1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * fme.c -- fault management exercise module 27 * 28 * this module provides the simulated fault management exercise. 29 */ 30 31 #pragma ident "%Z%%M% %I% %E% SMI" 32 33 #include <stdio.h> 34 #include <stdlib.h> 35 #include <string.h> 36 #include <strings.h> 37 #include <ctype.h> 38 #include <alloca.h> 39 #include <libnvpair.h> 40 #include <sys/fm/protocol.h> 41 #include <fm/fmd_api.h> 42 #include "alloc.h" 43 #include "out.h" 44 #include "stats.h" 45 #include "stable.h" 46 #include "literals.h" 47 #include "lut.h" 48 #include "tree.h" 49 #include "ptree.h" 50 #include "itree.h" 51 #include "ipath.h" 52 #include "fme.h" 53 #include "evnv.h" 54 #include "eval.h" 55 #include "config.h" 56 #include "platform.h" 57 58 /* imported from eft.c... */ 59 extern char *Autoclose; 60 extern int Dupclose; 61 extern hrtime_t Hesitate; 62 extern nv_alloc_t Eft_nv_hdl; 63 extern int Max_fme; 64 extern fmd_hdl_t *Hdl; 65 66 static int Istat_need_save; 67 void istat_save(void); 68 69 /* fme under construction is global so we can free it on module abort */ 70 static struct fme *Nfmep; 71 72 static const char *Undiag_reason; 73 74 static int Nextid = 0; 75 76 static int Open_fme_count = 0; /* Count of open FMEs */ 77 78 /* list of fault management exercises underway */ 79 static struct fme { 80 struct fme *next; /* next exercise */ 81 unsigned long long ull; /* time when fme was created */ 82 int id; /* FME id */ 83 struct cfgdata *cfgdata; /* full configuration data */ 84 struct lut *eventtree; /* propagation tree for this FME */ 85 /* 86 * The initial error report that created this FME is kept in 87 * two forms. e0 points to the instance tree node and is used 88 * by fme_eval() as the starting point for the inference 89 * algorithm. e0r is the event handle FMD passed to us when 90 * the ereport first arrived and is used when setting timers, 91 * which are always relative to the time of this initial 92 * report. 93 */ 94 struct event *e0; 95 fmd_event_t *e0r; 96 97 id_t timer; /* for setting an fmd time-out */ 98 99 struct event *ecurrent; /* ereport under consideration */ 100 struct event *suspects; /* current suspect list */ 101 struct event *psuspects; /* previous suspect list */ 102 int nsuspects; /* count of suspects */ 103 int nonfault; /* zero if all suspects T_FAULT */ 104 int posted_suspects; /* true if we've posted a diagnosis */ 105 int uniqobs; /* number of unique events observed */ 106 int peek; /* just peeking, don't track suspects */ 107 int overflow; /* true if overflow FME */ 108 enum fme_state { 109 FME_NOTHING = 5000, /* not evaluated yet */ 110 FME_WAIT, /* need to wait for more info */ 111 FME_CREDIBLE, /* suspect list is credible */ 112 FME_DISPROVED, /* no valid suspects found */ 113 FME_DEFERRED /* don't know yet (k-count not met) */ 114 } state; 115 116 unsigned long long pull; /* time passed since created */ 117 unsigned long long wull; /* wait until this time for re-eval */ 118 struct event *observations; /* observation list */ 119 struct lut *globals; /* values of global variables */ 120 /* fmd interfacing */ 121 fmd_hdl_t *hdl; /* handle for talking with fmd */ 122 fmd_case_t *fmcase; /* what fmd 'case' we associate with */ 123 /* stats */ 124 struct stats *Rcount; 125 struct stats *Hcallcount; 126 struct stats *Rcallcount; 127 struct stats *Ccallcount; 128 struct stats *Ecallcount; 129 struct stats *Tcallcount; 130 struct stats *Marrowcount; 131 struct stats *diags; 132 } *FMElist, *EFMElist, *ClosedFMEs; 133 134 static struct case_list { 135 fmd_case_t *fmcase; 136 struct case_list *next; 137 } *Undiagablecaselist; 138 139 static void fme_eval(struct fme *fmep, fmd_event_t *ffep); 140 static enum fme_state hypothesise(struct fme *fmep, struct event *ep, 141 unsigned long long at_latest_by, unsigned long long *pdelay); 142 static struct node *eventprop_lookup(struct event *ep, const char *propname); 143 static struct node *pathstring2epnamenp(char *path); 144 static void publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep); 145 static void restore_suspects(struct fme *fmep); 146 static void save_suspects(struct fme *fmep); 147 static void destroy_fme(struct fme *f); 148 static void fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep, 149 const char *eventstring, const struct ipath *ipp, nvlist_t *nvl); 150 static void istat_counter_reset_cb(struct istat_entry *entp, 151 struct stats *statp, const struct ipath *ipp); 152 153 static struct fme * 154 alloc_fme(void) 155 { 156 struct fme *fmep; 157 158 fmep = MALLOC(sizeof (*fmep)); 159 bzero(fmep, sizeof (*fmep)); 160 return (fmep); 161 } 162 163 /* 164 * fme_ready -- called when all initialization of the FME (except for 165 * stats) has completed successfully. Adds the fme to global lists 166 * and establishes its stats. 167 */ 168 static struct fme * 169 fme_ready(struct fme *fmep) 170 { 171 char nbuf[100]; 172 173 Nfmep = NULL; /* don't need to free this on module abort now */ 174 175 if (EFMElist) { 176 EFMElist->next = fmep; 177 EFMElist = fmep; 178 } else 179 FMElist = EFMElist = fmep; 180 181 (void) sprintf(nbuf, "fme%d.Rcount", fmep->id); 182 fmep->Rcount = stats_new_counter(nbuf, "ereports received", 0); 183 (void) sprintf(nbuf, "fme%d.Hcall", fmep->id); 184 fmep->Hcallcount = stats_new_counter(nbuf, "calls to hypothesise()", 1); 185 (void) sprintf(nbuf, "fme%d.Rcall", fmep->id); 186 fmep->Rcallcount = stats_new_counter(nbuf, 187 "calls to requirements_test()", 1); 188 (void) sprintf(nbuf, "fme%d.Ccall", fmep->id); 189 fmep->Ccallcount = stats_new_counter(nbuf, "calls to causes_test()", 1); 190 (void) sprintf(nbuf, "fme%d.Ecall", fmep->id); 191 fmep->Ecallcount = 192 stats_new_counter(nbuf, "calls to effects_test()", 1); 193 (void) sprintf(nbuf, "fme%d.Tcall", fmep->id); 194 fmep->Tcallcount = stats_new_counter(nbuf, "calls to triggered()", 1); 195 (void) sprintf(nbuf, "fme%d.Marrow", fmep->id); 196 fmep->Marrowcount = stats_new_counter(nbuf, 197 "arrows marked by mark_arrows()", 1); 198 (void) sprintf(nbuf, "fme%d.diags", fmep->id); 199 fmep->diags = stats_new_counter(nbuf, "suspect lists diagnosed", 0); 200 201 out(O_ALTFP|O_VERB2, "newfme: config snapshot contains..."); 202 config_print(O_ALTFP|O_VERB2, fmep->cfgdata->cooked); 203 204 return (fmep); 205 } 206 207 static struct fme * 208 newfme(const char *e0class, const struct ipath *e0ipp) 209 { 210 struct cfgdata *cfgdata; 211 212 if ((cfgdata = config_snapshot()) == NULL) { 213 out(O_ALTFP, "newfme: NULL configuration"); 214 Undiag_reason = UD_NOCONF; 215 return (NULL); 216 } 217 218 Nfmep = alloc_fme(); 219 220 Nfmep->id = Nextid++; 221 Nfmep->cfgdata = cfgdata; 222 Nfmep->posted_suspects = 0; 223 Nfmep->uniqobs = 0; 224 Nfmep->state = FME_NOTHING; 225 Nfmep->pull = 0ULL; 226 Nfmep->overflow = 0; 227 228 Nfmep->fmcase = NULL; 229 Nfmep->hdl = NULL; 230 231 if ((Nfmep->eventtree = itree_create(cfgdata->cooked)) == NULL) { 232 out(O_ALTFP, "newfme: NULL instance tree"); 233 Undiag_reason = UD_INSTFAIL; 234 config_free(cfgdata); 235 FREE(Nfmep); 236 Nfmep = NULL; 237 return (NULL); 238 } 239 240 itree_ptree(O_ALTFP|O_VERB2, Nfmep->eventtree); 241 242 if ((Nfmep->e0 = 243 itree_lookup(Nfmep->eventtree, e0class, e0ipp)) == NULL) { 244 out(O_ALTFP, "newfme: e0 not in instance tree"); 245 Undiag_reason = UD_BADEVENTI; 246 itree_free(Nfmep->eventtree); 247 config_free(cfgdata); 248 FREE(Nfmep); 249 Nfmep = NULL; 250 return (NULL); 251 } 252 253 return (fme_ready(Nfmep)); 254 } 255 256 void 257 fme_fini(void) 258 { 259 struct fme *sfp, *fp; 260 struct case_list *ucasep, *nextcasep; 261 262 ucasep = Undiagablecaselist; 263 while (ucasep != NULL) { 264 nextcasep = ucasep->next; 265 FREE(ucasep); 266 ucasep = nextcasep; 267 } 268 Undiagablecaselist = NULL; 269 270 /* clean up closed fmes */ 271 fp = ClosedFMEs; 272 while (fp != NULL) { 273 sfp = fp->next; 274 destroy_fme(fp); 275 fp = sfp; 276 } 277 ClosedFMEs = NULL; 278 279 fp = FMElist; 280 while (fp != NULL) { 281 sfp = fp->next; 282 destroy_fme(fp); 283 fp = sfp; 284 } 285 FMElist = EFMElist = NULL; 286 287 /* if we were in the middle of creating an fme, free it now */ 288 if (Nfmep) { 289 destroy_fme(Nfmep); 290 Nfmep = NULL; 291 } 292 } 293 294 /* 295 * Allocated space for a buffer name. 20 bytes allows for 296 * a ridiculous 9,999,999 unique observations. 297 */ 298 #define OBBUFNMSZ 20 299 300 /* 301 * serialize_observation 302 * 303 * Create a recoverable version of the current observation 304 * (f->ecurrent). We keep a serialized version of each unique 305 * observation in order that we may resume correctly the fme in the 306 * correct state if eft or fmd crashes and we're restarted. 307 */ 308 static void 309 serialize_observation(struct fme *fp, const char *cls, const struct ipath *ipp) 310 { 311 size_t pkdlen; 312 char tmpbuf[OBBUFNMSZ]; 313 char *pkd = NULL; 314 char *estr; 315 316 (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", fp->uniqobs); 317 estr = ipath2str(cls, ipp); 318 fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, strlen(estr) + 1); 319 fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)estr, 320 strlen(estr) + 1); 321 FREE(estr); 322 323 if (fp->ecurrent != NULL && fp->ecurrent->nvp != NULL) { 324 (void) snprintf(tmpbuf, 325 OBBUFNMSZ, "observed%d.nvp", fp->uniqobs); 326 if (nvlist_xpack(fp->ecurrent->nvp, 327 &pkd, &pkdlen, NV_ENCODE_XDR, &Eft_nv_hdl) != 0) 328 out(O_DIE|O_SYS, "pack of observed nvl failed"); 329 fmd_buf_create(fp->hdl, fp->fmcase, tmpbuf, pkdlen); 330 fmd_buf_write(fp->hdl, fp->fmcase, tmpbuf, (void *)pkd, pkdlen); 331 FREE(pkd); 332 } 333 334 fp->uniqobs++; 335 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs, 336 sizeof (fp->uniqobs)); 337 } 338 339 /* 340 * init_fme_bufs -- We keep several bits of state about an fme for 341 * use if eft or fmd crashes and we're restarted. 342 */ 343 static void 344 init_fme_bufs(struct fme *fp) 345 { 346 size_t cfglen = fp->cfgdata->nextfree - fp->cfgdata->begin; 347 348 fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFGLEN, sizeof (cfglen)); 349 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFGLEN, (void *)&cfglen, 350 sizeof (cfglen)); 351 if (cfglen != 0) { 352 fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_CFG, cfglen); 353 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_CFG, 354 fp->cfgdata->begin, cfglen); 355 } 356 357 fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_PULL, sizeof (fp->pull)); 358 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_PULL, (void *)&fp->pull, 359 sizeof (fp->pull)); 360 361 fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_ID, sizeof (fp->id)); 362 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_ID, (void *)&fp->id, 363 sizeof (fp->id)); 364 365 fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_NOBS, sizeof (fp->uniqobs)); 366 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_NOBS, (void *)&fp->uniqobs, 367 sizeof (fp->uniqobs)); 368 369 fmd_buf_create(fp->hdl, fp->fmcase, WOBUF_POSTD, 370 sizeof (fp->posted_suspects)); 371 fmd_buf_write(fp->hdl, fp->fmcase, WOBUF_POSTD, 372 (void *)&fp->posted_suspects, sizeof (fp->posted_suspects)); 373 } 374 375 static void 376 destroy_fme_bufs(struct fme *fp) 377 { 378 char tmpbuf[OBBUFNMSZ]; 379 int o; 380 381 fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFGLEN); 382 fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_CFG); 383 fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_PULL); 384 fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_ID); 385 fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_POSTD); 386 fmd_buf_destroy(fp->hdl, fp->fmcase, WOBUF_NOBS); 387 388 for (o = 0; o < fp->uniqobs; o++) { 389 (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", o); 390 fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf); 391 (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", o); 392 fmd_buf_destroy(fp->hdl, fp->fmcase, tmpbuf); 393 } 394 } 395 396 /* 397 * reconstitute_observations -- convert a case's serialized observations 398 * back into struct events. Returns zero if all observations are 399 * successfully reconstituted. 