1 /* 2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 7 /* All Rights Reserved */ 8 9 /* 10 * Copyright (c) 1980, 1986, 1990 The Regents of the University of California. 11 * All rights reserved. 12 * 13 * Redistribution and use in source and binary forms are permitted 14 * provided that: (1) source distributions retain this entire copyright 15 * notice and comment, and (2) distributions including binaries display 16 * the following acknowledgement: ``This product includes software 17 * developed by the University of California, Berkeley and its contributors'' 18 * in the documentation or other materials provided with the distribution 19 * and in all advertising materials mentioning features or use of this 20 * software. Neither the name of the University nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED 25 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 26 */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <stdio.h> 31 #include <string.h> 32 #include <stdlib.h> 33 #include <unistd.h> 34 #include <time.h> 35 #include <limits.h> 36 #include <sys/param.h> 37 #include <sys/types.h> 38 #include <sys/sysmacros.h> 39 #include <sys/mntent.h> 40 #include <sys/vnode.h> 41 #include <sys/fs/ufs_inode.h> 42 #include <sys/fs/ufs_fs.h> 43 #define _KERNEL 44 #include <sys/fs/ufs_fsdir.h> 45 #undef _KERNEL 46 #include <pwd.h> 47 #include "fsck.h" 48 49 static int get_indir_offsets(int, daddr_t, int *, int *); 50 static int clearanentry(struct inodesc *); 51 static void pdinode(struct dinode *); 52 static void inoflush(void); 53 static void mark_delayed_inodes(fsck_ino_t, daddr32_t); 54 static int iblock(struct inodesc *, int, u_offset_t, enum cki_action); 55 static struct inoinfo *search_cache(struct inoinfo *, fsck_ino_t); 56 static int ckinode_common(struct dinode *, struct inodesc *, enum cki_action); 57 static int lookup_dotdot_ino(fsck_ino_t); 58 59 /* 60 * ckinode() essentially traverses the blocklist of the provided 61 * inode. For each block either the caller-supplied callback (id_func 62 * in the provided struct inodesc) or dirscan() is invoked. Which is 63 * chosen is controlled by what type of traversal was requested 64 * (id_type) - if it was for an ADDR or ACL, use the callback, 65 * otherwise it is assumed to be DATA (i.e., a directory) whose 66 * contents need to be scanned. 67 * 68 * Note that a directory inode can get passed in with a type of ADDR; 69 * the type field is orthogonal to the IFMT value. This is so that 70 * the file aspects (no duplicate blocks, etc) of a directory can be 71 * verified just like is done for any other file, or the actual 72 * contents can be scanned so that connectivity and such can be 73 * investigated. 74 * 75 * The traversal is controlled by flags in the return value of 76 * dirscan() or the callback. Five flags are defined, STOP, SKIP, 77 * KEEPON, ALTERED, and FOUND. Their semantics are: 78 * 79 * STOP - no further processing of this inode is desired/possible/ 80 * feasible/etc. This can mean that whatever the scan 81 * was searching for was found, or a serious 82 * inconsistency was encountered, or anything else 83 * appropriate. 84 * 85 * SKIP - something that made it impossible to continue was 86 * encountered, and the caller should go on to the next 87 * inode. This is more for i/o failures than for 88 * logical inconsistencies. Nothing actually looks for 89 * this. 90 * 91 * KEEPON - no more blocks of this inode need to be scanned, but 92 * nothing's wrong, so keep on going with the next 93 * inode. It is similar to STOP, except that 94 * ckinode()'s caller will typically advance to the next 95 * inode for KEEPON, whereas it ceases scanning through 96 * the inodes completely for STOP. 97 * 98 * ALTERED - a change was made to the inode. If the caller sees 99 * this set, it should make sure to flush out the 100 * changes. Note that any data blocks read in by the 101 * function need to be marked dirty by it directly; 102 * flushing of those will happen automatically later. 103 * 104 * FOUND - whatever was being searched for was located. 105 * Typically combined with STOP to avoid wasting time 106 * doing additional looking. 107 * 108 * During a traversal, some state needs to be carried around. At the 109 * least, the callback functions need to know what inode they're 110 * working on, which logical block, and whether or not fixing problems 111 * when they're encountered is desired. Rather than try to guess what 112 * else might be needed (and thus end up passing way more arguments 113 * than is reasonable), all the possibilities have been bundled in 114 * struct inodesc. About half of the fields are specific to directory 115 * traversals, and the rest are pretty much generic to any traversal. 116 * 117 * The general fields are: 118 * 119 * id_fix What to do when an error is found. Generally, this 120 * is set to DONTKNOW before a traversal. If a 121 * problem is encountered, it is changed to either FIX 122 * or NOFIX by the dofix() query function. If id_fix 123 * has already been set to FIX when dofix() is called, then 124 * it includes the ALTERED flag (see above) in its return 125 * value; the net effect is that the inode's buffer 126 * will get marked dirty and written to disk at some 127 * point. If id_fix is DONTKNOW, then dofix() will 128 * query the user. If it is NOFIX, then dofix() 129 * essentially does nothing. A few routines set NOFIX 130 * as the initial value, as they are performing a best- 131 * effort informational task, rather than an actual 132 * repair operation. 133 * 134 * id_func This is the function that will be called for every 135 * logical block in the file (assuming id_type is not 136 * DATA). The logical block may represent a hole, so 137 * the callback needs to be prepared to handle that 138 * case. Its return value is a combination of the flags 139 * described above (SKIP, ALTERED, etc). 