1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <signal.h> 27 #include <dirent.h> 28 #include <limits.h> 29 #include <alloca.h> 30 #include <unistd.h> 31 #include <stdio.h> 32 33 #include <fmd_string.h> 34 #include <fmd_alloc.h> 35 #include <fmd_module.h> 36 #include <fmd_error.h> 37 #include <fmd_conf.h> 38 #include <fmd_dispq.h> 39 #include <fmd_eventq.h> 40 #include <fmd_timerq.h> 41 #include <fmd_subr.h> 42 #include <fmd_thread.h> 43 #include <fmd_ustat.h> 44 #include <fmd_case.h> 45 #include <fmd_protocol.h> 46 #include <fmd_buf.h> 47 #include <fmd_ckpt.h> 48 #include <fmd_xprt.h> 49 #include <fmd_topo.h> 50 51 #include <fmd.h> 52 53 /* 54 * Template for per-module statistics installed by fmd on behalf of each active 55 * module. These are used to initialize the per-module mp->mod_stats below. 56 * NOTE: FMD_TYPE_STRING statistics should not be used here. If they are 57 * required in the future, the FMD_ADM_MODDSTAT service routine must change. 58 */ 59 static const fmd_modstat_t _fmd_modstat_tmpl = { 60 { 61 { "fmd.dispatched", FMD_TYPE_UINT64, "total events dispatched to module" }, 62 { "fmd.dequeued", FMD_TYPE_UINT64, "total events dequeued by module" }, 63 { "fmd.prdequeued", FMD_TYPE_UINT64, "protocol events dequeued by module" }, 64 { "fmd.dropped", FMD_TYPE_UINT64, "total events dropped on queue overflow" }, 65 { "fmd.wcnt", FMD_TYPE_UINT32, "count of events waiting on queue" }, 66 { "fmd.wtime", FMD_TYPE_TIME, "total wait time on queue" }, 67 { "fmd.wlentime", FMD_TYPE_TIME, "total wait length * time product" }, 68 { "fmd.wlastupdate", FMD_TYPE_TIME, "hrtime of last wait queue update" }, 69 { "fmd.dtime", FMD_TYPE_TIME, "total processing time after dequeue" }, 70 { "fmd.dlastupdate", FMD_TYPE_TIME, "hrtime of last event dequeue completion" }, 71 }, 72 { "fmd.loadtime", FMD_TYPE_TIME, "hrtime at which module was loaded" }, 73 { "fmd.snaptime", FMD_TYPE_TIME, "hrtime of last statistics snapshot" }, 74 { "fmd.accepted", FMD_TYPE_UINT64, "total events accepted by module" }, 75 { "fmd.debugdrop", FMD_TYPE_UINT64, "dropped debug messages" }, 76 { "fmd.memtotal", FMD_TYPE_SIZE, "total memory allocated by module" }, 77 { "fmd.memlimit", FMD_TYPE_SIZE, "limit on total memory allocated" }, 78 { "fmd.buftotal", FMD_TYPE_SIZE, "total buffer space used by module" }, 79 { "fmd.buflimit", FMD_TYPE_SIZE, "limit on total buffer space" }, 80 { "fmd.thrtotal", FMD_TYPE_UINT32, "total number of auxiliary threads" }, 81 { "fmd.thrlimit", FMD_TYPE_UINT32, "limit on number of auxiliary threads" }, 82 { "fmd.doorthrtotal", FMD_TYPE_UINT32, "total number of door server threads" }, 83 { "fmd.doorthrlimit", FMD_TYPE_UINT32, "limit on door server threads" }, 84 { "fmd.caseopen", FMD_TYPE_UINT64, "cases currently open by module" }, 85 { "fmd.casesolved", FMD_TYPE_UINT64, "total cases solved by module" }, 86 { "fmd.caseclosed", FMD_TYPE_UINT64, "total cases closed by module" }, 87 { "fmd.ckptsave", FMD_TYPE_BOOL, "save checkpoints for module" }, 88 { "fmd.ckptrestore", FMD_TYPE_BOOL, "restore checkpoints for module" }, 89 { "fmd.ckptzero", FMD_TYPE_BOOL, "zeroed checkpoint at startup" }, 90 { "fmd.ckptcnt", FMD_TYPE_UINT64, "number of checkpoints taken" }, 91 { "fmd.ckpttime", FMD_TYPE_TIME, "total checkpoint time" }, 92 { "fmd.xprtopen", FMD_TYPE_UINT32, "total number of open transports" }, 93 { "fmd.xprtlimit", FMD_TYPE_UINT32, "limit on number of open transports" }, 94 { "fmd.xprtqlimit", FMD_TYPE_UINT32, "limit on transport event queue length" }, 95 }; 96 97 static void 98 fmd_module_start(void *arg) 99 { 100 fmd_module_t *mp = arg; 101 fmd_event_t *ep; 102 fmd_xprt_t *xp; 103 104 (void) pthread_mutex_lock(&mp->mod_lock); 105 106 if (mp->mod_ops->mop_init(mp) != 0 || mp->mod_error != 0) { 107 if (mp->mod_error == 0) 108 mp->mod_error = errno ? errno : EFMD_MOD_INIT; 109 goto out; 110 } 111 112 if (fmd.d_mod_event != NULL) 113 fmd_eventq_insert_at_head(mp->mod_queue, fmd.d_mod_event); 114 115 ASSERT(MUTEX_HELD(&mp->mod_lock)); 116 mp->mod_flags |= FMD_MOD_INIT; 117 118 (void) pthread_cond_broadcast(&mp->mod_cv); 119 (void) pthread_mutex_unlock(&mp->mod_lock); 120 121 /* 122 * If the module opened any transports while executing _fmd_init(), 123 * they are suspended. Now that _fmd_init() is done, wake them up. 124 */ 125 for (xp = fmd_list_next(&mp->mod_transports); 126 xp != NULL; xp = fmd_list_next(xp)) 127 fmd_xprt_xresume(xp, FMD_XPRT_ISUSPENDED); 128 129 /* 130 * Wait for events to arrive by checking mod_error and then sleeping in 131 * fmd_eventq_delete(). If a NULL event is returned, the eventq has 132 * been aborted and we continue on to call fini and exit the thread. 133 */ 134 while ((ep = fmd_eventq_delete(mp->mod_queue)) != NULL) { 135 /* 136 * If the module has failed, discard the event without ever 137 * passing it to the module and go back to sleep. 138 */ 139 if (mp->mod_error != 0) { 140 fmd_eventq_done(mp->mod_queue); 141 fmd_event_rele(ep); 142 continue; 143 } 144 145 mp->mod_ops->mop_dispatch(mp, ep); 146 fmd_eventq_done(mp->mod_queue); 147 148 /* 149 * Once mop_dispatch() is complete, grab the lock and perform 150 * any event-specific post-processing. Finally, if necessary, 151 * checkpoint the state of the module after this event. 