xref: /titanic_41/usr/src/cmd/dcs/sparc/sun4u/ri_init.c (revision 56a424cca6b3f91f31bdab72a4626c48c779fe8b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Implementation of ri_init routine for obtaining mapping
30  * of system board attachment points to physical devices and to
31  * the Reconfiguration Coordination Manager (RCM) client usage
32  * of these devices.
33  */
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <kstat.h>
38 #include <sys/param.h>
39 #include <sys/sbd_ioctl.h>
40 #include "rsrc_info_impl.h"
41 
42 /*
43  * Occupant types exported by cfgadm sbd plugin via
44  * config_admin(3CFGADM).
45  */
46 #define	SBD_CM_CPU	"cpu"
47 #define	SBD_CM_MEM	"memory"
48 #define	SBD_CM_IO	"io"
49 
50 /*
51  * RCM abstract resource names.
52  */
53 #define	RCM_MEM_ALL	"SUNW_memory"
54 #define	RCM_CPU_ALL	"SUNW_cpu"
55 #define	RCM_CPU		RCM_CPU_ALL"/cpu"
56 
57 #define	KBYTE		1024
58 #define	MBYTE		1048576
59 #define	USAGE_ALLOC_SIZE	128
60 
61 /*
62  * define to allow io_cm_info to return NODE is NULL to ri_init,
63  * in order to skip over nodes w/unattached drivers
64  */
65 #define	RI_NODE_NIL	1
66 
67 /*
68  * This code is CMP aware as it parses the
69  * cfgadm info field for individual cpuids.
70  */
71 #define	CPUID_SEP	","
72 #define	CPU_INFO_FMT	"cpuid=%s speed=%d ecache=%d"
73 
74 typedef struct {
75 	cfga_list_data_t *cfga_list_data;
76 	int		nlist;
77 } apd_t;
78 
79 typedef struct {
80 	long		pagesize;
81 	long		syspages;
82 	long		sysmb;
83 } mem_stat_t;
84 
85 #define	ms_syspages	m_stat.syspages
86 #define	ms_pagesize	m_stat.pagesize
87 #define	ms_sysmb	m_stat.sysmb
88 
89 typedef int32_t		cpuid_t;
90 
91 typedef struct {
92 	int	cpuid_max;	/* maximum cpuid value */
93 	int	*ecache_sizes;	/* indexed by cpuid */
94 } ecache_info_t;
95 
96 typedef struct {
97 	rcm_handle_t	*hdl;
98 	rcm_info_t	*offline_query_info;
99 	char		**rlist;
100 	int		nrlist;
101 	cpuid_t		*cpus;
102 	int		ncpus;
103 	int		ndevs;
104 	uint_t		query_pages;
105 	mem_stat_t	m_stat;
106 	ecache_info_t	ecache_info;
107 } rcmd_t;
108 
109 typedef struct {
110 	const char	*rsrc;
111 	const char	*info;
112 } usage_t;
113 
114 /* Lookup table entry for matching IO devices to RCM resource usage */
115 typedef struct {
116 	int		index;		/* index into the table array */
117 	di_node_t	node;		/* associated devinfo node */
118 	char		*name;		/* device full path name */
119 	int		n_usage;
120 	usage_t		*usage;
121 } lookup_entry_t;
122 
123 typedef struct {
124 	int		n_entries;
125 	int		n_slots;
126 	lookup_entry_t	*table;
127 } lookup_table_t;
128 
129 typedef struct {
130 	int			err;
131 	di_node_t		node;
132 	char			*pathbuf;
133 	lookup_table_t		*table;
134 	di_devlink_handle_t	linkhd;
135 } devinfo_arg_t;
136 
137 static int dyn_ap_ids(char *, cfga_list_data_t **, int *);
138 static int rcm_init(rcmd_t *, apd_t [], int, int);
139 static void rcm_fini(rcmd_t *);
140 static int rcm_query_init(rcmd_t *, apd_t [], int);
141 static int cap_request(ri_hdl_t *, rcmd_t *);
142 static int syscpus(cpuid_t **, int *);
143 static int cpu_cap_request(ri_hdl_t *, rcmd_t *);
144 static int mem_cap_request(ri_hdl_t *, rcmd_t *);
145 static int (*cm_rcm_qpass_func(cfga_type_t))(cfga_list_data_t *, rcmd_t *);
146 static int cpu_rcm_qpass(cfga_list_data_t *, rcmd_t *);
147 static int mem_rcm_qpass(cfga_list_data_t *, rcmd_t *);
148 static int io_rcm_qpass(cfga_list_data_t *, rcmd_t *);
149 static int (*cm_info_func(cfga_type_t))(ri_ap_t *, cfga_list_data_t *, int,
150     rcmd_t *);
151 static int cpu_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
152 static int i_cpu_cm_info(processorid_t, int, ri_ap_t *, rcmd_t *);
153 static int mem_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
154 static int io_cm_info(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
155 static int ident_leaf(di_node_t);
156 static int mk_drv_inst(di_node_t, char [], char *);
157 static int devinfo_node_walk(di_node_t, void *);
158 static int devinfo_minor_walk(di_node_t, di_minor_t, void *);
159 static int devinfo_devlink_walk(di_devlink_t, void *);
160 static int add_rcm_clients(ri_client_t **, rcmd_t *, rcm_info_t *, int, int *);
161 static int rcm_ignore(char *, char *);
162 static int add_query_state(rcmd_t *, ri_client_t *, const char *, const char *);
163 static int state2query(int);
164 static void dev_list_append(ri_dev_t **, ri_dev_t *);
165 static void dev_list_cpu_insert(ri_dev_t **, ri_dev_t *, processorid_t);
166 static rcm_info_tuple_t *tuple_lookup(rcmd_t *, const char *, const char *);
167 static ri_ap_t *ri_ap_alloc(char *, ri_hdl_t *);
168 static ri_dev_t *ri_dev_alloc(void);
169 static ri_dev_t *io_dev_alloc(char *);
170 static ri_client_t *ri_client_alloc(char *, char *);
171 static void apd_tbl_free(apd_t [], int);
172 static char *pstate2str(int);
173 static int ecache_info_init(ecache_info_t *);
174 static int find_cpu_nodes(di_node_t, void *);
175 static int prop_lookup_int(di_node_t, di_prom_handle_t, char *, int **);
176 static int add_lookup_entry(lookup_table_t *, const char *, di_node_t);
177 static int table_compare_names(const void *, const void *);
178 static int table_compare_indices(const void *, const void *);
179 static lookup_entry_t *lookup(lookup_table_t *table, const char *);
180 static int add_usage(lookup_entry_t *, const char *, rcm_info_tuple_t *);
181 static void empty_table(lookup_table_t *);
182 
183 #ifdef DEBUG
184 static void		dump_apd_tbl(FILE *, apd_t *, int);
185 #endif /* DEBUG */
186 
187 static struct {
188 	char	*type;
189 	int	(*cm_info)(ri_ap_t *, cfga_list_data_t *, int, rcmd_t *);
190 	int	(*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
191 } cm_ctl[] = {
192 	{SBD_CM_CPU,	cpu_cm_info,	cpu_rcm_qpass},
193 	{SBD_CM_MEM,	mem_cm_info,	mem_rcm_qpass},
194 	{SBD_CM_IO,	io_cm_info,	io_rcm_qpass}
195 };
196 
197 /*
198  * Table of known info string prefixes for RCM modules that do not
199  * represent actual resource usage, but instead provide name translations
200  * or sequencing within the RCM namespace. Since RCM provides no way to
201  * filter these out, we must maintain this hack.
202  */
203 static char *rcm_info_filter[] = {
204 	"Network interface",		/* Network naming module */
205 	NULL
206 };
207 
208 
209 /*
210  * Allocate snapshot handle.
211  */
212 int
213 ri_init(int n_apids, char **ap_ids, int flags, ri_hdl_t **hdlp)
214 {
215 	int			i, j;
216 	ri_hdl_t		*ri_hdl;
217 	ri_ap_t			*ap_hdl;
218 	rcmd_t			*rcm = NULL;
219 	cfga_list_data_t	*cfga_ldata;
220 	apd_t			*apd, *apd_tbl = NULL;
221 	int			(*cm_info)(ri_ap_t *, cfga_list_data_t *,
222 				    int, rcmd_t *);
223 	int			rv = RI_SUCCESS;
224 	int			cm_info_rv;
225 
226 	if (n_apids <= 0 || ap_ids == NULL || hdlp == NULL)
227 		return (RI_INVAL);
228 
229 	if (flags & ~RI_REQ_MASK)
230 		return (RI_NOTSUP);
231 
232 	*hdlp = NULL;
233 	if ((ri_hdl = calloc(1, sizeof (*ri_hdl))) == NULL ||
234 	    (rcm = calloc(1, sizeof (*rcm))) == NULL ||
235 	    (apd_tbl = calloc(n_apids, sizeof (*apd_tbl))) == NULL) {
236 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
237 		rv = RI_FAILURE;
238 		goto out;
239 	}
240 
241 	/*
242 	 * Create mapping of boards to components.
243 	 */
244 	for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
245 		if (dyn_ap_ids(ap_ids[i], &apd->cfga_list_data,
246 		    &apd->nlist) == -1) {
247 			rv = RI_INVAL;
248 			goto out;
249 		}
250 	}
251 #ifdef DEBUG
252 	dump_apd_tbl(stderr, apd_tbl, n_apids);
253 #endif /* DEBUG */
254 
255 	if (rcm_init(rcm, apd_tbl, n_apids, flags) != 0) {
256 		rv = RI_FAILURE;
257 		goto out;
258 	}
259 
260 	/*
261 	 * Best effort attempt to read cpu ecache sizes from
262 	 * OBP/Solaris device trees. These are later looked up
263 	 * in i_cpu_cm_info().
