1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/systm.h> 28 #include <sys/archsystm.h> 29 #include <sys/t_lock.h> 30 #include <sys/uadmin.h> 31 #include <sys/panic.h> 32 #include <sys/reboot.h> 33 #include <sys/autoconf.h> 34 #include <sys/machsystm.h> 35 #include <sys/promif.h> 36 #include <sys/membar.h> 37 #include <vm/hat_sfmmu.h> 38 #include <sys/cpu_module.h> 39 #include <sys/cpu_sgnblk_defs.h> 40 #include <sys/intreg.h> 41 #include <sys/consdev.h> 42 #include <sys/kdi_impl.h> 43 #include <sys/traptrace.h> 44 #include <sys/hypervisor_api.h> 45 #include <sys/vmsystm.h> 46 #include <sys/dtrace.h> 47 #include <sys/xc_impl.h> 48 #include <sys/callb.h> 49 #include <sys/mdesc.h> 50 #include <sys/mach_descrip.h> 51 #include <sys/wdt.h> 52 #include <sys/soft_state.h> 53 #include <sys/promimpl.h> 54 #include <sys/hsvc.h> 55 #include <sys/ldoms.h> 56 #include <sys/kldc.h> 57 #include <sys/dumphdr.h> 58 59 /* 60 * hvdump_buf_va is a pointer to the currently-configured hvdump_buf. 61 * A value of NULL indicates that this area is not configured. 62 * hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX. 63 */ 64 65 caddr_t hvdump_buf_va; 66 uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT; 67 static uint64_t hvdump_buf_pa; 68 69 u_longlong_t panic_tick; 70 71 extern u_longlong_t gettick(); 72 static void reboot_machine(char *); 73 static void update_hvdump_buffer(void); 74 75 /* 76 * For xt_sync synchronization. 77 */ 78 extern uint64_t xc_tick_limit; 79 extern uint64_t xc_tick_jump_limit; 80 extern uint64_t xc_sync_tick_limit; 81 82 /* 83 * We keep our own copies, used for cache flushing, because we can be called 84 * before cpu_fiximpl(). 85 */ 86 static int kdi_dcache_size; 87 static int kdi_dcache_linesize; 88 static int kdi_icache_size; 89 static int kdi_icache_linesize; 90 91 /* 92 * Assembly support for generic modules in sun4v/ml/mach_xc.s 93 */ 94 extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2); 95 extern void kdi_flush_idcache(int, int, int, int); 96 extern uint64_t get_cpuaddr(uint64_t, uint64_t); 97 98 99 #define BOOT_CMD_MAX_LEN 256 100 #define BOOT_CMD_BASE "boot " 101 102 /* 103 * In an LDoms system we do not save the user's boot args in NVRAM 104 * as is done on legacy systems. Instead, we format and send a 105 * 'reboot-command' variable to the variable service. The contents 106 * of the variable are retrieved by OBP and used verbatim for 107 * the next boot. 108 */ 109 static void 110 store_boot_cmd(char *args, boolean_t add_boot_str) 111 { 112 static char cmd_buf[BOOT_CMD_MAX_LEN]; 113 size_t len = 1; 114 pnode_t node; 115 size_t base_len = 0; 116 size_t args_len; 117 size_t args_max; 118 119 if (add_boot_str) { 120 (void) strcpy(cmd_buf, BOOT_CMD_BASE); 121 122 base_len = strlen(BOOT_CMD_BASE); 123 len = base_len + 1; 124 } 125 126 if (args != NULL) { 127 args_len = strlen(args); 128 args_max = BOOT_CMD_MAX_LEN - len; 129 130 if (args_len > args_max) { 131 cmn_err(CE_WARN, "Reboot command too long (%ld), " 132 "truncating command arguments", len + args_len); 133 134 args_len = args_max; 135 } 136 137 len += args_len; 138 (void) strncpy(&cmd_buf[base_len], args, args_len); 139 } 140 141 node = prom_optionsnode(); 142 if ((node == OBP_NONODE) || (node == OBP_BADNODE) || 143 prom_setprop(node, "reboot-command", cmd_buf, len) == -1) 144 cmn_err(CE_WARN, "Unable to store boot command for " 145 "use on reboot"); 146 } 147 148 149 /* 150 * Machine dependent code to reboot. 151 * 152 * "bootstr", when non-null, points to a string to be used as the 153 * argument string when rebooting. 154 * 155 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 156 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 157 * we are in a normal shutdown sequence (interrupts are not blocked, the 158 * system is not panic'ing or being suspended). 159 */ 160 /*ARGSUSED*/ 161 void 162 mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb) 163 { 164 extern void pm_cfb_check_and_powerup(void); 165 166 /* 167 * XXX - rconsvp is set to NULL to ensure that output messages 168 * are sent to the underlying "hardware" device using the 169 * monitor's printf routine since we are in the process of 170 * either rebooting or halting the machine. 171 */ 172 rconsvp = NULL; 173 174 switch (fcn) { 175 case AD_HALT: 176 /* 177 * LDoms: By storing a no-op command 178 * in the 'reboot-command' variable we cause OBP 179 * to ignore the setting of 'auto-boot?' after 180 * it completes the reset. This causes the system 181 * to stop at the ok prompt. 182 */ 183 if (domaining_enabled() && invoke_cb) 184 store_boot_cmd("noop", B_FALSE); 185 break; 186 187 case AD_POWEROFF: 188 break; 189 190 default: 191 if (bootstr == NULL) { 192 switch (fcn) { 193 194 case AD_BOOT: 195 bootstr = ""; 196 break; 197 198 case AD_IBOOT: 199 bootstr = "-a"; 200 break; 201 202 case AD_SBOOT: 203 bootstr = "-s"; 204 break; 205 206 case AD_SIBOOT: 207 bootstr = "-sa"; 208 break; 209 default: 210 cmn_err(CE_WARN, 211 "mdboot: invalid function %d", fcn); 212 bootstr = ""; 213 break; 214 } 215 } 216 217 /* 218 * If LDoms is running, we must save the boot string 219 * before we enter restricted mode. This is possible 220 * only if we are not being called from panic. 