1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * This file contains functions to implement automatic configuration 28 * of scsi disks. 29 */ 30 #include "global.h" 31 32 #include <fcntl.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <strings.h> 36 #include <stdlib.h> 37 #include <ctype.h> 38 39 #include "misc.h" 40 #include "param.h" 41 #include "ctlr_scsi.h" 42 #include "auto_sense.h" 43 #include "partition.h" 44 #include "label.h" 45 #include "startup.h" 46 #include "analyze.h" 47 #include "io.h" 48 #include "hardware_structs.h" 49 #include "menu_fdisk.h" 50 51 52 #define DISK_NAME_MAX 256 53 54 extern int nctypes; 55 extern struct ctlr_type ctlr_types[]; 56 57 58 /* 59 * Marker for free hog partition 60 */ 61 #define HOG (-1) 62 63 64 65 /* 66 * Default partition tables 67 * 68 * Disk capacity root swap usr 69 * ------------- ---- ---- --- 70 * 0mb to 64mb 0 0 remainder 71 * 64mb to 180mb 16mb 16mb remainder 72 * 180mb to 280mb 16mb 32mb remainder 73 * 280mb to 380mb 24mb 32mb remainder 74 * 380mb to 600mb 32mb 32mb remainder 75 * 600mb to 1gb 32mb 64mb remainder 76 * 1gb to 2gb 64mb 128mb remainder 77 * 2gb on up 128mb 128mb remainder 78 */ 79 struct part_table { 80 int partitions[NDKMAP]; 81 }; 82 83 static struct part_table part_table_64mb = { 84 { 0, 0, 0, 0, 0, 0, HOG, 0} 85 }; 86 87 static struct part_table part_table_180mb = { 88 { 16, 16, 0, 0, 0, 0, HOG, 0} 89 }; 90 91 static struct part_table part_table_280mb = { 92 { 16, 32, 0, 0, 0, 0, HOG, 0} 93 }; 94 95 static struct part_table part_table_380mb = { 96 { 24, 32, 0, 0, 0, 0, HOG, 0} 97 }; 98 99 static struct part_table part_table_600mb = { 100 { 32, 32, 0, 0, 0, 0, HOG, 0} 101 }; 102 103 static struct part_table part_table_1gb = { 104 { 32, 64, 0, 0, 0, 0, HOG, 0} 105 }; 106 107 static struct part_table part_table_2gb = { 108 { 64, 128, 0, 0, 0, 0, HOG, 0} 109 }; 110 111 static struct part_table part_table_infinity = { 112 { 128, 128, 0, 0, 0, 0, HOG, 0} 113 }; 114 115 116 static struct default_partitions { 117 diskaddr_t min_capacity; 118 diskaddr_t max_capacity; 119 struct part_table *part_table; 120 } default_partitions[] = { 121 { 0, 64, &part_table_64mb }, /* 0 to 64 mb */ 122 { 64, 180, &part_table_180mb }, /* 64 to 180 mb */ 123 { 180, 280, &part_table_280mb }, /* 180 to 280 mb */ 124 { 280, 380, &part_table_380mb }, /* 280 to 380 mb */ 125 { 380, 600, &part_table_600mb }, /* 380 to 600 mb */ 126 { 600, 1024, &part_table_1gb }, /* 600 to 1 gb */ 127 { 1024, 2048, &part_table_2gb }, /* 1 to 2 gb */ 128 { 2048, INFINITY, &part_table_infinity }, /* 2 gb on up */ 129 }; 130 131 #define DEFAULT_PARTITION_TABLE_SIZE \ 132 (sizeof (default_partitions) / sizeof (struct default_partitions)) 133 134 /* 135 * msgs for check() 136 */ 137 #define FORMAT_MSG "Auto configuration via format.dat" 138 #define GENERIC_MSG "Auto configuration via generic SCSI-2" 139 140 /* 141 * Disks on symbios(Hardwire raid controller) return a fixed number 142 * of heads(64)/cylinders(64) and adjust the cylinders depending 143 * capacity of the configured lun. 144 * In such a case we get number of physical cylinders < 3 which 145 * is the minimum required by solaris(2 reserved + 1 data cylinders). 146 * Hence try to adjust the cylinders by reducing the "nsect/nhead". 147 * 148 */ 149 /* 150 * assuming a minimum of 32 block cylinders. 151 */ 152 #define MINIMUM_NO_HEADS 2 153 #define MINIMUM_NO_SECTORS 16 154 155 #define MINIMUM_NO_CYLINDERS 128 156 157 #if defined(_SUNOS_VTOC_8) 158 159 /* These are 16-bit fields */ 160 #define MAXIMUM_NO_HEADS 65535 161 #define MAXIMUM_NO_SECTORS 65535 162 #define MAXIMUM_NO_CYLINDERS 65535 163 164 #endif /* defined(_SUNOS_VTOC_8) */ 165 166 /* 167 * minimum number of cylinders required by Solaris. 168 */ 169 #define SUN_MIN_CYL 3 170 171 172 173 /* 174 * ANSI prototypes for local static functions 175 */ 176 static struct disk_type *generic_disk_sense( 177 int fd, 178 int can_prompt, 179 struct dk_label *label, 180 struct scsi_inquiry *inquiry, 181 struct scsi_capacity_16 *capacity, 182 char *disk_name); 183 static int use_existing_disk_type( 184 int fd, 185 int can_prompt, 186 struct dk_label *label, 187 struct scsi_inquiry *inquiry, 188 struct disk_type *disk_type, 189 struct scsi_capacity_16 *capacity); 190 int build_default_partition(struct dk_label *label, 191 int ctrl_type); 192 static struct disk_type *find_scsi_disk_type( 193 char *disk_name, 194 struct dk_label *label); 195 static struct disk_type *find_scsi_disk_by_name( 196 char *disk_name); 197 static struct ctlr_type *find_scsi_ctlr_type(void); 198 static struct ctlr_info *find_scsi_ctlr_info( 199 struct dk_cinfo *dkinfo); 200 static struct disk_type *new_scsi_disk_type( 201 int fd, 202 char *disk_name, 203 struct dk_label *label); 204 static struct disk_info *find_scsi_disk_info( 205 struct dk_cinfo *dkinfo); 206 207 static struct disk_type *new_direct_disk_type(int fd, char *disk_name, 208 struct dk_label *label); 209 210 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo); 211 static int efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc); 212 static int auto_label_init(struct dk_label *label); 213 static struct ctlr_type *find_direct_ctlr_type(void); 214 static struct ctlr_info *find_direct_ctlr_info(struct dk_cinfo *dkinfo); 215 static struct disk_info *find_direct_disk_info(struct dk_cinfo *dkinfo); 216 static struct ctlr_type *find_vbd_ctlr_type(void); 217 static struct ctlr_info *find_vbd_ctlr_info(struct dk_cinfo *dkinfo); 218 static struct disk_info *find_vbd_disk_info(struct dk_cinfo *dkinfo); 219 220 static char *get_sun_disk_name( 221 char *disk_name, 222 struct scsi_inquiry *inquiry); 223 static char *get_generic_disk_name( 224 char *disk_name, 225 struct scsi_inquiry *inquiry); 226 static char *strcopy( 227 char *dst, 228 char *src, 229 int n); 230 static int adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, 231 uint_t *nsect, uint_t *nhead); 232 static void compute_chs_values(diskaddr_t total_capacity, 233 diskaddr_t usable_capacity, uint_t *pcylp, 234 uint_t *nheadp, uint_t *nsectp); 235 #if defined(_SUNOS_VTOC_8) 236 static diskaddr_t square_box( 237 diskaddr_t capacity, 238 uint_t *dim1, uint_t lim1, 239 uint_t *dim2, uint_t lim2, 240 uint_t *dim3, uint_t lim3); 241 #endif /* defined(_SUNOS_VTOC_8) */ 242 243 244 /* 245 * We need to get information necessary to construct a *new* efi 246 * label type 247 */ 248 struct disk_type * 249 auto_efi_sense(int fd, struct efi_info *label) 250 { 251 252 struct dk_gpt *vtoc; 253 int i; 254 255 struct disk_type *disk, *dp; 256 struct disk_info *disk_info; 257 struct ctlr_info *ctlr; 258 struct dk_cinfo dkinfo; 259 struct partition_info *part; 260 261 /* 262 * get vendor, product, revision and capacity info. 263 */ 264 if (get_disk_info(fd, label) == -1) { 265 return ((struct disk_type *)NULL); 266 } 267 /* 268 * Now build the default partition table 269 */ 270 if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) { 271 err_print("efi_alloc_and_init failed. \n"); 272 return ((struct disk_type *)NULL); 273 } 274 275 label->e_parts = vtoc; 276 277 /* 278 * Create a whole hog EFI partition table: 279 * S0 takes the whole disk except the primary EFI label, 280 * backup EFI label, and the reserved partition. 281 */ 282 vtoc->efi_parts[0].p_tag = V_USR; 283 vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba; 284 vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba - vtoc->efi_first_u_lba 285 - EFI_MIN_RESV_SIZE + 1; 286 287 /* 288 * S1-S6 are unassigned slices. 