1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 * 21 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 22 * Use is subject to license terms. 23 */ 24 25 /* 26 * Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T 27 * All Rights Reserved. 28 */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California. 33 * All Rights Reserved. 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #include <stdio.h> 41 #include <strings.h> 42 #include <errno.h> 43 #include <fcntl.h> 44 #include <unistd.h> 45 #include <signal.h> 46 #include <limits.h> 47 #include <math.h> 48 49 #include <sys/time.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #include <sys/sockio.h> 53 #include <sys/stropts.h> 54 #include <sys/file.h> 55 #include <sys/sysmacros.h> 56 57 #include <arpa/inet.h> 58 #include <net/if.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in.h> 61 #include <netinet/ip.h> 62 #include <netinet/ip_icmp.h> 63 #include <netinet/ip_var.h> 64 #include <netinet/ip6.h> 65 #include <netinet/icmp6.h> 66 #include <netinet/udp.h> 67 #include <netdb.h> 68 #include <stdlib.h> 69 #include <priv_utils.h> 70 71 #include <libinetutil.h> 72 #include "ping.h" 73 74 /* 75 * This macro is used to compare 16bit, wrapping sequence numbers. Inspired by 76 * TCP's SEQ_LEQ macro. 77 */ 78 #define PINGSEQ_LEQ(a, b) ((int16_t)((a)-(b)) <= 0) 79 80 #define MAX_WAIT 10 /* max sec. to wait for response */ 81 #define MAX_TRAFFIC_CLASS 255 /* max traffic class for IPv6 */ 82 #define MAX_FLOW_LABEL 0xFFFFF /* max flow label for IPv6 */ 83 #define MAX_TOS 255 /* max type-of-service for IPv4 */ 84 85 #define TIMEOUT 20 /* default timeout value */ 86 #define DEFAULT_DATALEN 56 87 88 #define MULTICAST_NOLOOP 1 /* multicast options */ 89 #define MULTICAST_TTL 2 90 #define MULTICAST_IF 4 91 92 #define IF_INDEX 0 /* types of -i argument */ 93 #define IF_NAME 1 94 #define IF_ADDR 2 95 #define IF_ADDR6 3 96 97 #ifdef BSD 98 #define setbuf(s, b) setlinebuf((s)) 99 #endif /* BSD */ 100 101 102 /* interface identification */ 103 union if_id { 104 int index; /* interface index (e.g., 1, 2) */ 105 char *name; /* interface name (e.g., le0, hme0) */ 106 union any_in_addr addr; /* interface address (e.g., 10.123.4.5) */ 107 }; 108 109 /* stores the interface supplied by the user */ 110 struct if_entry { 111 char *str; /* unresolved, string input */ 112 int id_type; /* type of ID (index, name, addr, addr6) */ 113 union if_id id; /* ID */ 114 }; 115 116 char *progname; 117 char *targethost; 118 char *nexthop; 119 120 static int send_sock; /* send sockets */ 121 static int send_sock6; 122 static struct sockaddr_in to; /* where to send */ 123 static struct sockaddr_in6 to6; 124 static union any_in_addr gw_IP_list[MAX_GWS]; /* gateways */ 125 static union any_in_addr gw_IP_list6[MAX_GWS6]; 126 static int if_index = 0; /* outgoing interface index */ 127 boolean_t is_alive = _B_FALSE; /* is target host alive */ 128 struct targetaddr *current_targetaddr; /* current target IP address to probe */ 129 static struct targetaddr *targetaddr_list; /* list of IP addresses to probe */ 130 static int num_targetaddrs; /* no of target addresses to probe */ 131 static int num_v4 = 0; /* count of IPv4 addresses */ 132 static int num_v6 = 0; /* count of IPv6 addresses */ 133 boolean_t verbose = _B_FALSE; /* verbose output */ 134 boolean_t stats = _B_FALSE; /* display statistics */ 135 static boolean_t settos = _B_FALSE; /* set type-of-service value */ 136 boolean_t rr_option = _B_FALSE; /* true if using record route */ 137 boolean_t send_reply = _B_FALSE; /* Send an ICMP_{ECHO|TSTAMP}REPLY */ 138 /* that goes to target and comes back */ 139 /* to the the sender via src routing. */ 140 boolean_t strict = _B_FALSE; /* true if using strict source route */ 141 boolean_t ts_option = _B_FALSE; /* true if using timestamp option */ 142 boolean_t use_icmp_ts = _B_FALSE; /* Use ICMP timestamp request */ 143 boolean_t use_udp = _B_FALSE; /* Use UDP instead of ICMP */ 144 boolean_t probe_all = _B_FALSE; /* probe all the IP addresses */ 145 boolean_t nflag = _B_FALSE; /* do not reverse lookup addresses */ 146 boolean_t bypass = _B_FALSE; /* bypass IPsec policy */ 147 static int family_input = AF_UNSPEC; /* address family supplied by user */ 148 int datalen = DEFAULT_DATALEN; /* How much data */ 149 int ts_flag; /* timestamp flag value */ 150 static int num_gw; /* number of gateways */ 151 static int eff_num_gw; /* effective number of gateways */ 152 /* if send_reply, it's 2*num_gw+1 */ 153 static int num_wraps = -1; /* no of times 64K icmp_seq wrapped */ 154 static ushort_t dest_port = 32768 + 666; /* starting port for the UDP probes */ 155 static char *gw_list[MAXMAX_GWS]; /* list of gateways as user enters */ 156 static int interval = 1; /* interval between transmissions */ 157 static int options; /* socket options */ 158 static int moptions; /* multicast options */ 159 int npackets; /* number of packets to send */ 160 static ushort_t tos; /* type-of-service value */ 161 static int hoplimit = -1; /* time-to-live value */ 162 static int dontfrag; /* IP*_DONTFRAG */ 163 static int timeout = TIMEOUT; /* timeout value (sec) for probes */ 164 static struct if_entry out_if; /* interface argument */ 165 int ident; /* ID for this ping run */ 166 static hrtime_t t_last_probe_sent; /* the time we sent the last probe */ 167 168 /* 169 * This buffer stores the received packets. Currently it needs to be 32 bit 170 * aligned. In the future, we'll be using 64 bit alignment, so let's use 64 bit 171 * alignment now. 172 */ 173 static uint64_t in_pkt[(IP_MAXPACKET + 1)/8]; 174 175 /* Used to store the ancillary data that comes with the received packets */ 176 static uint64_t ancillary_data[(IP_MAXPACKET + 1)/8]; 177 178 static int ntransmitted; /* number of packet sent to single IP address */ 179 int nreceived; /* # of packets we got back from target host */ 180 int nreceived_last_target; /* received from last target IP */ 181 /* 182 * These are used for statistics. tmin is initialized to maximum longint value. 183 * The max value is also used for timeouts. All times are in microseconds. 184 */ 185 long long tmin = LLONG_MAX; 186 long long tmax; 187 int64_t tsum; /* sum of all times, for doing average */ 188 int64_t tsum2; /* sum of squared times, for std. dev. */ 189 190 static struct targetaddr *build_targetaddr_list(struct addrinfo *, 191 union any_in_addr *); 192 extern void check_reply(struct addrinfo *, struct msghdr *, int, ushort_t); 193 extern void check_reply6(struct addrinfo *, struct msghdr *, int, ushort_t); 194 static struct targetaddr *create_targetaddr_item(int, union any_in_addr *, 195 union any_in_addr *); 196 void find_dstaddr(ushort_t, union any_in_addr *); 197 static struct ifaddrlist *find_if(struct ifaddrlist *, int); 198 static void finish(); 199 static void get_gwaddrs(char *[], int, union any_in_addr *, 200 union any_in_addr *, int *, int *); 201 static void get_hostinfo(char *, int, struct addrinfo **); 202 static ushort_t in_cksum(ushort_t *, int); 203 static int int_arg(char *s, char *what); 204 boolean_t is_a_target(struct addrinfo *, union any_in_addr *); 205 static void mirror_gws(union any_in_addr *, int); 206 static void pinger(int, struct sockaddr *, struct msghdr *, int); 207 char *pr_name(char *, int); 208 char *pr_protocol(int); 209 static void print_unknown_host_msg(const char *, const char *); 210 static void recv_icmp_packet(struct addrinfo *, int, int, ushort_t, ushort_t); 211 static void resolve_nodes(struct addrinfo **, struct addrinfo **, 212 union any_in_addr **); 213 void schedule_sigalrm(); 214 static void select_all_src_addrs(union any_in_addr **, struct addrinfo *, 215 union any_in_addr *, union any_in_addr *); 216 static void select_src_addr(union any_in_addr *, int, union any_in_addr *); 217 void send_scheduled_probe(); 218 boolean_t seq_match(ushort_t, int, ushort_t); 219 extern void set_ancillary_data(struct msghdr *, int, union any_in_addr *, int, 220 uint_t); 221 extern void set_IPv4_options(int, union any_in_addr *, int, struct in_addr *, 222 struct in_addr *); 223 static void set_nexthop(int, struct addrinfo *, int); 224 static boolean_t setup_socket(int, int *, int *, int *, ushort_t *, 225 struct addrinfo *); 226 void sigalrm_handler(); 227 void tvsub(struct timeval *, struct timeval *); 228 static void usage(char *); 229 230 /* 231 * main() 232 */ 233 int 234 main(int argc, char *argv[]) 235 { 236 struct addrinfo *ai_dst = NULL; /* addrinfo host list */ 237 struct addrinfo *ai_nexthop = NULL; /* addrinfo nexthop */ 238 union any_in_addr *src_addr_list = NULL; /* src addrs to use */ 239 int recv_sock = -1; /* receive sockets */ 240 int recv_sock6 = -1; 241 ushort_t udp_src_port; /* src ports for UDP probes */ 242 ushort_t udp_src_port6; /* used to identify replies */ 243 uint_t flowinfo = 0; 244 uint_t class = 0; 245 char abuf[INET6_ADDRSTRLEN]; 246 int c; 247 int i; 248 boolean_t has_sys_ip_config; 249 250 progname = argv[0]; 251 252 /* 253 * This program needs the net_icmpaccess privilege for creating 254 * raw ICMP sockets. It needs sys_ip_config for using the 255 * IP_NEXTHOP socket option (IPv4 only). We'll fail 256 * on the socket call and report the error there when we have 257 * insufficient privileges. 