400 */ 401 static int 402 reconstitute_observations(struct fme *fmep) 403 { 404 struct event *ep; 405 struct node *epnamenp = NULL; 406 size_t pkdlen; 407 char *pkd = NULL; 408 char *tmpbuf = alloca(OBBUFNMSZ); 409 char *sepptr; 410 char *estr; 411 int ocnt; 412 int elen; 413 414 for (ocnt = 0; ocnt < fmep->uniqobs; ocnt++) { 415 (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d", ocnt); 416 elen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf); 417 if (elen == 0) { 418 out(O_ALTFP, 419 "reconstitute_observation: no %s buffer found.", 420 tmpbuf); 421 Undiag_reason = UD_MISSINGOBS; 422 break; 423 } 424 425 estr = MALLOC(elen); 426 fmd_buf_read(fmep->hdl, fmep->fmcase, tmpbuf, estr, elen); 427 sepptr = strchr(estr, '@'); 428 if (sepptr == NULL) { 429 out(O_ALTFP, 430 "reconstitute_observation: %s: " 431 "missing @ separator in %s.", 432 tmpbuf, estr); 433 Undiag_reason = UD_MISSINGPATH; 434 FREE(estr); 435 break; 436 } 437 438 *sepptr = '\0'; 439 if ((epnamenp = pathstring2epnamenp(sepptr + 1)) == NULL) { 440 out(O_ALTFP, 441 "reconstitute_observation: %s: " 442 "trouble converting path string \"%s\" " 443 "to internal representation.", 444 tmpbuf, sepptr + 1); 445 Undiag_reason = UD_MISSINGPATH; 446 FREE(estr); 447 break; 448 } 449 450 /* construct the event */ 451 ep = itree_lookup(fmep->eventtree, 452 stable(estr), ipath(epnamenp)); 453 if (ep == NULL) { 454 out(O_ALTFP, 455 "reconstitute_observation: %s: " 456 "lookup of \"%s\" in itree failed.", 457 tmpbuf, ipath2str(estr, ipath(epnamenp))); 458 Undiag_reason = UD_BADOBS; 459 tree_free(epnamenp); 460 FREE(estr); 461 break; 462 } 463 tree_free(epnamenp); 464 465 /* 466 * We may or may not have a saved nvlist for the observation 467 */ 468 (void) snprintf(tmpbuf, OBBUFNMSZ, "observed%d.nvp", ocnt); 469 pkdlen = fmd_buf_size(fmep->hdl, fmep->fmcase, tmpbuf); 470 if (pkdlen != 0) { 471 pkd = MALLOC(pkdlen); 472 fmd_buf_read(fmep->hdl, 473 fmep->fmcase, tmpbuf, pkd, pkdlen); 474 ASSERT(ep->nvp == NULL); 475 if (nvlist_xunpack(pkd, 476 pkdlen, &ep->nvp, &Eft_nv_hdl) != 0) 477 out(O_DIE|O_SYS, "pack of observed nvl failed"); 478 FREE(pkd); 479 } 480 481 if (ocnt == 0) 482 fmep->e0 = ep; 483 484 FREE(estr); 485 fmep->ecurrent = ep; 486 ep->count++; 487 488 /* link it into list of observations seen */ 489 ep->observations = fmep->observations; 490 fmep->observations = ep; 491 } 492 493 if (ocnt == fmep->uniqobs) { 494 (void) fme_ready(fmep); 495 return (0); 496 } 497 498 return (1); 499 } 500 501 /* 502 * restart_fme -- called during eft initialization. Reconstitutes 503 * an in-progress fme. 504 */ 505 void 506 fme_restart(fmd_hdl_t *hdl, fmd_case_t *inprogress) 507 { 508 nvlist_t *defect; 509 struct case_list *bad; 510 struct fme *fmep; 511 struct cfgdata *cfgdata = NULL; 512 size_t rawsz; 513 514 fmep = alloc_fme(); 515 fmep->fmcase = inprogress; 516 fmep->hdl = hdl; 517 518 if (fmd_buf_size(hdl, inprogress, WOBUF_CFGLEN) != sizeof (size_t)) { 519 out(O_ALTFP, "restart_fme: No config data"); 520 Undiag_reason = UD_MISSINGINFO; 521 goto badcase; 522 } 523 fmd_buf_read(hdl, inprogress, WOBUF_CFGLEN, (void *)&rawsz, 524 sizeof (size_t)); 525 526 if ((fmep->e0r = fmd_case_getprincipal(hdl, inprogress)) == NULL) { 527 out(O_ALTFP, "restart_fme: No event zero"); 528 Undiag_reason = UD_MISSINGZERO; 529 goto badcase; 530 } 531 532 cfgdata = MALLOC(sizeof (struct cfgdata)); 533 cfgdata->cooked = NULL; 534 cfgdata->devcache = NULL; 535 cfgdata->cpucache = NULL; 536 cfgdata->refcnt = 1; 537 538 if (rawsz > 0) { 539 if (fmd_buf_size(hdl, inprogress, WOBUF_CFG) != rawsz) { 540 out(O_ALTFP, "restart_fme: Config data size mismatch"); 541 Undiag_reason = UD_CFGMISMATCH; 542 goto badcase; 543 } 544 cfgdata->begin = MALLOC(rawsz); 545 cfgdata->end = cfgdata->nextfree = cfgdata->begin + rawsz; 546 fmd_buf_read(hdl, 547 inprogress, WOBUF_CFG, cfgdata->begin, rawsz); 548 } else { 549 cfgdata->begin = cfgdata->end = cfgdata->nextfree = NULL; 550 } 551 fmep->cfgdata = cfgdata; 552 553 config_cook(cfgdata); 554 if ((fmep->eventtree = itree_create(cfgdata->cooked)) == NULL) { 555 /* case not properly saved or irretrievable */ 556 out(O_ALTFP, "restart_fme: NULL instance tree"); 557 Undiag_reason = UD_INSTFAIL; 558 goto badcase; 559 } 560 561 itree_ptree(O_ALTFP|O_VERB2, fmep->eventtree); 562 563 if (fmd_buf_size(hdl, inprogress, WOBUF_PULL) == 0) { 564 out(O_ALTFP, "restart_fme: no saved wait time"); 565 Undiag_reason = UD_MISSINGINFO; 566 goto badcase; 567 } else { 568 fmd_buf_read(hdl, inprogress, WOBUF_PULL, (void *)&fmep->pull, 569 sizeof (fmep->pull)); 570 } 571 572 if (fmd_buf_size(hdl, inprogress, WOBUF_POSTD) == 0) { 573 out(O_ALTFP, "restart_fme: no saved posted status"); 574 Undiag_reason = UD_MISSINGINFO; 575 goto badcase; 576 } else { 577 fmd_buf_read(hdl, inprogress, WOBUF_POSTD, 578 (void *)&fmep->posted_suspects, 579 sizeof (fmep->posted_suspects)); 580 } 581 582 if (fmd_buf_size(hdl, inprogress, WOBUF_ID) == 0) { 583 out(O_ALTFP, "restart_fme: no saved id"); 584 Undiag_reason = UD_MISSINGINFO; 585 goto badcase; 586 } else { 587 fmd_buf_read(hdl, inprogress, WOBUF_ID, (void *)&fmep->id, 588 sizeof (fmep->id)); 589 } 590 if (Nextid <= fmep->id) 591 Nextid = fmep->id + 1; 592 593 if (fmd_buf_size(hdl, inprogress, WOBUF_NOBS) == 0) { 594 out(O_ALTFP, "restart_fme: no count of observations"); 595 Undiag_reason = UD_MISSINGINFO; 596 goto badcase; 597 } else { 598 fmd_buf_read(hdl, inprogress, WOBUF_NOBS, 599 (void *)&fmep->uniqobs, sizeof (fmep->uniqobs)); 600 } 601 602 if (reconstitute_observations(fmep) != 0) 603 goto badcase; 604 605 Open_fme_count++; 606 607 /* 608 * ignore solved or closed cases 609 */ 610 if (fmep->posted_suspects || 611 fmd_case_solved(fmep->hdl, fmep->fmcase) || 612 fmd_case_closed(fmep->hdl, fmep->fmcase)) 613 return; 614 615 /* give the diagnosis algorithm a shot at the new FME state */ 616 fme_eval(fmep, NULL); 617 return; 618 619 badcase: 620 if (fmep->eventtree != NULL) 621 itree_free(fmep->eventtree); 622 config_free(cfgdata); 623 destroy_fme_bufs(fmep); 624 FREE(fmep); 625 626 /* 627 * Since we're unable to restart the case, add it to the undiagable 628 * list and solve and close it as appropriate. 629 */ 630 bad = MALLOC(sizeof (struct case_list)); 631 bad->next = NULL; 632 633 if (Undiagablecaselist != NULL) 634 bad->next = Undiagablecaselist; 635 Undiagablecaselist = bad; 636 bad->fmcase = inprogress; 637 638 out(O_ALTFP, "[case %s (unable to restart), ", 639 fmd_case_uuid(hdl, bad->fmcase)); 640 641 if (fmd_case_solved(hdl, bad->fmcase)) { 642 out(O_ALTFP, "already solved, "); 643 } else { 644 out(O_ALTFP, "solving, "); 645 defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100, 646 NULL, NULL, NULL); 647 if (Undiag_reason != NULL) 648 (void) nvlist_add_string(defect, 649 UNDIAG_REASON, Undiag_reason); 650 fmd_case_add_suspect(hdl, bad->fmcase, defect); 651 fmd_case_solve(hdl, bad->fmcase); 652 } 653 654 if (fmd_case_closed(hdl, bad->fmcase)) { 655 out(O_ALTFP, "already closed ]"); 656 } else { 657 out(O_ALTFP, "closing ]"); 658 fmd_case_close(hdl, bad->fmcase); 659 } 660 } 661 662 /*ARGSUSED*/ 663 static void 664 globals_destructor(void *left, void *right, void *arg) 665 { 666 struct evalue *evp = (struct evalue *)right; 667 if (evp->t == NODEPTR) 668 tree_free((struct node *)(uintptr_t)evp->v); 669 evp->v = NULL; 670 FREE(evp); 671 } 672 673 void 674 destroy_fme(struct fme *f) 675 { 676 stats_delete(f->Rcount); 677 stats_delete(f->Hcallcount); 678 stats_delete(f->Rcallcount); 679 stats_delete(f->Ccallcount); 680 stats_delete(f->Ecallcount); 681 stats_delete(f->Tcallcount); 682 stats_delete(f->Marrowcount); 683 stats_delete(f->diags); 684 685 itree_free(f->eventtree); 686 config_free(f->cfgdata); 687 lut_free(f->globals, globals_destructor, NULL); 688 FREE(f); 689 } 690 691 static const char * 692 fme_state2str(enum fme_state s) 693 { 694 switch (s) { 695 case FME_NOTHING: return ("NOTHING"); 696 case FME_WAIT: return ("WAIT"); 697 case FME_CREDIBLE: return ("CREDIBLE"); 698 case FME_DISPROVED: return ("DISPROVED"); 699 case FME_DEFERRED: return ("DEFERRED"); 700 default: return ("UNKNOWN"); 701 } 702 } 703 704 static int 705 is_problem(enum nametype t) 706 { 707 return (t == N_FAULT || t == N_DEFECT || t == N_UPSET); 708 } 709 710 static int 711 is_fault(enum nametype t) 712 { 713 return (t == N_FAULT); 714 } 715 716 static int 717 is_defect(enum nametype t) 718 { 719 return (t == N_DEFECT); 720 } 721 722 static int 723 is_upset(enum nametype t) 724 { 725 return (t == N_UPSET); 726 } 727 728 static void 729 fme_print(int flags, struct fme *fmep) 730 { 731 struct event *ep; 732 733 out(flags, "Fault Management Exercise %d", fmep->id); 734 out(flags, "\t State: %s", fme_state2str(fmep->state)); 735 out(flags|O_NONL, "\t Start time: "); 736 ptree_timeval(flags|O_NONL, &fmep->ull); 737 out(flags, NULL); 738 if (fmep->wull) { 739 out(flags|O_NONL, "\t Wait time: "); 740 ptree_timeval(flags|O_NONL, &fmep->wull); 741 out(flags, NULL); 742 } 743 out(flags|O_NONL, "\t E0: "); 744 if (fmep->e0) 745 itree_pevent_brief(flags|O_NONL, fmep->e0); 746 else 747 out(flags|O_NONL, "NULL"); 748 out(flags, NULL); 749 out(flags|O_NONL, "\tObservations:"); 750 for (ep = fmep->observations; ep; ep = ep->observations) { 751 out(flags|O_NONL, " "); 752 itree_pevent_brief(flags|O_NONL, ep); 753 } 754 out(flags, NULL); 755 out(flags|O_NONL, "\tSuspect list:"); 756 for (ep = fmep->suspects; ep; ep = ep->suspects) { 757 out(flags|O_NONL, " "); 758 itree_pevent_brief(flags|O_NONL, ep); 759 } 760 out(flags, NULL); 761 out(flags|O_VERB2, "\t Tree:"); 762 itree_ptree(flags|O_VERB2, fmep->eventtree); 763 } 764 765 static struct node * 766 pathstring2epnamenp(char *path) 767 { 768 char *sep = "/"; 769 struct node *ret; 770 char *ptr; 771 772 if ((ptr = strtok(path, sep)) == NULL) 773 out(O_DIE, "pathstring2epnamenp: invalid empty class"); 774 775 ret = tree_iname(stable(ptr), NULL, 0); 776 777 while ((ptr = strtok(NULL, sep)) != NULL) 778 ret = tree_name_append(ret, 779 tree_iname(stable(ptr), NULL, 0)); 780 781 return (ret); 782 } 783 784 /* 785 * for a given upset sp, increment the corresponding SERD engine. if the 786 * SERD engine trips, return the ename and ipp of the resulting ereport. 787 * returns true if engine tripped and *enamep and *ippp were filled in. 788 */ 789 static int 790 serd_eval(struct fme *fmep, fmd_hdl_t *hdl, fmd_event_t *ffep, 791 fmd_case_t *fmcase, struct event *sp, const char **enamep, 792 const struct ipath **ippp) 793 { 794 struct node *serdinst; 795 char *serdname; 796 struct node *nid; 797 798 ASSERT(sp->t == N_UPSET); 799 ASSERT(ffep != NULL); 800 801 /* 802 * obtain instanced SERD engine from the upset sp. from this 803 * derive serdname, the string used to identify the SERD engine. 