maxcpg_given_fragsize.
5554  *
5555  * The loop terminates when any of the following occur:
5556  *	* maxcpg_given_fragsize is greater than or equal to
5557  *	  maxcpg_given_nbpi
5558  *	* neither maxcpg_given_fragsize nor maxcpg_given_nbpi
5559  *	  change in the expected direction
5560  *
5561  * The loop is guaranteed to terminate because it only continues
5562  * while maxcpg_given_fragsize and maxcpg_given_nbpi are approaching
5563  * each other.  As soon they cross each other, or neither one changes
5564  * in the direction of the other, or one of them moves in the wrong
5565  * direction, the loop completes.
5566  */
5567 
5568 static long
5569 compute_maxcpg(long bsize, long fragsize, long nbpi, long nrpos, long spc)
5570 {
5571 	int	maxcpg_given_nbpi;	/* in cylinders */
5572 	int	maxcpg_given_fragsize;	/* in cylinders */
5573 	int	spf;			/* sectors per frag */
5574 	int	inode_divisor;
5575 	int	old_max_given_frag = 0;
5576 	int	old_max_given_nbpi = INT_MAX;
5577 
5578 	spf = fragsize / DEV_BSIZE;
5579 	inode_divisor = 3;
5580 
5581 	while (1) {
5582 		maxcpg_given_nbpi =
5583 		    (((int64_t)(MAXIpG_B(bsize, inode_divisor))) * nbpi) /
5584 		    (DEV_BSIZE * ((int64_t)spc));
5585 		maxcpg_given_fragsize =
5586 		    (bsize - (sizeof (struct cg)) - (bsize / inode_divisor)) /
5587 		    (sizeof (long) + nrpos * sizeof (short) +
5588 						(spc / spf) / NBBY);
5589 
5590 		if (maxcpg_given_fragsize >= maxcpg_given_nbpi)
5591 			return (maxcpg_given_nbpi);
5592 
5593 		/*
5594 		 * If neither value moves toward the other, return the
5595 		 * least of the old values (we use the old instead of the
5596 		 * new because: if the old is the same as the new, it
5597 		 * doesn't matter which ones we use.  If one of the
5598 		 * values changed, but in the wrong direction, the
5599 		 * new values are suspect.  Better use the old.  This
5600 		 * shouldn't happen, but it's best to check.
5601 		 */
5602 
5603 		if (!(maxcpg_given_nbpi < old_max_given_nbpi) &&
5604 		    !(maxcpg_given_fragsize > old_max_given_frag))
5605 			return (MIN(old_max_given_nbpi, old_max_given_frag));
5606 
5607 		/*
5608 		 * This is probably impossible, but if one of the maxcpg
5609 		 * values moved in the "right" direction and one moved
5610 		 * in the "wrong" direction (that is, the two values moved
5611 		 * in the same direction), the previous conditional won't
5612 		 * recognize that the values aren't converging (since at
5613 		 * least one value moved in the "right" direction, the
5614 		 * last conditional says "keep going").
5615 		 *
5616 		 * Just to make absolutely certain that the loop terminates,
5617 		 * check for one of the values moving in the "wrong" direction
5618 		 * and terminate the loop if it happens.
5619 		 */
5620 
5621 		if (maxcpg_given_nbpi > old_max_given_nbpi ||
5622 		    maxcpg_given_fragsize < old_max_given_frag)
5623 			return (MIN(old_max_given_nbpi, old_max_given_frag));
5624 
5625 		old_max_given_nbpi = maxcpg_given_nbpi;
5626 		old_max_given_frag = maxcpg_given_fragsize;
5627 
5628 		inode_divisor++;
5629 	}
5630 }
5631 
5632 static int
5633 in_64bit_mode(void)
5634 {
5635 	/*  cmd must be an absolute path, for security */
5636 	char *cmd = "/usr/bin/isainfo -b";
5637 	char buf[BUFSIZ];
5638 	FILE *ptr;
5639 	int retval = 0;
5640 
5641 	putenv("IFS= \t");
5642 	if ((ptr = popen(cmd, "r")) != NULL) {
5643 		if (fgets(buf, BUFSIZ, ptr) != NULL &&
5644 		    strncmp(buf, "64", 2) == 0)
5645 			retval = 1;
5646 		(void) pclose(ptr);
5647 	}
5648 	return (retval);
5649 }
5650 
5651 /*
5652  * validate_size
5653  *
5654  * Return 1 if the device appears to be at least "size" sectors long.
5655  * Return 0 if it's shorter or we can't read it.