152 */ 153 fmd_module_lock(mp); 154 155 if (FMD_EVENT_TYPE(ep) == FMD_EVT_CLOSE) 156 fmd_case_delete(FMD_EVENT_DATA(ep)); 157 158 fmd_ckpt_save(mp); 159 fmd_module_unlock(mp); 160 fmd_event_rele(ep); 161 } 162 163 if (mp->mod_ops->mop_fini(mp) != 0 && mp->mod_error == 0) 164 mp->mod_error = errno ? errno : EFMD_MOD_FINI; 165 166 (void) pthread_mutex_lock(&mp->mod_lock); 167 mp->mod_flags |= FMD_MOD_FINI; 168 169 out: 170 (void) pthread_cond_broadcast(&mp->mod_cv); 171 (void) pthread_mutex_unlock(&mp->mod_lock); 172 } 173 174 fmd_module_t * 175 fmd_module_create(const char *path, const fmd_modops_t *ops) 176 { 177 fmd_module_t *mp = fmd_zalloc(sizeof (fmd_module_t), FMD_SLEEP); 178 179 char buf[PATH_MAX], *p; 180 const char *dir; 181 uint32_t limit; 182 int err; 183 184 (void) strlcpy(buf, fmd_strbasename(path), sizeof (buf)); 185 if ((p = strrchr(buf, '.')) != NULL && strcmp(p, ".so") == 0) 186 *p = '\0'; /* strip trailing .so from any module name */ 187 188 (void) pthread_mutex_init(&mp->mod_lock, NULL); 189 (void) pthread_cond_init(&mp->mod_cv, NULL); 190 (void) pthread_mutex_init(&mp->mod_stats_lock, NULL); 191 192 mp->mod_name = fmd_strdup(buf, FMD_SLEEP); 193 mp->mod_path = fmd_strdup(path, FMD_SLEEP); 194 mp->mod_ops = ops; 195 mp->mod_ustat = fmd_ustat_create(); 196 197 (void) fmd_conf_getprop(fmd.d_conf, "ckpt.dir", &dir); 198 (void) snprintf(buf, sizeof (buf), 199 "%s/%s/%s", fmd.d_rootdir, dir, mp->mod_name); 200 201 mp->mod_ckpt = fmd_strdup(buf, FMD_SLEEP); 202 203 (void) fmd_conf_getprop(fmd.d_conf, "client.tmrlim", &limit); 204 mp->mod_timerids = fmd_idspace_create(mp->mod_name, 1, limit + 1); 205 mp->mod_threads = fmd_idspace_create(mp->mod_name, 0, INT_MAX); 206 207 fmd_buf_hash_create(&mp->mod_bufs); 208 fmd_serd_hash_create(&mp->mod_serds); 209 210 mp->mod_topo_current = fmd_topo_hold(); 211 212 (void) pthread_mutex_lock(&fmd.d_mod_lock); 213 fmd_list_append(&fmd.d_mod_list, mp); 214 (void) pthread_mutex_unlock(&fmd.d_mod_lock); 215 216 /* 217 * Initialize the module statistics that are kept on its behalf by fmd. 218 * These are set up using a template defined at the top of this file. 219 */ 220 if ((mp->mod_stats = (fmd_modstat_t *)fmd_ustat_insert(mp->mod_ustat, 221 FMD_USTAT_ALLOC, sizeof (_fmd_modstat_tmpl) / sizeof (fmd_stat_t), 222 (fmd_stat_t *)&_fmd_modstat_tmpl, NULL)) == NULL) { 223 fmd_error(EFMD_MOD_INIT, "failed to initialize per-mod stats"); 224 fmd_module_destroy(mp); 225 return (NULL); 226 } 227 228 if (nv_alloc_init(&mp->mod_nva_sleep, 229 &fmd_module_nva_ops_sleep, mp) != 0 || 230 nv_alloc_init(&mp->mod_nva_nosleep, 231 &fmd_module_nva_ops_nosleep, mp) != 0) { 232 fmd_error(EFMD_MOD_INIT, "failed to initialize nvlist " 233 "allocation routines"); 234 fmd_module_destroy(mp); 235 return (NULL); 236 } 237 238 (void) fmd_conf_getprop(fmd.d_conf, "client.evqlim", &limit); 239 240 mp->mod_queue = fmd_eventq_create(mp, 241 &mp->mod_stats->ms_evqstat, &mp->mod_stats_lock, limit); 242 243 (void) fmd_conf_getprop(fmd.d_conf, "client.memlim", 244 &mp->mod_stats->ms_memlimit.fmds_value.ui64); 245 246 (void) fmd_conf_getprop(fmd.d_conf, "client.buflim", 247 &mp->mod_stats->ms_buflimit.fmds_value.ui64); 248 249 (void) fmd_conf_getprop(fmd.d_conf, "client.thrlim", 250 &mp->mod_stats->ms_thrlimit.fmds_value.ui32); 251 252 (void) fmd_conf_getprop(fmd.d_conf, "client.doorthrlim", 253 &mp->mod_stats->ms_doorthrlimit.fmds_value.ui32); 254 255 (void) fmd_conf_getprop(fmd.d_conf, "client.xprtlim", 256 &mp->mod_stats->ms_xprtlimit.fmds_value.ui32); 257 258 (void) fmd_conf_getprop(fmd.d_conf, "client.xprtqlim", 259 &mp->mod_stats->ms_xprtqlimit.fmds_value.ui32); 260 261 (void) fmd_conf_getprop(fmd.d_conf, "ckpt.save", 262 &mp->mod_stats->ms_ckpt_save.fmds_value.bool); 263 264 (void) fmd_conf_getprop(fmd.d_conf, "ckpt.restore", 265 &mp->mod_stats->ms_ckpt_restore.fmds_value.bool); 266 267 (void) fmd_conf_getprop(fmd.d_conf, "ckpt.zero", 268 &mp->mod_stats->ms_ckpt_zeroed.fmds_value.bool); 269 270 if (mp->mod_stats->ms_ckpt_zeroed.fmds_value.bool) 271 fmd_ckpt_delete(mp); /* blow away any pre-existing checkpoint */ 272 273 /* 274 * Place a hold on the module and grab the module lock before creating 275 * the module's thread to ensure that it cannot destroy the module and 276 * that it cannot call ops->mop_init() before we're done setting up. 277 * NOTE: from now on, we must use fmd_module_rele() for error paths. 278 */ 279 fmd_module_hold(mp); 280 (void) pthread_mutex_lock(&mp->mod_lock); 281 mp->mod_stats->ms_loadtime.fmds_value.ui64 = gethrtime(); 282 mp->mod_thread = fmd_thread_create(mp, fmd_module_start, mp); 283 284 if (mp->mod_thread == NULL) { 285 fmd_error(EFMD_MOD_THR, "failed to create thread for %s", path); 286 (void) pthread_mutex_unlock(&mp->mod_lock); 287 fmd_module_rele(mp); 288 return (NULL); 289 } 290 291 /* 292 * At this point our module structure is nearly finished and its thread 293 * is starting execution in fmd_module_start() above, which will begin 294 * by blocking for mod_lock. We now drop mod_lock and wait for either 295 * FMD_MOD_INIT or mod_error to be set before proceeding. 296 */ 297 while (!(mp->mod_flags & FMD_MOD_INIT) && mp->mod_error == 0) 298 (void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock); 299 300 /* 301 * If the module has failed to initialize, copy its errno to the errno 302 * of the caller, wait for it to unload, and then destroy it. 303 */ 304 if (!