258 * 259 * Shared-IP zones don't have the sys_ip_config privilege, so 260 * we need to check for it in our limit set before trying 261 * to set it. 262 */ 263 has_sys_ip_config = priv_ineffect(PRIV_SYS_IP_CONFIG); 264 265 (void) __init_suid_priv(PU_CLEARLIMITSET, PRIV_NET_ICMPACCESS, 266 has_sys_ip_config ? PRIV_SYS_IP_CONFIG : (char *)NULL, 267 (char *)NULL); 268 269 setbuf(stdout, (char *)0); 270 271 while ((c = getopt(argc, argv, 272 "abA:c:dDF:G:g:I:i:LlnN:P:p:rRSsTt:UvX:x:Y0123?")) != -1) { 273 switch ((char)c) { 274 case 'A': 275 if (strcmp(optarg, "inet") == 0) { 276 family_input = AF_INET; 277 } else if (strcmp(optarg, "inet6") == 0) { 278 family_input = AF_INET6; 279 } else { 280 Fprintf(stderr, 281 "%s: unknown address family %s\n", 282 progname, optarg); 283 exit(EXIT_FAILURE); 284 } 285 break; 286 287 case 'a': 288 probe_all = _B_TRUE; 289 break; 290 291 case 'c': 292 i = int_arg(optarg, "traffic class"); 293 if (i > MAX_TRAFFIC_CLASS) { 294 Fprintf(stderr, "%s: traffic class %d out of " 295 "range\n", progname, i); 296 exit(EXIT_FAILURE); 297 } 298 class = (uint_t)i; 299 break; 300 301 case 'd': 302 options |= SO_DEBUG; 303 break; 304 305 case 'D': 306 dontfrag = 1; 307 break; 308 309 case 'b': 310 bypass = _B_TRUE; 311 break; 312 313 case 'F': 314 i = int_arg(optarg, "flow label"); 315 if (i > MAX_FLOW_LABEL) { 316 Fprintf(stderr, "%s: flow label %d out of " 317 "range\n", progname, i); 318 exit(EXIT_FAILURE); 319 } 320 flowinfo = (uint_t)i; 321 break; 322 323 case 'I': 324 stats = _B_TRUE; 325 interval = int_arg(optarg, "interval"); 326 break; 327 328 case 'i': 329 /* 330 * this can accept interface index, interface name, and 331 * address configured on the interface 332 */ 333 moptions |= MULTICAST_IF; 334 out_if.str = optarg; 335 336 if (inet_pton(AF_INET6, optarg, &out_if.id.addr) > 0) { 337 out_if.id_type = IF_ADDR6; 338 } else if (inet_pton(AF_INET, optarg, 339 &out_if.id.addr) > 0) { 340 out_if.id_type = IF_ADDR; 341 } else if (strcmp(optarg, "0") == 0) { 342 out_if.id_type = IF_INDEX; 343 out_if.id.index = 0; 344 } else if ((out_if.id.index = atoi(optarg)) != 0) { 345 out_if.id_type = IF_INDEX; 346 } else { 347 out_if.id.name = optarg; 348 out_if.id_type = IF_NAME; 349 } 350 break; 351 352 case 'L': 353 moptions |= MULTICAST_NOLOOP; 354 break; 355 356 case 'l': 357 send_reply = _B_TRUE; 358 strict = _B_FALSE; 359 break; 360 361 case 'n': 362 nflag = _B_TRUE; 363 break; 364 365 case 'P': 366 settos = _B_TRUE; 367 i = int_arg(optarg, "type-of-service"); 368 if (i > MAX_TOS) { 369 Fprintf(stderr, "%s: tos value %d out of " 370 "range\n", progname, i); 371 exit(EXIT_FAILURE); 372 } 373 tos = (ushort_t)i; 374 break; 375 376 case 'p': 377 i = int_arg(optarg, "port number"); 378 if (i > MAX_PORT) { 379 Fprintf(stderr, "%s: port number %d out of " 380 "range\n", progname, i); 381 exit(EXIT_FAILURE); 382 } 383 dest_port = (ushort_t)i; 384 break; 385 386 case 'r': 387 options |= SO_DONTROUTE; 388 break; 389 390 case 'R': 391 rr_option = _B_TRUE; 392 break; 393 394 case 'S': 395 send_reply = _B_TRUE; 396 strict = _B_TRUE; 397 break; 398 399 case 's': 400 stats = _B_TRUE; 401 break; 402 403 case 'T': 404 ts_option = _B_TRUE; 405 break; 406 407 case 't': 408 moptions |= MULTICAST_TTL; 409 hoplimit = int_arg(optarg, "ttl"); 410 if (hoplimit > MAXTTL) { 411 Fprintf(stderr, "%s: ttl %d out of range\n", 412 progname, hoplimit); 413 exit(EXIT_FAILURE); 414 } 415 break; 416 417 case 'U': 418 use_udp = _B_TRUE; 419 use_icmp_ts = _B_FALSE; 420 break; 421 422 case 'v': 423 verbose = _B_TRUE; 424 break; 425 /* 426 * 'x' and 'X' has been undocumented flags for source routing. 427 * Now we document loose source routing with the new flag 'g', 428 * which is same as in traceroute. We still keep x/X as 429 * as undocumented. 'G', which is for strict source routing is 430 * also undocumented. 431 */ 432 case 'x': 433 case 'g': 434 strict = _B_FALSE; 435 if (num_gw > MAXMAX_GWS) { 436 Fprintf(stderr, "%s: too many gateways\n", 437 progname); 438 exit(EXIT_FAILURE); 439 } 440 gw_list[num_gw++] = optarg; 441 break; 442 443 case 'X': 444 case 'G': 445 strict = _B_TRUE; 446 if (num_gw > MAXMAX_GWS) { 447 Fprintf(stderr, "%s: too many gateways\n", 448 progname); 449 exit(EXIT_FAILURE); 450 } 451 gw_list[num_gw++] = optarg; 452 break; 453 454 case 'N': 455 if (nexthop != NULL) { 456 Fprintf(stderr, "%s: only one next hop gateway" 457 " allowed\n", progname); 458 exit(EXIT_FAILURE); 459 } 460 nexthop = optarg; 461 break; 462 463 case 'Y': 464 use_icmp_ts = _B_TRUE; 465 use_udp = _B_FALSE; 466 break; 467 468 case '0': 469 case '1': 470 case '2': 471 case '3': 472 ts_flag = (char)c - '0'; 473 break; 474 475 case '?': 476 usage(progname); 477 exit(EXIT_FAILURE); 478 break; 479 480 default: 481 usage(progname); 482 exit(EXIT_FAILURE); 483 break; 484 } 485 } 486 487 if (optind >= argc) { 488 usage(progname); 489 exit(EXIT_FAILURE); 490 } 491 492 /* 493 * send_reply, which sends the probe packet back to itself 494 * doesn't work with UDP 495 */ 496 if (use_udp) 497 send_reply = _B_FALSE; 498 499 if (getenv("MACHINE_THAT_GOES_PING") != NULL) 500 stats = _B_TRUE; 501 502 targethost = argv[optind]; 503 optind++; 504 if (optind < argc) { 505 if (stats) { 506 datalen = int_arg(argv[optind], "data size"); 507 optind++; 508 if (optind < argc) { 509 npackets = int_arg(argv[optind], 510 "packet count"); 511 if (npackets < 1) { 512 Fprintf(stderr, "%s: packet count %d " 513 "out of range\n", progname, 514 npackets); 515 exit(EXIT_FAILURE); 516 } 517 } 518 } else { 519 timeout = int_arg(argv[optind], "timeout"); 520 } 521 } 522 523 /* 524 * Let's prepare sockaddr_in* structures, cause we might need both of 525 * them. 526 */ 527 bzero((char *)&to, sizeof (struct sockaddr_in)); 528 to.sin_family = AF_INET; 529 530 bzero((char *)&to6, sizeof (struct sockaddr_in6)); 531 to6.sin6_family = AF_INET6; 532 to6.sin6_flowinfo = htonl((class << 20) | flowinfo); 533 534 if (stats) 535 (void) sigset(SIGINT, finish); 536 537 ident = (int)getpid() & 0xFFFF; 538 539 /* resolve the hostnames */ 540 resolve_nodes(&ai_dst, &ai_nexthop, &src_addr_list); 541 542 /* 543 * We should make sure datalen is reasonable. 544 * IP_MAXPACKET >= IPv4/IPv6 header length + 545 * IPv4 options/IPv6 routing header length + 546 * ICMP/ICMP6/UDP header length + 547 * datalen 548 */ 549 550 if (family_input == AF_INET6 || 551 (family_input == AF_UNSPEC && num_v6 != 0)) { 552 size_t exthdr_len = 0; 553 554 if (send_reply) { 555 exthdr_len = sizeof (struct ip6_rthdr0) + 556 2 * num_gw * sizeof (struct in6_addr); 557 } else if (num_gw > 0) { 558 exthdr_len = sizeof (struct ip6_rthdr0) + 559 num_gw * sizeof (struct in6_addr); 560 } 561 562 /* 563 * Size of ICMP6 header and UDP header are the same. Let's 564 * use ICMP6_MINLEN. 565 */ 566 if (datalen > (IP_MAXPACKET - (sizeof (struct ip6_hdr) + 567 exthdr_len + ICMP6_MINLEN))) { 568 Fprintf(stderr, 569 "%s: data size too large for IPv6 packet\n", 570 progname); 571 num_v6 = 0; 572 } 573 } 574 575 if (family_input == AF_INET || 576 (family_input == AF_UNSPEC && num_v4 != 0)) { 577 size_t opt_len = 0; 578 579 if (send_reply) { 580 /* 581 * Includes 3 bytes code+ptr+len, the intermediate 582 * gateways, the actual and the effective target. 583 */ 584 opt_len = 3 + 585 (2 * num_gw + 2) * sizeof (struct in_addr); 586 } else if (num_gw > 0) { 587 opt_len = 3 + (num_gw + 1) * sizeof (struct in_addr); 588 } 589 590 if (rr_option) { 591 opt_len = MAX_IPOPTLEN; 592 } else if (ts_option) { 593 if ((ts_flag & 0x0f) <= IPOPT_TS_TSANDADDR) { 594 opt_len = MAX_IPOPTLEN; 595 } else { 596 opt_len += IPOPT_MINOFF + 597 2 * sizeof (struct ipt_ta); 598 /* 599 * Note: BSD/4.X is broken in their check so we 600 * have to bump up this number by at least one. 601 */ 602 opt_len++; 603 } 604 } 605 606 /* Round up to 4 byte boundary */ 607 if (opt_len & 0x3) 608 opt_len = (opt_len & ~0x3) + 4; 609 610 if (datalen > (IP_MAXPACKET - (sizeof (struct ip) + opt_len + 611 ICMP_MINLEN))) { 612 Fprintf(stderr, 613 "%s: data size too large for IPv4 packet\n", 614 progname); 615 num_v4 = 0; 616 } 617 } 618 619 if (num_v4 == 0 && num_v6 == 0) { 620 exit(EXIT_FAILURE); 621 } 622 623 /* setup the sockets */ 624 if (num_v6 != 0) { 625 if (!setup_socket(AF_INET6, &send_sock6, &recv_sock6, 626 &if_index, &udp_src_port6, ai_nexthop)) 627 exit(EXIT_FAILURE); 628 } 629 630 if (num_v4 != 0) { 631 if (!setup_socket(AF_INET, &send_sock, &recv_sock, &if_index, 632 &udp_src_port, ai_nexthop)) 633 exit(EXIT_FAILURE); 634 } 635 636 __priv_relinquish(); 637 638 /* 639 * If sending back to ourself, add the mirror image of current 640 * gateways, so that the probes travel to and from the target 641 * by visiting the same gateways in reverse order. 