221 */ 222 if (domaining_enabled() && invoke_cb) 223 store_boot_cmd(bootstr, B_TRUE); 224 } 225 226 /* 227 * At a high interrupt level we can't: 228 * 1) bring up the console 229 * or 230 * 2) wait for pending interrupts prior to redistribution 231 * to the current CPU 232 * 233 * so we do them now. 234 */ 235 pm_cfb_check_and_powerup(); 236 237 /* make sure there are no more changes to the device tree */ 238 devtree_freeze(); 239 240 if (invoke_cb) 241 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 242 243 /* 244 * Clear any unresolved UEs from memory. 245 */ 246 page_retire_mdboot(); 247 248 /* 249 * stop other cpus which also raise our priority. since there is only 250 * one active cpu after this, and our priority will be too high 251 * for us to be preempted, we're essentially single threaded 252 * from here on out. 253 */ 254 stop_other_cpus(); 255 256 /* 257 * try and reset leaf devices. reset_leaves() should only 258 * be called when there are no other threads that could be 259 * accessing devices 260 */ 261 reset_leaves(); 262 263 watchdog_clear(); 264 265 if (fcn == AD_HALT) { 266 mach_set_soft_state(SIS_TRANSITION, 267 &SOLARIS_SOFT_STATE_HALT_MSG); 268 halt((char *)NULL); 269 } else if (fcn == AD_POWEROFF) { 270 mach_set_soft_state(SIS_TRANSITION, 271 &SOLARIS_SOFT_STATE_POWER_MSG); 272 power_down(NULL); 273 } else { 274 mach_set_soft_state(SIS_TRANSITION, 275 &SOLARIS_SOFT_STATE_REBOOT_MSG); 276 reboot_machine(bootstr); 277 } 278 /* MAYBE REACHED */ 279 } 280 281 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 282 /*ARGSUSED*/ 283 void 284 mdpreboot(int cmd, int fcn, char *bootstr) 285 { 286 } 287 288 /* 289 * Halt the machine and then reboot with the device 290 * and arguments specified in bootstr. 291 */ 292 static void 293 reboot_machine(char *bootstr) 294 { 295 flush_windows(); 296 stop_other_cpus(); /* send stop signal to other CPUs */ 297 prom_printf("rebooting...\n"); 298 /* 299 * For platforms that use CPU signatures, we 300 * need to set the signature block to OS and 301 * the state to exiting for all the processors. 302 */ 303 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1); 304 prom_reboot(bootstr); 305 /*NOTREACHED*/ 306 } 307 308 /* 309 * We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs. 310 * Once in panic_idle() they raise spl, record their location, and spin. 311 */ 312 static void 313 panic_idle(void) 314 { 315 (void) spl7(); 316 317 debug_flush_windows(); 318 (void) setjmp(&curthread->t_pcb); 319 320 CPU->cpu_m.in_prom = 1; 321 membar_stld(); 322 323 dumpsys_helper(); 324 325 for (;;) 326 ; 327 } 328 329 /* 330 * Force the other CPUs to trap into panic_idle(), and then remove them 331 * from the cpu_ready_set so they will no longer receive cross-calls. 332 */ 333 /*ARGSUSED*/ 334 void 335 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 336 { 337 cpuset_t cps; 338 int i; 339 340 (void) splzs(); 341 CPUSET_ALL_BUT(cps, cp->cpu_id); 342 xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL); 343 344 for (i = 0; i < NCPU; i++) { 345 if (i != cp->cpu_id && CPU_XCALL_READY(i)) { 346 int ntries = 0x10000; 347 348 while (!cpu[i]->cpu_m.in_prom && ntries) { 349 DELAY(50); 350 ntries--; 351 } 352 353 if (!cpu[i]->cpu_m.in_prom) 354 printf("panic: failed to stop cpu%d\n", i); 355 356 cpu[i]->cpu_flags &= ~CPU_READY; 357 cpu[i]->cpu_flags |= CPU_QUIESCED; 358 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 359 } 360 } 361 } 362 363 /* 364 * Platform callback following each entry to panicsys(). If we've panicked at 365 * level 14, we examine t_panic_trap to see if a fatal trap occurred. If so, 366 * we disable further %tick_cmpr interrupts. If not, an explicit call to panic 367 * was made and so we re-enqueue an interrupt request structure to allow 368 * further level 14 interrupts to be processed once we lower PIL. This allows 369 * us to handle panics from the deadman() CY_HIGH_LEVEL cyclic. 370 */ 371 void 372 panic_enter_hw(int spl) 373 { 374 if (!panic_tick) { 375 panic_tick = gettick(); 376 if (mach_htraptrace_enable) { 377 uint64_t prev_freeze; 378 379 /* there are no possible error codes for this hcall */ 380 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 381 &prev_freeze); 382 } 383 #ifdef TRAPTRACE 384 TRAPTRACE_FREEZE; 385 #endif 386 } 387 388 mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG); 389 390 if (spl == ipltospl(PIL_14)) { 391 uint_t opstate = disable_vec_intr(); 392 393 if (curthread->t_panic_trap != NULL) { 394 tickcmpr_disable(); 395 intr_dequeue_req(PIL_14, cbe_level14_inum); 396 } else { 397 if (!tickcmpr_disabled()) 398 intr_enqueue_req(PIL_14, cbe_level14_inum); 399 /* 400 * Clear SOFTINT<14>, SOFTINT<0> (TICK_INT) 401 * and SOFTINT<16> (STICK_INT) to indicate 402 * that the current level 14 has been serviced. 