140 * 141 * id_number The inode number whose block list or data is being 142 * scanned. 143 * 144 * id_parent When id_type is DATA, this is the inode number for 145 * the parent of id_number. Otherwise, it is 146 * available for use as an extra parameter or return 147 * value between the callback and ckinode()'s caller. 148 * Which, if either, of those is left completely up to 149 * the two routines involved, so nothing can generally 150 * be assumed about the id_parent value for non-DATA 151 * traversals. 152 * 153 * id_lbn This is the current logical block (not fragment) 154 * number being visited by the traversal. 155 * 156 * id_blkno This is the physical block corresponding to id_lbn. 157 * 158 * id_numfrags This defines how large a block is being processed in 159 * this particular invocation of the callback. 160 * Usually, it will be the same as sblock.fs_frag. 161 * However, if a direct block is being processed and 162 * it is less than a full filesystem block, 163 * id_numfrags will indicate just how many fragments 164 * (starting from id_lbn) are actually part of the 165 * file. 166 * 167 * id_truncto The pass 4 callback is used in several places to 168 * free the blocks of a file (the `FILE HAS PROBLEM 169 * FOO; CLEAR?' scenario). This has been generalized 170 * to allow truncating a file to a particular length 171 * rather than always completely discarding it. If 172 * id_truncto is -1, then the entire file is released, 173 * otherwise it is logical block number to truncate 174 * to. This generalized interface was motivated by a 175 * desire to be able to discard everything after a 176 * hole in a directory, rather than the entire 177 * directory. 178 * 179 * id_type Selects the type of traversal. DATA for dirscan(), 180 * ADDR or ACL for using the provided callback. 181 * 182 * There are several more fields used just for dirscan() traversals: 183 * 184 * id_filesize The number of bytes in the overall directory left to 185 * process. 186 * 187 * id_loc Byte position within the directory block. Should always 188 * point to the start of a directory entry. 189 * 190 * id_entryno Which logical directory entry is being processed (0 191 * is `.', 1 is `..', 2 and on are normal entries). 192 * This field is primarily used to enable special 193 * checks when looking at the first two entries. 194 * 195 * The exception (there's always an exception in fsck) 196 * is that in pass 1, it tracks how many fragments are 197 * being used by a particular inode. 198 * 199 * id_firsthole The first logical block number that was found to 200 * be zero. As directories are not supposed to have 201 * holes, this marks where a directory should be 202 * truncated down to. A value of -1 indicates that 203 * no holes were found. 204 * 205 * id_dirp A pointer to the in-memory copy of the current 206 * directory entry (as identified by id_loc). 207 * 208 * id_name This is a directory entry name to either create 209 * (callback is mkentry) or locate (callback is 210 * chgino, findino, or findname). 211 */ 212 int 213 ckinode(struct dinode *dp, struct inodesc *idesc, enum cki_action action) 214 { 215 struct inodesc cleardesc; 216 mode_t mode; 217 218 if (idesc->id_filesize == 0) 219 idesc->id_filesize = (offset_t)dp->di_size; 220 221 /* 222 * Our caller should be filtering out completely-free inodes 223 * (mode == zero), so we'll work on the assumption that what 224 * we're given has some basic validity. 225 * 226 * The kernel is inconsistent about MAXPATHLEN including the 227 * trailing \0, so allow the more-generous length for symlinks. 228 */ 229 mode = dp->di_mode & IFMT; 230 if (mode == IFBLK || mode == IFCHR) 231 return (KEEPON); 232 if (mode == IFLNK && dp->di_size > MAXPATHLEN) { 233 pwarn("I=%d Symlink longer than supported maximum", 234 idesc->id_number); 235 init_inodesc(&cleardesc); 236 cleardesc.id_type = ADDR; 237 cleardesc.id_number = idesc->id_number; 238 cleardesc.id_fix = DONTKNOW; 239 clri(&cleardesc, "BAD", CLRI_VERBOSE, CLRI_NOP_CORRUPT); 240 return (STOP); 241 } 242 return (ckinode_common(dp, idesc, action)); 243 } 244 245 /* 246 * This was split out from ckinode() to allow it to be used 247 * without having to pass in kludge flags to suppress the 248 * wrong-for-deletion initialization and irrelevant checks. 249 * This feature is no longer needed, but is being kept in case 250 * the need comes back. 251 */ 252 static int 253 ckinode_common(struct dinode *dp, struct inodesc *idesc, 254 enum cki_action action) 255 { 256 offset_t offset; 257 struct dinode dino; 258 daddr_t ndb; 259 int indir_data_blks, last_indir_blk; 260 int ret, i, frags; 261 262 (void) memmove(&dino, dp, sizeof (struct dinode)); 263 ndb = howmany(dino.di_size, (u_offset_t)sblock.fs_bsize); 264 265 for (i = 0; i < NDADDR; i++) { 266 idesc->id_lbn++; 267 offset = blkoff(&sblock, dino.di_size); 268 if ((--ndb == 0) && (offset != 0)) { 269 idesc->id_numfrags = 270 numfrags(&sblock, fragroundup(&sblock, offset)); 271 } else { 272 idesc->id_numfrags = sblock.fs_frag; 273 } 274 if (dino.di_db[i] == 0) { 275 if ((ndb > 0) && (idesc->id_firsthole < 0)) { 276 idesc->id_firsthole = i; 277 } 278 continue; 279 } 280 idesc->id_blkno = dino.di_db[i]; 281 if (idesc->id_type == ADDR || idesc->id_type == ACL) 282 ret = (*idesc->id_func)(idesc); 283 else 284 ret = dirscan(idesc); 285 286 /* 287 * Need to clear the entry, now that we're done with 288 * it. We depend on freeblk() ignoring a request to 289 * free already-free fragments to handle the problem of 290 * a partial block. 