642 */ 643 if (send_reply) { 644 if (num_v6 != 0) 645 mirror_gws(gw_IP_list6, AF_INET6); 646 if (num_v4 != 0) 647 mirror_gws(gw_IP_list, AF_INET); 648 649 /* We add 1 because we put the target as the middle gateway */ 650 eff_num_gw = 2 * num_gw + 1; 651 652 } else { 653 eff_num_gw = num_gw; 654 } 655 656 targetaddr_list = build_targetaddr_list(ai_dst, src_addr_list); 657 current_targetaddr = targetaddr_list; 658 659 /* 660 * Set the starting_seq_num for the first targetaddr. 661 * If we are sending ICMP Echo Requests, the sequence number is same as 662 * ICMP sequence number, and it starts from zero. If we are sending UDP 663 * packets, the sequence number is the destination UDP port number, 664 * which starts from dest_port. At each probe, this sequence number is 665 * incremented by one. 666 * We set the starting_seq_num for first targetaddr here. The 667 * following ones will be set by looking at where we left with the last 668 * targetaddr. 669 */ 670 current_targetaddr->starting_seq_num = use_udp ? dest_port : 0; 671 672 if (stats) { 673 if (probe_all || !nflag) { 674 Printf("PING %s: %d data bytes\n", targethost, datalen); 675 } else { 676 if (ai_dst->ai_family == AF_INET) { 677 (void) inet_ntop(AF_INET, 678 &((struct sockaddr_in *)(void *) 679 ai_dst->ai_addr)->sin_addr, 680 abuf, sizeof (abuf)); 681 } else { 682 (void) inet_ntop(AF_INET6, 683 &((struct sockaddr_in6 *)(void *) 684 ai_dst->ai_addr)->sin6_addr, 685 abuf, sizeof (abuf)); 686 } 687 Printf("PING %s (%s): %d data bytes\n", 688 targethost, abuf, datalen); 689 } 690 } 691 692 /* Let's get things going */ 693 send_scheduled_probe(); 694 695 /* SIGALRM is used to send the next scheduled probe */ 696 (void) sigset(SIGALRM, sigalrm_handler); 697 schedule_sigalrm(); 698 699 /* 700 * From now on, we'll always be listening to ICMP packets. As SIGALRM 701 * comes in, sigalrm_handler() will be invoked and send another 702 * probe. 703 */ 704 recv_icmp_packet(ai_dst, recv_sock6, recv_sock, udp_src_port6, 705 udp_src_port); 706 707 return (EXIT_SUCCESS); /* should never come here */ 708 } 709 710 /* 711 * Build the target IP address list. Use command line options and 712 * name lookup results returned from name server to determine which addresses 713 * to probe, how many times, in which order. 714 */ 715 static struct targetaddr * 716 build_targetaddr_list(struct addrinfo *ai_dst, union any_in_addr *src_addr_list) 717 { 718 struct targetaddr *head = NULL; 719 struct targetaddr *targetaddr; 720 struct targetaddr **nextp; 721 int num_dst; 722 int i; 723 struct addrinfo *aip; 724 725 aip = ai_dst; 726 if (probe_all) 727 num_dst = num_v4 + num_v6; 728 else 729 num_dst = 1; 730 num_targetaddrs = num_dst; 731 nextp = &head; 732 for (aip = ai_dst, i = 0; aip != NULL; aip = aip->ai_next, i++) { 733 if (aip->ai_family == AF_INET && num_v4 != 0) { 734 targetaddr = create_targetaddr_item(aip->ai_family, 735 (union any_in_addr *) 736 /* LINTED E_BAD_PTR_CAST_ALIGN */ 737 &((struct sockaddr_in *) 738 aip->ai_addr)->sin_addr, 739 &src_addr_list[i]); 740 } else if (aip->ai_family == AF_INET6 && num_v6 != 0) { 741 targetaddr = create_targetaddr_item(aip->ai_family, 742 (union any_in_addr *) 743 /* LINTED E_BAD_PTR_CAST_ALIGN */ 744 &((struct sockaddr_in6 *) 745 aip->ai_addr)->sin6_addr, 746 &src_addr_list[i]); 747 } else { 748 continue; 749 } 750 *nextp = targetaddr; 751 nextp = &targetaddr->next; 752 if (num_targetaddrs == 1) 753 break; 754 } 755 if (npackets == 0 && stats) 756 *nextp = head; /* keep going indefinitely */ 757 758 return (head); 759 } 760 761 /* 762 * Given an address family, dst and src addresses, by also looking at the 763 * options provided at the command line, this function creates a targetaddr 764 * to be linked with others, forming a global targetaddr list. Each targetaddr 765 * item contains information about probes sent to a specific IP address. 766 */ 767 static struct targetaddr * 768 create_targetaddr_item(int family, union any_in_addr *dst_addr, 769 union any_in_addr *src_addr) 770 { 771 struct targetaddr *targetaddr; 772 773 targetaddr = (struct targetaddr *)malloc(sizeof (struct targetaddr)); 774 if (targetaddr == NULL) { 775 Fprintf(stderr, "%s: malloc %s\n", progname, strerror(errno)); 776 exit(EXIT_FAILURE); 777 } 778 targetaddr->family = family; 779 targetaddr->dst_addr = *dst_addr; 780 targetaddr->src_addr = *src_addr; 781 if (stats) { 782 /* 783 * npackets is only defined if we are in stats mode. 784 * npackets determines how many probes to send to each target 785 * IP address. npackets == 0 means send only 1 and move on to 786 * next target IP. 787 */ 788 if (npackets > 0) 789 targetaddr->num_probes = npackets; 790 else 791 targetaddr->num_probes = 1; 792 } else { 793 targetaddr->num_probes = timeout; 794 } 795 targetaddr->num_sent = 0; 796 targetaddr->got_reply = _B_FALSE; 797 targetaddr->probing_done = _B_FALSE; 798 targetaddr->starting_seq_num = 0; /* actual value will be set later */ 799 targetaddr->next = NULL; /* actual value will be set later */ 800 801 return (targetaddr); 802 } 803 804 /* 805 * print "unknown host" message 806 */ 807 static void 808 print_unknown_host_msg(const char *protocol, const char *hostname) 809 { 810 Fprintf(stderr, "%s: unknown%s host %s\n", progname, protocol, 811 hostname); 812 } 813 814 /* 815 * Resolve hostnames for the target host and gateways. Also, determine source 816 * addresses to use for each target address. 817 */ 818 static void 819 resolve_nodes(struct addrinfo **ai_dstp, struct addrinfo **ai_nexthopp, 820 union any_in_addr **src_addr_listp) 821 { 822 struct addrinfo *ai_dst = NULL; 823 struct addrinfo *ai_nexthop = NULL; 824 struct addrinfo *aip = NULL; 825 union any_in_addr *src_addr_list = NULL; 826 int num_resolved_gw = 0; 827 int num_resolved_gw6 = 0; 828 829 get_hostinfo(targethost, family_input, &ai_dst); 830 if (ai_dst == NULL) { 831 print_unknown_host_msg("", targethost); 832 exit(EXIT_FAILURE); 833 } 834 if (nexthop != NULL) { 835 get_hostinfo(nexthop, family_input, &ai_nexthop); 836 if (ai_nexthop == NULL) { 837 print_unknown_host_msg("", nexthop); 838 exit(EXIT_FAILURE); 839 } 840 } 841 /* Get a count of the v4 & v6 addresses */ 842 for (aip = ai_dst; aip != NULL; aip = aip->ai_next) { 843 switch (aip->ai_family) { 844 case AF_INET: 845 num_v4++; 846 break; 847 case AF_INET6: 848 num_v6++; 849 break; 850 } 851 } 852 853 if (family_input == AF_UNSPEC && !probe_all) { 854 family_input = ai_dst->ai_family; 855 } 856 857 /* resolve gateways */ 858 if (num_gw > 0) { 859 get_gwaddrs(gw_list, family_input, gw_IP_list, gw_IP_list6, 860 &num_resolved_gw, &num_resolved_gw6); 861 862 /* we couldn't resolve a gateway as an IPv6 host */ 863 if (num_resolved_gw6 != num_gw && num_v6 != 0 && 864 (family_input == AF_INET6 || family_input == AF_UNSPEC)) { 865 print_unknown_host_msg(" IPv6", 866 gw_list[num_resolved_gw6]); 867 num_v6 = 0; 868 } 869 870 /* we couldn't resolve a gateway as an IPv4 host */ 871 if (num_resolved_gw != num_gw && num_v4 != 0 && 872 (family_input == AF_INET || family_input == AF_UNSPEC)) { 873 print_unknown_host_msg(" IPv4", 874 gw_list[num_resolved_gw]); 875 num_v4 = 0; 876 } 877 } 878 879 if (num_v4 == 0 && num_v6 == 0) 880 exit(EXIT_FAILURE); 881 882 select_all_src_addrs(&src_addr_list, ai_dst, gw_IP_list, gw_IP_list6); 883 *ai_dstp = ai_dst; 884 *ai_nexthopp = ai_nexthop; 885 *src_addr_listp = src_addr_list; 886 } 887 888 /* 889 * Resolve the gateway names, splitting results into v4 and v6 lists. 890 * Gateway addresses are added to the appropriate passed-in array; the 891 * number of resolved gateways for each af is returned in resolved[6]. 892 * Assumes that passed-in arrays are large enough for MAX_GWS[6] addrs 893 * and resolved[6] ptrs are non-null; ignores array and counter if the 894 * address family param makes them irrelevant. 