(mp->mod_flags & FMD_MOD_INIT)) { 305 err = mp->mod_error; 306 (void) pthread_mutex_unlock(&mp->mod_lock); 307 308 if (err == EFMD_CKPT_INVAL) 309 fmd_ckpt_rename(mp); /* move aside bad checkpoint */ 310 311 /* 312 * If we're in the background, keep quiet about failure to 313 * load because a handle wasn't registered: this is a module's 314 * way of telling us it didn't want to be loaded for some 315 * reason related to system configuration. If we're in the 316 * foreground we log this too in order to inform developers. 317 */ 318 if (fmd.d_fg || err != EFMD_HDL_INIT) { 319 fmd_error(EFMD_MOD_INIT, "failed to load %s: %s\n", 320 path, fmd_strerror(err)); 321 } 322 323 fmd_module_unload(mp); 324 fmd_module_rele(mp); 325 326 (void) fmd_set_errno(err); 327 return (NULL); 328 } 329 330 (void) pthread_cond_broadcast(&mp->mod_cv); 331 (void) pthread_mutex_unlock(&mp->mod_lock); 332 333 fmd_dprintf(FMD_DBG_MOD, "loaded module %s\n", mp->mod_name); 334 return (mp); 335 } 336 337 static void 338 fmd_module_untimeout(fmd_idspace_t *ids, id_t id, fmd_module_t *mp) 339 { 340 void *arg = fmd_timerq_remove(fmd.d_timers, ids, id); 341 342 /* 343 * The root module calls fmd_timerq_install() directly and must take 344 * responsibility for any cleanup of timer arguments that is required. 345 * All other modules use fmd_modtimer_t's as the arg data; free them. 346 */ 347 if (arg != NULL && mp != fmd.d_rmod) 348 fmd_free(arg, sizeof (fmd_modtimer_t)); 349 } 350 351 void 352 fmd_module_unload(fmd_module_t *mp) 353 { 354 fmd_modtopo_t *mtp; 355 356 (void) pthread_mutex_lock(&mp->mod_lock); 357 358 if (mp->mod_flags & FMD_MOD_QUIT) { 359 (void) pthread_mutex_unlock(&mp->mod_lock); 360 return; /* module is already unloading */ 361 } 362 363 ASSERT(mp->mod_thread != NULL); 364 mp->mod_flags |= FMD_MOD_QUIT; 365 366 if (mp->mod_queue != NULL) 367 fmd_eventq_abort(mp->mod_queue); 368 369 /* 370 * Wait for the module's thread to stop processing events and call 371 * _fmd_fini() and exit. We do this by waiting for FMD_MOD_FINI to be 372 * set if INIT was set, and then attempting to join with the thread. 373 */ 374 while ((mp->mod_flags & (FMD_MOD_INIT | FMD_MOD_FINI)) == FMD_MOD_INIT) 375 (void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock); 376 377 (void) pthread_cond_broadcast(&mp->mod_cv); 378 (void) pthread_mutex_unlock(&mp->mod_lock); 379 380 fmd_thread_destroy(mp->mod_thread, FMD_THREAD_JOIN); 381 mp->mod_thread = NULL; 382 383 /* 384 * Once the module is no longer active, clean up any data structures 385 * that are only required when the module is loaded. 386 */ 387 fmd_module_lock(mp); 388 389 if (mp->mod_timerids != NULL) { 390 fmd_idspace_apply(mp->mod_timerids, 391 (void (*)())fmd_module_untimeout, mp); 392 393 fmd_idspace_destroy(mp->mod_timerids); 394 mp->mod_timerids = NULL; 395 } 396 397 if (mp->mod_threads != NULL) { 398 fmd_idspace_destroy(mp->mod_threads); 399 mp->mod_threads = NULL; 400 } 401 402 (void) fmd_buf_hash_destroy(&mp->mod_bufs); 403 fmd_serd_hash_destroy(&mp->mod_serds); 404 405 while ((mtp = fmd_list_next(&mp->mod_topolist)) != NULL) { 406 fmd_list_delete(&mp->mod_topolist, mtp); 407 fmd_topo_rele(mtp->mt_topo); 408 fmd_free(mtp, sizeof (fmd_modtopo_t)); 409 } 410 411 fmd_module_unlock(mp); 412 fmd_dprintf(FMD_DBG_MOD, "unloaded module %s\n", mp->mod_name); 413 } 414 415 void 416 fmd_module_destroy(fmd_module_t *mp) 417 { 418 fmd_conf_formal_t *cfp = mp->mod_argv; 419 int i; 420 421 ASSERT(MUTEX_HELD(&mp->mod_lock)); 422 423 if (mp->mod_thread != NULL) { 424 (void) pthread_mutex_unlock(&mp->mod_lock); 425 fmd_module_unload(mp); 426 (void) pthread_mutex_lock(&mp->mod_lock); 427 } 428 429 ASSERT(mp->mod_thread == NULL); 430 ASSERT(mp->mod_refs == 0); 431 432 /* 433 * Once the module's thread is dead, we can safely remove the module 434 * from global visibility and by removing it from d_mod_list. Any 435 * modhash pointers are already gone by virtue of mod_refs being zero. 436 */ 437 (void) pthread_mutex_lock(&fmd.d_mod_lock); 438 fmd_list_delete(&fmd.d_mod_list, mp); 439 (void) pthread_mutex_unlock(&fmd.d_mod_lock); 440 441 if (mp->mod_topo_current != NULL) 442 fmd_topo_rele(mp->mod_topo_current); 443 444 if (mp->mod_nva_sleep.nva_ops != NULL) 445 nv_alloc_fini(&mp->mod_nva_sleep); 446 if (mp->mod_nva_nosleep.nva_ops != NULL) 447 nv_alloc_fini(&mp->mod_nva_nosleep); 448 449 /* 450 * Once the module is no longer processing events and no longer visible 451 * through any program data structures, we can free all of its content. 452 */ 453 if (mp->mod_queue != NULL) { 454 fmd_eventq_destroy(mp->mod_queue); 455 mp->mod_queue = NULL; 456 } 457 458 if (mp->mod_ustat != NULL) { 459 (void) pthread_mutex_lock(&mp->mod_stats_lock); 460 fmd_ustat_destroy(mp->mod_ustat); 461 mp->mod_ustat = NULL; 462 mp->mod_stats = NULL; 463 (void) pthread_mutex_unlock(&mp->mod_stats_lock); 464 } 465 466 for (i = 0; i < mp->mod_dictc; i++) 467 fm_dc_closedict(mp->mod_dictv[i]); 468 469 fmd_free(mp->mod_dictv, sizeof (struct fm_dc_handle *) * mp->mod_dictc); 470 471 if (mp->mod_conf != NULL) 472 fmd_conf_close(mp->mod_conf); 473 474 for (i = 0; i < mp->mod_argc; i++, cfp++) { 475 fmd_strfree((char *)cfp->cf_name); 476 fmd_strfree((char *)cfp->cf_default); 477 } 478 479 fmd_free(mp->mod_argv, sizeof (fmd_conf_formal_t) * mp->mod_argc); 480 481 fmd_strfree(mp->mod_name); 482 fmd_strfree(mp->mod_path); 483 fmd_strfree(mp->mod_ckpt); 484 nvlist_free(mp->mod_fmri); 485 fmd_strfree(mp->mod_vers); 486 487 fmd_free(mp, sizeof (fmd_module_t)); 488 } 489 490 /* 491 * fmd_module_error() is called after the stack is unwound from a call to 492 * fmd_module_abort() to indicate that the module has failed. The mod_error 493 * field is used to hold the error code of the first fatal error to the module. 