289 */ 290 for (i = 1; i < vtoc->efi_nparts - 2; i ++) { 291 vtoc->efi_parts[i].p_tag = V_UNASSIGNED; 292 vtoc->efi_parts[i].p_start = 0; 293 vtoc->efi_parts[i].p_size = 0; 294 } 295 296 /* 297 * The reserved slice 298 */ 299 vtoc->efi_parts[vtoc->efi_nparts - 1].p_tag = V_RESERVED; 300 vtoc->efi_parts[vtoc->efi_nparts - 1].p_start = 301 vtoc->efi_last_u_lba - EFI_MIN_RESV_SIZE + 1; 302 vtoc->efi_parts[vtoc->efi_nparts - 1].p_size = EFI_MIN_RESV_SIZE; 303 304 /* 305 * Now stick all of it into the disk_type struct 306 */ 307 308 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 309 if (option_msg && diag_msg) { 310 err_print("DKIOCINFO failed\n"); 311 } 312 return (NULL); 313 } 314 if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_DIRECT)) { 315 ctlr = find_direct_ctlr_info(&dkinfo); 316 disk_info = find_direct_disk_info(&dkinfo); 317 } else if ((cur_ctype != NULL) && (cur_ctype->ctype_ctype == DKC_VBD)) { 318 ctlr = find_vbd_ctlr_info(&dkinfo); 319 disk_info = find_vbd_disk_info(&dkinfo); 320 } else { 321 ctlr = find_scsi_ctlr_info(&dkinfo); 322 disk_info = find_scsi_disk_info(&dkinfo); 323 } 324 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 325 assert(disk_info->disk_ctlr == ctlr); 326 dp = ctlr->ctlr_ctype->ctype_dlist; 327 if (dp == NULL) { 328 ctlr->ctlr_ctype->ctype_dlist = dp; 329 } else { 330 while (dp->dtype_next != NULL) { 331 dp = dp->dtype_next; 332 } 333 dp->dtype_next = disk; 334 } 335 disk->dtype_next = NULL; 336 337 (void) strlcpy(disk->vendor, label->vendor, 338 sizeof (disk->vendor)); 339 (void) strlcpy(disk->product, label->product, 340 sizeof (disk->product)); 341 (void) strlcpy(disk->revision, label->revision, 342 sizeof (disk->revision)); 343 disk->capacity = label->capacity; 344 345 part = (struct partition_info *) 346 zalloc(sizeof (struct partition_info)); 347 disk->dtype_plist = part; 348 349 part->pinfo_name = alloc_string("default"); 350 part->pinfo_next = NULL; 351 part->etoc = vtoc; 352 353 bzero(disk_info->v_volume, LEN_DKL_VVOL); 354 disk_info->disk_parts = part; 355 return (disk); 356 } 357 358 static int 359 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc) 360 { 361 void *data = dk_ioc->dki_data; 362 int error; 363 364 dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data; 365 error = ioctl(fd, cmd, (void *)dk_ioc); 366 dk_ioc->dki_data = data; 367 368 return (error); 369 } 370 371 static struct ctlr_type * 372 find_direct_ctlr_type() 373 { 374 struct mctlr_list *mlp; 375 376 mlp = controlp; 377 378 while (mlp != NULL) { 379 if (mlp->ctlr_type->ctype_ctype == DKC_DIRECT) { 380 return (mlp->ctlr_type); 381 } 382 mlp = mlp->next; 383 } 384 385 impossible("no DIRECT controller type"); 386 387 return ((struct ctlr_type *)NULL); 388 } 389 390 static struct ctlr_type * 391 find_vbd_ctlr_type() 392 { 393 struct mctlr_list *mlp; 394 395 mlp = controlp; 396 397 while (mlp != NULL) { 398 if (mlp->ctlr_type->ctype_ctype == DKC_VBD) { 399 return (mlp->ctlr_type); 400 } 401 mlp = mlp->next; 402 } 403 404 impossible("no VBD controller type"); 405 406 return ((struct ctlr_type *)NULL); 407 } 408 409 static struct ctlr_info * 410 find_direct_ctlr_info( 411 struct dk_cinfo *dkinfo) 412 { 413 struct ctlr_info *ctlr; 414 415 if (dkinfo->dki_ctype != DKC_DIRECT) 416 return (NULL); 417 418 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 419 if (ctlr->ctlr_addr == dkinfo->dki_addr && 420 ctlr->ctlr_space == dkinfo->dki_space && 421 ctlr->ctlr_ctype->ctype_ctype == DKC_DIRECT) { 422 return (ctlr); 423 } 424 } 425 426 impossible("no DIRECT controller info"); 427 /*NOTREACHED*/ 428 } 429 430 static struct ctlr_info * 431 find_vbd_ctlr_info( 432 struct dk_cinfo *dkinfo) 433 { 434 struct ctlr_info *ctlr; 435 436 if (dkinfo->dki_ctype != DKC_VBD) 437 return (NULL); 438 439 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 440 if (ctlr->ctlr_addr == dkinfo->dki_addr && 441 ctlr->ctlr_space == dkinfo->dki_space && 442 ctlr->ctlr_ctype->ctype_ctype == DKC_VBD) { 443 return (ctlr); 444 } 445 } 446 447 impossible("no VBD controller info"); 448 /*NOTREACHED*/ 449 } 450 451 static struct disk_info * 452 find_direct_disk_info( 453 struct dk_cinfo *dkinfo) 454 { 455 struct disk_info *disk; 456 struct dk_cinfo *dp; 457 458 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 459 assert(dkinfo->dki_ctype == DKC_DIRECT); 460 dp = &disk->disk_dkinfo; 461 if (dp->dki_ctype == dkinfo->dki_ctype && 462 dp->dki_cnum == dkinfo->dki_cnum && 463 dp->dki_unit == dkinfo->dki_unit && 464 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 465 return (disk); 466 } 467 } 468 469 impossible("No DIRECT disk info instance\n"); 470 /*NOTREACHED*/ 471 } 472 473 static struct disk_info * 474 find_vbd_disk_info( 475 struct dk_cinfo *dkinfo) 476 { 477 struct disk_info *disk; 478 struct dk_cinfo *dp; 479 480 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 481 assert(dkinfo->dki_ctype == DKC_VBD); 482 dp = &disk->disk_dkinfo; 483 if (dp->dki_ctype == dkinfo->dki_ctype && 484 dp->dki_cnum == dkinfo->dki_cnum && 485 dp->dki_unit == dkinfo->dki_unit && 486 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 487 return (disk); 488 } 489 } 490 491 impossible("No VBD disk info instance\n"); 492 /*NOTREACHED*/ 493 } 494 495 /* 496 * To convert EFI to SMI labels, we need to get label geometry. 497 * Unfortunately at this time there is no good way to do so. 498 * DKIOCGGEOM will fail if disk is EFI labeled. So we hack around 499 * it and clear EFI label, do a DKIOCGGEOM and put the EFI label 500 * back on disk. 501 * This routine gets the label geometry and initializes the label 502 * It uses cur_file as opened device. 503 * returns 0 if succeeds or -1 if failed. 504 */ 505 static int 506 auto_label_init(struct dk_label *label) 507 { 508 dk_efi_t dk_ioc; 509 dk_efi_t dk_ioc_back; 510 efi_gpt_t *data = NULL; 511 efi_gpt_t *databack = NULL; 512 struct dk_geom disk_geom; 513 struct dk_minfo disk_info; 514 efi_gpt_t *backsigp; 515 int fd = cur_file; 516 int rval = -1; 517 int efisize = EFI_LABEL_SIZE * 2; 518 int success = 0; 519 uint64_t sig; 520 uint64_t backsig; 521 522 if ((data = calloc(efisize, 1)) == NULL) { 523 err_print("auto_label_init: calloc failed\n"); 524 goto auto_label_init_out; 525 } 526 527 dk_ioc.dki_data = data; 528 dk_ioc.dki_lba = 1; 529 dk_ioc.dki_length = efisize; 530 531 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) != 0) { 532 err_print("auto_label_init: GETEFI failed\n"); 533 goto auto_label_init_out; 534 } 535 536 if ((databack = calloc(efisize, 1)) == NULL) { 537 err_print("auto_label_init calloc2 failed"); 538 goto auto_label_init_out; 539 } 540 541 /* get the LBA size and capacity */ 542 if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) { 543 err_print("auto_label_init: dkiocgmediainfo failed\n"); 544 goto auto_label_init_out; 545 } 546 547 if (disk_info.dki_lbsize == 0) { 548 if (option_msg && diag_msg) { 549 err_print("auto_lbal_init: assuming 512 byte" 550 "block size"); 551 } 552 disk_info.dki_lbsize = DEV_BSIZE; 553 } 554 555 dk_ioc_back.dki_data = databack; 556 557 /* 558 * back up efi label goes to capacity - 1, we are reading an extra block 559 * before the back up label. 