403 */ 404 wr_clr_softint((1 << PIL_14) | 405 TICK_INT_MASK | STICK_INT_MASK); 406 } 407 408 enable_vec_intr(opstate); 409 } 410 } 411 412 /* 413 * Miscellaneous hardware-specific code to execute after panicstr is set 414 * by the panic code: we also print and record PTL1 panic information here. 415 */ 416 /*ARGSUSED*/ 417 void 418 panic_quiesce_hw(panic_data_t *pdp) 419 { 420 extern uint_t getpstate(void); 421 extern void setpstate(uint_t); 422 423 /* 424 * Turn off TRAPTRACE and save the current %tick value in panic_tick. 425 */ 426 if (!panic_tick) { 427 panic_tick = gettick(); 428 if (mach_htraptrace_enable) { 429 uint64_t prev_freeze; 430 431 /* there are no possible error codes for this hcall */ 432 (void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL, 433 &prev_freeze); 434 } 435 #ifdef TRAPTRACE 436 TRAPTRACE_FREEZE; 437 #endif 438 } 439 /* 440 * For Platforms that use CPU signatures, we 441 * need to set the signature block to OS, the state to 442 * exiting, and the substate to panic for all the processors. 443 */ 444 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1); 445 446 update_hvdump_buffer(); 447 448 /* 449 * Disable further ECC errors from the bus nexus. 450 */ 451 (void) bus_func_invoke(BF_TYPE_ERRDIS); 452 453 /* 454 * Redirect all interrupts to the current CPU. 455 */ 456 intr_redist_all_cpus_shutdown(); 457 458 /* 459 * This call exists solely to support dumps to network 460 * devices after sync from OBP. 461 * 462 * If we came here via the sync callback, then on some 463 * platforms, interrupts may have arrived while we were 464 * stopped in OBP. OBP will arrange for those interrupts to 465 * be redelivered if you say "go", but not if you invoke a 466 * client callback like 'sync'. For some dump devices 467 * (network swap devices), we need interrupts to be 468 * delivered in order to dump, so we have to call the bus 469 * nexus driver to reset the interrupt state machines. 470 */ 471 (void) bus_func_invoke(BF_TYPE_RESINTR); 472 473 setpstate(getpstate() | PSTATE_IE); 474 } 475 476 /* 477 * Platforms that use CPU signatures need to set the signature block to OS and 478 * the state to exiting for all CPUs. PANIC_CONT indicates that we're about to 479 * write the crash dump, which tells the SSP/SMS to begin a timeout routine to 480 * reboot the machine if the dump never completes. 481 */ 482 /*ARGSUSED*/ 483 void 484 panic_dump_hw(int spl) 485 { 486 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 487 } 488 489 /* 490 * for ptl1_panic 491 */ 492 void 493 ptl1_init_cpu(struct cpu *cpu) 494 { 495 ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state; 496 497 /*CONSTCOND*/ 498 if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) { 499 panic("ptl1_init_cpu: not enough space left for ptl1_panic " 500 "stack, sizeof (struct cpu) = %lu", 501 (unsigned long)sizeof (struct cpu)); 502 } 503 504 pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE; 505 cpu_pa[cpu->cpu_id] = va_to_pa(cpu); 506 } 507 508 void 509 ptl1_panic_handler(ptl1_state_t *pstate) 510 { 511 static const char *ptl1_reasons[] = { 512 #ifdef PTL1_PANIC_DEBUG 513 "trap for debug purpose", /* PTL1_BAD_DEBUG */ 514 #else 515 "unknown trap", /* PTL1_BAD_DEBUG */ 516 #endif 517 "register window trap", /* PTL1_BAD_WTRAP */ 518 "kernel MMU miss", /* PTL1_BAD_KMISS */ 519 "kernel protection fault", /* PTL1_BAD_KPROT_FAULT */ 520 "ISM MMU miss", /* PTL1_BAD_ISM */ 521 "kernel MMU trap", /* PTL1_BAD_MMUTRAP */ 522 "kernel trap handler state", /* PTL1_BAD_TRAP */ 523 "floating point trap", /* PTL1_BAD_FPTRAP */ 524 #ifdef DEBUG 525 "pointer to intr_vec", /* PTL1_BAD_INTR_VEC */ 526 #else 527 "unknown trap", /* PTL1_BAD_INTR_VEC */ 528 #endif 529 #ifdef TRAPTRACE 530 "TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */ 531 #else 532 "unknown trap", /* PTL1_BAD_TRACE_PTR */ 533 #endif 534 "stack overflow", /* PTL1_BAD_STACK */ 535 "DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */ 536 "attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */ 537 "CPU ECC error loop", /* PTL1_BAD_ECC */ 538 "unexpected error from hypervisor call", /* PTL1_BAD_HCALL */ 539 "unexpected global level(%gl)", /* PTL1_BAD_GL */ 540 "Watchdog Reset", /* PTL1_BAD_WATCHDOG */ 541 "unexpected RED mode trap", /* PTL1_BAD_RED */ 542 "return value EINVAL from hcall: "\ 543 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */ 544 "return value ENOMAP from hcall: "\ 545 "UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */ 546 "error raising a TSB exception", /* PTL1_BAD_RAISE_TSBEXCP */ 547 "missing shared TSB" /* PTL1_NO_SCDTSB8K */ 548 }; 549 550 uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1; 551 uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl; 552 struct panic_trap_info ti = { 0 }; 553 554 /* 555 * Use trap_info for a place holder to call panic_savetrap() and 556 * panic_showtrap() to save and print out ptl1_panic information. 