804 */ 805 serdinst = eventprop_lookup(sp, L_engine); 806 807 if (serdinst == NULL) 808 return (NULL); 809 810 serdname = ipath2str(serdinst->u.stmt.np->u.event.ename->u.name.s, 811 ipath(serdinst->u.stmt.np->u.event.epname)); 812 813 /* handle serd engine "id" property, if there is one */ 814 if ((nid = 815 lut_lookup(serdinst->u.stmt.lutp, (void *)L_id, NULL)) != NULL) { 816 struct evalue *gval; 817 char suffixbuf[200]; 818 char *suffix; 819 char *nserdname; 820 size_t nname; 821 822 out(O_ALTFP|O_NONL, "serd \"%s\" id: ", serdname); 823 ptree_name_iter(O_ALTFP|O_NONL, nid); 824 825 ASSERTinfo(nid->t == T_GLOBID, ptree_nodetype2str(nid->t)); 826 827 if ((gval = lut_lookup(fmep->globals, 828 (void *)nid->u.globid.s, NULL)) == NULL) { 829 out(O_ALTFP, " undefined"); 830 } else if (gval->t == UINT64) { 831 out(O_ALTFP, " %llu", gval->v); 832 (void) sprintf(suffixbuf, "%llu", gval->v); 833 suffix = suffixbuf; 834 } else { 835 out(O_ALTFP, " \"%s\"", (char *)(uintptr_t)gval->v); 836 suffix = (char *)(uintptr_t)gval->v; 837 } 838 839 nname = strlen(serdname) + strlen(suffix) + 2; 840 nserdname = MALLOC(nname); 841 (void) snprintf(nserdname, nname, "%s:%s", serdname, suffix); 842 FREE(serdname); 843 serdname = nserdname; 844 } 845 846 if (!fmd_serd_exists(hdl, serdname)) { 847 struct node *nN, *nT; 848 849 /* no SERD engine yet, so create it */ 850 nN = lut_lookup(serdinst->u.stmt.lutp, (void *)L_N, NULL); 851 nT = lut_lookup(serdinst->u.stmt.lutp, (void *)L_T, NULL); 852 853 ASSERT(nN->t == T_NUM); 854 ASSERT(nT->t == T_TIMEVAL); 855 856 fmd_serd_create(hdl, serdname, (uint_t)nN->u.ull, 857 (hrtime_t)nT->u.ull); 858 } 859 860 861 /* 862 * increment SERD engine. if engine fires, reset serd 863 * engine and return trip_strcode 864 */ 865 if (fmd_serd_record(hdl, serdname, ffep)) { 866 struct node *tripinst = lut_lookup(serdinst->u.stmt.lutp, 867 (void *)L_trip, NULL); 868 869 ASSERT(tripinst != NULL); 870 871 *enamep = tripinst->u.event.ename->u.name.s; 872 *ippp = ipath(tripinst->u.event.epname); 873 874 fmd_case_add_serd(hdl, fmcase, serdname); 875 fmd_serd_reset(hdl, serdname); 876 out(O_ALTFP|O_NONL, "[engine fired: %s, sending: ", serdname); 877 ipath_print(O_ALTFP|O_NONL, *enamep, *ippp); 878 out(O_ALTFP, "]"); 879 880 FREE(serdname); 881 return (1); 882 } 883 884 FREE(serdname); 885 return (0); 886 } 887 888 /* 889 * search a suspect list for upsets. feed each upset to serd_eval() and 890 * build up tripped[], an array of ereports produced by the firing of 891 * any SERD engines. then feed each ereport back into 892 * fme_receive_report(). 893 * 894 * returns ntrip, the number of these ereports produced. 895 */ 896 static int 897 upsets_eval(struct fme *fmep, fmd_event_t *ffep) 898 { 899 /* we build an array of tripped ereports that we send ourselves */ 900 struct { 901 const char *ename; 902 const struct ipath *ipp; 903 } *tripped; 904 struct event *sp; 905 int ntrip, nupset, i; 906 907 /* 908 * count the number of upsets to determine the upper limit on 909 * expected trip ereport strings. remember that one upset can 910 * lead to at most one ereport. 911 */ 912 nupset = 0; 913 for (sp = fmep->suspects; sp; sp = sp->suspects) { 914 if (sp->t == N_UPSET) 915 nupset++; 916 } 917 918 if (nupset == 0) 919 return (0); 920 921 /* 922 * get to this point if we have upsets and expect some trip 923 * ereports 924 */ 925 tripped = alloca(sizeof (*tripped) * nupset); 926 bzero((void *)tripped, sizeof (*tripped) * nupset); 927 928 ntrip = 0; 929 for (sp = fmep->suspects; sp; sp = sp->suspects) 930 if (sp->t == N_UPSET && 931 serd_eval(fmep, fmep->hdl, ffep, fmep->fmcase, sp, 932 &tripped[ntrip].ename, &tripped[ntrip].ipp)) 933 ntrip++; 934 935 for (i = 0; i < ntrip; i++) 936 fme_receive_report(fmep->hdl, ffep, 937 tripped[i].ename, tripped[i].ipp, NULL); 938 939 return (ntrip); 940 } 941 942 /* 943 * fme_receive_external_report -- call when an external ereport comes in 944 * 945 * this routine just converts the relevant information from the ereport 946 * into a format used internally and passes it on to fme_receive_report(). 947 */ 948 void 949 fme_receive_external_report(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl, 950 const char *eventstring) 951 { 952 struct node *epnamenp = platform_getpath(nvl); 953 const struct ipath *ipp; 954 955 /* 956 * XFILE: If we ended up without a path, it's an X-file. 957 * For now, use our undiagnosable interface. 958 */ 959 if (epnamenp == NULL) { 960 out(O_ALTFP, "XFILE: Unable to get path from ereport"); 961 Undiag_reason = UD_NOPATH; 962 publish_undiagnosable(hdl, ffep); 963 return; 964 } 965 966 ipp = ipath(epnamenp); 967 tree_free(epnamenp); 968 fme_receive_report(hdl, ffep, stable(eventstring), ipp, nvl); 969 } 970 971 /*ARGSUSED*/ 972 void 973 fme_receive_repair_list(fmd_hdl_t *hdl, fmd_event_t *ffep, nvlist_t *nvl, 974 const char *eventstring) 975 { 976 char *uuid; 977 nvlist_t **nva; 978 uint_t nvc; 979 const struct ipath *ipp; 980 981 if (nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) != 0 || 982 nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST, 983 &nva, &nvc) != 0) { 984 out(O_ALTFP, "No uuid or fault list for list.repaired event"); 985 return; 986 } 987 988 out(O_ALTFP, "Processing list.repaired from case %s", uuid); 989 990 while (nvc-- != 0) { 991 /* 992 * Reset any istat associated with this path. 993 */ 994 char *path; 995 996 if ((ipp = platform_fault2ipath(*nva++)) == NULL) 997 continue; 998 999 path = ipath2str(NULL, ipp); 1000 out(O_ALTFP, "fme_receive_repair_list: resetting state for %s", 1001 path); 1002 FREE(path); 1003 1004 lut_walk(Istats, (lut_cb)istat_counter_reset_cb, (void *)ipp); 1005 istat_save(); 1006 1007 /* 1008 * We do not have a list of stat engines in a form that 1009 * we can readily clear any associated serd engines. When we 1010 * do, this will be the place to clear them. 1011 */ 1012 } 1013 } 1014 1015 static int mark_arrows(struct fme *fmep, struct event *ep, int mark, 1016 unsigned long long at_latest_by, unsigned long long *pdelay, int keep); 1017 1018 /* ARGSUSED */ 1019 static void 1020 clear_arrows(struct event *ep, struct event *ep2, struct fme *fmep) 1021 { 1022 struct bubble *bp; 1023 struct arrowlist *ap; 1024 1025 ep->cached_state = 0; 1026 ep->keep_in_tree = 0; 1027 for (bp = itree_next_bubble(ep, NULL); bp; 1028 bp = itree_next_bubble(ep, bp)) { 1029 if (bp->t != B_FROM) 1030 continue; 1031 bp->mark = 0; 1032 for (ap = itree_next_arrow(bp, NULL); ap; 1033 ap = itree_next_arrow(bp, ap)) 1034 ap->arrowp->mark = 0; 1035 } 1036 } 1037 1038 static void 1039 fme_receive_report(fmd_hdl_t *hdl, fmd_event_t *ffep, 1040 const char *eventstring, const struct ipath *ipp, nvlist_t *nvl) 1041 { 1042 struct event *ep; 1043 struct fme *fmep = NULL; 1044 struct fme *ofmep = NULL; 1045 struct fme *cfmep, *svfmep; 1046 int matched = 0; 1047 nvlist_t *defect; 1048 1049 out(O_ALTFP|O_NONL, "fme_receive_report: "); 1050 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1051 out(O_ALTFP|O_STAMP, NULL); 1052 1053 /* decide which FME it goes to */ 1054 for (fmep = FMElist; fmep; fmep = fmep->next) { 1055 int prev_verbose; 1056 unsigned long long my_delay = TIMEVAL_EVENTUALLY; 1057 enum fme_state state; 1058 nvlist_t *pre_peek_nvp = NULL; 1059 1060 if (fmep->overflow) { 1061 if (!(fmd_case_closed(fmep->hdl, fmep->fmcase))) 1062 ofmep = fmep; 1063 1064 continue; 1065 } 1066 1067 /* 1068 * ignore solved or closed cases 1069 */ 1070 if (fmep->posted_suspects || 1071 fmd_case_solved(fmep->hdl, fmep->fmcase) || 1072 fmd_case_closed(fmep->hdl, fmep->fmcase)) 1073 continue; 1074 1075 /* look up event in event tree for this FME */ 1076 if ((ep = itree_lookup(fmep->eventtree, 1077 eventstring, ipp)) == NULL) 1078 continue; 1079 1080 /* note observation */ 1081 fmep->ecurrent = ep; 1082 if (ep->count++ == 0) { 1083 /* link it into list of observations seen */ 1084 ep->observations = fmep->observations; 1085 fmep->observations = ep; 1086 ep->nvp = evnv_dupnvl(nvl); 1087 } else { 1088 /* use new payload values for peek */ 1089 pre_peek_nvp = ep->nvp; 1090 ep->nvp = evnv_dupnvl(nvl); 1091 } 1092 1093 /* tell hypothesise() not to mess with suspect list */ 1094 fmep->peek = 1; 1095 1096 /* don't want this to be verbose (unless Debug is set) */ 1097 prev_verbose = Verbose; 1098 if (Debug == 0) 1099 Verbose = 0; 1100 1101 lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep); 1102 state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay); 1103 1104 fmep->peek = 0; 1105 1106 /* put verbose flag back */ 1107 Verbose = prev_verbose; 1108 1109 if (state != FME_DISPROVED) { 1110 /* found an FME that explains the ereport */ 1111 matched++; 1112 out(O_ALTFP|O_NONL, "["); 1113 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1114 out(O_ALTFP, " explained by FME%d]", fmep->id); 1115 1116 if (pre_peek_nvp) 1117 nvlist_free(pre_peek_nvp); 1118 1119 if (ep->count == 1) 1120 serialize_observation(fmep, eventstring, ipp); 1121 1122 if (ffep) 1123 fmd_case_add_ereport(hdl, fmep->fmcase, ffep); 1124 1125 stats_counter_bump(fmep->Rcount); 1126 1127 /* re-eval FME */ 1128 fme_eval(fmep, ffep); 1129 } else { 1130 1131 /* not a match, undo noting of observation */ 1132 fmep->ecurrent = NULL; 1133 if (--ep->count == 0) { 1134 /* unlink it from observations */ 1135 fmep->observations = ep->observations; 1136 ep->observations = NULL; 1137 nvlist_free(ep->nvp); 1138 ep->nvp = NULL; 1139 } else { 1140 nvlist_free(ep->nvp); 1141 ep->nvp = pre_peek_nvp; 1142 } 1143 } 1144 } 1145 1146 if (matched) 1147 return; /* explained by at least one existing FME */ 1148 1149 /* clean up closed fmes */ 1150 cfmep = ClosedFMEs; 1151 while (cfmep != NULL) { 1152 svfmep = cfmep->next; 1153 destroy_fme(cfmep); 1154 cfmep = svfmep; 1155 } 1156 ClosedFMEs = NULL; 1157 1158 if (ofmep) { 1159 out(O_ALTFP|O_NONL, "["); 1160 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1161 out(O_ALTFP, " ADDING TO OVERFLOW FME]"); 1162 if (ffep) 1163 fmd_case_add_ereport(hdl, ofmep->fmcase, ffep); 1164 1165 return; 1166 1167 } else if (Max_fme && (Open_fme_count >= Max_fme)) { 1168 out(O_ALTFP|O_NONL, "["); 1169 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1170 out(O_ALTFP, " MAX OPEN FME REACHED]"); 1171 /* Create overflow fme */ 1172 if ((fmep = newfme(eventstring, ipp)) == NULL) { 1173 out(O_ALTFP|O_NONL, "["); 1174 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1175 out(O_ALTFP, " CANNOT OPEN OVERFLOW FME]"); 1176 publish_undiagnosable(hdl, ffep); 1177 return; 1178 } 1179 1180 Open_fme_count++; 1181 1182 fmep->fmcase = fmd_case_open(hdl, NULL); 1183 fmep->hdl = hdl; 1184 init_fme_bufs(fmep); 1185 fmep->overflow = B_TRUE; 1186 1187 if (ffep) 1188 fmd_case_add_ereport(hdl, fmep->fmcase, ffep); 1189 1190 defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100, 1191 NULL, NULL, NULL); 1192 (void) nvlist_add_string(defect, UNDIAG_REASON, UD_MAXFME); 1193 fmd_case_add_suspect(hdl, fmep->fmcase, defect); 1194 fmd_case_solve(hdl, fmep->fmcase); 1195 return; 1196 } 1197 1198 /* start a new FME */ 1199 if ((fmep = newfme(eventstring, ipp)) == NULL) { 1200 out(O_ALTFP|O_NONL, "["); 1201 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1202 out(O_ALTFP, " CANNOT DIAGNOSE]"); 1203 publish_undiagnosable(hdl, ffep); 1204 return; 1205 } 1206 1207 Open_fme_count++; 1208 1209 /* open a case */ 1210 fmep->fmcase = fmd_case_open(hdl, NULL); 1211 fmep->hdl = hdl; 1212 init_fme_bufs(fmep); 1213 1214 out(O_ALTFP|O_NONL, "["); 1215 ipath_print(O_ALTFP|O_NONL, eventstring, ipp); 1216 out(O_ALTFP, " created FME%d, case %s]", fmep->id, 1217 fmd_case_uuid(hdl, fmep->fmcase)); 1218 1219 ep = fmep->e0; 1220 ASSERT(ep != NULL); 1221 1222 /* note observation */ 1223 fmep->ecurrent = ep; 1224 if (ep->count++ == 0) { 1225 /* link it into list of observations seen */ 1226 ep->observations = fmep->observations; 1227 fmep->observations = ep; 1228 ep->nvp = evnv_dupnvl(nvl); 1229 serialize_observation(fmep, eventstring, ipp); 1230 } else { 1231 /* new payload overrides any previous */ 1232 nvlist_free(ep->nvp); 1233 ep->nvp = evnv_dupnvl(nvl); 1234 } 1235 1236 stats_counter_bump(fmep->Rcount); 1237 1238 if (ffep) { 1239 fmd_case_add_ereport(hdl, fmep->fmcase, ffep); 1240 fmd_case_setprincipal(hdl, fmep->fmcase, ffep); 1241 fmep->e0r = ffep; 1242 } 1243 1244 /* give the diagnosis algorithm a shot at the new FME state */ 