1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <dlfcn.h> 34 #include <stdio.h> 35 #include <stdarg.h> 36 #include <string.h> 37 #include <locale.h> 38 #include <libintl.h> 39 #include <stdlib.h> 40 #include <ftw.h> 41 #include <errno.h> 42 #include <sys/types.h> 43 #include <unistd.h> 44 #include <sys/statvfs.h> 45 #include <sys/stat.h> 46 #include <sys/param.h> 47 #include <sys/mnttab.h> 48 #include <sys/mntent.h> 49 #include <sys/vfstab.h> 50 #include <sys/wait.h> 51 #include <sys/mkdev.h> 52 #include <sys/int_limits.h> 53 #include <sys/zone.h> 54 #include <libzfs.h> 55 56 #include "fslib.h" 57 58 extern char *default_fstype(char *); 59 60 /* 61 * General notice: 62 * String pointers in this code may point to statically allocated memory 63 * or dynamically allocated memory. Furthermore, a dynamically allocated 64 * string may be pointed to by more than one pointer. This does not pose 65 * a problem because malloc'ed memory is never free'd (so we don't need 66 * to remember which pointers point to malloc'ed memory). 67 */ 68 69 /* 70 * TRANSLATION_NOTE 71 * Only strings passed as arguments to the TRANSLATE macro need to 72 * be translated. 73 */ 74 75 #ifndef MNTTYPE_LOFS 76 #define MNTTYPE_LOFS "lofs" 77 #endif 78 79 #define EQ(s1, s2) (strcmp(s1, s2) == 0) 80 #define NEW(type) xmalloc(sizeof (type)) 81 #define CLEAR(var) (void) memset(&(var), 0, sizeof (var)) 82 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 83 #define MAX3(a, b, c) MAX(a, MAX(b, c)) 84 #define TRANSLATE(s) new_string(gettext(s)) 85 86 #define MAX_OPTIONS 36 87 #define N_FSTYPES 20 88 #define MOUNT_TABLE_ENTRIES 40 /* initial allocation */ 89 #define MSGBUF_SIZE 1024 90 #define LINEBUF_SIZE 256 /* either input or output lines */ 91 92 #define BLOCK_SIZE 512 /* when reporting in terms of blocks */ 93 94 #define DEVNM_CMD "devnm" 95 #define FS_LIBPATH "/usr/lib/fs/" 96 #define MOUNT_TAB "/etc/mnttab" 97 #define VFS_TAB "/etc/vfstab" 98 #define REMOTE_FS "/etc/dfs/fstypes" 99 100 #define NUL '\0' 101 #define FALSE 0 102 #define TRUE 1 103 104 /* 105 * Formatting constants 106 */ 107 #define IBCS2_FILESYSTEM_WIDTH 15 /* Truncate to match ISC/SCO */ 108 #define IBCS2_MOUNT_POINT_WIDTH 10 /* Truncate to match ISC/SCO */ 109 #define FILESYSTEM_WIDTH 20 110 #define MOUNT_POINT_WIDTH 19 111 #define SPECIAL_DEVICE_WIDTH 18 112 #define FSTYPE_WIDTH 8 113 #define BLOCK_WIDTH 8 114 #define NFILES_WIDTH 8 115 #ifdef XPG4 116 #define KBYTE_WIDTH 11 117 #define AVAILABLE_WIDTH 10 118 #else 119 #define KBYTE_WIDTH 7 120 #define AVAILABLE_WIDTH 6 121 #endif 122 #define SCALED_WIDTH 6 123 #define CAPACITY_WIDTH 9 124 #define BSIZE_WIDTH 6 125 #define FRAGSIZE_WIDTH 7 126 #define FSID_WIDTH 7 127 #define FLAG_WIDTH 8 128 #define NAMELEN_WIDTH 7 129 #define MNT_SPEC_WIDTH MOUNT_POINT_WIDTH + SPECIAL_DEVICE_WIDTH + 2 130 131 /* 132 * Flags for the errmsg() function 133 */ 134 #define ERR_NOFLAGS 0x0 135 #define ERR_NONAME 0x1 /* don't include the program name */ 136 /* as a prefix */ 137 #define ERR_FATAL 0x2 /* call exit after printing the */ 138 /* message */ 139 #define ERR_PERROR 0x4 /* append an errno explanation to */ 140 /* the message */ 141 #define ERR_USAGE 0x8 /* print the usage line after the */ 142 /* message */ 143 144 #define NUMBER_WIDTH 40 145 146 /* 147 * A numbuf_t is used when converting a number to a string representation 148 */ 149 typedef char numbuf_t[ NUMBER_WIDTH ]; 150 151 /* 152 * We use bool_int instead of int to make clear which variables are 153 * supposed to be boolean 154 */ 155 typedef int bool_int; 156 157 struct mtab_entry { 158 bool_int mte_dev_is_valid; 159 dev_t mte_dev; 160 bool_int mte_ignore; /* the "ignore" option was set */ 161 struct extmnttab *mte_mount; 162 }; 163 164 165 struct df_request { 166 bool_int dfr_valid; 167 char *dfr_cmd_arg; /* what the user specified */ 168 struct mtab_entry *dfr_mte; 169 char *dfr_fstype; 170 int dfr_index; /* to make qsort stable */ 171 }; 172 173 #define DFR_MOUNT_POINT(dfrp) (dfrp)->dfr_mte->mte_mount->mnt_mountp 174 #define DFR_SPECIAL(dfrp) (dfrp)->dfr_mte->mte_mount->mnt_special 175 #define DFR_FSTYPE(dfrp) (dfrp)->dfr_mte->mte_mount->mnt_fstype 176 #define DFR_ISMOUNTEDFS(dfrp) ((dfrp)->dfr_mte != NULL) 177 178 #define DFRP(p) ((struct df_request *)(p)) 179 180 typedef void (*output_func)(struct df_request *, struct statvfs64 *); 181 182 struct df_output { 183 output_func dfo_func; /* function that will do the output */ 184 int dfo_flags; 185 }; 186 187 /* 188 * Output flags 189 */ 190 #define DFO_NOFLAGS 0x0 191 #define DFO_HEADER 0x1 /* output preceded by header */ 192 #define DFO_STATVFS 0x2 /* must do a statvfs64(2) */ 193 194 195 static char *program_name; 196 static char df_options[MAX_OPTIONS] = "-"; 197 static size_t df_options_len = 1; 198 static char *o_option_arg; /* arg to the -o option */ 199 static char *FSType; 200 static char *remote_fstypes[N_FSTYPES+1]; /* allocate an extra one */ 201 /* to use as a terminator */ 202 203 /* 204 * The following three variables support an in-memory copy of the mount table 205 * to speedup searches. 206 */ 207 static struct mtab_entry *mount_table; /* array of mtab_entry's */ 208 static size_t mount_table_entries; 209 static size_t mount_table_allocated_entries; 210 211 static bool_int F_option; 212 static bool_int V_option; 213 static bool_int P_option; /* Added for XCU4 compliance */ 214 static bool_int Z_option; 215 static bool_int v_option; 216 #ifdef _iBCS2 217 char *sysv3_set; 218 #endif /* _iBCS2 */ 219 static bool_int a_option; 220 static bool_int b_option; 221 static bool_int e_option; 222 static bool_int g_option; 223 static bool_int h_option; 224 static bool_int k_option; 225 static bool_int l_option; 226 static bool_int n_option; 227 static bool_int t_option; 228 static bool_int o_option; 229 230 static bool_int tty_output; 231 static bool_int use_scaling; 232 static int scale; 233 234 static void usage(void); 235 static void do_devnm(int, char **); 236 static void do_df(int, char **) __NORETURN; 237 static void parse_options(int, char **); 238 static char *basename(char *); 239 240 static libzfs_handle_t *(*_libzfs_init)(boolean_t); 241 static zfs_handle_t *(*_zfs_open)(libzfs_handle_t *, const char *, int); 242 static void (*_zfs_close)(zfs_handle_t *); 243 static uint64_t (*_zfs_prop_get_int)(zfs_handle_t *, zfs_prop_t); 244 static libzfs_handle_t *g_zfs; 245 246 /* 247 * Dynamically check for libzfs, in case the user hasn't installed the SUNWzfs 248 * packages. A basic utility such as df shouldn't depend on optional 249 * filesystems. 250 */ 251 static boolean_t 252 load_libzfs(void) 253 { 254 void *hdl; 255 256 if (_libzfs_init != NULL) 257 return (g_zfs != NULL); 258 259 if ((hdl = dlopen("libzfs.so", RTLD_LAZY)) != NULL) { 260 _libzfs_init = (libzfs_handle_t *(*)(boolean_t))dlsym(hdl, 261 "libzfs_init"); 262 _zfs_open = (zfs_handle_t *(*)())dlsym(hdl, "zfs_open"); 263 _zfs_close = (void (*)())dlsym(hdl, "zfs_close"); 264 _zfs_prop_get_int = (uint64_t (*)()) 265 dlsym(hdl, "zfs_prop_get_int"); 266 267 if (_libzfs_init != NULL) { 268 assert(_zfs_open != NULL); 269 assert(_zfs_close != NULL); 270 assert(_zfs_prop_get_int != NULL); 271 272 g_zfs = _libzfs_init(B_FALSE); 273 } 274 } 275 276 return (g_zfs != NULL); 277 } 278 279 int 280 main(int argc, char *argv[]) 281 { 282 (void) setlocale(LC_ALL, ""); 283 284 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */ 285 #define TEXT_DOMAIN "SYS_TEST" 286 #endif 287 (void) textdomain(TEXT_DOMAIN); 288 289 program_name = basename(argv[0]); 290 291 #ifdef _iBCS2 292 sysv3_set = getenv("SYSV3"); 293 #endif /* _iBCS2 */ 294 295 if (EQ(program_name, DEVNM_CMD)) 296 do_devnm(argc, argv); 297 298 parse_options(argc, argv); 299 300 /* 301 * The k_option implies SunOS 4.x compatibility: when the special 302 * device name is too long the line will be split except when the 303 * output has been redirected. 