264 	 */
265 	(void) ecache_info_init(&rcm->ecache_info);
266 
267 	for (i = 0, apd = apd_tbl; i < n_apids; i++, apd++) {
268 		if ((ap_hdl = ri_ap_alloc(ap_ids[i], ri_hdl)) == NULL) {
269 			rv = RI_FAILURE;
270 			goto out;
271 		}
272 
273 		/*
274 		 * Add component info based on occupant type. Note all
275 		 * passes through the apd table skip over the first
276 		 * cfgadm_list_data entry, which is the static system board
277 		 * attachment point.
278 		 */
279 		for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
280 		    j < apd->nlist; j++, cfga_ldata++) {
281 			if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
282 				continue;
283 			}
284 
285 			if ((cm_info =
286 			    cm_info_func(cfga_ldata->ap_type)) != NULL) {
287 				cm_info_rv =
288 				    (*cm_info)(ap_hdl, cfga_ldata, flags, rcm);
289 				if (cm_info_rv != 0) {
290 					/*
291 					 * If we cannot obtain info for the ap,
292 					 * skip it and do not fail the entire
293 					 * operation.  This case occurs when the
294 					 * driver for a device is not attached:
295 					 * di_init() returns failed back to
296 					 * io_cm_info().
297 					 */
298 					if (cm_info_rv == RI_NODE_NIL)
299 						continue;
300 					else {
301 						rv = RI_FAILURE;
302 						goto out;
303 					}
304 				}
305 			}
306 		}
307 	}
308 
309 	if ((flags & RI_INCLUDE_QUERY) && cap_request(ri_hdl, rcm) != 0)
310 		rv = RI_FAILURE;
311 
312 out:
313 	if (apd_tbl != NULL)
314 		apd_tbl_free(apd_tbl, n_apids);
315 	if (rcm != NULL)
316 		rcm_fini(rcm);
317 
318 	if (rv == RI_SUCCESS)
319 		*hdlp = ri_hdl;
320 	else
321 		ri_fini(ri_hdl);
322 
323 	return (rv);
324 }
325 
326 /*
327  * Map static board attachment point to dynamic attachment points (components).
328  */
329 static int
330 dyn_ap_ids(char *ap_id, cfga_list_data_t **ap_id_list, int *nlist)
331 {
332 	cfga_err_t	cfga_err;
333 	char		*errstr;
334 	char		*opts = "parsable";
335 	char		*listops = "class=sbd";
336 
337 	cfga_err = config_list_ext(1, &ap_id, ap_id_list, nlist,
338 	    opts, listops, &errstr, CFGA_FLAG_LIST_ALL);
339 	if (cfga_err != CFGA_OK) {
340 		dprintf((stderr, "config_list_ext: %s\n",
341 		    config_strerror(cfga_err)));
342 		return (-1);
343 	}
344 
345 	return (0);
346 }
347 
348 /*
349  * Initialize rcm handle, memory stats. Cache query result if necessary.
350  */
351 static int
352 rcm_init(rcmd_t *rcm, apd_t apd_tbl[], int napds, int flags)
353 {
354 	longlong_t	ii;
355 	int		rv = 0;
356 
357 	rcm->offline_query_info = NULL;
358 	rcm->rlist = NULL;
359 	rcm->cpus = NULL;
360 
361 	if (rcm_alloc_handle(NULL, RCM_NOPID, NULL, &rcm->hdl) != RCM_SUCCESS) {
362 		dprintf((stderr, "rcm_alloc_handle (errno=%d)\n", errno));
363 		return (-1);
364 	}
365 
366 	if ((rcm->ms_pagesize = sysconf(_SC_PAGE_SIZE)) == -1 ||
367 	    (rcm->ms_syspages = sysconf(_SC_PHYS_PAGES)) == -1) {
368 		dprintf((stderr, "sysconf: %s\n", strerror(errno)));
369 		return (-1);
370 	}
371 	ii = (longlong_t)rcm->ms_pagesize * rcm->ms_syspages;
372 	rcm->ms_sysmb = (int)((ii+MBYTE-1) / MBYTE);
373 
374 	if (flags & RI_INCLUDE_QUERY)
375 	    rv = rcm_query_init(rcm, apd_tbl, napds);
376 
377 	return (rv);
378 }
379 
380 static void
381 rcm_fini(rcmd_t *rcm)
382 {
383 	char	**cpp;
384 
385 	assert(rcm != NULL);
386 
387 	if (rcm->offline_query_info != NULL)
388 		rcm_free_info(rcm->offline_query_info);
389 	if (rcm->hdl != NULL)
390 		rcm_free_handle(rcm->hdl);
391 
392 	if (rcm->rlist != NULL) {
393 		for (cpp = rcm->rlist; *cpp != NULL; cpp++)
394 			s_free(*cpp);
395 		free(rcm->rlist);
396 	}
397 
398 	s_free(rcm->cpus);
399 	free(rcm);
400 }
401 
402 #define	NODENAME_CMP		"cmp"
403 #define	NODENAME_SSM		"ssm"
404 #define	PROP_CPUID		"cpuid"
405 #define	PROP_DEVICE_TYPE	"device-type"
406 #define	PROP_ECACHE_SIZE	"ecache-size"
407 #define	PROP_L2_CACHE_SIZE	"l2-cache-size"
408 #define	PROP_L3_CACHE_SIZE	"l3-cache-size"
409 
410 typedef struct {
411 	di_node_t		root;
412 	di_prom_handle_t	ph;
413 	ecache_info_t		*ecache_info;
414 } di_arg_t;
415 
416 /*
417  * The ecache sizes for individual cpus are read from the
418  * OBP/Solaris device trees. This info cannot be derived
419  * from the cfgadm_sbd cpu attachment point ecache info,
420  * which may be a sum of multiple cores for CMP.
421  */
422 static int
423 ecache_info_init(ecache_info_t *ec)
424 {
425 	di_arg_t	di_arg;
426 	di_prom_handle_t ph = DI_PROM_HANDLE_NIL;
427 	di_node_t	root = DI_NODE_NIL;
428 	int		cpuid_max, rv = 0;
429 
430 	assert(ec != NULL && ec->cpuid_max == 0 && ec->ecache_sizes == NULL);
431 
432 	if ((cpuid_max = sysconf(_SC_CPUID_MAX)) == -1) {
433 		dprintf((stderr, "sysconf fail: %s\n", strerror(errno)));
434 		rv = -1;
435 		goto done;
436 	}
437 
438 	if ((root = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {
439 		dprintf((stderr, "di_init fail: %s\n", strerror(errno)));
440 		rv = -1;
441 		goto done;
442 	}
443 
444 	if ((ph = di_prom_init()) == DI_PROM_HANDLE_NIL) {
445 		dprintf((stderr, "di_prom_init fail: %s\n", strerror(errno)));
446 		rv = -1;
447 		goto done;
448 	}
449 
450 	if ((ec->ecache_sizes = calloc(cpuid_max + 1, sizeof (int))) == NULL) {
451 		dprintf((stderr, "calloc fail: %s\n", strerror(errno)));
452 		rv = -1;
453 		goto done;
454 	}
455 	ec->cpuid_max = cpuid_max;
456 
457 	dprintf((stderr, "cpuid_max is set to %d\n", ec->cpuid_max));
458 
459 	di_arg.ph = ph;
460 	di_arg.root = root;
461 	di_arg.ecache_info = ec;
462 
463 	if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
464 	    find_cpu_nodes) != 0) {
465 		dprintf((stderr, "di_walk_node fail: %s\n", strerror(errno)));
466 		rv = -1;
467 	}
468 
469 done:
470 	if (root != DI_NODE_NIL)
471 		di_fini(root);
472 	if (ph != DI_PROM_HANDLE_NIL)
473 		di_prom_fini(ph);
474 
475 	return (rv);
476 }
477 
478 /*
479  * Libdevinfo node walk callback for reading ecache size
480  * properties for cpu device nodes. Subtrees not containing
481  * cpu nodes are filtered out.
482  */
483 static int
484 find_cpu_nodes(di_node_t node, void *arg)
485 {
486 	char			*name;
487 	int			*cpuid, *ecache;
488 	di_arg_t		*di_arg = (di_arg_t *)arg;
489 	ecache_info_t		*ec = di_arg->ecache_info;
490 	di_prom_handle_t	ph = di_arg->ph;
491 
492 	if (node == DI_NODE_NIL) {
493 		return (DI_WALK_TERMINATE);
494 	}
495 
496 	if (node == di_arg->root) {
497 		return (DI_WALK_CONTINUE);
498 	}
499 
500 	if (di_nodeid(node) == DI_PSEUDO_NODEID) {
501 		return (DI_WALK_PRUNECHILD);
502 	}
503 
504 	name = di_node_name(node);
505 	if (name != NULL) {
506 		/*
507 		 * CMP nodes will be the parent of cpu nodes. On some platforms,
508 		 * cpu nodes will be under the ssm node. In either case,
509 		 * continue searching this subtree.
510 		 */
511 		if (strncmp(name, NODENAME_SSM, strlen(NODENAME_SSM)) == 0 ||
512 		    strncmp(name, NODENAME_CMP, strlen(NODENAME_CMP)) == 0) {
513 			return (DI_WALK_CONTINUE);
514 		}
515 	}
516 
517 	dprintf((stderr, "find_cpu_nodes: node=%p, name=%s, binding_name=%s\n",
518 	    node, di_node_name(node), di_binding_name(node)));
519 
520 	/*
521 	 * Ecache size property name differs with processor implementation.
522 	 * Panther has both L2 and L3, so check for L3 first to differentiate
523 	 * from Jaguar, which has only L2.