1245 fme_eval(fmep, ffep); 1246 } 1247 1248 void 1249 fme_status(int flags) 1250 { 1251 struct fme *fmep; 1252 1253 if (FMElist == NULL) { 1254 out(flags, "No fault management exercises underway."); 1255 return; 1256 } 1257 1258 for (fmep = FMElist; fmep; fmep = fmep->next) 1259 fme_print(flags, fmep); 1260 } 1261 1262 /* 1263 * "indent" routines used mostly for nicely formatted debug output, but also 1264 * for sanity checking for infinite recursion bugs. 1265 */ 1266 1267 #define MAX_INDENT 1024 1268 static const char *indent_s[MAX_INDENT]; 1269 static int current_indent; 1270 1271 static void 1272 indent_push(const char *s) 1273 { 1274 if (current_indent < MAX_INDENT) 1275 indent_s[current_indent++] = s; 1276 else 1277 out(O_DIE, "unexpected recursion depth (%d)", current_indent); 1278 } 1279 1280 static void 1281 indent_set(const char *s) 1282 { 1283 current_indent = 0; 1284 indent_push(s); 1285 } 1286 1287 static void 1288 indent_pop(void) 1289 { 1290 if (current_indent > 0) 1291 current_indent--; 1292 else 1293 out(O_DIE, "recursion underflow"); 1294 } 1295 1296 static void 1297 indent(void) 1298 { 1299 int i; 1300 if (!Verbose) 1301 return; 1302 for (i = 0; i < current_indent; i++) 1303 out(O_ALTFP|O_VERB|O_NONL, indent_s[i]); 1304 } 1305 1306 #define SLNEW 1 1307 #define SLCHANGED 2 1308 #define SLWAIT 3 1309 #define SLDISPROVED 4 1310 1311 static void 1312 print_suspects(int circumstance, struct fme *fmep) 1313 { 1314 struct event *ep; 1315 1316 out(O_ALTFP|O_NONL, "["); 1317 if (circumstance == SLCHANGED) { 1318 out(O_ALTFP|O_NONL, "FME%d diagnosis changed. state: %s, " 1319 "suspect list:", fmep->id, fme_state2str(fmep->state)); 1320 } else if (circumstance == SLWAIT) { 1321 out(O_ALTFP|O_NONL, "FME%d set wait timer ", fmep->id); 1322 ptree_timeval(O_ALTFP|O_NONL, &fmep->wull); 1323 } else if (circumstance == SLDISPROVED) { 1324 out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS UNKNOWN", fmep->id); 1325 } else { 1326 out(O_ALTFP|O_NONL, "FME%d DIAGNOSIS PRODUCED:", fmep->id); 1327 } 1328 1329 if (circumstance == SLWAIT || circumstance == SLDISPROVED) { 1330 out(O_ALTFP, "]"); 1331 return; 1332 } 1333 1334 for (ep = fmep->suspects; ep; ep = ep->suspects) { 1335 out(O_ALTFP|O_NONL, " "); 1336 itree_pevent_brief(O_ALTFP|O_NONL, ep); 1337 } 1338 out(O_ALTFP, "]"); 1339 } 1340 1341 static struct node * 1342 eventprop_lookup(struct event *ep, const char *propname) 1343 { 1344 return (lut_lookup(ep->props, (void *)propname, NULL)); 1345 } 1346 1347 #define MAXDIGITIDX 23 1348 static char numbuf[MAXDIGITIDX + 1]; 1349 1350 static int 1351 node2uint(struct node *n, uint_t *valp) 1352 { 1353 struct evalue value; 1354 struct lut *globals = NULL; 1355 1356 if (n == NULL) 1357 return (1); 1358 1359 /* 1360 * check value.v since we are being asked to convert an unsigned 1361 * long long int to an unsigned int 1362 */ 1363 if (! eval_expr(n, NULL, NULL, &globals, NULL, NULL, 0, &value) || 1364 value.t != UINT64 || value.v > (1ULL << 32)) 1365 return (1); 1366 1367 *valp = (uint_t)value.v; 1368 1369 return (0); 1370 } 1371 1372 static nvlist_t * 1373 node2fmri(struct node *n) 1374 { 1375 nvlist_t **pa, *f, *p; 1376 struct node *nc; 1377 uint_t depth = 0; 1378 char *numstr, *nullbyte; 1379 char *failure; 1380 int err, i; 1381 1382 /* XXX do we need to be able to handle a non-T_NAME node? */ 1383 if (n == NULL || n->t != T_NAME) 1384 return (NULL); 1385 1386 for (nc = n; nc != NULL; nc = nc->u.name.next) { 1387 if (nc->u.name.child == NULL || nc->u.name.child->t != T_NUM) 1388 break; 1389 depth++; 1390 } 1391 1392 if (nc != NULL) { 1393 /* We bailed early, something went wrong */ 1394 return (NULL); 1395 } 1396 1397 if ((err = nvlist_xalloc(&f, NV_UNIQUE_NAME, &Eft_nv_hdl)) != 0) 1398 out(O_DIE|O_SYS, "alloc of fmri nvl failed"); 1399 pa = alloca(depth * sizeof (nvlist_t *)); 1400 for (i = 0; i < depth; i++) 1401 pa[i] = NULL; 1402 1403 err = nvlist_add_string(f, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC); 1404 err |= nvlist_add_uint8(f, FM_VERSION, FM_HC_SCHEME_VERSION); 1405 err |= nvlist_add_string(f, FM_FMRI_HC_ROOT, ""); 1406 err |= nvlist_add_uint32(f, FM_FMRI_HC_LIST_SZ, depth); 1407 if (err != 0) { 1408 failure = "basic construction of FMRI failed"; 1409 goto boom; 1410 } 1411 1412 numbuf[MAXDIGITIDX] = '\0'; 1413 nullbyte = &numbuf[MAXDIGITIDX]; 1414 i = 0; 1415 1416 for (nc = n; nc != NULL; nc = nc->u.name.next) { 1417 err = nvlist_xalloc(&p, NV_UNIQUE_NAME, &Eft_nv_hdl); 1418 if (err != 0) { 1419 failure = "alloc of an hc-pair failed"; 1420 goto boom; 1421 } 1422 err = nvlist_add_string(p, FM_FMRI_HC_NAME, nc->u.name.s); 1423 numstr = ulltostr(nc->u.name.child->u.ull, nullbyte); 1424 err |= nvlist_add_string(p, FM_FMRI_HC_ID, numstr); 1425 if (err != 0) { 1426 failure = "construction of an hc-pair failed"; 1427 goto boom; 1428 } 1429 pa[i++] = p; 1430 } 1431 1432 err = nvlist_add_nvlist_array(f, FM_FMRI_HC_LIST, pa, depth); 1433 if (err == 0) { 1434 for (i = 0; i < depth; i++) 1435 if (pa[i] != NULL) 1436 nvlist_free(pa[i]); 1437 return (f); 1438 } 1439 failure = "addition of hc-pair array to FMRI failed"; 1440 1441 boom: 1442 for (i = 0; i < depth; i++) 1443 if (pa[i] != NULL) 1444 nvlist_free(pa[i]); 1445 nvlist_free(f); 1446 out(O_DIE, "%s", failure); 1447 /*NOTREACHED*/ 1448 return (NULL); 1449 } 1450 1451 static uint_t 1452 avg(uint_t sum, uint_t cnt) 1453 { 1454 unsigned long long s = sum * 10; 1455 1456 return ((s / cnt / 10) + (((s / cnt % 10) >= 5) ? 1 : 0)); 1457 } 1458 1459 static uint8_t 1460 percentof(uint_t part, uint_t whole) 1461 { 1462 unsigned long long p = part * 1000; 1463 1464 return ((p / whole / 10) + (((p / whole % 10) >= 5) ? 1 : 0)); 1465 } 1466 1467 struct rsl { 1468 struct event *suspect; 1469 nvlist_t *asru; 1470 nvlist_t *fru; 1471 nvlist_t *rsrc; 1472 }; 1473 1474 /* 1475 * rslfree -- free internal members of struct rsl not expected to be 1476 * freed elsewhere. 1477 */ 1478 static void 1479 rslfree(struct rsl *freeme) 1480 { 1481 if (freeme->asru != NULL) 1482 nvlist_free(freeme->asru); 1483 if (freeme->fru != NULL) 1484 nvlist_free(freeme->fru); 1485 if (freeme->rsrc != NULL && freeme->rsrc != freeme->asru) 1486 nvlist_free(freeme->rsrc); 1487 } 1488 1489 /* 1490 * rslcmp -- compare two rsl structures. Use the following 1491 * comparisons to establish cardinality: 1492 * 1493 * 1. Name of the suspect's class. (simple strcmp) 1494 * 2. Name of the suspect's ASRU. (trickier, since nvlist) 1495 * 1496 */ 1497 static int 1498 rslcmp(const void *a, const void *b) 1499 { 1500 struct rsl *r1 = (struct rsl *)a; 1501 struct rsl *r2 = (struct rsl *)b; 1502 int rv; 1503 1504 rv = strcmp(r1->suspect->enode->u.event.ename->u.name.s, 1505 r2->suspect->enode->u.event.ename->u.name.s); 1506 if (rv != 0) 1507 return (rv); 1508 1509 if (r1->asru == NULL && r2->asru == NULL) 1510 return (0); 1511 if (r1->asru == NULL) 1512 return (-1); 1513 if (r2->asru == NULL) 1514 return (1); 1515 return (evnv_cmpnvl(r1->asru, r2->asru, 0)); 1516 } 1517 1518 /* 1519 * rsluniq -- given an array of rsl structures, seek out and "remove" 1520 * any duplicates. Dups are "remove"d by NULLing the suspect pointer 1521 * of the array element. Removal also means updating the number of 1522 * problems and the number of problems which are not faults. User 1523 * provides the first and last element pointers. 1524 */ 1525 static void 1526 rsluniq(struct rsl *first, struct rsl *last, int *nprobs, int *nnonf) 1527 { 1528 struct rsl *cr; 1529 1530 if (*nprobs == 1) 1531 return; 1532 1533 /* 1534 * At this point, we only expect duplicate defects. 1535 * Eversholt's diagnosis algorithm prevents duplicate 1536 * suspects, but we rewrite defects in the platform code after 1537 * the diagnosis is made, and that can introduce new 1538 * duplicates. 1539 */ 1540 while (first <= last) { 1541 if (first->suspect == NULL || !is_defect(first->suspect->t)) { 1542 first++; 1543 continue; 1544 } 1545 cr = first + 1; 1546 while (cr <= last) { 1547 if (is_defect(first->suspect->t)) { 1548 if (rslcmp(first, cr) == 0) { 1549 cr->suspect = NULL; 1550 rslfree(cr); 1551 (*nprobs)--; 1552 (*nnonf)--; 1553 } 1554 } 1555 /* 1556 * assume all defects are in order after our 1557 * sort and short circuit here with "else break" ? 1558 */ 1559 cr++; 1560 } 1561 first++; 1562 } 1563 } 1564 1565 /* 1566 * get_resources -- for a given suspect, determine what ASRU, FRU and 1567 * RSRC nvlists should be advertised in the final suspect list. 1568 */ 1569 void 1570 get_resources(struct event *sp, struct rsl *rsrcs, struct config *croot) 1571 { 1572 struct node *asrudef, *frudef; 1573 nvlist_t *asru, *fru; 1574 nvlist_t *rsrc = NULL; 1575 char *pathstr; 1576 1577 /* 1578 * First find any ASRU and/or FRU defined in the 1579 * initial fault tree. 1580 */ 1581 asrudef = eventprop_lookup(sp, L_ASRU); 1582 frudef = eventprop_lookup(sp, L_FRU); 1583 1584 /* 1585 * Create FMRIs based on those definitions 1586 */ 1587 asru = node2fmri(asrudef); 1588 fru = node2fmri(frudef); 1589 pathstr = ipath2str(NULL, sp->ipp); 1590 1591 /* 1592 * Allow for platform translations of the FMRIs 1593 */ 1594 platform_units_translate(is_defect(sp->t), croot, &asru, &fru, &rsrc, 1595 pathstr); 1596 1597 FREE(pathstr); 1598 rsrcs->suspect = sp; 1599 rsrcs->asru = asru; 1600 rsrcs->fru = fru; 1601 rsrcs->rsrc = rsrc; 1602 } 1603 1604 /* 1605 * trim_suspects -- prior to publishing, we may need to remove some 1606 * suspects from the list. If we're auto-closing upsets, we don't 1607 * want any of those in the published list. If the ASRUs for multiple 1608 * defects resolve to the same ASRU (driver) we only want to publish 1609 * that as a single suspect. 1610 */ 1611 static void 1612 trim_suspects(struct fme *fmep, boolean_t no_upsets, struct rsl **begin, 1613 struct rsl **end) 1614 { 1615 struct event *ep; 1616 struct rsl *rp; 1617 int rpcnt; 1618 1619 /* 1620 * First save the suspects in the psuspects, then copy back 1621 * only the ones we wish to retain. This resets nsuspects to 1622 * zero. 1623 */ 1624 rpcnt = fmep->nsuspects; 1625 save_suspects(fmep); 1626 1627 /* 1628 * allocate an array of resource pointers for the suspects. 