1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/machsystm.h> 28 #include <sys/sysmacros.h> 29 #include <sys/cpuvar.h> 30 #include <sys/async.h> 31 #include <sys/ontrap.h> 32 #include <sys/ddifm.h> 33 #include <sys/hypervisor_api.h> 34 #include <sys/errorq.h> 35 #include <sys/promif.h> 36 #include <sys/prom_plat.h> 37 #include <sys/x_call.h> 38 #include <sys/error.h> 39 #include <sys/fm/util.h> 40 #include <sys/ivintr.h> 41 #include <sys/machasi.h> 42 #include <sys/mmu.h> 43 #include <sys/archsystm.h> 44 45 #define MAX_CE_FLTS 10 46 #define MAX_ASYNC_FLTS 6 47 48 errorq_t *ue_queue; /* queue of uncorrectable errors */ 49 errorq_t *ce_queue; /* queue of correctable errors */ 50 51 /* 52 * Being used by memory test driver. 53 * ce_verbose_memory - covers CEs in DIMMs 54 * ce_verbose_other - covers "others" (ecache, IO, etc.) 55 * 56 * If the value is 0, nothing is logged. 57 * If the value is 1, the error is logged to the log file, but not console. 58 * If the value is 2, the error is logged to the log file and console. 59 */ 60 int ce_verbose_memory = 1; 61 int ce_verbose_other = 1; 62 63 int ce_show_data = 0; 64 int ce_debug = 0; 65 int ue_debug = 0; 66 int reset_debug = 0; 67 68 /* 69 * Tunables for controlling the handling of asynchronous faults (AFTs). Setting 70 * these to non-default values on a non-DEBUG kernel is NOT supported. 71 */ 72 int aft_verbose = 0; /* log AFT messages > 1 to log only */ 73 int aft_panic = 0; /* panic (not reboot) on fatal usermode AFLT */ 74 int aft_testfatal = 0; /* force all AFTs to panic immediately */ 75 76 /* 77 * Used for vbsc hostshutdown (power-off button) 78 */ 79 int err_shutdown_triggered = 0; /* only once */ 80 uint64_t err_shutdown_inum = 0; /* used to pull the trigger */ 81 82 /* 83 * Used to print NRE/RE via system variable or kmdb 84 */ 85 int printerrh = 0; /* see /etc/system */ 86 static void errh_er_print(errh_er_t *, const char *); 87 kmutex_t errh_print_lock; 88 89 /* 90 * Defined in bus_func.c but initialised in error_init 91 */ 92 extern kmutex_t bfd_lock; 93 94 static uint32_t rq_overflow_count = 0; /* counter for rq overflow */ 95 96 static void cpu_queue_one_event(errh_async_flt_t *); 97 static uint32_t count_entries_on_queue(uint64_t, uint64_t, uint32_t); 98 static void errh_page_retire(errh_async_flt_t *, uchar_t); 99 static int errh_error_protected(struct regs *, struct async_flt *, int *); 100 static void errh_rq_full(struct async_flt *); 101 static void ue_drain(void *, struct async_flt *, errorq_elem_t *); 102 static void ce_drain(void *, struct async_flt *, errorq_elem_t *); 103 static void errh_handle_attr(errh_async_flt_t *); 104 static void errh_handle_asr(errh_async_flt_t *); 105 106 /*ARGSUSED*/ 107 void 108 process_resumable_error(struct regs *rp, uint32_t head_offset, 109 uint32_t tail_offset) 110 { 111 struct machcpu *mcpup; 112 struct async_flt *aflt; 113 errh_async_flt_t errh_flt; 114 errh_er_t *head_va; 115 116 mcpup = &(CPU->cpu_m); 117 118 while (head_offset != tail_offset) { 119 /* kernel buffer starts right