xref: /illumos-gate/usr/src/uts/sun4v/io/vds.c (revision f6f4cb8ada400367a1921f6b93fb9e02f53ac5e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Virtual disk server
29  */
30 
31 
32 #include <sys/types.h>
33 #include <sys/conf.h>
34 #include <sys/crc32.h>
35 #include <sys/ddi.h>
36 #include <sys/dkio.h>
37 #include <sys/file.h>
38 #include <sys/fs/hsfs_isospec.h>
39 #include <sys/mdeg.h>
40 #include <sys/mhd.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vio_util.h>
50 #include <sys/vdsk_mailbox.h>
51 #include <sys/vdsk_common.h>
52 #include <sys/vtoc.h>
53 #include <sys/vfs.h>
54 #include <sys/stat.h>
55 #include <sys/scsi/impl/uscsi.h>
56 #include <sys/ontrap.h>
57 #include <vm/seg_map.h>
58 
59 #define	ONE_TERABYTE	(1ULL << 40)
60 
61 /* Virtual disk server initialization flags */
62 #define	VDS_LDI			0x01
63 #define	VDS_MDEG		0x02
64 
65 /* Virtual disk server tunable parameters */
66 #define	VDS_RETRIES		5
67 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
68 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
69 #define	VDS_NCHAINS		32
70 
71 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
72 #define	VDS_NAME		"virtual-disk-server"
73 
74 #define	VD_NAME			"vd"
75 #define	VD_VOLUME_NAME		"vdisk"
76 #define	VD_ASCIILABEL		"Virtual Disk"
77 
78 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
79 #define	VD_ID_PROP		"id"
80 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
81 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
82 #define	VD_REG_PROP		"reg"
83 
84 /* Virtual disk initialization flags */
85 #define	VD_DISK_READY		0x01
86 #define	VD_LOCKING		0x02
87 #define	VD_LDC			0x04
88 #define	VD_DRING		0x08
89 #define	VD_SID			0x10
90 #define	VD_SEQ_NUM		0x20
91 #define	VD_SETUP_ERROR		0x40
92 
93 /* Flags for writing to a vdisk which is a file */
94 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
95 
96 /* Number of backup labels */
97 #define	VD_FILE_NUM_BACKUP	5
98 
99 /* Timeout for SCSI I/O */
100 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
101 
102 /* Maximum number of logical partitions */
103 #define	VD_MAXPART	(NDKMAP + 1)
104 
105 /*
106  * By Solaris convention, slice/partition 2 represents the entire disk;
107  * unfortunately, this convention does not appear to be codified.
108  */
109 #define	VD_ENTIRE_DISK_SLICE	2
110 
111 /* Logical block address for EFI */
112 #define	VD_EFI_LBA_GPT		1	/* LBA of the GPT */
113 #define	VD_EFI_LBA_GPE		2	/* LBA of the GPE */
114 
115 /* Driver types */
116 typedef enum vd_driver {
117 	VD_DRIVER_UNKNOWN = 0,	/* driver type unknown  */
118 	VD_DRIVER_DISK,		/* disk driver */
119 	VD_DRIVER_VOLUME	/* volume driver */
120 } vd_driver_t;
121 
122 #define	VD_DRIVER_NAME_LEN	64
123 
124 #define	VDS_NUM_DRIVERS	(sizeof (vds_driver_types) / sizeof (vd_driver_type_t))
125 
126 typedef struct vd_driver_type {
127 	char name[VD_DRIVER_NAME_LEN];	/* driver name */
128 	vd_driver_t type;		/* driver type (disk or volume) */
129 } vd_driver_type_t;
130 
131 /*
132  * There is no reliable way to determine if a device is representing a disk
133  * or a volume, especially with pseudo devices. So we maintain a list of well
134  * known drivers and the type of device they represent (either a disk or a
135  * volume).
136  *
137  * The list can be extended by adding a "driver-type-list" entry in vds.conf
138  * with the following syntax:
139  *
140  * 	driver-type-list="<driver>:<type>", ... ,"<driver>:<type>";
141  *
142  * Where:
143  *	<driver> is the name of a driver (limited to 64 characters)
144  *	<type> is either the string "disk" or "volume"
145  *
146  * Invalid entries in "driver-type-list" will be ignored.
147  *
148  * For example, the following line in vds.conf:
149  *
150  * 	driver-type-list="foo:disk","bar:volume";
151  *
152  * defines that "foo" is a disk driver, and driver "bar" is a volume driver.
153  *
154  * When a list is defined in vds.conf, it is checked before the built-in list
155  * (vds_driver_types[]) so that any definition from this list can be overriden
156  * using vds.conf.
157  */
158 vd_driver_type_t vds_driver_types[] = {
159 	{ "dad",	VD_DRIVER_DISK },	/* Solaris */
160 	{ "did",	VD_DRIVER_DISK },	/* Sun Cluster */
161 	{ "emcp",	VD_DRIVER_DISK },	/* EMC Powerpath */
162 	{ "lofi",	VD_DRIVER_VOLUME },	/* Solaris */
163 	{ "md",		VD_DRIVER_VOLUME },	/* Solaris - SVM */
164 	{ "sd",		VD_DRIVER_DISK },	/* Solaris */
165 	{ "ssd",	VD_DRIVER_DISK },	/* Solaris */
166 	{ "vdc",	VD_DRIVER_DISK },	/* Solaris */
167 	{ "vxdmp",	VD_DRIVER_DISK },	/* Veritas */
168 	{ "vxio",	VD_DRIVER_VOLUME },	/* Veritas - VxVM */
169 	{ "zfs",	VD_DRIVER_VOLUME }	/* Solaris */
170 };
171 
172 /* Return a cpp token as a string */
173 #define	STRINGIZE(token)	#token
174 
175 /*
176  * Print a message prefixed with the current function name to the message log
177  * (and optionally to the console for verbose boots); these macros use cpp's
178  * concatenation of string literals and C99 variable-length-argument-list
179  * macros
180  */
181 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
182 #define	_PRN(format, ...)					\
183 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
184 
185 /* Return a pointer to the "i"th vdisk dring element */
186 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
187 	    (vd->dring + (i)*vd->descriptor_size))
188 
189 /* Return the virtual disk client's type as a string (for use in messages) */
190 #define	VD_CLIENT(vd)							\
191 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
192 	    (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" :    \
193 		(((vd)->xfer_mode == 0) ? "null client" :		\
194 		    "unsupported client")))
195 
196 /* Read disk label from a disk on file */
197 #define	VD_FILE_LABEL_READ(vd, labelp) \
198 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
199 	    0, sizeof (struct dk_label))
200 
201 /* Write disk label to a disk on file */
202 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
203 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
204 	    0, sizeof (struct dk_label))
205 
206 /* Message for disk access rights reset failure */
207 #define	VD_RESET_ACCESS_FAILURE_MSG \
208 	"Fail to reset disk access rights for disk %s"
209 
210 /*
211  * Specification of an MD node passed to the MDEG to filter any
212  * 'vport' nodes that do not belong to the specified node. This
213  * template is copied for each vds instance and filled in with
214  * the appropriate 'cfg-handle' value before being passed to the MDEG.
215  */
216 static mdeg_prop_spec_t	vds_prop_template[] = {
217 	{ MDET_PROP_STR,	"name",		VDS_NAME },
218 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
219 	{ MDET_LIST_END,	NULL, 		NULL }
220 };
221 
222 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
223 
224 /*
225  * Matching criteria passed to the MDEG to register interest
226  * in changes to 'virtual-device-port' nodes identified by their
227  * 'id' property.