1629 * We may end up using less than the full allocation, but this 1630 * is a very short-lived array. publish_suspects() will free 1631 * this array when it's done using it. 1632 */ 1633 rp = *begin = MALLOC(rpcnt * sizeof (struct rsl)); 1634 bzero(rp, rpcnt * sizeof (struct rsl)); 1635 1636 /* first pass, remove any unwanted upsets and populate our array */ 1637 for (ep = fmep->psuspects; ep; ep = ep->psuspects) { 1638 if (no_upsets && is_upset(ep->t)) 1639 continue; 1640 get_resources(ep, rp, fmep->cfgdata->cooked); 1641 rp++; 1642 fmep->nsuspects++; 1643 if (!is_fault(ep->t)) 1644 fmep->nonfault++; 1645 } 1646 1647 /* if all we had was unwanted upsets, we're done */ 1648 if (fmep->nsuspects == 0) 1649 return; 1650 1651 *end = rp - 1; 1652 1653 /* sort the array */ 1654 qsort(*begin, fmep->nsuspects, sizeof (struct rsl), rslcmp); 1655 rsluniq(*begin, *end, &fmep->nsuspects, &fmep->nonfault); 1656 } 1657 1658 /* 1659 * addpayloadprop -- add a payload prop to a problem 1660 */ 1661 static void 1662 addpayloadprop(const char *lhs, struct evalue *rhs, nvlist_t *fault) 1663 { 1664 ASSERT(fault != NULL); 1665 ASSERT(lhs != NULL); 1666 ASSERT(rhs != NULL); 1667 1668 if (rhs->t == UINT64) { 1669 out(O_ALTFP|O_VERB2, "addpayloadprop: %s=%llu", lhs, rhs->v); 1670 1671 if (nvlist_add_uint64(fault, lhs, rhs->v) != 0) 1672 out(O_DIE, 1673 "cannot add payloadprop \"%s\" to fault", lhs); 1674 } else { 1675 out(O_ALTFP|O_VERB2, "addpayloadprop: %s=\"%s\"", 1676 lhs, (char *)(uintptr_t)rhs->v); 1677 1678 if (nvlist_add_string(fault, lhs, (char *)(uintptr_t)rhs->v) != 1679 0) 1680 out(O_DIE, 1681 "cannot add payloadprop \"%s\" to fault", lhs); 1682 } 1683 } 1684 1685 static char *Istatbuf; 1686 static char *Istatbufptr; 1687 static int Istatsz; 1688 1689 /* 1690 * istataddsize -- calculate size of istat and add it to Istatsz 1691 */ 1692 /*ARGSUSED2*/ 1693 static void 1694 istataddsize(const struct istat_entry *lhs, struct stats *rhs, void *arg) 1695 { 1696 int val; 1697 1698 ASSERT(lhs != NULL); 1699 ASSERT(rhs != NULL); 1700 1701 if ((val = stats_counter_value(rhs)) == 0) 1702 return; /* skip zero-valued stats */ 1703 1704 /* count up the size of the stat name */ 1705 Istatsz += ipath2strlen(lhs->ename, lhs->ipath); 1706 Istatsz++; /* for the trailing NULL byte */ 1707 1708 /* count up the size of the stat value */ 1709 Istatsz += snprintf(NULL, 0, "%d", val); 1710 Istatsz++; /* for the trailing NULL byte */ 1711 } 1712 1713 /* 1714 * istat2str -- serialize an istat, writing result to *Istatbufptr 1715 */ 1716 /*ARGSUSED2*/ 1717 static void 1718 istat2str(const struct istat_entry *lhs, struct stats *rhs, void *arg) 1719 { 1720 char *str; 1721 int len; 1722 int val; 1723 1724 ASSERT(lhs != NULL); 1725 ASSERT(rhs != NULL); 1726 1727 if ((val = stats_counter_value(rhs)) == 0) 1728 return; /* skip zero-valued stats */ 1729 1730 /* serialize the stat name */ 1731 str = ipath2str(lhs->ename, lhs->ipath); 1732 len = strlen(str); 1733 1734 ASSERT(Istatbufptr + len + 1 < &Istatbuf[Istatsz]); 1735 (void) strlcpy(Istatbufptr, str, &Istatbuf[Istatsz] - Istatbufptr); 1736 Istatbufptr += len; 1737 FREE(str); 1738 *Istatbufptr++ = '\0'; 1739 1740 /* serialize the stat value */ 1741 Istatbufptr += snprintf(Istatbufptr, &Istatbuf[Istatsz] - Istatbufptr, 1742 "%d", val); 1743 *Istatbufptr++ = '\0'; 1744 1745 ASSERT(Istatbufptr <= &Istatbuf[Istatsz]); 1746 } 1747 1748 void 1749 istat_save() 1750 { 1751 if (Istat_need_save == 0) 1752 return; 1753 1754 /* figure out how big the serialzed info is */ 1755 Istatsz = 0; 1756 lut_walk(Istats, (lut_cb)istataddsize, NULL); 1757 1758 if (Istatsz == 0) { 1759 /* no stats to save */ 1760 fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS); 1761 return; 1762 } 1763 1764 /* create the serialized buffer */ 1765 Istatbufptr = Istatbuf = MALLOC(Istatsz); 1766 lut_walk(Istats, (lut_cb)istat2str, NULL); 1767 1768 /* clear out current saved stats */ 1769 fmd_buf_destroy(Hdl, NULL, WOBUF_ISTATS); 1770 1771 /* write out the new version */ 1772 fmd_buf_write(Hdl, NULL, WOBUF_ISTATS, Istatbuf, Istatsz); 1773 FREE(Istatbuf); 1774 1775 Istat_need_save = 0; 1776 } 1777 1778 int 1779 istat_cmp(struct istat_entry *ent1, struct istat_entry *ent2) 1780 { 1781 if (ent1->ename != ent2->ename) 1782 return (ent2->ename - ent1->ename); 1783 if (ent1->ipath != ent2->ipath) 1784 return ((char *)ent2->ipath - (char *)ent1->ipath); 1785 1786 return (0); 1787 } 1788 1789 /* 1790 * istat-verify -- verify the component associated with a stat still exists 1791 * 1792 * if the component no longer exists, this routine resets the stat and 1793 * returns 0. if the component still exists, it returns 1. 1794 */ 1795 static int 1796 istat_verify(struct node *snp, struct istat_entry *entp) 1797 { 1798 struct stats *statp; 1799 nvlist_t *fmri; 1800 1801 fmri = node2fmri(snp->u.event.epname); 1802 if (platform_path_exists(fmri)) { 1803 nvlist_free(fmri); 1804 return (1); 1805 } 1806 nvlist_free(fmri); 1807 1808 /* component no longer in system. zero out the associated stats */ 1809 if ((statp = (struct stats *) 1810 lut_lookup(Istats, entp, (lut_cmp)istat_cmp)) == NULL || 1811 stats_counter_value(statp) == 0) 1812 return (0); /* stat is already reset */ 1813 1814 Istat_need_save = 1; 1815 stats_counter_reset(statp); 1816 return (0); 1817 } 1818 1819 static void 1820 istat_bump(struct node *snp, int n) 1821 { 1822 struct stats *statp; 1823 struct istat_entry ent; 1824 1825 ASSERT(snp != NULL); 1826 ASSERTinfo(snp->t == T_EVENT, ptree_nodetype2str(snp->t)); 1827 ASSERT(snp->u.event.epname != NULL); 1828 1829 /* class name should be hoisted into a single stable entry */ 1830 ASSERT(snp->u.event.ename->u.name.next == NULL); 1831 ent.ename = snp->u.event.ename->u.name.s; 1832 ent.ipath = ipath(snp->u.event.epname); 1833 1834 if (!istat_verify(snp, &ent)) { 1835 /* component no longer exists in system, nothing to do */ 1836 return; 1837 } 1838 1839 if ((statp = (struct stats *) 1840 lut_lookup(Istats, &ent, (lut_cmp)istat_cmp)) == NULL) { 1841 /* need to create the counter */ 1842 int cnt = 0; 1843 struct node *np; 1844 char *sname; 1845 char *snamep; 1846 struct istat_entry *newentp; 1847 1848 /* count up the size of the stat name */ 1849 np = snp->u.event.ename; 1850 while (np != NULL) { 1851 cnt += strlen(np->u.name.s); 1852 cnt++; /* for the '.' or '@' */ 1853 np = np->u.name.next; 1854 } 1855 np = snp->u.event.epname; 1856 while (np != NULL) { 1857 cnt += snprintf(NULL, 0, "%s%llu", 1858 np->u.name.s, np->u.name.child->u.ull); 1859 cnt++; /* for the '/' or trailing NULL byte */ 1860 np = np->u.name.next; 1861 } 1862 1863 /* build the stat name */ 1864 snamep = sname = alloca(cnt); 1865 np = snp->u.event.ename; 1866 while (np != NULL) { 1867 snamep += snprintf(snamep, &sname[cnt] - snamep, 1868 "%s", np->u.name.s); 1869 np = np->u.name.next; 1870 if (np) 1871 *snamep++ = '.'; 1872 } 1873 *snamep++ = '@'; 1874 np = snp->u.event.epname; 1875 while (np != NULL) { 1876 snamep += snprintf(snamep, &sname[cnt] - snamep, 1877 "%s%llu", np->u.name.s, np->u.name.child->u.ull); 1878 np = np->u.name.next; 1879 if (np) 1880 *snamep++ = '/'; 1881 } 1882 *snamep++ = '\0'; 1883 1884 /* create the new stat & add it to our list */ 1885 newentp = MALLOC(sizeof (*newentp)); 1886 *newentp = ent; 1887 statp = stats_new_counter(NULL, sname, 0); 1888 Istats = lut_add(Istats, (void *)newentp, (void *)statp, 1889 (lut_cmp)istat_cmp); 1890 } 1891 1892 /* if n is non-zero, set that value instead of bumping */ 1893 if (n) { 1894 stats_counter_reset(statp); 1895 stats_counter_add(statp, n); 1896 } else 1897 stats_counter_bump(statp); 1898 Istat_need_save = 1; 1899 } 1900 1901 /*ARGSUSED*/ 1902 static void 1903 istat_destructor(void *left, void *right, void *arg) 1904 { 1905 struct istat_entry *entp = (struct istat_entry *)left; 1906 struct stats *statp = (struct stats *)right; 1907 FREE(entp); 1908 stats_delete(statp); 1909 } 1910 1911 /* 1912 * Callback used in a walk of the Istats to reset matching stat counters. 1913 */ 1914 static void 1915 istat_counter_reset_cb(struct istat_entry *entp, struct stats *statp, 1916 const struct ipath *ipp) 1917 { 1918 char *path; 1919 1920 if (entp->ipath == ipp) { 1921 path = ipath2str(entp->ename, ipp); 1922 out(O_ALTFP, "istat_counter_reset_cb: resetting %s", path); 1923 FREE(path); 1924 stats_counter_reset(statp); 1925 Istat_need_save = 1; 1926 } 1927 } 1928 1929 void 1930 istat_fini(void) 1931 { 1932 lut_free(Istats, istat_destructor, NULL); 1933 } 1934 1935 static void 1936 publish_suspects(struct fme *fmep) 1937 { 1938 struct rsl *srl = NULL; 1939 struct rsl *erl; 1940 struct rsl *rp; 1941 nvlist_t *fault; 1942 uint8_t cert; 1943 uint_t *frs; 1944 uint_t fravg, frsum, fr; 1945 uint_t messval; 1946 struct node *snp; 1947 int frcnt, fridx; 1948 boolean_t no_upsets = B_FALSE; 1949 boolean_t allfaulty = B_TRUE; 1950 1951 stats_counter_bump(fmep->diags); 1952 1953 /* 1954 * If we're auto-closing upsets, we don't want to include them 1955 * in any produced suspect lists or certainty accounting. 1956 */ 1957 if (Autoclose != NULL) 1958 if (strcmp(Autoclose, "true") == 0 || 1959 strcmp(Autoclose, "all") == 0 || 1960 strcmp(Autoclose, "upsets") == 0) 1961 no_upsets = B_TRUE; 1962 1963 trim_suspects(fmep, no_upsets, &srl, &erl); 1964 1965 /* 1966 * If the resulting suspect list has no members, we're 1967 * done. Returning here will simply close the case. 1968 */ 1969 if (fmep->nsuspects == 0) { 1970 out(O_ALTFP, 1971 "[FME%d, case %s (all suspects are upsets)]", 1972 fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); 1973 FREE(srl); 1974 restore_suspects(fmep); 1975 return; 1976 } 1977 1978 /* 1979 * If the suspect list is all faults, then for a given fault, 1980 * say X of N, X's certainty is computed via: 1981 * 1982 * fitrate(X) / (fitrate(1) + ... + fitrate(N)) * 100 1983 * 1984 * If none of the suspects are faults, and there are N suspects, 1985 * the certainty of a given suspect is 100/N. 1986 * 1987 * If there are are a mixture of faults and other problems in 1988 * the suspect list, we take an average of the faults' 1989 * FITrates and treat this average as the FITrate for any 1990 * non-faults. The fitrate of any given suspect is then 1991 * computed per the first formula above. 1992 */ 1993 if (fmep->nonfault == fmep->nsuspects) { 1994 /* NO faults in the suspect list */ 1995 cert = percentof(1, fmep->nsuspects); 1996 } else { 1997 /* sum the fitrates */ 1998 frs = alloca(fmep->nsuspects * sizeof (uint_t)); 1999 fridx = frcnt = frsum = 0; 2000 2001 for (rp = srl; rp <= erl; rp++) { 2002 struct node *n; 2003 2004 if (rp->suspect == NULL) 2005 continue; 2006 if (!is_fault(rp->suspect->t)) { 2007 frs[fridx++] = 0; 2008 continue; 2009 } 2010 n = eventprop_lookup(rp->suspect, L_FITrate); 2011 if (node2uint(n, &fr) != 0) { 2012 out(O_DEBUG|O_NONL, "event "); 2013 ipath_print(O_DEBUG|O_NONL, 2014 rp->suspect->enode->u.event.ename->u.name.s, 2015 rp->suspect->ipp); 2016 out(O_DEBUG, " has no FITrate (using 1)"); 2017 fr = 1; 2018 } else if (fr == 0) { 2019 out(O_DEBUG|O_NONL, "event "); 2020 ipath_print(O_DEBUG|O_NONL, 2021 rp->suspect->enode->u.event.ename->u.name.s, 2022 rp->suspect->ipp); 2023 out(O_DEBUG, " has zero FITrate (using 1)"); 2024 fr = 1; 2025 } 2026 2027 frs[fridx++] = fr; 2028 frsum += fr; 2029 frcnt++; 2030 } 2031 fravg = avg(frsum, frcnt); 2032 for (fridx = 0; fridx < fmep->nsuspects; fridx++) 2033 if (frs[fridx] == 0) { 2034 frs[fridx] = fravg; 2035 frsum += fravg; 2036 } 2037 } 2038 2039 /* Add them in reverse order of our sort, as fmd reverses order */ 2040 for (rp = erl; rp >= srl; rp--) { 2041 if (rp->suspect == NULL) 2042 continue; 2043 if (!is_fault(rp->suspect->t)) 2044 allfaulty = B_FALSE; 2045 if (fmep->nonfault != fmep->nsuspects) 2046 cert = percentof(frs[--fridx], frsum); 2047 fault = fmd_nvl_create_fault(fmep->hdl, 2048 rp->suspect->enode->u.event.ename->u.name.s, 2049 cert, 2050 rp->asru, 2051 rp->fru, 2052 rp->rsrc); 2053 if (fault == NULL) 2054 out(O_DIE, "fault creation failed"); 2055 /* if "message" property exists, add it to the fault */ 2056 if (node2uint(eventprop_lookup(rp->suspect, L_message), 2057 &messval) == 0) { 2058 2059 out(O_ALTFP, 2060 "[FME%d, %s adds message=%d to suspect list]", 2061 fmep->id, 2062 rp->suspect->enode->u.event.ename->u.name.s, 2063 messval); 2064 if (nvlist_add_boolean_value(fault, 2065 FM_SUSPECT_MESSAGE, 2066 (messval) ? B_TRUE : B_FALSE) != 0) { 2067 out(O_DIE, "cannot add no-message to fault"); 2068 } 2069 } 2070 /* add any payload properties */ 2071 lut_walk(rp->suspect->payloadprops, 2072 (lut_cb)addpayloadprop, (void *)fault); 2073 fmd_case_add_suspect(fmep->hdl, fmep->fmcase, fault); 2074 rp->suspect->fault = fault; 2075 rslfree(rp); 2076 2077 /* 2078 * If "action" property exists, evaluate it; this must be done 2079 * before the dupclose check below since some actions may 2080 * modify the asru to be used in fmd_nvl_fmri_faulty. This 2081 * needs to be restructured if any new actions are introduced 2082 * that have effects that we do not want to be visible if 2083 * we decide not to publish in the dupclose check below. 