1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <stdlib.h> 28 #include <assert.h> 29 #include <errno.h> 30 #include <locale.h> 31 #include <string.h> 32 #include <unistd.h> 33 #include <signal.h> 34 #include <stdio.h> 35 #include <stdio_ext.h> 36 #include <dhcp_hostconf.h> 37 #include <dhcpagent_ipc.h> 38 #include <dhcpagent_util.h> 39 #include <dhcpmsg.h> 40 #include <netinet/dhcp.h> 41 #include <net/route.h> 42 #include <sys/sockio.h> 43 #include <sys/stat.h> 44 #include <stropts.h> 45 #include <fcntl.h> 46 #include <sys/scsi/adapters/iscsi_if.h> 47 48 #include "async.h" 49 #include "agent.h" 50 #include "script_handler.h" 51 #include "util.h" 52 #include "class_id.h" 53 #include "states.h" 54 #include "packet.h" 55 #include "interface.h" 56 #include "defaults.h" 57 58 #ifndef TEXT_DOMAIN 59 #define TEXT_DOMAIN "SYS_TEST" 60 #endif 61 62 iu_timer_id_t inactivity_id; 63 int class_id_len = 0; 64 char *class_id; 65 iu_eh_t *eh; 66 iu_tq_t *tq; 67 pid_t grandparent; 68 int rtsock_fd; 69 70 static boolean_t shutdown_started = B_FALSE; 71 static boolean_t do_adopt = B_FALSE; 72 static unsigned int debug_level = 0; 73 static iu_eh_callback_t accept_event, ipc_event, rtsock_event; 74 75 /* 76 * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in 77 * which states; a non-zero value indicates the command is permitted. 78 * 79 * START is permitted if the state machine is fresh, or if we are in the 80 * process of trying to obtain a lease (as a convenience to save the 81 * administrator from having to do an explicit DROP). EXTEND, RELEASE, and 82 * GET_TAG require a lease to be obtained in order to make sense. INFORM is 83 * permitted if the interface is fresh or has an INFORM in progress or 84 * previously done on it -- otherwise a DROP or RELEASE is first required. 85 * PING and STATUS always make sense and thus are always permitted, as is DROP 86 * in order to permit the administrator to always bail out. 87 */ 88 static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { 89 /* D E P R S S I G */ 90 /* R X I E T T N E */ 91 /* O T N L A A F T */ 92 /* P E G E R T O _ */ 93 /* . N . A T U R T */ 94 /* . D . S . S M A */ 95 /* . . . E . . . G */ 96 /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 97 /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 98 /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, 99 /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 100 /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 101 /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 102 /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 103 /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, 104 /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, 105 /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, 106 /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, 107 /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, 108 /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, 109 }; 110 111 #define CMD_ISPRIV 0x1 /* Command requires privileges */ 112 #define CMD_CREATE 0x2 /* Command creates an interface */ 113 #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ 114 #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ 115 116 static uint_t ipc_cmd_flags[DHCP_NIPC] = { 117 /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, 118 /* DHCP_EXTEND */ CMD_ISPRIV, 119 /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, 120 /* DHCP_RELEASE */ CMD_ISPRIV, 121 /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, 122 /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, 123 /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, 124 /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED 125 }; 126 127 static boolean_t is_iscsi_active(void); 128 129 int 130 main(int argc, char **argv) 131 { 132 boolean_t is_daemon = B_TRUE; 133 boolean_t is_verbose; 134 int ipc_fd; 135 int c; 136 int aware = RTAW_UNDER_IPMP; 137 struct rlimit rl; 138 139 debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); 140 is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); 141 142 /* 143 * -l is ignored for compatibility with old agent. 144 */ 145 146 while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { 147 148 switch (c) { 149 150 case 'a': 151 do_adopt = B_TRUE; 152 grandparent = getpid(); 153 break; 154 155 case 'd': 156 debug_level = strtoul(optarg, NULL, 0); 157 break; 158 159 case 'f': 160 is_daemon = B_FALSE; 161 break; 162 163 case 'v': 164 is_verbose = B_TRUE; 165 break; 166 167 case '?': 168 (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" 169 "\n", argv[0]); 170 return (EXIT_FAILURE); 171 172 default: 173 break; 174 } 175 } 176 177 (void) setlocale(LC_ALL, ""); 178 (void) textdomain(TEXT_DOMAIN); 179 180 if (geteuid() != 0) { 181 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 182 dhcpmsg(MSG_ERROR, "must be super-user"); 183 dhcpmsg_fini(); 184 return (EXIT_FAILURE); 185 } 186 187 if (is_daemon && daemonize() == 0) { 188 dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); 189 dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); 190 dhcpmsg_fini(); 191 return (EXIT_FAILURE); 192 } 193 194 /* 195 * Seed the random number generator, since we're going to need it 196 * to set transaction id's and for exponential backoff. 197 */ 198 srand48(gethrtime() ^ gethostid() ^ getpid()); 199 200 dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); 201 (void) atexit(dhcpmsg_fini); 202 203 tq = iu_tq_create(); 204 eh = iu_eh_create(); 205 206 if (eh == NULL || tq == NULL) { 207 errno = ENOMEM; 208 dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); 209 return (EXIT_FAILURE); 210 } 211 212 /* 213 * ignore most signals that could be reasonably generated. 