557 */ 558 if (curthread->t_panic_trap == NULL) 559 curthread->t_panic_trap = &ti; 560 561 if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0])) 562 panic("bad %s at TL %u", ptl1_reasons[reason], tl); 563 else 564 panic("ptl1_panic reason 0x%x at TL %u", reason, tl); 565 } 566 567 void 568 clear_watchdog_on_exit(void) 569 { 570 if (watchdog_enabled && watchdog_activated) { 571 prom_printf("Debugging requested; hardware watchdog " 572 "suspended.\n"); 573 (void) watchdog_suspend(); 574 } 575 } 576 577 /* 578 * Restore the watchdog timer when returning from a debugger 579 * after a panic or L1-A and resume watchdog pat. 580 */ 581 void 582 restore_watchdog_on_entry() 583 { 584 watchdog_resume(); 585 } 586 587 int 588 kdi_watchdog_disable(void) 589 { 590 watchdog_suspend(); 591 592 return (0); 593 } 594 595 void 596 kdi_watchdog_restore(void) 597 { 598 watchdog_resume(); 599 } 600 601 void 602 mach_dump_buffer_init(void) 603 { 604 uint64_t ret, minsize = 0; 605 606 if (hvdump_buf_sz > HVDUMP_SIZE_MAX) 607 hvdump_buf_sz = HVDUMP_SIZE_MAX; 608 609 hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE); 610 if (hvdump_buf_va == NULL) 611 return; 612 613 hvdump_buf_pa = va_to_pa(hvdump_buf_va); 614 615 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 616 &minsize); 617 618 if (ret != H_EOK) { 619 contig_mem_free(hvdump_buf_va, hvdump_buf_sz); 620 hvdump_buf_va = NULL; 621 cmn_err(CE_NOTE, "!Error in setting up hvstate" 622 "dump buffer. Error = 0x%lx, size = 0x%lx," 623 "buf_pa = 0x%lx", ret, hvdump_buf_sz, 624 hvdump_buf_pa); 625 626 if (ret == H_EINVAL) { 627 cmn_err(CE_NOTE, "!Buffer size too small." 628 "Available buffer size = 0x%lx," 629 "Minimum buffer size required = 0x%lx", 630 hvdump_buf_sz, minsize); 631 } 632 } 633 } 634 635 636 static void 637 update_hvdump_buffer(void) 638 { 639 uint64_t ret, dummy_val; 640 641 if (hvdump_buf_va == NULL) 642 return; 643 644 ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz, 645 &dummy_val); 646 if (ret != H_EOK) { 647 cmn_err(CE_NOTE, "!Cannot update hvstate dump" 648 "buffer. Error = 0x%lx", ret); 649 } 650 } 651 652 653 static int 654 getintprop(pnode_t node, char *name, int deflt) 655 { 656 int value; 657 658 switch (prom_getproplen(node, name)) { 659 case 0: 660 value = 1; /* boolean properties */ 661 break; 662 663 case sizeof (int): 664 (void) prom_getprop(node, name, (caddr_t)&value); 665 break; 666 667 default: 668 value = deflt; 669 break; 670 } 671 672 return (value); 673 } 674 675 /* 676 * Called by setcpudelay 677 */ 678 void 679 cpu_init_tick_freq(void) 680 { 681 md_t *mdp; 682 mde_cookie_t rootnode; 683 int listsz; 684 mde_cookie_t *listp = NULL; 685 int num_nodes; 686 uint64_t stick_prop; 687 688 if (broken_md_flag) { 689 sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq; 690 return; 691 } 692 693 if ((mdp = md_get_handle()) == NULL) 694 panic("stick_frequency property not found in MD"); 695 696 rootnode = md_root_node(mdp); 697 ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE); 698 699 num_nodes = md_node_count(mdp); 700 701 ASSERT(num_nodes > 0); 702 listsz = num_nodes * sizeof (mde_cookie_t); 703 listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0); 704 705 if (listp == NULL) 706 panic("cannot allocate list for MD properties"); 707 708 num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"), 709 md_find_name(mdp, "fwd"), listp); 710 711 ASSERT(num_nodes == 1); 712 713 if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0) 714 panic("stick_frequency property not found in MD"); 715 716 sys_tick_freq = stick_prop; 717 718 prom_free((caddr_t)listp, listsz); 719 (void) md_fini_handle(mdp); 720 } 721 722 int shipit(int n, uint64_t cpu_list_ra); 723 724 #ifdef DEBUG 725 #define SEND_MONDO_STATS 1 726 #endif 727 728 #ifdef SEND_MONDO_STATS 729 uint32_t x_one_stimes[64]; 730 uint32_t x_one_ltimes[16]; 731 uint32_t x_set_stimes[64]; 732 uint32_t x_set_ltimes[16]; 733 uint32_t x_set_cpus[NCPU]; 734 #endif 735 736 void 737 send_one_mondo(int cpuid) 738 { 739 int retries, stat; 740 uint64_t starttick, endtick, tick, lasttick; 741 struct machcpu *mcpup = &(CPU->cpu_m); 742 743 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 744 starttick = lasttick = gettick(); 745 mcpup->cpu_list[0] = (uint16_t)cpuid; 746 stat = shipit(1, mcpup->cpu_list_ra); 747 endtick = starttick + xc_tick_limit; 748 retries = 0; 749 while (stat != H_EOK) { 750 if (stat != H_EWOULDBLOCK) { 751 if (panic_quiesce) 752 return; 753 if (stat == H_ECPUERROR) 754 cmn_err(CE_PANIC, "send_one_mondo: " 755 "cpuid: 0x%x has been marked in " 756 "error", cpuid); 757 else 758 cmn_err(CE_PANIC, "send_one_mondo: " 759 "unexpected hypervisor error 0x%x " 760 "while sending a mondo to cpuid: " 761 "0x%x", stat, cpuid); 762 } 763 tick = gettick(); 764 /* 765 * If there is a big jump between the current tick 766 * count and lasttick, we have probably hit a break 767 * point. Adjust endtick accordingly to avoid panic. 