2084 */ 2085 if ((snp = eventprop_lookup(rp->suspect, L_action)) != NULL) { 2086 struct evalue evalue; 2087 2088 out(O_ALTFP|O_NONL, 2089 "[FME%d, %s action ", fmep->id, 2090 rp->suspect->enode->u.event.ename->u.name.s); 2091 ptree_name_iter(O_ALTFP|O_NONL, snp); 2092 out(O_ALTFP, "]"); 2093 Action_nvl = fault; 2094 (void) eval_expr(snp, NULL, NULL, NULL, NULL, 2095 NULL, 0, &evalue); 2096 } 2097 2098 /* 2099 * if "dupclose" tunable is set, check if the asru is 2100 * already marked as "faulty". 2101 */ 2102 if (Dupclose && allfaulty) { 2103 nvlist_t *asru; 2104 2105 out(O_ALTFP|O_VERB, "FMD%d dupclose check ", fmep->id); 2106 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, rp->suspect); 2107 out(O_ALTFP|O_VERB|O_NONL, " "); 2108 if (nvlist_lookup_nvlist(fault, 2109 FM_FAULT_ASRU, &asru) != 0) { 2110 out(O_ALTFP|O_VERB, "NULL asru"); 2111 allfaulty = B_FALSE; 2112 } else if (fmd_nvl_fmri_faulty(fmep->hdl, asru)) { 2113 out(O_ALTFP|O_VERB, "faulty"); 2114 } else { 2115 out(O_ALTFP|O_VERB, "not faulty"); 2116 allfaulty = B_FALSE; 2117 } 2118 } 2119 2120 } 2121 2122 /* 2123 * Close the case if all asrus are already known to be faulty and if 2124 * Dupclose is enabled. Otherwise we are going to publish so take 2125 * any pre-publication actions. 2126 */ 2127 if (Dupclose && allfaulty) { 2128 out(O_ALTFP, "[dupclose FME%d, case %s]", fmep->id, 2129 fmd_case_uuid(fmep->hdl, fmep->fmcase)); 2130 fmd_case_close(fmep->hdl, fmep->fmcase); 2131 } else { 2132 for (rp = erl; rp >= srl; rp--) { 2133 struct event *suspect = rp->suspect; 2134 2135 if (suspect == NULL) 2136 continue; 2137 2138 fault = suspect->fault; 2139 2140 /* if "count" exists, increment the appropriate stat */ 2141 if ((snp = eventprop_lookup(suspect, 2142 L_count)) != NULL) { 2143 out(O_ALTFP|O_NONL, 2144 "[FME%d, %s count ", fmep->id, 2145 suspect->enode->u.event.ename->u.name.s); 2146 ptree_name_iter(O_ALTFP|O_NONL, snp); 2147 out(O_ALTFP, "]"); 2148 istat_bump(snp, 0); 2149 2150 } 2151 } 2152 istat_save(); /* write out any istat changes */ 2153 2154 out(O_ALTFP, "[solving FME%d, case %s]", fmep->id, 2155 fmd_case_uuid(fmep->hdl, fmep->fmcase)); 2156 fmd_case_solve(fmep->hdl, fmep->fmcase); 2157 } 2158 2159 /* 2160 * revert to the original suspect list 2161 */ 2162 FREE(srl); 2163 restore_suspects(fmep); 2164 } 2165 2166 static void 2167 publish_undiagnosable(fmd_hdl_t *hdl, fmd_event_t *ffep) 2168 { 2169 struct case_list *newcase; 2170 nvlist_t *defect; 2171 2172 out(O_ALTFP, 2173 "[undiagnosable ereport received, " 2174 "creating and closing a new case (%s)]", 2175 Undiag_reason ? Undiag_reason : "reason not provided"); 2176 2177 newcase = MALLOC(sizeof (struct case_list)); 2178 newcase->next = NULL; 2179 2180 newcase->fmcase = fmd_case_open(hdl, NULL); 2181 if (Undiagablecaselist != NULL) 2182 newcase->next = Undiagablecaselist; 2183 Undiagablecaselist = newcase; 2184 2185 if (ffep != NULL) 2186 fmd_case_add_ereport(hdl, newcase->fmcase, ffep); 2187 2188 defect = fmd_nvl_create_fault(hdl, UNDIAGNOSABLE_DEFECT, 100, 2189 NULL, NULL, NULL); 2190 if (Undiag_reason != NULL) 2191 (void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason); 2192 fmd_case_add_suspect(hdl, newcase->fmcase, defect); 2193 2194 fmd_case_solve(hdl, newcase->fmcase); 2195 fmd_case_close(hdl, newcase->fmcase); 2196 } 2197 2198 static void 2199 fme_undiagnosable(struct fme *f) 2200 { 2201 nvlist_t *defect; 2202 2203 out(O_ALTFP, "[solving/closing FME%d, case %s (%s)]", 2204 f->id, fmd_case_uuid(f->hdl, f->fmcase), 2205 Undiag_reason ? Undiag_reason : "undiagnosable"); 2206 2207 defect = fmd_nvl_create_fault(f->hdl, UNDIAGNOSABLE_DEFECT, 100, 2208 NULL, NULL, NULL); 2209 if (Undiag_reason != NULL) 2210 (void) nvlist_add_string(defect, UNDIAG_REASON, Undiag_reason); 2211 fmd_case_add_suspect(f->hdl, f->fmcase, defect); 2212 fmd_case_solve(f->hdl, f->fmcase); 2213 destroy_fme_bufs(f); 2214 fmd_case_close(f->hdl, f->fmcase); 2215 } 2216 2217 /* 2218 * fme_close_case 2219 * 2220 * Find the requested case amongst our fmes and close it. Free up 2221 * the related fme. 2222 */ 2223 void 2224 fme_close_case(fmd_hdl_t *hdl, fmd_case_t *fmcase) 2225 { 2226 struct case_list *ucasep, *prevcasep = NULL; 2227 struct fme *prev = NULL; 2228 struct fme *fmep; 2229 2230 for (ucasep = Undiagablecaselist; ucasep; ucasep = ucasep->next) { 2231 if (fmcase != ucasep->fmcase) { 2232 prevcasep = ucasep; 2233 continue; 2234 } 2235 2236 if (prevcasep == NULL) 2237 Undiagablecaselist = Undiagablecaselist->next; 2238 else 2239 prevcasep->next = ucasep->next; 2240 2241 FREE(ucasep); 2242 return; 2243 } 2244 2245 for (fmep = FMElist; fmep; fmep = fmep->next) { 2246 if (fmep->hdl == hdl && fmep->fmcase == fmcase) 2247 break; 2248 prev = fmep; 2249 } 2250 2251 if (fmep == NULL) { 2252 out(O_WARN, "Eft asked to close unrecognized case [%s].", 2253 fmd_case_uuid(hdl, fmcase)); 2254 return; 2255 } 2256 2257 if (EFMElist == fmep) 2258 EFMElist = prev; 2259 2260 if (prev == NULL) 2261 FMElist = FMElist->next; 2262 else 2263 prev->next = fmep->next; 2264 2265 fmep->next = NULL; 2266 2267 /* Get rid of any timer this fme has set */ 2268 if (fmep->wull != 0) 2269 fmd_timer_remove(fmep->hdl, fmep->timer); 2270 2271 if (ClosedFMEs == NULL) { 2272 ClosedFMEs = fmep; 2273 } else { 2274 fmep->next = ClosedFMEs; 2275 ClosedFMEs = fmep; 2276 } 2277 2278 Open_fme_count--; 2279 2280 /* See if we can close the overflow FME */ 2281 if (Open_fme_count <= Max_fme) { 2282 for (fmep = FMElist; fmep; fmep = fmep->next) { 2283 if (fmep->overflow && !(fmd_case_closed(fmep->hdl, 2284 fmep->fmcase))) 2285 break; 2286 } 2287 2288 if (fmep != NULL) 2289 fmd_case_close(fmep->hdl, fmep->fmcase); 2290 } 2291 } 2292 2293 /* 2294 * fme_set_timer() 2295 * If the time we need to wait for the given FME is less than the 2296 * current timer, kick that old timer out and establish a new one. 2297 */ 2298 static int 2299 fme_set_timer(struct fme *fmep, unsigned long long wull) 2300 { 2301 out(O_ALTFP|O_VERB|O_NONL, " fme_set_timer: request to wait "); 2302 ptree_timeval(O_ALTFP|O_VERB, &wull); 2303 2304 if (wull <= fmep->pull) { 2305 out(O_ALTFP|O_VERB|O_NONL, "already have waited at least "); 2306 ptree_timeval(O_ALTFP|O_VERB, &fmep->pull); 2307 out(O_ALTFP|O_VERB, NULL); 2308 /* we've waited at least wull already, don't need timer */ 2309 return (0); 2310 } 2311 2312 out(O_ALTFP|O_VERB|O_NONL, " currently "); 2313 if (fmep->wull != 0) { 2314 out(O_ALTFP|O_VERB|O_NONL, "waiting "); 2315 ptree_timeval(O_ALTFP|O_VERB, &fmep->wull); 2316 out(O_ALTFP|O_VERB, NULL); 2317 } else { 2318 out(O_ALTFP|O_VERB|O_NONL, "not waiting"); 2319 out(O_ALTFP|O_VERB, NULL); 2320 } 2321 2322 if (fmep->wull != 0) 2323 if (wull >= fmep->wull) 2324 /* New timer would fire later than established timer */ 2325 return (0); 2326 2327 if (fmep->wull != 0) { 2328 fmd_timer_remove(fmep->hdl, fmep->timer); 2329 } 2330 2331 fmep->timer = fmd_timer_install(fmep->hdl, (void *)fmep, 2332 fmep->e0r, wull); 2333 out(O_ALTFP|O_VERB, "timer set, id is %ld", fmep->timer); 2334 fmep->wull = wull; 2335 return (1); 2336 } 2337 2338 void 2339 fme_timer_fired(struct fme *fmep, id_t tid) 2340 { 2341 struct fme *ffmep = NULL; 2342 2343 for (ffmep = FMElist; ffmep; ffmep = ffmep->next) 2344 if (ffmep == fmep) 2345 break; 2346 2347 if (ffmep == NULL) { 2348 out(O_WARN, "Timer fired for an FME (%p) not in FMEs list.", 2349 (void *)fmep); 2350 return; 2351 } 2352 2353 out(O_ALTFP, "Timer fired %lx", tid); 2354 fmep->pull = fmep->wull; 2355 fmep->wull = 0; 2356 fmd_buf_write(fmep->hdl, fmep->fmcase, 2357 WOBUF_PULL, (void *)&fmep->pull, sizeof (fmep->pull)); 2358 fme_eval(fmep, fmep->e0r); 2359 } 2360 2361 /* 2362 * Preserve the fme's suspect list in its psuspects list, NULLing the 2363 * suspects list in the meantime. 2364 */ 2365 static void 2366 save_suspects(struct fme *fmep) 2367 { 2368 struct event *ep; 2369 struct event *nextep; 2370 2371 /* zero out the previous suspect list */ 2372 for (ep = fmep->psuspects; ep; ep = nextep) { 2373 nextep = ep->psuspects; 2374 ep->psuspects = NULL; 2375 } 2376 fmep->psuspects = NULL; 2377 2378 /* zero out the suspect list, copying it to previous suspect list */ 2379 fmep->psuspects = fmep->suspects; 2380 for (ep = fmep->suspects; ep; ep = nextep) { 2381 nextep = ep->suspects; 2382 ep->psuspects = ep->suspects; 2383 ep->suspects = NULL; 2384 ep->is_suspect = 0; 2385 } 2386 fmep->suspects = NULL; 2387 fmep->nsuspects = 0; 2388 fmep->nonfault = 0; 2389 } 2390 2391 /* 2392 * Retrieve the fme's suspect list from its psuspects list. 2393 */ 2394 static void 2395 restore_suspects(struct fme *fmep) 2396 { 2397 struct event *ep; 2398 struct event *nextep; 2399 2400 fmep->nsuspects = fmep->nonfault = 0; 2401 fmep->suspects = fmep->psuspects; 2402 for (ep = fmep->psuspects; ep; ep = nextep) { 2403 fmep->nsuspects++; 2404 if (!is_fault(ep->t)) 2405 fmep->nonfault++; 2406 nextep = ep->psuspects; 2407 ep->suspects = ep->psuspects; 2408 } 2409 } 2410 2411 /* 2412 * this is what we use to call the Emrys prototype code instead of main() 2413 */ 2414 static void 2415 fme_eval(struct fme *fmep, fmd_event_t *ffep) 2416 { 2417 struct event *ep; 2418 unsigned long long my_delay = TIMEVAL_EVENTUALLY; 2419 2420 save_suspects(fmep); 2421 2422 out(O_ALTFP|O_VERB, "Evaluate FME %d", fmep->id); 2423 indent_set(" "); 2424 2425 lut_walk(fmep->eventtree, (lut_cb)clear_arrows, (void *)fmep); 2426 fmep->state = hypothesise(fmep, fmep->e0, fmep->ull, &my_delay); 2427 2428 out(O_ALTFP|O_VERB|O_NONL, "FME%d state: %s, suspect list:", fmep->id, 2429 fme_state2str(fmep->state)); 2430 for (ep = fmep->suspects; ep; ep = ep->suspects) { 2431 out(O_ALTFP|O_VERB|O_NONL, " "); 2432 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2433 } 2434 out(O_ALTFP|O_VERB, NULL); 2435 2436 switch (fmep->state) { 2437 case FME_CREDIBLE: 2438 print_suspects(SLNEW, fmep); 2439 (void) upsets_eval(fmep, ffep); 2440 2441 /* 2442 * we may have already posted suspects in upsets_eval() which 2443 * can recurse into fme_eval() again. If so then just return. 2444 */ 2445 if (fmep->posted_suspects) 2446 return; 2447 2448 publish_suspects(fmep); 2449 fmep->posted_suspects = 1; 2450 fmd_buf_write(fmep->hdl, fmep->fmcase, 2451 WOBUF_POSTD, 2452 (void *)&fmep->posted_suspects, 2453 sizeof (fmep->posted_suspects)); 2454 2455 /* 2456 * Now the suspects have been posted, we can clear up 2457 * the instance tree as we won't be looking at it again. 2458 * Also cancel the timer as the case is now solved. 