494 * An EFMD_MOD_FAIL event is then created and sent to fmd-self-diagnosis. 495 */ 496 static void 497 fmd_module_error(fmd_module_t *mp, int err) 498 { 499 fmd_event_t *e; 500 nvlist_t *nvl; 501 char *class; 502 503 ASSERT(MUTEX_HELD(&mp->mod_lock)); 504 ASSERT(err != 0); 505 506 TRACE((FMD_DBG_MOD, "module aborted: err=%d", err)); 507 508 if (mp->mod_error == 0) 509 mp->mod_error = err; 510 511 if (mp == fmd.d_self) 512 return; /* do not post event if fmd.d_self itself fails */ 513 514 /* 515 * Send an error indicating the module has now failed to fmd.d_self. 516 * Since the error causing the failure has already been logged by 517 * fmd_api_xerror(), we do not need to bother logging this event. 518 * It only exists for the purpose of notifying fmd.d_self that it can 519 * close the case associated with this module because mod_error is set. 520 */ 521 nvl = fmd_protocol_moderror(mp, EFMD_MOD_FAIL, fmd_strerror(err)); 522 (void) nvlist_lookup_string(nvl, FM_CLASS, &class); 523 e = fmd_event_create(FMD_EVT_PROTOCOL, FMD_HRT_NOW, nvl, class); 524 fmd_dispq_dispatch(fmd.d_disp, e, class); 525 } 526 527 void 528 fmd_module_dispatch(fmd_module_t *mp, fmd_event_t *e) 529 { 530 const fmd_hdl_ops_t *ops = mp->mod_info->fmdi_ops; 531 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 532 fmd_hdl_t *hdl = (fmd_hdl_t *)mp; 533 fmd_modtimer_t *t; 534 fmd_topo_t *old_topo; 535 volatile int err; 536 537 /* 538 * Before calling the appropriate module callback, enter the module as 539 * if by fmd_module_enter() and establish mod_jmpbuf for any aborts. 540 */ 541 (void) pthread_mutex_lock(&mp->mod_lock); 542 543 ASSERT(!(mp->mod_flags & FMD_MOD_BUSY)); 544 mp->mod_flags |= FMD_MOD_BUSY; 545 546 if ((err = setjmp(mp->mod_jmpbuf)) != 0) { 547 (void) pthread_mutex_lock(&mp->mod_lock); 548 fmd_module_error(mp, err); 549 } 550 551 (void) pthread_cond_broadcast(&mp->mod_cv); 552 (void) pthread_mutex_unlock(&mp->mod_lock); 553 554 /* 555 * If it's the first time through fmd_module_dispatch(), call the 556 * appropriate module callback based on the event type. If the call 557 * triggers an fmd_module_abort(), we'll return to setjmp() above with 558 * err set to a non-zero value and then bypass this before exiting. 559 */ 560 if (err == 0) { 561 switch (ep->ev_type) { 562 case FMD_EVT_PROTOCOL: 563 ops->fmdo_recv(hdl, e, ep->ev_nvl, ep->ev_data); 564 break; 565 case FMD_EVT_TIMEOUT: 566 t = ep->ev_data; 567 ASSERT(t->mt_mod == mp); 568 ops->fmdo_timeout(hdl, t->mt_id, t->mt_arg); 569 break; 570 case FMD_EVT_CLOSE: 571 ops->fmdo_close(hdl, ep->ev_data); 572 break; 573 case FMD_EVT_STATS: 574 ops->fmdo_stats(hdl); 575 fmd_modstat_publish(mp); 576 break; 577 case FMD_EVT_GC: 578 ops->fmdo_gc(hdl); 579 break; 580 case FMD_EVT_PUBLISH: 581 fmd_case_publish(ep->ev_data, FMD_CASE_CURRENT); 582 break; 583 case FMD_EVT_TOPO: 584 /* 585 * Save the pointer to the old topology and update 586 * the pointer with the updated topology. 587 * With this approach, other threads that reference the 588 * topology either 589 * - finishes with old topology since 590 * it is released after updating 591 * mod_topo_current. 592 * - or is blocked while mod_topo_current is updated. 593 */ 594 old_topo = mp->mod_topo_current; 595 fmd_module_lock(mp); 596 mp->mod_topo_current = (fmd_topo_t *)ep->ev_data; 597 fmd_topo_addref(mp->mod_topo_current); 598 fmd_module_unlock(mp); 599 fmd_topo_rele(old_topo); 600 ops->fmdo_topo(hdl, mp->mod_topo_current->ft_hdl); 601 break; 602 } 603 } 604 605 fmd_module_exit(mp); 606 } 607 608 int 609 fmd_module_transport(fmd_module_t *mp, fmd_xprt_t *xp, fmd_event_t *e) 610 { 611 fmd_event_impl_t *ep = (fmd_event_impl_t *)e; 612 fmd_hdl_t *hdl = (fmd_hdl_t *)mp; 613 614 ASSERT(ep->ev_type == FMD_EVT_PROTOCOL); 615 return (mp->mod_info->fmdi_ops->fmdo_send(hdl, xp, e, ep->ev_nvl)); 616 } 617 618 void 619 fmd_module_timeout(fmd_modtimer_t *t, id_t id, hrtime_t hrt) 620 { 621 fmd_event_t *e; 622 623 t->mt_id = id; /* save id in case we need to delete from eventq */ 624 e = fmd_event_create(FMD_EVT_TIMEOUT, hrt, NULL, t); 625 fmd_eventq_insert_at_time(t->mt_mod->mod_queue, e); 626 } 627 628 /* 629 * Garbage collection is initiated by a timer callback once per day or at the 630 * request of fmadm. Purge old SERD entries and send the module a GC event. 