1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/machsystm.h> 28 #include <sys/archsystm.h> 29 #include <sys/prom_plat.h> 30 #include <sys/promif.h> 31 #include <sys/vm.h> 32 #include <sys/cpu.h> 33 #include <sys/bitset.h> 34 #include <sys/cpupart.h> 35 #include <sys/disp.h> 36 #include <sys/hypervisor_api.h> 37 #include <sys/traptrace.h> 38 #include <sys/modctl.h> 39 #include <sys/ldoms.h> 40 #include <sys/cpu_module.h> 41 #include <sys/mutex_impl.h> 42 #include <sys/rwlock.h> 43 #include <sys/sdt.h> 44 #include <sys/cmt.h> 45 #include <vm/vm_dep.h> 46 47 #ifdef TRAPTRACE 48 int mach_htraptrace_enable = 1; 49 #else 50 int mach_htraptrace_enable = 0; 51 #endif 52 int htrap_tr0_inuse = 0; 53 extern char htrap_tr0[]; /* prealloc buf for boot cpu */ 54 55 caddr_t mmu_fault_status_area; 56 57 extern void sfmmu_set_tsbs(void); 58 /* 59 * CPU IDLE optimization variables/routines 60 */ 61 static int enable_halt_idle_cpus = 1; 62 63 /* 64 * Defines for the idle_state_transition DTrace probe 65 * 66 * The probe fires when the CPU undergoes an idle state change (e.g. hv yield) 67 * The agument passed is the state to which the CPU is transitioning. 68 * 69 * The states are defined here. 70 */ 71 #define IDLE_STATE_NORMAL 0 72 #define IDLE_STATE_YIELDED 1 73 74 #define SUN4V_CLOCK_TICK_THRESHOLD 64 75 #define SUN4V_CLOCK_TICK_NCPUS 64 76 77 extern int clock_tick_threshold; 78 extern int clock_tick_ncpus; 79 80 void 81 setup_trap_table(void) 82 { 83 caddr_t mmfsa_va; 84 extern caddr_t mmu_fault_status_area; 85 mmfsa_va = 86 mmu_fault_status_area + (MMFSA_SIZE * CPU->cpu_id); 87 88 intr_init(CPU); /* init interrupt request free list */ 89 setwstate(WSTATE_KERN); 90 set_mmfsa_scratchpad(mmfsa_va); 91 prom_set_mmfsa_traptable(&trap_table, va_to_pa(mmfsa_va)); 92 sfmmu_set_tsbs(); 93 } 94 95 void 96 phys_install_has_changed(void) 97 { 98 99 } 100 101 /* 102 * Halt the present CPU until awoken via an interrupt 103 */ 104 static void 105 cpu_halt(void) 106 { 107 cpu_t *cpup = CPU; 108 processorid_t cpu_sid = cpup->cpu_seqid; 109 cpupart_t *cp = cpup->cpu_part; 110 int hset_update = 1; 111 volatile int *p = &cpup->cpu_disp->disp_nrunnable; 112 uint_t s; 113 114 /* 115 * If this CPU is online then we should notate our halting 116 * by adding ourselves to the partition's halted CPU 117 * bitset. This allows other CPUs to find/awaken us when 118 * work becomes available. 119 */ 120 if (CPU->cpu_flags & CPU_OFFLINE) 121 hset_update = 0; 122 123 /* 124 * Add ourselves to the partition's halted CPUs bitset 125 * and set our HALTED flag, if necessary. 126 * 127 * When a thread becomes runnable, it is placed on the queue 128 * and then the halted cpu bitset is checked to determine who 129 * (if anyone) should be awoken. We therefore need to first 130 * add ourselves to the halted bitset, and then check if there 131 * is any work available. The order is important to prevent a race 132 * that can lead to work languishing on a run queue somewhere while 133 * this CPU remains halted. 134 * 135 * Either the producing CPU will see we're halted and will awaken us, 136 * or this CPU will see the work available in disp_anywork() 137 */ 138 if (hset_update) { 139 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 140 membar_producer(); 141 bitset_atomic_add(&cp->cp_haltset, cpu_sid); 142 } 143 144 /* 145 * Check to make sure there's really nothing to do. 146 * Work destined for this CPU may become available after 147 * this check. We'll be notified through the clearing of our 148 * bit in the halted CPU bitset, and a poke. 149 */ 150 if (disp_anywork()) { 151 if (hset_update) { 152 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 153 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 154 } 155 return; 156 } 157 158 /* 159 * We're on our way to being halted. Wait until something becomes 160 * runnable locally or we are awaken (i.e. removed from the halt set). 