291 */ 292 if ((action == CKI_TRUNCATE) && 293 (idesc->id_truncto >= 0) && 294 (idesc->id_lbn >= idesc->id_truncto)) { 295 dp = ginode(idesc->id_number); 296 /* 297 * The (int) cast is safe, in that if di_size won't 298 * fit, it'll be a multiple of any legal fs_frag, 299 * thus giving a zero result. That value, in turn 300 * means we're doing an entire block. 301 */ 302 frags = howmany((int)dp->di_size, sblock.fs_fsize) % 303 sblock.fs_frag; 304 if (frags == 0) 305 frags = sblock.fs_frag; 306 freeblk(idesc->id_number, dp->di_db[i], 307 frags); 308 dp = ginode(idesc->id_number); 309 dp->di_db[i] = 0; 310 inodirty(); 311 ret |= ALTERED; 312 } 313 314 if (ret & STOP) 315 return (ret); 316 } 317 318 #ifdef lint 319 /* 320 * Cure a lint complaint of ``possible use before set''. 321 * Apparently it can't quite figure out the switch statement. 322 */ 323 indir_data_blks = 0; 324 #endif 325 /* 326 * indir_data_blks contains the number of data blocks in all 327 * the previous levels for this iteration. E.g., for the 328 * single indirect case (i = 0, di_ib[i] != 0), NDADDR's worth 329 * of blocks have already been covered by the direct blocks 330 * (di_db[]). At the triple indirect level (i = NIADDR - 1), 331 * it is all of the number of data blocks that were covered 332 * by the second indirect, single indirect, and direct block 333 * levels. 334 */ 335 idesc->id_numfrags = sblock.fs_frag; 336 ndb = howmany(dino.di_size, (u_offset_t)sblock.fs_bsize); 337 for (i = 0; i < NIADDR; i++) { 338 (void) get_indir_offsets(i, ndb, &indir_data_blks, 339 &last_indir_blk); 340 if (dino.di_ib[i] != 0) { 341 /* 342 * We'll only clear di_ib[i] if the first entry (and 343 * therefore all of them) is to be cleared, since we 344 * only go through this code on the first entry of 345 * each level of indirection. The +1 is to account 346 * for the fact that we don't modify id_lbn until 347 * we actually start processing on a data block. 348 */ 349 idesc->id_blkno = dino.di_ib[i]; 350 ret = iblock(idesc, i + 1, 351 (u_offset_t)howmany(dino.di_size, 352 (u_offset_t)sblock.fs_bsize) - 353 indir_data_blks, 354 action); 355 if ((action == CKI_TRUNCATE) && 356 (idesc->id_truncto <= indir_data_blks) && 357 ((idesc->id_lbn + 1) >= indir_data_blks) && 358 ((idesc->id_lbn + 1) <= last_indir_blk)) { 359 dp = ginode(idesc->id_number); 360 if (dp->di_ib[i] != 0) { 361 freeblk(idesc->id_number, dp->di_ib[i], 362 sblock.fs_frag); 363 } 364 } 365 if (ret & STOP) 366 return (ret); 367 } else { 368 /* 369 * Need to know which of the file's logical blocks 370 * reside in the missing indirect block. However, the 371 * precise location is only needed for truncating 372 * directories, and level-of-indirection precision is 373 * sufficient for that. 374 */ 375 if ((indir_data_blks < ndb) && 376 (idesc->id_firsthole < 0)) { 377 idesc->id_firsthole = indir_data_blks; 378 } 379 } 380 } 381 return (KEEPON); 382 } 383 384 static int 385 get_indir_offsets(int ilevel_wanted, daddr_t ndb, int *data_blks, 386 int *last_blk) 387 { 388 int ndb_ilevel = -1; 389 int ilevel; 390 int dblks, lblk; 391 392 for (ilevel = 0; ilevel < NIADDR; ilevel++) { 393 switch (ilevel) { 394 case 0: /* SINGLE */ 395 dblks = NDADDR; 396 lblk = dblks + NINDIR(&sblock) - 1; 397 break; 398 case 1: /* DOUBLE */ 399 dblks = NDADDR + NINDIR(&sblock); 400 lblk = dblks + (NINDIR(&sblock) * NINDIR(&sblock)) - 1; 401 break; 402 case 2: /* TRIPLE */ 403 dblks = NDADDR + NINDIR(&sblock) + 404 (NINDIR(&sblock) * NINDIR(&sblock)); 405 lblk = dblks + (NINDIR(&sblock) * NINDIR(&sblock) * 406 NINDIR(&sblock)) - 1; 407 break; 408 default: 409 exitstat = EXERRFATAL; 410 /* 411 * Translate from zero-based array to 412 * one-based human-style counting. 413 */ 414 errexit("panic: indirection level %d not 1, 2, or 3", 415 ilevel + 1); 416 /* NOTREACHED */ 417 } 418 419 if (dblks < ndb && ndb <= lblk) 420 ndb_ilevel = ilevel; 421 422 if (ilevel == ilevel_wanted) { 423 if (data_blks != NULL) 424 *data_blks = dblks; 425 if (last_blk != NULL) 426 *last_blk = lblk; 427 } 428 } 429 430 return (ndb_ilevel); 431 } 432 433 static int 434 iblock(struct inodesc *idesc, int ilevel, u_offset_t iblks, 435 enum cki_action action) 436 { 437 struct bufarea *bp; 438 int i, n; 439 int (*func)(struct inodesc *) = NULL; 440 u_offset_t fsbperindirb; 441 daddr32_t last_lbn; 442 int nif; 443 char buf[BUFSIZ]; 444 445 n = KEEPON; 446 447 switch (idesc->id_type) { 448 case ADDR: 449 func = idesc->id_func; 450 if (((n = (*func)(idesc)) & KEEPON) == 0) 451 return (n); 452 break; 453 case ACL: 454 func = idesc->id_func; 455 break; 456 case DATA: 457 func = dirscan; 458 break; 459 default: 460 errexit("unknown inodesc type %d in iblock()", idesc->id_type); 461 /* NOTREACHED */ 462 } 463 if (chkrange(idesc->id_blkno, idesc->id_numfrags)) { 464 return ((idesc->id_type == ACL) ? STOP : SKIP); 465 } 466 467 bp = getdatablk(idesc->id_blkno, (size_t)sblock.fs_bsize); 468 if (bp->b_errs != 0) { 469 brelse(bp); 470 return (SKIP); 471 } 472 473 ilevel--; 474 /* 475 * Trivia note: the BSD fsck has the number of bytes remaining 476 * as the third argument to iblock(), so the equivalent of 477 * fsbperindirb starts at fs_bsize instead of one. We're 478 * working in units of filesystem blocks here, not bytes or 479 * fragments. 480 */ 481 for (fsbperindirb = 1, i = 0; i < ilevel; i++) { 482 fsbperindirb *= (u_offset_t)NINDIR(&sblock); 483 } 484 /* 485 * nif indicates the next "free" pointer (as an array index) in this 486 * indirect block, based on counting the blocks remaining in the 487 * file after subtracting all previously processed blocks. 488 * This figure is based on the size field of the inode. 489 * 490 * Note that in normal operation, nif may initially be calculated 491 * as larger than the number of pointers in this block (as when 492 * there are more indirect blocks following); if that is 493 * the case, nif is limited to the max number of pointers per 494 * indirect block. 