560 */ 561 dk_ioc_back.dki_lba = disk_info.dki_capacity - 1 - 1; 562 dk_ioc_back.dki_length = efisize; 563 564 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc_back) != 0) { 565 err_print("auto_label_init: GETEFI backup failed\n"); 566 goto auto_label_init_out; 567 } 568 569 sig = dk_ioc.dki_data->efi_gpt_Signature; 570 dk_ioc.dki_data->efi_gpt_Signature = 0x0; 571 572 enter_critical(); 573 574 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) { 575 err_print("auto_label_init: SETEFI failed\n"); 576 exit_critical(); 577 goto auto_label_init_out; 578 } 579 580 backsigp = (efi_gpt_t *)((uintptr_t)dk_ioc_back.dki_data + cur_blksz); 581 582 backsig = backsigp->efi_gpt_Signature; 583 584 backsigp->efi_gpt_Signature = 0; 585 586 if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc_back) == -1) { 587 err_print("auto_label_init: SETEFI backup failed\n"); 588 } 589 590 if (ioctl(cur_file, DKIOCGGEOM, &disk_geom) != 0) 591 err_print("auto_label_init: GGEOM failed\n"); 592 else 593 success = 1; 594 595 dk_ioc.dki_data->efi_gpt_Signature = sig; 596 backsigp->efi_gpt_Signature = backsig; 597 598 if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc_back) == -1) { 599 err_print("auto_label_init: SETEFI revert backup failed\n"); 600 success = 0; 601 } 602 603 if (efi_ioctl(cur_file, DKIOCSETEFI, &dk_ioc) == -1) { 604 err_print("auto_label_init: SETEFI revert failed\n"); 605 success = 0; 606 } 607 608 exit_critical(); 609 610 if (success == 0) 611 goto auto_label_init_out; 612 613 ncyl = disk_geom.dkg_ncyl; 614 acyl = disk_geom.dkg_acyl; 615 nhead = disk_geom.dkg_nhead; 616 nsect = disk_geom.dkg_nsect; 617 pcyl = ncyl + acyl; 618 619 label->dkl_pcyl = pcyl; 620 label->dkl_ncyl = ncyl; 621 label->dkl_acyl = acyl; 622 label->dkl_nhead = nhead; 623 label->dkl_nsect = nsect; 624 label->dkl_apc = 0; 625 label->dkl_intrlv = 1; 626 label->dkl_rpm = disk_geom.dkg_rpm; 627 628 label->dkl_magic = DKL_MAGIC; 629 630 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 631 "%s cyl %u alt %u hd %u sec %u", 632 "DEFAULT", ncyl, acyl, nhead, nsect); 633 634 rval = 0; 635 #if defined(_FIRMWARE_NEEDS_FDISK) 636 (void) auto_solaris_part(label); 637 ncyl = label->dkl_ncyl; 638 639 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 640 641 if (!build_default_partition(label, DKC_DIRECT)) { 642 rval = -1; 643 } 644 645 (void) checksum(label, CK_MAKESUM); 646 647 648 auto_label_init_out: 649 if (data) 650 free(data); 651 if (databack) 652 free(databack); 653 654 return (rval); 655 } 656 657 static struct disk_type * 658 new_direct_disk_type( 659 int fd, 660 char *disk_name, 661 struct dk_label *label) 662 { 663 struct disk_type *dp; 664 struct disk_type *disk; 665 struct ctlr_info *ctlr; 666 struct dk_cinfo dkinfo; 667 struct partition_info *part = NULL; 668 struct partition_info *pt; 669 struct disk_info *disk_info; 670 int i; 671 672 /* 673 * Get the disk controller info for this disk 674 */ 675 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 676 if (option_msg && diag_msg) { 677 err_print("DKIOCINFO failed\n"); 678 } 679 return (NULL); 680 } 681 682 /* 683 * Find the ctlr_info for this disk. 684 */ 685 ctlr = find_direct_ctlr_info(&dkinfo); 686 687 /* 688 * Allocate a new disk type for the direct controller. 689 */ 690 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 691 692 /* 693 * Find the disk_info instance for this disk. 694 */ 695 disk_info = find_direct_disk_info(&dkinfo); 696 697 /* 698 * The controller and the disk should match. 699 */ 700 assert(disk_info->disk_ctlr == ctlr); 701 702 /* 703 * Link the disk into the list of disks 704 */ 705 dp = ctlr->ctlr_ctype->ctype_dlist; 706 if (dp == NULL) { 707 ctlr->ctlr_ctype->ctype_dlist = dp; 708 } else { 709 while (dp->dtype_next != NULL) { 710 dp = dp->dtype_next; 711 } 712 dp->dtype_next = disk; 713 } 714 disk->dtype_next = NULL; 715 716 /* 717 * Allocate and initialize the disk name. 718 */ 719 disk->dtype_asciilabel = alloc_string(disk_name); 720 721 /* 722 * Initialize disk geometry info 723 */ 724 disk->dtype_pcyl = label->dkl_pcyl; 725 disk->dtype_ncyl = label->dkl_ncyl; 726 disk->dtype_acyl = label->dkl_acyl; 727 disk->dtype_nhead = label->dkl_nhead; 728 disk->dtype_nsect = label->dkl_nsect; 729 disk->dtype_rpm = label->dkl_rpm; 730 731 part = (struct partition_info *) 732 zalloc(sizeof (struct partition_info)); 733 pt = disk->dtype_plist; 734 if (pt == NULL) { 735 disk->dtype_plist = part; 736 } else { 737 while (pt->pinfo_next != NULL) { 738 pt = pt->pinfo_next; 739 } 740 pt->pinfo_next = part; 741 } 742 743 part->pinfo_next = NULL; 744 745 /* 746 * Set up the partition name 747 */ 748 part->pinfo_name = alloc_string("default"); 749 750 /* 751 * Fill in the partition info from the label 752 */ 753 for (i = 0; i < NDKMAP; i++) { 754 755 #if defined(_SUNOS_VTOC_8) 756 part->pinfo_map[i] = label->dkl_map[i]; 757 758 #elif defined(_SUNOS_VTOC_16) 759 part->pinfo_map[i].dkl_cylno = 760 label->dkl_vtoc.v_part[i].p_start / 761 ((blkaddr_t)(disk->dtype_nhead * 762 disk->dtype_nsect - apc)); 763 part->pinfo_map[i].dkl_nblk = 764 label->dkl_vtoc.v_part[i].p_size; 765 #else 766 #error No VTOC format defined. 767 #endif /* defined(_SUNOS_VTOC_8) */ 768 } 769 770 /* 771 * Use the VTOC if valid, or install a default 772 */ 773 if (label->dkl_vtoc.v_version == V_VERSION) { 774 (void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume, 775 LEN_DKL_VVOL); 776 part->vtoc = label->dkl_vtoc; 777 } else { 778 (void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL); 779 set_vtoc_defaults(part); 780 } 781 782 /* 783 * Link the disk to the partition map 784 */ 785 disk_info->disk_parts = part; 786 787 return (disk); 788 } 789 790 /* 791 * Get a disk type that has label info. This is used to convert 792 * EFI label to SMI label 793 */ 794 struct disk_type * 795 auto_direct_get_geom_label(int fd, struct dk_label *label) 796 { 797 struct disk_type *disk_type; 798 799 if (auto_label_init(label) != 0) { 800 err_print("auto_direct_get_geom_label: failed to get label" 801 "geometry"); 802 return (NULL); 803 } else { 804 disk_type = new_direct_disk_type(fd, "DEFAULT", label); 805 return (disk_type); 806 } 807 } 808 809 /* 810 * Auto-sense a scsi disk configuration, ie get the information 811 * necessary to construct a label. We have two different 812 * ways to auto-sense a scsi disk: 813 * - format.dat override, via inquiry name 814 * - generic scsi, via standard mode sense and inquiry 815 * Depending on how and when we are called, and/or 816 * change geometry and reformat. 817 */ 818 struct disk_type * 819 auto_sense( 820 int fd, 821 int can_prompt, 822 struct dk_label *label) 823 { 824 struct scsi_inquiry inquiry; 825 struct scsi_capacity_16 capacity; 826 struct disk_type *disk_type; 827 char disk_name[DISK_NAME_MAX]; 828 int force_format_dat = 0; 829 int force_generic = 0; 830 u_ioparam_t ioparam; 831 int deflt; 832 833 /* 834 * First, if expert mode, find out if the user 835 * wants to override any of the standard methods. 836 */ 837 if (can_prompt && expert_mode) { 838 deflt = 1; 839 ioparam.io_charlist = confirm_list; 840 if (input(FIO_MSTR, FORMAT_MSG, '?', &ioparam, 841 &deflt, DATA_INPUT) == 0) { 842 force_format_dat = 1; 843 } else if (input(FIO_MSTR, GENERIC_MSG, '?', &ioparam, 844 &deflt, DATA_INPUT) == 0) { 845 force_generic = 1; 846 } 847 } 848 849 /* 850 * Get the Inquiry data. If this fails, there's 851 * no hope for this disk, so give up. 852 */ 853 if (uscsi_inquiry(fd, (char *)&inquiry, sizeof (inquiry))) { 854 return ((struct disk_type *)NULL); 855 } 856 if (option_msg && diag_msg) { 857 err_print("Product id: "); 858 print_buf(inquiry.inq_pid, sizeof (inquiry.inq_pid)); 859 err_print("\n"); 860 } 861 862 /* 863 * Get the Read Capacity 864 */ 865 if (uscsi_read_capacity(fd, &capacity)) { 866 return ((struct disk_type *)NULL); 867 } 868 869 /* 870 * If the reported capacity is set to zero, then the disk 871 * is not usable. If the reported capacity is set to all 872 * 0xf's, then this disk is too large. These could only 873 * happen with a device that supports LBAs larger than 64 874 * bits which are not defined by any current T10 standards 875 * or by error responding from target. 876 */ 877 if ((capacity.sc_capacity == 0) || 878 (capacity.sc_capacity == UINT_MAX64)) { 879 if (option_msg && diag_msg) { 880 err_print("Invalid capacity\n"); 881 } 882 return ((struct disk_type *)NULL); 883 } 884 if (option_msg && diag_msg) { 885 err_print("blocks: %llu (0x%llx)\n", 886 capacity.sc_capacity, capacity.sc_capacity); 887 err_print("blksize: %u\n", capacity.sc_lbasize); 888 } 889 890 /* 891 * Extract the disk name for the format.dat override 892 */ 893 (void) get_sun_disk_name(disk_name, &inquiry); 894 if (option_msg && diag_msg) { 895 err_print("disk name: `%s`\n", disk_name); 896 } 897 898 /* 899 * Figure out which method we use for auto sense. 