895 */ 896 static void 897 get_gwaddrs(char **gw_list, int family, union any_in_addr *gwIPlist, 898 union any_in_addr *gwIPlist6, int *resolved, int *resolved6) 899 { 900 int i; 901 boolean_t check_v4 = _B_TRUE, check_v6 = _B_TRUE; 902 struct addrinfo *ai = NULL; 903 struct addrinfo *aip = NULL; 904 905 *resolved = *resolved6 = 0; 906 switch (family) { 907 case AF_UNSPEC: 908 break; 909 case AF_INET: 910 check_v6 = _B_FALSE; 911 break; 912 case AF_INET6: 913 check_v4 = _B_FALSE; 914 break; 915 default: 916 return; 917 } 918 919 if (check_v4 && num_gw >= MAX_GWS) { 920 check_v4 = _B_FALSE; 921 Fprintf(stderr, "%s: too many IPv4 gateways\n", progname); 922 } 923 if (check_v6 && num_gw > MAX_GWS6) { 924 check_v6 = _B_FALSE; 925 Fprintf(stderr, "%s: too many IPv6 gateways\n", progname); 926 } 927 928 for (i = 0; i < num_gw; i++) { 929 if (!check_v4 && !check_v6) 930 return; 931 get_hostinfo(gw_list[i], family, &ai); 932 if (ai == NULL) 933 return; 934 if (check_v4 && num_v4 != 0) { 935 for (aip = ai; aip != NULL; aip = aip->ai_next) { 936 if (aip->ai_family == AF_INET) { 937 /* LINTED E_BAD_PTR_CAST_ALIGN */ 938 bcopy(&((struct sockaddr_in *) 939 aip->ai_addr)->sin_addr, 940 &gwIPlist[i].addr, 941 aip->ai_addrlen); 942 (*resolved)++; 943 break; 944 } 945 } 946 } else if (check_v4) { 947 check_v4 = _B_FALSE; 948 } 949 if (check_v6 && num_v6 != 0) { 950 for (aip = ai; aip != NULL; aip = aip->ai_next) { 951 if (aip->ai_family == AF_INET6) { 952 /* LINTED E_BAD_PTR_CAST_ALIGN */ 953 bcopy(&((struct sockaddr_in6 *) 954 aip->ai_addr)->sin6_addr, 955 &gwIPlist6[i].addr6, 956 aip->ai_addrlen); 957 (*resolved6)++; 958 break; 959 } 960 } 961 } else if (check_v6) { 962 check_v6 = _B_FALSE; 963 } 964 } 965 freeaddrinfo(ai); 966 } 967 968 /* 969 * Given the list of gateways, extends the list with its mirror image. This is 970 * used when -l/-S is used. The middle gateway will be the target address. We'll 971 * leave it blank for now. 972 */ 973 static void 974 mirror_gws(union any_in_addr *gwIPlist, int family) 975 { 976 int effective_num_gw; 977 int i; 978 979 /* We add 1 because we put the target as the middle gateway */ 980 effective_num_gw = 2 * num_gw + 1; 981 982 if ((family == AF_INET && effective_num_gw >= MAX_GWS) || 983 (family == AF_INET6 && effective_num_gw > MAX_GWS6)) { 984 Fprintf(stderr, "%s: too many %s gateways\n", 985 progname, (family == AF_INET) ? "IPv4" : "IPv6"); 986 exit(EXIT_FAILURE); 987 } 988 989 for (i = 0; i < num_gw; i++) 990 gwIPlist[num_gw + i + 1].addr6 = gwIPlist[num_gw - i - 1].addr6; 991 } 992 993 /* 994 * Given IP address or hostname, return addrinfo list. 995 * Assumes that addrinfo ** ptr is non-null. 996 */ 997 static void 998 get_hostinfo(char *host, int family, struct addrinfo **aipp) 999 { 1000 struct addrinfo hints, *ai; 1001 struct in6_addr addr6; 1002 struct in_addr addr; 1003 boolean_t broadcast; /* is this 255.255.255.255? */ 1004 char tmp_buf[INET6_ADDRSTRLEN]; 1005 int rc; 1006 1007 /* check if broadcast */ 1008 if (strcmp(host, "255.255.255.255") == 0) 1009 broadcast = _B_TRUE; 1010 else 1011 broadcast = _B_FALSE; 1012 1013 /* check if IPv4-mapped address or broadcast */ 1014 if (((inet_pton(AF_INET6, host, &addr6) > 0) && 1015 IN6_IS_ADDR_V4MAPPED(&addr6)) || broadcast) { 1016 if (!broadcast) { 1017 /* 1018 * Peel off the "mapping" stuff, leaving 32 bit IPv4 1019 * address. 1020 */ 1021 IN6_V4MAPPED_TO_INADDR(&addr6, &addr); 1022 1023 /* convert it back to a string */ 1024 (void) inet_ntop(AF_INET, (void *)&addr, tmp_buf, 1025 sizeof (tmp_buf)); 1026 /* 1027 * Now the host is an IPv4 address. 1028 * Since it previously was a v4 mapped v6 address 1029 * we can be sure that the size of buffer 'host' 1030 * is large enough to contain the associated v4 1031 * address and so we don't need to use a strn/lcpy 1032 * here. 1033 */ 1034 (void) strcpy(host, tmp_buf); 1035 } 1036 /* 1037 * If it's a broadcast address, it cannot be an IPv6 address. 1038 * Also, if it's a mapped address, we convert it into IPv4 1039 * address because ping will send and receive IPv4 packets for 1040 * that address. Therefore, it's a failure case to ask 1041 * get_hostinfo() to treat a broadcast or a mapped address 1042 * as an IPv6 address. 1043 */ 1044 if (family == AF_INET6) { 1045 return; 1046 } 1047 } 1048 1049 (void) memset(&hints, 0, sizeof (hints)); 1050 hints.ai_family = family; 1051 hints.ai_flags = AI_ADDRCONFIG; 1052 rc = getaddrinfo(host, NULL, &hints, &ai); 1053 if (rc != 0) { 1054 if (rc != EAI_NONAME) 1055 Fprintf(stderr, "%s: getaddrinfo: %s\n", progname, 1056 gai_strerror(rc)); 1057 return; 1058 } 1059 *aipp = ai; 1060 } 1061 1062 /* 1063 * For each IP address of the target host, determine a source address to use. 1064 */ 1065 static void 1066 select_all_src_addrs(union any_in_addr **src_addr_list, struct addrinfo *ai, 1067 union any_in_addr *gwv4, union any_in_addr *gwv6) 1068 { 1069 union any_in_addr *list; 1070 struct addrinfo *aip; 1071 int num_dst = 1; 1072 int i; 1073 1074 if (probe_all) { 1075 for (aip = ai; aip->ai_next != NULL; aip = aip->ai_next) 1076 num_dst++; 1077 } 1078 1079 list = calloc((size_t)num_dst, sizeof (union any_in_addr)); 1080 if (list == NULL) { 1081 Fprintf(stderr, "%s: calloc: %s\n", progname, strerror(errno)); 1082 exit(EXIT_FAILURE); 1083 } 1084 1085 /* 1086 * If there's a gateway, a routing header as a consequence, our kernel 1087 * picks the source address based on the first hop address, rather than 1088 * final destination address. 1089 */ 1090 if (num_gw > 0) { 1091 if (ai->ai_family == AF_INET) 1092 select_src_addr(gwv4, ai->ai_family, &list[0]); 1093 else 1094 select_src_addr(gwv6, ai->ai_family, &list[0]); 1095 /* 1096 * Since the first gateway address is fixed, we'll use the same 1097 * src address for every different final destination address 1098 * we send to. 1099 */ 1100 for (i = 1; i < num_dst; i++) 1101 list[i] = list[0]; 1102 } else { 1103 /* 1104 * Although something like 'ping -l host' results in a routing 1105 * header, the first gateway address is the target host's 1106 * address. Therefore, as far as src address selection goes, 1107 * the result is same as having no routing header. 1108 */ 1109 for (i = 0, aip = ai; i < num_dst && aip != NULL; 1110 i++, aip = aip->ai_next) { 1111 if (aip->ai_family == AF_INET) { 1112 if (num_v4 != 0) { 1113 select_src_addr((union any_in_addr *) 1114 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1115 &((struct sockaddr_in *) 1116 aip->ai_addr)->sin_addr, 1117 aip->ai_family, 1118 &list[i]); 1119 } 1120 } else { 1121 if (num_v6 != 0) { 1122 select_src_addr((union any_in_addr *) 1123 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1124 &((struct sockaddr_in6 *) 1125 aip->ai_addr)->sin6_addr, 1126 aip->ai_family, 1127 &list[i]); 1128 } 1129 } 1130 } 1131 } 1132 1133 *src_addr_list = list; 1134 } 1135 1136 /* 1137 * For a given destination address, determine a source address to use. 1138 * Returns wildcard address if it cannot determine the source address. 1139 */ 1140 static void 1141 select_src_addr(union any_in_addr *dst_addr, int family, 1142 union any_in_addr *src_addr) 1143 { 1144 struct sockaddr *sock; 1145 struct sockaddr_in *sin; 1146 struct sockaddr_in6 *sin6; 1147 int tmp_fd; 1148 size_t sock_len; 1149 1150 sock = (struct sockaddr *)malloc(sizeof (struct sockaddr_in6)); 1151 if (sock == NULL) { 1152 Fprintf(stderr, "%s: malloc: %s\n", progname, strerror(errno)); 1153 exit(EXIT_FAILURE); 1154 } 1155 (void) bzero(sock, sizeof (struct sockaddr_in6)); 1156 1157 if (family == AF_INET) { 1158 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1159 sin = (struct sockaddr_in *)sock; 1160 sin->sin_family = AF_INET; 1161 sin->sin_addr = dst_addr->addr; 1162 sin->sin_port = IPPORT_ECHO; /* port shouldn't be 0 */ 1163 sock_len = sizeof (struct sockaddr_in); 1164 } else { 1165 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1166 sin6 = (struct sockaddr_in6 *)sock; 1167 sin6->sin6_family = AF_INET6; 1168 sin6->sin6_addr = dst_addr->addr6; 1169 sin6->sin6_port = IPPORT_ECHO; /* port shouldn't be 0 */ 1170 sock_len = sizeof (struct sockaddr_in6); 1171 } 1172 1173 /* open a UDP socket */ 1174 if ((tmp_fd = socket(family, SOCK_DGRAM, 0)) < 0) { 1175 Fprintf(stderr, "%s: udp socket: %s\n", progname, 1176 strerror(errno)); 1177 exit(EXIT_FAILURE); 1178 } 1179 1180 /* connect it */ 1181 if (connect(tmp_fd, sock, sock_len) < 0) { 1182 /* 1183 * If there's no route to the destination, this connect() call 1184 * fails. We just return all-zero (wildcard) as the source 1185 * address, so that user can get to see "no route to dest" 1186 * message, as it'll try to send the probe packet out and will 1187 * receive ICMP unreachable. 