304 * This is also valid for the -h option. 305 */ 306 307 if (use_scaling || k_option || P_option || v_option) 308 tty_output = isatty(1); 309 310 do_df(argc - optind, &argv[optind]); 311 /* NOTREACHED */ 312 } 313 314 315 /* 316 * Prints an error message to stderr. 317 */ 318 /* VARARGS2 */ 319 static void 320 errmsg(int flags, char *fmt, ...) 321 { 322 char buf[MSGBUF_SIZE]; 323 va_list ap; 324 int cc; 325 int offset; 326 327 if (flags & ERR_NONAME) 328 offset = 0; 329 else 330 offset = sprintf(buf, "%s: ", program_name); 331 332 va_start(ap, fmt); 333 cc = vsprintf(&buf[offset], gettext(fmt), ap); 334 offset += cc; 335 va_end(ap); 336 337 if (flags & ERR_PERROR) { 338 if (buf[offset-1] != ' ') 339 (void) strcat(buf, " "); 340 (void) strcat(buf, strerror(errno)); 341 } 342 (void) fprintf(stderr, "%s\n", buf); 343 if (flags & ERR_USAGE) 344 usage(); 345 if (flags & ERR_FATAL) 346 exit(1); 347 } 348 349 350 static void 351 usage(void) 352 { 353 #ifdef XPG4 354 errmsg(ERR_NONAME, 355 "Usage: %s [-F FSType] [-abeghklntPVZ] [-o FSType-specific_options]" 356 " [directory | block_device | resource]", program_name); 357 #else 358 errmsg(ERR_NONAME, 359 "Usage: %s [-F FSType] [-abeghklntVvZ] [-o FSType-specific_options]" 360 " [directory | block_device | resource]", program_name); 361 #endif 362 exit(1); 363 /* NOTREACHED */ 364 } 365 366 367 static char * 368 new_string(char *s) 369 { 370 char *p = NULL; 371 372 if (s) { 373 p = strdup(s); 374 if (p) 375 return (p); 376 errmsg(ERR_FATAL, "out of memory"); 377 /* NOTREACHED */ 378 } 379 return (p); 380 } 381 382 383 /* 384 * Allocate memory using malloc but terminate if the allocation fails 385 */ 386 static void * 387 xmalloc(size_t size) 388 { 389 void *p = malloc(size); 390 391 if (p) 392 return (p); 393 errmsg(ERR_FATAL, "out of memory"); 394 /* NOTREACHED */ 395 return (NULL); 396 } 397 398 399 /* 400 * Allocate memory using realloc but terminate if the allocation fails 401 */ 402 static void * 403 xrealloc(void *ptr, size_t size) 404 { 405 void *p = realloc(ptr, size); 406 407 if (p) 408 return (p); 409 errmsg(ERR_FATAL, "out of memory"); 410 /* NOTREACHED */ 411 return (NULL); 412 } 413 414 415 /* 416 * fopen the specified file for reading but terminate if the fopen fails 417 */ 418 static FILE * 419 xfopen(char *file) 420 { 421 FILE *fp = fopen(file, "r"); 422 423 if (fp == NULL) 424 errmsg(ERR_FATAL + ERR_PERROR, "failed to open %s:", file); 425 return (fp); 426 } 427 428 429 /* 430 * Read remote file system types from REMOTE_FS into the 431 * remote_fstypes array. 432 */ 433 static void 434 init_remote_fs(void) 435 { 436 FILE *fp; 437 char line_buf[LINEBUF_SIZE]; 438 size_t fstype_index = 0; 439 440 if ((fp = fopen(REMOTE_FS, "r")) == NULL) { 441 errmsg(ERR_NOFLAGS, 442 "Warning: can't open %s, ignored", REMOTE_FS); 443 return; 444 } 445 446 while (fgets(line_buf, sizeof (line_buf), fp) != NULL) { 447 char buf[LINEBUF_SIZE]; 448 449 (void) sscanf(line_buf, "%s", buf); 450 remote_fstypes[fstype_index++] = new_string(buf); 451 452 if (fstype_index == N_FSTYPES) 453 break; 454 } 455 (void) fclose(fp); 456 } 457 458 459 /* 460 * Returns TRUE if fstype is a remote file system type; 461 * otherwise, returns FALSE. 462 */ 463 static int 464 is_remote_fs(char *fstype) 465 { 466 char **p; 467 static bool_int remote_fs_initialized; 468 469 if (! remote_fs_initialized) { 470 init_remote_fs(); 471 remote_fs_initialized = TRUE; 472 } 473 474 for (p = remote_fstypes; *p; p++) 475 if (EQ(fstype, *p)) 476 return (TRUE); 477 return (FALSE); 478 } 479 480 481 static char * 482 basename(char *s) 483 { 484 char *p = strrchr(s, '/'); 485 486 return (p ? p+1 : s); 487 } 488 489 490 /* 491 * Create a new "struct extmnttab" and make sure that its fields point 492 * to malloc'ed memory 493 */ 494 static struct extmnttab * 495 mntdup(struct extmnttab *old) 496 { 497 struct extmnttab *new = NEW(struct extmnttab); 498 499 new->mnt_special = new_string(old->mnt_special); 500 new->mnt_mountp = new_string(old->mnt_mountp); 501 new->mnt_fstype = new_string(old->mnt_fstype); 502 new->mnt_mntopts = new_string(old->mnt_mntopts); 503 new->mnt_time = new_string(old->mnt_time); 504 new->mnt_major = old->mnt_major; 505 new->mnt_minor = old->mnt_minor; 506 return (new); 507 } 508 509 510 static void 511 mtab_error(char *mtab_file, int status) 512 { 513 if (status == MNT_TOOLONG) 514 errmsg(ERR_NOFLAGS, "a line in %s exceeds %d characters", 515 mtab_file, MNT_LINE_MAX); 516 else if (status == MNT_TOOMANY) 517 errmsg(ERR_NOFLAGS, 518 "a line in %s has too many fields", mtab_file); 519 else if (status == MNT_TOOFEW) 520 errmsg(ERR_NOFLAGS, 521 "a line in %s has too few fields", mtab_file); 522 else 523 errmsg(ERR_NOFLAGS, 524 "error while reading %s: %d", mtab_file, status); 525 exit(1); 526 /* NOTREACHED */ 527 } 528 529 530 /* 531 * Read the mount table from the specified file. 532 * We keep the table in memory for faster lookups. 533 */ 534 static void 535 mtab_read_file(void) 536 { 537 char *mtab_file = MOUNT_TAB; 538 FILE *fp; 539 struct extmnttab mtab; 540 int status; 541 542 fp = xfopen(mtab_file); 543 544 resetmnttab(fp); 545 mount_table_allocated_entries = MOUNT_TABLE_ENTRIES; 546 mount_table_entries = 0; 547 mount_table = xmalloc( 548 mount_table_allocated_entries * sizeof (struct mtab_entry)); 549 550 while ((status = getextmntent(fp, &mtab, sizeof (struct extmnttab))) 551 == 0) { 552 struct mtab_entry *mtep; 553 554 if (mount_table_entries == mount_table_allocated_entries) { 555 mount_table_allocated_entries += MOUNT_TABLE_ENTRIES; 556 mount_table = xrealloc(mount_table, 557 mount_table_allocated_entries * 558 sizeof (struct mtab_entry)); 559 } 560 mtep = &mount_table[mount_table_entries++]; 561 mtep->mte_mount = mntdup(&mtab); 562 mtep->mte_dev_is_valid = FALSE; 563 mtep->mte_ignore = (hasmntopt((struct mnttab *)&mtab, 564 MNTOPT_IGNORE) != NULL); 565 } 566 567 (void) fclose(fp); 568 569 if (status == -1) /* reached EOF */ 570 return; 571 mtab_error(mtab_file, status); 572 /* NOTREACHED */ 573 } 574 575 576 /* 577 * We use this macro when we want to record the option for the purpose of 578 * passing it to the FS-specific df 579 */ 580 #define SET_OPTION(opt) opt##_option = TRUE, \ 581 df_options[df_options_len++] = arg 582 583 static void 584 parse_options(int argc, char *argv[]) 585 { 586 int arg; 587 588 opterr = 0; /* getopt shouldn't complain about unknown options */ 589 590 #ifdef XPG4 591 while ((arg = getopt(argc, argv, "F:o:abehkVtgnlPZ")) != EOF) { 592 #else 593 while ((arg = getopt(argc, argv, "F:o:abehkVtgnlvZ")) != EOF) { 594 #endif 595 if (arg == 'F') { 596 if (F_option) 597 errmsg(ERR_FATAL + ERR_USAGE, 598 "more than one FSType specified"); 599 F_option = 1; 600 FSType = optarg; 601 } else if (arg == 'V' && ! V_option) { 602 V_option = TRUE; 603 } else if (arg == 'v' && ! v_option) { 604 v_option = TRUE; 605 #ifdef XPG4 606 } else if (arg == 'P' && ! P_option) { 607 SET_OPTION(P); 608 #endif 609 } else if (arg == 'a' && ! a_option) { 610 SET_OPTION(a); 611 } else if (arg == 'b' && ! b_option) { 612 SET_OPTION(b); 613 } else if (arg == 'e' && ! e_option) { 614 SET_OPTION(e); 615 } else if (arg == 'g' && ! g_option) { 616 SET_OPTION(g); 617 } else if (arg == 'h') { 618 use_scaling = TRUE; 619 scale = 1024; 620 } else if (arg == 'k' && ! k_option) { 621 SET_OPTION(k); 622 } else if (arg == 'l' && ! l_option) { 623 SET_OPTION(l); 624 } else if (arg == 'n' && ! n_option) { 625 SET_OPTION(n); 626 } else if (arg == 't' && ! t_option) { 627 SET_OPTION(t); 628 } else if (arg == 'o') { 629 if (o_option) 630 errmsg(ERR_FATAL + ERR_USAGE, 631 "the -o option can only be specified once"); 632 o_option = TRUE; 633 o_option_arg = optarg; 634 } else if (arg == 'Z') { 635 SET_OPTION(Z); 636 } else if (arg == '?') { 637 errmsg(ERR_USAGE, "unknown option: %c", optopt); 638 } 639 } 640 641 /* 642 * Option sanity checks 643 */ 644 if (g_option && o_option) 645 errmsg(ERR_FATAL, "-o and -g options are incompatible"); 646 if (l_option && o_option) 647 errmsg(ERR_FATAL, "-o and -l options are incompatible"); 648 if (n_option && o_option) 649 errmsg(ERR_FATAL, "-o and -n options are incompatible"); 650 if (use_scaling && o_option) 651 errmsg(ERR_FATAL, "-o and -h options are incompatible"); 652 } 653 654 655 656 /* 657 * Check if the user-specified argument is a resource name. 658 * A resource name is whatever is placed in the mnt_special field of 659 * struct mnttab. In the case of NFS, a resource name has the form 660 * hostname:pathname 661 * We try to find an exact match between the user-specified argument 662 * and the mnt_special field of a mount table entry. 663 * We also use the heuristic of removing the basename from the user-specified 664 * argument and repeating the test until we get a match. This works 665 * fine for NFS but may fail for other remote file system types. However, 666 * it is guaranteed that the function will not fail if the user specifies 667 * the exact resource name. 668 * If successful, this function sets the 'dfr_mte' field of '*dfrp' 669 */ 670 static void 671 resource_mount_entry(struct df_request *dfrp) 672 { 673 char *name; 674 675 /* 676 * We need our own copy since we will modify the string 677 */ 678 name = new_string(dfrp->dfr_cmd_arg); 679 680 for (;;) { 681 char *p; 682 int i; 683 684 /* 685 * Compare against all known mount points. 686 * We start from the most recent mount, which is at the 687 * end of the array. 688 */ 689 for (i = mount_table_entries - 1; i >= 0; i--) { 690 struct mtab_entry *mtep = &mount_table[i]; 691 692 if (EQ(name, mtep->mte_mount->mnt_special)) { 693 dfrp->dfr_mte = mtep; 694 break; 695 } 696 } 697 698 /* 699 * Remove the last component of the pathname. 700 * If there is no such component, this is not a resource name. 701 */ 702 p = strrchr(name, '/'); 703 if (p == NULL) 704 break; 705 *p = NUL; 706 } 707 } 708 709 710 711 /* 712 * Try to match the command line argument which is a block special device 713 * with the special device of one of the mounted file systems. 714 * If one is found, set the appropriate field of 'dfrp' to the mount 715 * table entry. 716 */ 717 static void 718 bdev_mount_entry(struct df_request *dfrp) 719 { 720 int i; 721 char *special = dfrp->dfr_cmd_arg; 722 723 /* 724 * Compare against all known mount points. 725 * We start from the most recent mount, which is at the 726 * end of the array. 727 */ 728 for (i = mount_table_entries - 1; i >= 0; i--) { 729 struct mtab_entry *mtep = &mount_table[i]; 730 731 if (EQ(special, mtep->mte_mount->mnt_special)) { 732 dfrp->dfr_mte = mtep; 733 break; 734 } 735 } 736 } 737 738 static struct mtab_entry * 739 devid_matches(int i, dev_t devno) 740 { 741 struct mtab_entry *mtep = &mount_table[i]; 742 struct extmnttab *mtp = mtep->mte_mount; 743 /* int len = strlen(mtp->mnt_mountp); */ 744 745 if (EQ(mtp->mnt_fstype, MNTTYPE_SWAP)) 746 return (NULL); 747 /* 748 * check if device numbers match. If there is a cached device number 749 * in the mtab_entry, use it, otherwise get the device number 750 * either from the mnttab entry or by stat'ing the mount point. 751 */ 752 if (! mtep->mte_dev_is_valid) { 753 struct stat64 st; 754 dev_t dev = NODEV; 755 756 dev = makedev(mtp->mnt_major, mtp->mnt_minor); 757 if (dev == 0) 758 dev = NODEV; 759 if (dev == NODEV) { 760 if (stat64(mtp->mnt_mountp, &st) == -1) { 761 return (NULL); 762 } else { 763 dev = st.st_dev; 764 } 765 } 766 mtep->mte_dev = dev; 767 mtep->mte_dev_is_valid = TRUE; 768 } 769 if (mtep->mte_dev == devno) { 770 return (mtep); 771 } 772 return (NULL); 773 } 774 775 /* 776 * Find the mount point under which the user-specified path resides 777 * and set the 'dfr_mte' field of '*dfrp' to point to the mount table entry. 778 */ 779 static void 780 path_mount_entry(struct df_request *dfrp, dev_t devno) 781 { 782 char dirpath[MAXPATHLEN]; 783 char *dir = dfrp->dfr_cmd_arg; 784 struct mtab_entry *match, *tmatch; 785 int i; 786 787 /* 788 * Expand the given path to get a canonical version (i.e. an absolute 789 * path without symbolic links). 790 */ 791 if (realpath(dir, dirpath) == NULL) { 792 errmsg(ERR_PERROR, "cannot canonicalize %s:", dir); 793 return; 794 } 795 /* 796 * If the mnt point is lofs, search from the top of entries from 797 * /etc/mnttab and return the first entry that matches the devid 798 * For non-lofs mount points, return the first entry from the bottom 799 * of the entries in /etc/mnttab that matches on the devid field 800 */ 801 match = NULL; 802 if (dfrp->dfr_fstype && EQ(dfrp->dfr_fstype, MNTTYPE_LOFS)) { 803 for (i = 0; i < mount_table_entries; i++) { 804 if (match = devid_matches(i, devno)) 805 break; 806 } 807 } else { 808 for (i = mount_table_entries - 1; i >= 0; i--) { 809 if (tmatch = devid_matches(i, devno)) { 810 /* 811 * If executing in a zone, there might be lofs 812 * mounts for which the real mount point is 813 * invisible; accept the "best fit" for this 814 * devid. 815 */ 816 match = tmatch; 817 if (!EQ(match->mte_mount->mnt_fstype, 818 MNTTYPE_LOFS)) { 819 break; 820 } 821 } 822 } 823 } 824 if (! match) { 825 errmsg(ERR_NOFLAGS, 826 "Could not find mount point for %s", dir); 827 return; 828 } 829 dfrp->dfr_mte = match; 830 } 831 832 /* 833 * Execute a single FS-specific df command for all given requests 834 * Return 0 if successful, 1 otherwise. 835 */ 836 static int 837 run_fs_specific_df(struct df_request request_list[], int entries) 838 { 839 int i; 840 int argv_index; 841 char **argv; 842 size_t size; 843 pid_t pid; 844 int status; 845 char cmd_path[MAXPATHLEN]; 846 char *fstype; 847 848 if (entries == 0) 849 return (0); 850 851 fstype = request_list[0].dfr_fstype; 852 853 if (F_option && ! EQ(FSType, fstype)) 854 return (0); 855 856 (void) sprintf(cmd_path, "%s%s/df", FS_LIBPATH, fstype); 857 /* 858 * Argv entries: 859 * 1 for the path 860 * 2 for -o <options> 861 * 1 for the generic options that we propagate 862 * 1 for the terminating NULL pointer 863 * n for the number of user-specified arguments 864 */ 865 size = (5 + entries) * sizeof (char *); 866 argv = xmalloc(size); 867 (void) memset(argv, 0, size); 868 869 argv[0] = cmd_path; 870 argv_index = 1; 871 if (o_option) { 872 argv[argv_index++] = "-o"; 873 argv[argv_index++] = o_option_arg; 874 } 875 876 /* 877 * Check if we need to propagate any generic options 878 */ 879 if (df_options_len > 1) 880 argv[argv_index++] = df_options; 881 882 /* 883 * If there is a user-specified path, we pass that to the 884 * FS-specific df. Otherwise, we are guaranteed to have a mount 885 * point, since a request without a user path implies that 886 * we are reporting only on mounted file systems. 