524 	 */
525 	if (prop_lookup_int(node, ph, PROP_CPUID, &cpuid) == 0 &&
526 	    (prop_lookup_int(node, ph, PROP_ECACHE_SIZE, &ecache) == 0 ||
527 	    prop_lookup_int(node, ph, PROP_L3_CACHE_SIZE, &ecache) == 0 ||
528 	    prop_lookup_int(node, ph, PROP_L2_CACHE_SIZE, &ecache) == 0)) {
529 		assert(ec != NULL && ec->ecache_sizes != NULL &&
530 		    *cpuid <= ec->cpuid_max);
531 		ec->ecache_sizes[*cpuid] = *ecache;
532 	}
533 
534 	return (DI_WALK_PRUNECHILD);
535 }
536 
537 /*
538  * Given a di_node_t, call the appropriate int property lookup routine.
539  * Note: This lookup fails if the int property has multiple value entries.
540  */
541 static int
542 prop_lookup_int(di_node_t node, di_prom_handle_t ph, char *propname, int **ival)
543 {
544 	int rv;
545 
546 	rv = (di_nodeid(node) == DI_PROM_NODEID) ?
547 	    di_prom_prop_lookup_ints(ph, node, propname, ival) :
548 	    di_prop_lookup_ints(DDI_DEV_T_ANY, node, propname, ival);
549 
550 	return (rv == 1 ? 0 : -1);
551 }
552 
553 /*
554  * For offline queries, RCM must be given a list of all resources
555  * so modules can have access to the full scope of the operation.
556  * The rcm_get_info calls are made individually in order to map the
557  * returned rcm_info_t's to physical devices. The rcm_request_offline
558  * result is cached so the query state can be looked up as we process
559  * the rcm_get_info calls. This routine also tallies up the amount of
560  * memory going away and creates a list of cpu ids to be used
561  * later for rcm_request_capacity_change.
562  */
563 static int
564 rcm_query_init(rcmd_t *rcm, apd_t apd_tbl[], int napds)
565 {
566 	apd_t			*apd;
567 	int 			i, j;
568 	cfga_list_data_t	*cfga_ldata;
569 	int			(*cm_rcm_qpass)(cfga_list_data_t *, rcmd_t *);
570 #ifdef DEBUG
571 	char			**cpp;
572 #endif /* DEBUG */
573 
574 	/*
575 	 * Initial pass to size cpu and resource name arrays needed to
576 	 * interface with RCM. Attachment point ids for CMP can represent
577 	 * multiple cpus (and resource names). Instead of parsing the
578 	 * cfgadm info field here, use the worse case that all component
579 	 * attachment points are CMP.
580 	 */
581 	rcm->ndevs = 0;
582 	for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
583 		for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
584 		    j < apd->nlist; j++, cfga_ldata++) {
585 			if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
586 				continue;
587 			}
588 			rcm->ndevs += SBD_MAX_CORES_PER_CMP;
589 		}
590 	}
591 
592 	/* account for trailing NULL in rlist */
593 	if (rcm->ndevs > 0 &&
594 	    ((rcm->cpus = calloc(rcm->ndevs, sizeof (cpuid_t))) == NULL ||
595 	    (rcm->rlist = calloc(rcm->ndevs + 1, sizeof (char *))) == NULL)) {
596 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
597 		return (-1);
598 	}
599 
600 	/*
601 	 * Second pass to fill in the RCM resource and cpu lists.
602 	 */
603 	for (i = 0, apd = apd_tbl; i < napds; i++, apd++) {
604 		for (j = 1, cfga_ldata = &apd->cfga_list_data[1];
605 		    j < apd->nlist; j++, cfga_ldata++) {
606 			if (cfga_ldata->ap_o_state != CFGA_STAT_CONFIGURED) {
607 				continue;
608 			}
609 			if ((cm_rcm_qpass =
610 			    cm_rcm_qpass_func(cfga_ldata->ap_type)) != NULL &&
611 			    (*cm_rcm_qpass)(cfga_ldata, rcm) != 0) {
612 				return (-1);
613 			}
614 		}
615 	}
616 
617 	if (rcm->nrlist == 0)
618 		return (0);
619 
620 	/*
621 	 * Cache query result. Since we are only interested in the
622 	 * set of RCM clients processed and not their request status,
623 	 * the return value is irrelevant.
624 	 */
625 	(void) rcm_request_offline_list(rcm->hdl, rcm->rlist,
626 	    RCM_QUERY|RCM_SCOPE, &rcm->offline_query_info);
627 
628 #ifdef DEBUG
629 	dprintf((stderr, "RCM rlist: nrlist=%d\n", rcm->nrlist));
630 	for (cpp = rcm->rlist, i = 0; *cpp != NULL; cpp++, i++) {
631 		dprintf((stderr, "rlist[%d]=%s\n", i, *cpp));
632 	}
633 #endif /* DEBUG */
634 
635 	return (0);
636 }
637 
638 static int
639 cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
640 {
641 	return (((rcm->ncpus > 0 && cpu_cap_request(ri_hdl, rcm) != 0) ||
642 	    (rcm->query_pages > 0 && mem_cap_request(ri_hdl, rcm) != 0)) ?
643 	    -1 : 0);
644 }
645 
646 /*
647  * RCM capacity change request for cpus.
648  */
649 static int
650 cpu_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
651 {
652 	cpuid_t		*syscpuids, *newcpuids;
653 	int		sysncpus, newncpus;
654 	rcm_info_t	*rcm_info = NULL;
655 	int		i, j, k;
656 	nvlist_t	*nvl;
657 	int		rv = 0;
658 
659 	/* get all cpus in the system */
660 	if (syscpus(&syscpuids, &sysncpus) == -1)
661 		return (-1);
662 
663 	newncpus = sysncpus - rcm->ncpus;
664 	if ((newcpuids = calloc(newncpus, sizeof (cpuid_t))) == NULL) {
665 		dprintf((stderr, "calloc: %s", strerror(errno)));
666 		rv = -1;
667 		goto out;
668 	}
669 
670 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
671 		dprintf((stderr, "nvlist_alloc fail\n"));
672 		rv = -1;
673 		goto out;
674 	}
675 
676 	/*
677 	 * Construct the new cpu list.
678 	 */
679 	for (i = 0, j = 0; i < sysncpus; i++) {
680 		for (k = 0; k < rcm->ncpus; k++) {
681 			if (rcm->cpus[k] == syscpuids[i]) {
682 				break;
683 			}
684 		}
685 		if (k == rcm->ncpus) {
686 			newcpuids[j++] = syscpuids[i];
687 		}
688 	}
689 
690 	if (nvlist_add_int32(nvl, "old_total", sysncpus) != 0 ||
691 	    nvlist_add_int32(nvl, "new_total", newncpus) != 0 ||
692 	    nvlist_add_int32_array(nvl, "old_cpu_list", syscpuids,
693 	    sysncpus) != 0 ||
694 	    nvlist_add_int32_array(nvl, "new_cpu_list", newcpuids,
695 	    newncpus) != 0) {
696 		dprintf((stderr, "nvlist_add fail\n"));
697 		rv = -1;
698 		goto out;
699 	}
700 
701 #ifdef DEBUG
702 	dprintf((stderr, "old_total=%d\n", sysncpus));
703 	for (i = 0; i < sysncpus; i++) {
704 		dprintf((stderr, "old_cpu_list[%d]=%d\n", i, syscpuids[i]));
705 	}
706 	dprintf((stderr, "new_total=%d\n", newncpus));
707 	for (i = 0; i < newncpus; i++) {
708 		dprintf((stderr, "new_cpu_list[%d]=%d\n", i, newcpuids[i]));
709 	}
710 #endif /* DEBUG */
711 
712 	(void) rcm_request_capacity_change(rcm->hdl, RCM_CPU_ALL,
713 	    RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
714 
715 	rv = add_rcm_clients(&ri_hdl->cpu_cap_clients, rcm, rcm_info, 0, NULL);
716 
717 out:
718 	s_free(syscpuids);
719 	s_free(newcpuids);
720 	if (nvl != NULL)
721 		nvlist_free(nvl);
722 	if (rcm_info != NULL)
723 		rcm_free_info(rcm_info);
724 
725 	return (rv);
726 }
727 
728 static int
729 syscpus(cpuid_t **cpuids, int *ncpus)
730 {
731 	kstat_t		*ksp;
732 	kstat_ctl_t	*kc;
733 	cpuid_t		*cp;
734 	int		i;
735 
736 	if ((*ncpus = sysconf(_SC_NPROCESSORS_CONF)) == -1) {
737 		dprintf((stderr, "sysconf: %s\n", errno));
738 		return (-1);
739 	}
740 
741 	if ((kc = kstat_open()) == NULL) {
742 		dprintf((stderr, "kstat_open fail\n"));
743 		return (-1);
744 	}
745 
746 	if ((cp = calloc(*ncpus, sizeof (cpuid_t))) == NULL) {
747 		dprintf((stderr, "calloc: %s\n", errno));
748 		(void) kstat_close(kc);
749 		return (-1);
750 	}
751 
752 	for (i = 0, ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {
753 		if (strcmp(ksp->ks_module, "cpu_info") == 0) {
754 			cp[i++] = ksp->ks_instance;
755 		}
756 	}
757 
758 	(void) kstat_close(kc);
759 	*cpuids = cp;
760 
761 	return (0);
762 }
763 
764 /*
765  * RCM capacity change request for memory.