631 */ 632 void 633 fmd_module_gc(fmd_module_t *mp) 634 { 635 fmd_hdl_info_t *info; 636 fmd_event_t *e; 637 638 if (mp->mod_error != 0) 639 return; /* do not do anything if the module has failed */ 640 641 fmd_module_lock(mp); 642 643 if ((info = mp->mod_info) != NULL) { 644 fmd_serd_hash_apply(&mp->mod_serds, 645 (fmd_serd_eng_f *)fmd_serd_eng_gc, NULL); 646 } 647 648 fmd_module_unlock(mp); 649 650 if (info != NULL) { 651 e = fmd_event_create(FMD_EVT_GC, FMD_HRT_NOW, NULL, NULL); 652 fmd_eventq_insert_at_head(mp->mod_queue, e); 653 } 654 } 655 656 void 657 fmd_module_trygc(fmd_module_t *mp) 658 { 659 if (fmd_module_trylock(mp)) { 660 fmd_serd_hash_apply(&mp->mod_serds, 661 (fmd_serd_eng_f *)fmd_serd_eng_gc, NULL); 662 fmd_module_unlock(mp); 663 } 664 } 665 666 int 667 fmd_module_contains(fmd_module_t *mp, fmd_event_t *ep) 668 { 669 fmd_case_t *cp; 670 int rv = 0; 671 672 fmd_module_lock(mp); 673 674 for (cp = fmd_list_next(&mp->mod_cases); 675 cp != NULL; cp = fmd_list_next(cp)) { 676 if ((rv = fmd_case_contains(cp, ep)) != 0) 677 break; 678 } 679 680 if (rv == 0) 681 rv = fmd_serd_hash_contains(&mp->mod_serds, ep); 682 683 fmd_module_unlock(mp); 684 return (rv); 685 } 686 687 void 688 fmd_module_setdirty(fmd_module_t *mp) 689 { 690 (void) pthread_mutex_lock(&mp->mod_lock); 691 mp->mod_flags |= FMD_MOD_MDIRTY; 692 (void) pthread_mutex_unlock(&mp->mod_lock); 693 } 694 695 void 696 fmd_module_setcdirty(fmd_module_t *mp) 697 { 698 (void) pthread_mutex_lock(&mp->mod_lock); 699 mp->mod_flags |= FMD_MOD_CDIRTY; 700 (void) pthread_mutex_unlock(&mp->mod_lock); 701 } 702 703 void 704 fmd_module_clrdirty(fmd_module_t *mp) 705 { 706 fmd_case_t *cp; 707 708 fmd_module_lock(mp); 709 710 if (mp->mod_flags & FMD_MOD_CDIRTY) { 711 for (cp = fmd_list_next(&mp->mod_cases); 712 cp != NULL; cp = fmd_list_next(cp)) 713 fmd_case_clrdirty(cp); 714 } 715 716 if (mp->mod_flags & FMD_MOD_MDIRTY) { 717 fmd_serd_hash_apply(&mp->mod_serds, 718 (fmd_serd_eng_f *)fmd_serd_eng_clrdirty, NULL); 719 fmd_buf_hash_commit(&mp->mod_bufs); 720 } 721 722 (void) pthread_mutex_lock(&mp->mod_lock); 723 mp->mod_flags &= ~(FMD_MOD_MDIRTY | FMD_MOD_CDIRTY); 724 (void) pthread_mutex_unlock(&mp->mod_lock); 725 726 fmd_module_unlock(mp); 727 } 728 729 void 730 fmd_module_commit(fmd_module_t *mp) 731 { 732 fmd_case_t *cp; 733 734 ASSERT(fmd_module_locked(mp)); 735 736 if (mp->mod_flags & FMD_MOD_CDIRTY) { 737 for (cp = fmd_list_next(&mp->mod_cases); 738 cp != NULL; cp = fmd_list_next(cp)) 739 fmd_case_commit(cp); 740 } 741 742 if (mp->mod_flags & FMD_MOD_MDIRTY) { 743 fmd_serd_hash_apply(&mp->mod_serds, 744 (fmd_serd_eng_f *)fmd_serd_eng_commit, NULL); 745 fmd_buf_hash_commit(&mp->mod_bufs); 746 } 747 748 (void) pthread_mutex_lock(&mp->mod_lock); 749 mp->mod_flags &= ~(FMD_MOD_MDIRTY | FMD_MOD_CDIRTY); 750 (void) pthread_mutex_unlock(&mp->mod_lock); 751 752 mp->mod_gen++; 753 } 754 755 void 756 fmd_module_lock(fmd_module_t *mp) 757 { 758 pthread_t self = pthread_self(); 759 760 (void) pthread_mutex_lock(&mp->mod_lock); 761 762 while (mp->mod_flags & FMD_MOD_LOCK) { 763 if (mp->mod_owner != self) 764 (void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock); 765 else 766 fmd_panic("recursive module lock of %p\n", (void *)mp); 767 } 768 769 mp->mod_owner = self; 770 mp->mod_flags |= FMD_MOD_LOCK; 771 772 (void) pthread_cond_broadcast(&mp->mod_cv); 773 (void) pthread_mutex_unlock(&mp->mod_lock); 774 } 775 776 void 777 fmd_module_unlock(fmd_module_t *mp) 778 { 779 (void) pthread_mutex_lock(&mp->mod_lock); 780 781 ASSERT(mp->mod_owner == pthread_self()); 782 ASSERT(mp->mod_flags & FMD_MOD_LOCK); 783 784 mp->mod_owner = 0; 785 mp->mod_flags &= ~FMD_MOD_LOCK; 786 787 (void) pthread_cond_broadcast(&mp->mod_cv); 788 (void) pthread_mutex_unlock(&mp->mod_lock); 789 } 790 791 int 792 fmd_module_trylock(fmd_module_t *mp) 793 { 794 (void) pthread_mutex_lock(&mp->mod_lock); 795 796 if (mp->mod_flags & FMD_MOD_LOCK) { 797 (void) pthread_mutex_unlock(&mp->mod_lock); 798 return (0); 799 } 800 801 mp->mod_owner = pthread_self(); 802 mp->mod_flags |= FMD_MOD_LOCK; 803 804 (void) pthread_cond_broadcast(&mp->mod_cv); 805 (void) pthread_mutex_unlock(&mp->mod_lock); 806 807 return (1); 808 } 809 810 int 811 fmd_module_locked(fmd_module_t *mp) 812 { 813 return ((mp->mod_flags & FMD_MOD_LOCK) && 814 mp->mod_owner == pthread_self()); 815 } 816 817 int 818 fmd_module_enter(fmd_module_t *mp, void (*func)(fmd_hdl_t *)) 819 { 820 volatile int err; 821 822 (void) pthread_mutex_lock(&mp->mod_lock); 823 824 ASSERT(!(mp->mod_flags & FMD_MOD_BUSY)); 825 mp->mod_flags |= FMD_MOD_BUSY; 826 827 if ((err = setjmp(mp->mod_jmpbuf)) != 0) { 828 (void) pthread_mutex_lock(&mp->mod_lock); 829 fmd_module_error(mp, err); 830 } 831 832 (void) pthread_cond_broadcast(&mp->mod_cv); 833 (void) pthread_mutex_unlock(&mp->mod_lock); 834 835 /* 836 * If it's the first time through fmd_module_enter(), call the provided 837 * function on the module. If no fmd_module_abort() results, we will 838 * fall through and return zero. Otherwise we'll longjmp with an err, 839 * return to the setjmp() above, and return the error to our caller. 840 */ 841 if (err == 0 && func != NULL) 842 (*func)((fmd_hdl_t *)mp); 843 844 return (err); 845 } 846 847 void 848 fmd_module_exit(fmd_module_t *mp) 849 { 850 (void) pthread_mutex_lock(&mp->mod_lock); 851 852 ASSERT(mp->mod_flags & FMD_MOD_BUSY); 853 mp->mod_flags &= ~FMD_MOD_BUSY; 854 855 (void) pthread_cond_broadcast(&mp->mod_cv); 856 (void) pthread_mutex_unlock(&mp->mod_lock); 857 } 858 859 /* 860 * If the client.error policy has been set by a developer, stop or dump core 861 * based on the policy; if we stop and are resumed we'll continue and execute 862 * the default behavior to discard events in fmd_module_start(). If the caller 863 * is the primary module thread, we reach this state by longjmp'ing back to 864 * fmd_module_enter(), above. If the caller is an auxiliary thread, we cancel 865 * ourself and arrange for the primary thread to call fmd_module_abort(). 