1188 */ 1189 if (family == AF_INET) 1190 src_addr->addr.s_addr = INADDR_ANY; 1191 else 1192 src_addr->addr6 = in6addr_any; 1193 free(sock); 1194 return; 1195 } 1196 1197 /* get the local sock info */ 1198 if (getsockname(tmp_fd, sock, &sock_len) < 0) { 1199 Fprintf(stderr, "%s: getsockname: %s\n", progname, 1200 strerror(errno)); 1201 exit(EXIT_FAILURE); 1202 } 1203 1204 if (family == AF_INET) { 1205 src_addr->addr = sin->sin_addr; 1206 } else { 1207 src_addr->addr6 = sin6->sin6_addr; 1208 } 1209 1210 (void) close(tmp_fd); 1211 free(sock); 1212 } 1213 1214 /* 1215 * Set the IP_NEXTHOP/IPV6_NEXTHOP socket option. 1216 * exits on failure 1217 */ 1218 static void 1219 set_nexthop(int family, struct addrinfo *ai_nexthop, int sock) 1220 { 1221 if (family == AF_INET) { 1222 ipaddr_t nh; 1223 1224 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1225 nh = ((struct sockaddr_in *)ai_nexthop-> 1226 ai_addr)->sin_addr.s_addr; 1227 1228 /* now we need the sys_ip_config privilege */ 1229 (void) __priv_bracket(PRIV_ON); 1230 if (setsockopt(sock, IPPROTO_IP, IP_NEXTHOP, 1231 &nh, sizeof (ipaddr_t)) < 0) { 1232 if (errno == EPERM) 1233 Fprintf(stderr, "%s: Insufficient privilege " 1234 "to specify IPv4 nexthop router.\n", 1235 progname); 1236 else 1237 Fprintf(stderr, "%s: setsockopt %s\n", 1238 progname, strerror(errno)); 1239 exit(EXIT_FAILURE); 1240 } 1241 (void) __priv_bracket(PRIV_OFF); 1242 /* revert to non-privileged user */ 1243 } else { 1244 struct sockaddr_in6 *nh; 1245 1246 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1247 nh = (struct sockaddr_in6 *)ai_nexthop-> 1248 ai_addr; 1249 1250 if (setsockopt(sock, IPPROTO_IPV6, IPV6_NEXTHOP, 1251 nh, sizeof (struct sockaddr_in6)) < 0) { 1252 Fprintf(stderr, "%s: setsockopt %s\n", 1253 progname, strerror(errno)); 1254 exit(EXIT_FAILURE); 1255 } 1256 } 1257 } 1258 1259 /* 1260 * Setup the socket for the given address family. 1261 * Returns _B_TRUE on success, _B_FALSE on failure. Failure is the case when no 1262 * interface can be found, or the specified interface (-i) is not found. On 1263 * library call failures, it exit()s. 1264 */ 1265 static boolean_t 1266 setup_socket(int family, int *send_sockp, int *recv_sockp, int *if_index, 1267 ushort_t *udp_src_port, struct addrinfo *ai_nexthop) 1268 { 1269 int send_sock; 1270 int recv_sock; 1271 struct sockaddr_in6 sin6; 1272 struct sockaddr_in sin; 1273 struct sockaddr *sp; 1274 struct ipsec_req req; 1275 size_t slen; 1276 int on = 1; 1277 uchar_t char_op; 1278 int int_op; 1279 1280 /* now we need the net_icmpaccess privilege */ 1281 (void) __priv_bracket(PRIV_ON); 1282 1283 recv_sock = socket(family, SOCK_RAW, 1284 (family == AF_INET) ? IPPROTO_ICMP : IPPROTO_ICMPV6); 1285 1286 if (recv_sock < 0) { 1287 Fprintf(stderr, "%s: socket %s\n", progname, strerror(errno)); 1288 exit(EXIT_FAILURE); 1289 } 1290 1291 /* revert to non-privileged user after opening sockets */ 1292 (void) __priv_bracket(PRIV_OFF); 1293 1294 if (bypass) { 1295 (void) memset(&req, 0, sizeof (req)); 1296 req.ipsr_ah_req = IPSEC_PREF_NEVER; 1297 req.ipsr_esp_req = IPSEC_PREF_NEVER; 1298 1299 if (setsockopt(recv_sock, (family == AF_INET) ? IPPROTO_IP : 1300 IPPROTO_IPV6, IP_SEC_OPT, &req, sizeof (req)) < 0) { 1301 if (errno == EPERM) 1302 Fprintf(stderr, "%s: Insufficient privilege " 1303 "to bypass IPsec policy.\n", progname); 1304 else 1305 Fprintf(stderr, "%s: setsockopt %s\n", progname, 1306 strerror(errno)); 1307 exit(EXIT_FAILURE); 1308 } 1309 } 1310 1311 /* 1312 * We always receive on raw icmp socket. But the sending socket can be 1313 * raw icmp or udp, depending on the use of -U flag. 1314 */ 1315 if (use_udp) { 1316 send_sock = socket(family, SOCK_DGRAM, IPPROTO_UDP); 1317 if (send_sock < 0) { 1318 Fprintf(stderr, "%s: socket %s\n", progname, 1319 strerror(errno)); 1320 exit(EXIT_FAILURE); 1321 } 1322 1323 if (bypass) { 1324 if (setsockopt(send_sock, (family == AF_INET) ? 1325 IPPROTO_IP : IPPROTO_IPV6, IP_SEC_OPT, &req, 1326 sizeof (req)) < 0) { 1327 if (errno == EPERM) 1328 Fprintf(stderr, "%s: Insufficient " 1329 "privilege to bypass IPsec " 1330 "policy.\n", progname); 1331 else 1332 Fprintf(stderr, "%s: setsockopt %s\n", 1333 progname, strerror(errno)); 1334 exit(EXIT_FAILURE); 1335 } 1336 } 1337 1338 /* 1339 * In order to distinguish replies to our UDP probes from 1340 * other pings', we need to know our source port number. 1341 */ 1342 if (family == AF_INET) { 1343 sp = (struct sockaddr *)&sin; 1344 slen = sizeof (sin); 1345 } else { 1346 sp = (struct sockaddr *)&sin6; 1347 slen = sizeof (sin6); 1348 } 1349 bzero(sp, slen); 1350 sp->sa_family = family; 1351 1352 /* Let's bind() send_sock to wildcard address and port */ 1353 if (bind(send_sock, sp, slen) < 0) { 1354 Fprintf(stderr, "%s: bind %s\n", progname, 1355 strerror(errno)); 1356 exit(EXIT_FAILURE); 1357 } 1358 1359 /* .... and see what port kernel picked for us */ 1360 if (getsockname(send_sock, sp, &slen) < 0) { 1361 Fprintf(stderr, "%s: getsockname %s\n", progname, 1362 strerror(errno)); 1363 exit(EXIT_FAILURE); 1364 } 1365 *udp_src_port = (family == AF_INET) ? sin.sin_port : 1366 sin6.sin6_port; 1367 } else { 1368 send_sock = recv_sock; 1369 } 1370 1371 if (nexthop != NULL) 1372 set_nexthop(family, ai_nexthop, send_sock); 1373 1374 int_op = 48 * 1024; 1375 if (int_op < datalen) 1376 int_op = datalen; 1377 if (setsockopt(recv_sock, SOL_SOCKET, SO_RCVBUF, (char *)&int_op, 1378 sizeof (int_op)) == -1) { 1379 Fprintf(stderr, "%s: setsockopt SO_RCVBUF %s\n", progname, 1380 strerror(errno)); 1381 exit(EXIT_FAILURE); 1382 } 1383 1384 if (setsockopt(send_sock, SOL_SOCKET, SO_SNDBUF, (char *)&int_op, 1385 sizeof (int_op)) == -1) { 1386 Fprintf(stderr, "%s: setsockopt SO_SNDBUF %s\n", progname, 1387 strerror(errno)); 1388 exit(EXIT_FAILURE); 1389 } 1390 1391 if (options & SO_DEBUG) { 1392 if (setsockopt(send_sock, SOL_SOCKET, SO_DEBUG, (char *)&on, 1393 sizeof (on)) == -1) { 1394 Fprintf(stderr, "%s: setsockopt SO_DEBUG %s\n", 1395 progname, strerror(errno)); 1396 exit(EXIT_FAILURE); 1397 } 1398 } 1399 1400 if (options & SO_DONTROUTE) { 1401 if (setsockopt(send_sock, SOL_SOCKET, SO_DONTROUTE, (char *)&on, 1402 sizeof (on)) == -1) { 1403 Fprintf(stderr, "%s: setsockopt SO_DONTROUTE %s\n", 1404 progname, strerror(errno)); 1405 exit(EXIT_FAILURE); 1406 } 1407 } 1408 1409 if (moptions & MULTICAST_NOLOOP) { 1410 if (family == AF_INET) { 1411 char_op = 0; /* used to turn off option */ 1412 1413 if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_LOOP, 1414 (char *)&char_op, sizeof (char_op)) == -1) { 1415 Fprintf(stderr, "%s: setsockopt " 1416 "IP_MULTICAST_NOLOOP %s\n", progname, 1417 strerror(errno)); 1418 exit(EXIT_FAILURE); 1419 } 1420 } else { 1421 int_op = 0; /* used to turn off option */ 1422 1423 if (setsockopt(send_sock, IPPROTO_IPV6, 1424 IPV6_MULTICAST_LOOP, (char *)&int_op, 1425 sizeof (int_op)) == -1) { 1426 Fprintf(stderr, "%s: setsockopt " 1427 "IPV6_MULTICAST_NOLOOP %s\n", progname, 1428 strerror(errno)); 1429 exit(EXIT_FAILURE); 1430 } 1431 } 1432 } 1433 1434 if (moptions & MULTICAST_TTL) { 1435 char_op = hoplimit; 1436 1437 /* Applies to unicast and multicast. */ 1438 if (family == AF_INET) { 1439 if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_TTL, 1440 (char *)&char_op, sizeof (char)) == -1) { 1441 Fprintf(stderr, "%s: setsockopt " 1442 "IP_MULTICAST_TTL %s\n", progname, 1443 strerror(errno)); 1444 exit(EXIT_FAILURE); 1445 } 1446 if (setsockopt(send_sock, IPPROTO_IP, IP_TTL, 1447 (char *)&hoplimit, sizeof (hoplimit)) == -1) { 1448 Fprintf(stderr, "%s: setsockopt IP_TTL %s\n", 1449 progname, strerror(errno)); 1450 exit(EXIT_FAILURE); 1451 } 1452 } 1453 /* 1454 * AF_INET6 case is handled in set_ancillary_data() function. 1455 * This is because when ancillary data is used (for routing 1456 * header and outgoing interface index), the hoplimit set using 1457 * setsockopt() is ignored. 1458 */ 1459 } 1460 1461 /* 1462 * did the user specify an interface? 1463 * Applies to unicast, broadcast and multicast. 1464 */ 1465 if (moptions & MULTICAST_IF) { 1466 struct ifaddrlist *al = NULL; /* interface list */ 1467 struct ifaddrlist *my_if; 1468 char errbuf[ERRBUFSIZE]; 1469 int num_ifs; 1470 int num_src_ifs; /* exclude down and loopback */ 1471 int i; 1472 1473 /* pull out the interface list */ 1474 num_ifs = ifaddrlist(&al, family, LIFC_UNDER_IPMP, errbuf); 1475 if (num_ifs == -1) { 1476 Fprintf(stderr, "%s: %s\n", progname, errbuf); 1477 exit(EXIT_FAILURE); 1478 } 1479 1480 /* filter out down and loopback interfaces */ 1481 num_src_ifs = 0; 1482 for (i = 0; i < num_ifs; i++) { 1483 if (!