1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 /* 37 * UNIX machine dependent virtual memory support. 38 */ 39 40 #include <sys/vm.h> 41 #include <sys/exec.h> 42 #include <sys/cmn_err.h> 43 #include <sys/cpu_module.h> 44 #include <sys/cpu.h> 45 #include <sys/elf_SPARC.h> 46 #include <sys/archsystm.h> 47 #include <vm/hat_sfmmu.h> 48 #include <sys/memnode.h> 49 #include <sys/mem_cage.h> 50 #include <vm/vm_dep.h> 51 #include <sys/error.h> 52 #include <sys/machsystm.h> 53 #include <vm/seg_kmem.h> 54 #include <sys/stack.h> 55 #include <sys/atomic.h> 56 #include <sys/promif.h> 57 58 uint_t page_colors = 0; 59 uint_t page_colors_mask = 0; 60 uint_t page_coloring_shift = 0; 61 int consistent_coloring; 62 int update_proc_pgcolorbase_after_fork = 1; 63 64 uint_t mmu_page_sizes = MMU_PAGE_SIZES; 65 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES; 66 uint_t mmu_hashcnt = MAX_HASHCNT; 67 uint_t max_mmu_hashcnt = MAX_HASHCNT; 68 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; 69 70 /* 71 * A bitmask of the page sizes supported by hardware based upon szc. 72 * The base pagesize (p_szc == 0) must always be supported by the hardware. 73 */ 74 int mmu_exported_pagesize_mask; 75 uint_t mmu_exported_page_sizes; 76 77 uint_t szc_2_userszc[MMU_PAGE_SIZES]; 78 uint_t userszc_2_szc[MMU_PAGE_SIZES]; 79 80 extern uint_t vac_colors_mask; 81 extern int vac_shift; 82 83 hw_pagesize_t hw_page_array[] = { 84 {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT}, 85 {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0, 86 MMU_PAGESIZE64K >> MMU_PAGESHIFT}, 87 {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0, 88 MMU_PAGESIZE512K >> MMU_PAGESHIFT}, 89 {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT}, 90 {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0, 91 MMU_PAGESIZE32M >> MMU_PAGESHIFT}, 92 {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0, 93 MMU_PAGESIZE256M >> MMU_PAGESHIFT}, 94 {0, 0, 0, 0} 95 }; 96 97 /* 98 * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end 99 */ 100 int max_bootlp_tteszc = TTE256M; 101 102 /* 103 * Maximum and default segment size tunables for user heap, stack, private 104 * and shared anonymous memory, and user text and initialized data. 105 */ 106 size_t max_uheap_lpsize = MMU_PAGESIZE64K; 107 size_t default_uheap_lpsize = MMU_PAGESIZE64K; 108 size_t max_ustack_lpsize = MMU_PAGESIZE64K; 109 size_t default_ustack_lpsize = MMU_PAGESIZE64K; 110 size_t max_privmap_lpsize = MMU_PAGESIZE64K; 111 size_t max_uidata_lpsize = MMU_PAGESIZE64K; 112 size_t max_utext_lpsize = MMU_PAGESIZE4M; 113 size_t max_shm_lpsize = MMU_PAGESIZE4M; 114 115 /* 116 * Contiguous memory allocator data structures and variables. 117 * 118 * The sun4v kernel must provide a means to allocate physically 119 * contiguous, non-relocatable memory. The contig_mem_arena 120 * and contig_mem_slab_arena exist for this purpose. Allocations 121 * that require physically contiguous non-relocatable memory should 122 * be made using contig_mem_alloc() or contig_mem_alloc_align() 123 * which return memory from contig_mem_arena or contig_mem_reloc_arena. 124 * These arenas import memory from the contig_mem_slab_arena one 125 * contiguous chunk at a time. 126 * 127 * When importing slabs, an attempt is made to allocate a large page 128 * to use as backing. As a result of the non-relocatable requirement, 129 * slabs are allocated from the kernel cage freelists. If the cage does 130 * not contain any free contiguous chunks large enough to satisfy the 131 * slab allocation, the slab size will be downsized and the operation 132 * retried. Large slab sizes are tried first to minimize cage 133 * fragmentation. If the slab allocation is unsuccessful still, the slab 134 * is allocated from outside the kernel cage. This is undesirable because, 135 * until slabs are freed, it results in non-relocatable chunks scattered 136 * throughout physical memory. 