161 * Note that the call to hv_cpu_yield() can return even if we have 162 * nothing to do. 163 * 164 * Disable interrupts now, so that we'll awaken immediately 165 * after halting if someone tries to poke us between now and 166 * the time we actually halt. 167 * 168 * We check for the presence of our bit after disabling interrupts. 169 * If it's cleared, we'll return. If the bit is cleared after 170 * we check then the poke will pop us out of the halted state. 171 * Also, if the offlined CPU has been brought back on-line, then 172 * we return as well. 173 * 174 * The ordering of the poke and the clearing of the bit by cpu_wakeup 175 * is important. 176 * cpu_wakeup() must clear, then poke. 177 * cpu_halt() must disable interrupts, then check for the bit. 178 * 179 * The check for anything locally runnable is here for performance 180 * and isn't needed for correctness. disp_nrunnable ought to be 181 * in our cache still, so it's inexpensive to check, and if there 182 * is anything runnable we won't have to wait for the poke. 183 * 184 */ 185 s = disable_vec_intr(); 186 while (*p == 0 && 187 ((hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid)) || 188 (!hset_update && (CPU->cpu_flags & CPU_OFFLINE)))) { 189 190 DTRACE_PROBE1(idle__state__transition, 191 uint_t, IDLE_STATE_YIELDED); 192 (void) hv_cpu_yield(); 193 DTRACE_PROBE1(idle__state__transition, 194 uint_t, IDLE_STATE_NORMAL); 195 196 enable_vec_intr(s); 197 s = disable_vec_intr(); 198 } 199 200 /* 201 * We're no longer halted 202 */ 203 enable_vec_intr(s); 204 if (hset_update) { 205 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 206 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 207 } 208 } 209 210 /* 211 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 212 * Otherwise, see if other CPUs in the cpu partition are halted and need to 213 * be woken up so that they can steal the thread we placed on this CPU. 214 * This function is only used on MP systems. 215 */ 216 static void 217 cpu_wakeup(cpu_t *cpu, int bound) 218 { 219 uint_t cpu_found; 220 processorid_t cpu_sid; 221 cpupart_t *cp; 222 223 cp = cpu->cpu_part; 224 cpu_sid = cpu->cpu_seqid; 225 if (bitset_in_set(&cp->cp_haltset, cpu_sid)) { 226 /* 227 * Clear the halted bit for that CPU since it will be 228 * poked in a moment. 229 */ 230 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 231 /* 232 * We may find the current CPU present in the halted cpu bitset 233 * if we're in the context of an interrupt that occurred 234 * before we had a chance to clear our bit in cpu_halt(). 235 * Poking ourself is obviously unnecessary, since if 236 * we're here, we're not halted. 237 */ 238 if (cpu != CPU) 239 poke_cpu(cpu->cpu_id); 240 return; 241 } else { 242 /* 243 * This cpu isn't halted, but it's idle or undergoing a 244 * context switch. No need to awaken anyone else. 245 */ 246 if (cpu->cpu_thread == cpu->cpu_idle_thread || 247 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 248 return; 249 } 250 251 /* 252 * No need to wake up other CPUs if this is for a bound thread. 