2459 */ 2460 if (fmep->wull != 0) { 2461 fmd_timer_remove(fmep->hdl, fmep->timer); 2462 fmep->wull = 0; 2463 } 2464 lut_walk(fmep->eventtree, (lut_cb)clear_arrows, 2465 (void *)fmep); 2466 break; 2467 2468 case FME_WAIT: 2469 ASSERT(my_delay > fmep->ull); 2470 (void) fme_set_timer(fmep, my_delay); 2471 print_suspects(SLWAIT, fmep); 2472 break; 2473 2474 case FME_DISPROVED: 2475 print_suspects(SLDISPROVED, fmep); 2476 Undiag_reason = UD_UNSOLVD; 2477 fme_undiagnosable(fmep); 2478 break; 2479 } 2480 2481 if (fmep->posted_suspects == 1 && Autoclose != NULL) { 2482 int doclose = 0; 2483 2484 if (strcmp(Autoclose, "true") == 0 || 2485 strcmp(Autoclose, "all") == 0) 2486 doclose = 1; 2487 2488 if (strcmp(Autoclose, "upsets") == 0) { 2489 doclose = 1; 2490 for (ep = fmep->suspects; ep; ep = ep->suspects) { 2491 if (ep->t != N_UPSET) { 2492 doclose = 0; 2493 break; 2494 } 2495 } 2496 } 2497 2498 if (doclose) { 2499 out(O_ALTFP, "[closing FME%d, case %s (autoclose)]", 2500 fmep->id, fmd_case_uuid(fmep->hdl, fmep->fmcase)); 2501 2502 destroy_fme_bufs(fmep); 2503 fmd_case_close(fmep->hdl, fmep->fmcase); 2504 } 2505 } 2506 itree_prune(fmep->eventtree); 2507 } 2508 2509 static void indent(void); 2510 static int triggered(struct fme *fmep, struct event *ep, int mark); 2511 static enum fme_state effects_test(struct fme *fmep, 2512 struct event *fault_event, unsigned long long at_latest_by, 2513 unsigned long long *pdelay); 2514 static enum fme_state requirements_test(struct fme *fmep, struct event *ep, 2515 unsigned long long at_latest_by, unsigned long long *pdelay); 2516 static enum fme_state causes_test(struct fme *fmep, struct event *ep, 2517 unsigned long long at_latest_by, unsigned long long *pdelay); 2518 2519 static int 2520 checkconstraints(struct fme *fmep, struct arrow *arrowp) 2521 { 2522 struct constraintlist *ctp; 2523 struct evalue value; 2524 2525 if (arrowp->forever_false) { 2526 char *sep = ""; 2527 indent(); 2528 out(O_ALTFP|O_VERB|O_NONL, " Forever false constraint: "); 2529 for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) { 2530 out(O_ALTFP|O_VERB|O_NONL, sep); 2531 ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0); 2532 sep = ", "; 2533 } 2534 out(O_ALTFP|O_VERB, NULL); 2535 return (0); 2536 } 2537 2538 for (ctp = arrowp->constraints; ctp != NULL; ctp = ctp->next) { 2539 if (eval_expr(ctp->cnode, NULL, NULL, 2540 &fmep->globals, fmep->cfgdata->cooked, 2541 arrowp, 0, &value)) { 2542 /* evaluation successful */ 2543 if (value.t == UNDEFINED || value.v == 0) { 2544 /* known false */ 2545 arrowp->forever_false = 1; 2546 indent(); 2547 out(O_ALTFP|O_VERB|O_NONL, 2548 " False constraint: "); 2549 ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0); 2550 out(O_ALTFP|O_VERB, NULL); 2551 return (0); 2552 } 2553 } else { 2554 /* evaluation unsuccessful -- unknown value */ 2555 indent(); 2556 out(O_ALTFP|O_VERB|O_NONL, 2557 " Deferred constraint: "); 2558 ptree(O_ALTFP|O_VERB|O_NONL, ctp->cnode, 1, 0); 2559 out(O_ALTFP|O_VERB, NULL); 2560 return (2); 2561 } 2562 } 2563 /* known true */ 2564 return (1); 2565 } 2566 2567 static int 2568 triggered(struct fme *fmep, struct event *ep, int mark) 2569 { 2570 struct bubble *bp; 2571 struct arrowlist *ap; 2572 int count = 0; 2573 2574 stats_counter_bump(fmep->Tcallcount); 2575 for (bp = itree_next_bubble(ep, NULL); bp; 2576 bp = itree_next_bubble(ep, bp)) { 2577 if (bp->t != B_TO) 2578 continue; 2579 for (ap = itree_next_arrow(bp, NULL); ap; 2580 ap = itree_next_arrow(bp, ap)) { 2581 /* check count of marks against K in the bubble */ 2582 if ((ap->arrowp->mark & mark) && 2583 ++count >= bp->nork) 2584 return (1); 2585 } 2586 } 2587 return (0); 2588 } 2589 2590 static int 2591 mark_arrows(struct fme *fmep, struct event *ep, int mark, 2592 unsigned long long at_latest_by, unsigned long long *pdelay, int keep) 2593 { 2594 struct bubble *bp; 2595 struct arrowlist *ap; 2596 unsigned long long overall_delay = TIMEVAL_EVENTUALLY; 2597 unsigned long long my_delay; 2598 enum fme_state result; 2599 int retval = 0; 2600 2601 for (bp = itree_next_bubble(ep, NULL); bp; 2602 bp = itree_next_bubble(ep, bp)) { 2603 if (bp->t != B_FROM) 2604 continue; 2605 stats_counter_bump(fmep->Marrowcount); 2606 for (ap = itree_next_arrow(bp, NULL); ap; 2607 ap = itree_next_arrow(bp, ap)) { 2608 struct event *ep2 = ap->arrowp->head->myevent; 2609 /* 2610 * if we're clearing marks, we can avoid doing 2611 * all that work evaluating constraints. 2612 */ 2613 if (mark == 0) { 2614 ap->arrowp->mark &= ~EFFECTS_COUNTER; 2615 if (keep && (ep2->cached_state & 2616 (WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT))) 2617 ep2->keep_in_tree = 1; 2618 ep2->cached_state &= 2619 ~(WAIT_EFFECT|CREDIBLE_EFFECT|PARENT_WAIT); 2620 (void) mark_arrows(fmep, ep2, mark, 0, NULL, 2621 keep); 2622 continue; 2623 } 2624 if (ep2->cached_state & REQMNTS_DISPROVED) { 2625 indent(); 2626 out(O_ALTFP|O_VERB|O_NONL, 2627 " ALREADY DISPROVED "); 2628 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2629 out(O_ALTFP|O_VERB, NULL); 2630 continue; 2631 } 2632 if (ep2->cached_state & WAIT_EFFECT) { 2633 indent(); 2634 out(O_ALTFP|O_VERB|O_NONL, 2635 " ALREADY EFFECTS WAIT "); 2636 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2637 out(O_ALTFP|O_VERB, NULL); 2638 continue; 2639 } 2640 if (ep2->cached_state & CREDIBLE_EFFECT) { 2641 indent(); 2642 out(O_ALTFP|O_VERB|O_NONL, 2643 " ALREADY EFFECTS CREDIBLE "); 2644 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2645 out(O_ALTFP|O_VERB, NULL); 2646 continue; 2647 } 2648 if ((ep2->cached_state & PARENT_WAIT) && 2649 (mark & PARENT_WAIT)) { 2650 indent(); 2651 out(O_ALTFP|O_VERB|O_NONL, 2652 " ALREADY PARENT EFFECTS WAIT "); 2653 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2654 out(O_ALTFP|O_VERB, NULL); 2655 continue; 2656 } 2657 platform_set_payloadnvp(ep2->nvp); 2658 if (checkconstraints(fmep, ap->arrowp) == 0) { 2659 platform_set_payloadnvp(NULL); 2660 indent(); 2661 out(O_ALTFP|O_VERB|O_NONL, 2662 " CONSTRAINTS FAIL "); 2663 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2664 out(O_ALTFP|O_VERB, NULL); 2665 continue; 2666 } 2667 platform_set_payloadnvp(NULL); 2668 ap->arrowp->mark |= EFFECTS_COUNTER; 2669 if (!triggered(fmep, ep2, EFFECTS_COUNTER)) { 2670 indent(); 2671 out(O_ALTFP|O_VERB|O_NONL, 2672 " K-COUNT NOT YET MET "); 2673 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2674 out(O_ALTFP|O_VERB, NULL); 2675 continue; 2676 } 2677 ep2->cached_state &= ~PARENT_WAIT; 2678 /* 2679 * if we've reached an ereport and no propagation time 2680 * is specified, use the Hesitate value 2681 */ 2682 if (ep2->t == N_EREPORT && at_latest_by == 0ULL && 2683 ap->arrowp->maxdelay == 0ULL) { 2684 result = requirements_test(fmep, ep2, Hesitate, 2685 &my_delay); 2686 out(O_ALTFP|O_VERB|O_NONL, " default wait "); 2687 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2688 out(O_ALTFP|O_VERB, NULL); 2689 } else { 2690 result = requirements_test(fmep, ep2, 2691 at_latest_by + ap->arrowp->maxdelay, 2692 &my_delay); 2693 } 2694 if (result == FME_WAIT) { 2695 retval = WAIT_EFFECT; 2696 if (overall_delay > my_delay) 2697 overall_delay = my_delay; 2698 ep2->cached_state |= WAIT_EFFECT; 2699 indent(); 2700 out(O_ALTFP|O_VERB|O_NONL, " EFFECTS WAIT "); 2701 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2702 out(O_ALTFP|O_VERB, NULL); 2703 indent_push(" E"); 2704 if (mark_arrows(fmep, ep2, PARENT_WAIT, 2705 at_latest_by, &my_delay, 0) == 2706 WAIT_EFFECT) { 2707 retval = WAIT_EFFECT; 2708 if (overall_delay > my_delay) 2709 overall_delay = my_delay; 2710 } 2711 indent_pop(); 2712 } else if (result == FME_DISPROVED) { 2713 indent(); 2714 out(O_ALTFP|O_VERB|O_NONL, 2715 " EFFECTS DISPROVED "); 2716 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2717 out(O_ALTFP|O_VERB, NULL); 2718 } else { 2719 ep2->cached_state |= mark; 2720 indent(); 2721 if (mark == CREDIBLE_EFFECT) 2722 out(O_ALTFP|O_VERB|O_NONL, 2723 " EFFECTS CREDIBLE "); 2724 else 2725 out(O_ALTFP|O_VERB|O_NONL, 2726 " PARENT EFFECTS WAIT "); 2727 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep2); 2728 out(O_ALTFP|O_VERB, NULL); 2729 indent_push(" E"); 2730 if (mark_arrows(fmep, ep2, mark, at_latest_by, 2731 &my_delay, 0) == WAIT_EFFECT) { 2732 retval = WAIT_EFFECT; 2733 if (overall_delay > my_delay) 2734 overall_delay = my_delay; 2735 } 2736 indent_pop(); 2737 } 2738 } 2739 } 2740 if (retval == WAIT_EFFECT) 2741 *pdelay = overall_delay; 2742 return (retval); 2743 } 2744 2745 static enum fme_state 2746 effects_test(struct fme *fmep, struct event *fault_event, 2747 unsigned long long at_latest_by, unsigned long long *pdelay) 2748 { 2749 struct event *error_event; 2750 enum fme_state return_value = FME_CREDIBLE; 2751 unsigned long long overall_delay = TIMEVAL_EVENTUALLY; 2752 unsigned long long my_delay; 2753 2754 stats_counter_bump(fmep->Ecallcount); 2755 indent_push(" E"); 2756 indent(); 2757 out(O_ALTFP|O_VERB|O_NONL, "->"); 2758 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event); 2759 out(O_ALTFP|O_VERB, NULL); 2760 2761 if (mark_arrows(fmep, fault_event, CREDIBLE_EFFECT, at_latest_by, 2762 &my_delay, 0) == WAIT_EFFECT) { 2763 return_value = FME_WAIT; 2764 if (overall_delay > my_delay) 2765 overall_delay = my_delay; 2766 } 2767 for (error_event = fmep->observations; 2768 error_event; error_event = error_event->observations) { 2769 indent(); 2770 out(O_ALTFP|O_VERB|O_NONL, " "); 2771 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, error_event); 2772 if (!(error_event->cached_state & CREDIBLE_EFFECT)) { 2773 if (error_event->cached_state & 2774 (PARENT_WAIT|WAIT_EFFECT)) { 2775 out(O_ALTFP|O_VERB, " NOT YET triggered"); 2776 continue; 2777 } 2778 return_value = FME_DISPROVED; 2779 out(O_ALTFP|O_VERB, " NOT triggered"); 2780 break; 2781 } else { 2782 out(O_ALTFP|O_VERB, " triggered"); 2783 } 2784 } 2785 if (return_value == FME_DISPROVED) { 2786 (void) mark_arrows(fmep, fault_event, 0, 0, NULL, 0); 2787 } else { 2788 fault_event->keep_in_tree = 1; 2789 (void) mark_arrows(fmep, fault_event, 0, 0, NULL, 1); 2790 } 2791 2792 indent(); 2793 out(O_ALTFP|O_VERB|O_NONL, "<-EFFECTS %s ", 2794 fme_state2str(return_value)); 2795 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, fault_event); 2796 out(O_ALTFP|O_VERB, NULL); 2797 indent_pop(); 2798 if (return_value == FME_WAIT) 2799 *pdelay = overall_delay; 2800 return (return_value); 2801 } 2802 2803 static enum fme_state 2804 requirements_test(struct fme *fmep, struct event *ep, 2805 unsigned long long at_latest_by, unsigned long long *pdelay) 2806 { 2807 int waiting_events; 2808 int credible_events; 2809 int deferred_events; 2810 enum fme_state return_value = FME_CREDIBLE; 2811 unsigned long long overall_delay = TIMEVAL_EVENTUALLY; 2812 unsigned long long arrow_delay; 2813 unsigned long long my_delay; 2814 struct event *ep2; 2815 struct bubble *bp; 2816 struct arrowlist *ap; 2817 2818 if (ep->cached_state & REQMNTS_CREDIBLE) { 2819 indent(); 2820 out(O_ALTFP|O_VERB|O_NONL, " REQMNTS ALREADY CREDIBLE "); 2821 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2822 out(O_ALTFP|O_VERB, NULL); 2823 return (FME_CREDIBLE); 2824 } 2825 if (ep->cached_state & REQMNTS_DISPROVED) { 2826 indent(); 2827 out(O_ALTFP|O_VERB|O_NONL, " REQMNTS ALREADY DISPROVED "); 2828 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2829 out(O_ALTFP|O_VERB, NULL); 2830 return (FME_DISPROVED); 2831 } 2832 if (ep->cached_state & REQMNTS_WAIT) { 2833 indent(); 2834 *pdelay = ep->cached_delay; 2835 out(O_ALTFP|O_VERB|O_NONL, " REQMNTS ALREADY WAIT "); 2836 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2837 out(O_ALTFP|O_VERB|O_NONL, ", wait for: "); 2838 ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); 2839 out(O_ALTFP|O_VERB, NULL); 2840 return (FME_WAIT); 2841 } 2842 stats_counter_bump(fmep->Rcallcount); 2843 indent_push(" R"); 2844 indent(); 2845 out(O_ALTFP|O_VERB|O_NONL, "->"); 2846 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2847 out(O_ALTFP|O_VERB|O_NONL, ", at latest by: "); 2848 ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); 2849 out(O_ALTFP|O_VERB, NULL); 2850 2851 if (ep->t == N_EREPORT) { 2852 if (ep->count == 0) { 2853 if (fmep->pull >= at_latest_by) { 2854 return_value = FME_DISPROVED; 2855 } else { 2856 ep->cached_delay = *pdelay = at_latest_by; 2857 return_value = FME_WAIT; 2858 } 2859 } 2860 2861 indent(); 2862 switch (return_value) { 2863 case FME_CREDIBLE: 2864 ep->cached_state |= REQMNTS_CREDIBLE; 2865 out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS CREDIBLE "); 2866 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2867 break; 2868 case FME_DISPROVED: 2869 ep->cached_state |= REQMNTS_DISPROVED; 2870 out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED "); 2871 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2872 break; 2873 case FME_WAIT: 2874 ep->cached_state |= REQMNTS_WAIT; 2875 out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS WAIT "); 2876 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2877 out(O_ALTFP|O_VERB|O_NONL, " to "); 2878 ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); 2879 break; 2880 default: 2881 out(O_DIE, "requirements_test: unexpected fme_state"); 2882 break; 2883 } 2884 out(O_ALTFP|O_VERB, NULL); 2885 indent_pop(); 2886 2887 return (return_value); 2888 } 2889 2890 /* this event is not a report, descend the tree */ 2891 for (bp = itree_next_bubble(ep, NULL); bp; 2892 bp = itree_next_bubble(ep, bp)) { 2893 int n; 2894 2895 if (bp->t != B_FROM) 2896 continue; 2897 2898 n = bp->nork; 2899 2900 credible_events = 0; 2901 waiting_events = 0; 2902 deferred_events = 0; 2903 arrow_delay = TIMEVAL_EVENTUALLY; 2904 /* 2905 * n is -1 for 'A' so adjust it. 2906 * XXX just count up the arrows for now. 2907 */ 2908 if (n < 0) { 2909 n = 0; 2910 for (ap = itree_next_arrow(bp, NULL); ap; 2911 ap = itree_next_arrow(bp, ap)) 2912 n++; 2913 indent(); 2914 out(O_ALTFP|O_VERB, " Bubble Counted N=%d", n); 2915 } else { 2916 indent(); 2917 out(O_ALTFP|O_VERB, " Bubble N=%d", n); 2918 } 2919 2920 if (n == 0) 2921 continue; 2922 if (!