495 * 496 * Also note that if an inode is inconsistent (has more blocks 497 * allocated to it than the size field would indicate), the sweep 498 * through any indirect blocks directly pointed at by the inode 499 * continues. Since the block offset of any data blocks referenced 500 * by these indirect blocks is greater than the size of the file, 501 * the index nif may be computed as a negative value. 502 * In this case, we reset nif to indicate that all pointers in 503 * this retrieval block should be zeroed and the resulting 504 * unreferenced data and/or retrieval blocks will be recovered 505 * through garbage collection later. 506 */ 507 nif = (offset_t)howmany(iblks, fsbperindirb); 508 if (nif > NINDIR(&sblock)) 509 nif = NINDIR(&sblock); 510 else if (nif < 0) 511 nif = 0; 512 /* 513 * first pass: all "free" retrieval pointers (from [nif] thru 514 * the end of the indirect block) should be zero. (This 515 * assertion does not hold for directories, which may be 516 * truncated without releasing their allocated space) 517 */ 518 if (nif < NINDIR(&sblock) && (idesc->id_func == pass1check || 519 idesc->id_func == pass3bcheck)) { 520 for (i = nif; i < NINDIR(&sblock); i++) { 521 if (bp->b_un.b_indir[i] == 0) 522 continue; 523 (void) sprintf(buf, "PARTIALLY TRUNCATED INODE I=%lu", 524 (ulong_t)idesc->id_number); 525 if (preen) { 526 pfatal(buf); 527 } else if (dofix(idesc, buf)) { 528 freeblk(idesc->id_number, 529 bp->b_un.b_indir[i], 530 sblock.fs_frag); 531 bp->b_un.b_indir[i] = 0; 532 dirty(bp); 533 } 534 } 535 flush(fswritefd, bp); 536 } 537 /* 538 * second pass: all retrieval pointers referring to blocks within 539 * a valid range [0..filesize] (both indirect and data blocks) 540 * are examined in the same manner as ckinode() checks the 541 * direct blocks in the inode. Sweep through from 542 * the first pointer in this retrieval block to [nif-1]. 543 */ 544 last_lbn = howmany(idesc->id_filesize, sblock.fs_bsize); 545 for (i = 0; i < nif; i++) { 546 if (ilevel == 0) 547 idesc->id_lbn++; 548 if (bp->b_un.b_indir[i] != 0) { 549 idesc->id_blkno = bp->b_un.b_indir[i]; 550 if (ilevel > 0) { 551 n = iblock(idesc, ilevel, iblks, action); 552 /* 553 * Each iteration decreases "remaining block 554 * count" by the number of blocks accessible 555 * by a pointer at this indirect block level. 556 */ 557 iblks -= fsbperindirb; 558 } else { 559 /* 560 * If we're truncating, func will discard 561 * the data block for us. 562 */ 563 n = (*func)(idesc); 564 } 565 566 if ((action == CKI_TRUNCATE) && 567 (idesc->id_truncto >= 0) && 568 (idesc->id_lbn >= idesc->id_truncto)) { 569 freeblk(idesc->id_number, bp->b_un.b_indir[i], 570 sblock.fs_frag); 571 } 572 573 /* 574 * Note that truncation never gets STOP back 575 * under normal circumstances. Abnormal would 576 * be a bad acl short-circuit in iblock() or 577 * an out-of-range failure in pass4check(). 578 * We still want to keep going when truncating 579 * under those circumstances, since the whole 580 * point of truncating is to get rid of all 581 * that. 582 */ 583 if ((n & STOP) && (action != CKI_TRUNCATE)) { 584 brelse(bp); 585 return (n); 586 } 587 } else { 588 if ((idesc->id_lbn < last_lbn) && 589 (idesc->id_firsthole < 0)) { 590 idesc->id_firsthole = idesc->id_lbn; 591 } 592 if (idesc->id_type == DATA) { 593 /* 594 * No point in continuing in the indirect 595 * blocks of a directory, since they'll just 596 * get freed anyway. 597 */ 598 brelse(bp); 599 return ((n & ~KEEPON) | STOP); 600 } 601 } 602 } 603 604 brelse(bp); 605 return (KEEPON); 606 } 607 608 /* 609 * Check that a block is a legal block number. 610 * Return 0 if in range, 1 if out of range. 611 */ 612 int 613 chkrange(daddr32_t blk, int cnt) 614 { 615 int c; 616 617 if (cnt <= 0 || blk <= 0 || ((unsigned)blk >= (unsigned)maxfsblock) || 618 ((cnt - 1) > (maxfsblock - blk))) { 619 if (debug) 620 (void) printf( 621 "Bad fragment range: should be 1 <= %d..%d < %d\n", 622 blk, blk + cnt, maxfsblock); 623 return (1); 624 } 625 if ((cnt > sblock.fs_frag) || 626 ((fragnum(&sblock, blk) + cnt) > sblock.fs_frag)) { 627 if (debug) 628 (void) printf("Bad fragment size: size %d\n", cnt); 629 return (1); 630 } 631 c = dtog(&sblock, blk); 632 if (blk < cgdmin(&sblock, c)) { 633 if ((unsigned)(blk + cnt) > (unsigned)cgsblock(&sblock, c)) { 634 if (debug) 635 (void) printf( 636 "Bad fragment position: %d..%d spans start of cg metadata\n", 637 blk, blk + cnt); 638 return (1); 639 } 640 } else { 641 if ((unsigned)(blk + cnt) > (unsigned)cgbase(&sblock, c+1)) { 642 if (debug) 643 (void) printf( 644 "Bad frag pos: %d..%d crosses end of cg\n", 645 blk, blk + cnt); 646 return (1); 647 } 648 } 649 return (0); 650 } 651 652 /* 653 * General purpose interface for reading inodes. 654 */ 655 656 /* 657 * Note that any call to ginode() can potentially invalidate any 658 * dinode pointers previously acquired from it. To avoid pain, 659 * make sure to always call inodirty() immediately after modifying 660 * an inode, if there's any chance of ginode() being called after 661 * that. Also, always call ginode() right before you need to access 662 * an inode, so that there won't be any surprises from functions 663 * called between the previous ginode() invocation and the dinode 664 * use. 665 * 666 * Despite all that, we aren't doing the amount of i/o that's implied, 667 * as we use the buffer cache that getdatablk() and friends maintain. 