768 */ 769 if (tick > (lasttick + xc_tick_jump_limit)) 770 endtick += (tick - lasttick); 771 lasttick = tick; 772 if (tick > endtick) { 773 if (panic_quiesce) 774 return; 775 cmn_err(CE_PANIC, "send mondo timeout " 776 "(target 0x%x) [retries: 0x%x hvstat: 0x%x]", 777 cpuid, retries, stat); 778 } 779 drv_usecwait(1); 780 stat = shipit(1, mcpup->cpu_list_ra); 781 retries++; 782 } 783 #ifdef SEND_MONDO_STATS 784 { 785 uint64_t n = gettick() - starttick; 786 if (n < 8192) 787 x_one_stimes[n >> 7]++; 788 else if (n < 15*8192) 789 x_one_ltimes[n >> 13]++; 790 else 791 x_one_ltimes[0xf]++; 792 } 793 #endif 794 } 795 796 void 797 send_mondo_set(cpuset_t set) 798 { 799 uint64_t starttick, endtick, tick, lasttick; 800 uint_t largestid, smallestid; 801 int i, j; 802 int ncpuids = 0; 803 int shipped = 0; 804 int retries = 0; 805 struct machcpu *mcpup = &(CPU->cpu_m); 806 807 ASSERT(!CPUSET_ISNULL(set)); 808 CPUSET_BOUNDS(set, smallestid, largestid); 809 if (smallestid == CPUSET_NOTINSET) { 810 return; 811 } 812 813 starttick = lasttick = gettick(); 814 endtick = starttick + xc_tick_limit; 815 816 /* 817 * Assemble CPU list for HV argument. We already know 818 * smallestid and largestid are members of set. 819 */ 820 mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid; 821 if (largestid != smallestid) { 822 for (i = smallestid+1; i <= largestid-1; i++) { 823 if (CPU_IN_SET(set, i)) { 824 mcpup->cpu_list[ncpuids++] = (uint16_t)i; 825 } 826 } 827 mcpup->cpu_list[ncpuids++] = (uint16_t)largestid; 828 } 829 830 do { 831 int stat; 832 833 stat = shipit(ncpuids, mcpup->cpu_list_ra); 834 if (stat == H_EOK) { 835 shipped += ncpuids; 836 break; 837 } 838 839 /* 840 * Either not all CPU mondos were sent, or an 841 * error occurred. CPUs that were sent mondos 842 * have their CPU IDs overwritten in cpu_list. 843 * Reset cpu_list so that it only holds those 844 * CPU IDs that still need to be sent. 845 */ 846 for (i = 0, j = 0; i < ncpuids; i++) { 847 if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) { 848 shipped++; 849 } else { 850 mcpup->cpu_list[j++] = mcpup->cpu_list[i]; 851 } 852 } 853 ncpuids = j; 854 855 /* 856 * Now handle possible errors returned 857 * from hypervisor. 858 */ 859 if (stat == H_ECPUERROR) { 860 int errorcpus; 861 862 if (!panic_quiesce) 863 cmn_err(CE_CONT, "send_mondo_set: cpuid(s) "); 864 865 /* 866 * Remove any CPUs in the error state from 867 * cpu_list. At this point cpu_list only 868 * contains the CPU IDs for mondos not 869 * succesfully sent. 870 */ 871 for (i = 0, errorcpus = 0; i < ncpuids; i++) { 872 uint64_t state = CPU_STATE_INVALID; 873 uint16_t id = mcpup->cpu_list[i]; 874 875 (void) hv_cpu_state(id, &state); 876 if (state == CPU_STATE_ERROR) { 877 if (!panic_quiesce) 878 cmn_err(CE_CONT, "0x%x ", id); 879 errorcpus++; 880 } else if (errorcpus > 0) { 881 mcpup->cpu_list[i - errorcpus] = 882 mcpup->cpu_list[i]; 883 } 884 } 885 ncpuids -= errorcpus; 886 887 if (!panic_quiesce) { 888 if (errorcpus == 0) { 889 cmn_err(CE_CONT, "<none> have been " 890 "marked in error\n"); 891 cmn_err(CE_PANIC, "send_mondo_set: " 892 "hypervisor returned " 893 "H_ECPUERROR but no CPU in " 894 "cpu_list in error state"); 895 } else { 896 cmn_err(CE_CONT, "have been marked in " 897 "error\n"); 898 cmn_err(CE_PANIC, "send_mondo_set: " 899 "CPU(s) in error state"); 900 } 901 } 902 } else if (stat != H_EWOULDBLOCK) { 903 if (panic_quiesce) 904 return; 905 /* 906 * For all other errors, panic. 907 */ 908 cmn_err(CE_CONT, "send_mondo_set: unexpected " 909 "hypervisor error 0x%x while sending a " 910 "mondo to cpuid(s):", stat); 911 for (i = 0; i < ncpuids; i++) { 912 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 913 } 914 cmn_err(CE_CONT, "\n"); 915 cmn_err(CE_PANIC, "send_mondo_set: unexpected " 916 "hypervisor error"); 917 } 918 919 tick = gettick(); 920 /* 921 * If there is a big jump between the current tick 922 * count and lasttick, we have probably hit a break 923 * point. Adjust endtick accordingly to avoid panic. 924 */ 925 if (tick > (lasttick + xc_tick_jump_limit)) 926 endtick += (tick - lasttick); 927 lasttick = tick; 928 if (tick > endtick) { 929 if (panic_quiesce) 930 return; 931 cmn_err(CE_CONT, "send mondo timeout " 932 "[retries: 0x%x] cpuids: ", retries); 933 for (i = 0; i < ncpuids; i++) 934 cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]); 935 cmn_err(CE_CONT, "\n"); 936 cmn_err(CE_PANIC, "send_mondo_set: timeout"); 937 } 938 939 while (gettick() < (tick + sys_clock_mhz)) 940 ; 941 retries++; 942 } while (ncpuids > 0); 943 944 CPU_STATS_ADDQ(CPU, sys, xcalls, shipped); 945 946 #ifdef SEND_MONDO_STATS 947 { 948 uint64_t n = gettick() - starttick; 949 if (n < 8192) 950 x_set_stimes[n >> 7]++; 951 else if (n < 15*8192) 952 x_set_ltimes[n >> 13]++; 953 else 954 x_set_ltimes[0xf]++; 955 } 956 x_set_cpus[shipped]++; 957 #endif 958 } 959 960 void 961 syncfpu(void) 962 { 963 } 964 965 void 966 sticksync_slave(void) 967 {} 968 969 void 970 sticksync_master(void) 971 {} 972 973 void 974 cpu_init_cache_scrub(void) 975 { 976 mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG); 977 } 978 979 int 980 dtrace_blksuword32_err(uintptr_t addr, uint32_t *data) 981 { 982 int ret, watched; 983 984 watched = watch_disable_addr((void *)addr, 4, S_WRITE); 985 ret = dtrace_blksuword32(addr, data, 0); 986 if (watched) 987 watch_enable_addr((void *)addr, 4, S_WRITE); 988 989 return (ret); 990 } 991 992 int 993 dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain) 994 { 995 if (suword32((void *)addr, *data) == -1) 996 return (tryagain ? dtrace_blksuword32_err(addr, data) : -1); 997 dtrace_flush_sec(addr); 998 999 return (0); 1000 } 1001 1002 /*ARGSUSED*/ 1003 void 1004 cpu_faulted_enter(struct cpu *cp) 1005 { 1006 } 1007 1008 /*ARGSUSED*/ 1009 void 1010 cpu_faulted_exit(struct cpu *cp) 1011 { 1012 } 1013 1014 static int 1015 kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg) 1016 { 1017 int rc, i; 1018 1019 for (rc = 0, i = 0; i < NCPU; i++) { 1020 if (CPU_IN_SET(cpu_ready_set, i)) 1021 rc += cb(i, arg); 1022 } 1023 1024 return (rc); 1025 } 1026 1027 /* 1028 * Sends a cross-call to a specified processor. The caller assumes 1029 * responsibility for repetition of cross-calls, as appropriate (MARSA for 1030 * debugging). 1031 */ 1032 static int 1033 kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1, 1034 uintptr_t arg2) 1035 { 1036 int stat; 1037 struct machcpu *mcpup; 1038 uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0; 1039 1040 mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m); 1041 1042 /* 1043 * if (idsr_busy()) 1044 * return (KDI_XC_RES_ERR); 1045 */ 1046 1047 init_mondo_nocheck((xcfunc_t *)func, arg1, arg2); 1048 1049 mcpup->cpu_list[0] = (uint16_t)cpuid; 1050 stat = shipit(1, mcpup->cpu_list_ra); 1051 1052 if (stat == 0) 1053 return (KDI_XC_RES_OK); 1054 else 1055 return (KDI_XC_RES_NACK); 1056 } 1057 1058 static void 1059 kdi_tickwait(clock_t nticks) 1060 { 1061 clock_t endtick = gettick() + nticks; 1062 1063 while (gettick() < endtick) 1064 ; 1065 } 1066 1067 static void 1068 kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size, 1069 int icache_linesize) 1070 { 1071 kdi_dcache_size = dcache_size; 1072 kdi_dcache_linesize = dcache_linesize; 1073 kdi_icache_size = icache_size; 1074 kdi_icache_linesize = icache_linesize; 1075 } 1076 1077 /* used directly by kdi_read/write_phys */ 1078 void 1079 kdi_flush_caches(void) 1080 { 1081 /* Not required on sun4v architecture. */ 1082 } 1083 1084 /*ARGSUSED*/ 1085 int 1086 kdi_get_stick(uint64_t *stickp) 1087 { 1088 return (-1); 1089 } 1090 1091 void 1092 cpu_kdi_init(kdi_t *kdi) 1093 { 1094 kdi->kdi_flush_caches = kdi_flush_caches; 1095 kdi->mkdi_cpu_init = kdi_cpu_init; 1096 kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter; 1097 kdi->mkdi_xc_one = kdi_xc_one; 1098 kdi->mkdi_tickwait = kdi_tickwait; 1099 kdi->mkdi_get_stick = kdi_get_stick; 1100 } 1101 1102 uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT]; 1103 static uint64_t soft_state_saved_state = (uint64_t)-1; 1104 static int soft_state_initialized = 0; 1105 static uint64_t soft_state_sup_minor; /* Supported minor number */ 1106 static hsvc_info_t soft_state_hsvc = { 1107 HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL }; 1108 1109 1110 static void 1111 sun4v_system_claim(void) 1112 { 1113 watchdog_suspend(); 1114 kldc_debug_enter(); 1115 /* 1116 * For "mdb -K", set soft state to debugging 1117 */ 1118 if (soft_state_saved_state == -1) { 1119 mach_get_soft_state(&soft_state_saved_state, 1120 &SOLARIS_SOFT_STATE_SAVED_MSG); 1121 } 1122 /* 1123 * check again as the read above may or may not have worked and if 1124 * it didn't then soft state will still be -1 1125 */ 1126 if (soft_state_saved_state != -1) { 1127 mach_set_soft_state(SIS_TRANSITION, 1128 &SOLARIS_SOFT_STATE_DEBUG_MSG); 1129 } 1130 } 1131 1132 static void 1133 sun4v_system_release(void) 1134 { 1135 watchdog_resume(); 1136 /* 1137 * For "mdb -K", set soft_state state back to original state on exit 1138 */ 1139 if (soft_state_saved_state != -1) { 1140 mach_set_soft_state(soft_state_saved_state, 1141 &SOLARIS_SOFT_STATE_SAVED_MSG); 1142 soft_state_saved_state = -1; 1143 } 1144 } 1145 1146 void 1147 plat_kdi_init(kdi_t *kdi) 1148 { 1149 kdi->pkdi_system_claim = sun4v_system_claim; 1150 kdi->pkdi_system_release = sun4v_system_release; 1151 } 1152 1153 /* 1154 * Routine to return memory information associated 1155 * with a physical address and syndrome. 1156 */ 1157 /* ARGSUSED */ 1158 int 1159 cpu_get_mem_info(uint64_t synd, uint64_t afar, 1160 uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep, 1161 int *segsp, int *banksp, int *mcidp) 1162 { 1163 return (ENOTSUP); 1164 } 1165 1166 /* 1167 * This routine returns the size of the kernel's FRU name buffer. 1168 */ 1169 size_t 1170 cpu_get_name_bufsize() 1171 { 1172 return (UNUM_NAMLEN); 1173 } 1174 1175 /* 1176 * This routine is a more generic interface to cpu_get_mem_unum(), 1177 * that may be used by other modules (e.g. mm). 