137 * 138 * Allocations from the contig_mem_arena are backed by slabs from the 139 * cage. Allocations from the contig_mem_reloc_arena are backed by 140 * slabs allocated outside the cage. Slabs are left share locked while 141 * in use to prevent non-cage slabs from being relocated. 142 * 143 * Since there is no guarantee that large pages will be available in 144 * the kernel cage, contiguous memory is reserved and added to the 145 * contig_mem_arena at boot time, making it available for later 146 * contiguous memory allocations. This reserve will be used to satisfy 147 * contig_mem allocations first and it is only when the reserve is 148 * completely allocated that new slabs will need to be imported. 149 */ 150 static vmem_t *contig_mem_slab_arena; 151 static vmem_t *contig_mem_arena; 152 static vmem_t *contig_mem_reloc_arena; 153 static kmutex_t contig_mem_lock; 154 #define CONTIG_MEM_ARENA_QUANTUM 64 155 #define CONTIG_MEM_SLAB_ARENA_QUANTUM MMU_PAGESIZE64K 156 157 /* contig_mem_arena import slab sizes, in decreasing size order */ 158 static size_t contig_mem_import_sizes[] = { 159 MMU_PAGESIZE4M, 160 MMU_PAGESIZE512K, 161 MMU_PAGESIZE64K 162 }; 163 #define NUM_IMPORT_SIZES \ 164 (sizeof (contig_mem_import_sizes) / sizeof (size_t)) 165 static size_t contig_mem_import_size_max = MMU_PAGESIZE4M; 166 size_t contig_mem_slab_size = MMU_PAGESIZE4M; 167 168 /* Boot-time allocated buffer to pre-populate the contig_mem_arena */ 169 static size_t contig_mem_prealloc_size; 170 static void *contig_mem_prealloc_buf; 171 172 /* 173 * map_addr_proc() is the routine called when the system is to 174 * choose an address for the user. We will pick an address 175 * range which is just below the current stack limit. The 176 * algorithm used for cache consistency on machines with virtual 177 * address caches is such that offset 0 in the vnode is always 178 * on a shm_alignment'ed aligned address. Unfortunately, this 179 * means that vnodes which are demand paged will not be mapped 180 * cache consistently with the executable images. When the 181 * cache alignment for a given object is inconsistent, the 182 * lower level code must manage the translations so that this 183 * is not seen here (at the cost of efficiency, of course). 184 * 185 * Every mapping will have a redzone of a single page on either side of 186 * the request. This is done to leave one page unmapped between segments. 187 * This is not required, but it's useful for the user because if their 188 * program strays across a segment boundary, it will catch a fault 189 * immediately making debugging a little easier. Currently the redzone 190 * is mandatory. 191 * 192 * addrp is a value/result parameter. 193 * On input it is a hint from the user to be used in a completely 194 * machine dependent fashion. For MAP_ALIGN, addrp contains the 195 * minimal alignment, which must be some "power of two" multiple of 196 * pagesize. 197 * 198 * On output it is NULL if no address can be found in the current 199 * processes address space or else an address that is currently 200 * not mapped for len bytes with a page of red zone on either side. 201 * If vacalign is true, then the selected address will obey the alignment 202 * constraints of a vac machine based on the given off value. 