(al[i].flags & IFF_LOOPBACK) && 1484 (al[i].flags & IFF_UP)) 1485 num_src_ifs++; 1486 } 1487 1488 if (num_src_ifs == 0) { 1489 Fprintf(stderr, "%s: can't find any %s interface\n", 1490 progname, (family == AF_INET) ? "IPv4" : "IPv6"); 1491 1492 return (_B_FALSE); /* failure */ 1493 } 1494 1495 /* locate the specified interface */ 1496 my_if = find_if(al, num_ifs); 1497 if (my_if == NULL) { 1498 Fprintf(stderr, "%s: %s is an invalid %s interface\n", 1499 progname, out_if.str, 1500 (family == AF_INET) ? "IPv4" : "IPv6"); 1501 1502 return (_B_FALSE); 1503 } 1504 1505 if (family == AF_INET) { 1506 struct in_pktinfo pktinfo; 1507 1508 if (setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_IF, 1509 (char *)&my_if->addr.addr, 1510 sizeof (struct in_addr)) == -1) { 1511 Fprintf(stderr, "%s: setsockopt " 1512 "IP_MULTICAST_IF %s\n", progname, 1513 strerror(errno)); 1514 exit(EXIT_FAILURE); 1515 } 1516 bzero(&pktinfo, sizeof (pktinfo)); 1517 pktinfo.ipi_ifindex = my_if->index; 1518 if (setsockopt(send_sock, IPPROTO_IP, IP_PKTINFO, 1519 (char *)&pktinfo, sizeof (pktinfo)) == -1) { 1520 Fprintf(stderr, "%s: setsockopt " 1521 "IP_PKTINFO %s\n", progname, 1522 strerror(errno)); 1523 exit(EXIT_FAILURE); 1524 } 1525 } else { 1526 /* 1527 * the outgoing interface is set in set_ancillary_data() 1528 * function 1529 */ 1530 *if_index = my_if->index; 1531 } 1532 1533 free(al); 1534 } 1535 1536 if (settos && family == AF_INET) { 1537 int_op = tos; 1538 if (setsockopt(send_sock, IPPROTO_IP, IP_TOS, (char *)&int_op, 1539 sizeof (int_op)) == -1) { 1540 Fprintf(stderr, "%s: setsockopt IP_TOS %s\n", 1541 progname, strerror(errno)); 1542 exit(EXIT_FAILURE); 1543 } 1544 } 1545 1546 /* We enable or disable to not depend on the kernel default */ 1547 if (family == AF_INET) { 1548 if (setsockopt(send_sock, IPPROTO_IP, IP_DONTFRAG, 1549 (char *)&dontfrag, sizeof (dontfrag)) == -1) { 1550 Fprintf(stderr, "%s: setsockopt IP_DONTFRAG %s\n", 1551 progname, strerror(errno)); 1552 exit(EXIT_FAILURE); 1553 } 1554 } else { 1555 if (setsockopt(send_sock, IPPROTO_IPV6, IPV6_DONTFRAG, 1556 (char *)&dontfrag, sizeof (dontfrag)) == -1) { 1557 Fprintf(stderr, "%s: setsockopt IPV6_DONTFRAG %s\n", 1558 progname, strerror(errno)); 1559 exit(EXIT_FAILURE); 1560 } 1561 } 1562 1563 /* receiving IPv6 extension headers in verbose mode */ 1564 if (verbose && family == AF_INET6) { 1565 if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVHOPOPTS, 1566 (char *)&on, sizeof (on)) == -1) { 1567 Fprintf(stderr, "%s: setsockopt IPV6_RECVHOPOPTS %s\n", 1568 progname, strerror(errno)); 1569 exit(EXIT_FAILURE); 1570 } 1571 1572 if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVDSTOPTS, 1573 (char *)&on, sizeof (on)) == -1) { 1574 Fprintf(stderr, "%s: setsockopt IPV6_RECVDSTOPTS %s\n", 1575 progname, strerror(errno)); 1576 exit(EXIT_FAILURE); 1577 } 1578 1579 if (setsockopt(recv_sock, IPPROTO_IPV6, IPV6_RECVRTHDR, 1580 (char *)&on, sizeof (on)) == -1) { 1581 Fprintf(stderr, "%s: setsockopt IPV6_RECVRTHDR %s\n", 1582 progname, strerror(errno)); 1583 exit(EXIT_FAILURE); 1584 } 1585 } 1586 1587 *send_sockp = send_sock; 1588 *recv_sockp = recv_sock; 1589 1590 /* successful */ 1591 return (_B_TRUE); 1592 } 1593 1594 /* 1595 * Pull out the record containing all the info about the interface specified by 1596 * `out_if'. Skips interfaces which are down or loopback. 1597 */ 1598 static struct ifaddrlist * 1599 find_if(struct ifaddrlist *al, int num_ifs) 1600 { 1601 static struct ifaddrlist tmp_if; 1602 boolean_t found; 1603 int i; 1604 1605 i = 0; 1606 found = _B_FALSE; 1607 1608 while (i < num_ifs && !found) { 1609 tmp_if = al[i]; 1610 1611 /* skip down or loopback interfaces */ 1612 if ((tmp_if.flags & IFF_LOOPBACK) || !(tmp_if.flags & IFF_UP)) { 1613 i++; 1614 continue; 1615 } 1616 1617 /* the type of interface id is variable */ 1618 switch (out_if.id_type) { 1619 case IF_INDEX: 1620 if (out_if.id.index == tmp_if.index) 1621 found = _B_TRUE; 1622 break; 1623 1624 case IF_NAME: 1625 if (strcmp(out_if.id.name, tmp_if.device) == 0) 1626 found = _B_TRUE; 1627 break; 1628 1629 case IF_ADDR: 1630 if (out_if.id.addr.addr.s_addr == 1631 tmp_if.addr.addr.s_addr) { 1632 found = _B_TRUE; 1633 } 1634 break; 1635 1636 case IF_ADDR6: 1637 if (IN6_ARE_ADDR_EQUAL(&out_if.id.addr.addr6, 1638 &tmp_if.addr.addr6)) { 1639 found = _B_TRUE; 1640 } 1641 break; 1642 1643 default: 1644 break; 1645 } 1646 1647 i++; 1648 } 1649 1650 if (found) 1651 return (&tmp_if); 1652 else 1653 return (NULL); 1654 } 1655 1656 /* 1657 * Invoked by SIGALRM, sigalrm_handler() is, responsible for calling 1658 * send_scheduled_probe() to send next probe. 1659 */ 1660 void 1661 sigalrm_handler(void) 1662 { 1663 /* 1664 * Guard againist denial-of-service attacks. Make sure ping doesn't 1665 * send probes for every SIGALRM it receives. Evil hacker can generate 1666 * SIGALRMs as fast as it can, but ping will ignore those which are 1667 * received too soon (earlier than 0.5 sec) after it sent the last 1668 * probe. We use gethrtime() instead of gettimeofday() because 1669 * the latter is not linear and is prone to resetting or drifting 1670 */ 1671 if ((gethrtime() - t_last_probe_sent) < 500000000) { 1672 return; 1673 } 1674 send_scheduled_probe(); 1675 schedule_sigalrm(); 1676 } 1677 1678 /* 1679 * Schedule next SIGALRM. 1680 */ 1681 void 1682 schedule_sigalrm(void) 1683 { 1684 int waittime; 1685 1686 if (npackets == 0 || 1687 current_targetaddr->num_sent < current_targetaddr->num_probes) { 1688 (void) alarm(interval); 1689 } else { 1690 if (current_targetaddr->got_reply) { 1691 waittime = 2 * tmax / MICROSEC; 1692 if (waittime == 0) 1693 waittime = 1; 1694 } else { 1695 waittime = MAX_WAIT; 1696 } 1697 (void) alarm(waittime); 1698 } 1699 } 1700 1701 /* 1702 * Called by sigalrm_handler(), check_reply() or check_reply6(), 1703 * send_scheduled_probe() looks at the current_targetaddr and determines what 1704 * should be sent next and calls pinger(). 1705 */ 1706 void 1707 send_scheduled_probe() 1708 { 1709 static struct msghdr msg6; 1710 static boolean_t first_probe = _B_TRUE; 1711 char tmp_buf[INET6_ADDRSTRLEN]; 1712 1713 /* 1714 * We are about to move to next targetaddr if it's either we sent 1715 * all the probes, or somebody set the probing_done flag to 1716 * _B_TRUE prompting us to move on. 1717 */ 1718 if (current_targetaddr->num_sent == current_targetaddr->num_probes || 1719 current_targetaddr->probing_done) { 1720 /* 1721 * is this a dead target? 1722 */ 1723 if (!stats && !current_targetaddr->got_reply) { 1724 if (!probe_all) { 1725 Printf("no answer from %s\n", targethost); 1726 } else { 1727 Printf("no answer from %s(%s)\n", targethost, 1728 inet_ntop(current_targetaddr->family, 1729 ¤t_targetaddr->dst_addr, 1730 tmp_buf, sizeof (tmp_buf))); 1731 } 1732 } 1733 /* 1734 * Before we move onto next item, let's do some clean up. 1735 */ 1736 current_targetaddr->got_reply = _B_FALSE; 1737 current_targetaddr->probing_done = _B_FALSE; 1738 /* 1739 * If this is probe-all without stats mode, then we need to 1740 * preserve this count. This is needed when we try to map an 1741 * icmp_seq to IP address. Otherwise, clear it. 1742 */ 1743 if (stats || !probe_all) 1744 current_targetaddr->num_sent = 0; 1745 nreceived_last_target = 0; 1746 1747 current_targetaddr = current_targetaddr->next; 1748 1749 /* 1750 * Did we reach the end of road? 1751 */ 1752 if (current_targetaddr == NULL) { 1753 (void) alarm(0); /* cancel alarm */ 1754 if (stats) 1755 finish(); 1756 if (is_alive) 1757 exit(EXIT_SUCCESS); 1758 else 1759 exit(EXIT_FAILURE); 1760 } else { 1761 /* 1762 * We use starting_seq_num for authenticating replies. 1763 * Each time we move to a new targetaddr, which has 1764 * a different target IP address, we update this field. 1765 */ 1766 current_targetaddr->starting_seq_num = use_udp ? 1767 dest_port : (ntransmitted % (MAX_ICMP_SEQ + 1)); 1768 } 1769 } 1770 1771 if (current_targetaddr->family == AF_INET6) { 1772 if (send_reply) { 1773 /* sending back to ourself */ 1774 to6.sin6_addr = current_targetaddr->src_addr.addr6; 1775 } else { 1776 to6.sin6_addr = current_targetaddr->dst_addr.addr6; 1777 } 1778 /* 1779 * Setting the ancillary data once is enough, if we are 1780 * not using source routing through target (-l/-S). In 1781 * case -l/-S used, the middle gateway will be the 1782 * IP address of the source, which can be different 1783 * for each target IP. 1784 */ 1785 if (first_probe || 1786 (send_reply && current_targetaddr->num_sent == 0)) { 1787 if (send_reply) { 1788 /* target is the middle gateway now */ 1789 gw_IP_list6[num_gw].addr6 = 1790 current_targetaddr->dst_addr.addr6; 1791 } 1792 set_ancillary_data(&msg6, hoplimit, gw_IP_list6, 1793 eff_num_gw, if_index); 1794 first_probe = _B_FALSE; 1795 } 1796 pinger(send_sock6, (struct sockaddr *)&to6, &msg6, AF_INET6); 1797 } else { 1798 to.sin_addr = current_targetaddr->dst_addr.addr; 1799 /* 1800 * Set IPv4 options when sending the first probe to a target 1801 * IP address. Some options change when the target address 1802 * changes. 