887 */ 888 for (i = 0; i < entries; i++) { 889 struct df_request *dfrp = &request_list[i]; 890 891 argv[argv_index++] = (dfrp->dfr_cmd_arg == NULL) 892 ? DFR_MOUNT_POINT(dfrp) 893 : dfrp->dfr_cmd_arg; 894 } 895 896 if (V_option) { 897 for (i = 0; i < argv_index-1; i++) 898 (void) printf("%s ", argv[i]); 899 (void) printf("%s\n", argv[i]); 900 return (0); 901 } 902 903 pid = fork(); 904 905 if (pid == -1) { 906 errmsg(ERR_PERROR, "cannot fork process:"); 907 return (1); 908 } else if (pid == 0) { 909 (void) execv(cmd_path, argv); 910 if (errno == ENOENT) 911 errmsg(ERR_NOFLAGS, 912 "operation not applicable for FSType %s", 913 fstype); 914 else 915 errmsg(ERR_PERROR, "cannot execute %s:", cmd_path); 916 exit(2); 917 } 918 919 /* 920 * Reap the child 921 */ 922 for (;;) { 923 pid_t wpid = waitpid(pid, &status, 0); 924 925 if (wpid == -1) 926 if (errno == EINTR) 927 continue; 928 else { 929 errmsg(ERR_PERROR, "waitpid error:"); 930 return (1); 931 } 932 else 933 break; 934 } 935 936 return ((WIFEXITED(status) && WEXITSTATUS(status) == 0) ? 0 : 1); 937 } 938 939 940 941 /* 942 * Remove from the request list all requests that do not apply. 943 * Notice that the subsequent processing of the requests depends on 944 * the sanity checking performed by this function. 945 */ 946 static int 947 prune_list(struct df_request request_list[], 948 size_t n_requests, 949 size_t *valid_requests) 950 { 951 size_t i; 952 size_t n_valid = 0; 953 int errors = 0; 954 955 for (i = 0; i < n_requests; i++) { 956 struct df_request *dfrp = &request_list[i]; 957 958 /* 959 * Skip file systems that are not mounted if either the 960 * -l or -n options were specified. If none of these options 961 * are present, the appropriate FS-specific df will be invoked. 962 */ 963 if (! DFR_ISMOUNTEDFS(dfrp)) { 964 if (l_option || n_option) { 965 errmsg(ERR_NOFLAGS, 966 "%s option incompatible with unmounted special device (%s)", 967 l_option ? "-l" : "-n", dfrp->dfr_cmd_arg); 968 dfrp->dfr_valid = FALSE; 969 errors++; 970 } 971 else 972 n_valid++; 973 continue; 974 } 975 976 /* 977 * Check for inconsistency between the argument of -F and 978 * the actual file system type. 979 * If there is an inconsistency and the user specified a 980 * path, this is an error since we are asked to interpret 981 * the path using the wrong file system type. If there is 982 * no path associated with this request, we quietly ignore it. 983 */ 984 if (F_option && ! EQ(dfrp->dfr_fstype, FSType)) { 985 dfrp->dfr_valid = FALSE; 986 if (dfrp->dfr_cmd_arg != NULL) { 987 errmsg(ERR_NOFLAGS, 988 "Warning: %s mounted as a %s file system", 989 dfrp->dfr_cmd_arg, dfrp->dfr_fstype); 990 errors++; 991 } 992 continue; 993 } 994 995 /* 996 * Skip remote file systems if the -l option is present 997 */ 998 if (l_option && is_remote_fs(dfrp->dfr_fstype)) { 999 if (dfrp->dfr_cmd_arg != NULL) { 1000 errmsg(ERR_NOFLAGS, 1001 "Warning: %s is not a local file system", 1002 dfrp->dfr_cmd_arg); 1003 errors++; 1004 } 1005 dfrp->dfr_valid = FALSE; 1006 continue; 1007 } 1008 1009 /* 1010 * Skip file systems mounted as "ignore" unless the -a option 1011 * is present, or the user explicitly specified them on 1012 * the command line. 1013 */ 1014 if (dfrp->dfr_mte->mte_ignore && 1015 ! (a_option || dfrp->dfr_cmd_arg)) { 1016 dfrp->dfr_valid = FALSE; 1017 continue; 1018 } 1019 1020 n_valid++; 1021 } 1022 *valid_requests = n_valid; 1023 return (errors); 1024 } 1025 1026 1027 /* 1028 * Print the appropriate header for the requested output format. 1029 * Options are checked in order of their precedence. 1030 */ 1031 static void 1032 print_header(void) 1033 { 1034 if (use_scaling) { /* this comes from the -h option */ 1035 int arg = 'h'; 1036 1037 (void) printf("%-*s %*s %*s %*s %-*s %s\n", 1038 FILESYSTEM_WIDTH, TRANSLATE("Filesystem"), 1039 #ifdef XPG4 1040 SCALED_WIDTH, TRANSLATE("Size"), 1041 SCALED_WIDTH, TRANSLATE("Used"), 1042 AVAILABLE_WIDTH, TRANSLATE("Available"), 1043 CAPACITY_WIDTH, TRANSLATE("Capacity"), 1044 #else 1045 SCALED_WIDTH, TRANSLATE("size"), 1046 SCALED_WIDTH, TRANSLATE("used"), 1047 AVAILABLE_WIDTH, TRANSLATE("avail"), 1048 CAPACITY_WIDTH, TRANSLATE("capacity"), 1049 #endif 1050 TRANSLATE("Mounted on")); 1051 SET_OPTION(h); 1052 return; 1053 } 1054 if (k_option) { 1055 int arg = 'h'; 1056 1057 (void) printf(gettext("%-*s %*s %*s %*s %-*s %s\n"), 1058 FILESYSTEM_WIDTH, TRANSLATE("Filesystem"), 1059 #ifdef XPG4 1060 KBYTE_WIDTH, TRANSLATE("1024-blocks"), 1061 KBYTE_WIDTH, TRANSLATE("Used"), 1062 KBYTE_WIDTH, TRANSLATE("Available"), 1063 CAPACITY_WIDTH, TRANSLATE("Capacity"), 1064 #else 1065 KBYTE_WIDTH, TRANSLATE("kbytes"), 1066 KBYTE_WIDTH, TRANSLATE("used"), 1067 KBYTE_WIDTH, TRANSLATE("avail"), 1068 CAPACITY_WIDTH, TRANSLATE("capacity"), 1069 #endif 1070 TRANSLATE("Mounted on")); 1071 SET_OPTION(h); 1072 return; 1073 } 1074 /* Added for XCU4 compliance */ 1075 if (P_option) { 1076 int arg = 'h'; 1077 1078 (void) printf(gettext("%-*s %*s %*s %*s %-*s %s\n"), 1079 FILESYSTEM_WIDTH, TRANSLATE("Filesystem"), 1080 KBYTE_WIDTH, TRANSLATE("512-blocks"), 1081 KBYTE_WIDTH, TRANSLATE("Used"), 1082 KBYTE_WIDTH, TRANSLATE("Available"), 1083 CAPACITY_WIDTH, TRANSLATE("Capacity"), 1084 TRANSLATE("Mounted on")); 1085 1086 SET_OPTION(h); 1087 return; 1088 } 1089 /* End XCU4 */ 1090 if (v_option) { 1091 (void) printf("%-*s %-*s %*s %*s %*s %-*s\n", 1092 IBCS2_MOUNT_POINT_WIDTH, TRANSLATE("Mount Dir"), 1093 IBCS2_FILESYSTEM_WIDTH, TRANSLATE("Filesystem"), 1094 BLOCK_WIDTH, TRANSLATE("blocks"), 1095 BLOCK_WIDTH, TRANSLATE("used"), 1096 BLOCK_WIDTH, TRANSLATE("free"), 1097 CAPACITY_WIDTH, TRANSLATE(" %used")); 1098 return; 1099 } 1100 if (e_option) { 1101 (void) printf(gettext("%-*s %*s\n"), 1102 FILESYSTEM_WIDTH, TRANSLATE("Filesystem"), 1103 BLOCK_WIDTH, TRANSLATE("ifree")); 1104 return; 1105 } 1106 if (b_option) { 1107 (void) printf(gettext("%-*s %*s\n"), 1108 FILESYSTEM_WIDTH, TRANSLATE("Filesystem"), 1109 BLOCK_WIDTH, TRANSLATE("avail")); 1110 return; 1111 } 1112 } 1113 1114 1115 /* 1116 * Convert an unsigned long long to a string representation and place the 1117 * result in the caller-supplied buffer. 1118 * The given number is in units of "unit_from" size, but the 1119 * converted number will be in units of "unit_to" size. The unit sizes 1120 * must be powers of 2. 1121 * The value "(unsigned long long)-1" is a special case and is always 1122 * converted to "-1". 1123 * Returns a pointer to the caller-supplied buffer. 1124 */ 1125 static char * 1126 number_to_string( 1127 char *buf, /* put the result here */ 1128 unsigned long long number, /* convert this number */ 1129 int unit_from, /* from units of this size */ 1130 int unit_to) /* to units of this size */ 1131 { 1132 if ((long long)number == (long long)-1) 1133 (void) strcpy(buf, "-1"); 1134 else { 1135 if (unit_from == unit_to) 1136 (void) sprintf(buf, "%llu", number); 1137 else if (unit_from < unit_to) 1138 (void) sprintf(buf, "%llu", 1139 number / (unsigned long long)(unit_to / unit_from)); 1140 else 1141 (void) sprintf(buf, "%llu", 1142 number * (unsigned long long)(unit_from / unit_to)); 1143 } 1144 return (buf); 1145 } 1146 1147 /* 1148 * Convert an unsigned long long to a string representation and place the 1149 * result in the caller-supplied buffer. 