228  */
229 static md_prop_match_t	vd_prop_match[] = {
230 	{ MDET_PROP_VAL,	VD_ID_PROP },
231 	{ MDET_LIST_END,	NULL }
232 };
233 
234 static mdeg_node_match_t vd_match = {"virtual-device-port",
235 				    vd_prop_match};
236 
237 /*
238  * Options for the VD_BLOCK_DEVICE_OPTS property.
239  */
240 #define	VD_OPT_RDONLY		0x1	/* read-only  */
241 #define	VD_OPT_SLICE		0x2	/* single slice */
242 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
243 
244 #define	VD_OPTION_NLEN	128
245 
246 typedef struct vd_option {
247 	char vdo_name[VD_OPTION_NLEN];
248 	uint64_t vdo_value;
249 } vd_option_t;
250 
251 vd_option_t vd_bdev_options[] = {
252 	{ "ro",		VD_OPT_RDONLY },
253 	{ "slice", 	VD_OPT_SLICE },
254 	{ "excl",	VD_OPT_EXCLUSIVE }
255 };
256 
257 /* Debugging macros */
258 #ifdef DEBUG
259 
260 static int	vd_msglevel = 0;
261 
262 #define	PR0 if (vd_msglevel > 0)	PRN
263 #define	PR1 if (vd_msglevel > 1)	PRN
264 #define	PR2 if (vd_msglevel > 2)	PRN
265 
266 #define	VD_DUMP_DRING_ELEM(elem)					\
267 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
268 	    elem->hdr.dstate,						\
269 	    elem->payload.operation,					\
270 	    elem->payload.status,					\
271 	    elem->payload.nbytes,					\
272 	    elem->payload.addr,						\
273 	    elem->payload.ncookies);
274 
275 char *
276 vd_decode_state(int state)
277 {
278 	char *str;
279 
280 #define	CASE_STATE(_s)	case _s: str = #_s; break;
281 
282 	switch (state) {
283 	CASE_STATE(VD_STATE_INIT)
284 	CASE_STATE(VD_STATE_VER)
285 	CASE_STATE(VD_STATE_ATTR)
286 	CASE_STATE(VD_STATE_DRING)
287 	CASE_STATE(VD_STATE_RDX)
288 	CASE_STATE(VD_STATE_DATA)
289 	default: str = "unknown"; break;
290 	}
291 
292 #undef CASE_STATE
293 
294 	return (str);
295 }
296 
297 void
298 vd_decode_tag(vio_msg_t *msg)
299 {
300 	char *tstr, *sstr, *estr;
301 
302 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
303 
304 	switch (msg->tag.vio_msgtype) {
305 	CASE_TYPE(VIO_TYPE_CTRL)
306 	CASE_TYPE(VIO_TYPE_DATA)
307 	CASE_TYPE(VIO_TYPE_ERR)
308 	default: tstr = "unknown"; break;
309 	}
310 
311 #undef CASE_TYPE
312 
313 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
314 
315 	switch (msg->tag.vio_subtype) {
316 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
317 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
318 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
319 	default: sstr = "unknown"; break;
320 	}
321 
322 #undef CASE_SUBTYPE
323 
324 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
325 
326 	switch (msg->tag.vio_subtype_env) {
327 	CASE_ENV(VIO_VER_INFO)
328 	CASE_ENV(VIO_ATTR_INFO)
329 	CASE_ENV(VIO_DRING_REG)
330 	CASE_ENV(VIO_DRING_UNREG)
331 	CASE_ENV(VIO_RDX)
332 	CASE_ENV(VIO_PKT_DATA)
333 	CASE_ENV(VIO_DESC_DATA)
334 	CASE_ENV(VIO_DRING_DATA)
335 	default: estr = "unknown"; break;
336 	}
337 
338 #undef CASE_ENV
339 
340 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
341 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
342 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
343 }
344 
345 #else	/* !DEBUG */
346 
347 #define	PR0(...)
348 #define	PR1(...)
349 #define	PR2(...)
350 
351 #define	VD_DUMP_DRING_ELEM(elem)
352 
353 #define	vd_decode_state(_s)	(NULL)
354 #define	vd_decode_tag(_s)	(NULL)
355 
356 #endif	/* DEBUG */
357 
358 
359 /*
360  * Soft state structure for a vds instance
361  */
362 typedef struct vds {
363 	uint_t		initialized;	/* driver inst initialization flags */
364 	dev_info_t	*dip;		/* driver inst devinfo pointer */
365 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
366 	mod_hash_t	*vd_table;	/* table of virtual disks served */
367 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
368 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
369 	vd_driver_type_t *driver_types;	/* extra driver types (from vds.conf) */
370 	int 		num_drivers;	/* num of extra driver types */
371 } vds_t;
372 
373 /*
374  * Types of descriptor-processing tasks
375  */
376 typedef enum vd_task_type {
377 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
378 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
379 } vd_task_type_t;
380 
381 /*
382  * Structure describing the task for processing a descriptor
383  */
384 typedef struct vd_task {
385 	struct vd		*vd;		/* vd instance task is for */
386 	vd_task_type_t		type;		/* type of descriptor task */
387 	int			index;		/* dring elem index for task */
388 	vio_msg_t		*msg;		/* VIO message task is for */
389 	size_t			msglen;		/* length of message content */
390 	vd_dring_payload_t	*request;	/* request task will perform */
391 	struct buf		buf;		/* buf(9s) for I/O request */
392 	ldc_mem_handle_t	mhdl;		/* task memory handle */
393 	int			status;		/* status of processing task */
394 	int	(*completef)(struct vd_task *task); /* completion func ptr */
395 } vd_task_t;
396 
397 /*
398  * Soft state structure for a virtual disk instance
399  */
400 typedef struct vd {
401 	uint_t			initialized;	/* vdisk initialization flags */
402 	uint64_t		operations;	/* bitmask of VD_OPs exported */
403 	vio_ver_t		version;	/* ver negotiated with client */
404 	vds_t			*vds;		/* server for this vdisk */
405 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
406 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
407 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
408 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
409 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
410 	int			open_flags;	/* open flags */
411 	uint_t			nslices;	/* number of slices we export */
412 	size_t			vdisk_size;	/* number of blocks in vdisk */
413 	size_t			vdisk_block_size; /* size of each vdisk block */
414 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
415 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
416 	vd_media_t		vdisk_media;	/* media type of backing dev. */
417 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
418 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
419 	size_t			block_size;	/* blk size of actual device */
420 	boolean_t		volume;		/* is vDisk backed by volume */
421 	boolean_t		file;		/* is vDisk backed by a file? */
422 	boolean_t		scsi;		/* is vDisk backed by scsi? */
423 	vnode_t			*file_vnode;	/* file vnode */
424 	size_t			file_size;	/* file size */
425 	ddi_devid_t		file_devid;	/* devid for disk image */
426 	int			efi_reserved;	/* EFI reserved slice */
427 	caddr_t			flabel;		/* fake label for slice type */
428 	uint_t			flabel_size;	/* fake label size */
429 	uint_t			flabel_limit;	/* limit of the fake label */
430 	struct dk_geom		dk_geom;	/* synthetic for slice type */
431 	struct vtoc		vtoc;		/* synthetic for slice type */
432 	vd_slice_t		slices[VD_MAXPART]; /* logical partitions */
433 	boolean_t		ownership;	/* disk ownership status */
434 	ldc_status_t		ldc_state;	/* LDC connection state */
435 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
436 	size_t			max_msglen;	/* largest LDC message len */
437 	vd_state_t		state;		/* client handshake state */
438 	uint8_t			xfer_mode;	/* transfer mode with client */
439 	uint32_t		sid;		/* client's session ID */
440 	uint64_t		seq_num;	/* message sequence number */
441 	uint64_t		dring_ident;	/* identifier of dring */
442 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
443 	uint32_t		descriptor_size;	/* num bytes in desc */
444 	uint32_t		dring_len;	/* number of dring elements */
445 	uint8_t			dring_mtype;	/* dring mem map type */
446 	caddr_t			dring;		/* address of dring */
447 	caddr_t			vio_msgp;	/* vio msg staging buffer */
448 	vd_task_t		inband_task;	/* task for inband descriptor */
449 	vd_task_t		*dring_task;	/* tasks dring elements */
450 
451 	kmutex_t		lock;		/* protects variables below */
452 	boolean_t		enabled;	/* is vdisk enabled? */
453 	boolean_t		reset_state;	/* reset connection state? */
454 	boolean_t		reset_ldc;	/* reset LDC channel? */
455 } vd_t;
456 
457 /*
458  * Macros to manipulate the fake label (flabel) for single slice disks.