253 */ 254 if (bound) 255 return; 256 257 /* 258 * The CPU specified for wakeup isn't currently halted, so check 259 * to see if there are any other halted CPUs in the partition, 260 * and if there are then awaken one. 261 */ 262 do { 263 cpu_found = bitset_find(&cp->cp_haltset); 264 if (cpu_found == (uint_t)-1) 265 return; 266 } while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0); 267 268 if (cpu_found != CPU->cpu_seqid) 269 poke_cpu(cpu_seq[cpu_found]->cpu_id); 270 } 271 272 void 273 mach_cpu_halt_idle() 274 { 275 if (enable_halt_idle_cpus) { 276 idle_cpu = cpu_halt; 277 disp_enq_thread = cpu_wakeup; 278 } 279 } 280 281 int 282 ndata_alloc_mmfsa(struct memlist *ndata) 283 { 284 size_t size; 285 286 size = MMFSA_SIZE * max_ncpus; 287 mmu_fault_status_area = ndata_alloc(ndata, size, ecache_alignsize); 288 if (mmu_fault_status_area == NULL) 289 return (-1); 290 return (0); 291 } 292 293 void 294 mach_memscrub(void) 295 { 296 /* no memscrub support for sun4v for now */ 297 } 298 299 void 300 mach_fpras() 301 { 302 /* no fpras support for sun4v for now */ 303 } 304 305 void 306 mach_hw_copy_limit(void) 307 { 308 /* HW copy limits set by individual CPU module */ 309 } 310 311 /* 312 * We need to enable soft ring functionality on Niagara platforms since 313 * one strand can't handle interrupts for a 1Gb NIC. So set the tunable 314 * mac_soft_ring_enable by default on this platform. 315 * mac_soft_ring_enable variable is defined in space.c and used by MAC 316 * module. This tunable in concert with mac_soft_ring_count (declared 317 * in mac.h) will configure the number of fanout soft rings for a link. 318 */ 319 extern boolean_t mac_soft_ring_enable; 320 void 321 startup_platform(void) 322 { 323 mac_soft_ring_enable = B_TRUE; 324 if (clock_tick_threshold == 0) 325 clock_tick_threshold = SUN4V_CLOCK_TICK_THRESHOLD; 326 if (clock_tick_ncpus == 0) 327 clock_tick_ncpus = SUN4V_CLOCK_TICK_NCPUS; 328 /* set per-platform constants for mutex_backoff */ 329 mutex_backoff_base = 1; 330 mutex_cap_factor = 4; 331 if (l2_cache_node_count() > 1) { 332 /* VF for example */ 333 mutex_backoff_base = 2; 334 mutex_cap_factor = 64; 335 } 336 rw_lock_backoff = default_lock_backoff; 337 rw_lock_delay = default_lock_delay; 338 } 339 340 /* 341 * This function sets up hypervisor traptrace buffer 342 * This routine is called by the boot cpu only 343 */ 344 void 345 mach_htraptrace_setup(int cpuid) 346 { 347 TRAP_TRACE_CTL *ctlp; 348 int bootcpuid = getprocessorid(); /* invoked on boot cpu only */ 349 350 if (mach_htraptrace_enable && ((cpuid != bootcpuid) || 351 !htrap_tr0_inuse)) { 352 ctlp = &trap_trace_ctl[cpuid]; 353 ctlp->d.hvaddr_base = (cpuid == bootcpuid) ? htrap_tr0 : 354 contig_mem_alloc_align(HTRAP_TSIZE, HTRAP_TSIZE); 355 if (ctlp->d.hvaddr_base == NULL) { 356 ctlp->d.hlimit = 0; 357 ctlp->d.hpaddr_base = NULL; 358 cmn_err(CE_WARN, "!cpu%d: failed to allocate HV " 359 "traptrace buffer", cpuid); 360 } else { 361 ctlp->d.hlimit = HTRAP_TSIZE; 362 ctlp->d.hpaddr_base = va_to_pa(ctlp->d.hvaddr_base); 363 } 364 } 365 } 366 367 /* 368 * This function enables or disables the hypervisor traptracing 369 */ 370 void 371 mach_htraptrace_configure(int cpuid) 372 { 373 uint64_t ret; 374 uint64_t prev_buf, prev_bufsize; 375 uint64_t prev_enable; 376 uint64_t size; 377 TRAP_TRACE_CTL *ctlp; 378 379 ctlp = &trap_trace_ctl[cpuid]; 380 if (mach_htraptrace_enable) { 381 if ((ctlp->d.hvaddr_base != NULL) && 382 ((ctlp->d.hvaddr_base != htrap_tr0) || 383 (!htrap_tr0_inuse))) { 384 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 385 if ((ret == H_EOK) && (prev_bufsize != 0)) { 386 cmn_err(CE_CONT, 387 "!cpu%d: previous HV traptrace buffer of " 388 "size 0x%lx at address 0x%lx", cpuid, 389 