214 */ 215 216 (void) signal(SIGTERM, graceful_shutdown); 217 (void) signal(SIGQUIT, graceful_shutdown); 218 (void) signal(SIGPIPE, SIG_IGN); 219 (void) signal(SIGUSR1, SIG_IGN); 220 (void) signal(SIGUSR2, SIG_IGN); 221 (void) signal(SIGINT, SIG_IGN); 222 (void) signal(SIGHUP, SIG_IGN); 223 (void) signal(SIGCHLD, SIG_IGN); 224 225 /* 226 * upon SIGTHAW we need to refresh any non-infinite leases. 227 */ 228 229 (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); 230 231 class_id = get_class_id(); 232 if (class_id != NULL) 233 class_id_len = strlen(class_id); 234 else 235 dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " 236 "with no vendor class id"); 237 238 /* 239 * the inactivity timer is enabled any time there are no 240 * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT 241 * seconds transpire without an interface under DHCP control, 242 * the agent shuts down. 243 */ 244 245 inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, 246 inactivity_shutdown, NULL); 247 248 /* 249 * max out the number available descriptors, just in case.. 250 */ 251 252 rl.rlim_cur = RLIM_INFINITY; 253 rl.rlim_max = RLIM_INFINITY; 254 if (setrlimit(RLIMIT_NOFILE, &rl) == -1) 255 dhcpmsg(MSG_ERR, "setrlimit failed"); 256 257 (void) enable_extended_FILE_stdio(-1, -1); 258 259 /* 260 * Create and bind default IP sockets used to control interfaces and to 261 * catch stray packets. 262 */ 263 264 if (!dhcp_ip_default()) 265 return (EXIT_FAILURE); 266 267 /* 268 * create the ipc channel that the agent will listen for 269 * requests on, and register it with the event handler so that 270 * `accept_event' will be called back. 271 */ 272 273 switch (dhcp_ipc_init(&ipc_fd)) { 274 275 case 0: 276 break; 277 278 case DHCP_IPC_E_BIND: 279 dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " 280 "%i (agent already running?)", IPPORT_DHCPAGENT); 281 return (EXIT_FAILURE); 282 283 default: 284 dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); 285 return (EXIT_FAILURE); 286 } 287 288 if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { 289 dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); 290 return (EXIT_FAILURE); 291 } 292 293 /* 294 * Create the global routing socket. This is used for monitoring 295 * interface transitions, so that we learn about the kernel's Duplicate 296 * Address Detection status, and for inserting and removing default 297 * routes as learned from DHCP servers. Both v4 and v6 are handed 298 * with this one socket. 299 */ 300 rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); 301 if (rtsock_fd == -1) { 302 dhcpmsg(MSG_ERR, "cannot open routing socket"); 303 return (EXIT_FAILURE); 304 } 305 306 /* 307 * We're IPMP-aware and can manage IPMP test addresses, so issue 308 * RT_AWARE to get routing socket messages for interfaces under IPMP. 309 */ 310 if (setsockopt(rtsock_fd, SOL_ROUTE, RT_AWARE, &aware, 311 sizeof (aware)) == -1) { 312 dhcpmsg(MSG_ERR, "cannot set RT_AWARE on routing socket"); 313 return (EXIT_FAILURE); 314 } 315 316 if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { 317 dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); 318 return (EXIT_FAILURE); 319 } 320 321 /* 322 * if the -a (adopt) option was specified, try to adopt the 323 * kernel-managed interface before we start. 324 */ 325 326 if (do_adopt && !dhcp_adopt()) 327 return (EXIT_FAILURE); 328 329 /* 330 * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As 331 * we're starting operation here, if there are any of those interfaces 332 * lingering around, they're strays, and need to be removed. 333 * 334 * It might be nice to save these addresses off somewhere -- for both 335 * v4 and v6 -- and use them as hints for later negotiation. 336 */ 337 remove_v6_strays(); 338 339 /* 340 * enter the main event loop; this is where all the real work 341 * takes place (through registering events and scheduling timers). 342 * this function only returns when the agent is shutting down. 343 */ 344 345 switch (iu_handle_events(eh, tq)) { 346 347 case -1: 348 dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); 349 break; 350 351 case DHCP_REASON_INACTIVITY: 352 dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); 353 break; 354 355 case DHCP_REASON_TERMINATE: 356 dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); 357 break; 358 359 case DHCP_REASON_SIGNAL: 360 dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " 361 "down..."); 362 break; 363 } 364 365 (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); 366 367 iu_eh_destroy(eh); 368 iu_tq_destroy(tq); 369 370 return (EXIT_SUCCESS); 371 } 372 373 /* 374 * drain_script(): event loop callback during shutdown 375 * 376 * input: eh_t *: unused 377 * void *: unused 378 * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise 379 */ 380 381 /* ARGSUSED */ 382 boolean_t 383 drain_script(iu_eh_t *ehp, void *arg) 384 { 385 if (shutdown_started == B_FALSE) { 386 shutdown_started = B_TRUE; 387 /* 388 * Check if the system is diskless client and/or 389 * there are active iSCSI sessions 390 * 391 * Do not drop the lease, or the system will be 392 * unable to sync(dump) through nfs/iSCSI driver 393 */ 394 if (!do_adopt && !is_iscsi_active()) { 395 nuke_smach_list(); 396 } 397 } 398 return (script_count == 0); 399 } 400 401 /* 402 * accept_event(): accepts a new connection on the ipc socket and registers 403 * to receive its messages with the event handler 404 * 405 * input: iu_eh_t *: unused 406 * int: the file descriptor in the iu_eh_t * the connection came in on 407 * (other arguments unused) 408 * output: void 409 */ 410 411 /* ARGSUSED */ 412 static void 413 accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 414 { 415 int client_fd; 416 int is_priv; 417 418 if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { 419 dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); 420 return; 421 } 422 423 if (iu_register_event(eh, client_fd, POLLIN, ipc_event, 424 (void *)is_priv) == -1) { 425 dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " 426 "for callback"); 427 } 428 } 429 430 /* 431 * ipc_event(): processes incoming ipc requests 432 * 433 * input: iu_eh_t *: unused 434 * int: the file descriptor in the iu_eh_t * the request came in on 435 * short: unused 436 * iu_event_id_t: event ID 437 * void *: indicates whether the request is from a privileged client 438 * output: void 439 */ 440 441 /* ARGSUSED */ 442 static void 443 ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 444 { 445 ipc_action_t ia, *iap; 446 dhcp_smach_t *dsmp; 447 int error, is_priv = (int)arg; 448 const char *ifname; 449 boolean_t isv6; 450 boolean_t dsm_created = B_FALSE; 451 452 ipc_action_init(&ia); 453 error = dhcp_ipc_recv_request(fd, &ia.ia_request, 454 DHCP_IPC_REQUEST_WAIT); 455 if (error != DHCP_IPC_SUCCESS) { 456 if (error != DHCP_IPC_E_EOF) { 457 dhcpmsg(MSG_ERROR, 458 "ipc_event: dhcp_ipc_recv_request failed: %s", 459 dhcp_ipc_strerror(error)); 460 } else { 461 dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); 462 } 463 if ((dsmp = lookup_smach_by_event(id)) != NULL) { 464 ipc_action_finish(dsmp, error); 465 } else { 466 (void) iu_unregister_event(eh, id, NULL); 467 (void) dhcp_ipc_close(fd); 468 } 469 return; 470 } 471 472 /* Fill in temporary ipc_action structure for utility functions */ 473 ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); 474 ia.ia_fd = fd; 475 ia.ia_eid = id; 476 477 if (ia.ia_cmd >= DHCP_NIPC) { 478 dhcpmsg(MSG_ERROR, 479 "ipc_event: invalid command (%s) attempted on %s", 480 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 481 send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); 482 return; 483 } 484 485 /* return EPERM for any of the privileged actions */ 486 487 if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { 488 dhcpmsg(MSG_WARNING, 489 "ipc_event: privileged ipc command (%s) attempted on %s", 490 dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); 491 send_error_reply(&ia, DHCP_IPC_E_PERM); 492 return; 493 } 494 495 /* 496 * Try to locate the state machine associated with this command. If 497 * the command is DHCP_START or DHCP_INFORM and there isn't a state 498 * machine already, make one (there may already be one from a previous 499 * failed attempt to START or INFORM). Otherwise, verify the reference 500 * is still valid. 501 * 502 * The interface name may be blank. In that case, we look up the 503 * primary interface, and the requested type (v4 or v6) doesn't matter. 504 */ 505 506 isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; 507 ifname = ia.ia_request->ifname; 508 if (*ifname == '\0') 509 dsmp = primary_smach(isv6); 510 else 511 dsmp = lookup_smach(ifname, isv6); 512 513 if (dsmp != NULL) { 514 /* Note that verify_smach drops a reference */ 515 hold_smach(dsmp); 516 if (!verify_smach(dsmp)) 517 dsmp = NULL; 518 } 519 520 if (dsmp == NULL) { 521 /* 522 * If the user asked for the primary DHCP interface by giving 523 * an empty string and there is no primary, then check if we're 524 * handling dhcpinfo. If so, then simulate primary selection. 525 * Otherwise, report failure. 526 */ 527 if (ifname[0] == '\0') { 528 if (ia.ia_cmd == DHCP_GET_TAG) 529 dsmp = info_primary_smach(isv6); 530 if (dsmp == NULL) 531 error = DHCP_IPC_E_NOPRIMARY; 532 533 /* 534 * If there's no interface, and we're starting up, then create 535 * it now, along with a state machine for it. Note that if 536 * insert_smach fails, it discards the LIF reference. 537 */ 538 } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { 539 dhcp_lif_t *lif; 540 541 lif = attach_lif(ifname, isv6, &error); 542 if (lif != NULL && 543 (dsmp = insert_smach(lif, &error)) != NULL) { 544 /* 545 * Get client ID for logical interface. (V4 546 * only, because V6 plumbs its own interfaces.) 547 */ 548 error = get_smach_cid(dsmp); 549 if (error != DHCP_IPC_SUCCESS) { 550 remove_smach(dsmp); 551 dsmp = NULL; 552 } 553 dsm_created = (dsmp != NULL); 554 } 555 556 /* 557 * Otherwise, this is an operation on an unknown interface. 558 */ 559 } else { 560 error = DHCP_IPC_E_UNKIF; 561 } 562 if (dsmp == NULL) { 563 send_error_reply(&ia, error); 564 return; 565 } 566 } 567 568 /* 569 * If this is a request for DHCP to manage a lease on an address, 570 * ensure that IFF_DHCPRUNNING is set (we don't set this when the lif 571 * is created because the lif may have been created for INFORM). 572 */ 573 if (ia.ia_cmd == DHCP_START && 574 (error = set_lif_dhcp(dsmp->dsm_lif)) != DHCP_IPC_SUCCESS) { 575 if (dsm_created) 576 remove_smach(dsmp); 577 send_error_reply(&ia, error); 578 return; 579 } 580 581 if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && 582 !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { 583 dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", 584 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 585 send_error_reply(&ia, DHCP_IPC_E_BOOTP); 586 return; 587 } 588 589 /* 590 * verify that the state machine is in a state which will allow the 591 * command. we do this up front so that we can return an error 592 * *before* needlessly cancelling an in-progress transaction. 