1150 * The given number is in units of "unit_from" size, 1151 * this will first be converted to a number in 1024 or 1000 byte size, 1152 * depending on the scaling factor. 1153 * Then the number is scaled down until it is small enough to be in a good 1154 * human readable format i.e. in the range 0 thru scale-1. 1155 * If it's smaller than 10 there's room enough to provide one decimal place. 1156 * The value "(unsigned long long)-1" is a special case and is always 1157 * converted to "-1". 1158 * Returns a pointer to the caller-supplied buffer. 1159 */ 1160 static char * 1161 number_to_scaled_string( 1162 numbuf_t buf, /* put the result here */ 1163 unsigned long long number, /* convert this number */ 1164 int unit_from, 1165 int scale) 1166 { 1167 unsigned long long save = 0; 1168 char *M = "KMGTPE"; /* Measurement: kilo, mega, giga, tera, peta, exa */ 1169 char *uom = M; /* unit of measurement, initially 'K' (=M[0]) */ 1170 1171 if ((long long)number == (long long)-1) { 1172 (void) strcpy(buf, "-1"); 1173 return (buf); 1174 } 1175 1176 /* 1177 * Convert number from unit_from to given scale (1024 or 1000). 1178 * This means multiply number by unit_from and divide by scale. 1179 * 1180 * Would like to multiply by unit_from and then divide by scale, 1181 * but if the first multiplication would overflow, then need to 1182 * divide by scale and then multiply by unit_from. 1183 */ 1184 if (number > (UINT64_MAX / (unsigned long long)unit_from)) { 1185 number = (number / (unsigned long long)scale) * 1186 (unsigned long long)unit_from; 1187 } else { 1188 number = (number * (unsigned long long)unit_from) / 1189 (unsigned long long)scale; 1190 } 1191 1192 /* 1193 * Now we have number as a count of scale units. 1194 * Stop scaling when we reached exa bytes, then something is 1195 * probably wrong with our number. 1196 */ 1197 1198 while ((number >= scale) && (*uom != 'E')) { 1199 uom++; /* next unit of measurement */ 1200 save = number; 1201 number = (number + (scale / 2)) / scale; 1202 } 1203 /* check if we should output a decimal place after the point */ 1204 if (save && ((save / scale) < 10)) { 1205 /* sprintf() will round for us */ 1206 float fnum = (float)save / scale; 1207 (void) sprintf(buf, "%2.1f%c", fnum, *uom); 1208 } else { 1209 (void) sprintf(buf, "%4llu%c", number, *uom); 1210 } 1211 return (buf); 1212 } 1213 1214 /* 1215 * The statvfs() implementation allows us to return only two values, the total 1216 * number of blocks and the number of blocks free. The equation 'used = total - 1217 * free' will not work for ZFS filesystems, due to the nature of pooled storage. 1218 * We choose to return values in the statvfs structure that will produce correct 1219 * results for 'used' and 'available', but not 'total'. This function will open 1220 * the underlying ZFS dataset if necessary and get the real value. 1221 */ 1222 static void 1223 adjust_total_blocks(struct df_request *dfrp, fsblkcnt64_t *total, 1224 uint64_t blocksize) 1225 { 1226 zfs_handle_t *zhp; 1227 char *dataset, *slash; 1228 uint64_t quota; 1229 1230 if (strcmp(DFR_FSTYPE(dfrp), MNTTYPE_ZFS) != 0 || 1231 !load_libzfs()) 1232 return; 1233 1234 /* 1235 * We want to get the total size for this filesystem as bounded by any 1236 * quotas. In order to do this, we start at the current filesystem and 1237 * work upwards until we find a dataset with a quota. If we reach the 1238 * pool itself, then the total space is the amount used plus the amount 1239 * available. 1240 */ 1241 if ((dataset = strdup(DFR_SPECIAL(dfrp))) == NULL) 1242 return; 1243 1244 slash = dataset + strlen(dataset); 1245 do { 1246 *slash = '\0'; 1247 1248 if ((zhp = _zfs_open(g_zfs, dataset, ZFS_TYPE_ANY)) == NULL) { 1249 free(dataset); 1250 return; 1251 } 1252 1253 if ((quota = _zfs_prop_get_int(zhp, ZFS_PROP_QUOTA)) != 0) { 1254 *total = quota / blocksize; 1255 _zfs_close(zhp); 1256 free(dataset); 1257 return; 1258 } 1259 1260 _zfs_close(zhp); 1261 1262 } while ((slash = strrchr(dataset, '/')) != NULL); 1263 1264 1265 if ((zhp = _zfs_open(g_zfs, dataset, ZFS_TYPE_ANY)) == NULL) { 1266 free(dataset); 1267 return; 1268 } 1269 1270 *total = (_zfs_prop_get_int(zhp, ZFS_PROP_USED) + 1271 _zfs_prop_get_int(zhp, ZFS_PROP_AVAILABLE)) / blocksize; 1272 1273 _zfs_close(zhp); 1274 free(dataset); 1275 } 1276 1277 /* 1278 * The output will appear properly columnized regardless of the names of 1279 * the various fields 1280 */ 1281 static void 1282 g_output(struct df_request *dfrp, struct statvfs64 *fsp) 1283 { 1284 fsblkcnt64_t available_blocks = fsp->f_bavail; 1285 fsblkcnt64_t total_blocks = fsp->f_blocks; 1286 numbuf_t total_blocks_buf; 1287 numbuf_t total_files_buf; 1288 numbuf_t free_blocks_buf; 1289 numbuf_t available_blocks_buf; 1290 numbuf_t free_files_buf; 1291 numbuf_t fname_buf; 1292 char *temp_buf; 1293 1294 #define DEFINE_STR_LEN(var) \ 1295 static char *var##_str; \ 1296 static size_t var##_len 1297 1298 #define SET_STR_LEN(name, var)\ 1299 if (! var##_str) {\ 1300 var##_str = TRANSLATE(name); \ 1301 var##_len = strlen(var##_str); \ 1302 } 1303 1304 DEFINE_STR_LEN(block_size); 1305 DEFINE_STR_LEN(frag_size); 1306 DEFINE_STR_LEN(total_blocks); 1307 DEFINE_STR_LEN(free_blocks); 1308 DEFINE_STR_LEN(available); 1309 DEFINE_STR_LEN(total_files); 1310 DEFINE_STR_LEN(free_files); 1311 DEFINE_STR_LEN(fstype); 1312 DEFINE_STR_LEN(fsys_id); 1313 DEFINE_STR_LEN(fname); 1314 DEFINE_STR_LEN(flag); 1315 1316 /* 1317 * TRANSLATION_NOTE 1318 * The first argument of each of the following macro invocations is a 1319 * string that needs to be translated. 1320 */ 1321 SET_STR_LEN("block size", block_size); 1322 SET_STR_LEN("frag size", frag_size); 1323 SET_STR_LEN("total blocks", total_blocks); 1324 SET_STR_LEN("free blocks", free_blocks); 1325 SET_STR_LEN("available", available); 1326 SET_STR_LEN("total files", total_files); 1327 SET_STR_LEN("free files", free_files); 1328 SET_STR_LEN("fstype", fstype); 1329 SET_STR_LEN("filesys id", fsys_id); 1330 SET_STR_LEN("filename length", fname); 1331 SET_STR_LEN("flag", flag); 1332 1333 #define NCOL1_WIDTH (int)MAX3(BLOCK_WIDTH, NFILES_WIDTH, FSTYPE_WIDTH) 1334 #define NCOL2_WIDTH (int)MAX3(BLOCK_WIDTH, FSID_WIDTH, FLAG_WIDTH) + 2 1335 #define NCOL3_WIDTH (int)MAX3(BSIZE_WIDTH, BLOCK_WIDTH, NAMELEN_WIDTH) 1336 #define NCOL4_WIDTH (int)MAX(FRAGSIZE_WIDTH, NFILES_WIDTH) 1337 1338 #define SCOL1_WIDTH (int)MAX3(total_blocks_len, free_files_len, fstype_len) 1339 #define SCOL2_WIDTH (int)MAX3(free_blocks_len, fsys_id_len, flag_len) 1340 #define SCOL3_WIDTH (int)MAX3(block_size_len, available_len, fname_len) 1341 #define SCOL4_WIDTH (int)MAX(frag_size_len, total_files_len) 1342 1343 temp_buf = xmalloc( 1344 MAX(MOUNT_POINT_WIDTH, strlen(DFR_MOUNT_POINT(dfrp))) 1345 + MAX(SPECIAL_DEVICE_WIDTH, strlen(DFR_SPECIAL(dfrp))) 1346 + 20); /* plus slop - nulls & formatting */ 1347 (void) sprintf(temp_buf, "%-*s(%-*s):", 1348 MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp), 1349 SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp)); 1350 1351 (void) printf("%-*s %*lu %-*s %*lu %-*s\n", 1352 NCOL1_WIDTH + 1 + SCOL1_WIDTH + 1 + NCOL2_WIDTH + 1 + SCOL2_WIDTH, 1353 temp_buf, 1354 NCOL3_WIDTH, fsp->f_bsize, SCOL3_WIDTH, block_size_str, 1355 NCOL4_WIDTH, fsp->f_frsize, SCOL4_WIDTH, frag_size_str); 1356 free(temp_buf); 1357 1358 /* 1359 * Adjust available_blocks value - it can be less than 0 on 1360 * a 4.x file system. Reset it to 0 in order to avoid printing 1361 * negative numbers. 