668 */ 669 static fsck_ino_t startinum = -1; 670 671 struct dinode * 672 ginode(fsck_ino_t inum) 673 { 674 daddr32_t iblk; 675 struct dinode *dp; 676 677 if (inum < UFSROOTINO || inum > maxino) { 678 errexit("bad inode number %d to ginode\n", inum); 679 } 680 if (startinum == -1 || 681 pbp == NULL || 682 inum < startinum || 683 inum >= (fsck_ino_t)(startinum + (fsck_ino_t)INOPB(&sblock))) { 684 iblk = itod(&sblock, inum); 685 if (pbp != NULL) { 686 brelse(pbp); 687 } 688 /* 689 * We don't check for errors here, because we can't 690 * tell our caller about it, and the zeros that will 691 * be in the buffer are just as good as anything we 692 * could fake. 693 */ 694 pbp = getdatablk(iblk, (size_t)sblock.fs_bsize); 695 startinum = 696 (fsck_ino_t)((inum / INOPB(&sblock)) * INOPB(&sblock)); 697 } 698 dp = &pbp->b_un.b_dinode[inum % INOPB(&sblock)]; 699 if (dp->di_suid != UID_LONG) 700 dp->di_uid = dp->di_suid; 701 if (dp->di_sgid != GID_LONG) 702 dp->di_gid = dp->di_sgid; 703 return (dp); 704 } 705 706 /* 707 * Special purpose version of ginode used to optimize first pass 708 * over all the inodes in numerical order. It bypasses the buffer 709 * system used by ginode(), etc in favour of reading the bulk of a 710 * cg's inodes at one time. 711 */ 712 static fsck_ino_t nextino, lastinum; 713 static int64_t readcnt, readpercg, fullcnt, inobufsize; 714 static int64_t partialcnt, partialsize; 715 static size_t lastsize; 716 static struct dinode *inodebuf; 717 static diskaddr_t currentdblk; 718 static struct dinode *currentinode; 719 720 struct dinode * 721 getnextinode(fsck_ino_t inum) 722 { 723 size_t size; 724 diskaddr_t dblk; 725 static struct dinode *dp; 726 727 if (inum != nextino++ || inum > maxino) 728 errexit("bad inode number %d to nextinode\n", inum); 729 730 /* 731 * Will always go into the if() the first time we're called, 732 * so dp will always be valid. 733 */ 734 if (inum >= lastinum) { 735 readcnt++; 736 dblk = fsbtodb(&sblock, itod(&sblock, lastinum)); 737 currentdblk = dblk; 738 if (readcnt % readpercg == 0) { 739 if (partialsize > SIZE_MAX) 740 errexit( 741 "Internal error: partialsize overflow"); 742 size = (size_t)partialsize; 743 lastinum += partialcnt; 744 } else { 745 if (inobufsize > SIZE_MAX) 746 errexit("Internal error: inobufsize overflow"); 747 size = (size_t)inobufsize; 748 lastinum += fullcnt; 749 } 750 /* 751 * If fsck_bread() returns an error, it will already have 752 * zeroed out the buffer, so we do not need to do so here. 753 */ 754 (void) fsck_bread(fsreadfd, (caddr_t)inodebuf, dblk, size); 755 lastsize = size; 756 dp = inodebuf; 757 } 758 currentinode = dp; 759 return (dp++); 760 } 761 762 /* 763 * Reread the current getnext() buffer. This allows for changing inodes 764 * other than the current one via ginode()/inodirty()/inoflush(). 765 * 766 * Just reuses all the interesting variables that getnextinode() set up 767 * last time it was called. This shouldn't get called often, so we don't 768 * try to figure out if the caller's actually touched an inode in the 769 * range we have cached. There could have been an arbitrary number of 770 * them, after all. 771 */ 772 struct dinode * 773 getnextrefresh(void) 774 { 775 if (inodebuf == NULL) { 776 return (NULL); 777 } 778 779 inoflush(); 780 (void) fsck_bread(fsreadfd, (caddr_t)inodebuf, currentdblk, lastsize); 781 return (currentinode); 782 } 783 784 void 785 resetinodebuf(void) 786 { 787 startinum = 0; 788 nextino = 0; 789 lastinum = 0; 790 readcnt = 0; 791 inobufsize = blkroundup(&sblock, INOBUFSIZE); 792 fullcnt = inobufsize / sizeof (struct dinode); 793 readpercg = sblock.fs_ipg / fullcnt; 794 partialcnt = sblock.fs_ipg % fullcnt; 795 partialsize = partialcnt * sizeof (struct dinode); 796 if (partialcnt != 0) { 797 readpercg++; 798 } else { 799 partialcnt = fullcnt; 800 partialsize = inobufsize; 801 } 802 if (inodebuf == NULL && 803 (inodebuf = (struct dinode *)malloc((unsigned)inobufsize)) == NULL) 804 errexit("Cannot allocate space for inode buffer\n"); 805 while (nextino < UFSROOTINO) 806 (void) getnextinode(nextino); 807 } 808 809 void 810 freeinodebuf(void) 811 { 812 if (inodebuf != NULL) { 813 free((void *)inodebuf); 814 } 815 inodebuf = NULL; 816 } 817 818 /* 819 * Routines to maintain information about directory inodes. 820 * This is built during the first pass and used during the 821 * second and third passes. 822 * 823 * Enter inodes into the cache. 824 */ 825 void 826 cacheino(struct dinode *dp, fsck_ino_t inum) 827 { 828 struct inoinfo *inp; 829 struct inoinfo **inpp; 830 uint_t blks; 831 832 blks = NDADDR + NIADDR; 833 inp = (struct inoinfo *) 834 malloc(sizeof (*inp) + (blks - 1) * sizeof (daddr32_t)); 835 if (inp == NULL) 836 errexit("Cannot increase directory list\n"); 837 init_inoinfo(inp, dp, inum); /* doesn't touch i_nextlist or i_number */ 838 inpp = &inphead[inum % numdirs]; 839 inp->i_nextlist = *inpp; 840 *inpp = inp; 841 inp->i_number = inum; 842 if (inplast == listmax) { 843 listmax += 100; 844 inpsort = (struct inoinfo **)realloc((void *)inpsort, 845 (unsigned)listmax * sizeof (struct inoinfo *)); 846 if (inpsort == NULL) 847 errexit("cannot increase directory list"); 848 } 849 inpsort[inplast++] = inp; 850 } 851 852 /* 853 * Look up an inode cache structure. 854 */ 855 struct inoinfo * 856 getinoinfo(fsck_ino_t inum) 857 { 858 struct inoinfo *inp; 859 860 inp = search_cache(inphead[inum % numdirs], inum); 861 return (inp); 862 } 863 864 /* 865 * Determine whether inode is in cache. 866 */ 867 int 868 inocached(fsck_ino_t inum) 869 { 870 return (search_cache(inphead[inum % numdirs], inum) != NULL); 871 } 872 873 /* 874 * Clean up all the inode cache structure. 875 */ 876 void 877 inocleanup(void) 878 { 879 struct inoinfo **inpp; 880 881 if (inphead == NULL) 882 return; 883 for (inpp = &inpsort[inplast - 1]; inpp >= inpsort; inpp--) { 884 free((void *)(*inpp)); 885 } 886 free((void *)inphead); 887 free((void *)inpsort); 888 inphead = inpsort = NULL; 889 } 890 891 /* 892 * Routines to maintain information about acl inodes. 