after the resumable queue */ 120 head_va = (errh_er_t *)(mcpup->cpu_rq_va + head_offset + 121 CPU_RQ_SIZE); 122 /* Copy the error report to local buffer */ 123 bzero(&errh_flt, sizeof (errh_async_flt_t)); 124 bcopy((char *)head_va, &(errh_flt.errh_er), 125 sizeof (errh_er_t)); 126 127 mcpup->cpu_rq_lastre = head_va; 128 if (printerrh) 129 errh_er_print(&errh_flt.errh_er, "RQ"); 130 131 /* Increment the queue head */ 132 head_offset += Q_ENTRY_SIZE; 133 /* Wrap around */ 134 head_offset &= (CPU_RQ_SIZE - 1); 135 136 /* set error handle to zero so it can hold new error report */ 137 head_va->ehdl = 0; 138 139 switch (errh_flt.errh_er.desc) { 140 case ERRH_DESC_UCOR_RE: 141 /* 142 * Check error attribute, handle individual error 143 * if it is needed. 144 */ 145 errh_handle_attr(&errh_flt); 146 break; 147 148 case ERRH_DESC_WARN_RE: 149 /* 150 * Power-off requested, but handle it one time only. 151 */ 152 if (!err_shutdown_triggered) { 153 setsoftint(err_shutdown_inum); 154 ++err_shutdown_triggered; 155 } 156 continue; 157 158 default: 159 cmn_err(CE_WARN, "Error Descriptor 0x%llx " 160 " invalid in resumable error handler", 161 (long long) errh_flt.errh_er.desc); 162 continue; 163 } 164 165 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 166 aflt->flt_id = gethrtime(); 167 aflt->flt_bus_id = getprocessorid(); 168 aflt->flt_class = CPU_FAULT; 169 aflt->flt_prot = AFLT_PROT_NONE; 170 aflt->flt_priv = (((errh_flt.errh_er.attr & ERRH_MODE_MASK) 171 >> ERRH_MODE_SHIFT) == ERRH_MODE_PRIV); 172 173 if (errh_flt.errh_er.attr & ERRH_ATTR_CPU) 174 /* If it is an error on other cpu */ 175 aflt->flt_panic = 1; 176 else 177 aflt->flt_panic = 0; 178 179 /* 180 * Handle resumable queue full case. 181 */ 182 if (errh_flt.errh_er.attr & ERRH_ATTR_RQF) { 183 (void) errh_rq_full(aflt); 184 } 185 186 /* 187 * Queue the error on ce or ue queue depend on flt_panic. 188 * Even if flt_panic is set, the code still keep processing 189 * the rest element on rq until the panic starts. 190 */ 191 (void) cpu_queue_one_event(&errh_flt); 192 193 /* 194 * Panic here if aflt->flt_panic has been set. 195 * Enqueued errors will be logged as part of the panic flow. 196 */ 197 if (aflt->flt_panic) { 198 fm_panic("Unrecoverable error on another CPU"); 199 } 200 } 201 } 202 203 void 204 process_nonresumable_error(struct regs *rp, uint64_t flags, 205 uint32_t head_offset, uint32_t tail_offset) 206 { 207 struct machcpu *mcpup; 208 struct async_flt *aflt; 209 errh_async_flt_t errh_flt; 210 errh_er_t *head_va; 211 int trampolined = 0; 212 int expected = DDI_FM_ERR_UNEXPECTED; 213 uint64_t exec_mode; 214 uint8_t u_spill_fill; 215 int u_kill = 1; 216 217 mcpup = &(CPU->cpu_m); 218 219 while (head_offset != tail_offset) { 220 /* kernel buffer starts right after the nonresumable queue */ 221 head_va = (errh_er_t *)(mcpup->cpu_nrq_va + head_offset + 222 CPU_NRQ_SIZE); 223 224 /* Copy the error report to local buffer */ 225 bzero(&errh_flt, sizeof (errh_async_flt_t)); 226 227 bcopy((char *)head_va, &(errh_flt.errh_er), 228 sizeof (errh_er_t)); 229 230 mcpup->cpu_nrq_lastnre = head_va; 231 if (printerrh) 232 errh_er_print(&errh_flt.errh_er, "NRQ"); 233 234 /* Increment the queue head */ 235 head_offset += Q_ENTRY_SIZE; 236 /* Wrap around */ 237 head_offset &= (CPU_NRQ_SIZE - 1); 238 239 /* set error handle to zero so it can hold new error report */ 240 head_va->ehdl = 0; 241 242 aflt = (struct async_flt *)&(errh_flt.cmn_asyncflt); 243 244 trampolined = 0; 245 246 if (errh_flt.errh_er.attr & ERRH_ATTR_PIO) 247 aflt->flt_class = BUS_FAULT; 248 else 249 aflt->flt_class = CPU_FAULT; 250 251 aflt->flt_id = gethrtime(); 252 aflt->flt_bus_id = getprocessorid(); 253 aflt->flt_pc = (caddr_t)rp->r_pc; 254 exec_mode = (errh_flt.errh_er.attr & ERRH_MODE_MASK) 255 >> ERRH_MODE_SHIFT; 256 aflt->flt_priv = (exec_mode == ERRH_MODE_PRIV || 257 exec_mode == ERRH_MODE_UNKNOWN); 258 aflt->flt_prot = AFLT_PROT_NONE; 259 aflt->flt_tl = (uchar_t)(flags & ERRH_TL_MASK); 260 aflt->flt_panic = ((aflt->flt_tl != 0) || 261 (aft_testfatal != 0)); 262 263 /* 264 * For the first error packet on the queue, check if it 265 * happened in user fill/spill trap. 266 */ 267 if (flags & ERRH_U_SPILL_FILL) { 268 u_spill_fill = 1; 269 /* clear the user fill/spill flag in flags */ 270 flags = (uint64_t)aflt->flt_tl; 271 } else 272 u_spill_fill = 0; 273 274 switch (errh_flt.errh_er.desc) { 275 case ERRH_DESC_PR_NRE: 276 if (u_spill_fill) { 277 aflt->flt_panic = 0; 278 break; 279 } 280 /* 281 * Context Register Parity - for reload of secondary 282 * context register, see nonresumable_error. Note 283 * that 'size' for CRP denotes a sense of version, 284 * so if it's out of range, then just let it fall 285 * through and be processed later. 286 */ 287 if ((errh_flt.errh_er.attr & ERRH_ATTR_ASI) && 288 (errh_flt.errh_er.asi == ASI_MMU_CTX) && 289 (errh_flt.errh_er.addr >= MMU_PCONTEXT0) && 290 (errh_flt.errh_er.addr + errh_flt.errh_er.sz <= 291 MMU_SCONTEXT1 + sizeof (uint64_t))) { 292 293 if (aflt->flt_tl) /* TL>0, so panic */ 294 break; 295 296 u_kill = 0; /* do not terminate */ 297 break; 298 } 299 /* 300 * All other PR_NRE fall through in order to 301 * check for protection. The list can include 302 * ERRH_ATTR_FRF, ERRH_ATTR_IRF, ERRH_ATTR_MEM, 303 * and ERRH_ATTR_PIO. 304 */ 305 /*FALLTHRU*/ 306 307 case ERRH_DESC_DEF_NRE: 308 /* 309 * If the trap occurred in privileged mode at TL=0, 310 * we need to check to see if we were executing 311 * in kernel under on_trap() or t_lofault 312 * protection. If so, and if it was a PIO or MEM 313 * error, then modify the saved registers so that 314 * we return from the trap to the appropriate 315 * trampoline routine. 316 */ 317 if (aflt->flt_priv == 1 && aflt->flt_tl == 0 && 318 ((errh_flt.errh_er.attr & ERRH_ATTR_PIO) || 319 (errh_flt.errh_er.attr & ERRH_ATTR_MEM))) { 320 trampolined = 321 errh_error_protected(rp, aflt, &expected); 322 } 323 324 if (!aflt->flt_priv || aflt->flt_prot == 325 AFLT_PROT_COPY) { 326 aflt->flt_panic |= aft_panic; 327 } else if (!trampolined && 328 (aflt->flt_class != BUS_FAULT)) { 329 aflt->flt_panic = 1; 330 } 331 332 /* 333 * Check error attribute, handle individual error 334 * if it is needed. 