1362 */ 1363 if ((long long)available_blocks < (long long)0) 1364 available_blocks = (fsblkcnt64_t)0; 1365 1366 adjust_total_blocks(dfrp, &total_blocks, fsp->f_frsize); 1367 1368 (void) printf("%*s %-*s %*s %-*s %*s %-*s %*s %-*s\n", 1369 NCOL1_WIDTH, number_to_string(total_blocks_buf, 1370 total_blocks, fsp->f_frsize, 512), 1371 SCOL1_WIDTH, total_blocks_str, 1372 NCOL2_WIDTH, number_to_string(free_blocks_buf, 1373 fsp->f_bfree, fsp->f_frsize, 512), 1374 SCOL2_WIDTH, free_blocks_str, 1375 NCOL3_WIDTH, number_to_string(available_blocks_buf, 1376 available_blocks, fsp->f_frsize, 512), 1377 SCOL3_WIDTH, available_str, 1378 NCOL4_WIDTH, number_to_string(total_files_buf, 1379 fsp->f_files, 1, 1), 1380 SCOL4_WIDTH, total_files_str); 1381 1382 (void) printf("%*s %-*s %*lu %-*s %s\n", 1383 NCOL1_WIDTH, number_to_string(free_files_buf, 1384 fsp->f_ffree, 1, 1), 1385 SCOL1_WIDTH, free_files_str, 1386 NCOL2_WIDTH, fsp->f_fsid, SCOL2_WIDTH, fsys_id_str, 1387 fsp->f_fstr); 1388 1389 (void) printf("%*s %-*s %#*.*lx %-*s %*s %-*s\n\n", 1390 NCOL1_WIDTH, fsp->f_basetype, SCOL1_WIDTH, fstype_str, 1391 NCOL2_WIDTH, NCOL2_WIDTH-2, fsp->f_flag, SCOL2_WIDTH, flag_str, 1392 NCOL3_WIDTH, number_to_string(fname_buf, 1393 (unsigned long long)fsp->f_namemax, 1, 1), 1394 SCOL3_WIDTH, fname_str); 1395 } 1396 1397 1398 static void 1399 k_output(struct df_request *dfrp, struct statvfs64 *fsp) 1400 { 1401 fsblkcnt64_t total_blocks = fsp->f_blocks; 1402 fsblkcnt64_t free_blocks = fsp->f_bfree; 1403 fsblkcnt64_t available_blocks = fsp->f_bavail; 1404 fsblkcnt64_t used_blocks; 1405 char *file_system = DFR_SPECIAL(dfrp); 1406 numbuf_t total_blocks_buf; 1407 numbuf_t used_blocks_buf; 1408 numbuf_t available_blocks_buf; 1409 char capacity_buf[LINEBUF_SIZE]; 1410 1411 /* 1412 * If the free block count is -1, don't trust anything but the total 1413 * number of blocks. 1414 */ 1415 if (free_blocks == (fsblkcnt64_t)-1) { 1416 used_blocks = (fsblkcnt64_t)-1; 1417 (void) strcpy(capacity_buf, " 100%"); 1418 } else { 1419 fsblkcnt64_t reserved_blocks = free_blocks - available_blocks; 1420 1421 used_blocks = total_blocks - free_blocks; 1422 1423 /* 1424 * The capacity estimation is bogus when available_blocks is 0 1425 * and the super-user has allocated more space. The reason 1426 * is that reserved_blocks is inaccurate in that case, because 1427 * when the super-user allocates space, free_blocks is updated 1428 * but available_blocks is not (since it can't drop below 0). 1429 * 1430 * XCU4 and POSIX.2 require that any fractional result of the 1431 * capacity estimation be rounded to the next highest integer, 1432 * hence the addition of 0.5. 1433 */ 1434 (void) sprintf(capacity_buf, "%5.0f%%", 1435 (total_blocks == 0) ? 0.0 : 1436 ((double)used_blocks / 1437 (double)(total_blocks - reserved_blocks)) 1438 * 100.0 + 0.5); 1439 } 1440 1441 /* 1442 * The available_blocks can be less than 0 on a 4.x file system. 1443 * Reset it to 0 in order to avoid printing negative numbers. 1444 */ 1445 if ((long long)available_blocks < (long long)0) 1446 available_blocks = (fsblkcnt64_t)0; 1447 /* 1448 * Print long special device names (usually NFS mounts) in a line 1449 * by themselves when the output is directed to a terminal. 1450 */ 1451 if (tty_output && strlen(file_system) > (size_t)FILESYSTEM_WIDTH) { 1452 (void) printf("%s\n", file_system); 1453 file_system = ""; 1454 } 1455 1456 adjust_total_blocks(dfrp, &total_blocks, fsp->f_frsize); 1457 1458 if (use_scaling) { /* comes from the -h option */ 1459 (void) printf("%-*s %*s %*s %*s %-*s %-s\n", 1460 FILESYSTEM_WIDTH, file_system, 1461 SCALED_WIDTH, number_to_scaled_string(total_blocks_buf, 1462 total_blocks, fsp->f_frsize, scale), 1463 SCALED_WIDTH, number_to_scaled_string(used_blocks_buf, 1464 used_blocks, fsp->f_frsize, scale), 1465 AVAILABLE_WIDTH, number_to_scaled_string(available_blocks_buf, 1466 available_blocks, fsp->f_frsize, scale), 1467 CAPACITY_WIDTH, capacity_buf, 1468 DFR_MOUNT_POINT(dfrp)); 1469 return; 1470 } 1471 1472 if (v_option) { 1473 (void) printf("%-*.*s %-*.*s %*lld %*lld %*lld %-.*s\n", 1474 IBCS2_MOUNT_POINT_WIDTH, IBCS2_MOUNT_POINT_WIDTH, 1475 DFR_MOUNT_POINT(dfrp), 1476 IBCS2_FILESYSTEM_WIDTH, IBCS2_FILESYSTEM_WIDTH, file_system, 1477 BLOCK_WIDTH, total_blocks, 1478 BLOCK_WIDTH, used_blocks, 1479 BLOCK_WIDTH, available_blocks, 1480 CAPACITY_WIDTH, capacity_buf); 1481 return; 1482 } 1483 1484 if (P_option && !k_option) { 1485 (void) printf("%-*s %*s %*s %*s %-*s %-s\n", 1486 FILESYSTEM_WIDTH, file_system, 1487 KBYTE_WIDTH, number_to_string(total_blocks_buf, 1488 total_blocks, fsp->f_frsize, 512), 1489 KBYTE_WIDTH, number_to_string(used_blocks_buf, 1490 used_blocks, fsp->f_frsize, 512), 1491 KBYTE_WIDTH, number_to_string(available_blocks_buf, 1492 available_blocks, fsp->f_frsize, 512), 1493 CAPACITY_WIDTH, capacity_buf, 1494 DFR_MOUNT_POINT(dfrp)); 1495 } else { 1496 (void) printf("%-*s %*s %*s %*s %-*s %-s\n", 1497 FILESYSTEM_WIDTH, file_system, 1498 KBYTE_WIDTH, number_to_string(total_blocks_buf, 1499 total_blocks, fsp->f_frsize, 1024), 1500 KBYTE_WIDTH, number_to_string(used_blocks_buf, 1501 used_blocks, fsp->f_frsize, 1024), 1502 KBYTE_WIDTH, number_to_string(available_blocks_buf, 1503 available_blocks, fsp->f_frsize, 1024), 1504 CAPACITY_WIDTH, capacity_buf, 1505 DFR_MOUNT_POINT(dfrp)); 1506 } 1507 } 1508 1509 /* 1510 * The following is for internationalization support. 1511 */ 1512 static bool_int strings_initialized; 1513 static char *files_str; 1514 static char *blocks_str; 1515 static char *total_str; 1516 static char *kilobytes_str; 1517 1518 static void 1519 strings_init(void) 1520 { 1521 total_str = TRANSLATE("total"); 1522 #ifdef _iBCS2 1523 /* ISC/SCO print i-nodes instead of files */ 1524 if (sysv3_set) 1525 files_str = TRANSLATE("i-nodes"); 1526 else 1527 #endif /* _iBCS2 */ 1528 files_str = TRANSLATE("files"); 1529 blocks_str = TRANSLATE("blocks"); 1530 kilobytes_str = TRANSLATE("kilobytes"); 1531 strings_initialized = TRUE; 1532 } 1533 1534 #define STRINGS_INIT() if (!strings_initialized) strings_init() 1535 1536 1537 static void 1538 t_output(struct df_request *dfrp, struct statvfs64 *fsp) 1539 { 1540 fsblkcnt64_t total_blocks = fsp->f_blocks; 1541 numbuf_t total_blocks_buf; 1542 numbuf_t total_files_buf; 1543 numbuf_t free_blocks_buf; 1544 numbuf_t free_files_buf; 1545 1546 STRINGS_INIT(); 1547 1548 adjust_total_blocks(dfrp, &total_blocks, fsp->f_frsize); 1549 1550 (void) printf("%-*s(%-*s): %*s %s %*s %s\n", 1551 MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp), 1552 SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp), 1553 BLOCK_WIDTH, number_to_string(free_blocks_buf, 1554 fsp->f_bfree, fsp->f_frsize, 512), 1555 blocks_str, 1556 NFILES_WIDTH, number_to_string(free_files_buf, 1557 fsp->f_ffree, 1, 1), 1558 files_str); 1559 /* 1560 * The total column used to use the same space as the mnt pt & special 1561 * dev fields. However, this doesn't work with massive special dev 1562 * fields * (eg > 500 chars) causing an enormous amount of white space 1563 * before the total column (see bug 4100411). So the code was 1564 * simplified to set the total column at the usual gap. 1565 * This had the side effect of fixing a bug where the previously 1566 * used static buffer was overflowed by the same massive special dev. 1567 */ 1568 (void) printf("%*s: %*s %s %*s %s\n", 1569 MNT_SPEC_WIDTH, total_str, 1570 BLOCK_WIDTH, number_to_string(total_blocks_buf, 1571 total_blocks, fsp->f_frsize, 512), 1572 blocks_str, 1573 NFILES_WIDTH, number_to_string(total_files_buf, 1574 fsp->f_files, 1, 