900 * If a particular method fails, we fall back to 901 * the next possibility. 902 */ 903 904 if (force_generic) { 905 return (generic_disk_sense(fd, can_prompt, label, 906 &inquiry, &capacity, disk_name)); 907 } 908 909 /* 910 * Try for an existing format.dat first 911 */ 912 if ((disk_type = find_scsi_disk_by_name(disk_name)) != NULL) { 913 if (use_existing_disk_type(fd, can_prompt, label, 914 &inquiry, disk_type, &capacity)) { 915 return (disk_type); 916 } 917 if (force_format_dat) { 918 return (NULL); 919 } 920 } 921 922 /* 923 * Otherwise, try using generic SCSI-2 sense and inquiry. 924 */ 925 926 return (generic_disk_sense(fd, can_prompt, label, 927 &inquiry, &capacity, disk_name)); 928 } 929 930 931 932 /*ARGSUSED*/ 933 static struct disk_type * 934 generic_disk_sense( 935 int fd, 936 int can_prompt, 937 struct dk_label *label, 938 struct scsi_inquiry *inquiry, 939 struct scsi_capacity_16 *capacity, 940 char *disk_name) 941 { 942 struct disk_type *disk; 943 int setdefault = 0; 944 uint_t pcyl = 0; 945 uint_t ncyl = 0; 946 uint_t acyl = 0; 947 uint_t nhead = 0; 948 uint_t nsect = 0; 949 int rpm = 0; 950 diskaddr_t nblocks = 0; 951 diskaddr_t tblocks = 0; 952 union { 953 struct mode_format page3; 954 uchar_t buf3[MAX_MODE_SENSE_SIZE]; 955 } u_page3; 956 union { 957 struct mode_geometry page4; 958 uchar_t buf4[MAX_MODE_SENSE_SIZE]; 959 } u_page4; 960 struct mode_format *page3 = &u_page3.page3; 961 struct mode_geometry *page4 = &u_page4.page4; 962 struct scsi_ms_header header; 963 964 /* 965 * If the name of this disk appears to be "SUN", use it, 966 * otherwise construct a name out of the generic 967 * Inquiry info. If it turns out that we already 968 * have a SUN disk type of this name that differs 969 * in geometry, we will revert to the generic name 970 * anyway. 971 */ 972 if (memcmp(disk_name, "SUN", strlen("SUN")) != 0) { 973 (void) get_generic_disk_name(disk_name, inquiry); 974 } 975 976 /* 977 * Get the number of blocks from Read Capacity data. Note that 978 * the logical block address range from 0 to capacity->sc_capacity. 979 * Limit the size to 2 TB (UINT32_MAX) to use with SMI labels. 980 */ 981 tblocks = (capacity->sc_capacity + 1); 982 if (tblocks > UINT32_MAX) 983 nblocks = UINT32_MAX; 984 else 985 nblocks = tblocks; 986 987 /* 988 * Get current Page 3 - Format Parameters page 989 */ 990 if (uscsi_mode_sense(fd, DAD_MODE_FORMAT, MODE_SENSE_PC_CURRENT, 991 (caddr_t)&u_page3, MAX_MODE_SENSE_SIZE, &header)) { 992 setdefault = 1; 993 } 994 995 /* 996 * Get current Page 4 - Drive Geometry page 997 */ 998 if (uscsi_mode_sense(fd, DAD_MODE_GEOMETRY, MODE_SENSE_PC_CURRENT, 999 (caddr_t)&u_page4, MAX_MODE_SENSE_SIZE, &header)) { 1000 setdefault = 1; 1001 } 1002 1003 if (setdefault != 1) { 1004 /* The inquiry of mode page 3 & page 4 are successful */ 1005 /* 1006 * Correct for byte order if necessary 1007 */ 1008 page4->rpm = BE_16(page4->rpm); 1009 page4->step_rate = BE_16(page4->step_rate); 1010 page3->tracks_per_zone = BE_16(page3->tracks_per_zone); 1011 page3->alt_sect_zone = BE_16(page3->alt_sect_zone); 1012 page3->alt_tracks_zone = BE_16(page3->alt_tracks_zone); 1013 page3->alt_tracks_vol = BE_16(page3->alt_tracks_vol); 1014 page3->sect_track = BE_16(page3->sect_track); 1015 page3->data_bytes_sect = BE_16(page3->data_bytes_sect); 1016 page3->interleave = BE_16(page3->interleave); 1017 page3->track_skew = BE_16(page3->track_skew); 1018 page3->cylinder_skew = BE_16(page3->cylinder_skew); 1019 1020 1021 /* 1022 * Construct a new label out of the sense data, 1023 * Inquiry and Capacity. 1024 * 1025 * If the disk capacity is > 1TB then simply compute 1026 * the CHS values based on the total disk capacity and 1027 * not use the values from mode-sense data. 1028 */ 1029 if (tblocks > INT32_MAX) { 1030 compute_chs_values(tblocks, nblocks, &pcyl, &nhead, 1031 &nsect); 1032 } else { 1033 pcyl = (page4->cyl_ub << 16) + (page4->cyl_mb << 8) + 1034 page4->cyl_lb; 1035 nhead = page4->heads; 1036 nsect = page3->sect_track; 1037 } 1038 1039 rpm = page4->rpm; 1040 1041 /* 1042 * If the number of physical cylinders reported is less 1043 * the SUN_MIN_CYL(3) then try to adjust the geometry so that 1044 * we have atleast SUN_MIN_CYL cylinders. 1045 */ 1046 if (pcyl < SUN_MIN_CYL) { 1047 if (nhead == 0 || nsect == 0) { 1048 setdefault = 1; 1049 } else if (adjust_disk_geometry( 1050 (diskaddr_t)(capacity->sc_capacity + 1), 1051 &pcyl, &nhead, &nsect)) { 1052 setdefault = 1; 1053 } 1054 } 1055 } 1056 1057 /* 1058 * Mode sense page 3 and page 4 are obsolete in SCSI-3. For 1059 * newly developed large sector size disk, we will not rely on 1060 * those two pages but compute geometry directly. 1061 */ 1062 if ((setdefault == 1) || (capacity->sc_lbasize != DEV_BSIZE)) { 1063 /* 1064 * If the number of cylinders or the number of heads reported 1065 * is zero, we think the inquiry of page 3 and page 4 failed. 1066 * We will set the geometry infomation by ourselves. 1067 */ 1068 compute_chs_values(tblocks, nblocks, &pcyl, &nhead, &nsect); 1069 } 1070 1071 /* 1072 * The sd driver reserves 2 cylinders the backup disk label and 1073 * the deviceid. Set the number of data cylinders to pcyl-acyl. 1074 */ 1075 acyl = DK_ACYL; 1076 ncyl = pcyl - acyl; 1077 1078 if (option_msg && diag_msg) { 1079 err_print("Geometry:\n"); 1080 err_print(" pcyl: %u\n", pcyl); 1081 err_print(" ncyl: %u\n", ncyl); 1082 err_print(" heads: %u\n", nhead); 1083 err_print(" nsects: %u\n", nsect); 1084 err_print(" acyl: %u\n", acyl); 1085 1086 #if defined(_SUNOS_VTOC_16) 1087 err_print(" bcyl: %u\n", bcyl); 1088 #endif /* defined(_SUNOS_VTOC_16) */ 1089 1090 err_print(" rpm: %d\n", rpm); 1091 err_print(" nblocks: %llu\n", nblocks); 1092 } 1093 1094 /* 1095 * Some drives do not support page4 or report 0 for page4->rpm, 1096 * adjust it to AVG_RPM, 3600. 1097 */ 1098 if (rpm < MIN_RPM || rpm > MAX_RPM) { 1099 err_print("The current rpm value %d is invalid," 1100 " adjusting it to %d\n", rpm, AVG_RPM); 1101 rpm = AVG_RPM; 1102 } 1103 1104 /* 1105 * Some drives report 0 for nsect (page 3, byte 10 and 11) if they 1106 * have variable number of sectors per track. So adjust nsect. 1107 * Also the value is defined as vendor specific, hence check if 1108 * it is in a tolerable range. The values (32 and 4 below) are 1109 * chosen so that this change below does not generate a different 1110 * geometry for currently supported sun disks. 1111 */ 1112 if ((nsect == 0) || 1113 ((diskaddr_t)pcyl * nhead * nsect) < (nblocks - nblocks/32) || 1114 ((diskaddr_t)pcyl * nhead * nsect) > (nblocks + nblocks/4)) { 1115 if (nblocks > (pcyl * nhead)) { 1116 err_print("Mode sense page(3) reports nsect value" 1117 " as %d, adjusting it to %llu\n", 1118 nsect, nblocks / (pcyl * nhead)); 1119 nsect = nblocks / (pcyl * nhead); 1120 } else { 1121 /* convert capacity to nsect * nhead * pcyl */ 1122 err_print("\nWARNING: Disk geometry is based on " 1123 "capacity data.\n\n"); 1124 compute_chs_values(tblocks, nblocks, &pcyl, &nhead, 1125 &nsect); 1126 ncyl = pcyl - acyl; 1127 if (option_msg && diag_msg) { 1128 err_print("Geometry:(after adjustment)\n"); 1129 err_print(" pcyl: %u\n", pcyl); 1130 err_print(" ncyl: %u\n", ncyl); 1131 err_print(" heads: %u\n", nhead); 1132 err_print(" nsects: %u\n", nsect); 1133 err_print(" acyl: %u\n", acyl); 1134 1135 #if defined(_SUNOS_VTOC_16) 1136 err_print(" bcyl: %u\n", bcyl); 1137 #endif 1138 1139 err_print(" rpm: %d\n", rpm); 1140 err_print(" nblocks: %llu\n", nblocks); 1141 } 1142 } 1143 } 1144 1145 /* 1146 * Some drives report their physical geometry such that 1147 * it is greater than the actual capacity. Adjust the 1148 * geometry to allow for this, so we don't run off 1149 * the end of the disk. 1150 */ 1151 if (((diskaddr_t)pcyl * nhead * nsect) > nblocks) { 1152 uint_t p = pcyl; 1153 if (option_msg && diag_msg) { 1154 err_print("Computed capacity (%llu) exceeds actual " 1155 "disk capacity (%llu)\n", 1156 (diskaddr_t)pcyl * nhead * nsect, nblocks); 1157 } 1158 do { 1159 pcyl--; 1160 } while (((diskaddr_t)pcyl * nhead * nsect) > nblocks); 1161 1162 if (can_prompt && expert_mode && !option_f) { 1163 /* 1164 * Try to adjust nsect instead of pcyl to see if we 1165 * can optimize. For compatability reasons do this 1166 * only in expert mode (refer to bug 1144812). 