766  */
767 static int
768 mem_cap_request(ri_hdl_t *ri_hdl, rcmd_t *rcm)
769 {
770 	nvlist_t	*nvl;
771 	rcm_info_t	*rcm_info = NULL;
772 	long 		newpages;
773 	int		rv = 0;
774 
775 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) {
776 		dprintf((stderr, "nvlist_alloc fail\n"));
777 		return (-1);
778 	}
779 
780 	newpages = rcm->ms_syspages - rcm->query_pages;
781 	if (nvlist_add_int32(nvl, "page_size", rcm->ms_pagesize) != 0 ||
782 	    nvlist_add_int32(nvl, "old_pages", rcm->ms_syspages) != 0 ||
783 	    nvlist_add_int32(nvl, "new_pages", newpages) != 0) {
784 		dprintf((stderr, "nvlist_add fail\n"));
785 		nvlist_free(nvl);
786 		return (-1);
787 	}
788 
789 	dprintf((stderr, "memory capacity change req: "
790 	    "page_size=%d, old_pages=%d, new_pages=%d\n",
791 	    rcm->ms_pagesize, rcm->ms_syspages, newpages));
792 
793 	(void) rcm_request_capacity_change(rcm->hdl, RCM_MEM_ALL,
794 	    RCM_QUERY|RCM_SCOPE, nvl, &rcm_info);
795 
796 	rv = add_rcm_clients(&ri_hdl->mem_cap_clients, rcm, rcm_info, 0, NULL);
797 
798 	nvlist_free(nvl);
799 	if (rcm_info != NULL)
800 		rcm_free_info(rcm_info);
801 
802 	return (rv);
803 }
804 
805 static int
806 (*cm_rcm_qpass_func(cfga_type_t ap_type))(cfga_list_data_t *, rcmd_t *)
807 {
808 	int i;
809 
810 	for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
811 		if (strcmp(cm_ctl[i].type, ap_type) == 0) {
812 			return (cm_ctl[i].cm_rcm_qpass);
813 		}
814 	}
815 	return (NULL);
816 }
817 
818 /*
819  * Save cpu ids and RCM abstract resource names.
820  * Cpu ids will be used for the capacity change request.
821  * Resource names will be used for the offline query.
822  */
823 static int
824 cpu_rcm_qpass(cfga_list_data_t *cfga_ldata, rcmd_t *rcm)
825 {
826 	processorid_t	cpuid;
827 	char		*cpustr, *lasts, *rsrcname, rbuf[32];
828 	char		cbuf[CFGA_INFO_LEN];
829 	int		speed, ecache;
830 
831 	assert(sscanf(cfga_ldata->ap_info, CPU_INFO_FMT, &cbuf, &speed,
832 	    &ecache) == 3);
833 
834 	for (cpustr = (char *)strtok_r(cbuf, CPUID_SEP, &lasts);
835 	    cpustr != NULL;
836 	    cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
837 		cpuid = atoi(cpustr);
838 
839 		(void) snprintf(rbuf, sizeof (rbuf), "%s%d", RCM_CPU, cpuid);
840 		if ((rsrcname = strdup(rbuf)) == NULL) {
841 			dprintf((stderr, "strdup fail\n"));
842 			return (-1);
843 		}
844 		assert(rcm->nrlist < rcm->ndevs && rcm->ncpus < rcm->ndevs);
845 		rcm->rlist[rcm->nrlist++] = rsrcname;
846 		rcm->cpus[rcm->ncpus++] = (cpuid_t)cpuid;
847 
848 		dprintf((stderr, "cpu_cm_info: cpuid=%d, rsrcname=%s",
849 		    cpuid, rsrcname));
850 	}
851 
852 	return (0);
853 }
854 
855 /*
856  * No RCM resource names for individual memory units, so
857  * just add to offline query page count.
858  */
859 static int
860 mem_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
861 {
862 	char		*cp;
863 	uint_t		kbytes;
864 	longlong_t	ii;
865 
866 	if ((cp = strstr(cfga->ap_info, "size")) == NULL ||
867 	    sscanf(cp, "size=%u", &kbytes) != 1) {
868 		dprintf((stderr, "unknown sbd info format: %s\n", cp));
869 		return (-1);
870 	}
871 
872 	ii = (longlong_t)kbytes * KBYTE;
873 	rcm->query_pages += (uint_t)(ii / rcm->ms_pagesize);
874 
875 	dprintf((stderr, "%s: npages=%u\n", cfga->ap_log_id,
876 	    (uint_t)(ii / rcm->ms_pagesize)));
877 
878 	return (0);
879 }
880 
881 /*
882  * Add physical I/O bus name to RCM resource list.
883  */
884 static int
885 io_rcm_qpass(cfga_list_data_t *cfga, rcmd_t *rcm)
886 {
887 	char		path[MAXPATHLEN];
888 	char		buf[MAXPATHLEN];
889 	char		*rsrcname;
890 
891 	if (sscanf(cfga->ap_info, "device=%s", path) != 1) {
892 		dprintf((stderr, "unknown sbd info format: %s\n",
893 		    cfga->ap_info));
894 		return (-1);
895 	}
896 
897 	(void) snprintf(buf, sizeof (buf), "/devices%s", path);
898 	if ((rsrcname = strdup(buf)) == NULL) {
899 		dprintf((stderr, "strdup fail\n"));
900 		return (-1);
901 	}
902 
903 	assert(rcm->nrlist < rcm->ndevs);
904 	rcm->rlist[rcm->nrlist++] = rsrcname;
905 
906 	return (0);
907 }
908 
909 static int
910 (*cm_info_func(cfga_type_t ap_type))(ri_ap_t *, cfga_list_data_t *,
911     int, rcmd_t *)
912 {
913 	int i;
914 
915 	for (i = 0; i < sizeof (cm_ctl) / sizeof (cm_ctl[0]); i++) {
916 		if (strcmp(cm_ctl[i].type, ap_type) == 0) {
917 			return (cm_ctl[i].cm_info);
918 		}
919 	}
920 	return (NULL);
921 }
922 
923 /*
924  * Create cpu handle, adding properties exported by sbd plugin and
925  * RCM client usage.
926  */
927 /* ARGSUSED */
928 static int
929 cpu_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
930 {
931 	processorid_t	cpuid;
932 	int		speed, ecache, rv = 0;
933 	char		buf[CFGA_INFO_LEN], *cpustr, *lasts;
934 
935 	if (sscanf(cfga->ap_info, CPU_INFO_FMT, &buf, &speed, &ecache) != 3) {
936 		dprintf((stderr, "unknown sbd info format: %s\n",
937 		    cfga->ap_info));
938 		return (-1);
939 	}
940 
941 	/* parse cpuids */
942 	for (cpustr = (char *)strtok_r(buf, CPUID_SEP, &lasts);
943 	    cpustr != NULL;
944 	    cpustr = (char *)strtok_r(NULL, CPUID_SEP, &lasts)) {
945 		cpuid = atoi(cpustr);
946 		if ((rv = i_cpu_cm_info(cpuid, speed, ap, rcm)) != 0) {
947 			break;
948 		}
949 	}
950 
951 	return (rv);
952 }
953 
954 static int
955 i_cpu_cm_info(processorid_t cpuid, int speed, ri_ap_t *ap, rcmd_t *rcm)
956 {
957 	int		ecache = 0;
958 	char		*state, buf[32];
959 	processor_info_t cpu_info;
960 	ri_dev_t	*cpu = NULL;
961 	rcm_info_t	*rcm_info = NULL;
962 
963 	/*
964 	 * Could have been unconfigured in the interim, so cannot
965 	 * count on processor_info recognizing it.
966 	 */
967 	state = (processor_info(cpuid, &cpu_info) == 0) ?
968 	    pstate2str(cpu_info.pi_state) : "unknown";
969 
970 	if ((cpu = ri_dev_alloc()) == NULL) {
971 		dprintf((stderr, "ri_dev_alloc failed\n"));
972 		return (-1);
973 	}
974 
975 	if (rcm->ecache_info.ecache_sizes != NULL) {
976 		assert(rcm->ecache_info.cpuid_max != 0 &&
977 		    cpuid <= rcm->ecache_info.cpuid_max);
978 		ecache = rcm->ecache_info.ecache_sizes[cpuid] / MBYTE;
979 	}
980 
981 	dprintf((stderr, "i_cpu_cm_info: cpu(%d) ecache=%d MB\n",
982 	    cpuid, ecache));
983 
984 	if (nvlist_add_int32(cpu->conf_props, RI_CPU_ID, cpuid) != 0 ||
985 	    nvlist_add_int32(cpu->conf_props, RI_CPU_SPEED, speed) != 0 ||
986 	    nvlist_add_int32(cpu->conf_props, RI_CPU_ECACHE, ecache) != 0 ||
987 	    nvlist_add_string(cpu->conf_props, RI_CPU_STATE, state) != 0) {
988 		dprintf((stderr, "nvlist_add fail\n"));
989 		ri_dev_free(cpu);
990 		return (-1);
991 	}
992 
993 	(void) snprintf(buf, sizeof (buf), "%s%d", RCM_CPU, cpuid);
994 	dprintf((stderr, "rcm_get_info(%s)\n", buf));
995 	if (rcm_get_info(rcm->hdl, buf, RCM_INCLUDE_DEPENDENT,
996 	    &rcm_info) != RCM_SUCCESS) {
997 		dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
998 		ri_dev_free(cpu);
999 		if (rcm_info != NULL)
1000 			rcm_free_info(rcm_info);
1001 		return (-1);
1002 	}
1003 
1004 	dev_list_cpu_insert(&ap->cpus, cpu, cpuid);
1005 
1006 	return (0);
1007 }
1008 
1009 /*
1010  * Create memory handle, adding properties exported by sbd plugin.
1011  * No RCM tuples to be saved unless RCM is modified to export names
1012  * for individual memory units.