593 */ 594 595 if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { 596 dhcpmsg(MSG_DEBUG, 597 "in state %s; not allowing %s command on %s", 598 dhcp_state_to_string(dsmp->dsm_state), 599 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 600 send_error_reply(&ia, 601 ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? 602 DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); 603 return; 604 } 605 606 dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", 607 dhcp_state_to_string(dsmp->dsm_state), 608 dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); 609 610 if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) 611 make_primary(dsmp); 612 613 /* 614 * The current design dictates that there can be only one outstanding 615 * transaction per state machine -- this simplifies the code 616 * considerably and also fits well with RFCs 2131 and 3315. It is 617 * worth classifying the different DHCP commands into synchronous 618 * (those which we will handle now and reply to immediately) and 619 * asynchronous (those which require transactions and will be completed 620 * at an indeterminate time in the future): 621 * 622 * DROP: removes the agent's management of a state machine. 623 * asynchronous as the script program may be invoked. 624 * 625 * PING: checks to see if the agent has a named state machine. 626 * synchronous, since no packets need to be sent 627 * to the DHCP server. 628 * 629 * STATUS: returns information about a state machine. 630 * synchronous, since no packets need to be sent 631 * to the DHCP server. 632 * 633 * RELEASE: releases the agent's management of a state machine 634 * and brings the associated interfaces down. asynchronous 635 * as the script program may be invoked. 636 * 637 * EXTEND: renews a lease. asynchronous, since the agent 638 * needs to wait for an ACK, etc. 639 * 640 * START: starts DHCP on a named state machine. asynchronous since 641 * the agent needs to wait for OFFERs, ACKs, etc. 642 * 643 * INFORM: obtains configuration parameters for the system using 644 * externally configured interface. asynchronous, since the 645 * agent needs to wait for an ACK. 646 * 647 * Notice that EXTEND, INFORM, START, DROP and RELEASE are 648 * asynchronous. Notice also that asynchronous commands may occur from 649 * within the agent -- for instance, the agent will need to do implicit 650 * EXTENDs to extend the lease. In order to make the code simpler, the 651 * following rules apply for asynchronous commands: 652 * 653 * There can only be one asynchronous command at a time per state 654 * machine. The current asynchronous command is managed by the async_* 655 * api: async_start(), async_finish(), and async_cancel(). 656 * async_start() starts management of a new asynchronous command on an 657 * state machine, which should only be done after async_cancel() to 658 * terminate a previous command. When the command is completed, 659 * async_finish() should be called. 660 * 661 * Asynchronous commands started by a user command have an associated 662 * ipc_action which provides the agent with information for how to get 663 * in touch with the user command when the action completes. These 664 * ipc_action records also have an associated timeout which may be 665 * infinite. ipc_action_start() should be called when starting an 666 * asynchronous command requested by a user, which sets up the timer 667 * and keeps track of the ipc information (file descriptor, request 668 * type). When the asynchronous command completes, ipc_action_finish() 669 * should be called to return a command status code to the user and 670 * close the ipc connection). If the command does not complete before 671 * the timer fires, ipc_action_timeout() is called which closes the ipc 672 * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that 673 * independent of ipc_action_timeout(), ipc_action_finish() should be 674 * called. 675 * 676 * on a case-by-case basis, here is what happens (per state machine): 677 * 678 * o When an asynchronous command is requested, then 679 * async_cancel() is called to terminate any non-user 680 * action in progress. If there's a user action running, 681 * the user command is sent DHCP_IPC_E_PEND. 682 * 683 * o otherwise, the the transaction is started with 684 * async_start(). if the transaction is on behalf 685 * of a user, ipc_action_start() is called to keep 686 * track of the ipc information and set up the 687 * ipc_action timer. 688 * 689 * o if the command completes normally and before a 690 * timeout fires, then async_finish() is called. 691 * if there was an associated ipc_action, 692 * ipc_action_finish() is called to complete it. 693 * 694 * o if the command fails before a timeout fires, then 695 * async_finish() is called, and the state machine is 696 * is returned to a known state based on the command. 697 * if there was an associated ipc_action, 698 * ipc_action_finish() is called to complete it. 699 * 700 * o if the ipc_action timer fires before command 701 * completion, then DHCP_IPC_E_TIMEOUT is returned to 702 * the user. however, the transaction continues to 703 * be carried out asynchronously. 704 */ 705 706 if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { 707 /* 708 * Only immediate commands (ping, status, get_tag) need to 709 * worry about freeing ia through one of the reply functions 710 * before returning. 711 */ 712 iap = &ia; 713 } else { 714 /* 715 * if shutdown request has been received, send back an error. 