335 */ 336 errh_handle_attr(&errh_flt); 337 338 /* 339 * If PIO error, we need to query the bus nexus 340 * for fatal errors. 341 */ 342 if (aflt->flt_class == BUS_FAULT) { 343 aflt->flt_addr = errh_flt.errh_er.addr; 344 errh_cpu_run_bus_error_handlers(aflt, 345 expected); 346 } 347 348 break; 349 350 case ERRH_DESC_USER_DCORE: 351 /* 352 * User generated panic. Call panic directly 353 * since there are no FMA e-reports to 354 * display. 355 */ 356 357 panic("Panic - Generated at user request"); 358 359 break; 360 361 default: 362 cmn_err(CE_WARN, "Panic - Error Descriptor 0x%llx " 363 " invalid in non-resumable error handler", 364 (long long) errh_flt.errh_er.desc); 365 aflt->flt_panic = 1; 366 break; 367 } 368 369 /* 370 * Queue the error report for further processing. If 371 * flt_panic is set, code still process other errors 372 * in the queue until the panic routine stops the 373 * kernel. 374 */ 375 (void) cpu_queue_one_event(&errh_flt); 376 377 /* 378 * Panic here if aflt->flt_panic has been set. 379 * Enqueued errors will be logged as part of the panic flow. 380 */ 381 if (aflt->flt_panic) { 382 fm_panic("Unrecoverable hardware error"); 383 } 384 385 /* 386 * Call page_retire() to handle memory errors. 387 */ 388 if (errh_flt.errh_er.attr & ERRH_ATTR_MEM) 389 errh_page_retire(&errh_flt, PR_UE); 390 391 /* 392 * If we queued an error for a thread that should terminate 393 * and it was in user mode or protected by t_lofault, set AST 394 * flag so the queue will be drained before returning to user 395 * mode. Note that user threads can be killed via pcb_flags. 396 */ 397 if (u_kill && (!aflt->flt_priv || 398 aflt->flt_prot == AFLT_PROT_COPY || u_spill_fill)) { 399 int pcb_flag = 0; 400 401 if (aflt->flt_class == CPU_FAULT) 402 pcb_flag |= ASYNC_HWERR; 403 else if (aflt->flt_class == BUS_FAULT) 404 pcb_flag |= ASYNC_BERR; 405 406 ttolwp(curthread)->lwp_pcb.pcb_flags |= pcb_flag; 407 aston(curthread); 408 } 409 } 410 } 411 412 /* 413 * For PIO errors, this routine calls nexus driver's error 414 * callback routines. If the callback routine returns fatal, and 415 * we are in kernel or unknow mode without any error protection, 416 * we need to turn on the panic flag. 417 */ 418 void 419 errh_cpu_run_bus_error_handlers(struct async_flt *aflt, int expected) 420 { 421 int status; 422 ddi_fm_error_t de; 423 424 bzero(&de, sizeof (ddi_fm_error_t)); 425 426 de.fme_version = DDI_FME_VERSION; 427 de.fme_ena = fm_ena_generate(aflt->flt_id, FM_ENA_FMT1); 428 de.fme_flag = expected; 429 de.fme_bus_specific = (void *)aflt->flt_addr; 430 status = ndi_fm_handler_dispatch(ddi_root_node(), NULL, &de); 431 432 /* 433 * If error is protected, it will jump to proper routine 434 * to handle the handle; if it is in user level, we just 435 * kill the user process; if the driver thinks the error is 436 * not fatal, we can drive on. If none of above are true, 437 * we panic 438 */ 439 if ((aflt->flt_prot == AFLT_PROT_NONE) && (aflt->flt_priv == 1) && 440 (status == DDI_FM_FATAL)) 441 aflt->flt_panic = 1; 442 } 443 444 /* 445 * This routine checks to see if we are under any error protection when 446 * the error happens. If we are under error protection, we unwind to 447 * the protection and indicate fault. 