5656  */
5657 
5658 static int
5659 validate_size(int fd, diskaddr_t size)
5660 {
5661 	char 		buf[DEV_BSIZE];
5662 	int rc;
5663 
5664 	if ((llseek(fd, (offset_t)((size - 1) * DEV_BSIZE), SEEK_SET) == -1) ||
5665 	    (read(fd, buf, DEV_BSIZE)) != DEV_BSIZE)
5666 		rc = 0;
5667 	else
5668 		rc = 1;
5669 	return (rc);
5670 }
5671 
5672 /*
5673  * Print every field of the calculated superblock, along with
5674  * its value.  To make parsing easier on the caller, the value
5675  * is printed first, then the name.  Additionally, there's only
5676  * one name/value pair per line.  All values are reported in
5677  * hexadecimal (with the traditional 0x prefix), as that's slightly
5678  * easier for humans to read.  Not that they're expected to, but
5679  * debugging happens.
5680  */
5681 static void
5682 dump_sblock(void)
5683 {
5684 	int row, column, pending, written;
5685 	caddr_t source;
5686 
5687 	if (Rflag) {
5688 		pending = sizeof (sblock);
5689 		source = (caddr_t)&sblock;
5690 		do {
5691 			written = write(fileno(stdout), source, pending);
5692 			pending -= written;
5693 			source += written;
5694 		} while ((pending > 0) && (written > 0));
5695 
5696 		if (written < 0) {
5697 			perror(gettext("Binary dump of superblock failed"));
5698 			lockexit(1);
5699 		}
5700 		return;
5701 	} else {
5702 		printf("0x%x sblock.fs_link\n", sblock.fs_link);
5703 		printf("0x%x sblock.fs_rolled\n", sblock.fs_rolled);
5704 		printf("0x%x sblock.fs_sblkno\n", sblock.fs_sblkno);
5705 		printf("0x%x sblock.fs_cblkno\n", sblock.fs_cblkno);
5706 		printf("0x%x sblock.fs_iblkno\n", sblock.fs_iblkno);
5707 		printf("0x%x sblock.fs_dblkno\n", sblock.fs_dblkno);
5708 		printf("0x%x sblock.fs_cgoffset\n", sblock.fs_cgoffset);
5709 		printf("0x%x sblock.fs_cgmask\n", sblock.fs_cgmask);
5710 		printf("0x%x sblock.fs_time\n", sblock.fs_time);
5711 		printf("0x%x sblock.fs_size\n", sblock.fs_size);
5712 		printf("0x%x sblock.fs_dsize\n", sblock.fs_dsize);
5713 		printf("0x%x sblock.fs_ncg\n", sblock.fs_ncg);
5714 		printf("0x%x sblock.fs_bsize\n", sblock.fs_bsize);
5715 		printf("0x%x sblock.fs_fsize\n", sblock.fs_fsize);
5716 		printf("0x%x sblock.fs_frag\n", sblock.fs_frag);
5717 		printf("0x%x sblock.fs_minfree\n", sblock.fs_minfree);
5718 		printf("0x%x sblock.fs_rotdelay\n", sblock.fs_rotdelay);
5719 		printf("0x%x sblock.fs_rps\n", sblock.fs_rps);
5720 		printf("0x%x sblock.fs_bmask\n", sblock.fs_bmask);
5721 		printf("0x%x sblock.fs_fmask\n", sblock.fs_fmask);
5722 		printf("0x%x sblock.fs_bshift\n", sblock.fs_bshift);
5723 		printf("0x%x sblock.fs_fshift\n", sblock.fs_fshift);
5724 		printf("0x%x sblock.fs_maxcontig\n", sblock.fs_maxcontig);
5725 		printf("0x%x sblock.fs_maxbpg\n", sblock.fs_maxbpg);
5726 		printf("0x%x sblock.fs_fragshift\n", sblock.fs_fragshift);
5727 		printf("0x%x sblock.fs_fsbtodb\n", sblock.fs_fsbtodb);
5728 		printf("0x%x sblock.fs_sbsize\n", sblock.fs_sbsize);
5729 		printf("0x%x sblock.fs_csmask\n", sblock.fs_csmask);
5730 		printf("0x%x sblock.fs_csshift\n", sblock.fs_csshift);
5731 		printf("0x%x sblock.fs_nindir\n", sblock.fs_nindir);
5732 		printf("0x%x sblock.fs_inopb\n", sblock.fs_inopb);