1), 1575 files_str); 1576 } 1577 1578 1579 static void 1580 eb_output(struct df_request *dfrp, struct statvfs64 *fsp) 1581 { 1582 numbuf_t free_files_buf; 1583 numbuf_t free_kbytes_buf; 1584 1585 STRINGS_INIT(); 1586 1587 (void) printf("%-*s(%-*s): %*s %s\n", 1588 MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp), 1589 SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp), 1590 MAX(KBYTE_WIDTH, NFILES_WIDTH), 1591 number_to_string(free_kbytes_buf, 1592 fsp->f_bfree, fsp->f_frsize, 1024), 1593 kilobytes_str); 1594 (void) printf("%-*s(%-*s): %*s %s\n", 1595 MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp), 1596 SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp), 1597 MAX(NFILES_WIDTH, NFILES_WIDTH), 1598 number_to_string(free_files_buf, fsp->f_ffree, 1, 1), 1599 files_str); 1600 } 1601 1602 1603 static void 1604 e_output(struct df_request *dfrp, struct statvfs64 *fsp) 1605 { 1606 numbuf_t free_files_buf; 1607 1608 (void) printf("%-*s %*s\n", 1609 FILESYSTEM_WIDTH, DFR_SPECIAL(dfrp), 1610 NFILES_WIDTH, 1611 number_to_string(free_files_buf, fsp->f_ffree, 1, 1)); 1612 } 1613 1614 1615 static void 1616 b_output(struct df_request *dfrp, struct statvfs64 *fsp) 1617 { 1618 numbuf_t free_blocks_buf; 1619 1620 (void) printf("%-*s %*s\n", 1621 FILESYSTEM_WIDTH, DFR_SPECIAL(dfrp), 1622 BLOCK_WIDTH, number_to_string(free_blocks_buf, 1623 fsp->f_bfree, fsp->f_frsize, 1024)); 1624 } 1625 1626 1627 /* ARGSUSED */ 1628 static void 1629 n_output(struct df_request *dfrp, struct statvfs64 *fsp) 1630 { 1631 (void) printf("%-*s: %-*s\n", 1632 MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp), 1633 FSTYPE_WIDTH, dfrp->dfr_fstype); 1634 } 1635 1636 1637 static void 1638 default_output(struct df_request *dfrp, struct statvfs64 *fsp) 1639 { 1640 numbuf_t free_blocks_buf; 1641 numbuf_t free_files_buf; 1642 1643 STRINGS_INIT(); 1644 1645 (void) printf("%-*s(%-*s):%*s %s %*s %s\n", 1646 MOUNT_POINT_WIDTH, DFR_MOUNT_POINT(dfrp), 1647 SPECIAL_DEVICE_WIDTH, DFR_SPECIAL(dfrp), 1648 BLOCK_WIDTH, number_to_string(free_blocks_buf, 1649 fsp->f_bfree, fsp->f_frsize, 512), 1650 blocks_str, 1651 NFILES_WIDTH, number_to_string(free_files_buf, 1652 fsp->f_ffree, 1, 1), 1653 files_str); 1654 } 1655 1656 1657 /* ARGSUSED */ 1658 static void 1659 V_output(struct df_request *dfrp, struct statvfs64 *fsp) 1660 { 1661 char temp_buf[LINEBUF_SIZE]; 1662 1663 if (df_options_len > 1) 1664 (void) strcat(strcpy(temp_buf, df_options), " "); 1665 else 1666 temp_buf[0] = NUL; 1667 1668 (void) printf("%s -F %s %s%s\n", 1669 program_name, dfrp->dfr_fstype, temp_buf, 1670 dfrp->dfr_cmd_arg ? dfrp->dfr_cmd_arg: DFR_SPECIAL(dfrp)); 1671 } 1672 1673 1674 /* 1675 * This function is used to sort the array of df_requests according to fstype 1676 */ 1677 static int 1678 df_reqcomp(const void *p1, const void *p2) 1679 { 1680 int v = strcmp(DFRP(p1)->dfr_fstype, DFRP(p2)->dfr_fstype); 1681 1682 if (v != 0) 1683 return (v); 1684 else 1685 return (DFRP(p1)->dfr_index - DFRP(p2)->dfr_index); 1686 } 1687 1688 1689 static void 1690 vfs_error(char *file, int status) 1691 { 1692 if (status == VFS_TOOLONG) 1693 errmsg(ERR_NOFLAGS, "a line in %s exceeds %d characters", 1694 file, MNT_LINE_MAX); 1695 else if (status == VFS_TOOMANY) 1696 errmsg(ERR_NOFLAGS, "a line in %s has too many fields", file); 1697 else if (status == VFS_TOOFEW) 1698 errmsg(ERR_NOFLAGS, "a line in %s has too few fields", file); 1699 else 1700 errmsg(ERR_NOFLAGS, "error while reading %s: %d", file, status); 1701 } 1702 1703 1704 /* 1705 * Try to determine the fstype for the specified block device. 1706 * Return in order of decreasing preference: 1707 * file system type from vfstab 1708 * file system type as specified by -F option 1709 * default file system type 1710 */ 1711 static char * 1712 find_fstype(char *special) 1713 { 1714 struct vfstab vtab; 1715 FILE *fp; 1716 int status; 1717 char *vfstab_file = VFS_TAB; 1718 1719 fp = xfopen(vfstab_file); 1720 status = getvfsspec(fp, &vtab, special); 1721 (void) fclose(fp); 1722 if (status > 0) 1723 vfs_error(vfstab_file, status); 1724 1725 if (status == 0) { 1726 if (F_option && ! EQ(FSType, vtab.vfs_fstype)) 1727 errmsg(ERR_NOFLAGS, 1728 "warning: %s is of type %s", special, vtab.vfs_fstype); 1729 return (new_string(vtab.vfs_fstype)); 1730 } 1731 else 1732 return (F_option ? FSType : default_fstype(special)); 1733 } 1734 1735 /* 1736 * When this function returns, the following fields are filled for all 1737 * valid entries in the requests[] array: 1738 * dfr_mte (if the file system is mounted) 1739 * dfr_fstype 1740 * dfr_index 1741 * 1742 * The function returns the number of errors that occurred while building 1743 * the request list. 1744 */ 1745 static int 1746 create_request_list( 1747 int argc, 1748 char *argv[], 1749 struct df_request *requests_p[], 1750 size_t *request_count) 1751 { 1752 struct df_request *requests; 1753 struct df_request *dfrp; 1754 size_t size; 1755 size_t i; 1756 size_t request_index = 0; 1757 size_t max_requests; 1758 int errors = 0; 1759 1760 /* 1761 * If no args, use the mounted file systems, otherwise use the 1762 * user-specified arguments. 1763 */ 1764 if (argc == 0) { 1765 mtab_read_file(); 1766 max_requests = mount_table_entries; 1767 } else 1768 max_requests = argc; 1769 1770 size = max_requests * sizeof (struct df_request); 1771 requests = xmalloc(size); 1772 (void) memset(requests, 0, size); 1773 1774 if (argc == 0) { 1775 /* 1776 * If -Z wasn't specified, we skip mounts in other 1777 * zones. This obviously is a noop in a non-global 1778 * zone. 1779 */ 1780 boolean_t showall = (getzoneid() != GLOBAL_ZONEID) || Z_option; 1781 struct zone_summary *zsp; 1782 1783 if (!showall) { 1784 zsp = fs_get_zone_summaries(); 1785 if (zsp == NULL) 1786 errmsg(ERR_FATAL, 1787 "unable to retrieve list of zones"); 1788 } 1789 1790 for (i = 0; i < mount_table_entries; i++) { 1791 struct extmnttab *mtp = mount_table[i].mte_mount; 1792 1793 if (EQ(mtp->mnt_fstype, MNTTYPE_SWAP)) 1794 continue; 1795 1796 if (!showall) { 1797 if (fs_mount_in_other_zone(zsp, 1798 mtp->mnt_mountp)) 1799 continue; 1800 } 1801 dfrp = &requests[request_index++]; 1802 dfrp->dfr_mte = &mount_table[i]; 1803 dfrp->dfr_fstype = mtp->mnt_fstype; 1804 dfrp->dfr_index = i; 1805 dfrp->dfr_valid = TRUE; 1806 } 1807 } else { 1808 struct stat64 *arg_stat; /* array of stat structures */ 1809 bool_int *valid_stat; /* which structures are valid */ 1810 1811 arg_stat = xmalloc(argc * sizeof (struct stat64)); 1812 valid_stat = xmalloc(argc * sizeof (bool_int)); 1813 1814 /* 1815 * Obtain stat64 information for each argument before 1816 * constructing the list of mounted file systems. By 1817 * touching all these places we force the automounter 1818 * to establish any mounts required to access the arguments, 1819 * so that the corresponding mount table entries will exist 1820 * when we look for them. 1821 * It is still possible that the automounter may timeout 1822 * mounts between the time we read the mount table and the 1823 * time we process the request. Even in that case, when 1824 * we issue the statvfs64(2) for the mount point, the file 1825 * system will be mounted again. The only problem will 1826 * occur if the automounter maps change in the meantime 1827 * and the mount point is eliminated. 