1178 */ 1179 /* ARGSUSED */ 1180 int 1181 cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar, 1182 char *buf, int buflen, int *lenp) 1183 { 1184 return (ENOTSUP); 1185 } 1186 1187 /* ARGSUSED */ 1188 int 1189 cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp) 1190 { 1191 return (ENOTSUP); 1192 } 1193 1194 /* ARGSUSED */ 1195 int 1196 cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp) 1197 { 1198 return (ENOTSUP); 1199 } 1200 1201 /* 1202 * xt_sync - wait for previous x-traps to finish 1203 */ 1204 void 1205 xt_sync(cpuset_t cpuset) 1206 { 1207 union { 1208 uint8_t volatile byte[NCPU]; 1209 uint64_t volatile xword[NCPU / 8]; 1210 } cpu_sync; 1211 uint64_t starttick, endtick, tick, lasttick, traptrace_id; 1212 uint_t largestid, smallestid; 1213 int i, j; 1214 1215 kpreempt_disable(); 1216 CPUSET_DEL(cpuset, CPU->cpu_id); 1217 CPUSET_AND(cpuset, cpu_ready_set); 1218 1219 CPUSET_BOUNDS(cpuset, smallestid, largestid); 1220 if (smallestid == CPUSET_NOTINSET) 1221 goto out; 1222 1223 /* 1224 * Sun4v uses a queue for receiving mondos. Successful 1225 * transmission of a mondo only indicates that the mondo 1226 * has been written into the queue. 1227 * 1228 * We use an array of bytes to let each cpu to signal back 1229 * to the cross trap sender that the cross trap has been 1230 * executed. Set the byte to 1 before sending the cross trap 1231 * and wait until other cpus reset it to 0. 1232 */ 1233 bzero((void *)&cpu_sync, NCPU); 1234 cpu_sync.byte[smallestid] = 1; 1235 if (largestid != smallestid) { 1236 for (i = (smallestid + 1); i <= (largestid - 1); i++) 1237 if (CPU_IN_SET(cpuset, i)) 1238 cpu_sync.byte[i] = 1; 1239 cpu_sync.byte[largestid] = 1; 1240 } 1241 1242 /* 1243 * To help debug xt_sync panic, each mondo is uniquely identified 1244 * by passing the tick value, traptrace_id as the second mondo 1245 * argument to xt_some which is logged in CPU's mondo queue, 1246 * traptrace buffer and the panic message. 1247 */ 1248 traptrace_id = gettick(); 1249 xt_some(cpuset, (xcfunc_t *)xt_sync_tl1, 1250 (uint64_t)cpu_sync.byte, traptrace_id); 1251 1252 starttick = lasttick = gettick(); 1253 endtick = starttick + xc_sync_tick_limit; 1254 1255 for (i = (smallestid / 8); i <= (largestid / 8); i++) { 1256 while (cpu_sync.xword[i] != 0) { 1257 tick = gettick(); 1258 /* 1259 * If there is a big jump between the current tick 1260 * count and lasttick, we have probably hit a break 1261 * point. Adjust endtick accordingly to avoid panic. 1262 */ 1263 if (tick > (lasttick + xc_tick_jump_limit)) { 1264 endtick += (tick - lasttick); 1265 } 1266 lasttick = tick; 1267 if (tick > endtick) { 1268 if (panic_quiesce) 1269 goto out; 1270 cmn_err(CE_CONT, "Cross trap sync timeout: " 1271 "at cpu_sync.xword[%d]: 0x%lx " 1272 "cpu_sync.byte: 0x%lx " 1273 "starttick: 0x%lx endtick: 0x%lx " 1274 "traptrace_id = 0x%lx\n", 1275 i, cpu_sync.xword[i], 1276 (uint64_t)cpu_sync.byte, 1277 starttick, endtick, traptrace_id); 1278 cmn_err(CE_CONT, "CPUIDs:"); 1279 for (j = (i * 8); j <= largestid; j++) { 1280 if (cpu_sync.byte[j] != 0) 1281 cmn_err(CE_CONT, " 0x%x", j); 1282 } 1283 cmn_err(CE_PANIC, "xt_sync: timeout"); 1284 } 1285 } 1286 } 1287 1288 out: 1289 kpreempt_enable(); 1290 } 1291 1292 #define QFACTOR 200 1293 /* 1294 * Recalculate the values of the cross-call timeout variables based 1295 * on the value of the 'inter-cpu-latency' property of the platform node. 1296 * The property sets the number of nanosec to wait for a cross-call 1297 * to be acknowledged. Other timeout variables are derived from it. 1298 * 1299 * N.B. This implementation is aware of the internals of xc_init() 1300 * and updates many of the same variables. 1301 */ 1302 void 1303 recalc_xc_timeouts(void) 1304 { 1305 typedef union { 1306 uint64_t whole; 1307 struct { 1308 uint_t high; 1309 uint_t low; 1310 } half; 1311 } u_number; 1312 1313 /* See x_call.c for descriptions of these extern variables. */ 1314 extern uint64_t xc_tick_limit_scale; 1315 extern uint64_t xc_mondo_time_limit; 1316 extern uint64_t xc_func_time_limit; 1317 extern uint64_t xc_scale; 1318 extern uint64_t xc_mondo_multiplier; 1319 extern uint_t nsec_shift; 1320 1321 /* Temp versions of the target variables */ 1322 uint64_t tick_limit; 1323 uint64_t tick_jump_limit; 1324 uint64_t mondo_time_limit; 1325 uint64_t func_time_limit; 1326 uint64_t scale; 1327 1328 uint64_t latency; /* nanoseconds */ 1329 uint64_t maxfreq; 1330 uint64_t tick_limit_save = xc_tick_limit; 1331 uint64_t sync_tick_limit_save = xc_sync_tick_limit; 1332 uint_t tick_scale; 1333 uint64_t top; 1334 uint64_t bottom; 1335 u_number tk; 1336 1337 md_t *mdp; 1338 int nrnode; 1339 mde_cookie_t *platlist; 1340 1341 /* 1342 * Look up the 'inter-cpu-latency' (optional) property in the 1343 * platform node of the MD. The units are nanoseconds. 1344 */ 1345 if ((mdp = md_get_handle()) == NULL) { 1346 cmn_err(CE_WARN, "recalc_xc_timeouts: " 1347 "Unable to initialize machine description"); 1348 return; 1349 } 1350 1351 nrnode = md_alloc_scan_dag(mdp, 1352 md_root_node(mdp), "platform", "fwd", &platlist); 1353 1354 ASSERT(nrnode == 1); 1355 if (nrnode < 1) { 1356 cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing"); 1357 goto done; 1358 } 1359 if (md_get_prop_val(mdp, platlist[0], 1360 "inter-cpu-latency", &latency) == -1) 1361 goto done; 1362 1363 /* 1364 * clock.h defines an assembly-language macro 1365 * (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick 1366 * units to nanoseconds. Since the inter-cpu-latency 1367 * units are nanoseconds and the xc_* variables require 1368 * %stick units, we need the inverse of that function. 