(bp->mark & (BUBBLE_ELIDED|BUBBLE_OK))) { 2923 for (ap = itree_next_arrow(bp, NULL); ap; 2924 ap = itree_next_arrow(bp, ap)) { 2925 ep2 = ap->arrowp->head->myevent; 2926 platform_set_payloadnvp(ep2->nvp); 2927 if (checkconstraints(fmep, ap->arrowp) == 0) { 2928 /* 2929 * if any arrow is invalidated by the 2930 * constraints, then we should elide the 2931 * whole bubble to be consistant with 2932 * the tree creation time behaviour 2933 */ 2934 bp->mark |= BUBBLE_ELIDED; 2935 platform_set_payloadnvp(NULL); 2936 break; 2937 } 2938 platform_set_payloadnvp(NULL); 2939 } 2940 } 2941 if (bp->mark & BUBBLE_ELIDED) 2942 continue; 2943 bp->mark |= BUBBLE_OK; 2944 for (ap = itree_next_arrow(bp, NULL); ap; 2945 ap = itree_next_arrow(bp, ap)) { 2946 ep2 = ap->arrowp->head->myevent; 2947 if (n <= credible_events) 2948 break; 2949 2950 ap->arrowp->mark |= REQMNTS_COUNTER; 2951 if (triggered(fmep, ep2, REQMNTS_COUNTER)) 2952 /* XXX adding max timevals! */ 2953 switch (requirements_test(fmep, ep2, 2954 at_latest_by + ap->arrowp->maxdelay, 2955 &my_delay)) { 2956 case FME_DEFERRED: 2957 deferred_events++; 2958 break; 2959 case FME_CREDIBLE: 2960 credible_events++; 2961 break; 2962 case FME_DISPROVED: 2963 break; 2964 case FME_WAIT: 2965 if (my_delay < arrow_delay) 2966 arrow_delay = my_delay; 2967 waiting_events++; 2968 break; 2969 default: 2970 out(O_DIE, 2971 "Bug in requirements_test."); 2972 } 2973 else 2974 deferred_events++; 2975 } 2976 indent(); 2977 out(O_ALTFP|O_VERB, " Credible: %d Waiting %d", 2978 credible_events + deferred_events, waiting_events); 2979 if (credible_events + deferred_events + waiting_events < n) { 2980 /* Can never meet requirements */ 2981 ep->cached_state |= REQMNTS_DISPROVED; 2982 indent(); 2983 out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS DISPROVED "); 2984 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 2985 out(O_ALTFP|O_VERB, NULL); 2986 indent_pop(); 2987 return (FME_DISPROVED); 2988 } 2989 if (credible_events + deferred_events < n) { 2990 /* will have to wait */ 2991 /* wait time is shortest known */ 2992 if (arrow_delay < overall_delay) 2993 overall_delay = arrow_delay; 2994 return_value = FME_WAIT; 2995 } else if (credible_events < n) { 2996 if (return_value != FME_WAIT) 2997 return_value = FME_DEFERRED; 2998 } 2999 } 3000 3001 /* 3002 * don't mark as FME_DEFERRED. If this event isn't reached by another 3003 * path, then this will be considered FME_CREDIBLE. But if it is 3004 * reached by a different path so the K-count is met, then might 3005 * get overridden by FME_WAIT or FME_DISPROVED. 3006 */ 3007 if (return_value == FME_WAIT) { 3008 ep->cached_state |= REQMNTS_WAIT; 3009 ep->cached_delay = *pdelay = overall_delay; 3010 } else if (return_value == FME_CREDIBLE) { 3011 ep->cached_state |= REQMNTS_CREDIBLE; 3012 } 3013 indent(); 3014 out(O_ALTFP|O_VERB|O_NONL, "<-REQMNTS %s ", 3015 fme_state2str(return_value)); 3016 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3017 out(O_ALTFP|O_VERB, NULL); 3018 indent_pop(); 3019 return (return_value); 3020 } 3021 3022 static enum fme_state 3023 causes_test(struct fme *fmep, struct event *ep, 3024 unsigned long long at_latest_by, unsigned long long *pdelay) 3025 { 3026 unsigned long long overall_delay = TIMEVAL_EVENTUALLY; 3027 unsigned long long my_delay; 3028 int credible_results = 0; 3029 int waiting_results = 0; 3030 enum fme_state fstate; 3031 struct event *tail_event; 3032 struct bubble *bp; 3033 struct arrowlist *ap; 3034 int k = 1; 3035 3036 stats_counter_bump(fmep->Ccallcount); 3037 indent_push(" C"); 3038 indent(); 3039 out(O_ALTFP|O_VERB|O_NONL, "->"); 3040 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3041 out(O_ALTFP|O_VERB, NULL); 3042 3043 for (bp = itree_next_bubble(ep, NULL); bp; 3044 bp = itree_next_bubble(ep, bp)) { 3045 if (bp->t != B_TO) 3046 continue; 3047 k = bp->nork; /* remember the K value */ 3048 for (ap = itree_next_arrow(bp, NULL); ap; 3049 ap = itree_next_arrow(bp, ap)) { 3050 int do_not_follow = 0; 3051 3052 /* 3053 * if we get to the same event multiple times 3054 * only worry about the first one. 3055 */ 3056 if (ap->arrowp->tail->myevent->cached_state & 3057 CAUSES_TESTED) { 3058 indent(); 3059 out(O_ALTFP|O_VERB|O_NONL, 3060 " causes test already run for "); 3061 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, 3062 ap->arrowp->tail->myevent); 3063 out(O_ALTFP|O_VERB, NULL); 3064 continue; 3065 } 3066 3067 /* 3068 * see if false constraint prevents us 3069 * from traversing this arrow 3070 */ 3071 platform_set_payloadnvp(ep->nvp); 3072 if (checkconstraints(fmep, ap->arrowp) == 0) 3073 do_not_follow = 1; 3074 platform_set_payloadnvp(NULL); 3075 if (do_not_follow) { 3076 indent(); 3077 out(O_ALTFP|O_VERB|O_NONL, 3078 " False arrow from "); 3079 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, 3080 ap->arrowp->tail->myevent); 3081 out(O_ALTFP|O_VERB, NULL); 3082 continue; 3083 } 3084 3085 ap->arrowp->tail->myevent->cached_state |= 3086 CAUSES_TESTED; 3087 tail_event = ap->arrowp->tail->myevent; 3088 fstate = hypothesise(fmep, tail_event, at_latest_by, 3089 &my_delay); 3090 3091 switch (fstate) { 3092 case FME_WAIT: 3093 if (my_delay < overall_delay) 3094 overall_delay = my_delay; 3095 waiting_results++; 3096 break; 3097 case FME_CREDIBLE: 3098 credible_results++; 3099 break; 3100 case FME_DISPROVED: 3101 break; 3102 default: 3103 out(O_DIE, "Bug in causes_test"); 3104 } 3105 } 3106 } 3107 /* compare against K */ 3108 if (credible_results + waiting_results < k) { 3109 indent(); 3110 out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES DISPROVED "); 3111 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3112 out(O_ALTFP|O_VERB, NULL); 3113 indent_pop(); 3114 return (FME_DISPROVED); 3115 } 3116 if (waiting_results != 0) { 3117 *pdelay = overall_delay; 3118 indent(); 3119 out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES WAIT "); 3120 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3121 out(O_ALTFP|O_VERB|O_NONL, " to "); 3122 ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); 3123 out(O_ALTFP|O_VERB, NULL); 3124 indent_pop(); 3125 return (FME_WAIT); 3126 } 3127 indent(); 3128 out(O_ALTFP|O_VERB|O_NONL, "<-CAUSES CREDIBLE "); 3129 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3130 out(O_ALTFP|O_VERB, NULL); 3131 indent_pop(); 3132 return (FME_CREDIBLE); 3133 } 3134 3135 static enum fme_state 3136 hypothesise(struct fme *fmep, struct event *ep, 3137 unsigned long long at_latest_by, unsigned long long *pdelay) 3138 { 3139 enum fme_state rtr, otr; 3140 unsigned long long my_delay; 3141 unsigned long long overall_delay = TIMEVAL_EVENTUALLY; 3142 3143 stats_counter_bump(fmep->Hcallcount); 3144 indent_push(" H"); 3145 indent(); 3146 out(O_ALTFP|O_VERB|O_NONL, "->"); 3147 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3148 out(O_ALTFP|O_VERB|O_NONL, ", at latest by: "); 3149 ptree_timeval(O_ALTFP|O_VERB|O_NONL, &at_latest_by); 3150 out(O_ALTFP|O_VERB, NULL); 3151 3152 rtr = requirements_test(fmep, ep, at_latest_by, &my_delay); 3153 if ((rtr == FME_WAIT) && (my_delay < overall_delay)) 3154 overall_delay = my_delay; 3155 if (rtr != FME_DISPROVED) { 3156 if (is_problem(ep->t)) { 3157 otr = effects_test(fmep, ep, at_latest_by, &my_delay); 3158 if (otr != FME_DISPROVED) { 3159 if (fmep->peek == 0 && ep->is_suspect++ == 0) { 3160 ep->suspects = fmep->suspects; 3161 fmep->suspects = ep; 3162 fmep->nsuspects++; 3163 if (!is_fault(ep->t)) 3164 fmep->nonfault++; 3165 } 3166 } 3167 } else 3168 otr = causes_test(fmep, ep, at_latest_by, &my_delay); 3169 if ((otr == FME_WAIT) && (my_delay < overall_delay)) 3170 overall_delay = my_delay; 3171 if ((otr != FME_DISPROVED) && 3172 ((rtr == FME_WAIT) || (otr == FME_WAIT))) 3173 *pdelay = overall_delay; 3174 } 3175 if (rtr == FME_DISPROVED) { 3176 indent(); 3177 out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED "); 3178 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3179 out(O_ALTFP|O_VERB, " (doesn't meet requirements)"); 3180 indent_pop(); 3181 return (FME_DISPROVED); 3182 } 3183 if ((otr == FME_DISPROVED) && is_problem(ep->t)) { 3184 indent(); 3185 out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED "); 3186 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3187 out(O_ALTFP|O_VERB, " (doesn't explain all reports)"); 3188 indent_pop(); 3189 return (FME_DISPROVED); 3190 } 3191 if (otr == FME_DISPROVED) { 3192 indent(); 3193 out(O_ALTFP|O_VERB|O_NONL, "<-DISPROVED "); 3194 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3195 out(O_ALTFP|O_VERB, " (causes are not credible)"); 3196 indent_pop(); 3197 return (FME_DISPROVED); 3198 } 3199 if ((rtr == FME_WAIT) || (otr == FME_WAIT)) { 3200 indent(); 3201 out(O_ALTFP|O_VERB|O_NONL, "<-WAIT "); 3202 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3203 out(O_ALTFP|O_VERB|O_NONL, " to "); 3204 ptree_timeval(O_ALTFP|O_VERB|O_NONL, &overall_delay); 3205 out(O_ALTFP|O_VERB, NULL); 3206 indent_pop(); 3207 return (FME_WAIT); 3208 } 3209 indent(); 3210 out(O_ALTFP|O_VERB|O_NONL, "<-CREDIBLE "); 3211 itree_pevent_brief(O_ALTFP|O_VERB|O_NONL, ep); 3212 out(O_ALTFP|O_VERB, NULL); 3213 indent_pop(); 3214 return (FME_CREDIBLE); 3215 } 3216 3217 /* 3218 * fme_istat_load -- reconstitute any persistent istats 3219 */ 3220 void 3221 fme_istat_load(fmd_hdl_t *hdl) 3222 { 3223 int sz; 3224 char *sbuf; 3225 char *ptr; 3226 3227 if ((sz = fmd_buf_size(hdl, NULL, WOBUF_ISTATS)) == 0) { 3228 out(O_ALTFP, "fme_istat_load: No stats"); 3229 return; 3230 } 3231 3232 sbuf = alloca(sz); 3233 3234 fmd_buf_read(hdl, NULL, WOBUF_ISTATS, sbuf, sz); 3235 3236 /* 3237 * pick apart the serialized stats 3238 * 3239 * format is: 3240 * <class-name>, '@', <path>, '\0', <value>, '\0' 3241 * for example: 3242 * "stat.first@stat0/path0\02\0stat.second@stat0/path1\023\0" 3243 * 3244 * since this is parsing our own serialized data, any parsing issues 3245 * are fatal, so we check for them all with ASSERT() below. 3246 */ 3247 ptr = sbuf; 3248 while (ptr < &sbuf[sz]) { 3249 char *sepptr; 3250 struct node *np; 3251 int val; 3252 3253 sepptr = strchr(ptr, '@'); 3254 ASSERT(sepptr != NULL); 3255 *sepptr = '\0'; 3256 3257 /* construct the event */ 3258 np = newnode(T_EVENT, NULL, 0); 3259 np->u.event.ename = newnode(T_NAME, NULL, 0); 3260 np->u.event.ename->u.name.t = N_STAT; 3261 np->u.event.ename->u.name.s = stable(ptr); 3262 np->u.event.ename->u.name.it = IT_ENAME; 3263 np->u.event.ename->u.name.last = np->u.event.ename; 3264 3265 ptr = sepptr + 1; 3266 ASSERT(ptr < &sbuf[sz]); 3267 ptr += strlen(ptr); 3268 ptr++; /* move past the '\0' separating path from value */ 3269 ASSERT(ptr < &sbuf[sz]); 3270 ASSERT(isdigit(*ptr)); 3271 val = atoi(ptr); 3272 ASSERT(val > 0); 3273 ptr += strlen(ptr); 3274 ptr++; /* move past the final '\0' for this entry */ 3275 3276 np->u.event.epname = pathstring2epnamenp(sepptr + 1); 3277 ASSERT(np->u.event.epname != NULL); 3278 3279 istat_bump(np, val); 3280 tree_free(np); 3281 } 3282 3283 istat_save(); 3284 } 3285