448 */ 449 static int 450 errh_error_protected(struct regs *rp, struct async_flt *aflt, int *expected) 451 { 452 int trampolined = 0; 453 ddi_acc_hdl_t *hp; 454 455 if (curthread->t_ontrap != NULL) { 456 on_trap_data_t *otp = curthread->t_ontrap; 457 458 if (otp->ot_prot & OT_DATA_EC) { 459 aflt->flt_prot = AFLT_PROT_EC; 460 otp->ot_trap |= OT_DATA_EC; 461 rp->r_pc = otp->ot_trampoline; 462 rp->r_npc = rp->r_pc +4; 463 trampolined = 1; 464 } 465 466 if (otp->ot_prot & OT_DATA_ACCESS) { 467 aflt->flt_prot = AFLT_PROT_ACCESS; 468 otp->ot_trap |= OT_DATA_ACCESS; 469 rp->r_pc = otp->ot_trampoline; 470 rp->r_npc = rp->r_pc + 4; 471 trampolined = 1; 472 /* 473 * for peek and caut_gets 474 * errors are expected 475 */ 476 hp = (ddi_acc_hdl_t *)otp->ot_handle; 477 if (!hp) 478 *expected = DDI_FM_ERR_PEEK; 479 else if (hp->ah_acc.devacc_attr_access == 480 DDI_CAUTIOUS_ACC) 481 *expected = DDI_FM_ERR_EXPECTED; 482 } 483 } else if (curthread->t_lofault) { 484 aflt->flt_prot = AFLT_PROT_COPY; 485 rp->r_g1 = EFAULT; 486 rp->r_pc = curthread->t_lofault; 487 rp->r_npc = rp->r_pc + 4; 488 trampolined = 1; 489 } 490 491 return (trampolined); 492 } 493 494 /* 495 * Queue one event. 496 */ 497 static void 498 cpu_queue_one_event(errh_async_flt_t *errh_fltp) 499 { 500 struct async_flt *aflt = (struct async_flt *)errh_fltp; 501 errorq_t *eqp; 502 503 if (aflt->flt_panic) 504 eqp = ue_queue; 505 else 506 eqp = ce_queue; 507 508 errorq_dispatch(eqp, errh_fltp, sizeof (errh_async_flt_t), 509 aflt->flt_panic); 510 } 511 512 /* 513 * The cpu_async_log_err() function is called by the ce/ue_drain() function to 514 * handle logging for CPU events that are dequeued. As such, it can be invoked 515 * from softint context, from AST processing in the trap() flow, or from the 516 * panic flow. We decode the CPU-specific data, and log appropriate messages. 517 */ 518 void 519 cpu_async_log_err(void *flt) 520 { 521 errh_async_flt_t *errh_fltp = (errh_async_flt_t *)flt; 522 errh_er_t *errh_erp = (errh_er_t *)&errh_fltp->errh_er; 523 524 switch (errh_erp->desc) { 525 case ERRH_DESC_UCOR_RE: 526 if (errh_erp->attr & ERRH_ATTR_MEM) { 527 /* 528 * Turn on the PR_UE flag. The page will be 529 * scrubbed when it is freed. 530 */ 531 errh_page_retire(errh_fltp, PR_UE); 532 } 533 534 break; 535 536 case ERRH_DESC_PR_NRE: 537 case ERRH_DESC_DEF_NRE: 538 if (errh_erp->attr & ERRH_ATTR_MEM) { 539 /* 540 * For non-resumable memory error, retire 541 * the page here. 542 */ 543 errh_page_retire(errh_fltp, PR_UE); 544 545 /* 546 * If we are going to panic, scrub the page first 547 */ 548 if (errh_fltp->cmn_asyncflt.flt_panic) 549 mem_scrub(errh_fltp->errh_er.addr, 550 errh_fltp->errh_er.sz); 551 } 552 break; 553 554 default: 555 break; 556 } 557 } 558 559 /* 560 * Called from ce_drain(). 