203 */ 204 /*ARGSUSED3*/ 205 void 206 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign, 207 caddr_t userlimit, struct proc *p, uint_t flags) 208 { 209 struct as *as = p->p_as; 210 caddr_t addr; 211 caddr_t base; 212 size_t slen; 213 uintptr_t align_amount; 214 int allow_largepage_alignment = 1; 215 216 base = p->p_brkbase; 217 if (userlimit < as->a_userlimit) { 218 /* 219 * This happens when a program wants to map something in 220 * a range that's accessible to a program in a smaller 221 * address space. For example, a 64-bit program might 222 * be calling mmap32(2) to guarantee that the returned 223 * address is below 4Gbytes. 224 */ 225 ASSERT(userlimit > base); 226 slen = userlimit - base; 227 } else { 228 slen = p->p_usrstack - base - (((size_t)rctl_enforced_value( 229 rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET) 230 & PAGEMASK); 231 } 232 /* Make len be a multiple of PAGESIZE */ 233 len = (len + PAGEOFFSET) & PAGEMASK; 234 235 /* 236 * If the request is larger than the size of a particular 237 * mmu level, then we use that level to map the request. 238 * But this requires that both the virtual and the physical 239 * addresses be aligned with respect to that level, so we 240 * do the virtual bit of nastiness here. 241 * 242 * For 32-bit processes, only those which have specified 243 * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise 244 * we can potentially waste up to 256MB of the 4G process address 245 * space just for alignment. 246 * 247 * XXXQ Should iterate trough hw_page_array here to catch 248 * all supported pagesizes 249 */ 250 if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 || 251 ((uintptr_t)*addrp) != 0)) { 252 allow_largepage_alignment = 0; 253 } 254 if ((mmu_page_sizes == max_mmu_page_sizes) && 255 allow_largepage_alignment && 256 (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */ 257 align_amount = MMU_PAGESIZE256M; 258 } else if ((mmu_page_sizes == max_mmu_page_sizes) && 259 allow_largepage_alignment && 260 (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */ 261 align_amount = MMU_PAGESIZE32M; 262 } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */ 263 align_amount = MMU_PAGESIZE4M; 264 } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */ 265 align_amount = MMU_PAGESIZE512K; 266 } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */ 267 align_amount = MMU_PAGESIZE64K; 268 } else { 269 /* 270 * Align virtual addresses on a 64K boundary to ensure 271 * that ELF shared libraries are mapped with the appropriate 272 * alignment constraints by the run-time linker. 273 */ 274 align_amount = ELF_SPARC_MAXPGSZ; 275 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) && 276 ((uintptr_t)*addrp < align_amount)) 277 align_amount = (uintptr_t)*addrp; 278 } 279 280 /* 281 * 64-bit processes require 1024K alignment of ELF shared libraries. 282 */ 283 if (p->p_model == DATAMODEL_LP64) 284 align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ); 285 #ifdef VAC 286 if (vac && vacalign && (align_amount < shm_alignment)) 287 align_amount = shm_alignment; 288 #endif 289 290 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) { 291 align_amount = (uintptr_t)*addrp; 292 } 293 294 ASSERT(ISP2(align_amount)); 295 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 296 297 /* 298 * Look for a large enough hole starting below the stack limit. 299 * After finding it, use the upper part. 300 */ 301 as_purge(as); 302 off = off & (align_amount - 1); 303 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 304 PAGESIZE, off) == 0) { 305 caddr_t as_addr; 306 307 /* 308 * addr is the highest possible address to use since we have 309 * a PAGESIZE redzone at the beginning and end. 310 */ 311 addr = base + slen - (PAGESIZE + len); 312 as_addr = addr; 313 /* 314 * Round address DOWN to the alignment amount and 315 * add the offset in. 316 * If addr is greater than as_addr, len would not be large 317 * enough to include the redzone, so we must adjust down 318 * by the alignment amount. 