1803 */ 1804 if (current_targetaddr->num_sent == 0) { 1805 if (eff_num_gw > 0) { 1806 gw_IP_list[num_gw].addr = 1807 current_targetaddr->dst_addr.addr; 1808 /* 1809 * If send_reply, the target becomes the 1810 * middle gateway, sender becomes the last 1811 * gateway. 1812 */ 1813 if (send_reply) { 1814 gw_IP_list[eff_num_gw].addr = 1815 current_targetaddr->src_addr.addr; 1816 } 1817 } 1818 /* 1819 * In IPv4, if source routing is used, the target 1820 * address shows up as the last gateway, hence +1. 1821 */ 1822 set_IPv4_options(send_sock, gw_IP_list, 1823 (eff_num_gw > 0) ? eff_num_gw + 1 : 0, 1824 ¤t_targetaddr->src_addr.addr, &to.sin_addr); 1825 } 1826 pinger(send_sock, (struct sockaddr *)&to, NULL, AF_INET); 1827 } 1828 1829 current_targetaddr->num_sent++; 1830 } 1831 1832 /* 1833 * recv_icmp_packet()'s job is to listen to icmp packets and filter out 1834 * those ping is interested in. 1835 */ 1836 static void 1837 recv_icmp_packet(struct addrinfo *ai_dst, int recv_sock6, int recv_sock, 1838 ushort_t udp_src_port6, ushort_t udp_src_port) 1839 { 1840 struct msghdr in_msg; 1841 struct iovec iov; 1842 struct sockaddr_in6 from6; 1843 fd_set fds; 1844 int result; 1845 int cc; 1846 boolean_t always_true = _B_TRUE; /* lint doesn't like while(_B_TRUE) */ 1847 1848 while (always_true) { 1849 (void) FD_ZERO(&fds); 1850 if (recv_sock6 != -1) 1851 FD_SET(recv_sock6, &fds); 1852 if (recv_sock != -1) 1853 FD_SET(recv_sock, &fds); 1854 1855 result = select(MAX(recv_sock6, recv_sock) + 1, &fds, 1856 (fd_set *)NULL, (fd_set *)NULL, (struct timeval *)NULL); 1857 if (result == -1) { 1858 if (errno == EINTR) { 1859 continue; 1860 } else { 1861 Fprintf(stderr, "%s: select %s\n", progname, 1862 strerror(errno)); 1863 exit(EXIT_FAILURE); 1864 } 1865 } else if (result > 0) { 1866 in_msg.msg_name = &from6; 1867 in_msg.msg_namelen = sizeof (from6); 1868 iov.iov_base = in_pkt; 1869 iov.iov_len = sizeof (in_pkt); 1870 in_msg.msg_iov = &iov; 1871 in_msg.msg_iovlen = 1; 1872 in_msg.msg_control = ancillary_data; 1873 in_msg.msg_controllen = sizeof (ancillary_data); 1874 1875 /* Do we have an ICMP6 packet waiting? */ 1876 if ((recv_sock6 != -1) && 1877 (FD_ISSET(recv_sock6, &fds))) { 1878 cc = recvmsg(recv_sock6, &in_msg, 0); 1879 if (cc < 0) { 1880 if (errno != EINTR) { 1881 Fprintf(stderr, 1882 "%s: recvmsg %s\n", 1883 progname, strerror(errno)); 1884 } 1885 continue; 1886 } else if (cc > 0) { 1887 check_reply6(ai_dst, &in_msg, cc, 1888 udp_src_port6); 1889 } 1890 } 1891 /* Do we have an ICMP packet waiting? */ 1892 if ((recv_sock != -1) && (FD_ISSET(recv_sock, &fds))) { 1893 cc = recvmsg(recv_sock, &in_msg, 0); 1894 if (cc < 0) { 1895 if (errno != EINTR) { 1896 Fprintf(stderr, 1897 "%s: recvmsg %s\n", 1898 progname, strerror(errno)); 1899 } 1900 continue; 1901 } if (cc > 0) { 1902 check_reply(ai_dst, &in_msg, cc, 1903 udp_src_port); 1904 } 1905 } 1906 } 1907 /* 1908 * If we were probing last IP address of the target host and 1909 * received a reply for each probe sent to this address, 1910 * then we are done! 1911 */ 1912 if ((npackets > 0) && (current_targetaddr->next == NULL) && 1913 (nreceived_last_target == npackets)) { 1914 (void) alarm(0); /* cancel alarm */ 1915 finish(); 1916 } 1917 } /* infinite loop */ 1918 } 1919 1920 /* 1921 * Given a host (with possibly multiple IP addresses) and an IP address, this 1922 * function determines if this IP address is one of the host's addresses to 1923 * which we're sending probes. Used to determine if we are interested in a 1924 * packet. 1925 */ 1926 boolean_t 1927 is_a_target(struct addrinfo *ai, union any_in_addr *addr) 1928 { 1929 int num_addrs; 1930 int i; 1931 struct addrinfo *aip; 1932 1933 aip = ai; 1934 if (probe_all) 1935 num_addrs = num_v4 + num_v6; 1936 else 1937 num_addrs = 1; 1938 for (i = 0; i < num_addrs && aip != NULL; i++) { 1939 if (aip->ai_family == AF_INET6) { 1940 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1941 if (IN6_ARE_ADDR_EQUAL(&((struct sockaddr_in6 *) 1942 aip->ai_addr)->sin6_addr, &addr->addr6)) 1943 return (_B_TRUE); 1944 } else { 1945 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1946 if (((struct sockaddr_in *) 1947 aip->ai_addr)->sin_addr.s_addr == addr->addr.s_addr) 1948 return (_B_TRUE); 1949 } 1950 } 1951 1952 return (_B_FALSE); 1953 } 1954 1955 /* 1956 * Compose and transmit an ICMP ECHO REQUEST packet. The IP packet 1957 * will be added on by the kernel. The ID field is our UNIX process ID, 1958 * and the sequence number is an ascending integer. The first 8 bytes 1959 * of the data portion are used to hold a UNIX "timeval" struct in network 1960 * byte-order, to compute the round-trip time. 1961 */ 1962 static void 1963 pinger(int send_sock, struct sockaddr *whereto, struct msghdr *msg6, 1964 int family) 1965 { 1966 static uint64_t out_pkt_buf[(IP_MAXPACKET + 1) / 8]; 1967 uchar_t *out_pkt = (uchar_t *)&out_pkt_buf; 1968 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1969 struct icmp *icp = (struct icmp *)out_pkt; 1970 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1971 struct sockaddr_in6 *to6 = (struct sockaddr_in6 *)whereto; 1972 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1973 struct sockaddr_in *to = (struct sockaddr_in *)whereto; 1974 struct timeval *tp; 1975 struct timeval t_snd; 1976 uchar_t *datap; 1977 struct iovec iov; 1978 int start = 0; 1979 int cc; 1980 int i; 1981 1982 /* using UDP? */ 1983 if (use_udp) { 1984 cc = datalen; 1985 1986 /* LINTED E_BAD_PTR_CAST_ALIGN */ 1987 tp = (struct timeval *)out_pkt; 1988 datap = &out_pkt[sizeof (struct timeval)]; 1989 1990 /* 1991 * This sets the port whether we are handling a v4 or v6 1992 * sockaddr structure. 1993 */ 1994 to->sin_port = htons(dest_port); 1995 1996 dest_port = (dest_port + 1) % (MAX_PORT + 1); 1997 ntransmitted++; 1998 } else { /* using ICMP */ 1999 cc = datalen + ICMP_MINLEN; 2000 2001 if (family == AF_INET6) { 2002 icp->icmp_type = send_reply ? 2003 ICMP6_ECHO_REPLY : ICMP6_ECHO_REQUEST; 2004 } else if (use_icmp_ts) { /* family is AF_INET */ 2005 icp->icmp_type = send_reply ? 2006 ICMP_TSTAMPREPLY : ICMP_TSTAMP; 2007 } else { 2008 icp->icmp_type = send_reply ? 2009 ICMP_ECHOREPLY : ICMP_ECHO; 2010 } 2011 2012 icp->icmp_code = 0; 2013 icp->icmp_cksum = 0; 2014 icp->icmp_seq = htons(ntransmitted++ % (MAX_ICMP_SEQ + 1)); 2015 if (icp->icmp_seq == 0) 2016 num_wraps++; 2017 icp->icmp_id = htons(ident); /* ID */ 2018 2019 /* LINTED E_BAD_PTR_CAST_ALIGN */ 2020 tp = (struct timeval *)&out_pkt[ICMP_MINLEN]; 2021 datap = &out_pkt[ICMP_MINLEN + sizeof (struct timeval)]; 2022 } 2023 2024 start = sizeof (struct timeval); /* skip for time */ 2025 2026 (void) gettimeofday(&t_snd, (struct timezone *)NULL); 2027 2028 /* if packet is big enough to store timeval OR ... */ 2029 if ((datalen >= sizeof (struct timeval)) || 2030 (family == AF_INET && use_icmp_ts)) 2031 *tp = t_snd; 2032 2033 if (family == AF_INET && use_icmp_ts) { 2034 start = sizeof (struct id_ts); /* skip for ICMP timestamps */ 2035 /* Number of milliseconds since midnight */ 2036 icp->icmp_otime = htonl((tp->tv_sec % (24*60*60)) * 1000 + 2037 tp->tv_usec / 1000); 2038 } 2039 2040 for (i = start; i < datalen; i++) 2041 *datap++ = i; 2042 2043 if (family == AF_INET) { 2044 if (!use_udp) 2045 icp->icmp_cksum = in_cksum((ushort_t *)icp, cc); 2046 2047 i = sendto(send_sock, (char *)out_pkt, cc, 0, whereto, 2048 sizeof (struct sockaddr_in)); 2049 } else { 2050 /* 2051 * Fill in the rest of the msghdr structure. msg_control is set 2052 * in set_ancillary_data(). 2053 */ 2054 msg6->msg_name = to6; 2055 msg6->msg_namelen = sizeof (struct sockaddr_in6); 2056 2057 iov.iov_base = out_pkt; 2058 iov.iov_len = cc; 2059 2060 msg6->msg_iov = &iov; 2061 msg6->msg_iovlen = 1; 2062 2063 i = sendmsg(send_sock, msg6, 0); 2064 } 2065 2066 /* This is a more precise time (right after we send the packet) */ 2067 t_last_probe_sent = gethrtime(); 2068 2069 if (i < 0 || i != cc) { 2070 if (i < 0) { 2071 Fprintf(stderr, "%s: sendto %s\n", progname, 2072 strerror(errno)); 2073 if (!stats) 2074 exit(EXIT_FAILURE); 2075 } 2076 Printf("ping: wrote %s %d chars, ret=%d\n", 2077 targethost, cc, i); 2078 (void) fflush(stdout); 2079 } 2080 } 2081 2082 /* 2083 * Return a hostname for the given IP address. 