893 * This is built during the first pass and used during the 894 * second and third passes. 895 * 896 * Enter acl inodes into the cache. 897 */ 898 void 899 cacheacl(struct dinode *dp, fsck_ino_t inum) 900 { 901 struct inoinfo *aclp; 902 struct inoinfo **aclpp; 903 uint_t blks; 904 905 blks = NDADDR + NIADDR; 906 aclp = (struct inoinfo *) 907 malloc(sizeof (*aclp) + (blks - 1) * sizeof (daddr32_t)); 908 if (aclp == NULL) 909 return; 910 aclpp = &aclphead[inum % numacls]; 911 aclp->i_nextlist = *aclpp; 912 *aclpp = aclp; 913 aclp->i_number = inum; 914 aclp->i_isize = (offset_t)dp->di_size; 915 aclp->i_blkssize = (size_t)(blks * sizeof (daddr32_t)); 916 (void) memmove(&aclp->i_blks[0], &dp->di_db[0], aclp->i_blkssize); 917 if (aclplast == aclmax) { 918 aclmax += 100; 919 aclpsort = (struct inoinfo **)realloc((char *)aclpsort, 920 (unsigned)aclmax * sizeof (struct inoinfo *)); 921 if (aclpsort == NULL) 922 errexit("cannot increase acl list"); 923 } 924 aclpsort[aclplast++] = aclp; 925 } 926 927 928 /* 929 * Generic cache search function. 930 * ROOT is the first entry in a hash chain (the caller is expected 931 * to have done the initial bucket lookup). KEY is what's being 932 * searched for. 933 * 934 * Returns a pointer to the entry if it is found, NULL otherwise. 935 */ 936 static struct inoinfo * 937 search_cache(struct inoinfo *element, fsck_ino_t key) 938 { 939 while (element != NULL) { 940 if (element->i_number == key) 941 break; 942 element = element->i_nextlist; 943 } 944 945 return (element); 946 } 947 948 void 949 inodirty(void) 950 { 951 dirty(pbp); 952 } 953 954 static void 955 inoflush(void) 956 { 957 if (pbp != NULL) 958 flush(fswritefd, pbp); 959 } 960 961 /* 962 * Interactive wrapper for freeino(), for those times when we're 963 * not sure if we should throw something away. 964 */ 965 void 966 clri(struct inodesc *idesc, char *type, int verbose, int corrupting) 967 { 968 int need_parent; 969 struct dinode *dp; 970 971 if (statemap[idesc->id_number] == USTATE) 972 return; 973 974 dp = ginode(idesc->id_number); 975 if (verbose == CLRI_VERBOSE) { 976 pwarn("%s %s", type, file_id(idesc->id_number, dp->di_mode)); 977 pinode(idesc->id_number); 978 } 979 if (preen || (reply("CLEAR") == 1)) { 980 need_parent = (corrupting == CLRI_NOP_OK) ? 981 TI_NOPARENT : TI_PARENT; 982 freeino(idesc->id_number, need_parent); 983 if (preen) 984 (void) printf(" (CLEARED)\n"); 985 remove_orphan_dir(idesc->id_number); 986 } else if (corrupting == CLRI_NOP_CORRUPT) { 987 iscorrupt = 1; 988 } 989 (void) printf("\n"); 990 } 991 992 /* 993 * Find the directory entry for the inode noted in id_parent (which is 994 * not necessarily the parent of anything, we're just using a convenient 995 * field. 996 */ 997 int 998 findname(struct inodesc *idesc) 999 { 1000 struct direct *dirp = idesc->id_dirp; 1001 1002 if (dirp->d_ino != idesc->id_parent) 1003 return (KEEPON); 1004 (void) memmove(idesc->id_name, dirp->d_name, 1005 MIN(dirp->d_namlen, MAXNAMLEN) + 1); 1006 return (STOP|FOUND); 1007 } 1008 1009 /* 1010 * Find the inode number associated with the given name. 1011 */ 1012 int 1013 findino(struct inodesc *idesc) 1014 { 1015 struct direct *dirp = idesc->id_dirp; 1016 1017 if (dirp->d_ino == 0) 1018 return (KEEPON); 1019 if (strcmp(dirp->d_name, idesc->id_name) == 0 && 1020 dirp->d_ino >= UFSROOTINO && dirp->d_ino <= maxino) { 1021 idesc->id_parent = dirp->d_ino; 1022 return (STOP|FOUND); 1023 } 1024 return (KEEPON); 1025 } 1026 1027 int 1028 cleardirentry(fsck_ino_t parentdir, fsck_ino_t target) 1029 { 1030 struct inodesc idesc; 1031 struct dinode *dp; 1032 1033 dp = ginode(parentdir); 1034 init_inodesc(&idesc); 1035 idesc.id_func = clearanentry; 1036 idesc.id_parent = target; 1037 idesc.id_type = DATA; 1038 idesc.id_fix = NOFIX; 1039 return (ckinode(dp, &idesc, CKI_TRAVERSE)); 1040 } 1041 1042 static int 1043 clearanentry(struct inodesc *idesc) 1044 { 1045 struct direct *dirp = idesc->id_dirp; 1046 1047 if (dirp->d_ino != idesc->id_parent || idesc->id_entryno < 2) { 1048 idesc->id_entryno++; 1049 return (KEEPON); 1050 } 1051 dirp->d_ino = 0; 1052 return (STOP|FOUND|ALTERED); 1053 } 1054 1055 void 1056 pinode(fsck_ino_t ino) 1057 { 1058 struct dinode *dp; 1059 1060 (void) printf(" I=%lu ", (ulong_t)ino); 1061 if (ino < UFSROOTINO || ino > maxino) 1062 return; 1063 dp = ginode(ino); 1064 pdinode(dp); 1065 } 1066 1067 static void 1068 pdinode(struct dinode *dp) 1069 { 1070 char *p; 1071 struct passwd *pw; 1072 time_t t; 1073 1074 (void) printf(" OWNER="); 1075 if ((pw = getpwuid((int)dp->di_uid)) != 0) 1076 (void) printf("%s ", pw->pw_name); 1077 else 1078 (void) printf("%lu ", (ulong_t)dp->di_uid); 1079 (void) printf("MODE=%o\n", dp->di_mode); 1080 if (preen) 1081 (void) printf("%s: ", devname); 1082 (void) printf("SIZE=%lld ", (longlong_t)dp->di_size); 1083 1084 /* ctime() ignores LOCALE, so this is safe */ 1085 t = (time_t)dp->di_mtime; 1086 p = ctime(&t); 1087 (void) printf("MTIME=%12.12s %4.4s ", p + 4, p + 20); 1088 } 1089 1090 void 1091 blkerror(fsck_ino_t ino, char *type, daddr32_t blk, daddr32_t lbn) 1092 { 1093 pfatal("FRAGMENT %d %s I=%u LFN %d", blk, type, ino, lbn); 1094 (void) printf("\n"); 1095 1096 switch (statemap[ino] & ~INDELAYD) { 1097 1098 case FSTATE: 1099 case FZLINK: 1100 statemap[ino] = FCLEAR; 1101 return; 1102 1103 case DFOUND: 1104 case DSTATE: 1105 case DZLINK: 1106 statemap[ino] = DCLEAR; 1107 add_orphan_dir(ino); 1108 return; 1109 1110 case SSTATE: 1111 statemap[ino] = SCLEAR; 1112 return; 1113 1114 case FCLEAR: 1115 case DCLEAR: 1116 case SCLEAR: 1117 return; 1118 1119 default: 1120 errexit("BAD STATE 0x%x TO BLKERR\n", statemap[ino]); 1121 /* NOTREACHED */ 1122 } 1123 } 1124 1125 /* 1126 * allocate an unused inode 1127 */ 1128 fsck_ino_t 1129 allocino(fsck_ino_t request, int type) 1130 { 1131 fsck_ino_t ino; 1132 struct dinode *dp; 1133 struct cg *cgp = &cgrp; 1134 int cg; 1135 time_t t; 1136 caddr_t err; 1137 1138 if (debug && (request != 0) && (request != UFSROOTINO)) 1139 errexit("assertion failed: allocino() asked for " 1140 "inode %d instead of 0 or %d", 1141 (int)request, (int)UFSROOTINO); 1142 1143 /* 1144 * We know that we're only going to get requests for UFSROOTINO 1145 * or 0. If UFSROOTINO is wanted, then it better be available 1146 * because our caller is trying to recreate the root directory. 