866 */ 867 void 868 fmd_module_abort(fmd_module_t *mp, int err) 869 { 870 uint_t policy = FMD_CERROR_UNLOAD; 871 pthread_t tid = pthread_self(); 872 873 (void) fmd_conf_getprop(fmd.d_conf, "client.error", &policy); 874 875 if (policy == FMD_CERROR_STOP) { 876 fmd_error(err, "stopping after %s in client %s (%p)\n", 877 fmd_errclass(err), mp->mod_name, (void *)mp); 878 (void) raise(SIGSTOP); 879 } else if (policy == FMD_CERROR_ABORT) { 880 fmd_panic("aborting due to %s in client %s (%p)\n", 881 fmd_errclass(err), mp->mod_name, (void *)mp); 882 } 883 884 /* 885 * If the caller is an auxiliary thread, cancel the current thread. We 886 * prefer to cancel because it affords developers the option of using 887 * the pthread_cleanup* APIs. If cancellations have been disabled, 888 * fall through to forcing the current thread to exit. In either case 889 * we update mod_error (if zero) to enter the failed state. Once that 890 * is set, further events received by the module will be discarded. 891 * 892 * We also set the FMD_MOD_FAIL bit, indicating an unrecoverable error. 893 * When an auxiliary thread fails, the module is left in a delicate 894 * state where it is likely not able to continue execution (even to 895 * execute its _fmd_fini() routine) because our caller may hold locks 896 * that are private to the module and can no longer be released. The 897 * FMD_MOD_FAIL bit forces fmd_api_module_lock() to abort if any other 898 * module threads reach an API call, in an attempt to get them to exit. 899 */ 900 if (tid != mp->mod_thread->thr_tid) { 901 (void) pthread_mutex_lock(&mp->mod_lock); 902 903 if (mp->mod_error == 0) 904 mp->mod_error = err; 905 906 mp->mod_flags |= FMD_MOD_FAIL; 907 (void) pthread_mutex_unlock(&mp->mod_lock); 908 909 (void) pthread_cancel(tid); 910 pthread_exit(NULL); 911 } 912 913 ASSERT(mp->mod_flags & FMD_MOD_BUSY); 914 longjmp(mp->mod_jmpbuf, err); 915 } 916 917 void 918 fmd_module_hold(fmd_module_t *mp) 919 { 920 (void) pthread_mutex_lock(&mp->mod_lock); 921 922 TRACE((FMD_DBG_MOD, "hold %p (%s/%u)\n", 923 (void *)mp, mp->mod_name, mp->mod_refs)); 924 925 mp->mod_refs++; 926 ASSERT(mp->mod_refs != 0); 927 928 (void) pthread_mutex_unlock(&mp->mod_lock); 929 } 930 931 void 932 fmd_module_rele(fmd_module_t *mp) 933 { 934 (void) pthread_mutex_lock(&mp->mod_lock); 935 936 TRACE((FMD_DBG_MOD, "rele %p (%s/%u)\n", 937 (void *)mp, mp->mod_name, mp->mod_refs)); 938 939 ASSERT(mp->mod_refs != 0); 940 941 if (--mp->mod_refs == 0) 942 fmd_module_destroy(mp); 943 else 944 (void) pthread_mutex_unlock(&mp->mod_lock); 945 } 946 947 /* 948 * Wrapper around libdiagcode's fm_dc_opendict() to load module dictionaries. 949 * If the dictionary open is successful, the new dictionary is added to the 950 * mod_dictv[] array and mod_codelen is updated with the new maximum length. 951 */ 952 int 953 fmd_module_dc_opendict(fmd_module_t *mp, const char *dict) 954 { 955 struct fm_dc_handle *dcp, **dcv; 956 char *dictdir, *dictnam, *p; 957 size_t len; 958 959 ASSERT(fmd_module_locked(mp)); 960 961 dictnam = strdupa(fmd_strbasename(dict)); 962 963 if ((p = strrchr(dictnam, '.')) != NULL && 964 strcmp(p, ".dict") == 0) 965 *p = '\0'; /* eliminate any trailing .dict suffix */ 966 967 /* 968 * If 'dict' is an absolute path, dictdir = $rootdir/`dirname dict` 969 * If 'dict' is not an absolute path, dictdir = $dictdir/`dirname dict` 970 */ 971 if (dict[0] == '/') { 972 len = strlen(fmd.d_rootdir) + strlen(dict) + 1; 973 dictdir = alloca(len); 974 (void) snprintf(dictdir, len, "%s%s", fmd.d_rootdir, dict); 975 (void) fmd_strdirname(dictdir); 976 } else { 977 (void) fmd_conf_getprop(fmd.d_conf, "dictdir", &p); 978 len = strlen(fmd.d_rootdir) + strlen(p) + strlen(dict) + 3; 979 dictdir = alloca(len); 980 (void) snprintf(dictdir, len, 981 "%s/%s/%s", fmd.d_rootdir, p, dict); 982 (void) fmd_strdirname(dictdir); 983 } 984 985 fmd_dprintf(FMD_DBG_MOD, "module %s opening %s -> %s/%s.dict\n", 986 mp->mod_name, dict, dictdir, dictnam); 987 988 if ((dcp = fm_dc_opendict(FM_DC_VERSION, dictdir, dictnam)) == NULL) 989 return (-1); /* errno is set for us */ 990 991 dcv = fmd_alloc(sizeof (dcp) * (mp->mod_dictc + 1), FMD_SLEEP); 992 bcopy(mp->mod_dictv, dcv, sizeof (dcp) * mp->mod_dictc); 993 fmd_free(mp->mod_dictv, sizeof (dcp) * mp->mod_dictc); 994 mp->mod_dictv = dcv; 995 mp->mod_dictv[mp->mod_dictc++] = dcp; 996 997 len = fm_dc_codelen(dcp); 998 mp->mod_codelen = MAX(mp->mod_codelen, len); 999 1000 return (0); 1001 } 1002 1003 /* 1004 * Wrapper around libdiagcode's fm_dc_key2code() that examines all the module's 1005 * dictionaries. We adhere to the libdiagcode return values and semantics. 1006 */ 1007 int 1008 fmd_module_dc_key2code(fmd_module_t *mp, 1009 char *const keys[], char *code, size_t codelen) 1010 { 1011 int i, err; 1012 1013 for (i = 0; i < mp->mod_dictc; i++) { 1014 if ((err = fm_dc_key2code(mp->mod_dictv[i], (const char **)keys, 1015 code, codelen)) == 0 || errno != ENOMSG) 1016 return (err); 1017 } 1018 1019 return (fmd_set_errno(ENOMSG)); 1020 } 1021 1022 fmd_modhash_t * 1023 fmd_modhash_create(void) 1024 { 1025 fmd_modhash_t *mhp = fmd_alloc(sizeof (fmd_modhash_t), FMD_SLEEP); 1026 1027 (void) pthread_rwlock_init(&mhp->mh_lock, NULL); 1028 mhp->mh_hashlen = fmd.d_str_buckets; 1029 mhp->mh_hash = fmd_zalloc(sizeof (void *) * mhp->mh_hashlen, FMD_SLEEP); 1030 mhp->mh_nelems = 0; 1031 1032 return (mhp); 1033 } 1034 1035 void 1036 fmd_modhash_destroy(fmd_modhash_t *mhp) 1037 { 1038 fmd_module_t *mp, *nmp; 1039 uint_t i; 1040 1041 for (i = 0; i < mhp->mh_hashlen; i++) { 1042 for (mp = mhp->mh_hash[i]; mp != NULL; mp = nmp) { 1043 nmp = mp->mod_next; 1044 mp->mod_next = NULL; 1045 fmd_module_rele(mp); 1046 } 1047 } 1048 1049 fmd_free(mhp->mh_hash, sizeof (void *) * mhp->mh_hashlen); 1050 (void) pthread_rwlock_destroy(&mhp->mh_lock); 1051 fmd_free(mhp, sizeof (fmd_modhash_t)); 1052 } 1053 1054 static void 1055 fmd_modhash_loaddir(fmd_modhash_t *mhp, const char *dir, 1056 const fmd_modops_t *ops, const char *suffix) 1057 { 1058 char path[PATH_MAX]; 1059 struct dirent *dp; 1060 const char *p; 1061 DIR *dirp; 1062 1063 if ((dirp = opendir(dir)) == NULL) 1064 return; /* failed to open directory; just skip it */ 1065 1066 while ((dp = readdir(dirp)) != NULL) { 1067 if (dp->d_name[0] == '.') 