1167 */ 1168 uint_t n = nsect; 1169 do { 1170 n--; 1171 } while (((diskaddr_t)p * nhead * n) > nblocks); 1172 if (((diskaddr_t)p * nhead * n) > 1173 ((diskaddr_t)pcyl * nhead * nsect)) { 1174 u_ioparam_t ioparam; 1175 int deflt = 1; 1176 /* 1177 * Ask the user for a choice here. 1178 */ 1179 ioparam.io_bounds.lower = 1; 1180 ioparam.io_bounds.upper = 2; 1181 err_print("1. Capacity = %llu, with pcyl = %u " 1182 "nhead = %u nsect = %u\n", 1183 ((diskaddr_t)pcyl * nhead * nsect), 1184 pcyl, nhead, nsect); 1185 err_print("2. Capacity = %llu, with pcyl = %u " 1186 "nhead = %u nsect = %u\n", 1187 ((diskaddr_t)p * nhead * n), 1188 p, nhead, n); 1189 if (input(FIO_INT, "Select one of the above " 1190 "choices ", ':', &ioparam, 1191 &deflt, DATA_INPUT) == 2) { 1192 pcyl = p; 1193 nsect = n; 1194 } 1195 } 1196 } 1197 } 1198 1199 #if defined(_SUNOS_VTOC_8) 1200 /* 1201 * Finally, we need to make sure we don't overflow any of the 1202 * fields in our disk label. To do this we need to `square 1203 * the box' so to speak. We will lose bits here. 1204 */ 1205 1206 if ((pcyl > MAXIMUM_NO_CYLINDERS && 1207 ((nsect > MAXIMUM_NO_SECTORS) || 1208 (nhead > MAXIMUM_NO_HEADS))) || 1209 ((nsect > MAXIMUM_NO_SECTORS) && 1210 (nhead > MAXIMUM_NO_HEADS))) { 1211 err_print("This disk is too big to label. " 1212 " You will lose some blocks.\n"); 1213 } 1214 if ((pcyl > MAXIMUM_NO_CYLINDERS) || 1215 (nsect > MAXIMUM_NO_SECTORS) || 1216 (nhead > MAXIMUM_NO_HEADS)) { 1217 u_ioparam_t ioparam; 1218 int order; 1219 char msg[256]; 1220 1221 order = ((pcyl > nhead)<<2) | 1222 ((pcyl > nsect)<<1) | 1223 (nhead > nsect); 1224 switch (order) { 1225 case 0x7: /* pcyl > nhead > nsect */ 1226 nblocks = 1227 square_box(nblocks, 1228 &pcyl, MAXIMUM_NO_CYLINDERS, 1229 &nhead, MAXIMUM_NO_HEADS, 1230 &nsect, MAXIMUM_NO_SECTORS); 1231 break; 1232 case 0x6: /* pcyl > nsect > nhead */ 1233 nblocks = 1234 square_box(nblocks, 1235 &pcyl, MAXIMUM_NO_CYLINDERS, 1236 &nsect, MAXIMUM_NO_SECTORS, 1237 &nhead, MAXIMUM_NO_HEADS); 1238 break; 1239 case 0x4: /* nsect > pcyl > nhead */ 1240 nblocks = 1241 square_box(nblocks, 1242 &nsect, MAXIMUM_NO_SECTORS, 1243 &pcyl, MAXIMUM_NO_CYLINDERS, 1244 &nhead, MAXIMUM_NO_HEADS); 1245 break; 1246 case 0x0: /* nsect > nhead > pcyl */ 1247 nblocks = 1248 square_box(nblocks, 1249 &nsect, MAXIMUM_NO_SECTORS, 1250 &nhead, MAXIMUM_NO_HEADS, 1251 &pcyl, MAXIMUM_NO_CYLINDERS); 1252 break; 1253 case 0x3: /* nhead > pcyl > nsect */ 1254 nblocks = 1255 square_box(nblocks, 1256 &nhead, MAXIMUM_NO_HEADS, 1257 &pcyl, MAXIMUM_NO_CYLINDERS, 1258 &nsect, MAXIMUM_NO_SECTORS); 1259 break; 1260 case 0x1: /* nhead > nsect > pcyl */ 1261 nblocks = 1262 square_box(nblocks, 1263 &nhead, MAXIMUM_NO_HEADS, 1264 &nsect, MAXIMUM_NO_SECTORS, 1265 &pcyl, MAXIMUM_NO_CYLINDERS); 1266 break; 1267 default: 1268 /* How did we get here? */ 1269 impossible("label overflow adjustment"); 1270 1271 /* Do something useful */ 1272 nblocks = 1273 square_box(nblocks, 1274 &nhead, MAXIMUM_NO_HEADS, 1275 &nsect, MAXIMUM_NO_SECTORS, 1276 &pcyl, MAXIMUM_NO_CYLINDERS); 1277 break; 1278 } 1279 if (option_msg && diag_msg && 1280 (capacity->sc_capacity + 1 != nblocks)) { 1281 err_print("After adjusting geometry you lost" 1282 " %llu of %llu blocks.\n", 1283 (capacity->sc_capacity + 1 - nblocks), 1284 capacity->sc_capacity + 1); 1285 } 1286 while (can_prompt && expert_mode && !option_f) { 1287 int deflt = 1; 1288 1289 /* 1290 * Allow user to modify this by hand if desired. 1291 */ 1292 (void) sprintf(msg, 1293 "\nGeometry: %u heads, %u sectors %u cylinders" 1294 " result in %llu out of %llu blocks.\n" 1295 "Do you want to modify the device geometry", 1296 nhead, nsect, pcyl, 1297 nblocks, capacity->sc_capacity + 1); 1298 1299 ioparam.io_charlist = confirm_list; 1300 if (input(FIO_MSTR, msg, '?', &ioparam, 1301 &deflt, DATA_INPUT) != 0) 1302 break; 1303 1304 ioparam.io_bounds.lower = MINIMUM_NO_HEADS; 1305 ioparam.io_bounds.upper = MAXIMUM_NO_HEADS; 1306 nhead = input(FIO_INT, "Number of heads", ':', 1307 &ioparam, (int *)&nhead, DATA_INPUT); 1308 ioparam.io_bounds.lower = MINIMUM_NO_SECTORS; 1309 ioparam.io_bounds.upper = MAXIMUM_NO_SECTORS; 1310 nsect = input(FIO_INT, 1311 "Number of sectors per track", 1312 ':', &ioparam, (int *)&nsect, DATA_INPUT); 1313 ioparam.io_bounds.lower = SUN_MIN_CYL; 1314 ioparam.io_bounds.upper = MAXIMUM_NO_CYLINDERS; 1315 pcyl = input(FIO_INT, "Number of cylinders", 1316 ':', &ioparam, (int *)&pcyl, DATA_INPUT); 1317 nblocks = (diskaddr_t)nhead * nsect * pcyl; 1318 if (nblocks > capacity->sc_capacity + 1) { 1319 err_print("Warning: %llu blocks exceeds " 1320 "disk capacity of %llu blocks\n", 1321 nblocks, 1322 capacity->sc_capacity + 1); 1323 } 1324 } 1325 } 1326 #endif /* defined(_SUNOS_VTOC_8) */ 1327 1328 ncyl = pcyl - acyl; 1329 1330 if (option_msg && diag_msg) { 1331 err_print("\nGeometry after adjusting for capacity:\n"); 1332 err_print(" pcyl: %u\n", pcyl); 1333 err_print(" ncyl: %u\n", ncyl); 1334 err_print(" heads: %u\n", nhead); 1335 err_print(" nsects: %u\n", nsect); 1336 err_print(" acyl: %u\n", acyl); 1337 err_print(" rpm: %d\n", rpm); 1338 } 1339 1340 (void) memset((char *)label, 0, sizeof (struct dk_label)); 1341 1342 label->dkl_magic = DKL_MAGIC; 1343 1344 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 1345 "%s cyl %u alt %u hd %u sec %u", 1346 disk_name, ncyl, acyl, nhead, nsect); 1347 1348 label->dkl_pcyl = pcyl; 1349 label->dkl_ncyl = ncyl; 1350 label->dkl_acyl = acyl; 1351 label->dkl_nhead = nhead; 1352 label->dkl_nsect = nsect; 1353 label->dkl_apc = 0; 1354 label->dkl_intrlv = 1; 1355 label->dkl_rpm = rpm; 1356 1357 #if defined(_FIRMWARE_NEEDS_FDISK) 1358 if (auto_solaris_part(label) == -1) 1359 goto err; 1360 ncyl = label->dkl_ncyl; 1361 #endif /* defined(_FIRMWARE_NEEDS_FDISK) */ 1362 1363 1364 if (!build_default_partition(label, DKC_SCSI_CCS)) { 1365 goto err; 1366 } 1367 1368 (void) checksum(label, CK_MAKESUM); 1369 1370 /* 1371 * Find an existing disk type defined for this disk. 1372 * For this to work, both the name and geometry must 1373 * match. If there is no such type, but there already 1374 * is a disk defined with that name, but with a different 1375 * geometry, construct a new generic disk name out of 1376 * the inquiry information. Whatever name we're 1377 * finally using, if there's no such disk type defined, 1378 * build a new disk definition. 