561 */ 562 void 563 cpu_ce_log_err(struct async_flt *aflt) 564 { 565 switch (aflt->flt_class) { 566 case CPU_FAULT: 567 cpu_async_log_err(aflt); 568 break; 569 570 case BUS_FAULT: 571 cpu_async_log_err(aflt); 572 break; 573 574 default: 575 break; 576 } 577 } 578 579 /* 580 * Called from ue_drain(). 581 */ 582 void 583 cpu_ue_log_err(struct async_flt *aflt) 584 { 585 switch (aflt->flt_class) { 586 case CPU_FAULT: 587 cpu_async_log_err(aflt); 588 break; 589 590 case BUS_FAULT: 591 cpu_async_log_err(aflt); 592 break; 593 594 default: 595 break; 596 } 597 } 598 599 /* 600 * Turn on flag on the error memory region. 601 */ 602 static void 603 errh_page_retire(errh_async_flt_t *errh_fltp, uchar_t flag) 604 { 605 uint64_t flt_real_addr_start = errh_fltp->errh_er.addr; 606 uint64_t flt_real_addr_end = flt_real_addr_start + 607 errh_fltp->errh_er.sz - 1; 608 int64_t current_addr; 609 610 if (errh_fltp->errh_er.sz == 0) 611 return; 612 613 for (current_addr = flt_real_addr_start; 614 current_addr < flt_real_addr_end; current_addr += MMU_PAGESIZE) { 615 (void) page_retire(current_addr, flag); 616 } 617 } 618 619 void 620 mem_scrub(uint64_t paddr, uint64_t len) 621 { 622 uint64_t pa, length, scrubbed_len; 623 624 pa = paddr; 625 length = len; 626 scrubbed_len = 0; 627 628 while (length > 0) { 629 if (hv_mem_scrub(pa, length, &scrubbed_len) != H_EOK) 630 break; 631 632 pa += scrubbed_len; 633 length -= scrubbed_len; 634 } 635 } 636 637 /* 638 * Call hypervisor to flush the memory region. 639 * Both va and len must be MMU_PAGESIZE aligned. 640 * Returns the total number of bytes flushed. 641 */ 642 uint64_t 643 mem_sync(caddr_t orig_va, size_t orig_len) 644 { 645 uint64_t pa, length, flushed; 646 uint64_t chunk_len = MMU_PAGESIZE; 647 uint64_t total_flushed = 0; 648 uint64_t va, len; 649 650 if (orig_len == 0) 651 return (total_flushed); 652 653 /* align va */ 654 va = P2ALIGN_TYPED(orig_va, MMU_PAGESIZE, uint64_t); 655 /* round up len to MMU_PAGESIZE aligned */ 656 len = P2ROUNDUP_TYPED(orig_va + orig_len, MMU_PAGESIZE, uint64_t) - va; 657 658 while (len > 0) { 659 pa = va_to_pa((caddr_t)va); 660 if (pa == (uint64_t)-1) 661 return (total_flushed); 662 663 length = chunk_len; 664 flushed = 0; 665 666 while (length > 0) { 667 if (hv_mem_sync(pa, length, &flushed) != H_EOK) 668 return (total_flushed); 669 670 pa += flushed; 671 length -= flushed; 672 total_flushed += flushed; 673 } 674 675 va += chunk_len; 676 len -= chunk_len; 677 } 678 679 return (total_flushed); 680 } 681 682 /* 683 * If resumable queue is full, we need to check if any cpu is in 684 * error state. If not, we drive on. If yes, we need to panic. The 685 * hypervisor call hv_cpu_state() is being used for checking the 686 * cpu state. And reset %tick_compr in case tick-compare was lost. 687 */ 688 static void 689 errh_rq_full(struct async_flt *afltp) 690 { 691 processorid_t who; 692 uint64_t cpu_state; 693 uint64_t retval; 694 uint64_t current_tick; 695 696 current_tick = (uint64_t)gettick(); 697 tickcmpr_set(current_tick); 