2084 */ 2085 char * 2086 pr_name(char *addr, int family) 2087 { 2088 struct sockaddr_in sin; 2089 struct sockaddr_in6 sin6; 2090 struct sockaddr *sa; 2091 static struct in6_addr prev_addr = IN6ADDR_ANY_INIT; 2092 char *cp; 2093 char abuf[INET6_ADDRSTRLEN]; 2094 static char buf[NI_MAXHOST + INET6_ADDRSTRLEN + 3]; 2095 uint_t slen, alen, hlen; 2096 2097 switch (family) { 2098 case AF_INET: 2099 (void) memset(&sin, 0, sizeof (sin)); 2100 slen = sizeof (struct sockaddr_in); 2101 alen = sizeof (struct in_addr); 2102 /* LINTED E_BAD_PTR_CAST_ALIGN */ 2103 sin.sin_addr = *(struct in_addr *)addr; 2104 sin.sin_port = 0; 2105 sa = (struct sockaddr *)&sin; 2106 break; 2107 case AF_INET6: 2108 (void) memset(&sin6, 0, sizeof (sin6)); 2109 slen = sizeof (struct sockaddr_in6); 2110 alen = sizeof (struct in6_addr); 2111 /* LINTED E_BAD_PTR_CAST_ALIGN */ 2112 sin6.sin6_addr = *(struct in6_addr *)addr; 2113 sin6.sin6_port = 0; 2114 sa = (struct sockaddr *)&sin6; 2115 break; 2116 default: 2117 (void) snprintf(buf, sizeof (buf), "<invalid address family>"); 2118 return (buf); 2119 } 2120 sa->sa_family = family; 2121 2122 /* compare with the buffered (previous) lookup */ 2123 if (memcmp(addr, &prev_addr, alen) != 0) { 2124 int flags = (nflag) ? NI_NUMERICHOST : NI_NAMEREQD; 2125 if (getnameinfo(sa, slen, buf, sizeof (buf), 2126 NULL, 0, flags) != 0) { 2127 /* getnameinfo() failed; return just the address */ 2128 if (inet_ntop(family, (const void*)addr, 2129 buf, sizeof (buf)) == NULL) 2130 buf[0] = 0; 2131 } else if (!nflag) { 2132 /* append numeric address to hostname string */ 2133 hlen = strlen(buf); 2134 cp = (char *)(buf + hlen); 2135 (void) snprintf(cp, sizeof (buf) - hlen, " (%s)", 2136 inet_ntop(family, (const void *)addr, abuf, 2137 sizeof (abuf))); 2138 } 2139 2140 /* LINTED E_BAD_PTR_CAST_ALIGN */ 2141 prev_addr = *(struct in6_addr *)addr; 2142 } 2143 return (buf); 2144 } 2145 2146 /* 2147 * Return the protocol string, given its protocol number. 2148 */ 2149 char * 2150 pr_protocol(int prot) 2151 { 2152 static char buf[20]; 2153 2154 switch (prot) { 2155 case IPPROTO_ICMPV6: 2156 (void) strlcpy(buf, "icmp6", sizeof (buf)); 2157 break; 2158 2159 case IPPROTO_ICMP: 2160 (void) strlcpy(buf, "icmp", sizeof (buf)); 2161 break; 2162 2163 case IPPROTO_TCP: 2164 (void) strlcpy(buf, "tcp", sizeof (buf)); 2165 break; 2166 2167 case IPPROTO_UDP: 2168 (void) strlcpy(buf, "udp", sizeof (buf)); 2169 break; 2170 2171 default: 2172 (void) snprintf(buf, sizeof (buf), "prot %d", prot); 2173 break; 2174 } 2175 2176 return (buf); 2177 } 2178 2179 /* 2180 * Checks if value is between seq_begin and seq_begin+seq_len. Note that 2181 * sequence numbers wrap around after MAX_ICMP_SEQ (== MAX_PORT). 2182 */ 2183 boolean_t 2184 seq_match(ushort_t seq_begin, int seq_len, ushort_t value) 2185 { 2186 /* 2187 * If seq_len is too big, like some value greater than MAX_ICMP_SEQ/2, 2188 * truncate it down to MAX_ICMP_SEQ/2. We are not going to accept any 2189 * reply which come 83hr later! 2190 */ 2191 if (seq_len > MAX_ICMP_SEQ / 2) { 2192 seq_begin = (seq_begin + seq_len - MAX_ICMP_SEQ / 2) % 2193 (MAX_ICMP_SEQ + 1); 2194 seq_len = MAX_ICMP_SEQ / 2; 2195 } 2196 2197 if (PINGSEQ_LEQ(seq_begin, value) && 2198 PINGSEQ_LEQ(value, (seq_begin + seq_len - 1) % (MAX_ICMP_SEQ + 1))) 2199 return (_B_TRUE); 2200 else 2201 return (_B_FALSE); 2202 } 2203 2204 /* 2205 * For a given icmp_seq, find which destination address we must have sent this 2206 * to. 2207 */ 2208 void 2209 find_dstaddr(ushort_t icmpseq, union any_in_addr *ipaddr) 2210 { 2211 struct targetaddr *target = targetaddr_list; 2212 int real_seq; 2213 int targetaddr_index; 2214 int real_npackets; 2215 int i; 2216 2217 ipaddr->addr6 = in6addr_any; 2218 2219 /* 2220 * If this is probe_all and not stats, then the number of probes sent to 2221 * each IP address may be different (remember, we stop sending to one IP 2222 * address as soon as it replies). They are stored in target->num_sent 2223 * field. Since we don't wrap around the list (!stats), they are also 2224 * preserved. 2225 */ 2226 if (probe_all && !stats) { 2227 do { 2228 if (seq_match(target->starting_seq_num, 2229 target->num_sent, icmpseq)) { 2230 ipaddr->addr6 = target->dst_addr.addr6; 2231 /* 2232 * We are not immediately return()ing here. 2233 * Because of wrapping, we might find another 2234 * match later, which is more likely to be the 2235 * real one. 2236 */ 2237 } 2238 target = target->next; 2239 } while (target != NULL); 2240 } else { 2241 /* 2242 * Find the absolute (non-wrapped) seq number within the last 2243 * 64K 2244 */ 2245 if (icmpseq < (ntransmitted % (MAX_ICMP_SEQ + 1))) { 2246 real_seq = num_wraps * (MAX_ICMP_SEQ + 1) + icmpseq; 2247 } else { 2248 real_seq = (num_wraps - 1) * (MAX_ICMP_SEQ + 1) + 2249 icmpseq; 2250 } 2251 2252 /* Make sure it's non-negative */ 2253 if (real_seq < 0) 2254 return; 2255 real_npackets = (npackets == 0) ? 1 : npackets; 2256 2257 /* 2258 * We sent npackets many packets to each of those 2259 * num_targetaddrs many IP addresses. 2260 */ 2261 targetaddr_index = 2262 (real_seq % (num_targetaddrs * real_npackets)) / 2263 real_npackets; 2264 for (i = 0; i < targetaddr_index; i++) 2265 target = target->next; 2266 ipaddr->addr6 = target->dst_addr.addr6; 2267 } 2268 } 2269 2270 /* 2271 * Checksum routine for Internet Protocol family headers (C Version) 2272 */ 2273 static ushort_t 2274 in_cksum(ushort_t *addr, int len) 2275 { 2276 int nleft = len; 2277 ushort_t *w = addr; 2278 ushort_t answer; 2279 ushort_t odd_byte = 0; 2280 int sum = 0; 2281 2282 /* 2283 * Our algorithm is simple, using a 32 bit accumulator (sum), 2284 * we add sequential 16 bit words to it, and at the end, fold 2285 * back all the carry bits from the top 16 bits into the lower 2286 * 16 bits. 2287 */ 2288 while (nleft > 1) { 2289 sum += *w++; 2290 nleft -= 2; 2291 } 2292 2293 /* mop up an odd byte, if necessary */ 2294 if (nleft == 1) { 2295 *(uchar_t *)(&odd_byte) = *(uchar_t *)w; 2296 sum += odd_byte; 2297 } 2298 2299 /* 2300 * add back carry outs from top 16 bits to low 16 bits 2301 */ 2302 sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */ 2303 sum += (sum >> 16); /* add carry */ 2304 answer = ~sum; /* truncate to 16 bits */ 2305 return (answer); 2306 } 2307 2308 /* 2309 * Subtract 2 timeval structs: out = out - in. 2310 * Out is assumed to be >= in. 2311 */ 2312 void 2313 tvsub(struct timeval *out, struct timeval *in) 2314 { 2315 if ((out->tv_usec -= in->tv_usec) < 0) { 2316 out->tv_sec--; 2317 out->tv_usec += 1000000; 2318 } 2319 out->tv_sec -= in->tv_sec; 2320 } 2321 2322 /* 2323 * Print out statistics, and give up. 2324 * Heavily buffered STDIO is used here, so that all the statistics 2325 * will be written with 1 sys-write call. This is nice when more 2326 * than one copy of the program is running on a terminal; it prevents 2327 * the statistics output from becoming intermingled. 2328 */ 2329 static void 2330 finish() 2331 { 2332 Printf("\n----%s PING Statistics----\n", targethost); 2333 Printf("%d packets transmitted, ", ntransmitted); 2334 Printf("%d packets received, ", nreceived); 2335 if (ntransmitted) { 2336 if (nreceived <= ntransmitted) { 2337 Printf("%d%% packet loss", 2338 (int)(((ntransmitted-nreceived)*100) / 2339 ntransmitted)); 2340 } else { 2341 Printf("%.2f times amplification", 2342 (double)nreceived / (double)ntransmitted); 2343 } 2344 } 2345 (void) putchar('\n'); 2346 2347 /* if packet is big enough to store timeval AND ... */ 2348 if ((datalen >= sizeof (struct timeval)) && (nreceived > 0)) { 2349 double mean = (double)tsum / nreceived; 2350 double smean = (double)tsum2 / nreceived; 2351 double sd = 2352 sqrt(((smean - mean*mean) * nreceived) / (nreceived-1)); 2353 2354 Printf("round-trip (ms) min/avg/max/stddev = " 2355 TIMEFORMAT "/" TIMEFORMAT "/" 2356 TIMEFORMAT "/" TIMEFORMAT "\n", 2357 (double)tmin / 1000, mean / 1000, 2358 (double)tmax / 1000, sd / 1000); 2359 } 2360 (void) fflush(stdout); 2361 2362 exit(is_alive ? EXIT_SUCCESS : EXIT_FAILURE); 2363 } 2364 2365 /* 2366 * print the usage line 2367 */ 2368 static void 2369 usage(char *cmdname) 2370 { 2371 Fprintf(stderr, "usage: %s host [timeout]\n", cmdname); 2372 Fprintf(stderr, 2373 /* CSTYLED */ 2374 "usage: %s -s [-l | U] [abdDLnRrv] [-A addr_family] [-c traffic_class]\n\t" 2375 "[-g gateway [-g gateway ...]] [-N nexthop] [-F flow_label] [-I interval]\n\t" 2376 "[-i interface] [-P tos] [-p port] [-t ttl] host [data_size] [npackets]\n", 2377 cmdname); 2378 } 2379 2380 /* 2381 * Parse integer argument; exit with an error if it's not a number. 2382 * Now it also accepts hex. values. 2383 */ 2384 static int 2385 int_arg(char *s, char *what) 2386 { 2387 char *cp; 2388 char *ep; 2389 int num; 2390 2391 errno = 0; 2392 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) { 2393 cp = s + 2; 2394 num = (int)strtol(cp, &ep, 16); 2395 } else { 2396 num = (int)strtol(s, &ep, 10); 2397 } 2398 2399 if (errno || *ep != '\0' || num < 0) { 2400 (void) Fprintf(stderr, "%s: bad %s: %s\n", 2401 progname, what, s); 2402 exit(EXIT_FAILURE); 2403 } 2404 2405 return (num); 2406 } 2407