459  *
460  * If we fake a VTOC label then the fake label consists of only one block
461  * containing the VTOC label (struct dk_label).
462  *
463  * If we fake an EFI label then the fake label consists of a blank block
464  * followed by a GPT (efi_gpt_t) and a GPE (efi_gpe_t).
465  *
466  */
467 #define	VD_LABEL_VTOC_SIZE					\
468 	P2ROUNDUP(sizeof (struct dk_label), DEV_BSIZE)
469 
470 #define	VD_LABEL_EFI_SIZE					\
471 	P2ROUNDUP(DEV_BSIZE + sizeof (efi_gpt_t) + 		\
472 	    sizeof (efi_gpe_t) * VD_MAXPART, DEV_BSIZE)
473 
474 #define	VD_LABEL_VTOC(vd)	\
475 		((struct dk_label *)((vd)->flabel))
476 
477 #define	VD_LABEL_EFI_GPT(vd)	\
478 		((efi_gpt_t *)((vd)->flabel + DEV_BSIZE))
479 #define	VD_LABEL_EFI_GPE(vd)	\
480 		((efi_gpe_t *)((vd)->flabel + DEV_BSIZE + sizeof (efi_gpt_t)))
481 
482 
483 typedef struct vds_operation {
484 	char	*namep;
485 	uint8_t	operation;
486 	int	(*start)(vd_task_t *task);
487 	int	(*complete)(vd_task_t *task);
488 } vds_operation_t;
489 
490 typedef struct vd_ioctl {
491 	uint8_t		operation;		/* vdisk operation */
492 	const char	*operation_name;	/* vdisk operation name */
493 	size_t		nbytes;			/* size of operation buffer */
494 	int		cmd;			/* corresponding ioctl cmd */
495 	const char	*cmd_name;		/* ioctl cmd name */
496 	void		*arg;			/* ioctl cmd argument */
497 	/* convert input vd_buf to output ioctl_arg */
498 	int		(*copyin)(void *vd_buf, size_t, void *ioctl_arg);
499 	/* convert input ioctl_arg to output vd_buf */
500 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
501 	/* write is true if the operation writes any data to the backend */
502 	boolean_t	write;
503 } vd_ioctl_t;
504 
505 /* Define trivial copyin/copyout conversion function flag */
506 #define	VD_IDENTITY_IN	((int (*)(void *, size_t, void *))-1)
507 #define	VD_IDENTITY_OUT	((void (*)(void *, void *))-1)
508 
509 
510 static int	vds_ldc_retries = VDS_RETRIES;
511 static int	vds_ldc_delay = VDS_LDC_DELAY;
512 static int	vds_dev_retries = VDS_RETRIES;
513 static int	vds_dev_delay = VDS_DEV_DELAY;
514 static void	*vds_state;
515 
516 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
517 
518 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
519 static int	vd_scsi_debug = USCSI_SILENT;
520 
521 /*
522  * Tunable to define the behavior of the service domain if the vdisk server
523  * fails to reset disk exclusive access when a LDC channel is reset. When a
524  * LDC channel is reset the vdisk server will try to reset disk exclusive
525  * access by releasing any SCSI-2 reservation or resetting the disk. If these
526  * actions fail then the default behavior (vd_reset_access_failure = 0) is to
527  * print a warning message. This default behavior can be changed by setting
528  * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will
529  * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause
530  * the service domain to panic. In both cases, the reset of the service domain
531  * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation.
532  */
533 static int 	vd_reset_access_failure = 0;
534 
535 /*
536  * Tunable for backward compatibility. When this variable is set to B_TRUE,
537  * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single
538  * slice disks whether or not they have the "slice" option set. This is
539  * to provide a simple backward compatibility mechanism when upgrading
540  * the vds driver and using a domain configuration created before the
541  * "slice" option was available.
542  */
543 static boolean_t vd_volume_force_slice = B_FALSE;
544 
545 /*
546  * The label of disk images created with some earlier versions of the virtual
547  * disk software is not entirely correct and have an incorrect v_sanity field
548  * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with
549  * these images because we are now validating that the disk label (and the
550  * sanity) is correct when a disk image is opened.
551  *
552  * This tunable is set to false to not validate the sanity field and ensure
553  * compatibility. If the tunable is set to true, we will do a strict checking
554  * of the sanity but this can create compatibility problems with old disk
555  * images.
556  */
557 static boolean_t vd_file_validate_sanity = B_FALSE;
558 
559 /*
560  * Enables the use of LDC_DIRECT_MAP when mapping in imported descriptor rings.
561  */
562 static boolean_t vd_direct_mapped_drings = B_TRUE;
563 
564 /*
565  * When a backend is exported as a single-slice disk then we entirely fake
566  * its disk label. So it can be exported either with a VTOC label or with
567  * an EFI label. If vd_slice_label is set to VD_DISK_LABEL_VTOC then all
568  * single-slice disks will be exported with a VTOC label; and if it is set
569  * to VD_DISK_LABEL_EFI then all single-slice disks will be exported with
570  * an EFI label.
571  *
572  * If vd_slice_label is set to VD_DISK_LABEL_UNK and the backend is a disk
573  * or volume device then it will be exported with the same type of label as
574  * defined on the device. Otherwise if the backend is a file then it will
575  * exported with the disk label type set in the vd_file_slice_label variable.
576  *
577  * Note that if the backend size is greater than 1TB then it will always be
578  * exported with an EFI label no matter what the setting is.
579  */
580 static vd_disk_label_t vd_slice_label = VD_DISK_LABEL_UNK;
581 
582 static vd_disk_label_t vd_file_slice_label = VD_DISK_LABEL_VTOC;
583 
584 /*
585  * Tunable for backward compatibility. If this variable is set to B_TRUE then
586  * single-slice disks are exported as disks with only one slice instead of
587  * faking a complete disk partitioning.
588  */
589 static boolean_t vd_slice_single_slice = B_FALSE;
590 
591 /*
592  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
593  *
594  * Each supported major version should appear only once, paired with (and only
595  * with) its highest supported minor version number (as the protocol requires
596  * supporting all lower minor version numbers as well)
597  */
598 static const vio_ver_t	vds_version[] = {{1, 1}};
599 static const size_t	vds_num_versions =
600     sizeof (vds_version)/sizeof (vds_version[0]);
601 
602 static void vd_free_dring_task(vd_t *vdp);
603 static int vd_setup_vd(vd_t *vd);
604 static int vd_setup_single_slice_disk(vd_t *vd);
605 static int vd_backend_check_size(vd_t *vd);
606 static boolean_t vd_enabled(vd_t *vd);
607 static ushort_t vd_lbl2cksum(struct dk_label *label);
608 static int vd_file_validate_geometry(vd_t *vd);
609 static boolean_t vd_file_is_iso_image(vd_t *vd);
610 static void vd_set_exported_operations(vd_t *vd);
611 static void vd_reset_access(vd_t *vd);
612 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg);
613 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **);
614 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *);
615 static void vds_driver_types_free(vds_t *vds);
616 static void vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom,
617     struct dk_label *label);
618 static void vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc,
619     struct dk_geom *geom);
620 static boolean_t vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom);
621 static boolean_t vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc);
622 
623 extern int is_pseudo_device(dev_info_t *);
624 
625 /*
626  * Function:
627  *	vd_get_readable_size
628  *
629  * Description:
630  * 	Convert a given size in bytes to a human readable format in
631  * 	kilobytes, megabytes, gigabytes or terabytes.