319 */ 320 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l))); 321 addr += (long)off; 322 if (addr > as_addr) { 323 addr -= align_amount; 324 } 325 326 ASSERT(addr > base); 327 ASSERT(addr + len < base + slen); 328 ASSERT(((uintptr_t)addr & (align_amount - 1l)) == 329 ((uintptr_t)(off))); 330 *addrp = addr; 331 332 } else { 333 *addrp = NULL; /* no more virtual space */ 334 } 335 } 336 337 /* 338 * Platform-dependent page scrub call. 339 * We call hypervisor to scrub the page. 340 */ 341 void 342 pagescrub(page_t *pp, uint_t off, uint_t len) 343 { 344 uint64_t pa, length; 345 346 pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off); 347 length = (uint64_t)len; 348 349 (void) mem_scrub(pa, length); 350 } 351 352 void 353 sync_data_memory(caddr_t va, size_t len) 354 { 355 /* Call memory sync function */ 356 (void) mem_sync(va, len); 357 } 358 359 size_t 360 mmu_get_kernel_lpsize(size_t lpsize) 361 { 362 extern int mmu_exported_pagesize_mask; 363 uint_t tte; 364 365 if (lpsize == 0) { 366 /* no setting for segkmem_lpsize in /etc/system: use default */ 367 if (mmu_exported_pagesize_mask & (1 << TTE256M)) { 368 lpsize = MMU_PAGESIZE256M; 369 } else if (mmu_exported_pagesize_mask & (1 << TTE4M)) { 370 lpsize = MMU_PAGESIZE4M; 371 } else if (mmu_exported_pagesize_mask & (1 << TTE64K)) { 372 lpsize = MMU_PAGESIZE64K; 373 } else { 374 lpsize = MMU_PAGESIZE; 375 } 376 377 return (lpsize); 378 } 379 380 for (tte = TTE8K; tte <= TTE256M; tte++) { 381 382 if ((mmu_exported_pagesize_mask & (1 << tte)) == 0) 383 continue; 384 385 if (lpsize == TTEBYTES(tte)) 386 return (lpsize); 387 } 388 389 lpsize = TTEBYTES(TTE8K); 390 return (lpsize); 391 } 392 393 void 394 mmu_init_kcontext() 395 { 396 } 397 398 /*ARGSUSED*/ 399 void 400 mmu_init_kernel_pgsz(struct hat *hat) 401 { 402 } 403 404 static void * 405 contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag) 406 { 407 page_t *ppl; 408 page_t *rootpp; 409 caddr_t addr = NULL; 410 pgcnt_t npages = btopr(size); 411 page_t **ppa; 412 int pgflags; 413 spgcnt_t i = 0; 414 415 416 ASSERT(size <= contig_mem_import_size_max); 417 ASSERT((size & (size - 1)) == 0); 418 419 if ((addr = vmem_xalloc(vmp, size, size, 0, 0, 420 NULL, NULL, vmflag)) == NULL) { 421 return (NULL); 422 } 423 424 /* The address should be slab-size aligned. */ 425 ASSERT(((uintptr_t)addr & (size - 1)) == 0); 426 427 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 428 vmem_xfree(vmp, addr, size); 429 return (NULL); 430 } 431 432 pgflags = PG_EXCL; 433 if (vmflag & VM_NORELOC) 434 pgflags |= PG_NORELOC; 435 436 ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 437 pgflags, &kvseg, addr, NULL); 438 439 if (ppl == NULL) { 440 vmem_xfree(vmp, addr, size); 441 page_unresv(npages); 442 return (NULL); 443 } 444 445 rootpp = ppl; 446 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 447 while (ppl != NULL) { 448 page_t *pp = ppl; 449 ppa[i++] = pp; 450 page_sub(&ppl, pp); 451 ASSERT(page_iolock_assert(pp)); 452 ASSERT(PAGE_EXCL(pp)); 453 page_io_unlock(pp); 454 } 455 456 /* 457 * Load the locked entry. It's OK to preload the entry into 458 * the TSB since we now support large mappings in the kernel TSB. 459 */ 460 hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, 461 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK); 462 463 ASSERT(i == page_get_pagecnt(ppa[0]->p_szc)); 464 for (--i; i >= 0; --i) { 465 ASSERT(ppa[i]->p_szc == ppa[0]->p_szc); 466 