1379 */ 1380 if ((disk = find_scsi_disk_type(disk_name, label)) == NULL) { 1381 if (find_scsi_disk_by_name(disk_name) != NULL) { 1382 char old_name[DISK_NAME_MAX]; 1383 (void) strcpy(old_name, disk_name); 1384 (void) get_generic_disk_name(disk_name, 1385 inquiry); 1386 if (option_msg && diag_msg) { 1387 err_print( 1388 "Changing disk type name from '%s' to '%s'\n", old_name, disk_name); 1389 } 1390 (void) snprintf(label->dkl_asciilabel, 1391 sizeof (label->dkl_asciilabel), 1392 "%s cyl %u alt %u hd %u sec %u", 1393 disk_name, ncyl, acyl, nhead, nsect); 1394 (void) checksum(label, CK_MAKESUM); 1395 disk = find_scsi_disk_type(disk_name, label); 1396 } 1397 if (disk == NULL) { 1398 disk = new_scsi_disk_type(fd, disk_name, label); 1399 if (disk == NULL) 1400 goto err; 1401 } 1402 } 1403 1404 return (disk); 1405 1406 err: 1407 if (option_msg && diag_msg) { 1408 err_print( 1409 "Configuration via generic SCSI-2 information failed\n"); 1410 } 1411 return (NULL); 1412 } 1413 1414 1415 /*ARGSUSED*/ 1416 static int 1417 use_existing_disk_type( 1418 int fd, 1419 int can_prompt, 1420 struct dk_label *label, 1421 struct scsi_inquiry *inquiry, 1422 struct disk_type *disk_type, 1423 struct scsi_capacity_16 *capacity) 1424 { 1425 int pcyl; 1426 int acyl; 1427 int nhead; 1428 int nsect; 1429 int rpm; 1430 1431 /* 1432 * Construct a new label out of the format.dat 1433 */ 1434 pcyl = disk_type->dtype_pcyl; 1435 acyl = disk_type->dtype_acyl; 1436 ncyl = disk_type->dtype_ncyl; 1437 nhead = disk_type->dtype_nhead; 1438 nsect = disk_type->dtype_nsect; 1439 rpm = disk_type->dtype_rpm; 1440 1441 if (option_msg && diag_msg) { 1442 err_print("Format.dat geometry:\n"); 1443 err_print(" pcyl: %u\n", pcyl); 1444 err_print(" heads: %u\n", nhead); 1445 err_print(" nsects: %u\n", nsect); 1446 err_print(" acyl: %u\n", acyl); 1447 err_print(" rpm: %d\n", rpm); 1448 } 1449 1450 (void) memset((char *)label, 0, sizeof (struct dk_label)); 1451 1452 label->dkl_magic = DKL_MAGIC; 1453 1454 (void) snprintf(label->dkl_asciilabel, sizeof (label->dkl_asciilabel), 1455 "%s cyl %u alt %u hd %u sec %u", 1456 disk_type->dtype_asciilabel, 1457 ncyl, acyl, nhead, nsect); 1458 1459 label->dkl_pcyl = pcyl; 1460 label->dkl_ncyl = ncyl; 1461 label->dkl_acyl = acyl; 1462 label->dkl_nhead = nhead; 1463 label->dkl_nsect = nsect; 1464 label->dkl_apc = 0; 1465 label->dkl_intrlv = 1; 1466 label->dkl_rpm = rpm; 1467 1468 if (!build_default_partition(label, DKC_SCSI_CCS)) { 1469 goto err; 1470 } 1471 1472 (void) checksum(label, CK_MAKESUM); 1473 return (1); 1474 1475 err: 1476 if (option_msg && diag_msg) { 1477 err_print( 1478 "Configuration via format.dat geometry failed\n"); 1479 } 1480 return (0); 1481 } 1482 1483 int 1484 build_default_partition( 1485 struct dk_label *label, 1486 int ctrl_type) 1487 { 1488 int i; 1489 int ncyls[NDKMAP]; 1490 diskaddr_t nblks; 1491 int cyl; 1492 struct dk_vtoc *vtoc; 1493 struct part_table *pt; 1494 struct default_partitions *dpt; 1495 diskaddr_t capacity; 1496 int freecyls; 1497 int blks_per_cyl; 1498 int ncyl; 1499 1500 #ifdef lint 1501 ctrl_type = ctrl_type; 1502 #endif 1503 1504 /* 1505 * Install a default vtoc 1506 */ 1507 vtoc = &label->dkl_vtoc; 1508 vtoc->v_version = V_VERSION; 1509 vtoc->v_nparts = NDKMAP; 1510 vtoc->v_sanity = VTOC_SANE; 1511 1512 for (i = 0; i < NDKMAP; i++) { 1513 vtoc->v_part[i].p_tag = default_vtoc_map[i].p_tag; 1514 vtoc->v_part[i].p_flag = default_vtoc_map[i].p_flag; 1515 } 1516 1517 /* 1518 * Find a partition that matches this disk. Capacity 1519 * is in integral number of megabytes. 1520 */ 1521 capacity = ((diskaddr_t)(label->dkl_ncyl) * label->dkl_nhead * 1522 label->dkl_nsect) / (1024 * 1024) / cur_blksz; 1523 dpt = default_partitions; 1524 for (i = 0; i < DEFAULT_PARTITION_TABLE_SIZE; i++, dpt++) { 1525 if (capacity >= dpt->min_capacity && 1526 capacity < dpt->max_capacity) { 1527 break; 1528 } 1529 } 1530 if (i == DEFAULT_PARTITION_TABLE_SIZE) { 1531 if (option_msg && diag_msg) { 1532 err_print("No matching default partition (%llu)\n", 1533 capacity); 1534 } 1535 return (0); 1536 } 1537 pt = dpt->part_table; 1538 1539 /* 1540 * Go through default partition table, finding fixed 1541 * sized entries. 1542 */ 1543 freecyls = label->dkl_ncyl; 1544 blks_per_cyl = label->dkl_nhead * label->dkl_nsect; 1545 for (i = 0; i < NDKMAP; i++) { 1546 if (pt->partitions[i] == HOG || pt->partitions[i] == 0) { 1547 ncyls[i] = 0; 1548 } else { 1549 /* 1550 * Calculate number of cylinders necessary 1551 * for specified size, rounding up to 1552 * the next greatest integral number of 1553 * cylinders. Always give what they 1554 * asked or more, never less. 1555 */ 1556 nblks = pt->partitions[i] * ((1024*1024)/cur_blksz); 1557 nblks += (blks_per_cyl - 1); 1558 ncyls[i] = nblks / blks_per_cyl; 1559 freecyls -= ncyls[i]; 1560 } 1561 } 1562 1563 if (freecyls < 0) { 1564 if (option_msg && diag_msg) { 1565 for (i = 0; i < NDKMAP; i++) { 1566 if (ncyls[i] == 0) 1567 continue; 1568 err_print("Partition %d: %u cyls\n", 1569 i, ncyls[i]); 1570 } 1571 err_print("Free cylinders exhausted (%d)\n", 1572 freecyls); 1573 } 1574 return (0); 1575 } 1576 #if defined(i386) 1577 /* 1578 * Set the default boot partition to 1 cylinder 1579 */ 1580 ncyls[8] = 1; 1581 freecyls -= 1; 1582 1583 /* 1584 * If current disk type is not a SCSI disk, 1585 * set the default alternates partition to 2 cylinders 1586 */ 1587 if (ctrl_type != DKC_SCSI_CCS) { 1588 ncyls[9] = 2; 1589 freecyls -= 2; 1590 } 1591 #endif /* defined(i386) */ 1592 1593 /* 1594 * Set the free hog partition to whatever space remains. 1595 * It's an error to have more than one HOG partition, 1596 * but we don't verify that here. 1597 */ 1598 for (i = 0; i < NDKMAP; i++) { 1599 if (pt->partitions[i] == HOG) { 1600 assert(ncyls[i] == 0); 1601 ncyls[i] = freecyls; 1602 break; 1603 } 1604 } 1605 1606 /* 1607 * Error checking 1608 */ 1609 ncyl = 0; 1610 for (i = 0; i < NDKMAP; i++) { 1611 ncyl += ncyls[i]; 1612 } 1613 assert(ncyl == (label->dkl_ncyl)); 1614 1615 /* 1616 * Finally, install the partition in the label. 1617 */ 1618 cyl = 0; 1619 1620 #if defined(_SUNOS_VTOC_16) 1621 for (i = NDKMAP/2; i < NDKMAP; i++) { 1622 if (i == 2 || ncyls[i] == 0) 1623 continue; 1624 label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl; 1625 label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl; 1626 cyl += ncyls[i]; 1627 } 1628 for (i = 0; i < NDKMAP/2; i++) { 1629 1630 #elif defined(_SUNOS_VTOC_8) 1631 for (i = 0; i < NDKMAP; i++) { 1632 1633 #else 1634 #error No VTOC format defined. 1635 #endif /* defined(_SUNOS_VTOC_16) */ 1636 1637 if (i == 2 || ncyls[i] == 0) { 1638 #if defined(_SUNOS_VTOC_8) 1639 if (i != 2) { 1640 label->dkl_map[i].dkl_cylno = 0; 1641 label->dkl_map[i].dkl_nblk = 0; 1642 } 1643 #endif 1644 continue; 1645 } 1646 #if defined(_SUNOS_VTOC_8) 1647 label->dkl_map[i].dkl_cylno = cyl; 1648 label->dkl_map[i].dkl_nblk = ncyls[i] * blks_per_cyl; 1649 #elif defined(_SUNOS_VTOC_16) 1650 label->dkl_vtoc.v_part[i].p_start = cyl * blks_per_cyl; 1651 label->dkl_vtoc.v_part[i].p_size = ncyls[i] * blks_per_cyl; 1652 1653 #else 1654 #error No VTOC format defined. 1655 #endif /* defined(_SUNOS_VTOC_8) */ 1656 1657 cyl += ncyls[i]; 1658 } 1659 1660 /* 1661 * Set the whole disk partition 1662 */ 1663 #if defined(_SUNOS_VTOC_8) 1664 label->dkl_map[2].dkl_cylno = 0; 1665 label->dkl_map[2].dkl_nblk = 1666 label->dkl_ncyl * label->dkl_nhead * label->dkl_nsect; 1667 1668 #elif defined(_SUNOS_VTOC_16) 1669 label->dkl_vtoc.v_part[2].p_start = 0; 1670 label->dkl_vtoc.v_part[2].p_size = 1671 (label->dkl_ncyl + label->dkl_acyl) * label->dkl_nhead * 1672 label->dkl_nsect; 1673 #else 1674 #error No VTOC format defined. 1675 #endif /* defined(_SUNOS_VTOC_8) */ 1676 1677 1678 if (option_msg && diag_msg) { 1679 float scaled; 1680 err_print("\n"); 1681 for (i = 0; i < NDKMAP; i++) { 1682 #if defined(_SUNOS_VTOC_8) 1683 if (label->dkl_map[i].dkl_nblk == 0) 1684 1685 #elif defined(_SUNOS_VTOC_16) 1686 if (label->dkl_vtoc.v_part[i].p_size == 0) 1687 1688 #else 1689 #error No VTOC format defined. 1690 #endif /* defined(_SUNOS_VTOC_8) */ 1691 1692 continue; 1693 err_print("Partition %d: ", i); 1694 #if defined(_SUNOS_VTOC_8) 1695 scaled = bn2mb(label->dkl_map[i].dkl_nblk); 1696 1697 #elif defined(_SUNOS_VTOC_16) 1698 1699 scaled = bn2mb(label->dkl_vtoc.v_part[i].p_size); 1700 #else 1701 #error No VTOC format defined. 1702 #endif /* defined(_SUNOS_VTOC_8) */ 1703 1704 if (scaled > 1024.0) { 1705 err_print("%6.2fGB ", scaled/1024.0); 1706 } else { 1707 err_print("%6.2fMB ", scaled); 1708 } 1709 #if defined(_SUNOS_VTOC_8) 1710 err_print(" %6d cylinders\n", 1711 label->dkl_map[i].dkl_nblk/blks_per_cyl); 1712 #elif defined(_SUNOS_VTOC_16) 1713 err_print(" %6d cylinders\n", 1714 label->dkl_vtoc.v_part[i].p_size/blks_per_cyl); 1715 #else 1716 #error No VTOC format defined. 1717 #endif /* defined(_SUNOS_VTOC_8) */ 1718 1719 } 1720 err_print("\n"); 1721 } 1722 1723 return (1); 1724 } 1725 1726 1727 1728 /* 1729 * Find an existing scsi disk definition by this name, 1730 * if possible. 