1013  */
1014 /* ARGSUSED */
1015 static int
1016 mem_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1017 {
1018 	ri_dev_t	*mem;
1019 	char		*cp;
1020 	char		*cpval;
1021 	int		len;
1022 	uint64_t	base_addr;				/* required */
1023 	int32_t		size_kb;				/* required */
1024 	int32_t		perm_kb = 0;				/* optional */
1025 	char		target[CFGA_AP_LOG_ID_LEN] = "";	/* optional */
1026 	int32_t		del_kb = 0;				/* optional */
1027 	int32_t		rem_kb = 0;				/* optional */
1028 	char		source[CFGA_AP_LOG_ID_LEN] = "";	/* optional */
1029 
1030 	if (sscanf(cfga->ap_info, "address=0x%llx size=%u", &base_addr,
1031 	    &size_kb) != 2) {
1032 		goto err_fmt;
1033 	}
1034 
1035 	if ((cp = strstr(cfga->ap_info, "permanent")) != NULL &&
1036 	    sscanf(cp, "permanent=%u", &perm_kb) != 1) {
1037 		goto err_fmt;
1038 	}
1039 
1040 	if ((cp = strstr(cfga->ap_info, "target")) != NULL) {
1041 		if ((cpval = strstr(cp, "=")) == NULL) {
1042 			goto err_fmt;
1043 		}
1044 		for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1045 			if (len >= CFGA_AP_LOG_ID_LEN) {
1046 				goto err_fmt;
1047 			}
1048 		}
1049 		if (sscanf(cp, "target=%s deleted=%u remaining=%u", &target,
1050 		    &del_kb, &rem_kb) != 3) {
1051 			goto err_fmt;
1052 		}
1053 	}
1054 
1055 	if ((cp = strstr(cfga->ap_info, "source")) != NULL) {
1056 		if ((cpval = strstr(cp, "=")) == NULL) {
1057 			goto err_fmt;
1058 		}
1059 		for (len = 0; cpval[len] != '\0' && cpval[len] != ' '; len++) {
1060 			if (len >= CFGA_AP_LOG_ID_LEN) {
1061 				goto err_fmt;
1062 			}
1063 		}
1064 		if (sscanf(cp, "source=%s", &source) != 1) {
1065 			goto err_fmt;
1066 		}
1067 	}
1068 
1069 	dprintf((stderr, "%s: base=0x%llx, size=%u, permanent=%u\n",
1070 	    cfga->ap_log_id, base_addr, size_kb, perm_kb));
1071 
1072 	if ((mem = ri_dev_alloc()) == NULL)
1073 		return (-1);
1074 
1075 	/*
1076 	 * Convert memory sizes to MB (truncate).
1077 	 */
1078 	if (nvlist_add_uint64(mem->conf_props, RI_MEM_ADDR, base_addr) != 0 ||
1079 	    nvlist_add_int32(mem->conf_props, RI_MEM_BRD, size_kb/KBYTE) != 0 ||
1080 	    nvlist_add_int32(mem->conf_props, RI_MEM_PERM,
1081 	    perm_kb/KBYTE) != 0) {
1082 		dprintf((stderr, "nvlist_add failure\n"));
1083 		ri_dev_free(mem);
1084 		return (-1);
1085 	}
1086 
1087 	if (target[0] != '\0' &&
1088 	    (nvlist_add_string(mem->conf_props, RI_MEM_TARG, target) != 0 ||
1089 	    nvlist_add_int32(mem->conf_props, RI_MEM_DEL, del_kb/KBYTE) != 0 ||
1090 	    nvlist_add_int32(mem->conf_props, RI_MEM_REMAIN,
1091 	    rem_kb/KBYTE) != 0)) {
1092 		dprintf((stderr, "nvlist_add failure\n"));
1093 		ri_dev_free(mem);
1094 		return (-1);
1095 	}
1096 
1097 	if (source[0] != '\0' &&
1098 	    nvlist_add_string(mem->conf_props, RI_MEM_SRC, source) != 0) {
1099 		dprintf((stderr, "nvlist_add failure\n"));
1100 		ri_dev_free(mem);
1101 		return (-1);
1102 	}
1103 
1104 	/*
1105 	 * XXX - move this property to attachment point hdl?
1106 	 */
1107 	if (nvlist_add_int32(mem->conf_props, RI_MEM_DOMAIN,
1108 	    rcm->ms_sysmb) != 0) {
1109 		dprintf((stderr, "nvlist_add failure\n"));
1110 		ri_dev_free(mem);
1111 		return (-1);
1112 	}
1113 
1114 	dev_list_append(&ap->mems, mem);
1115 	return (0);
1116 
1117 err_fmt:
1118 	dprintf((stderr, "unknown sbd info format: %s\n", cfga->ap_info));
1119 	return (-1);
1120 }
1121 
1122 /*
1123  * Initiate a libdevinfo walk on the IO bus path.
1124  * XXX - investigate performance using two threads here: one thread to do the
1125  * libdevinfo snapshot and treewalk; and one thread to get RCM usage info
1126  */
1127 static int
1128 io_cm_info(ri_ap_t *ap, cfga_list_data_t *cfga, int flags, rcmd_t *rcm)
1129 {
1130 	int			i;
1131 	int			j;
1132 	int			k;
1133 	int			set_size;
1134 	int			retval = 0;
1135 	int			n_usage;
1136 	devinfo_arg_t		di_arg;
1137 	lookup_table_t		devicetable;
1138 	lookup_entry_t		*deventry;
1139 	lookup_entry_t		*lastdeventry;
1140 	ri_dev_t		*io = NULL;
1141 	ri_client_t		*client;
1142 	ri_client_t		*tmp;
1143 	di_devlink_handle_t	linkhd = NULL;
1144 	di_node_t		root = DI_NODE_NIL;
1145 	di_node_t		node = DI_NODE_NIL;
1146 	rcm_info_tuple_t	*rcm_tuple;
1147 	rcm_info_t		*rcm_info = NULL;
1148 	const char		*rcm_rsrc = NULL;
1149 	char			drv_inst[MAXPATHLEN];
1150 	char			path[MAXPATHLEN];
1151 	char			pathbuf[MAXPATHLEN];
1152 
1153 	dprintf((stderr, "io_cm_info(%s)\n", cfga->ap_log_id));
1154 
1155 	/* Extract devfs path from cfgadm information */
1156 	if (sscanf(cfga->ap_info, "device=%s\n", path) != 1) {
1157 		dprintf((stderr, "unknown sbd info format: %s\n",
1158 		    cfga->ap_info));
1159 		return (-1);
1160 	}
1161 
1162 	/* Initialize empty device lookup table */
1163 	devicetable.n_entries = 0;
1164 	devicetable.n_slots = 0;
1165 	devicetable.table = NULL;
1166 
1167 	/* Get libdevinfo snapshot */
1168 	dprintf((stderr, "di_init(%s)\n", path));
1169 	if ((root = di_init(path, DINFOCPYALL)) == DI_NODE_NIL) {
1170 		dprintf((stderr, "di_init: %s\n", strerror(errno)));
1171 		retval = RI_NODE_NIL; /* tell ri_init to skip this node */
1172 		goto end;
1173 	}
1174 
1175 	/*
1176 	 * Map in devlinks database.
1177 	 * XXX - This could be moved to ri_init() for better performance.
1178 	 */
1179 	dprintf((stderr, "di_devlink_init()\n"));
1180 	if ((linkhd = di_devlink_init(NULL, 0)) == NULL) {
1181 		dprintf((stderr, "di_devlink_init: %s\n", strerror(errno)));
1182 		retval = -1;
1183 		goto end;
1184 	}
1185 
1186 	/* Initialize argument for devinfo treewalk */
1187 	di_arg.err = 0;
1188 	di_arg.node = DI_NODE_NIL;
1189 	di_arg.pathbuf = pathbuf;
1190 	di_arg.table = &devicetable;
1191 	di_arg.linkhd = linkhd;
1192 
1193 	/* Use libdevinfo treewalk to build device lookup table */
1194 	if (di_walk_node(root, DI_WALK_CLDFIRST, (void *)&di_arg,
1195 	    devinfo_node_walk) != 0) {
1196 		dprintf((stderr, "di_walk_node: %s\n", strerror(errno)));
1197 		retval = -1;
1198 		goto end;
1199 	}
1200 	if (di_arg.err != 0) {
1201 		dprintf((stderr, "di_walk_node: device tree walk failed\n"));
1202 		retval = -1;
1203 		goto end;
1204 	}
1205 
1206 	/* Call RCM to gather usage information */
1207 	(void) snprintf(pathbuf, MAXPATHLEN, "/devices%s", path);
1208 	dprintf((stderr, "rcm_get_info(%s)\n", pathbuf));
1209 	if (rcm_get_info(rcm->hdl, pathbuf,
1210 	    RCM_INCLUDE_SUBTREE|RCM_INCLUDE_DEPENDENT, &rcm_info) !=
1211 	    RCM_SUCCESS) {
1212 		dprintf((stderr, "rcm_get_info (errno=%d)\n", errno));
1213 		retval = -1;
1214 		goto end;
1215 	}
1216 
1217 	/* Sort the device table by name (proper order for lookups) */
1218 	qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1219 	    table_compare_names);
1220 
1221 	/* Perform mappings of RCM usage segments to device table entries */
1222 	lastdeventry = NULL;
1223 	rcm_tuple = NULL;
1224 	while ((rcm_tuple = rcm_info_next(rcm_info, rcm_tuple)) != NULL) {
1225 		if ((rcm_rsrc = rcm_info_rsrc(rcm_tuple)) == NULL)
1226 			continue;
1227 		if (deventry = lookup(&devicetable, rcm_rsrc)) {
1228 			if (add_usage(deventry, rcm_rsrc, rcm_tuple)) {
1229 				retval = -1;
1230 				goto end;
1231 			}
1232 			lastdeventry = deventry;
1233 		} else {
1234 			if (add_usage(lastdeventry, rcm_rsrc, rcm_tuple)) {
1235 				retval = -1;
1236 				goto end;
1237 			}
1238 		}
1239 	}
1240 
1241 	/* Re-sort the device table by index number (original treewalk order) */
1242 	qsort(devicetable.table, devicetable.n_entries, sizeof (lookup_entry_t),
1243 	    table_compare_indices);
1244 
1245 	/*
1246 	 * Use the mapped usage and the device table to construct ri_dev_t's.
1247 	 * Construct one for each set of entries in the device table with
1248 	 * matching di_node_t's, if: 1) it has mapped RCM usage, or 2) it is
1249 	 * a leaf node and the caller has requested that unmanaged nodes be
1250 	 * included in the output.