632  *
633  * Parameters:
634  *	full_size	- the size to convert in bytes.
635  *	size		- the converted size.
636  *	unit		- the unit of the converted size: 'K' (kilobyte),
637  *			  'M' (Megabyte), 'G' (Gigabyte), 'T' (Terabyte).
638  *
639  * Return Code:
640  *	none
641  */
642 void
643 vd_get_readable_size(size_t full_size, size_t *size, char *unit)
644 {
645 	if (full_size < (1ULL << 20)) {
646 		*size = full_size >> 10;
647 		*unit = 'K'; /* Kilobyte */
648 	} else if (full_size < (1ULL << 30)) {
649 		*size = full_size >> 20;
650 		*unit = 'M'; /* Megabyte */
651 	} else if (full_size < (1ULL << 40)) {
652 		*size = full_size >> 30;
653 		*unit = 'G'; /* Gigabyte */
654 	} else {
655 		*size = full_size >> 40;
656 		*unit = 'T'; /* Terabyte */
657 	}
658 }
659 
660 /*
661  * Function:
662  *	vd_file_rw
663  *
664  * Description:
665  * 	Read or write to a disk on file.
666  *
667  * Parameters:
668  *	vd		- disk on which the operation is performed.
669  *	slice		- slice on which the operation is performed,
670  *			  VD_SLICE_NONE indicates that the operation
671  *			  is done using an absolute disk offset.
672  *	operation	- operation to execute: read (VD_OP_BREAD) or
673  *			  write (VD_OP_BWRITE).
674  *	data		- buffer where data are read to or written from.
675  *	blk		- starting block for the operation.
676  *	len		- number of bytes to read or write.
677  *
678  * Return Code:
679  *	n >= 0		- success, n indicates the number of bytes read
680  *			  or written.
681  *	-1		- error.
682  */
683 static ssize_t
684 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
685     size_t len)
686 {
687 	caddr_t	maddr;
688 	size_t offset, maxlen, moffset, mlen, n;
689 	uint_t smflags;
690 	enum seg_rw srw;
691 
692 	ASSERT(vd->file);
693 	ASSERT(len > 0);
694 
695 	/*
696 	 * If a file is exported as a slice then we don't care about the vtoc.
697 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
698 	 * handle any I/O as a raw disk access so that we can have access to the
699 	 * entire backend.
700 	 */
701 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
702 		/* raw disk access */
703 		offset = blk * DEV_BSIZE;
704 		if (offset >= vd->file_size) {
705 			/* offset past the end of the disk */
706 			PR0("offset (0x%lx) >= fsize (0x%lx)",
707 			    offset, vd->file_size);
708 			return (0);
709 		}
710 		maxlen = vd->file_size - offset;
711 	} else {
712 		ASSERT(slice >= 0 && slice < V_NUMPAR);
713 
714 		/*
715 		 * v1.0 vDisk clients depended on the server not verifying
716 		 * the label of a unformatted disk.  This "feature" is
717 		 * maintained for backward compatibility but all versions
718 		 * from v1.1 onwards must do the right thing.
719 		 */
720 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
721 		    vio_ver_is_supported(vd->version, 1, 1)) {
722 			(void) vd_file_validate_geometry(vd);
723 			if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
724 				PR0("Unknown disk label, can't do I/O "
725 				    "from slice %d", slice);
726 				return (-1);
727 			}
728 		}
729 
730 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
731 			ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE);
732 		} else {
733 			ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI);
734 			ASSERT(vd->vdisk_block_size == DEV_BSIZE);
735 		}
736 
737 		if (blk >= vd->slices[slice].nblocks) {
738 			/* address past the end of the slice */
739 			PR0("req_addr (0x%lx) >= psize (0x%lx)",
740 			    blk, vd->slices[slice].nblocks);
741 			return (0);
742 		}
743 
744 		offset = (vd->slices[slice].start + blk) * DEV_BSIZE;
745 		maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE;
746 	}
747 
748 	/*
749 	 * If the requested size is greater than the size
750 	 * of the partition, truncate the read/write.
751 	 */
752 	if (len > maxlen) {
753 		PR0("I/O size truncated to %lu bytes from %lu bytes",
754 		    maxlen, len);
755 		len = maxlen;
756 	}
757 
758 	/*
759 	 * We have to ensure that we are reading/writing into the mmap
760 	 * range. If we have a partial disk image (e.g. an image of
761 	 * s0 instead s2) the system can try to access slices that
762 	 * are not included into the disk image.
763 	 */
764 	if ((offset + len) > vd->file_size) {
765 		PR0("offset + nbytes (0x%lx + 0x%lx) > "
766 		    "file_size (0x%lx)", offset, len, vd->file_size);
767 		return (-1);
768 	}
769 
770 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
771 	smflags = (operation == VD_OP_BREAD)? 0 :
772 	    (SM_WRITE | vd_file_write_flags);
773 	n = len;
774 
775 	do {
776 		/*
777 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
778 		 * MAXBSIZE aligned.
779 		 */
780 		moffset = offset & MAXBOFFSET;
781 		mlen = MIN(MAXBSIZE - moffset, n);
782 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
783 		    mlen, 1, srw);
784 		/*
785 		 * Fault in the pages so we can check for error and ensure
786 		 * that we can safely used the mapped address.
787 		 */
788 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
789 		    F_SOFTLOCK, srw) != 0) {
790 			(void) segmap_release(segkmap, maddr, 0);
791 			return (-1);
792 		}
793 
794 		if (operation == VD_OP_BREAD)
795 			bcopy(maddr + moffset, data, mlen);
796 		else
797 			bcopy(data, maddr + moffset, mlen);
798 
799 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
800 		    F_SOFTUNLOCK, srw) != 0) {
801 			(void) segmap_release(segkmap, maddr, 0);
802 			return (-1);
803 		}
804 		if (segmap_release(segkmap, maddr, smflags) != 0)
805 			return (-1);
806 		n -= mlen;
807 		offset += mlen;
808 		data += mlen;
809 
810 	} while (n > 0);
811 
812 	return (len);
813 }
814 
815 /*
816  * Function:
817  *	vd_build_default_label
818  *
819  * Description:
820  *	Return a default label for a given disk size. This is used when the disk
821  *	does not have a valid VTOC so that the user can get a valid default
822  *	configuration. The default label has all slice sizes set to 0 (except
823  *	slice 2 which is the entire disk) to force the user to write a valid
824  *	label onto the disk image.
825  *
826  * Parameters:
827  *	disk_size	- the disk size in bytes
828  *	label		- the returned default label.
829  *
830  * Return Code:
831  *	none.
832  */
833 static void
834 vd_build_default_label(size_t disk_size, struct dk_label *label)
835 {
836 	size_t size;
837 	char unit;
838 
839 	bzero(label, sizeof (struct dk_label));
840 
841 	/*
842 	 * We must have a resonable number of cylinders and sectors so
843 	 * that newfs can run using default values.
844 	 *
845 	 * if (disk_size < 2MB)
846 	 * 	phys_cylinders = disk_size / 100K
847 	 * else if (disk_size >= 18.75GB)
848 	 *	phys_cylinders = 65535 (maximum number of cylinders)
849 	 * else
850 	 * 	phys_cylinders = disk_size / 300K
851 	 *
852 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
853 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
854 	 * data_cylinders = phys_cylinders - alt_cylinders
855 	 *
856 	 * sectors = disk_size / (phys_cylinders * blk_size)
857 	 *
858 	 * The disk size test is an attempt to not have too few cylinders
859 	 * for a small disk image, or so many on a big disk image that you
860 	 * waste space for backup superblocks or cylinder group structures.