1731 */ 1732 static struct disk_type * 1733 find_scsi_disk_type( 1734 char *disk_name, 1735 struct dk_label *label) 1736 { 1737 struct ctlr_type *ctlr; 1738 struct disk_type *dp; 1739 1740 ctlr = find_scsi_ctlr_type(); 1741 for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) { 1742 if (dp->dtype_asciilabel) { 1743 if ((strcmp(dp->dtype_asciilabel, disk_name) == 0) && 1744 dp->dtype_pcyl == label->dkl_pcyl && 1745 dp->dtype_ncyl == label->dkl_ncyl && 1746 dp->dtype_acyl == label->dkl_acyl && 1747 dp->dtype_nhead == label->dkl_nhead && 1748 dp->dtype_nsect == label->dkl_nsect) { 1749 return (dp); 1750 } 1751 } 1752 } 1753 1754 return ((struct disk_type *)NULL); 1755 } 1756 1757 1758 /* 1759 * Find an existing scsi disk definition by this name, 1760 * if possible. 1761 */ 1762 static struct disk_type * 1763 find_scsi_disk_by_name( 1764 char *disk_name) 1765 { 1766 struct ctlr_type *ctlr; 1767 struct disk_type *dp; 1768 1769 ctlr = find_scsi_ctlr_type(); 1770 for (dp = ctlr->ctype_dlist; dp != NULL; dp = dp->dtype_next) { 1771 if (dp->dtype_asciilabel) { 1772 if ((strcmp(dp->dtype_asciilabel, disk_name) == 0)) { 1773 return (dp); 1774 } 1775 } 1776 } 1777 1778 return ((struct disk_type *)NULL); 1779 } 1780 1781 1782 /* 1783 * Return a pointer to the ctlr_type structure for SCSI 1784 * disks. This list is built into the program, so there's 1785 * no chance of not being able to find it, unless someone 1786 * totally mangles the code. 1787 */ 1788 static struct ctlr_type * 1789 find_scsi_ctlr_type() 1790 { 1791 struct mctlr_list *mlp; 1792 1793 mlp = controlp; 1794 1795 while (mlp != NULL) { 1796 if (mlp->ctlr_type->ctype_ctype == DKC_SCSI_CCS) { 1797 return (mlp->ctlr_type); 1798 } 1799 mlp = mlp->next; 1800 } 1801 1802 impossible("no SCSI controller type"); 1803 1804 return ((struct ctlr_type *)NULL); 1805 } 1806 1807 1808 1809 /* 1810 * Return a pointer to the scsi ctlr_info structure. This 1811 * structure is allocated the first time format sees a 1812 * disk on this controller, so it must be present. 1813 */ 1814 static struct ctlr_info * 1815 find_scsi_ctlr_info( 1816 struct dk_cinfo *dkinfo) 1817 { 1818 struct ctlr_info *ctlr; 1819 1820 if (dkinfo->dki_ctype != DKC_SCSI_CCS) { 1821 return (NULL); 1822 } 1823 1824 for (ctlr = ctlr_list; ctlr != NULL; ctlr = ctlr->ctlr_next) { 1825 if (ctlr->ctlr_addr == dkinfo->dki_addr && 1826 ctlr->ctlr_space == dkinfo->dki_space && 1827 ctlr->ctlr_ctype->ctype_ctype == DKC_SCSI_CCS) { 1828 return (ctlr); 1829 } 1830 } 1831 1832 impossible("no SCSI controller info"); 1833 1834 return ((struct ctlr_info *)NULL); 1835 } 1836 1837 1838 1839 static struct disk_type * 1840 new_scsi_disk_type( 1841 int fd, 1842 char *disk_name, 1843 struct dk_label *label) 1844 { 1845 struct disk_type *dp; 1846 struct disk_type *disk; 1847 struct ctlr_info *ctlr; 1848 struct dk_cinfo dkinfo; 1849 struct partition_info *part; 1850 struct partition_info *pt; 1851 struct disk_info *disk_info; 1852 int i; 1853 1854 /* 1855 * Get the disk controller info for this disk 1856 */ 1857 if (ioctl(fd, DKIOCINFO, &dkinfo) == -1) { 1858 if (option_msg && diag_msg) { 1859 err_print("DKIOCINFO failed\n"); 1860 } 1861 return (NULL); 1862 } 1863 1864 /* 1865 * Find the ctlr_info for this disk. 1866 */ 1867 ctlr = find_scsi_ctlr_info(&dkinfo); 1868 1869 /* 1870 * Allocate a new disk type for the SCSI controller. 1871 */ 1872 disk = (struct disk_type *)zalloc(sizeof (struct disk_type)); 1873 1874 /* 1875 * Find the disk_info instance for this disk. 1876 */ 1877 disk_info = find_scsi_disk_info(&dkinfo); 1878 1879 /* 1880 * The controller and the disk should match. 1881 */ 1882 assert(disk_info->disk_ctlr == ctlr); 1883 1884 /* 1885 * Link the disk into the list of disks 1886 */ 1887 dp = ctlr->ctlr_ctype->ctype_dlist; 1888 if (dp == NULL) { 1889 ctlr->ctlr_ctype->ctype_dlist = disk; 1890 } else { 1891 while (dp->dtype_next != NULL) { 1892 dp = dp->dtype_next; 1893 } 1894 dp->dtype_next = disk; 1895 } 1896 disk->dtype_next = NULL; 1897 1898 /* 1899 * Allocate and initialize the disk name. 1900 */ 1901 disk->dtype_asciilabel = alloc_string(disk_name); 1902 1903 /* 1904 * Initialize disk geometry info 1905 */ 1906 disk->dtype_pcyl = label->dkl_pcyl; 1907 disk->dtype_ncyl = label->dkl_ncyl; 1908 disk->dtype_acyl = label->dkl_acyl; 1909 disk->dtype_nhead = label->dkl_nhead; 1910 disk->dtype_nsect = label->dkl_nsect; 1911 disk->dtype_rpm = label->dkl_rpm; 1912 1913 /* 1914 * Attempt to match the partition map in the label 1915 * with a know partition for this disk type. 1916 */ 1917 for (part = disk->dtype_plist; part; part = part->pinfo_next) { 1918 if (parts_match(label, part)) { 1919 break; 1920 } 1921 } 1922 1923 /* 1924 * If no match was made, we need to create a partition 1925 * map for this disk. 1926 */ 1927 if (part == NULL) { 1928 part = (struct partition_info *) 1929 zalloc(sizeof (struct partition_info)); 1930 pt = disk->dtype_plist; 1931 if (pt == NULL) { 1932 disk->dtype_plist = part; 1933 } else { 1934 while (pt->pinfo_next != NULL) { 1935 pt = pt->pinfo_next; 1936 } 1937 pt->pinfo_next = part; 1938 } 1939 part->pinfo_next = NULL; 1940 1941 /* 1942 * Set up the partition name 1943 */ 1944 part->pinfo_name = alloc_string("default"); 1945 1946 /* 1947 * Fill in the partition info from the label 1948 */ 1949 for (i = 0; i < NDKMAP; i++) { 1950 1951 #if defined(_SUNOS_VTOC_8) 1952 part->pinfo_map[i] = label->dkl_map[i]; 1953 1954 #elif defined(_SUNOS_VTOC_16) 1955 part->pinfo_map[i].dkl_cylno = 1956 label->dkl_vtoc.v_part[i].p_start / 1957 ((blkaddr32_t)(disk->dtype_nhead * 1958 disk->dtype_nsect - apc)); 1959 part->pinfo_map[i].dkl_nblk = 1960 label->dkl_vtoc.v_part[i].p_size; 1961 #else 1962 #error No VTOC format defined. 1963 #endif /* defined(_SUNOS_VTOC_8) */ 1964 1965 } 1966 } 1967 1968 1969 /* 1970 * Use the VTOC if valid, or install a default 1971 */ 1972 if (label->dkl_vtoc.v_version == V_VERSION) { 1973 (void) memcpy(disk_info->v_volume, label->dkl_vtoc.v_volume, 1974 LEN_DKL_VVOL); 1975 part->vtoc = label->dkl_vtoc; 1976 } else { 1977 (void) memset(disk_info->v_volume, 0, LEN_DKL_VVOL); 1978 set_vtoc_defaults(part); 1979 } 1980 1981 /* 1982 * Link the disk to the partition map 1983 */ 1984 disk_info->disk_parts = part; 1985 1986 return (disk); 1987 } 1988 1989 1990 /* 1991 * Delete a disk type from disk type list. 1992 */ 1993 int 1994 delete_disk_type( 1995 struct disk_type *disk_type) 1996 { 1997 struct ctlr_type *ctlr; 1998 struct disk_type *dp, *disk; 1999 2000 if (cur_ctype->ctype_ctype == DKC_DIRECT) 2001 ctlr = find_direct_ctlr_type(); 2002 else if (cur_ctype->ctype_ctype == DKC_VBD) 2003 ctlr = find_vbd_ctlr_type(); 2004 else 2005 ctlr = find_scsi_ctlr_type(); 2006 if (ctlr == NULL || ctlr->ctype_dlist == NULL) { 2007 return (-1); 2008 } 2009 2010 disk = ctlr->ctype_dlist; 2011 if (disk == disk_type) { 2012 ctlr->ctype_dlist = disk->dtype_next; 2013 if (cur_label == L_TYPE_EFI) 2014 free(disk->dtype_plist->etoc); 2015 free(disk->dtype_plist); 2016 free(disk); 2017 return (0); 2018 } else { 2019 for (dp = disk->dtype_next; dp != NULL; 2020 disk = disk->dtype_next, dp = dp->dtype_next) { 2021 if (dp == disk_type) { 2022 disk->dtype_next = dp->dtype_next; 2023 if (cur_label == L_TYPE_EFI) 2024 free(dp->dtype_plist->etoc); 2025 free(dp->dtype_plist); 2026 free(dp); 2027 return (0); 2028 } 2029 } 2030 return (-1); 2031 } 2032 } 2033 2034 2035 static struct disk_info * 2036 find_scsi_disk_info( 2037 struct dk_cinfo *dkinfo) 2038 { 2039 struct disk_info *disk; 2040 struct dk_cinfo *dp; 2041 2042 for (disk = disk_list; disk != NULL; disk = disk->disk_next) { 2043 assert(dkinfo->dki_ctype == DKC_SCSI_CCS); 2044 dp = &disk->disk_dkinfo; 2045 if (dp->dki_ctype == dkinfo->dki_ctype && 2046 dp->dki_cnum == dkinfo->dki_cnum && 2047 dp->dki_unit == dkinfo->dki_unit && 2048 strcmp(dp->dki_dname, dkinfo->dki_dname) == 0) { 2049 return (disk); 2050 } 2051 } 2052 2053 impossible("No SCSI disk info instance\n"); 2054 2055 return ((struct disk_info *)NULL); 2056 } 2057 2058 2059 static char * 2060 get_sun_disk_name( 2061 char *disk_name, 2062 struct scsi_inquiry *inquiry) 2063 { 2064 /* 2065 * Extract the sun name of the disk 2066 */ 2067 (void) memset(disk_name, 0, DISK_NAME_MAX); 2068 (void) memcpy(disk_name, (char *)&inquiry->inq_pid[9], 7); 2069 2070 return (disk_name); 2071 } 2072 2073 2074 static char * 2075 get_generic_disk_name( 2076 char *disk_name, 2077 struct scsi_inquiry *inquiry) 2078 { 2079 char *p; 2080 2081 (void) memset(disk_name, 0, DISK_NAME_MAX); 2082 p = strcopy(disk_name, inquiry->inq_vid, 2083 sizeof (inquiry->inq_vid)); 2084 *p++ = '-'; 2085 p = strcopy(p, inquiry->inq_pid, sizeof (inquiry->inq_pid)); 2086 *p++ = '-'; 2087 p = strcopy(p, inquiry->inq_revision, 2088 sizeof (inquiry->inq_revision)); 2089 2090 return (disk_name); 2091 } 2092 2093 /* 2094 * Copy a string of characters from src to dst, for at 2095 * most n bytes. Strip all leading and trailing spaces, 2096 * and stop if there are any non-printable characters. 2097 * Return ptr to the next character to be filled. 2098 */ 2099 static char * 2100 strcopy( 2101 char *dst, 2102 char *src, 2103 int n) 2104 { 2105 int i; 2106 2107 while (*src == ' ' && n > 0) { 2108 src++; 2109 n--; 2110 } 2111 2112 for (i = 0; n-- > 0 && isascii(*src) && isprint(*src); src++) { 2113 if (*src == ' ') { 2114 i++; 2115 } else { 2116 while (i-- > 0) 2117 *dst++ = ' '; 2118 *dst++ = *src; 2119 } 2120 } 2121 2122 *dst = 0; 2123 return (dst); 2124 } 2125 2126 /* 2127 * adjust disk geometry. 2128 * This is used when disk reports a disk geometry page having 2129 * no of physical cylinders is < 3 which is the minimum required 2130 * by Solaris (2 for storing labels and at least one as a data 2131 * cylinder ) 2132 */ 2133 int 2134 adjust_disk_geometry(diskaddr_t capacity, uint_t *cyl, uint_t *nhead, 2135 uint_t *nsect) 2136 { 2137 uint_t lcyl = *cyl; 2138 uint_t lnhead = *nhead; 2139 uint_t lnsect = *nsect; 2140 2141 assert(lcyl < SUN_MIN_CYL); 2142 2143 /* 2144 * reduce nsect by 2 for each iteration and re-calculate 2145 * the number of cylinders. 2146 */ 2147 while (lnsect > MINIMUM_NO_SECTORS && 2148 lcyl < MINIMUM_NO_CYLINDERS) { 2149 /* 2150 * make sure that we do not go below MINIMUM_NO_SECTORS. 2151 */ 2152 lnsect = max(MINIMUM_NO_SECTORS, lnsect / 2); 2153 lcyl = (capacity) / (lnhead * lnsect); 2154 } 2155 /* 2156 * If the geometry still does not satisfy 2157 * MINIMUM_NO_CYLINDERS then try to reduce the 2158 * no of heads. 2159 */ 2160 while (lnhead > MINIMUM_NO_HEADS && 2161 lcyl < MINIMUM_NO_CYLINDERS) { 2162 lnhead = max(MINIMUM_NO_HEADS, lnhead / 2); 2163 lcyl = (capacity) / (lnhead * lnsect); 2164 } 2165 /* 2166 * now we should have atleast SUN_MIN_CYL cylinders. 2167 * If we still do not get SUN_MIN_CYL with MINIMUM_NO_HEADS 2168 * and MINIMUM_NO_HEADS then return error. 2169 */ 2170 if (lcyl < SUN_MIN_CYL) 2171 return (1); 2172 else { 2173 *cyl = lcyl; 2174 *nhead = lnhead; 2175 *nsect = lnsect; 2176 return (0); 2177 } 2178 } 2179 2180 #if defined(_SUNOS_VTOC_8) 2181 /* 2182 * Reduce the size of one dimention below a specified 2183 * limit with a minimum loss of volume. Dimenstions are 2184 * assumed to be passed in form the largest value (the one 2185 * that needs to be reduced) to the smallest value. The 2186 * values will be twiddled until they are all less than or 2187 * equal to their limit. Returns the number in the new geometry. 2188 */ 2189 static diskaddr_t 2190 square_box( 2191 diskaddr_t capacity, 2192 uint_t *dim1, uint_t lim1, 2193 uint_t *dim2, uint_t lim2, 2194 uint_t *dim3, uint_t lim3) 2195 { 2196 uint_t i; 2197 2198 /* 2199 * Although the routine should work with any ordering of 2200 * parameters, it's most efficient if they are passed in 2201 * in decreasing magnitude. 2202 */ 2203 assert(*dim1 >= *dim2); 2204 assert(*dim2 >= *dim3); 2205 2206 /* 2207 * This is done in a very arbitrary manner. We could try to 2208 * find better values but I can't come up with a method that 2209 * would run in a reasonable amount of time. That could take 2210 * approximately 65535 * 65535 iterations of a dozen flops each 2211 * or well over 4G flops. 2212 * 2213 * First: 2214 * 2215 * Let's see how far we can go with bitshifts w/o losing 2216 * any blocks. 2217 */ 2218 2219 for (i = 0; (((*dim1)>>i)&1) == 0 && ((*dim1)>>i) > lim1; i++) 2220 ; 2221 if (i) { 2222 *dim1 = ((*dim1)>>i); 2223 *dim3 = ((*dim3)<<i); 2224 } 2225 2226 if (((*dim1) > lim1) || ((*dim2) > lim2) || ((*dim3) > lim3)) { 2227 double d[4]; 2228 2229 /* 2230 * Second: 2231 * 2232 * Set the highest value at its limit then calculate errors, 2233 * adjusting the 2nd highest value (we get better resolution 2234 * that way). 2235 */ 2236 d[1] = lim1; 2237 d[3] = *dim3; 2238 d[2] = (double)capacity/(d[1]*d[3]); 2239 2240 /* 2241 * If we overflowed the middle term, set it to its limit and 2242 * chose a new low term. 2243 */ 2244 if (d[2] > lim2) { 2245 d[2] = lim2; 2246 d[3] = (double)capacity/(d[1]*d[2]); 2247 } 2248 /* 2249 * Convert to integers. 2250 */ 2251 *dim1 = (int)d[1]; 2252 *dim2 = (int)d[2]; 2253 *dim3 = (int)d[3]; 2254 } 2255 /* 2256 * Fixup any other possible problems. 2257 * If this happens, we need a new disklabel format. 2258 */ 2259 if (*dim1 > lim1) *dim1 = lim1; 2260 if (*dim2 > lim2) *dim2 = lim2; 2261 if (*dim3 > lim3) *dim3 = lim3; 2262 return (*dim1 * *dim2 * *dim3); 2263 } 2264 #endif /* defined(_SUNOS_VTOC_8) */ 2265 2266 /* 2267 * Calculate CHS values based on the capacity data. 2268 * 2269 * NOTE: This function is same as cmlb_convert_geomerty() function in 2270 * cmlb kernel module. 2271 */ 2272 static void 2273 compute_chs_values(diskaddr_t total_capacity, diskaddr_t usable_capacity, 2274 uint_t *pcylp, uint_t *nheadp, uint_t *nsectp) 2275 { 2276 2277 /* Unlabeled SCSI floppy device */ 2278 if (total_capacity <= 0x1000) { 2279 *nheadp = 2; 2280 *pcylp = 80; 2281 *nsectp = total_capacity / (80 * 2); 2282 return; 2283 } 2284 2285 /* 2286 * For all devices we calculate cylinders using the heads and sectors 2287 * we assign based on capacity of the device. The algorithm is 2288 * designed to be compatible with the way other operating systems 2289 * lay out fdisk tables for X86 and to insure that the cylinders never 2290 * exceed 65535 to prevent problems with X86 ioctls that report 2291 * geometry. 2292 * For some smaller disk sizes we report geometry that matches those 2293 * used by X86 BIOS usage. For larger disks, we use SPT that are 2294 * multiples of 63, since other OSes that are not limited to 16-bits 2295 * for cylinders stop at 63 SPT we make do by using multiples of 63 SPT. 2296 * 2297 * The following table (in order) illustrates some end result 2298 * calculations: 2299 * 2300 * Maximum number of blocks nhead nsect 2301 * 2302 * 2097152 (1GB) 64 32 2303 * 16777216 (8GB) 128 32 2304 * 1052819775 (502.02GB) 255 63 2305 * 2105639550 (0.98TB) 255 126 2306 * 3158459325 (1.47TB) 255 189 2307 * 4211279100 (1.96TB) 255 252 2308 * 5264098875 (2.45TB) 255 315 2309 * ... 2310 */ 2311 2312 if (total_capacity <= 0x200000) { 2313 *nheadp = 64; 2314 *nsectp = 32; 2315 } else if (total_capacity <= 0x01000000) { 2316 *nheadp = 128; 2317 *nsectp = 32; 2318 } else { 2319 *nheadp = 255; 2320 2321 /* make nsect be smallest multiple of 63 */ 2322 *nsectp = ((total_capacity + 2323 (UINT16_MAX * 255 * 63) - 1) / 2324 (UINT16_MAX * 255 * 63)) * 63; 2325 2326 if (*nsectp == 0) 2327 *nsectp = (UINT16_MAX / 63) * 63; 2328 } 2329 2330 if (usable_capacity < total_capacity) 2331 *pcylp = usable_capacity / ((*nheadp) * (*nsectp)); 2332 else 2333 *pcylp = total_capacity / ((*nheadp) * (*nsectp)); 2334 } 2335