1251 	 */
1252 	i = 0;
1253 	while (i < devicetable.n_entries) {
1254 
1255 		node = devicetable.table[i].node;
1256 
1257 		/* Count how many usage records are mapped to this node's set */
1258 		n_usage = 0;
1259 		set_size = 0;
1260 		while (((i + set_size) < devicetable.n_entries) &&
1261 		    (devicetable.table[i + set_size].node == node)) {
1262 			n_usage += devicetable.table[i + set_size].n_usage;
1263 			set_size += 1;
1264 		}
1265 
1266 		/*
1267 		 * If there's no usage, then the node is unmanaged.  Skip this
1268 		 * set of devicetable entries unless the node is a leaf node
1269 		 * and the caller has requested information on unmanaged leaves.
1270 		 */
1271 		if ((n_usage == 0) &&
1272 		    !((flags & RI_INCLUDE_UNMANAGED) && (ident_leaf(node)))) {
1273 			i += set_size;
1274 			continue;
1275 		}
1276 
1277 		/*
1278 		 * The checks above determined that this node is going in.
1279 		 * So determine its driver/instance name and allocate an
1280 		 * ri_dev_t for this node.
1281 		 */
1282 		if (mk_drv_inst(node, drv_inst, devicetable.table[i].name)) {
1283 			dprintf((stderr, "mk_drv_inst failed\n"));
1284 			retval = -1;
1285 			break;
1286 		}
1287 		if ((io = io_dev_alloc(drv_inst)) == NULL) {
1288 			dprintf((stderr, "io_dev_alloc failed\n"));
1289 			retval = -1;
1290 			break;
1291 		}
1292 
1293 		/* Now add all the RCM usage records (if any) to the ri_dev_t */
1294 		for (j = i; j < (i + set_size); j++) {
1295 			for (k = 0; k < devicetable.table[j].n_usage; k++) {
1296 				/* Create new ri_client_t for basic usage */
1297 				client = ri_client_alloc(
1298 				    (char *)devicetable.table[j].usage[k].rsrc,
1299 				    (char *)devicetable.table[j].usage[k].info);
1300 				if (client == NULL) {
1301 					dprintf((stderr,
1302 					    "ri_client_alloc failed\n"));
1303 					ri_dev_free(io);
1304 					retval = -1;
1305 					goto end;
1306 				}
1307 
1308 				/* Add extra query usage to the ri_client_t */
1309 				if ((flags & RI_INCLUDE_QUERY) &&
1310 				    (add_query_state(rcm, client,
1311 				    devicetable.table[j].usage[k].rsrc,
1312 				    devicetable.table[j].usage[k].info) != 0)) {
1313 					dprintf((stderr,
1314 					    "add_query_state failed\n"));
1315 					ri_dev_free(io);
1316 					ri_client_free(client);
1317 					retval = -1;
1318 					goto end;
1319 				}
1320 
1321 				/* Link new ri_client_t to ri_dev_t */
1322 				if (io->rcm_clients) {
1323 					tmp = io->rcm_clients;
1324 					while (tmp->next)
1325 						tmp = tmp->next;
1326 					tmp->next = client;
1327 				} else {
1328 					io->rcm_clients = client;
1329 				}
1330 			}
1331 		}
1332 
1333 		/* Link the ri_dev_t into the return value */
1334 		dev_list_append(&ap->ios, io);
1335 
1336 		/* Advance to the next node set */
1337 		i += set_size;
1338 	}
1339 
1340 end:
1341 	if (rcm_info != NULL)
1342 		rcm_free_info(rcm_info);
1343 	if (linkhd != NULL)
1344 		di_devlink_fini(&linkhd);
1345 	if (root != DI_NODE_NIL)
1346 		di_fini(root);
1347 	empty_table(&devicetable);
1348 
1349 	dprintf((stderr, "io_cm_info: returning %d\n", retval));
1350 	return (retval);
1351 }
1352 
1353 static int
1354 ident_leaf(di_node_t node)
1355 {
1356 	di_minor_t	minor = DI_MINOR_NIL;
1357 
1358 	return ((minor = di_minor_next(node, minor)) != DI_MINOR_NIL &&
1359 	    di_child_node(node) == DI_NODE_NIL);
1360 }
1361 
1362 /* ARGSUSED */
1363 static int
1364 mk_drv_inst(di_node_t node, char drv_inst[], char *devfs_path)
1365 {
1366 	char	*drv;
1367 	int	inst;
1368 
1369 	if ((drv = di_driver_name(node)) == NULL) {
1370 		dprintf((stderr, "no driver bound to %s\n",
1371 		    devfs_path));
1372 		return (-1);
1373 	}
1374 
1375 	if ((inst = di_instance(node)) == -1) {
1376 		dprintf((stderr, "no instance assigned to %s\n",
1377 		    devfs_path));
1378 		return (-1);
1379 	}
1380 	(void) snprintf(drv_inst, MAXPATHLEN, "%s%d", drv, inst);
1381 
1382 	return (0);
1383 }
1384 
1385 /*
1386  * Libdevinfo walker.
1387  *
1388  * During the tree walk of the attached IO devices, for each node
1389  * and all of its associated minors, the following actions are performed:
1390  *  -  The /devices path of the physical device node or minor
1391  *     is stored in a lookup table along with a reference to the
1392  *     libdevinfo node it represents via add_lookup_entry().
1393  *  -  The device links associated with each device are also
1394  *     stored in the same lookup table along with a reference to
1395  *     the libdevinfo node it represents via the minor walk callback.
1396  *
1397  */
1398 static int
1399 devinfo_node_walk(di_node_t node, void *arg)
1400 {
1401 	char			*devfs_path;
1402 #ifdef DEBUG
1403 	char			*drv;
1404 #endif /* DEBUG */
1405 	devinfo_arg_t		*di_arg = (devinfo_arg_t *)arg;
1406 
1407 	if (node == DI_NODE_NIL) {
1408 		return (DI_WALK_TERMINATE);
1409 	}
1410 
1411 	if (((di_state(node) & DI_DRIVER_DETACHED) == 0) &&
1412 	    ((devfs_path = di_devfs_path(node)) != NULL)) {
1413 
1414 		/* Use the provided path buffer to create full /devices path */
1415 		(void) snprintf(di_arg->pathbuf, MAXPATHLEN, "/devices%s",
1416 		    devfs_path);
1417 
1418 #ifdef DEBUG
1419 		dprintf((stderr, "devinfo_node_walk(%s)\n", di_arg->pathbuf));
1420 		if ((drv = di_driver_name(node)) != NULL)
1421 			dprintf((stderr, " driver name %s instance %d\n", drv,
1422 			    di_instance(node)));
1423 #endif
1424 
1425 		/* Free the devfs_path */
1426 		di_devfs_path_free(devfs_path);
1427 
1428 		/* Add an entry to the lookup table for this physical device */
1429 		if (add_lookup_entry(di_arg->table, di_arg->pathbuf, node)) {
1430 			dprintf((stderr, "add_lookup_entry: %s\n",
1431 			    strerror(errno)));
1432 			di_arg->err = 1;
1433 			return (DI_WALK_TERMINATE);
1434 		}
1435 
1436 		/* Check if this node has minors */
1437 		if ((di_minor_next(node, DI_MINOR_NIL)) != DI_MINOR_NIL) {
1438 			/* Walk this node's minors */
1439 			di_arg->node = node;
1440 			if (di_walk_minor(node, NULL, DI_CHECK_ALIAS, arg,
1441 			    devinfo_minor_walk) != 0) {
1442 				dprintf((stderr, "di_walk_minor: %s\n",
1443 				    strerror(errno)));
1444 				di_arg->err = 1;
1445 				return (DI_WALK_TERMINATE);
1446 			}
1447 		}
1448 	}
1449 
1450 	return (DI_WALK_CONTINUE);
1451 }
1452 
1453 /*
1454  * Use di_devlink_walk to find the /dev link from /devices path for this minor
1455  */
1456 static int
1457 devinfo_minor_walk(di_node_t node, di_minor_t minor, void *arg)
1458 {
1459 	char		*name;
1460 	char		*devfs_path;
1461 	devinfo_arg_t	*di_arg = (devinfo_arg_t *)arg;
1462 	char		pathbuf[MAXPATHLEN];
1463 
1464 #ifdef DEBUG
1465 	dprintf((stderr, "devinfo_minor_walk(%d) %s\n", minor,
1466 	    di_arg->pathbuf));
1467 
1468 	if ((name = di_minor_name(minor)) != NULL) {
1469 		dprintf((stderr, "  minor name %s\n", name));
1470 	}
1471 #endif /* DEBUG */
1472 
1473 	/* Terminate the walk when the device node changes */
1474 	if (node != di_arg->node) {
1475 		return (DI_WALK_TERMINATE);
1476 	}
1477 
1478 	/* Construct full /devices path for this minor */
1479 	if ((name = di_minor_name(minor)) == NULL) {
1480 		return (DI_WALK_CONTINUE);
1481 	}
1482 	(void) snprintf(pathbuf, MAXPATHLEN, "%s:%s", di_arg->pathbuf, name);
1483 
1484 	/* Add lookup entry for this minor node */
1485 	if (add_lookup_entry(di_arg->table, pathbuf, node)) {
1486 		dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1487 		di_arg->err = 1;
1488 		return (DI_WALK_TERMINATE);
1489 	}
1490 
1491 	/*
1492 	 * Walk the associated device links.
1493 	 * Note that di_devlink_walk() doesn't want "/devices" in its paths.
1494 	 * Also note that di_devlink_walk() will fail if there are no device
1495 	 * links, which is fine; so ignore if it fails.  Only check for
1496 	 * internal failures during such a walk.