861 	 */
862 	if (disk_size < (2 * 1024 * 1024))
863 		label->dkl_pcyl = disk_size / (100 * 1024);
864 	else if (disk_size >= (UINT16_MAX * 300 * 1024ULL))
865 		label->dkl_pcyl = UINT16_MAX;
866 	else
867 		label->dkl_pcyl = disk_size / (300 * 1024);
868 
869 	if (label->dkl_pcyl == 0)
870 		label->dkl_pcyl = 1;
871 
872 	label->dkl_acyl = 0;
873 
874 	if (label->dkl_pcyl > 2)
875 		label->dkl_acyl = 2;
876 
877 	label->dkl_nsect = disk_size / (DEV_BSIZE * label->dkl_pcyl);
878 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
879 	label->dkl_nhead = 1;
880 	label->dkl_write_reinstruct = 0;
881 	label->dkl_read_reinstruct = 0;
882 	label->dkl_rpm = 7200;
883 	label->dkl_apc = 0;
884 	label->dkl_intrlv = 0;
885 
886 	PR0("requested disk size: %ld bytes\n", disk_size);
887 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
888 	    label->dkl_nhead, label->dkl_nsect);
889 	PR0("provided disk size: %ld bytes\n", (uint64_t)
890 	    (label->dkl_pcyl * label->dkl_nhead *
891 	    label->dkl_nsect * DEV_BSIZE));
892 
893 	vd_get_readable_size(disk_size, &size, &unit);
894 
895 	/*
896 	 * We must have a correct label name otherwise format(1m) will
897 	 * not recognized the disk as labeled.
898 	 */
899 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
900 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
901 	    size, unit,
902 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
903 	    label->dkl_nsect);
904 
905 	/* default VTOC */
906 	label->dkl_vtoc.v_version = V_VERSION;
907 	label->dkl_vtoc.v_nparts = V_NUMPAR;
908 	label->dkl_vtoc.v_sanity = VTOC_SANE;
909 	label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
910 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0;
911 	label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl *
912 	    label->dkl_nhead * label->dkl_nsect;
913 	label->dkl_magic = DKL_MAGIC;
914 	label->dkl_cksum = vd_lbl2cksum(label);
915 }
916 
917 /*
918  * Function:
919  *	vd_file_set_vtoc
920  *
921  * Description:
922  *	Set the vtoc of a disk image by writing the label and backup
923  *	labels into the disk image backend.
924  *
925  * Parameters:
926  *	vd		- disk on which the operation is performed.
927  *	label		- the data to be written.
928  *
929  * Return Code:
930  *	0		- success.
931  *	n > 0		- error, n indicates the errno code.
932  */
933 static int
934 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
935 {
936 	int blk, sec, cyl, head, cnt;
937 
938 	ASSERT(vd->file);
939 
940 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
941 		PR0("fail to write disk label");
942 		return (EIO);
943 	}
944 
945 	/*
946 	 * Backup labels are on the last alternate cylinder's
947 	 * first five odd sectors.
948 	 */
949 	if (label->dkl_acyl == 0) {
950 		PR0("no alternate cylinder, can not store backup labels");
951 		return (0);
952 	}
953 
954 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
955 	head = label->dkl_nhead - 1;
956 
957 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
958 	    (head * label->dkl_nsect);
959 
960 	/*
961 	 * Write the backup labels. Make sure we don't try to write past
962 	 * the last cylinder.
963 	 */
964 	sec = 1;
965 
966 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
967 
968 		if (sec >= label->dkl_nsect) {
969 			PR0("not enough sector to store all backup labels");
970 			return (0);
971 		}
972 
973 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
974 		    blk + sec, sizeof (struct dk_label)) < 0) {
975 			PR0("error writing backup label at block %d\n",
976 			    blk + sec);
977 			return (EIO);
978 		}
979 
980 		PR1("wrote backup label at block %d\n", blk + sec);
981 
982 		sec += 2;
983 	}
984 
985 	return (0);
986 }
987 
988 /*
989  * Function:
990  *	vd_file_get_devid_block
991  *
992  * Description:
993  *	Return the block number where the device id is stored.
994  *
995  * Parameters:
996  *	vd		- disk on which the operation is performed.
997  *	blkp		- pointer to the block number
998  *
999  * Return Code:
1000  *	0		- success
1001  *	ENOSPC		- disk has no space to store a device id
1002  */
1003 static int
1004 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
1005 {
1006 	diskaddr_t spc, head, cyl;
1007 
1008 	ASSERT(vd->file);
1009 
1010 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
1011 		/*
1012 		 * If no label is defined we don't know where to find
1013 		 * a device id.
1014 		 */
1015 		return (ENOSPC);
1016 	}
1017 
1018 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1019 		/*
1020 		 * For an EFI disk, the devid is at the beginning of
1021 		 * the reserved slice
1022 		 */
1023 		if (vd->efi_reserved == -1) {
1024 			PR0("EFI disk has no reserved slice");
1025 			return (ENOSPC);
1026 		}
1027 
1028 		*blkp = vd->slices[vd->efi_reserved].start;
1029 		return (0);
1030 	}
1031 
1032 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1033 
1034 	/* this geometry doesn't allow us to have a devid */
1035 	if (vd->dk_geom.dkg_acyl < 2) {
1036 		PR0("not enough alternate cylinder available for devid "
1037 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
1038 		return (ENOSPC);
1039 	}
1040 
1041 	/* the devid is in on the track next to the last cylinder */
1042 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
1043 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1044 	head = vd->dk_geom.dkg_nhead - 1;
1045 
1046 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
1047 	    (head * vd->dk_geom.dkg_nsect) + 1;
1048 
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Return the checksum of a disk block containing an on-disk devid.
1054  */
1055 static uint_t
1056 vd_dkdevid2cksum(struct dk_devid *dkdevid)
1057 {
1058 	uint_t chksum, *ip;
1059 	int i;
1060 
1061 	chksum = 0;
1062 	ip = (uint_t *)dkdevid;
1063 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
1064 		chksum ^= ip[i];
1065 
1066 	return (chksum);
1067 }
1068 
1069 /*
1070  * Function:
1071  *	vd_file_read_devid
1072  *
1073  * Description:
1074  *	Read the device id stored on a disk image.
1075  *
1076  * Parameters:
1077  *	vd		- disk on which the operation is performed.
1078  *	devid		- the return address of the device ID.
1079  *
1080  * Return Code:
1081  *	0		- success
1082  *	EIO		- I/O error while trying to access the disk image
1083  *	EINVAL		- no valid device id was found
1084  *	ENOSPC		- disk has no space to store a device id
1085  */
1086 static int
1087 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
1088 {
1089 	struct dk_devid *dkdevid;
1090 	size_t blk;
1091 	uint_t chksum;
1092 	int status, sz;
1093 
1094 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1095 		return (status);
1096 
1097 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1098 
1099 	/* get the devid */
1100 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
1101 	    DEV_BSIZE)) < 0) {
1102 		PR0("error reading devid block at %lu", blk);
1103 		status = EIO;
1104 		goto done;
1105 	}
1106 
1107 	/* validate the revision */
1108 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1109 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
1110 		PR0("invalid devid found at block %lu (bad revision)", blk);
1111 		status = EINVAL;
1112 		goto done;
1113 	}
1114 
1115 	/* compute checksum */
1116 	chksum = vd_dkdevid2cksum(dkdevid);
1117 
1118 	/* compare the checksums */
1119 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
1120 		PR0("invalid devid found at block %lu (bad checksum)", blk);
1121 		status = EINVAL;
1122 		goto done;
1123 	}
1124 
1125 	/* validate the device id */
1126 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
1127 		PR0("invalid devid found at block %lu", blk);
1128 		status = EINVAL;
1129 		goto done;
1130 	}
1131 
1132 	PR1("devid read at block %lu", blk);
1133 
1134 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
1135 	*devid = kmem_alloc(sz, KM_SLEEP);
1136 	bcopy(&dkdevid->dkd_devid, *devid, sz);
1137 
1138 done:
1139 	kmem_free(dkdevid, DEV_BSIZE);
1140 	return (status);
1141 
1142 }
1143 
1144 /*
1145  * Function:
1146  *	vd_file_write_devid
1147  *
1148  * Description:
1149  *	Write a device id into disk image.