ASSERT(page_pptonum(ppa[i]) == page_pptonum(ppa[0]) + i); 467 (void) page_pp_lock(ppa[i], 0, 1); 468 /* 469 * Leave the page share locked. For non-cage pages, 470 * this would prevent memory DR if it were supported 471 * on sun4v. 472 */ 473 page_downgrade(ppa[i]); 474 } 475 476 kmem_free(ppa, npages * sizeof (page_t *)); 477 return (addr); 478 } 479 480 /* 481 * Allocates a slab by first trying to use the largest slab size 482 * in contig_mem_import_sizes and then falling back to smaller slab 483 * sizes still large enough for the allocation. The sizep argument 484 * is a pointer to the requested size. When a slab is successfully 485 * allocated, the slab size, which must be >= *sizep and <= 486 * contig_mem_import_size_max, is returned in the *sizep argument. 487 * Returns the virtual address of the new slab. 488 */ 489 static void * 490 span_alloc_downsize(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 491 { 492 int i; 493 494 ASSERT(*sizep <= contig_mem_import_size_max); 495 496 for (i = 0; i < NUM_IMPORT_SIZES; i++) { 497 size_t page_size = contig_mem_import_sizes[i]; 498 499 /* 500 * Check that the alignment is also less than the 501 * import (large page) size. In the case where the 502 * alignment is larger than the size, a large page 503 * large enough for the allocation is not necessarily 504 * physical-address aligned to satisfy the requested 505 * alignment. Since alignment is required to be a 506 * power-of-2, any large page >= size && >= align will 507 * suffice. 508 */ 509 if (*sizep <= page_size && align <= page_size) { 510 void *addr; 511 addr = contig_mem_span_alloc(vmp, page_size, vmflag); 512 if (addr == NULL) 513 continue; 514 *sizep = page_size; 515 return (addr); 516 } 517 return (NULL); 518 } 519 520 return (NULL); 521 } 522 523 static void * 524 contig_mem_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 525 { 526 return (span_alloc_downsize(vmp, sizep, align, vmflag | VM_NORELOC)); 527 } 528 529 static void * 530 contig_mem_reloc_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, 531 int vmflag) 532 { 533 ASSERT((vmflag & VM_NORELOC) == 0); 534 return (span_alloc_downsize(vmp, sizep, align, vmflag)); 535 } 536 537 /* 538 * Free a span, which is always exactly one large page. 539 */ 540 static void 541 contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size) 542 { 543 page_t *pp; 544 caddr_t addr = inaddr; 545 caddr_t eaddr; 546 pgcnt_t npages = btopr(size); 547 page_t *rootpp = NULL; 548 549 ASSERT(size <= contig_mem_import_size_max); 550 /* All slabs should be size aligned */ 551 ASSERT(((uintptr_t)addr & (size - 1)) == 0); 552 553 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 554 555 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 556 pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr); 557 if (pp == NULL) { 558 panic("contig_mem_span_free: page not found"); 559 } 560 if (!page_tryupgrade(pp)) { 561 page_unlock(pp); 562 pp = page_lookup(&kvp, 563 (u_offset_t)(uintptr_t)addr, SE_EXCL); 564 if (pp == NULL) 565 panic("contig_mem_span_free: page not found"); 566 } 567 568 ASSERT(PAGE_EXCL(pp)); 569 ASSERT(size == page_get_pagesize(pp->p_szc)); 570 ASSERT(rootpp == NULL || rootpp->p_szc == pp->p_szc); 571 ASSERT(rootpp == NULL || (page_pptonum(rootpp) + 572 (pgcnt_t)btop(addr - (caddr_t)inaddr) == page_pptonum(pp))); 573 574 page_pp_unlock(pp, 0, 1); 575 576 if (rootpp == NULL) 577 rootpp = pp; 578 } 579 page_destroy_pages(rootpp); 580 page_unresv(npages); 581 582 if (vmp != NULL) 583 vmem_xfree(vmp, inaddr, size); 584 } 585 586 static void * 587 contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t *sizep, size_t align, 588 int vmflag) 589 { 590 ASSERT((align & (align - 1)) == 0); 591 return (vmem_xalloc(vmp, *sizep, align, 0, 0, NULL, NULL, vmflag)); 592 } 593 594 /* 595 * contig_mem_alloc, contig_mem_alloc_align 596 * 597 * Caution: contig_mem_alloc and contig_mem_alloc_align should be 598 * used only when physically contiguous non-relocatable memory is 599 * required. Furthermore, use of these allocation routines should be 600 * minimized as well as should the allocation size. As described in the 601 * contig_mem_arena comment block above, slab allocations fall back to 602 * being outside of the cage. Therefore, overuse of these allocation 603 * routines can lead to non-relocatable large pages being allocated 604 * outside the cage. Such pages prevent the allocation of a larger page 605 * occupying overlapping pages. This can impact performance for 606 * applications that utilize e.g. 256M large pages. 607 */ 608 609 /* 610 * Allocates size aligned contiguous memory up to contig_mem_import_size_max. 611 * Size must be a power of 2. 612 */ 613 void * 614 contig_mem_alloc(size_t size) 615 { 616 ASSERT((size & (size - 1)) == 0); 617 return (contig_mem_alloc_align(size, size)); 618 } 619 620 /* 621 * contig_mem_alloc_align allocates real contiguous memory with the specified 622 * alignment up to contig_mem_import_size_max. The alignment must be a 623 * power of 2 and no greater than contig_mem_import_size_max. We assert 624 * the aligment is a power of 2. For non-debug, vmem_xalloc will panic 625 * for non power of 2 alignments. 626 */ 627 void * 628 contig_mem_alloc_align(size_t size, size_t align) 629 { 630 void *buf; 631 632 ASSERT(size <= contig_mem_import_size_max); 633 ASSERT(align <= contig_mem_import_size_max); 634 ASSERT((align & (align - 1)) == 0); 635 636 if (align < CONTIG_MEM_ARENA_QUANTUM) 637 align = CONTIG_MEM_ARENA_QUANTUM; 638 639 /* 640 * We take the lock here to serialize span allocations. 641 * We do not lose concurrency for the common case, since 642 * allocations that don't require new span allocations 643 * are serialized by vmem_xalloc. Serializing span 644 * allocations also prevents us from trying to allocate 645 * more spans that necessary. 646 */ 647 mutex_enter(&contig_mem_lock); 648 649 buf = vmem_xalloc(contig_mem_arena, size, align, 0, 0, 650 NULL, NULL, VM_NOSLEEP | VM_NORELOC); 651 652 if ((buf == NULL) && (size <= MMU_PAGESIZE)) { 653 mutex_exit(&contig_mem_lock); 654 return (vmem_xalloc(static_alloc_arena, size, align, 0, 0, 655 NULL, NULL, VM_NOSLEEP)); 656 } 657 658 if (buf == NULL) { 659 buf = vmem_xalloc(contig_mem_reloc_arena, size, align, 0, 0, 660 NULL, NULL, VM_NOSLEEP); 661 } 662 663 mutex_exit(&contig_mem_lock); 664 665 return (buf); 666 } 667 668 void 669 contig_mem_free(void *vaddr, size_t size) 670 { 671 if (vmem_contains(contig_mem_arena, vaddr, size)) { 672 vmem_xfree(contig_mem_arena, vaddr, size); 673 } else if (size > MMU_PAGESIZE) { 674 vmem_xfree(contig_mem_reloc_arena, vaddr, size); 675 } else { 676 vmem_xfree(static_alloc_arena, vaddr, size); 677 } 678 } 679 680 /* 681 * We create a set of stacked vmem arenas to enable us to 682 * allocate large >PAGESIZE chucks of contiguous Real Address space. 