1369 * The trick is to perform the calculation without 1370 * floating point, but also without integer truncation 1371 * or overflow. To understand the calculation below, 1372 * please read the discussion of the macro in clock.h. 1373 * Since this new code will be invoked infrequently, 1374 * we can afford to implement it in C. 1375 * 1376 * tick_scale is the reciprocal of nsec_scale which is 1377 * calculated at startup in setcpudelay(). The calc 1378 * of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE 1379 * except we use tick_scale instead of nsec_scale and 1380 * C instead of assembler. 1381 */ 1382 tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq 1383 << (32 - nsec_shift)) / NANOSEC); 1384 1385 tk.whole = latency; 1386 top = ((uint64_t)tk.half.high << 4) * tick_scale; 1387 bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32; 1388 tick_limit = top + bottom; 1389 1390 /* 1391 * xc_init() calculated 'maxfreq' by looking at all the cpus, 1392 * and used it to derive some of the timeout variables that we 1393 * recalculate below. We can back into the original value by 1394 * using the inverse of one of those calculations. 1395 */ 1396 maxfreq = xc_mondo_time_limit / xc_scale; 1397 1398 /* 1399 * Don't allow the new timeout (xc_tick_limit) to fall below 1400 * the system tick frequency (stick). Allowing the timeout 1401 * to be set more tightly than this empirically determined 1402 * value may cause panics. 1403 */ 1404 tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit; 1405 1406 tick_jump_limit = tick_limit / 32; 1407 tick_limit *= xc_tick_limit_scale; 1408 1409 /* 1410 * Recalculate xc_scale since it is used in a callback function 1411 * (xc_func_timeout_adj) to adjust two of the timeouts dynamically. 1412 * Make the change in xc_scale proportional to the change in 1413 * xc_tick_limit. 1414 */ 1415 scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save; 1416 if (scale == 0) 1417 scale = 1; 1418 1419 mondo_time_limit = maxfreq * scale; 1420 func_time_limit = mondo_time_limit * xc_mondo_multiplier; 1421 1422 /* 1423 * Don't modify the timeouts if nothing has changed. Else, 1424 * stuff the variables with the freshly calculated (temp) 1425 * variables. This minimizes the window where the set of 1426 * values could be inconsistent. 1427 */ 1428 if (tick_limit != xc_tick_limit) { 1429 xc_tick_limit = tick_limit; 1430 xc_tick_jump_limit = tick_jump_limit; 1431 xc_scale = scale; 1432 xc_mondo_time_limit = mondo_time_limit; 1433 xc_func_time_limit = func_time_limit; 1434 } 1435 1436 done: 1437 /* 1438 * Increase the timeout limit for xt_sync() cross calls. 1439 */ 1440 xc_sync_tick_limit = xc_tick_limit * (cpu_q_entries / QFACTOR); 1441 xc_sync_tick_limit = xc_sync_tick_limit < xc_tick_limit ? 1442 xc_tick_limit : xc_sync_tick_limit; 1443 1444 /* 1445 * Force the new values to be used for future cross calls. 1446 * This is necessary only when we increase the timeouts. 1447 */ 1448 if ((xc_tick_limit > tick_limit_save) || (xc_sync_tick_limit > 1449 sync_tick_limit_save)) { 1450 cpuset_t cpuset = cpu_ready_set; 1451 xt_sync(cpuset); 1452 } 1453 1454 if (nrnode > 0) 1455 md_free_scan_dag(mdp, &platlist); 1456 (void) md_fini_handle(mdp); 1457 } 1458 1459 void 1460 mach_soft_state_init(void) 1461 { 1462 int i; 1463 uint64_t ra; 1464 1465 /* 1466 * Try to register soft_state api. If it fails, soft_state api has not 1467 * been implemented in the firmware, so do not bother to setup 1468 * soft_state in the kernel. 1469 */ 1470 if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) { 1471 return; 1472 } 1473 for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) { 1474 ASSERT(strlen((const char *)(void *) 1475 soft_state_message_strings + i) < SSM_SIZE); 1476 if ((ra = va_to_pa( 1477 (void *)(soft_state_message_strings + i))) == -1ll) { 1478 return; 1479 } 1480 soft_state_message_ra[i] = ra; 1481 } 1482 /* 1483 * Tell OBP that we are supporting Guest State 1484 */ 1485 prom_sun4v_soft_state_supported(); 1486 soft_state_initialized = 1; 1487 } 1488 1489 void 1490 mach_set_soft_state(uint64_t state, uint64_t *string_ra) 1491 { 1492 uint64_t rc; 1493 1494 if (soft_state_initialized && *string_ra) { 1495 rc = hv_soft_state_set(state, *string_ra); 1496 if (rc != H_EOK) { 1497 cmn_err(CE_WARN, 1498 "hv_soft_state_set returned %ld\n", rc); 1499 } 1500 } 1501 } 1502 1503 void 1504 mach_get_soft_state(uint64_t *state, uint64_t *string_ra) 1505 { 1506 uint64_t rc; 1507 1508 if (soft_state_initialized && *string_ra) { 1509 rc = hv_soft_state_get(*string_ra, state); 1510 if (rc != H_EOK) { 1511 cmn_err(CE_WARN, 1512 "hv_soft_state_get returned %ld\n", rc); 1513 *state = -1; 1514 } 1515 } 1516 } 1517