1068 continue; /* skip "." and ".." */ 1069 1070 p = strrchr(dp->d_name, '.'); 1071 1072 if (p != NULL && strcmp(p, ".conf") == 0) 1073 continue; /* skip .conf files */ 1074 1075 if (suffix != NULL && (p == NULL || strcmp(p, suffix) != 0)) 1076 continue; /* skip files with the wrong suffix */ 1077 1078 (void) snprintf(path, sizeof (path), "%s/%s", dir, dp->d_name); 1079 (void) fmd_modhash_load(mhp, path, ops); 1080 } 1081 1082 (void) closedir(dirp); 1083 } 1084 1085 void 1086 fmd_modhash_loadall(fmd_modhash_t *mhp, const fmd_conf_path_t *pap, 1087 const fmd_modops_t *ops, const char *suffix) 1088 { 1089 int i; 1090 1091 for (i = 0; i < pap->cpa_argc; i++) 1092 fmd_modhash_loaddir(mhp, pap->cpa_argv[i], ops, suffix); 1093 } 1094 1095 void 1096 fmd_modhash_apply(fmd_modhash_t *mhp, void (*func)(fmd_module_t *)) 1097 { 1098 fmd_module_t *mp, *np; 1099 uint_t i; 1100 1101 (void) pthread_rwlock_rdlock(&mhp->mh_lock); 1102 1103 for (i = 0; i < mhp->mh_hashlen; i++) { 1104 for (mp = mhp->mh_hash[i]; mp != NULL; mp = np) { 1105 np = mp->mod_next; 1106 func(mp); 1107 } 1108 } 1109 1110 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1111 } 1112 1113 void 1114 fmd_modhash_tryapply(fmd_modhash_t *mhp, void (*func)(fmd_module_t *)) 1115 { 1116 fmd_module_t *mp, *np; 1117 uint_t i; 1118 1119 if (mhp == NULL || pthread_rwlock_tryrdlock(&mhp->mh_lock) != 0) 1120 return; /* not initialized or couldn't grab lock */ 1121 1122 for (i = 0; i < mhp->mh_hashlen; i++) { 1123 for (mp = mhp->mh_hash[i]; mp != NULL; mp = np) { 1124 np = mp->mod_next; 1125 func(mp); 1126 } 1127 } 1128 1129 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1130 } 1131 1132 void 1133 fmd_modhash_dispatch(fmd_modhash_t *mhp, fmd_event_t *ep) 1134 { 1135 fmd_module_t *mp; 1136 uint_t i; 1137 1138 fmd_event_hold(ep); 1139 (void) pthread_rwlock_rdlock(&mhp->mh_lock); 1140 1141 for (i = 0; i < mhp->mh_hashlen; i++) { 1142 for (mp = mhp->mh_hash[i]; mp != NULL; mp = mp->mod_next) { 1143 /* 1144 * If FMD_MOD_INIT is set but MOD_FINI, MOD_QUIT, and 1145 * mod_error are all zero, then the module is active: 1146 * enqueue the event in the corresponding event queue. 1147 */ 1148 (void) pthread_mutex_lock(&mp->mod_lock); 1149 1150 if ((mp->mod_flags & (FMD_MOD_INIT | FMD_MOD_FINI | 1151 FMD_MOD_QUIT)) == FMD_MOD_INIT && !mp->mod_error) { 1152 1153 /* 1154 * If the event we're dispatching is of type 1155 * FMD_EVT_TOPO and there are already redundant 1156 * FMD_EVT_TOPO events in this module's queue, 1157 * then drop those before adding the new one. 1158 */ 1159 if (FMD_EVENT_TYPE(ep) == FMD_EVT_TOPO) 1160 fmd_eventq_drop_topo(mp->mod_queue); 1161 1162 fmd_eventq_insert_at_time(mp->mod_queue, ep); 1163 1164 } 1165 (void) pthread_mutex_unlock(&mp->mod_lock); 1166 } 1167 } 1168 1169 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1170 fmd_event_rele(ep); 1171 } 1172 1173 fmd_module_t * 1174 fmd_modhash_lookup(fmd_modhash_t *mhp, const char *name) 1175 { 1176 fmd_module_t *mp; 1177 uint_t h; 1178 1179 (void) pthread_rwlock_rdlock(&mhp->mh_lock); 1180 h = fmd_strhash(name) % mhp->mh_hashlen; 1181 1182 for (mp = mhp->mh_hash[h]; mp != NULL; mp = mp->mod_next) { 1183 if (strcmp(name, mp->mod_name) == 0) 1184 break; 1185 } 1186 1187 if (mp != NULL) 1188 fmd_module_hold(mp); 1189 else 1190 (void) fmd_set_errno(EFMD_MOD_NOMOD); 1191 1192 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1193 return (mp); 1194 } 1195 1196 fmd_module_t * 1197 fmd_modhash_load(fmd_modhash_t *mhp, const char *path, const fmd_modops_t *ops) 1198 { 1199 char name[PATH_MAX], *p; 1200 fmd_module_t *mp; 1201 int tries = 0; 1202 uint_t h; 1203 1204 (void) strlcpy(name, fmd_strbasename(path), sizeof (name)); 1205 if ((p = strrchr(name, '.')) != NULL && strcmp(p, ".so") == 0) 1206 *p = '\0'; /* strip trailing .so from any module name */ 1207 1208 (void) pthread_rwlock_wrlock(&mhp->mh_lock); 1209 h = fmd_strhash(name) % mhp->mh_hashlen; 1210 1211 /* 1212 * First check to see if a module is already present in the hash table 1213 * for this name. If so, the module is already loaded: skip it. 1214 */ 1215 for (mp = mhp->mh_hash[h]; mp != NULL; mp = mp->mod_next) { 1216 if (strcmp(name, mp->mod_name) == 0) 1217 break; 1218 } 1219 1220 if (mp != NULL) { 1221 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1222 (void) fmd_set_errno(EFMD_MOD_LOADED); 1223 return (NULL); 1224 } 1225 1226 /* 1227 * fmd_module_create() will return a held (as if by fmd_module_hold()) 1228 * module. We leave this hold in place to correspond to the hash-in. 1229 */ 1230 while ((mp = fmd_module_create(path, ops)) == NULL) { 1231 if (tries++ != 0 || errno != EFMD_CKPT_INVAL) { 1232 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1233 return (NULL); /* errno is set for us */ 1234 } 1235 } 1236 1237 mp->mod_hash = mhp; 1238 mp->mod_next = mhp->mh_hash[h]; 1239 1240 mhp->mh_hash[h] = mp; 1241 mhp->mh_nelems++; 1242 1243 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1244 return (mp); 1245 } 1246 1247 int 1248 fmd_modhash_unload(fmd_modhash_t *mhp, const char *name) 1249 { 1250 fmd_module_t *mp, **pp; 1251 uint_t h; 1252 1253 (void) pthread_rwlock_wrlock(&mhp->mh_lock); 1254 h = fmd_strhash(name) % mhp->mh_hashlen; 1255 pp = &mhp->mh_hash[h]; 1256 1257 for (mp = *pp; mp != NULL; mp = mp->mod_next) { 1258 if (strcmp(name, mp->mod_name) == 0) 1259 break; 1260 else 1261 pp = &mp->mod_next; 1262 } 1263 1264 if (mp == NULL) { 1265 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1266 return (fmd_set_errno(EFMD_MOD_NOMOD)); 1267 } 1268 1269 *pp = mp->mod_next; 1270 mp->mod_next = NULL; 1271 1272 ASSERT(mhp->mh_nelems != 0); 1273 mhp->mh_nelems--; 1274 1275 (void) pthread_rwlock_unlock(&mhp->mh_lock); 1276 1277 fmd_module_unload(mp); 1278 fmd_module_rele(mp); 1279 1280 return (0); 1281 } 1282 1283 void 1284 fmd_modstat_publish(fmd_module_t *mp) 1285 { 1286 (void) pthread_mutex_lock(&mp->mod_lock); 1287 1288 ASSERT(mp->mod_flags & FMD_MOD_STSUB); 1289 mp->mod_flags |= FMD_MOD_STPUB; 1290 (void) pthread_cond_broadcast(&mp->mod_cv); 1291 1292 while (mp->mod_flags & FMD_MOD_STPUB) 1293 (void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock); 1294 1295 (void) pthread_mutex_unlock(&mp->mod_lock); 1296 } 1297 1298 int 1299 fmd_modstat_snapshot(fmd_module_t *mp, fmd_ustat_snap_t *uss) 1300 { 1301 fmd_event_t *e; 1302 int err; 1303 1304 /* 1305 * Grab the module lock and wait for the STSUB bit to be clear. Then 1306 * set it to indicate we are a subscriber and everyone else must wait. 1307 */ 1308 (void) pthread_mutex_lock(&mp->mod_lock); 1309 1310 while (mp->mod_error == 0 && (mp->mod_flags & FMD_MOD_STSUB)) 1311 (void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock); 1312 1313 if (mp->mod_error != 0) { 1314 (void) pthread_mutex_unlock(&mp->mod_lock); 1315 return (fmd_set_errno(EFMD_HDL_ABORT)); 1316 } 1317 1318 mp->mod_flags |= FMD_MOD_STSUB; 1319 (void) pthread_cond_broadcast(&mp->mod_cv); 1320 (void) pthread_mutex_unlock(&mp->mod_lock); 1321 1322 /* 1323 * Create a stats pseudo-event and dispatch it to the module, forcing 1324 * it to next execute its custom snapshot routine (or the empty one). 1325 */ 1326 e = fmd_event_create(FMD_EVT_STATS, FMD_HRT_NOW, NULL, NULL); 1327 fmd_eventq_insert_at_head(mp->mod_queue, e); 1328 1329 /* 1330 * Grab the module lock and then wait on mod_cv for STPUB to be set, 1331 * indicating the snapshot routine is completed and the module is idle. 1332 */ 1333 (void) pthread_mutex_lock(&mp->mod_lock); 1334 1335 while (mp->mod_error == 0 && !(mp->mod_flags & FMD_MOD_STPUB)) { 1336 struct timespec tms; 1337 1338 (void) pthread_cond_wait(&mp->mod_cv, &mp->mod_lock); 1339 (void) pthread_mutex_unlock(&mp->mod_lock); 1340 tms.tv_sec = 0; 1341 tms.tv_nsec = 10000000; 1342 (void) nanosleep(&tms, NULL); 1343 (void) pthread_mutex_lock(&mp->mod_lock); 1344 } 1345 1346 if (mp->mod_error != 0) { 1347 (void) pthread_mutex_unlock(&mp->mod_lock); 1348 return (fmd_set_errno(EFMD_HDL_ABORT)); 1349 } 1350 1351 (void) pthread_cond_broadcast(&mp->mod_cv); 1352 (void) pthread_mutex_unlock(&mp->mod_lock); 1353 1354 /* 1355 * Update ms_snaptime and take the actual snapshot of the various 1356 * statistics while the module is quiescent and waiting for us. 1357 */ 1358 (void) pthread_mutex_lock(&mp->mod_stats_lock); 1359 1360 if (mp->mod_stats != NULL) { 1361 mp->mod_stats->ms_snaptime.fmds_value.ui64 = gethrtime(); 1362 err = fmd_ustat_snapshot(mp->mod_ustat, uss); 1363 } else 1364 err = fmd_set_errno(EFMD_HDL_ABORT); 1365 1366 (void) pthread_mutex_unlock(&mp->mod_stats_lock); 1367 1368 /* 1369 * With the snapshot complete, grab the module lock and clear both 1370 * STSUB and STPUB, permitting everyone to wake up and continue. 1371 */ 1372 (void) pthread_mutex_lock(&mp->mod_lock); 1373 1374 ASSERT(mp->mod_flags & FMD_MOD_STSUB); 1375 ASSERT(mp->mod_flags & FMD_MOD_STPUB); 1376 mp->mod_flags &= ~(FMD_MOD_STSUB | FMD_MOD_STPUB); 1377 1378 (void) pthread_cond_broadcast(&mp->mod_cv); 1379 (void) pthread_mutex_unlock(&mp->mod_lock); 1380 1381 return (err); 1382 } 1383 1384 struct topo_hdl * 1385 fmd_module_topo_hold(fmd_module_t *mp) 1386 { 1387 fmd_modtopo_t *mtp; 1388 1389 ASSERT(fmd_module_locked(mp)); 1390 1391 mtp = fmd_zalloc(sizeof (fmd_modtopo_t), FMD_SLEEP); 1392 mtp->mt_topo = mp->mod_topo_current; 1393 fmd_topo_addref(mtp->mt_topo); 1394 fmd_list_prepend(&mp->mod_topolist, mtp); 1395 1396 return (mtp->mt_topo->ft_hdl); 1397 } 1398 1399 int 1400 fmd_module_topo_rele(fmd_module_t *mp, struct topo_hdl *hdl) 1401 { 1402 fmd_modtopo_t *mtp; 1403 1404 ASSERT(fmd_module_locked(mp)); 1405 1406 for (mtp = fmd_list_next(&mp->mod_topolist); mtp != NULL; 1407 mtp = fmd_list_next(mtp)) { 1408 if (mtp->mt_topo->ft_hdl == hdl) 1409 break; 1410 } 1411 1412 if (mtp == NULL) 1413 return (-1); 1414 1415 fmd_list_delete(&mp->mod_topolist, mtp); 1416 fmd_topo_rele(mtp->mt_topo); 1417 fmd_free(mtp, sizeof (fmd_modtopo_t)); 1418 return (0); 1419 } 1420