698 699 for (who = 0; who < NCPU; who++) 700 if (CPU_IN_SET(cpu_ready_set, who)) { 701 retval = hv_cpu_state(who, &cpu_state); 702 if (retval != H_EOK || cpu_state == CPU_STATE_ERROR) { 703 afltp->flt_panic = 1; 704 break; 705 } 706 } 707 } 708 709 /* 710 * Return processor specific async error structure 711 * size used. 712 */ 713 int 714 cpu_aflt_size(void) 715 { 716 return (sizeof (errh_async_flt_t)); 717 } 718 719 #define SZ_TO_ETRS_SHIFT 6 720 721 /* 722 * Message print out when resumable queue is overflown 723 */ 724 /*ARGSUSED*/ 725 void 726 rq_overflow(struct regs *rp, uint64_t head_offset, 727 uint64_t tail_offset) 728 { 729 rq_overflow_count++; 730 } 731 732 /* 733 * Handler to process a fatal error. This routine can be called from a 734 * softint, called from trap()'s AST handling, or called from the panic flow. 735 */ 736 /*ARGSUSED*/ 737 static void 738 ue_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 739 { 740 cpu_ue_log_err(aflt); 741 } 742 743 /* 744 * Handler to process a correctable error. This routine can be called from a 745 * softint. We just call the CPU module's logging routine. 746 */ 747 /*ARGSUSED*/ 748 static void 749 ce_drain(void *ignored, struct async_flt *aflt, errorq_elem_t *eqep) 750 { 751 cpu_ce_log_err(aflt); 752 } 753 754 /* 755 * Handler to process vbsc hostshutdown (power-off button). 756 */ 757 static int 758 err_shutdown_softintr() 759 { 760 cmn_err(CE_WARN, "Power-off requested, system will now shutdown."); 761 do_shutdown(); 762 763 /* 764 * just in case do_shutdown() fails 765 */ 766 (void) timeout((void(*)(void *))power_down, NULL, 100 * hz); 767 return (DDI_INTR_CLAIMED); 768 } 769 770 /* 771 * Allocate error queue sizes based on max_ncpus. max_ncpus is set just 772 * after ncpunode has been determined. ncpus is set in start_other_cpus 773 * which is called after error_init() but may change dynamically. 774 */ 775 void 776 error_init(void) 777 { 778 char tmp_name[MAXSYSNAME]; 779 pnode_t node; 780 size_t size = cpu_aflt_size(); 781 782 /* 783 * Initialize the correctable and uncorrectable error queues. 784 */ 785 ue_queue = errorq_create("ue_queue", (errorq_func_t)ue_drain, NULL, 786 MAX_ASYNC_FLTS * (max_ncpus + 1), size, PIL_2, ERRORQ_VITAL); 787 788 ce_queue = errorq_create("ce_queue", (errorq_func_t)ce_drain, NULL, 789 MAX_CE_FLTS * (max_ncpus + 1), size, PIL_1, 0); 790 791 if (ue_queue == NULL || ce_queue == NULL) 792 panic("failed to create required system error queue"); 793 794 /* 795 * Setup interrupt handler for power-off button. 796 */ 797 err_shutdown_inum = add_softintr(PIL_9, 798 (softintrfunc)err_shutdown_softintr, NULL, SOFTINT_ST); 799 800 /* 801 * Initialize the busfunc list mutex. This must be a PIL_15 spin lock 802 * because we will need to acquire it from cpu_async_error(). 