1828 */ 1829 for (i = 0; i < argc; i++) 1830 valid_stat[i] = (stat64(argv[i], &arg_stat[i]) == 0); 1831 1832 mtab_read_file(); 1833 1834 for (i = 0; i < argc; i++) { 1835 char *arg = argv[i]; 1836 1837 dfrp = &requests[request_index]; 1838 1839 dfrp->dfr_index = request_index; 1840 dfrp->dfr_cmd_arg = arg; 1841 1842 if (valid_stat[i]) { 1843 if (S_ISBLK(arg_stat[i].st_mode)) { 1844 bdev_mount_entry(dfrp); 1845 dfrp->dfr_valid = TRUE; 1846 } else if (S_ISDIR(arg_stat[i].st_mode) || 1847 S_ISREG(arg_stat[i].st_mode) || 1848 S_ISFIFO(arg_stat[i].st_mode)) { 1849 path_mount_entry(dfrp, 1850 arg_stat[i].st_dev); 1851 if (! DFR_ISMOUNTEDFS(dfrp)) { 1852 errors++; 1853 continue; 1854 } 1855 dfrp->dfr_valid = TRUE; 1856 } 1857 } else { 1858 resource_mount_entry(dfrp); 1859 dfrp->dfr_valid = DFR_ISMOUNTEDFS(dfrp); 1860 } 1861 1862 /* 1863 * If we haven't managed to verify that the request 1864 * is valid, we must have gotten a bad argument. 1865 */ 1866 if (!dfrp->dfr_valid) { 1867 errmsg(ERR_NOFLAGS, 1868 "(%-10s) not a block device, directory or mounted resource", 1869 arg); 1870 errors++; 1871 continue; 1872 } 1873 1874 /* 1875 * Determine the file system type. 1876 */ 1877 if (DFR_ISMOUNTEDFS(dfrp)) 1878 dfrp->dfr_fstype = 1879 dfrp->dfr_mte->mte_mount->mnt_fstype; 1880 else 1881 dfrp->dfr_fstype = 1882 find_fstype(dfrp->dfr_cmd_arg); 1883 1884 request_index++; 1885 } 1886 } 1887 *requests_p = requests; 1888 *request_count = request_index; 1889 return (errors); 1890 } 1891 1892 1893 /* 1894 * Select the appropriate function and flags to use for output. 1895 * Notice that using both -e and -b options produces a different form of 1896 * output than either of those two options alone; this is the behavior of 1897 * the SVR4 df. 1898 */ 1899 static struct df_output * 1900 select_output(void) 1901 { 1902 static struct df_output dfo; 1903 1904 /* 1905 * The order of checking options follows the option precedence 1906 * rules as they are listed in the man page. 1907 */ 1908 if (use_scaling) { /* comes from the -h option */ 1909 dfo.dfo_func = k_output; 1910 dfo.dfo_flags = DFO_HEADER + DFO_STATVFS; 1911 } else if (V_option) { 1912 dfo.dfo_func = V_output; 1913 dfo.dfo_flags = DFO_NOFLAGS; 1914 } else if (g_option) { 1915 dfo.dfo_func = g_output; 1916 dfo.dfo_flags = DFO_STATVFS; 1917 } else if (k_option || P_option || v_option) { 1918 dfo.dfo_func = k_output; 1919 dfo.dfo_flags = DFO_HEADER + DFO_STATVFS; 1920 } else if (t_option) { 1921 dfo.dfo_func = t_output; 1922 dfo.dfo_flags = DFO_STATVFS; 1923 } else if (b_option && e_option) { 1924 dfo.dfo_func = eb_output; 1925 dfo.dfo_flags = DFO_STATVFS; 1926 } else if (b_option) { 1927 dfo.dfo_func = b_output; 1928 dfo.dfo_flags = DFO_HEADER + DFO_STATVFS; 1929 } else if (e_option) { 1930 dfo.dfo_func = e_output; 1931 dfo.dfo_flags = DFO_HEADER + DFO_STATVFS; 1932 } else if (n_option) { 1933 dfo.dfo_func = n_output; 1934 dfo.dfo_flags = DFO_NOFLAGS; 1935 } else { 1936 dfo.dfo_func = default_output; 1937 dfo.dfo_flags = DFO_STATVFS; 1938 } 1939 return (&dfo); 1940 } 1941 1942 1943 /* 1944 * The (argc,argv) pair contains all the non-option arguments 1945 */ 1946 static void 1947 do_df(int argc, char *argv[]) 1948 { 1949 size_t i; 1950 struct df_request *requests; /* array of requests */ 1951 size_t n_requests; 1952 struct df_request *dfrp; 1953 int errors; 1954 1955 errors = create_request_list(argc, argv, &requests, &n_requests); 1956 1957 if (n_requests == 0) 1958 exit(errors); 1959 1960 /* 1961 * If we are going to run the FSType-specific df command, 1962 * rearrange the requests so that we can issue a single command 1963 * per file system type. 1964 */ 1965 if (o_option) { 1966 size_t j; 1967 1968 /* 1969 * qsort is not a stable sorting method (i.e. requests of 1970 * the same file system type may be swapped, and hence appear 1971 * in the output in a different order from the one in which 1972 * they were listed in the command line). In order to force 1973 * stability, we use the dfr_index field which is unique 1974 * for each request. 1975 */ 1976 qsort(requests, 1977 n_requests, sizeof (struct df_request), df_reqcomp); 1978 for (i = 0; i < n_requests; i = j) { 1979 char *fstype = requests[i].dfr_fstype; 1980 1981 for (j = i+1; j < n_requests; j++) 1982 if (! EQ(fstype, requests[j].dfr_fstype)) 1983 break; 1984 1985 /* 1986 * At this point, requests in the range [i,j) are 1987 * of the same type. 1988 * 1989 * If the -F option was used, and the user specified 1990 * arguments, the filesystem types must match 1991 * 1992 * XXX: the alternative of doing this check here is to 1993 * invoke prune_list, but then we have to 1994 * modify this code to ignore invalid requests. 1995 */ 1996 if (F_option && ! EQ(fstype, FSType)) { 1997 size_t k; 1998 1999 for (k = i; k < j; k++) { 2000 dfrp = &requests[k]; 2001 if (dfrp->dfr_cmd_arg != NULL) { 2002 errmsg(ERR_NOFLAGS, 2003 "Warning: %s mounted as a %s file system", 2004 dfrp->dfr_cmd_arg, dfrp->dfr_fstype); 2005 errors++; 2006 } 2007 } 2008 } else 2009 errors += run_fs_specific_df(&requests[i], j-i); 2010 } 2011 } else { 2012 size_t valid_requests; 2013 2014 /* 2015 * We have to prune the request list to avoid printing a header 2016 * if there are no valid requests 2017 */ 2018 errors += prune_list(requests, n_requests, &valid_requests); 2019 2020 if (valid_requests) { 2021 struct df_output *dfop = select_output(); 2022 2023 /* indicates if we already printed out a header line */ 2024 int printed_header = 0; 2025 2026 for (i = 0; i < n_requests; i++) { 2027 dfrp = &requests[i]; 2028 if (! dfrp->dfr_valid) 2029 continue; 2030 2031 /* 2032 * If we don't have a mount point, 2033 * this must be a block device. 2034 */ 2035 if (DFR_ISMOUNTEDFS(dfrp)) { 2036 struct statvfs64 stvfs; 2037 2038 if ((dfop->dfo_flags & DFO_STATVFS) && 2039 statvfs64(DFR_MOUNT_POINT(dfrp), 2040 &stvfs) == -1) { 2041 errmsg(ERR_PERROR, 2042 "cannot statvfs %s:", 2043 DFR_MOUNT_POINT(dfrp)); 2044 errors++; 2045 continue; 2046 } 2047 if ((!printed_header) && 2048 (dfop->dfo_flags & DFO_HEADER)) { 2049 print_header(); 2050 printed_header = 1; 2051 } 2052 2053 (*dfop->dfo_func)(dfrp, &stvfs); 2054 } else { 2055 /* 2056 * -h option only works for 2057 * mounted filesystems 2058 */ 2059 if (use_scaling) { 2060 errmsg(ERR_NOFLAGS, 2061 "-h option incompatible with unmounted special device (%s)", 2062 dfrp->dfr_cmd_arg); 2063 errors++; 2064 continue; 2065 } 2066 errors += run_fs_specific_df(dfrp, 1); 2067 } 2068 } 2069 } 2070 } 2071 exit(errors); 2072 } 2073 2074 2075 /* 2076 * The rest of this file implements the devnm command 2077 */ 2078 2079 static char * 2080 find_dev_name(char *file, dev_t dev) 2081 { 2082 struct df_request dfreq; 2083 2084 dfreq.dfr_cmd_arg = file; 2085 dfreq.dfr_fstype = 0; 2086 dfreq.dfr_mte = NULL; 2087 path_mount_entry(&dfreq, dev); 2088 return (DFR_ISMOUNTEDFS(&dfreq) ? DFR_SPECIAL(&dfreq) : NULL); 2089 } 2090 2091 2092 static void 2093 do_devnm(int argc, char *argv[]) 2094 { 2095 int arg; 2096 int errors = 0; 2097 char *dev_name; 2098 2099 if (argc == 1) 2100 errmsg(ERR_NONAME, "Usage: %s name ...", DEVNM_CMD); 2101 2102 mtab_read_file(); 2103 2104 for (arg = 1; arg < argc; arg++) { 2105 char *file = argv[arg]; 2106 struct stat64 st; 2107 2108 if (stat64(file, &st) == -1) { 2109 errmsg(ERR_PERROR, "%s: ", file); 2110 errors++; 2111 continue; 2112 } 2113 2114 if (! is_remote_fs(st.st_fstype) && 2115 ! EQ(st.st_fstype, MNTTYPE_TMPFS) && 2116 (dev_name = find_dev_name(file, st.st_dev))) 2117 (void) printf("%s %s\n", dev_name, file); 2118 else 2119 errmsg(ERR_NOFLAGS, 2120 "%s not found", file); 2121 } 2122 exit(errors); 2123 /* NOTREACHED */ 2124 } 2125