1147 * If we're asked for 0, then which one we return doesn't matter. 1148 * We know that inodes 0 and 1 are never valid to return, so we 1149 * the start at the lowest-legal inode number. 1150 * 1151 * If we got a request for UFSROOTINO, then request != 0, and 1152 * this pair of conditionals is the only place that treats 1153 * UFSROOTINO specially. 1154 */ 1155 if (request == 0) 1156 request = UFSROOTINO; 1157 else if (statemap[request] != USTATE) 1158 return (0); 1159 1160 /* 1161 * Doesn't do wrapping, since we know we started at 1162 * the smallest inode. 1163 */ 1164 for (ino = request; ino < maxino; ino++) 1165 if (statemap[ino] == USTATE) 1166 break; 1167 if (ino == maxino) 1168 return (0); 1169 1170 /* 1171 * In pass5, we'll calculate the bitmaps and counts all again from 1172 * scratch and do a comparison, but for that to work the cg has 1173 * to know what in-memory changes we've made to it. If we have 1174 * trouble reading the cg, cg_sanity() should kick it out so 1175 * we can skip explicit i/o error checking here. 1176 */ 1177 cg = itog(&sblock, ino); 1178 (void) getblk(&cgblk, cgtod(&sblock, cg), (size_t)sblock.fs_cgsize); 1179 err = cg_sanity(cgp, cg); 1180 if (err != NULL) { 1181 pfatal("CG %d: %s\n", cg, err); 1182 free((void *)err); 1183 if (reply("REPAIR") == 0) 1184 errexit("Program terminated."); 1185 fix_cg(cgp, cg); 1186 } 1187 setbit(cg_inosused(cgp), ino % sblock.fs_ipg); 1188 cgp->cg_cs.cs_nifree--; 1189 cgdirty(); 1190 1191 if (lastino < ino) 1192 lastino = ino; 1193 1194 /* 1195 * Don't currently support IFATTRDIR or any of the other 1196 * types, as they aren't needed. 1197 */ 1198 switch (type & IFMT) { 1199 case IFDIR: 1200 statemap[ino] = DSTATE; 1201 cgp->cg_cs.cs_ndir++; 1202 break; 1203 case IFREG: 1204 case IFLNK: 1205 statemap[ino] = FSTATE; 1206 break; 1207 default: 1208 /* 1209 * Pretend nothing ever happened. This clears the 1210 * dirty flag, among other things. 1211 */ 1212 initbarea(&cgblk); 1213 if (debug) 1214 (void) printf("allocino: unknown type 0%o\n", 1215 type & IFMT); 1216 return (0); 1217 } 1218 1219 /* 1220 * We're allocating what should be a completely-unused inode, 1221 * so make sure we don't inherit anything from any previous 1222 * incarnations. 1223 */ 1224 dp = ginode(ino); 1225 (void) memset((void *)dp, 0, sizeof (struct dinode)); 1226 dp->di_db[0] = allocblk(1); 1227 if (dp->di_db[0] == 0) { 1228 statemap[ino] = USTATE; 1229 return (0); 1230 } 1231 dp->di_mode = (mode_t)type; 1232 (void) time(&t); 1233 dp->di_atime = (time32_t)t; 1234 dp->di_ctime = dp->di_atime; 1235 dp->di_mtime = dp->di_ctime; 1236 dp->di_size = (u_offset_t)sblock.fs_fsize; 1237 dp->di_blocks = btodb(sblock.fs_fsize); 1238 n_files++; 1239 inodirty(); 1240 return (ino); 1241 } 1242 1243 /* 1244 * Release some or all of the blocks of an inode. 1245 * Only truncates down. Assumes new_length is appropriately aligned 1246 * to a block boundary (or a directory block boundary, if it's a 1247 * directory). 1248 * 1249 * If this is a directory, discard all of its contents first, so 1250 * we don't create a bunch of orphans that would need another fsck 1251 * run to clean up. 1252 * 1253 * Even if truncating to zero length, the inode remains allocated. 1254 */ 1255 void 1256 truncino(fsck_ino_t ino, offset_t new_length, int update) 1257 { 1258 struct inodesc idesc; 1259 struct inoinfo *iip; 1260 struct dinode *dp; 1261 fsck_ino_t parent; 1262 mode_t mode; 1263 caddr_t message; 1264 int isdir; 1265 int ilevel, dblk; 1266 1267 dp = ginode(ino); 1268 mode = (dp->di_mode & IFMT); 1269 isdir = (mode == IFDIR) || (mode == IFATTRDIR); 1270 1271 if (isdir) { 1272 /* 1273 * Go with the parent we found by chasing references, 1274 * if we've gotten that far. Otherwise, use what the 1275 * directory itself claims. If there's no ``..'' entry 1276 * in it, give up trying to get the link counts right. 1277 */ 1278 if (update == TI_NOPARENT) { 1279 parent = -1; 1280 } else { 1281 iip = getinoinfo(ino); 1282 if (iip != NULL) { 1283 parent = iip->i_parent; 1284 } else { 1285 parent = lookup_dotdot_ino(ino); 1286 if (parent != 0) { 1287 /* 1288 * Make sure that the claimed 1289 * parent actually has a 1290 * reference to us. 1291 */ 1292 dp = ginode(parent); 1293 idesc.id_name = lfname; 1294 idesc.id_type = DATA; 1295 idesc.id_func = findino; 1296 idesc.id_number = ino; 1297 idesc.id_fix = DONTKNOW; 1298 if ((ckinode(dp, &idesc, 1299 CKI_TRAVERSE) & FOUND) == 0) 1300 parent = 0; 1301 } 1302 } 1303 } 1304 1305 mark_delayed_inodes(ino, numfrags(&sblock, new_length)); 1306 if (parent > 0) { 1307 dp = ginode(parent); 1308 LINK_RANGE(message, dp->di_nlink, -1); 1309 if (message != NULL) { 1310 LINK_CLEAR(message, parent, dp->di_mode, 1311 &idesc); 1312 if (statemap[parent] == USTATE) 1313 goto no_parent_update; 1314 } 1315 TRACK_LNCNTP(parent, lncntp[parent]--); 1316 } else if ((mode == IFDIR) && (parent == 0)) { 1317 /* 1318 * Currently don't have a good way to 1319 * handle this, so throw up our hands. 1320 * However, we know that we can still 1321 * do some good if we continue, so 1322 * don't actually exit yet. 1323 * 1324 * We don't do it for attrdirs, 1325 * because there aren't link counts 1326 * between them and their parents. 