1150  *
1151  * Parameters:
1152  *	vd		- disk on which the operation is performed.
1153  *	devid		- the device ID to store.
1154  *
1155  * Return Code:
1156  *	0		- success
1157  *	EIO		- I/O error while trying to access the disk image
1158  *	ENOSPC		- disk has no space to store a device id
1159  */
1160 static int
1161 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
1162 {
1163 	struct dk_devid *dkdevid;
1164 	uint_t chksum;
1165 	size_t blk;
1166 	int status;
1167 
1168 	if (devid == NULL) {
1169 		/* nothing to write */
1170 		return (0);
1171 	}
1172 
1173 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
1174 		return (status);
1175 
1176 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
1177 
1178 	/* set revision */
1179 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
1180 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
1181 
1182 	/* copy devid */
1183 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
1184 
1185 	/* compute checksum */
1186 	chksum = vd_dkdevid2cksum(dkdevid);
1187 
1188 	/* set checksum */
1189 	DKD_FORMCHKSUM(chksum, dkdevid);
1190 
1191 	/* store the devid */
1192 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
1193 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
1194 		PR0("Error writing devid block at %lu", blk);
1195 		status = EIO;
1196 	} else {
1197 		PR1("devid written at block %lu", blk);
1198 		status = 0;
1199 	}
1200 
1201 	kmem_free(dkdevid, DEV_BSIZE);
1202 	return (status);
1203 }
1204 
1205 /*
1206  * Function:
1207  *	vd_do_scsi_rdwr
1208  *
1209  * Description:
1210  * 	Read or write to a SCSI disk using an absolute disk offset.
1211  *
1212  * Parameters:
1213  *	vd		- disk on which the operation is performed.
1214  *	operation	- operation to execute: read (VD_OP_BREAD) or
1215  *			  write (VD_OP_BWRITE).
1216  *	data		- buffer where data are read to or written from.
1217  *	blk		- starting block for the operation.
1218  *	len		- number of bytes to read or write.
1219  *
1220  * Return Code:
1221  *	0		- success
1222  *	n != 0		- error.
1223  */
1224 static int
1225 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
1226 {
1227 	struct uscsi_cmd ucmd;
1228 	union scsi_cdb cdb;
1229 	int nsectors, nblk;
1230 	int max_sectors;
1231 	int status, rval;
1232 
1233 	ASSERT(!vd->file);
1234 	ASSERT(vd->vdisk_block_size > 0);
1235 
1236 	max_sectors = vd->max_xfer_sz;
1237 	nblk = (len / vd->vdisk_block_size);
1238 
1239 	if (len % vd->vdisk_block_size != 0)
1240 		return (EINVAL);
1241 
1242 	/*
1243 	 * Build and execute the uscsi ioctl.  We build a group0, group1
1244 	 * or group4 command as necessary, since some targets
1245 	 * do not support group1 commands.
1246 	 */
1247 	while (nblk) {
1248 
1249 		bzero(&ucmd, sizeof (ucmd));
1250 		bzero(&cdb, sizeof (cdb));
1251 
1252 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1253 
1254 		/*
1255 		 * Some of the optical drives on sun4v machines are ATAPI
1256 		 * devices which use Group 1 Read/Write commands so we need
1257 		 * to explicitly check a flag which is set when a domain
1258 		 * is bound.
1259 		 */
1260 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1261 			FORMG0ADDR(&cdb, blk);
1262 			FORMG0COUNT(&cdb, nsectors);
1263 			ucmd.uscsi_cdblen = CDB_GROUP0;
1264 		} else if (blk > 0xffffffff) {
1265 			FORMG4LONGADDR(&cdb, blk);
1266 			FORMG4COUNT(&cdb, nsectors);
1267 			ucmd.uscsi_cdblen = CDB_GROUP4;
1268 			cdb.scc_cmd |= SCMD_GROUP4;
1269 		} else {
1270 			FORMG1ADDR(&cdb, blk);
1271 			FORMG1COUNT(&cdb, nsectors);
1272 			ucmd.uscsi_cdblen = CDB_GROUP1;
1273 			cdb.scc_cmd |= SCMD_GROUP1;
1274 		}
1275 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1276 		ucmd.uscsi_bufaddr = data;
1277 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1278 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1279 		/*
1280 		 * Set flags so that the command is isolated from normal
1281 		 * commands and no error message is printed.
1282 		 */
1283 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1284 
1285 		if (operation == VD_OP_BREAD) {
1286 			cdb.scc_cmd |= SCMD_READ;
1287 			ucmd.uscsi_flags |= USCSI_READ;
1288 		} else {
1289 			cdb.scc_cmd |= SCMD_WRITE;
1290 		}
1291 
1292 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1293 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1294 		    kcred, &rval);
1295 
1296 		if (status == 0)
1297 			status = ucmd.uscsi_status;
1298 
1299 		if (status != 0)
1300 			break;
1301 
1302 		/*
1303 		 * Check if partial DMA breakup is required. If so, reduce
1304 		 * the request size by half and retry the last request.
1305 		 */
1306 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1307 			max_sectors >>= 1;
1308 			if (max_sectors <= 0) {
1309 				status = EIO;
1310 				break;
1311 			}
1312 			continue;
1313 		}
1314 
1315 		if (ucmd.uscsi_resid != 0) {
1316 			status = EIO;
1317 			break;
1318 		}
1319 
1320 		blk += nsectors;
1321 		nblk -= nsectors;
1322 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1323 	}
1324 
1325 	return (status);
1326 }
1327 
1328 /*
1329  * Function:
1330  *	vd_scsi_rdwr
1331  *
1332  * Description:
1333  * 	Wrapper function to read or write to a SCSI disk using an absolute
1334  *	disk offset. It checks the blocksize of the underlying device and,
1335  *	if necessary, adjusts the buffers accordingly before calling
1336  *	vd_do_scsi_rdwr() to do the actual read or write.
1337  *
1338  * Parameters:
1339  *	vd		- disk on which the operation is performed.
1340  *	operation	- operation to execute: read (VD_OP_BREAD) or
1341  *			  write (VD_OP_BWRITE).
1342  *	data		- buffer where data are read to or written from.
1343  *	blk		- starting block for the operation.
1344  *	len		- number of bytes to read or write.
1345  *
1346  * Return Code:
1347  *	0		- success
1348  *	n != 0		- error.
1349  */
1350 static int
1351 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1352 {
1353 	int	rv;
1354 
1355 	size_t	pblk;	/* physical device block number of data on device */
1356 	size_t	delta;	/* relative offset between pblk and vblk */
1357 	size_t	pnblk;	/* number of physical blocks to be read from device */
1358 	size_t	plen;	/* length of data to be read from physical device */
1359 	char	*buf;	/* buffer area to fit physical device's block size */
1360 
1361 	if (vd->block_size == 0) {
1362 		/*
1363 		 * The block size was not available during the attach,
1364 		 * try to update it now.