prev_bufsize, prev_buf); 390 } 391 392 ret = hv_ttrace_buf_conf(ctlp->d.hpaddr_base, 393 ctlp->d.hlimit / 394 (sizeof (struct htrap_trace_record)), &size); 395 if (ret == H_EOK) { 396 ret = hv_ttrace_enable(\ 397 (uint64_t)TRAP_TENABLE_ALL, &prev_enable); 398 if (ret != H_EOK) { 399 cmn_err(CE_WARN, 400 "!cpu%d: HV traptracing not " 401 "enabled, ta: 0x%x returned error: " 402 "%ld", cpuid, TTRACE_ENABLE, ret); 403 } else { 404 if (ctlp->d.hvaddr_base == htrap_tr0) 405 htrap_tr0_inuse = 1; 406 } 407 } else { 408 cmn_err(CE_WARN, 409 "!cpu%d: HV traptrace buffer not " 410 "configured, ta: 0x%x returned error: %ld", 411 cpuid, TTRACE_BUF_CONF, ret); 412 } 413 /* 414 * set hvaddr_base to NULL when traptrace buffer 415 * registration fails 416 */ 417 if (ret != H_EOK) { 418 ctlp->d.hvaddr_base = NULL; 419 ctlp->d.hlimit = 0; 420 ctlp->d.hpaddr_base = NULL; 421 } 422 } 423 } else { 424 ret = hv_ttrace_buf_info(&prev_buf, &prev_bufsize); 425 if ((ret == H_EOK) && (prev_bufsize != 0)) { 426 ret = hv_ttrace_enable((uint64_t)TRAP_TDISABLE_ALL, 427 &prev_enable); 428 if (ret == H_EOK) { 429 if (ctlp->d.hvaddr_base == htrap_tr0) 430 htrap_tr0_inuse = 0; 431 ctlp->d.hvaddr_base = NULL; 432 ctlp->d.hlimit = 0; 433 ctlp->d.hpaddr_base = NULL; 434 } else 435 cmn_err(CE_WARN, 436 "!cpu%d: HV traptracing is not disabled, " 437 "ta: 0x%x returned error: %ld", 438 cpuid, TTRACE_ENABLE, ret); 439 } 440 } 441 } 442 443 /* 444 * This function cleans up the hypervisor traptrace buffer 445 */ 446 void 447 mach_htraptrace_cleanup(int cpuid) 448 { 449 if (mach_htraptrace_enable) { 450 TRAP_TRACE_CTL *ctlp; 451 caddr_t httrace_buf_va; 452 453 ASSERT(cpuid < max_ncpus); 454 ctlp = &trap_trace_ctl[cpuid]; 455 httrace_buf_va = ctlp->d.hvaddr_base; 456 if (httrace_buf_va == htrap_tr0) { 457 bzero(httrace_buf_va, HTRAP_TSIZE); 458 } else if (httrace_buf_va != NULL) { 459 contig_mem_free(httrace_buf_va, HTRAP_TSIZE); 460 } 461 ctlp->d.hvaddr_base = NULL; 462 ctlp->d.hlimit = 0; 463 ctlp->d.hpaddr_base = NULL; 464 } 465 } 466 467 /* 468 * Load any required machine class (sun4v) specific drivers. 469 */ 470 void 471 load_mach_drivers(void) 472 { 473 /* 474 * We don't want to load these LDOMs-specific 475 * modules if domaining is not supported. Also, 476 * we must be able to run on non-LDOMs firmware. 477 */ 478 if (!domaining_supported()) 479 return; 480 481 /* 482 * Load the core domain services module 483 */ 484 if (modload("misc", "ds") == -1) 485 cmn_err(CE_NOTE, "!'ds' module failed to load"); 486 487 /* 488 * Load the rest of the domain services 489 */ 490 if (modload("misc", "fault_iso") == -1) 491 cmn_err(CE_NOTE, "!'fault_iso' module failed to load"); 492 493 if (modload("misc", "platsvc") == -1) 494 cmn_err(CE_NOTE, "!'platsvc' module failed to load"); 495 496 if (domaining_enabled() && modload("misc", "dr_cpu") == -1) 497 cmn_err(CE_NOTE, "!'dr_cpu' module failed to load"); 498 499 if (modload("misc", "dr_io") == -1) 500 cmn_err(CE_NOTE, "!'dr_io' module failed to load"); 501 502 /* 503 * Attempt to attach any virtual device servers. These 504 * drivers must be loaded at start of day so that they 505 * can respond to any updates to the machine description. 506 * 507 * Since it is quite likely that a domain will not support 508 * one or more of these servers, failures are ignored. 509 */ 510 511 /* virtual disk server */ 512 (void) i_ddi_attach_hw_nodes("vds"); 513 514 /* virtual network switch */ 515 (void) i_ddi_attach_hw_nodes("vsw"); 516 517 /* virtual console concentrator */ 518 (void) i_ddi_attach_hw_nodes("vcc"); 519 } 520