1497 	 */
1498 	devfs_path = &pathbuf[strlen("/devices")];
1499 	(void) di_devlink_walk(di_arg->linkhd, NULL, devfs_path, 0, arg,
1500 	    devinfo_devlink_walk);
1501 	if (di_arg->err != 0) {
1502 		return (DI_WALK_TERMINATE);
1503 	}
1504 
1505 	return (DI_WALK_CONTINUE);
1506 }
1507 
1508 static int
1509 devinfo_devlink_walk(di_devlink_t devlink, void *arg)
1510 {
1511 	const char	*linkpath;
1512 	devinfo_arg_t	*di_arg = (devinfo_arg_t *)arg;
1513 
1514 	/* Get the devlink's path */
1515 	if ((linkpath = di_devlink_path(devlink)) == NULL) {
1516 		dprintf((stderr, "di_devlink_path: %s\n", strerror(errno)));
1517 		di_arg->err = 1;
1518 		return (DI_WALK_TERMINATE);
1519 	}
1520 	dprintf((stderr, "devinfo_devlink_walk: %s\n", linkpath));
1521 
1522 	/* Add lookup entry for this devlink */
1523 	if (add_lookup_entry(di_arg->table, linkpath, di_arg->node)) {
1524 		dprintf((stderr, "add_lookup_entry: %s\n", strerror(errno)));
1525 		di_arg->err = 1;
1526 		return (DI_WALK_TERMINATE);
1527 	}
1528 
1529 	return (DI_WALK_CONTINUE);
1530 }
1531 
1532 /*
1533  * Map rcm_info_t's to ri_client_t's, filtering out "uninteresting" (hack)
1534  * RCM clients. The number of "interesting" ri_client_t's is returned
1535  * in cnt if passed non-NULL.
1536  */
1537 static int
1538 add_rcm_clients(ri_client_t **client_list, rcmd_t *rcm, rcm_info_t *info,
1539     int flags, int *cnt)
1540 {
1541 	rcm_info_tuple_t	*tuple;
1542 	char			*rsrc, *usage;
1543 	ri_client_t		*client, *tmp;
1544 
1545 	assert(client_list != NULL && rcm != NULL);
1546 
1547 	if (info == NULL)
1548 		return (0);
1549 
1550 	if (cnt != NULL)
1551 		*cnt = 0;
1552 
1553 	tuple = NULL;
1554 	while ((tuple = rcm_info_next(info, tuple)) != NULL) {
1555 		if ((rsrc = (char *)rcm_info_rsrc(tuple)) == NULL ||
1556 		    (usage = (char *)rcm_info_info(tuple)) == NULL) {
1557 			continue;
1558 		}
1559 
1560 		if (rcm_ignore(rsrc, usage) == 0)
1561 			continue;
1562 
1563 		if ((client = ri_client_alloc(rsrc, usage)) == NULL)
1564 			return (-1);
1565 
1566 		if ((flags & RI_INCLUDE_QUERY) && add_query_state(rcm, client,
1567 		    rsrc, usage) != 0) {
1568 			ri_client_free(client);
1569 			return (-1);
1570 		}
1571 
1572 		if (cnt != NULL)
1573 			++*cnt;
1574 
1575 		/*
1576 		 * Link in
1577 		 */
1578 		if ((tmp = *client_list) == NULL) {
1579 			*client_list = client;
1580 			continue;
1581 		}
1582 		while (tmp->next != NULL) {
1583 			tmp = tmp->next;
1584 		}
1585 		tmp->next = client;
1586 	}
1587 
1588 	return (0);
1589 }
1590 
1591 /*
1592  * Currently only filtering out based on known info string prefixes.
1593  */
1594 /* ARGSUSED */
1595 static int
1596 rcm_ignore(char *rsrc, char *infostr)
1597 {
1598 	char	**cpp;
1599 
1600 	for (cpp = rcm_info_filter; *cpp != NULL; cpp++) {
1601 		if (strncmp(infostr, *cpp, strlen(*cpp)) == 0) {
1602 			return (0);
1603 		}
1604 	}
1605 	return (-1);
1606 }
1607 
1608 /*
1609  * If this tuple was cached in the offline query pass, add the
1610  * query state and error string to the ri_client_t.
1611  */
1612 static int
1613 add_query_state(rcmd_t *rcm, ri_client_t *client, const char *rsrc,
1614     const char *info)
1615 {
1616 	int			qstate = RI_QUERY_UNKNOWN;
1617 	char			*errstr = NULL;
1618 	rcm_info_tuple_t	*cached_tuple;
1619 
1620 	if ((cached_tuple = tuple_lookup(rcm, rsrc, info)) != NULL) {
1621 		qstate = state2query(rcm_info_state(cached_tuple));
1622 		errstr = (char *)rcm_info_error(cached_tuple);
1623 	}
1624 
1625 	if (nvlist_add_int32(client->usg_props, RI_QUERY_STATE, qstate) != 0 ||
1626 	    (errstr != NULL && nvlist_add_string(client->usg_props,
1627 	    RI_QUERY_ERR, errstr) != 0)) {
1628 		dprintf((stderr, "nvlist_add fail\n"));
1629 		return (-1);
1630 	}
1631 
1632 	return (0);
1633 }
1634 
1635 static int
1636 state2query(int rcm_state)
1637 {
1638 	int	query;
1639 
1640 	switch (rcm_state) {
1641 	case RCM_STATE_OFFLINE_QUERY:
1642 	case RCM_STATE_SUSPEND_QUERY:
1643 		query = RI_QUERY_OK;
1644 		break;
1645 	case RCM_STATE_OFFLINE_QUERY_FAIL:
1646 	case RCM_STATE_SUSPEND_QUERY_FAIL:
1647 		query = RI_QUERY_FAIL;
1648 		break;
1649 	default:
1650 		query = RI_QUERY_UNKNOWN;
1651 		break;
1652 	}
1653 
1654 	return (query);
1655 }
1656 
1657 static void
1658 dev_list_append(ri_dev_t **head, ri_dev_t *dev)
1659 {
1660 	ri_dev_t	*tmp;
1661 
1662 	if ((tmp = *head) == NULL) {
1663 		*head = dev;
1664 		return;
1665 	}
1666 	while (tmp->next != NULL) {
1667 		tmp = tmp->next;
1668 	}
1669 	tmp->next = dev;
1670 }
1671 
1672 /*
1673  * The cpu list is ordered on cpuid since CMP cpuids will not necessarily
1674  * be discovered in sequence.
1675  */
1676 static void
1677 dev_list_cpu_insert(ri_dev_t **listp, ri_dev_t *dev, processorid_t newid)
1678 {
1679 	ri_dev_t	*tmp;
1680 	int32_t		cpuid;
1681 
1682 	while ((tmp = *listp) != NULL &&
1683 	    nvlist_lookup_int32(tmp->conf_props, RI_CPU_ID, &cpuid) == 0 &&
1684 	    cpuid < newid) {
1685 		listp = &tmp->next;
1686 	}
1687 
1688 	dev->next = tmp;
1689 	*listp = dev;
1690 }
1691 
1692 /*
1693  * Linear lookup. Should convert to hash tab.
1694  */
1695 static rcm_info_tuple_t *
1696 tuple_lookup(rcmd_t *rcm, const char *krsrc, const char *kinfo)
1697 {
1698 	rcm_info_tuple_t	*tuple = NULL;
1699 	const char		*rsrc, *info;
1700 
1701 	if ((rcm == NULL) || (krsrc == NULL) || (kinfo == NULL)) {
1702 		return (NULL);
1703 	}
1704 
1705 	while ((tuple = rcm_info_next(rcm->offline_query_info,
1706 	    tuple)) != NULL) {
1707 		if ((rsrc = rcm_info_rsrc(tuple)) == NULL ||
1708 		    (info = rcm_info_info(tuple)) == NULL) {
1709 			continue;
1710 		}
1711 
1712 		if (strcmp(rsrc, krsrc) == 0 && strcmp(info, kinfo) == 0) {
1713 			return (tuple);
1714 		}
1715 	}
1716 	return (NULL);
1717 }
1718 
1719 /*
1720  * Create and link attachment point handle.