716 */ 717 if (shutdown_started) { 718 send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); 719 return; 720 } 721 722 if (dsmp->dsm_dflags & DHCP_IF_BUSY) { 723 send_error_reply(&ia, DHCP_IPC_E_PEND); 724 return; 725 } 726 727 if (!ipc_action_start(dsmp, &ia)) { 728 dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " 729 "failed for %s", dsmp->dsm_name); 730 send_error_reply(&ia, DHCP_IPC_E_MEMORY); 731 return; 732 } 733 734 /* Action structure consumed by above function */ 735 iap = &dsmp->dsm_ia; 736 } 737 738 switch (iap->ia_cmd) { 739 740 case DHCP_DROP: 741 if (dsmp->dsm_droprelease) 742 break; 743 dsmp->dsm_droprelease = B_TRUE; 744 745 /* 746 * Ensure that a timer associated with the existing state 747 * doesn't pop while we're waiting for the script to complete. 748 * (If so, chaos can result -- e.g., a timer causes us to end 749 * up in dhcp_selecting() would start acquiring a new lease on 750 * dsmp while our DHCP_DROP dismantling is ongoing.) 751 */ 752 cancel_smach_timers(dsmp); 753 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, 754 dhcp_drop, NULL, NULL); 755 break; /* not an immediate function */ 756 757 case DHCP_EXTEND: 758 (void) dhcp_extending(dsmp); 759 break; 760 761 case DHCP_GET_TAG: { 762 dhcp_optnum_t optnum; 763 void *opt = NULL; 764 uint_t optlen; 765 boolean_t did_alloc = B_FALSE; 766 PKT_LIST *ack = dsmp->dsm_ack; 767 int i; 768 769 /* 770 * verify the request makes sense. 771 */ 772 773 if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || 774 iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { 775 send_error_reply(iap, DHCP_IPC_E_PROTO); 776 break; 777 } 778 779 (void) memcpy(&optnum, iap->ia_request->buffer, 780 sizeof (dhcp_optnum_t)); 781 782 load_option: 783 switch (optnum.category) { 784 785 case DSYM_SITE: /* FALLTHRU */ 786 case DSYM_STANDARD: 787 for (i = 0; i < dsmp->dsm_pillen; i++) { 788 if (dsmp->dsm_pil[i] == optnum.code) 789 break; 790 } 791 if (i < dsmp->dsm_pillen) 792 break; 793 if (isv6) { 794 opt = dhcpv6_pkt_option(ack, NULL, optnum.code, 795 NULL); 796 } else { 797 if (optnum.code <= DHCP_LAST_OPT) 798 opt = ack->opts[optnum.code]; 799 } 800 break; 801 802 case DSYM_VENDOR: 803 if (isv6) { 804 dhcpv6_option_t *d6o; 805 uint32_t ent; 806 807 /* 808 * Look through vendor options to find our 809 * enterprise number. 810 */ 811 d6o = NULL; 812 for (;;) { 813 d6o = dhcpv6_pkt_option(ack, d6o, 814 DHCPV6_OPT_VENDOR_OPT, &optlen); 815 if (d6o == NULL) 816 break; 817 optlen -= sizeof (*d6o); 818 if (optlen < sizeof (ent)) 819 continue; 820 (void) memcpy(&ent, d6o + 1, 821 sizeof (ent)); 822 if (ntohl(ent) != DHCPV6_SUN_ENT) 823 continue; 824 break; 825 } 826 if (d6o != NULL) { 827 /* 828 * Now find the requested vendor option 829 * within the vendor options block. 830 */ 831 opt = dhcpv6_find_option( 832 (char *)(d6o + 1) + sizeof (ent), 833 optlen - sizeof (ent), NULL, 834 optnum.code, NULL); 835 } 836 } else { 837 /* 838 * the test against VS_OPTION_START is broken 839 * up into two tests to avoid compiler warnings 840 * under intel. 841 */ 842 if ((optnum.code > VS_OPTION_START || 843 optnum.code == VS_OPTION_START) && 844 optnum.code <= VS_OPTION_END) 845 opt = ack->vs[optnum.code]; 846 } 847 break; 848 849 case DSYM_FIELD: 850 if (isv6) { 851 dhcpv6_message_t *d6m = 852 (dhcpv6_message_t *)ack->pkt; 853 dhcpv6_option_t *d6o; 854 855 /* Validate the packet field the user wants */ 856 optlen = optnum.code + optnum.size; 857 if (d6m->d6m_msg_type == 858 DHCPV6_MSG_RELAY_FORW || 859 d6m->d6m_msg_type == 860 DHCPV6_MSG_RELAY_REPL) { 861 if (optlen > sizeof (dhcpv6_relay_t)) 862 break; 863 } else { 864 if (optlen > sizeof (*d6m)) 865 break; 866 } 867 868 opt = malloc(sizeof (*d6o) + optnum.size); 869 if (opt != NULL) { 870 d6o = opt; 871 d6o->d6o_code = htons(optnum.code); 872 d6o->d6o_len = htons(optnum.size); 873 (void) memcpy(d6o + 1, (caddr_t)d6m + 874 optnum.code, optnum.size); 875 } 876 } else { 877 if (optnum.code + optnum.size > sizeof (PKT)) 878 break; 879 880 /* 881 * + 2 to account for option code and length 882 * byte 883 */ 884 opt = malloc(optnum.size + 2); 885 if (opt != NULL) { 886 DHCP_OPT *v4opt = opt; 887 888 v4opt->len = optnum.size; 889 v4opt->code = optnum.code; 890 (void) memcpy(v4opt->value, 891 (caddr_t)ack->pkt + optnum.code, 892 optnum.size); 893 } 894 } 895 896 if (opt == NULL) { 897 send_error_reply(iap, DHCP_IPC_E_MEMORY); 898 return; 899 } 900 did_alloc = B_TRUE; 901 break; 902 903 default: 904 send_error_reply(iap, DHCP_IPC_E_PROTO); 905 return; 906 } 907 908 /* 909 * return the option payload, if there was one. the "+ 2" 910 * accounts for the option code number and length byte. 911 */ 912 913 if (opt != NULL) { 914 if (isv6) { 915 dhcpv6_option_t d6ov; 916 917 (void) memcpy(&d6ov, opt, sizeof (d6ov)); 918 optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); 919 } else { 920 optlen = ((DHCP_OPT *)opt)->len + 2; 921 } 922 send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); 923 924 if (did_alloc) 925 free(opt); 926 break; 927 } else if (ack != dsmp->dsm_orig_ack) { 928 /* 929 * There wasn't any definition for the option in the 930 * current ack, so now retry with the original ack if 931 * the original ack is not the current ack. 932 */ 933 ack = dsmp->dsm_orig_ack; 934 goto load_option; 935 } 936 937 /* 938 * note that an "okay" response is returned either in 939 * the case of an unknown option or a known option 940 * with no payload. this is okay (for now) since 941 * dhcpinfo checks whether an option is valid before 942 * ever performing ipc with the agent. 