683 * The vmem_xcreate interface is used to create the contig_mem_arena 684 * allowing the import routine to downsize the requested slab size 685 * and return a smaller slab. 686 */ 687 void 688 contig_mem_init(void) 689 { 690 mutex_init(&contig_mem_lock, NULL, MUTEX_DEFAULT, NULL); 691 692 contig_mem_slab_arena = vmem_xcreate("contig_mem_slab_arena", NULL, 0, 693 CONTIG_MEM_SLAB_ARENA_QUANTUM, contig_vmem_xalloc_aligned_wrapper, 694 vmem_xfree, heap_arena, 0, VM_SLEEP | VMC_XALIGN); 695 696 contig_mem_arena = vmem_xcreate("contig_mem_arena", NULL, 0, 697 CONTIG_MEM_ARENA_QUANTUM, contig_mem_span_xalloc, 698 contig_mem_span_free, contig_mem_slab_arena, 0, 699 VM_SLEEP | VM_BESTFIT | VMC_XALIGN); 700 701 contig_mem_reloc_arena = vmem_xcreate("contig_mem_reloc_arena", NULL, 0, 702 CONTIG_MEM_ARENA_QUANTUM, contig_mem_reloc_span_xalloc, 703 contig_mem_span_free, contig_mem_slab_arena, 0, 704 VM_SLEEP | VM_BESTFIT | VMC_XALIGN); 705 706 if (contig_mem_prealloc_buf == NULL || vmem_add(contig_mem_arena, 707 contig_mem_prealloc_buf, contig_mem_prealloc_size, VM_SLEEP) 708 == NULL) { 709 cmn_err(CE_WARN, "Failed to pre-populate contig_mem_arena"); 710 } 711 } 712 713 /* 714 * In calculating how much memory to pre-allocate, we include a small 715 * amount per-CPU to account for per-CPU buffers in line with measured 716 * values for different size systems. contig_mem_prealloc_base_size is 717 * a cpu specific amount to be pre-allocated before considering per-CPU 718 * requirements and memory size. We always pre-allocate a minimum amount 719 * of memory determined by PREALLOC_MIN. Beyond that, we take the minimum 720 * of contig_mem_prealloc_base_size and a small percentage of physical 721 * memory to prevent allocating too much on smaller systems. 722 * contig_mem_prealloc_base_size is global, allowing for the CPU module 723 * to increase its value if necessary. 724 */ 725 #define PREALLOC_PER_CPU (256 * 1024) /* 256K */ 726 #define PREALLOC_PERCENT (4) /* 4% */ 727 #define PREALLOC_MIN (16 * 1024 * 1024) /* 16M */ 728 size_t contig_mem_prealloc_base_size = 0; 729 730 /* 731 * Called at boot-time allowing pre-allocation of contiguous memory. 732 * The argument 'alloc_base' is the requested base address for the 733 * allocation and originates in startup_memlist. 734 */ 735 caddr_t 736 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages) 737 { 738 caddr_t chunkp; 739 740 contig_mem_prealloc_size = MIN((PREALLOC_PER_CPU * ncpu_guest_max) + 741 contig_mem_prealloc_base_size, 742 (ptob(npages) * PREALLOC_PERCENT) / 100); 743 contig_mem_prealloc_size = MAX(contig_mem_prealloc_size, PREALLOC_MIN); 744 contig_mem_prealloc_size = P2ROUNDUP(contig_mem_prealloc_size, 745 MMU_PAGESIZE4M); 746 747 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE4M); 748 if (prom_alloc(alloc_base, contig_mem_prealloc_size, 749 MMU_PAGESIZE4M) != alloc_base) { 750 751 /* 752 * Failed. This may mean the physical memory has holes in it 753 * and it will be more difficult to get large contiguous 754 * pieces of memory. Since we only guarantee contiguous 755 * pieces of memory contig_mem_import_size_max or smaller, 756 * loop, getting contig_mem_import_size_max at a time, until 757 * failure or contig_mem_prealloc_size is reached. 758 */ 759 for (chunkp = alloc_base; 760 (chunkp - alloc_base) < contig_mem_prealloc_size; 761 chunkp += contig_mem_import_size_max) { 762 763 if (prom_alloc(chunkp, contig_mem_import_size_max, 764 MMU_PAGESIZE4M) != chunkp) { 765 break; 766 } 767 } 768 contig_mem_prealloc_size = chunkp - alloc_base; 769 ASSERT(contig_mem_prealloc_size != 0); 770 } 771 772 if (contig_mem_prealloc_size != 0) { 773 contig_mem_prealloc_buf = alloc_base; 774 } else { 775 contig_mem_prealloc_buf = NULL; 776 } 777 alloc_base += contig_mem_prealloc_size; 778 779 return (alloc_base); 780 } 781 782 static uint_t sp_color_stride = 16; 783 static uint_t sp_color_mask = 0x1f; 784 static uint_t sp_current_color = (uint_t)-1; 785 786 size_t 787 exec_get_spslew(void) 788 { 789 uint_t spcolor = atomic_inc_32_nv(&sp_current_color); 790 return ((size_t)((spcolor & sp_color_mask) * SA(sp_color_stride))); 791 } 792