1365 		 */
1366 		if (vd_backend_check_size(vd) != 0)
1367 			return (EIO);
1368 	}
1369 
1370 	/*
1371 	 * If the vdisk block size and the block size of the underlying device
1372 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1373 	 * to create a buffer large enough to handle the device's block size
1374 	 * and adjust the block to be read from and the amount of data to
1375 	 * read to correspond with the device's block size.
1376 	 */
1377 	if (vd->vdisk_block_size == vd->block_size)
1378 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1379 
1380 	if (vd->vdisk_block_size > vd->block_size)
1381 		return (EINVAL);
1382 
1383 	/*
1384 	 * Writing of physical block sizes larger than the virtual block size
1385 	 * is not supported. This would be added if/when support for guests
1386 	 * writing to DVDs is implemented.
1387 	 */
1388 	if (operation == VD_OP_BWRITE)
1389 		return (ENOTSUP);
1390 
1391 	/* BEGIN CSTYLED */
1392 	/*
1393 	 * Below is a diagram showing the relationship between the physical
1394 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1395 	 * requested, then the physical blocks denoted by 'Y' are read.
1396 	 *
1397 	 *           vblk
1398 	 *             |      vlen
1399 	 *             |<--------------->|
1400 	 *             v                 v
1401 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1402 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1403 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1404 	 *          :  :                 :  :
1405 	 *         >:==:< delta          :  :
1406 	 *          :  :                 :  :
1407 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1408 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1409 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1410 	 *          ^                       ^
1411 	 *          |<--------------------->|
1412 	 *          |         plen
1413 	 *         pblk
1414 	 */
1415 	/* END CSTYLED */
1416 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1417 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1418 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1419 	plen = pnblk * vd->block_size;
1420 
1421 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1422 
1423 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1424 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1425 	bcopy(buf + delta, data, vlen);
1426 
1427 	kmem_free(buf, sizeof (caddr_t) * plen);
1428 
1429 	return (rv);
1430 }
1431 
1432 /*
1433  * Function:
1434  *	vd_slice_flabel_read
1435  *
1436  * Description:
1437  *	This function simulates a read operation from the fake label of
1438  *	a single-slice disk.
1439  *
1440  * Parameters:
1441  *	vd		- single-slice disk to read from
1442  *	data		- buffer where data should be read to
1443  *	offset		- offset in byte where the read should start
1444  *	length		- number of bytes to read
1445  *
1446  * Return Code:
1447  *	n >= 0		- success, n indicates the number of bytes read
1448  *	-1		- error
1449  */
1450 static ssize_t
1451 vd_slice_flabel_read(vd_t *vd, caddr_t data, size_t offset, size_t length)
1452 {
1453 	size_t n = 0;
1454 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1455 
1456 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1457 	ASSERT(vd->flabel != NULL);
1458 
1459 	/* if offset is past the fake label limit there's nothing to read */
1460 	if (offset >= limit)
1461 		return (0);
1462 
1463 	/* data with offset 0 to flabel_size are read from flabel */
1464 	if (offset < vd->flabel_size) {
1465 
1466 		if (offset + length <= vd->flabel_size) {
1467 			bcopy(vd->flabel + offset, data, length);
1468 			return (length);
1469 		}
1470 
1471 		n = vd->flabel_size - offset;
1472 		bcopy(vd->flabel + offset, data, n);
1473 		data += n;
1474 	}
1475 
1476 	/* data with offset from flabel_size to flabel_limit are all zeros */
1477 	if (offset + length <= limit) {
1478 		bzero(data, length - n);
1479 		return (length);
1480 	}
1481 
1482 	bzero(data, limit - offset - n);
1483 	return (limit - offset);
1484 }
1485 
1486 /*
1487  * Function:
1488  *	vd_slice_flabel_write
1489  *
1490  * Description:
1491  *	This function simulates a write operation to the fake label of
1492  *	a single-slice disk. Write operations are actually faked and return
1493  *	success although the label is never changed. This is mostly to
1494  *	simulate a successful label update.
1495  *
1496  * Parameters:
1497  *	vd		- single-slice disk to write to
1498  *	data		- buffer where data should be written from
1499  *	offset		- offset in byte where the write should start
1500  *	length		- number of bytes to written
1501  *
1502  * Return Code:
1503  *	n >= 0		- success, n indicates the number of bytes written
1504  *	-1		- error
1505  */
1506 static ssize_t
1507 vd_slice_flabel_write(vd_t *vd, caddr_t data, size_t offset, size_t length)
1508 {
1509 	uint_t limit = vd->flabel_limit * DEV_BSIZE;
1510 	struct dk_label *label;
1511 	struct dk_geom geom;
1512 	struct vtoc vtoc;
1513 
1514 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1515 	ASSERT(vd->flabel != NULL);
1516 
1517 	if (offset >= limit)
1518 		return (0);
1519 
1520 	/*
1521 	 * If this is a request to overwrite the VTOC disk label, check that
1522 	 * the new label is similar to the previous one and return that the
1523 	 * write was successful, but note that nothing is actually overwritten.
1524 	 */
1525 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1526 	    offset == 0 && length == DEV_BSIZE) {
1527 		label = (struct dk_label *)data;
1528 
1529 		/* check that this is a valid label */
1530 		if (label->dkl_magic != DKL_MAGIC ||
1531 		    label->dkl_cksum != vd_lbl2cksum(label))
1532 			return (-1);
1533 
1534 		/* check the vtoc and geometry */
1535 		vd_label_to_vtocgeom(label, &vtoc, &geom);
1536 		if (vd_slice_geom_isvalid(vd, &geom) &&
1537 		    vd_slice_vtoc_isvalid(vd, &vtoc))
1538 			return (length);
1539 	}
1540 
1541 	/* fail any other write */
1542 	return (-1);
1543 }
1544 
1545 /*
1546  * Function:
1547  *	vd_slice_fake_rdwr
1548  *
1549  * Description:
1550  *	This function simulates a raw read or write operation to a single-slice
1551  *	disk. It only handles the faked part of the operation i.e. I/Os to
1552  *	blocks which have no mapping with the vdisk backend (I/Os to the
1553  *	beginning and to the end of the vdisk).
1554  *
1555  *	The function returns 0 is the operation	is completed and it has been
1556  *	entirely handled as a fake read or write. In that case, lengthp points
1557  *	to the number of bytes not read or written. Values returned by datap
1558  *	and blkp are undefined.
1559  *
1560  *	If the fake operation has succeeded but the read or write is not
1561  *	complete (i.e. the read/write operation extends beyond the blocks
1562  *	we fake) then the function returns EAGAIN and datap, blkp and lengthp
1563  *	pointers points to the parameters for completing the operation.
1564  *
1565  *	In case of an error, for example if the slice is empty or parameters
1566  *	are invalid, then the function returns a non-zero value different
1567  *	from EAGAIN. In that case, the returned values of datap, blkp and
1568  *	lengthp are undefined.
1569  *
1570  * Parameters:
1571  *	vd		- single-slice disk on which the operation is performed
1572  *	slice		- slice on which the operation is performed,
1573  *			  VD_SLICE_NONE indicates that the operation
1574  *			  is done using an absolute disk offset.
1575  *	operation	- operation to execute: read (VD_OP_BREAD) or
1576  *			  write (VD_OP_BWRITE).
1577  *	datap		- pointer to the buffer where data are read to
1578  *			  or written from. Return the pointer where remaining
1579  *			  data have to be read to or written from.
1580  *	blkp		- pointer to the starting block for the operation.
1581  *			  Return the starting block relative to the vdisk
1582  *			  backend for the remaining operation.
1583  *	lengthp		- pointer to the number of bytes to read or write.
1584  *			  This should be a multiple of DEV_BSIZE. Return the
1585  *			  remaining number of bytes to read or write.