943 */ 944 945 send_ok_reply(iap); 946 break; 947 } 948 949 case DHCP_INFORM: 950 dhcp_inform(dsmp); 951 /* next destination: dhcp_acknak() */ 952 break; /* not an immediate function */ 953 954 case DHCP_PING: 955 if (dsmp->dsm_dflags & DHCP_IF_FAILED) 956 send_error_reply(iap, DHCP_IPC_E_FAILEDIF); 957 else 958 send_ok_reply(iap); 959 break; 960 961 case DHCP_RELEASE: 962 if (dsmp->dsm_droprelease) 963 break; 964 dsmp->dsm_droprelease = B_TRUE; 965 cancel_smach_timers(dsmp); /* see comment in DHCP_DROP above */ 966 (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : 967 EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); 968 break; /* not an immediate function */ 969 970 case DHCP_START: { 971 PKT_LIST *ack, *oack; 972 PKT_LIST *plp[2]; 973 974 deprecate_leases(dsmp); 975 976 /* 977 * if we have a valid hostconf lying around, then jump 978 * into INIT_REBOOT. if it fails, we'll end up going 979 * through the whole selecting() procedure again. 980 */ 981 982 error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); 983 ack = error > 0 ? plp[0] : NULL; 984 oack = error > 1 ? plp[1] : NULL; 985 986 /* 987 * If the allocation of the old ack fails, that's fine; 988 * continue without it. 989 */ 990 if (oack == NULL) 991 oack = ack; 992 993 /* 994 * As long as we've allocated something, start using it. 995 */ 996 if (ack != NULL) { 997 dsmp->dsm_orig_ack = oack; 998 dsmp->dsm_ack = ack; 999 dhcp_init_reboot(dsmp); 1000 /* next destination: dhcp_acknak() */ 1001 break; 1002 } 1003 1004 /* 1005 * if not debugging, wait for a few seconds before 1006 * going into SELECTING. 1007 */ 1008 1009 if (debug_level == 0 && set_start_timer(dsmp)) { 1010 /* next destination: dhcp_start() */ 1011 break; 1012 } else { 1013 dhcp_selecting(dsmp); 1014 /* next destination: dhcp_requesting() */ 1015 break; 1016 } 1017 } 1018 1019 case DHCP_STATUS: { 1020 dhcp_status_t status; 1021 dhcp_lease_t *dlp; 1022 1023 status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); 1024 1025 /* 1026 * We return information on just the first lease as being 1027 * representative of the lot. A better status mechanism is 1028 * needed. 1029 */ 1030 dlp = dsmp->dsm_leases; 1031 1032 if (dlp == NULL || 1033 dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { 1034 status.if_t1 = DHCP_PERM; 1035 status.if_t2 = DHCP_PERM; 1036 status.if_lease = DHCP_PERM; 1037 } else { 1038 status.if_t1 = status.if_began + 1039 dlp->dl_t1.dt_start; 1040 status.if_t2 = status.if_began + 1041 dlp->dl_t2.dt_start; 1042 status.if_lease = status.if_began + 1043 dlp->dl_lifs->lif_expire.dt_start; 1044 } 1045 1046 status.version = DHCP_STATUS_VER; 1047 status.if_state = dsmp->dsm_state; 1048 status.if_dflags = dsmp->dsm_dflags; 1049 status.if_sent = dsmp->dsm_sent; 1050 status.if_recv = dsmp->dsm_received; 1051 status.if_bad_offers = dsmp->dsm_bad_offers; 1052 1053 (void) strlcpy(status.if_name, dsmp->dsm_name, LIFNAMSIZ); 1054 1055 send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, 1056 sizeof (dhcp_status_t)); 1057 break; 1058 } 1059 } 1060 } 1061 1062 /* 1063 * check_rtm_addr(): determine if routing socket message matches interface 1064 * address 1065 * 1066 * input: const struct if_msghdr *: pointer to routing socket message 1067 * int: routing socket message length 1068 * boolean_t: set to B_TRUE if IPv6 1069 * const in6_addr_t *: pointer to IP address 1070 * output: boolean_t: B_TRUE if address is a match 1071 */ 1072 1073 static boolean_t 1074 check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, 1075 const in6_addr_t *addr) 1076 { 1077 const char *cp, *lim; 1078 uint_t flag; 1079 const struct sockaddr *sa; 1080 1081 if (!(ifam->ifam_addrs & RTA_IFA)) 1082 return (B_FALSE); 1083 1084 cp = (const char *)(ifam + 1); 1085 lim = (const char *)ifam + msglen; 1086 for (flag = 1; flag < RTA_IFA; flag <<= 1) { 1087 if (ifam->ifam_addrs & flag) { 1088 /* LINTED: alignment */ 1089 sa = (const struct sockaddr *)cp; 1090 if ((const char *)(sa + 1) > lim) 1091 return (B_FALSE); 1092 switch (sa->sa_family) { 1093 case AF_INET: 1094 cp += sizeof (struct sockaddr_in); 1095 break; 1096 case AF_LINK: 1097 cp += sizeof (struct sockaddr_dl); 1098 break; 1099 case AF_INET6: 1100 cp += sizeof (struct sockaddr_in6); 1101 break; 1102 default: 1103 cp += sizeof (struct sockaddr); 1104 break; 1105 } 1106 } 1107 } 1108 if (isv6) { 1109 const struct sockaddr_in6 *sin6; 1110 1111 /* LINTED: alignment */ 1112 sin6 = (const struct sockaddr_in6 *)cp; 1113 if ((const char *)(sin6 + 1) > lim) 1114 return (B_FALSE); 1115 if (sin6->sin6_family != AF_INET6) 1116 return (B_FALSE); 1117 return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); 1118 } else { 1119 const struct sockaddr_in *sinp; 1120 ipaddr_t v4addr; 1121 1122 /* LINTED: alignment */ 1123 sinp = (const struct sockaddr_in *)cp; 1124 if ((const char *)(sinp + 1) > lim) 1125 return (B_FALSE); 1126 if (sinp->sin_family != AF_INET) 1127 return (B_FALSE); 1128 IN6_V4MAPPED_TO_IPADDR(addr, v4addr); 1129 return (sinp->sin_addr.s_addr == v4addr); 1130 } 1131 } 1132 1133 /* 1134 * is_rtm_v6(): determine if routing socket message is IPv6 1135 * 1136 * input: struct ifa_msghdr *: pointer to routing socket message 1137 * int: message length 1138 * output: boolean_t 1139 */ 1140 1141 static boolean_t 1142 is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) 1143 { 1144 const char *cp, *lim; 1145 uint_t flag; 1146 const struct sockaddr *sa; 1147 1148 cp = (const char *)(ifam + 1); 1149 lim = (const char *)ifam + msglen; 1150 for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { 1151 /* LINTED: alignment */ 1152 sa = (const struct sockaddr *)cp; 1153 if ((const char *)(sa + 1) > lim) 1154 return (B_FALSE); 1155 switch (sa->sa_family) { 1156 case AF_INET: 1157 return (B_FALSE); 1158 case AF_LINK: 1159 cp += sizeof (struct sockaddr_dl); 1160 break; 1161 case AF_INET6: 1162 return (B_TRUE); 1163 default: 1164 cp += sizeof (struct sockaddr); 1165 break; 1166 } 1167 } 1168 return (B_FALSE); 1169 } 1170 1171 /* 1172 * check_lif(): check the state of a given logical interface and its DHCP 1173 * lease. We've been told by the routing socket that the 1174 * corresponding ifIndex has changed. This may mean that DAD has 1175 * completed or failed. 