803 */ 804 mutex_init(&bfd_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 805 806 /* Only allow one cpu at a time to dump errh errors. */ 807 mutex_init(&errh_print_lock, NULL, MUTEX_SPIN, (void *)PIL_15); 808 809 node = prom_rootnode(); 810 if ((node == OBP_NONODE) || (node == OBP_BADNODE)) { 811 cmn_err(CE_CONT, "error_init: node 0x%x\n", (uint_t)node); 812 return; 813 } 814 815 if (((size = prom_getproplen(node, "reset-reason")) != -1) && 816 (size <= MAXSYSNAME) && 817 (prom_getprop(node, "reset-reason", tmp_name) != -1)) { 818 if (reset_debug) { 819 cmn_err(CE_CONT, "System booting after %s\n", tmp_name); 820 } else if (strncmp(tmp_name, "FATAL", 5) == 0) { 821 cmn_err(CE_CONT, 822 "System booting after fatal error %s\n", tmp_name); 823 } 824 } 825 } 826 827 /* 828 * Nonresumable queue is full, panic here 829 */ 830 /*ARGSUSED*/ 831 void 832 nrq_overflow(struct regs *rp) 833 { 834 fm_panic("Nonresumable queue full"); 835 } 836 837 /* 838 * This is the place for special error handling for individual errors. 839 */ 840 static void 841 errh_handle_attr(errh_async_flt_t *errh_fltp) 842 { 843 switch (errh_fltp->errh_er.attr & ~ERRH_MODE_MASK) { 844 case ERRH_ATTR_CPU: 845 case ERRH_ATTR_MEM: 846 case ERRH_ATTR_PIO: 847 case ERRH_ATTR_IRF: 848 case ERRH_ATTR_FRF: 849 case ERRH_ATTR_SHUT: 850 break; 851 852 case ERRH_ATTR_ASR: 853 errh_handle_asr(errh_fltp); 854 break; 855 856 case ERRH_ATTR_ASI: 857 case ERRH_ATTR_PREG: 858 case ERRH_ATTR_RQF: 859 break; 860 861 default: 862 break; 863 } 864 } 865 866 /* 867 * Handle ASR bit set in ATTR 868 */ 869 static void 870 errh_handle_asr(errh_async_flt_t *errh_fltp) 871 { 872 uint64_t current_tick; 873 874 switch (errh_fltp->errh_er.reg) { 875 case ASR_REG_VALID | ASR_REG_TICK: 876 /* 877 * For Tick Compare Register error, it only happens when 878 * the register is being read or compared with the %tick 879 * register. Since we lost the contents of the register, 880 * we set the %tick_compr in the future. An interrupt will 881 * happen when %tick matches the value field of %tick_compr. 882 */ 883 current_tick = (uint64_t)gettick(); 884 tickcmpr_set(current_tick); 885 /* Do not panic */ 886 errh_fltp->cmn_asyncflt.flt_panic = 0; 887 break; 888 889 default: 890 break; 891 } 892 } 893 894 /* 895 * Dump the error packet 896 */ 897 /*ARGSUSED*/ 898 static void 899 errh_er_print(errh_er_t *errh_erp, const char *queue) 900 { 901 typedef union { 902 uint64_t w; 903 uint16_t s[4]; 904 } errhp_t; 905 errhp_t *p = (errhp_t *)errh_erp; 906 int i; 907 908 mutex_enter(&errh_print_lock); 909 switch (errh_erp->desc) { 910 case ERRH_DESC_UCOR_RE: 911 cmn_err(CE_CONT, "\nResumable Uncorrectable Error "); 912 break; 913 case ERRH_DESC_PR_NRE: 914 cmn_err(CE_CONT, "\nNonresumable Precise Error "); 915 break; 916 case ERRH_DESC_DEF_NRE: 917 cmn_err(CE_CONT, "\nNonresumable Deferred Error "); 918 break; 919 default: 920 cmn_err(CE_CONT, "\nError packet "); 921 break; 922 } 923 cmn_err(CE_CONT, "received on %s\n", queue); 924 925 /* 926 * Print Q_ENTRY_SIZE bytes of epacket with 8 bytes per line 927 */ 928 for (i = Q_ENTRY_SIZE; i > 0; i -= 8, ++p) { 929 cmn_err(CE_CONT, "%016lx: %04x %04x %04x %04x\n", (uint64_t)p, 930 p->s[0], p->s[1], p->s[2], p->s[3]); 931 } 932 mutex_exit(&errh_print_lock); 933 } 934