1327 */ 1328 pwarn("Could not determine former parent of " 1329 "inode %d, link counts are possibly\n" 1330 "incorrect. Please rerun fsck(1M) to " 1331 "correct this.\n", 1332 ino); 1333 iscorrupt = 1; 1334 } 1335 /* 1336 * ...else if it's a directory with parent == -1, then 1337 * we've not gotten far enough to know connectivity, 1338 * and it'll get handled automatically later. 1339 */ 1340 } 1341 1342 no_parent_update: 1343 init_inodesc(&idesc); 1344 idesc.id_type = ADDR; 1345 idesc.id_func = pass4check; 1346 idesc.id_number = ino; 1347 idesc.id_fix = DONTKNOW; 1348 idesc.id_truncto = howmany(new_length, sblock.fs_bsize); 1349 dp = ginode(ino); 1350 if (ckinode(dp, &idesc, CKI_TRUNCATE) & ALTERED) 1351 inodirty(); 1352 1353 /* 1354 * This has to be done after ckinode(), so that all of 1355 * the fragments get visited. Note that we assume we're 1356 * always truncating to a block boundary, rather than a 1357 * fragment boundary. 1358 */ 1359 dp = ginode(ino); 1360 dp->di_size = new_length; 1361 1362 /* 1363 * Clear now-obsolete pointers. 1364 */ 1365 for (dblk = idesc.id_truncto + 1; dblk < NDADDR; dblk++) { 1366 dp->di_db[dblk] = 0; 1367 } 1368 1369 ilevel = get_indir_offsets(-1, idesc.id_truncto, NULL, NULL); 1370 for (ilevel++; ilevel < NIADDR; ilevel++) { 1371 dp->di_ib[ilevel] = 0; 1372 } 1373 1374 inodirty(); 1375 } 1376 1377 /* 1378 * Release an inode's resources, then release the inode itself. 1379 */ 1380 void 1381 freeino(fsck_ino_t ino, int update_parent) 1382 { 1383 int cg; 1384 struct dinode *dp; 1385 struct cg *cgp; 1386 1387 n_files--; 1388 dp = ginode(ino); 1389 /* 1390 * We need to make sure that the file is really a large file. 1391 * Everything bigger than UFS_MAXOFFSET_T is treated as a file with 1392 * negative size, which shall be cleared. (see verify_inode() in 1393 * pass1.c) 1394 */ 1395 if (dp->di_size > (u_offset_t)MAXOFF_T && 1396 dp->di_size <= (u_offset_t)UFS_MAXOFFSET_T) { 1397 largefile_count--; 1398 } 1399 truncino(ino, 0, update_parent); 1400 1401 dp = ginode(ino); 1402 if ((dp->di_mode & IFMT) == IFATTRDIR) { 1403 clearshadow(ino, &attrclientinfo); 1404 dp = ginode(ino); 1405 } 1406 1407 clearinode(dp); 1408 inodirty(); 1409 statemap[ino] = USTATE; 1410 1411 /* 1412 * Keep the disk in sync with us so that pass5 doesn't get 1413 * upset about spurious inconsistencies. 1414 */ 1415 cg = itog(&sblock, ino); 1416 (void) getblk(&cgblk, (diskaddr_t)cgtod(&sblock, cg), 1417 (size_t)sblock.fs_cgsize); 1418 cgp = cgblk.b_un.b_cg; 1419 clrbit(cg_inosused(cgp), ino % sblock.fs_ipg); 1420 cgp->cg_cs.cs_nifree += 1; 1421 cgdirty(); 1422 sblock.fs_cstotal.cs_nifree += 1; 1423 sbdirty(); 1424 } 1425 1426 void 1427 init_inoinfo(struct inoinfo *inp, struct dinode *dp, fsck_ino_t inum) 1428 { 1429 inp->i_parent = ((inum == UFSROOTINO) ? UFSROOTINO : (fsck_ino_t)0); 1430 inp->i_dotdot = (fsck_ino_t)0; 1431 inp->i_isize = (offset_t)dp->di_size; 1432 inp->i_blkssize = (NDADDR + NIADDR) * sizeof (daddr32_t); 1433 inp->i_extattr = dp->di_oeftflag; 1434 (void) memmove((void *)&inp->i_blks[0], (void *)&dp->di_db[0], 1435 inp->i_blkssize); 1436 } 1437 1438 /* 1439 * Return the inode number in the ".." entry of the provided 1440 * directory inode. 1441 */ 1442 static int 1443 lookup_dotdot_ino(fsck_ino_t ino) 1444 { 1445 struct inodesc idesc; 1446 1447 init_inodesc(&idesc); 1448 idesc.id_type = DATA; 1449 idesc.id_func = findino; 1450 idesc.id_name = ".."; 1451 idesc.id_number = ino; 1452 idesc.id_fix = NOFIX; 1453 1454 if ((ckinode(ginode(ino), &idesc, CKI_TRAVERSE) & FOUND) != 0) { 1455 return (idesc.id_parent); 1456 } 1457 1458 return (0); 1459 } 1460 1461 /* 1462 * Convenience wrapper around ckinode(findino()). 1463 */ 1464 int 1465 lookup_named_ino(fsck_ino_t dir, caddr_t name) 1466 { 1467 struct inodesc idesc; 1468 1469 init_inodesc(&idesc); 1470 idesc.id_type = DATA; 1471 idesc.id_func = findino; 1472 idesc.id_name = name; 1473 idesc.id_number = dir; 1474 idesc.id_fix = NOFIX; 1475 1476 if ((ckinode(ginode(dir), &idesc, CKI_TRAVERSE) & FOUND) != 0) { 1477 return (idesc.id_parent); 1478 } 1479 1480 return (0); 1481 } 1482 1483 /* 1484 * Marks inodes that are being orphaned and might need to be reconnected 1485 * by pass4(). The inode we're traversing is the directory whose 1486 * contents will be reconnected later. id_parent is the lfn at which 1487 * to start looking at said contents. 1488 */ 1489 static int 1490 mark_a_delayed_inode(struct inodesc *idesc) 1491 { 1492 struct direct *dirp = idesc->id_dirp; 1493 1494 if (idesc->id_lbn < idesc->id_parent) { 1495 return (KEEPON); 1496 } 1497 1498 if (dirp->d_ino != 0 && 1499 strcmp(dirp->d_name, ".") != 0 && 1500 strcmp(dirp->d_name, "..") != 0) { 1501 statemap[dirp->d_ino] &= ~INFOUND; 1502 statemap[dirp->d_ino] |= INDELAYD; 1503 } 1504 1505 return (KEEPON); 1506 } 1507 1508 static void 1509 mark_delayed_inodes(fsck_ino_t ino, daddr32_t first_lfn) 1510 { 1511 struct dinode *dp; 1512 struct inodesc idelayed; 1513 1514 init_inodesc(&idelayed); 1515 idelayed.id_number = ino; 1516 idelayed.id_type = DATA; 1517 idelayed.id_fix = NOFIX; 1518 idelayed.id_func = mark_a_delayed_inode; 1519 idelayed.id_parent = first_lfn; 1520 idelayed.id_entryno = 2; 1521 1522 dp = ginode(ino); 1523 (void) ckinode(dp, &idelayed, CKI_TRAVERSE); 1524 } 1525 1526 /* 1527 * Clear the i_oeftflag/extended attribute pointer from INO. 1528 */ 1529 void 1530 clearattrref(fsck_ino_t ino) 1531 { 1532 struct dinode *dp; 1533 1534 dp = ginode(ino); 1535 if (debug) { 1536 if (dp->di_oeftflag == 0) 1537 (void) printf("clearattref: no attr to clear on %d\n", 1538 ino); 1539 } 1540 1541 dp->di_oeftflag = 0; 1542 inodirty(); 1543 } 1544