1176 * 1177 * input: dhcp_lif_t *: pointer to the LIF 1178 * const struct ifa_msghdr *: routing socket message 1179 * int: size of routing socket message 1180 * output: boolean_t: B_TRUE if DAD has completed on this interface 1181 */ 1182 1183 static boolean_t 1184 check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) 1185 { 1186 boolean_t isv6, dad_wait, unplumb; 1187 int fd; 1188 struct lifreq lifr; 1189 1190 isv6 = lif->lif_pif->pif_isv6; 1191 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1192 1193 /* 1194 * Get the real (64 bit) logical interface flags. Note that the 1195 * routing socket message has flags, but these are just the lower 32 1196 * bits. 1197 */ 1198 unplumb = B_FALSE; 1199 (void) memset(&lifr, 0, sizeof (lifr)); 1200 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1201 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { 1202 /* 1203 * Failing to retrieve flags means that the interface is gone. 1204 * It hasn't failed to verify with DAD, but we still have to 1205 * give up on it. 1206 */ 1207 lifr.lifr_flags = 0; 1208 if (errno == ENXIO) { 1209 lif->lif_plumbed = B_FALSE; 1210 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1211 lif->lif_name); 1212 if (!isv6) 1213 discard_default_routes(lif->lif_smachs); 1214 } else { 1215 dhcpmsg(MSG_ERR, 1216 "unable to retrieve interface flags on %s", 1217 lif->lif_name); 1218 } 1219 unplumb = B_TRUE; 1220 } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { 1221 /* 1222 * If the message is not about this logical interface, 1223 * then just ignore it. 1224 */ 1225 return (B_FALSE); 1226 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1227 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1228 lif->lif_name); 1229 lif_mark_decline(lif, "duplicate address"); 1230 close_ip_lif(lif); 1231 (void) open_ip_lif(lif, INADDR_ANY, B_TRUE); 1232 } 1233 1234 dad_wait = lif->lif_dad_wait; 1235 if (dad_wait) { 1236 dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", 1237 lif->lif_name); 1238 lif->lif_dad_wait = B_FALSE; 1239 } 1240 1241 if (unplumb) 1242 unplumb_lif(lif); 1243 1244 return (dad_wait); 1245 } 1246 1247 /* 1248 * check_main_lif(): check the state of a main logical interface for a state 1249 * machine. This is used only for DHCPv6. 1250 * 1251 * input: dhcp_smach_t *: pointer to the state machine 1252 * const struct ifa_msghdr *: routing socket message 1253 * int: size of routing socket message 1254 * output: boolean_t: B_TRUE if LIF is ok. 1255 */ 1256 1257 static boolean_t 1258 check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) 1259 { 1260 dhcp_lif_t *lif = dsmp->dsm_lif; 1261 struct lifreq lifr; 1262 1263 /* 1264 * Get the real (64 bit) logical interface flags. Note that the 1265 * routing socket message has flags, but these are just the lower 32 1266 * bits. 1267 */ 1268 (void) memset(&lifr, 0, sizeof (lifr)); 1269 (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); 1270 if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { 1271 /* 1272 * Failing to retrieve flags means that the interface is gone. 1273 * Our state machine is now trash. 1274 */ 1275 if (errno == ENXIO) { 1276 dhcpmsg(MSG_INFO, "%s has been removed; abandoning", 1277 lif->lif_name); 1278 } else { 1279 dhcpmsg(MSG_ERR, 1280 "unable to retrieve interface flags on %s", 1281 lif->lif_name); 1282 } 1283 return (B_FALSE); 1284 } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { 1285 /* 1286 * If the message is not about this logical interface, 1287 * then just ignore it. 1288 */ 1289 return (B_TRUE); 1290 } else if (lifr.lifr_flags & IFF_DUPLICATE) { 1291 dhcpmsg(MSG_ERROR, "interface %s has duplicate address", 1292 lif->lif_name); 1293 return (B_FALSE); 1294 } else { 1295 return (B_TRUE); 1296 } 1297 } 1298 1299 /* 1300 * process_link_up_down(): check the state of a physical interface for up/down 1301 * transitions; must go through INIT_REBOOT state if 1302 * the link flaps. 1303 * 1304 * input: dhcp_pif_t *: pointer to the physical interface to check 1305 * const struct if_msghdr *: routing socket message 1306 * output: none 1307 */ 1308 1309 static void 1310 process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) 1311 { 1312 struct lifreq lifr; 1313 boolean_t isv6; 1314 int fd; 1315 1316 /* 1317 * If the message implies no change of flags, then we're done; no need 1318 * to check further. Note that if we have multiple state machines on a 1319 * single physical interface, this test keeps us from issuing an ioctl 1320 * for each one. 1321 */ 1322 if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || 1323 !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) 1324 return; 1325 1326 /* 1327 * We don't know what the real interface flags are, because the 1328 * if_index number is only 16 bits; we must go ask. 1329 */ 1330 isv6 = pif->pif_isv6; 1331 fd = isv6 ? v6_sock_fd : v4_sock_fd; 1332 (void) memset(&lifr, 0, sizeof (lifr)); 1333 (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); 1334 1335 if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || 1336 !(lifr.lifr_flags & IFF_RUNNING)) { 1337 /* 1338 * If we've lost the interface or it has gone down, then 1339 * nothing special to do; just turn off the running flag. 1340 */ 1341 pif_status(pif, B_FALSE); 1342 } else { 1343 /* 1344 * Interface has come back up: go through verification process. 1345 */ 1346 pif_status(pif, B_TRUE); 1347 } 1348 } 1349 1350 /* 1351 * rtsock_event(): fetches routing socket messages and updates internal 1352 * interface state based on those messages. 