5733 		printf("0x%x sblock.fs_nspf\n", sblock.fs_nspf);
5734 		printf("0x%x sblock.fs_optim\n", sblock.fs_optim);
5735 #ifdef _LITTLE_ENDIAN
5736 		printf("0x%x sblock.fs_state\n", sblock.fs_state);
5737 #else
5738 		printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5739 #endif
5740 		printf("0x%x sblock.fs_si\n", sblock.fs_si);
5741 		printf("0x%x sblock.fs_trackskew\n", sblock.fs_trackskew);
5742 		printf("0x%x sblock.fs_id[0]\n", sblock.fs_id[0]);
5743 		printf("0x%x sblock.fs_id[1]\n", sblock.fs_id[1]);
5744 		printf("0x%x sblock.fs_csaddr\n", sblock.fs_csaddr);
5745 		printf("0x%x sblock.fs_cssize\n", sblock.fs_cssize);
5746 		printf("0x%x sblock.fs_cgsize\n", sblock.fs_cgsize);
5747 		printf("0x%x sblock.fs_ntrak\n", sblock.fs_ntrak);
5748 		printf("0x%x sblock.fs_nsect\n", sblock.fs_nsect);
5749 		printf("0x%x sblock.fs_spc\n", sblock.fs_spc);
5750 		printf("0x%x sblock.fs_ncyl\n", sblock.fs_ncyl);
5751 		printf("0x%x sblock.fs_cpg\n", sblock.fs_cpg);
5752 		printf("0x%x sblock.fs_ipg\n", sblock.fs_ipg);
5753 		printf("0x%x sblock.fs_fpg\n", sblock.fs_fpg);
5754 		printf("0x%x sblock.fs_cstotal\n", sblock.fs_cstotal);
5755 		printf("0x%x sblock.fs_fmod\n", sblock.fs_fmod);
5756 		printf("0x%x sblock.fs_clean\n", sblock.fs_clean);
5757 		printf("0x%x sblock.fs_ronly\n", sblock.fs_ronly);
5758 		printf("0x%x sblock.fs_flags\n", sblock.fs_flags);
5759 		printf("0x%x sblock.fs_fsmnt\n", sblock.fs_fsmnt);
5760 		printf("0x%x sblock.fs_cgrotor\n", sblock.fs_cgrotor);
5761 		printf("0x%x sblock.fs_u.fs_csp\n", sblock.fs_u.fs_csp);
5762 		printf("0x%x sblock.fs_cpc\n", sblock.fs_cpc);
5763 
5764 		/*
5765 		 * No macros are defined for the dimensions of the
5766 		 * opostbl array.
5767 		 */
5768 		for (row = 0; row < 16; row++) {
5769 			for (column = 0; column < 8; column++) {
5770 				printf("0x%x sblock.fs_opostbl[%d][%d]\n",
5771 				    sblock.fs_opostbl[row][column],
5772 				    row, column);
5773 			}
5774 		}
5775 
5776 		/*
5777 		 * Ditto the size of sparecon.
5778 		 */
5779 		for (row = 0; row < 51; row++) {
5780 			printf("0x%x sblock.fs_sparecon[%d]\n",
5781 			    sblock.fs_sparecon[row], row);
5782 		}
5783 
5784 		printf("0x%x sblock.fs_version\n", sblock.fs_version);
5785 		printf("0x%x sblock.fs_logbno\n", sblock.fs_logbno);
5786 		printf("0x%x sblock.fs_reclaim\n", sblock.fs_reclaim);
5787 		printf("0x%x sblock.fs_sparecon2\n", sblock.fs_sparecon2);
5788 #ifdef _LITTLE_ENDIAN
5789 		printf("0x%x sblock.fs_npsect\n", sblock.fs_npsect);
5790 #else
5791 		printf("0x%x sblock.fs_state\n", sblock.fs_state);
5792 #endif
5793 		printf("0x%llx sblock.fs_qbmask\n", sblock.fs_qbmask);
5794 		printf("0x%llx sblock.fs_qfmask\n", sblock.fs_qfmask);
5795 		printf("0x%x sblock.fs_postblformat\n", sblock.fs_postblformat);
5796 		printf("0x%x sblock.fs_nrpos\n", sblock.fs_nrpos);
5797 		printf("0x%x sblock.fs_postbloff\n", sblock.fs_postbloff);
5798 		printf("0x%x sblock.fs_rotbloff\n", sblock.fs_rotbloff);
5799 		printf("0x%x sblock.fs_magic\n", sblock.fs_magic);
5800 
5801 		/*
5802 		 * fs_space isn't of much use in this context, so we'll
5803 		 * just ignore it for now.
5804 		 */
5805 	}
5806 }
5807