1721  */
1722 static ri_ap_t *
1723 ri_ap_alloc(char *ap_id, ri_hdl_t *hdl)
1724 {
1725 	ri_ap_t		*ap, *tmp;
1726 
1727 	if ((ap = calloc(1, sizeof (*ap))) == NULL) {
1728 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
1729 		return (NULL);
1730 	}
1731 
1732 	if (nvlist_alloc(&ap->conf_props, NV_UNIQUE_NAME, 0) != 0 ||
1733 	    nvlist_add_string(ap->conf_props, RI_AP_REQ_ID, ap_id) != 0) {
1734 		if (ap->conf_props != NULL)
1735 			nvlist_free(ap->conf_props);
1736 		free(ap);
1737 		return (NULL);
1738 	}
1739 
1740 	if ((tmp = hdl->aps) == NULL) {
1741 		hdl->aps = ap;
1742 	} else {
1743 		while (tmp->next != NULL) {
1744 			tmp = tmp->next;
1745 		}
1746 		tmp->next = ap;
1747 	}
1748 
1749 	return (ap);
1750 }
1751 
1752 static ri_dev_t *
1753 ri_dev_alloc(void)
1754 {
1755 	ri_dev_t	*dev;
1756 
1757 	if ((dev = calloc(1, sizeof (*dev))) == NULL ||
1758 	    nvlist_alloc(&dev->conf_props, NV_UNIQUE_NAME, 0) != 0) {
1759 		s_free(dev);
1760 	}
1761 	return (dev);
1762 }
1763 
1764 static ri_dev_t *
1765 io_dev_alloc(char *drv_inst)
1766 {
1767 	ri_dev_t	*io;
1768 
1769 	assert(drv_inst != NULL);
1770 
1771 	if ((io = ri_dev_alloc()) == NULL)
1772 		return (NULL);
1773 
1774 	if (nvlist_add_string(io->conf_props, RI_IO_DRV_INST,
1775 	    drv_inst) != 0) {
1776 		dprintf((stderr, "nvlist_add_string fail\n"));
1777 		ri_dev_free(io);
1778 		return (NULL);
1779 	}
1780 
1781 	return (io);
1782 }
1783 
1784 static ri_client_t *
1785 ri_client_alloc(char *rsrc, char *usage)
1786 {
1787 	ri_client_t	*client;
1788 
1789 	assert(rsrc != NULL && usage != NULL);
1790 
1791 	if ((client = calloc(1, sizeof (*client))) == NULL) {
1792 		dprintf((stderr, "calloc: %s\n", strerror(errno)));
1793 		return (NULL);
1794 	}
1795 
1796 	if (nvlist_alloc(&client->usg_props, NV_UNIQUE_NAME, 0) != 0) {
1797 		dprintf((stderr, "nvlist_alloc fail\n"));
1798 		free(client);
1799 		return (NULL);
1800 	}
1801 
1802 	if (nvlist_add_string(client->usg_props, RI_CLIENT_RSRC, rsrc) != 0 ||
1803 	    nvlist_add_string(client->usg_props, RI_CLIENT_USAGE, usage) != 0) {
1804 		dprintf((stderr, "nvlist_add_string fail\n"));
1805 		ri_client_free(client);
1806 		return (NULL);
1807 	}
1808 
1809 	return (client);
1810 }
1811 
1812 static void
1813 apd_tbl_free(apd_t apd_tbl[], int napds)
1814 {
1815 	int	i;
1816 	apd_t	*apd;
1817 
1818 	for (i = 0, apd = apd_tbl; i < napds; i++, apd++)
1819 		s_free(apd->cfga_list_data);
1820 
1821 	free(apd_tbl);
1822 }
1823 
1824 static char *
1825 pstate2str(int pi_state)
1826 {
1827 	char	*state;
1828 
1829 	switch (pi_state) {
1830 	case P_OFFLINE:
1831 		state = PS_OFFLINE;
1832 		break;
1833 	case P_ONLINE:
1834 		state = PS_ONLINE;
1835 		break;
1836 	case P_FAULTED:
1837 		state = PS_FAULTED;
1838 		break;
1839 	case P_POWEROFF:
1840 		state = PS_POWEROFF;
1841 		break;
1842 	case P_NOINTR:
1843 		state = PS_NOINTR;
1844 		break;
1845 	case P_SPARE:
1846 		state = PS_SPARE;
1847 		break;
1848 	default:
1849 		state = "unknown";
1850 		break;
1851 	}
1852 
1853 	return (state);
1854 }
1855 
1856 #ifdef DEBUG
1857 static void
1858 dump_apd_tbl(FILE *fp, apd_t *apds, int n_apds)
1859 {
1860 	int			i, j;
1861 	cfga_list_data_t	*cfga_ldata;
1862 
1863 	for (i = 0; i < n_apds; i++, apds++) {
1864 		dprintf((stderr, "apd_tbl[%d].nlist=%d\n", i, apds->nlist));
1865 		for (j = 0, cfga_ldata = apds->cfga_list_data; j < apds->nlist;
1866 		    j++, cfga_ldata++) {
1867 			dprintf((fp,
1868 			    "apd_tbl[%d].cfga_list_data[%d].ap_log_id=%s\n",
1869 			    i, j, cfga_ldata->ap_log_id));
1870 		}
1871 	}
1872 }
1873 #endif /* DEBUG */
1874 
1875 /*
1876  * The lookup table is a simple array that is grown in chunks
1877  * to optimize memory allocation.
1878  * Indices are assigned to each array entry in-order so that
1879  * the original device tree ordering can be discerned at a later time.
1880  *
1881  * add_lookup_entry is called from the libdevinfo tree traversal callbacks:
1882  * 1) devinfo_node_walk - physical device path for each node in
1883  *    the devinfo tree via di_walk_node(), lookup entry name is
1884  *    /devices/[di_devfs_path]
1885  * 2) devinfo_minor_walk - physical device path plus minor name for
1886  *    each minor associated with a node via di_walk_minor(), lookup entry
1887  *    name is /devices/[di_devfs_path:di_minor_name]
1888  * 3) devinfo_devlink_walk - for each minor's /dev link from its /devices
1889  *    path via di_devlink_walk(), lookup entry name is di_devlink_path()
1890  */
1891 static int
1892 add_lookup_entry(lookup_table_t *table, const char *name, di_node_t node)
1893 {
1894 	size_t		size;
1895 	lookup_entry_t	*new_table;
1896 
1897 
1898 	/* Grow the lookup table by USAGE_ALLOC_SIZE slots if necessary */
1899 	if (table->n_entries == table->n_slots) {
1900 		size = (table->n_slots + USAGE_ALLOC_SIZE) *
1901 		    sizeof (lookup_entry_t);
1902 		new_table = (lookup_entry_t *)realloc(table->table, size);
1903 		if (new_table == NULL) {
1904 			dprintf((stderr, "add_lookup_entry: alloc failed: %s\n",
1905 			    strerror(errno)));
1906 			errno = ENOMEM;
1907 			return (-1);
1908 		}
1909 		table->table = new_table;
1910 		table->n_slots += USAGE_ALLOC_SIZE;
1911 	}
1912 
1913 	dprintf((stderr, "add_lookup_entry[%d]:%s\n", table->n_entries, name));
1914 
1915 	/* Add this name to the next slot */
1916 	if ((table->table[table->n_entries].name = strdup(name)) == NULL) {
1917 		dprintf((stderr, "add_lookup_entry: strdup failed: %s\n",
1918 		    strerror(errno)));
1919 		errno = ENOMEM;
1920 		return (-1);
1921 	}
1922 	table->table[table->n_entries].index = table->n_entries;
1923 	table->table[table->n_entries].node = node;
1924 	table->table[table->n_entries].n_usage = 0;
1925 	table->table[table->n_entries].usage = NULL;
1926 	table->n_entries += 1;
1927 
1928 	return (0);
1929 }
1930 
1931 /*
1932  * lookup table entry names are full pathname strings, all start with /
1933  */
1934 static int
1935 table_compare_names(const void *a, const void *b)
1936 {
1937 	lookup_entry_t *entry1 = (lookup_entry_t *)a;
1938 	lookup_entry_t *entry2 = (lookup_entry_t *)b;
1939 
1940 	return (strcmp(entry1->name, entry2->name));
1941 }
1942 
1943 
1944 /*
1945  * Compare two indices and return -1 for less, 1 for greater, 0 for equal
1946  */
1947 static int
1948 table_compare_indices(const void *a, const void *b)
1949 {
1950 	lookup_entry_t *entry1 = (lookup_entry_t *)a;
1951 	lookup_entry_t *entry2 = (lookup_entry_t *)b;
1952 
1953 	if (entry1->index < entry2->index)
1954 		return (-1);
1955 	if (entry1->index > entry2->index)
1956 		return (1);
1957 	return (0);
1958 }
1959 
1960 /*
1961  * Given a RCM resource name, find the matching entry in the IO device table
1962  */
1963 static lookup_entry_t *
1964 lookup(lookup_table_t *table, const char *rcm_rsrc)
1965 {
1966 	lookup_entry_t	*entry;
1967 	lookup_entry_t	lookup_arg;
1968 
1969 	dprintf((stderr, "lookup:%s\n", rcm_rsrc));
1970 	lookup_arg.name = (char *)rcm_rsrc;
1971 	entry = bsearch(&lookup_arg, table->table, table->n_entries,
1972 	    sizeof (lookup_entry_t), table_compare_names);
1973 
1974 #ifdef DEBUG
1975 	if (entry != NULL) {
1976 		dprintf((stderr, " found entry:%d\n", entry->index));
1977 	}
1978 #endif /* DEBUG */
1979 	return (entry);
1980 }
1981 
1982 /*
1983  * Add RCM usage to the given device table entry.
1984  * Returns -1 on realloc failure.
1985  */
1986 static int
1987 add_usage(lookup_entry_t *entry, const char *rcm_rsrc, rcm_info_tuple_t *tuple)
1988 {
1989 	size_t		size;
1990 	const char	*info;
1991 	usage_t		*new_usage;
1992 
1993 	if ((entry == NULL) ||
1994 	    ((info = rcm_info_info(tuple)) == NULL))
1995 		return (0);
1996 
1997 	if (rcm_ignore((char *)rcm_rsrc, (char *)info) == 0)
1998 		return (0);
1999 
2000 	size = (entry->n_usage + 1) * sizeof (usage_t);
2001 	new_usage = (usage_t *)realloc(entry->usage, size);
2002 	if (new_usage == NULL) {
2003 		dprintf((stderr, "add_usage: alloc failed: %s\n",
2004 		    strerror(errno)));
2005 		return (-1);
2006 	}
2007 	dprintf((stderr, "add_usage: entry %d rsrc: %s info: %s\n",
2008 	    entry->index, rcm_rsrc, info));
2009 
2010 	entry->usage = new_usage;
2011 	entry->usage[entry->n_usage].rsrc = rcm_rsrc;
2012 	entry->usage[entry->n_usage].info = info;
2013 	entry->n_usage += 1;
2014 	return (0);
2015 }
2016 
2017 static void
2018 empty_table(lookup_table_t *table)
2019 {
2020 	int i;
2021 
2022 	if (table) {
2023 		for (i = 0; i < table->n_entries; i++) {
2024 			if (table->table[i].name)
2025 				free(table->table[i].name);
2026 			/*
2027 			 * Note: the strings pointed to from within
2028 			 * usage were freed already by rcm_free_info
2029 			 */
2030 			if (table->table[i].usage)
2031 				free(table->table[i].usage);
2032 		}
2033 		if (table->table)
2034 			free(table->table);
2035 		table->table = NULL;
2036 		table->n_entries = 0;
2037 		table->n_slots = 0;
2038 	}
2039 }
2040