1353 * 1354 * input: iu_eh_t *: unused 1355 * int: the routing socket file descriptor 1356 * (other arguments unused) 1357 * output: void 1358 */ 1359 1360 /* ARGSUSED */ 1361 static void 1362 rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) 1363 { 1364 dhcp_smach_t *dsmp, *dsmnext; 1365 union { 1366 struct ifa_msghdr ifam; 1367 struct if_msghdr ifm; 1368 char buf[1024]; 1369 } msg; 1370 uint16_t ifindex; 1371 int msglen; 1372 boolean_t isv6; 1373 1374 if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) 1375 return; 1376 1377 /* Note that the routing socket interface index is just 16 bits */ 1378 if (msg.ifm.ifm_type == RTM_IFINFO) { 1379 ifindex = msg.ifm.ifm_index; 1380 isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; 1381 } else if (msg.ifam.ifam_type == RTM_DELADDR || 1382 msg.ifam.ifam_type == RTM_NEWADDR) { 1383 ifindex = msg.ifam.ifam_index; 1384 isv6 = is_rtm_v6(&msg.ifam, msglen); 1385 } else { 1386 return; 1387 } 1388 1389 for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); 1390 dsmp != NULL; dsmp = dsmnext) { 1391 DHCPSTATE oldstate; 1392 boolean_t lif_finished; 1393 boolean_t lease_removed; 1394 dhcp_lease_t *dlp, *dlnext; 1395 1396 /* 1397 * Note that script_start can call dhcp_drop directly, and 1398 * that will do release_smach. 1399 */ 1400 dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); 1401 oldstate = dsmp->dsm_state; 1402 1403 /* 1404 * Ignore state machines that are currently processing drop or 1405 * release; there is nothing more we can do for them. 1406 */ 1407 if (dsmp->dsm_droprelease) 1408 continue; 1409 1410 /* 1411 * Look for link up/down notifications. These occur on a 1412 * physical interface basis. 1413 */ 1414 if (msg.ifm.ifm_type == RTM_IFINFO) { 1415 process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); 1416 continue; 1417 } 1418 1419 /* 1420 * Since we cannot trust the flags reported by the routing 1421 * socket (they're just 32 bits -- and thus never include 1422 * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 1423 * bits and also doesn't reflect the alias in use), we get 1424 * flags on all matching interfaces, and go by that. 1425 */ 1426 lif_finished = B_FALSE; 1427 lease_removed = B_FALSE; 1428 for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { 1429 dhcp_lif_t *lif, *lifnext; 1430 uint_t nlifs = dlp->dl_nlifs; 1431 1432 dlnext = dlp->dl_next; 1433 for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; 1434 lif = lifnext, nlifs--) { 1435 lifnext = lif->lif_next; 1436 if (check_lif(lif, &msg.ifam, msglen)) { 1437 dsmp->dsm_lif_wait--; 1438 lif_finished = B_TRUE; 1439 } 1440 } 1441 if (dlp->dl_nlifs == 0) { 1442 remove_lease(dlp); 1443 lease_removed = B_TRUE; 1444 } 1445 } 1446 1447 if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || 1448 (!isv6 && !verify_lif(dsmp->dsm_lif))) { 1449 dsmp->dsm_droprelease = B_TRUE; 1450 (void) script_start(dsmp, isv6 ? EVENT_DROP6 : 1451 EVENT_DROP, dhcp_drop, NULL, NULL); 1452 continue; 1453 } 1454 1455 /* 1456 * Ignore this state machine if nothing interesting has 1457 * happened. 1458 */ 1459 if (!lif_finished && dsmp->dsm_lif_down == 0 && 1460 (dsmp->dsm_leases != NULL || !lease_removed)) 1461 continue; 1462 1463 /* 1464 * If we're still waiting for DAD to complete on some of the 1465 * configured LIFs, then don't send a response. 1466 */ 1467 if (dsmp->dsm_lif_wait != 0) { 1468 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " 1469 "LIFs waiting on DAD", dsmp->dsm_name, 1470 dsmp->dsm_lif_wait); 1471 continue; 1472 } 1473 1474 /* 1475 * If we have some failed LIFs, then handle them now. We'll 1476 * remove them from the list. Any leases that become empty are 1477 * also removed as part of the decline-generation process. 1478 */ 1479 if (dsmp->dsm_lif_down != 0) 1480 send_declines(dsmp); 1481 1482 if (dsmp->dsm_leases == NULL) { 1483 dsmp->dsm_bad_offers++; 1484 /* 1485 * For DHCPv6, we'll process the restart once we're 1486 * done sending Decline messages, because these are 1487 * supposed to be acknowledged. With DHCPv4, there's 1488 * no acknowledgment for a DECLINE, so after sending 1489 * it, we just restart right away. 1490 */ 1491 if (!dsmp->dsm_isv6) { 1492 dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " 1493 "LIFs left", dsmp->dsm_name); 1494 dhcp_restart(dsmp); 1495 } 1496 } else { 1497 /* 1498 * If we're now up on at least some of the leases and 1499 * we were waiting for that, then kick off the rest of 1500 * configuration. Lease validation and DAD are done. 1501 */ 1502 dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " 1503 "on %s in %s state", dsmp->dsm_name, 1504 dhcp_state_to_string(oldstate)); 1505 if (oldstate == PRE_BOUND || 1506 oldstate == ADOPTING) 1507 dhcp_bound_complete(dsmp); 1508 if (oldstate == ADOPTING) 1509 dhcp_adopt_complete(dsmp); 1510 } 1511 } 1512 } 1513 1514 /* 1515 * check_cmd_allowed(): check whether the requested command is allowed in the 1516 * state specified. 1517 * 1518 * input: DHCPSTATE: current state 1519 * dhcp_ipc_type_t: requested command 1520 * output: boolean_t: B_TRUE if command is allowed in this state 1521 */ 1522 1523 boolean_t 1524 check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) 1525 { 1526 return (ipc_cmd_allowed[state][cmd] != 0); 1527 } 1528 1529 static boolean_t 1530 is_iscsi_active(void) 1531 { 1532 int fd; 1533 int active = 0; 1534 1535 if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) != -1) { 1536 if (ioctl(fd, ISCSI_IS_ACTIVE, &active) != 0) 1537 active = 0; 1538 (void) close(fd); 1539 } 1540 1541 return (active != 0); 1542 } 1543