1586  *
1587  * Return Code:
1588  *	0		- read/write operation is completed
1589  *	EAGAIN		- read/write operation is not completed
1590  *	other values	- error
1591  */
1592 static int
1593 vd_slice_fake_rdwr(vd_t *vd, int slice, int operation, caddr_t *datap,
1594     size_t *blkp, size_t *lengthp)
1595 {
1596 	struct dk_label *label;
1597 	caddr_t data;
1598 	size_t blk, length, csize;
1599 	size_t ablk, asize, aoff, alen;
1600 	ssize_t n;
1601 	int sec, status;
1602 
1603 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
1604 	ASSERT(slice != 0);
1605 
1606 	data = *datap;
1607 	blk = *blkp;
1608 	length = *lengthp;
1609 
1610 	/*
1611 	 * If this is not a raw I/O or an I/O from a full disk slice then
1612 	 * this is an I/O to/from an empty slice.
1613 	 */
1614 	if (slice != VD_SLICE_NONE &&
1615 	    (slice != VD_ENTIRE_DISK_SLICE ||
1616 	    vd->vdisk_label != VD_DISK_LABEL_VTOC) &&
1617 	    (slice != VD_EFI_WD_SLICE ||
1618 	    vd->vdisk_label != VD_DISK_LABEL_EFI)) {
1619 		return (EIO);
1620 	}
1621 
1622 	if (length % DEV_BSIZE != 0)
1623 		return (EINVAL);
1624 
1625 	/* handle any I/O with the fake label */
1626 	if (operation == VD_OP_BWRITE)
1627 		n = vd_slice_flabel_write(vd, data, blk * DEV_BSIZE, length);
1628 	else
1629 		n = vd_slice_flabel_read(vd, data, blk * DEV_BSIZE, length);
1630 
1631 	if (n == -1)
1632 		return (EINVAL);
1633 
1634 	ASSERT(n % DEV_BSIZE == 0);
1635 
1636 	/* adjust I/O arguments */
1637 	data += n;
1638 	blk += n / DEV_BSIZE;
1639 	length -= n;
1640 
1641 	/* check if there's something else to process */
1642 	if (length == 0) {
1643 		status = 0;
1644 		goto done;
1645 	}
1646 
1647 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
1648 	    slice == VD_ENTIRE_DISK_SLICE) {
1649 		status = EAGAIN;
1650 		goto done;
1651 	}
1652 
1653 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
1654 		asize = EFI_MIN_RESV_SIZE + 33;
1655 		ablk = vd->vdisk_size - asize;
1656 	} else {
1657 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
1658 		ASSERT(vd->dk_geom.dkg_apc == 0);
1659 
1660 		csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
1661 		ablk = vd->dk_geom.dkg_ncyl * csize;
1662 		asize = vd->dk_geom.dkg_acyl * csize;
1663 	}
1664 
1665 	alen = length / DEV_BSIZE;
1666 	aoff = blk;
1667 
1668 	/* if we have reached the last block then the I/O is completed */
1669 	if (aoff == ablk + asize) {
1670 		status = 0;
1671 		goto done;
1672 	}
1673 
1674 	/* if we are past the last block then return an error */
1675 	if (aoff > ablk + asize)
1676 		return (EIO);
1677 
1678 	/* check if there is any I/O to end of the disk */
1679 	if (aoff + alen < ablk) {
1680 		status = EAGAIN;
1681 		goto done;
1682 	}
1683 
1684 	/* we don't allow any write to the end of the disk */
1685 	if (operation == VD_OP_BWRITE)
1686 		return (EIO);
1687 
1688 	if (aoff < ablk) {
1689 		alen -= (ablk - aoff);
1690 		aoff = ablk;
1691 	}
1692 
1693 	if (aoff + alen > ablk + asize) {
1694 		alen = ablk + asize - aoff;
1695 	}
1696 
1697 	alen *= DEV_BSIZE;
1698 
1699 	if (operation == VD_OP_BREAD) {
1700 		bzero(data + (aoff - blk) * DEV_BSIZE, alen);
1701 
1702 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
1703 			/* check if we read backup labels */
1704 			label = VD_LABEL_VTOC(vd);
1705 			ablk += (label->dkl_acyl - 1) * csize +
1706 			    (label->dkl_nhead - 1) * label->dkl_nsect;
1707 
1708 			for (sec = 1; (sec < 5 * 2 + 1); sec += 2) {
1709 
1710 				if (ablk + sec >= blk &&
1711 				    ablk + sec < blk + (length / DEV_BSIZE)) {
1712 					bcopy(label, data +
1713 					    (ablk + sec - blk) * DEV_BSIZE,
1714 					    sizeof (struct dk_label));
1715 				}
1716 			}
1717 		}
1718 	}
1719 
1720 	length -= alen;
1721 
1722 	status = (length == 0)? 0: EAGAIN;
1723 
1724 done:
1725 	ASSERT(length == 0 || blk >= vd->flabel_limit);
1726 
1727 	/*
1728 	 * Return the parameters for the remaining I/O. The starting block is
1729 	 * adjusted so that it is relative to the vdisk backend.
1730 	 */
1731 	*datap = data;
1732 	*blkp = blk - vd->flabel_limit;
1733 	*lengthp = length;
1734 
1735 	return (status);
1736 }
1737 
1738 /*
1739  * Return Values
1740  *	EINPROGRESS	- operation was successfully started
1741  *	EIO		- encountered LDC (aka. task error)
1742  *	0		- operation completed successfully
1743  *
1744  * Side Effect
1745  *     sets request->status = <disk operation status>
1746  */
1747 static int
1748 vd_start_bio(vd_task_t *task)
1749 {
1750 	int			rv, status = 0;
1751 	vd_t			*vd		= task->vd;
1752 	vd_dring_payload_t	*request	= task->request;
1753 	struct buf		*buf		= &task->buf;
1754 	uint8_t			mtype;
1755 	int 			slice;
1756 	char			*bufaddr = 0;
1757 	size_t			buflen;
1758 	size_t			offset, length, nbytes;
1759 
1760 	ASSERT(vd != NULL);
1761 	ASSERT(request != NULL);
1762 
1763 	slice = request->slice;
1764 
1765 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1766 	ASSERT((request->operation == VD_OP_BREAD) ||
1767 	    (request->operation == VD_OP_BWRITE));
1768 
1769 	if (request->nbytes == 0) {
1770 		/* no service for trivial requests */
1771 		request->status = EINVAL;
1772 		return (0);
1773 	}
1774 
1775 	PR1("%s %lu bytes at block %lu",
1776 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1777 	    request->nbytes, request->addr);
1778 
1779 	/*
1780 	 * We have to check the open flags because the functions processing
1781 	 * the read/write request will not do it.
1782 	 */
1783 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1784 		PR0("write fails because backend is opened read-only");
1785 		request->nbytes = 0;
1786 		request->status = EROFS;
1787 		return (0);
1788 	}
1789 
1790 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1791 
1792 	/* Map memory exported by client */
1793 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1794 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1795 	    &bufaddr, NULL);
1796 	if (status != 0) {
1797 		PR0("ldc_mem_map() returned err %d ", status);
1798 		return (EIO);
1799 	}
1800 
1801 	/*
1802 	 * The buffer size has to be 8-byte aligned, so the client should have
1803 	 * sent a buffer which size is roundup to the next 8-byte aligned value.
1804 	 */
1805 	buflen = P2ROUNDUP(request->nbytes, 8);
1806 
1807 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1808 	if (status != 0) {
1809 		(void) ldc_mem_unmap(task->mhdl);
1810 		PR0("ldc_mem_acquire() returned err %d ", status);
1811 		return (EIO);
1812 	}
1813 
1814 	offset = request->addr;
1815 	nbytes = request->nbytes;
1816 	length = nbytes;
1817 
1818 	/* default number of byte returned by the I/O */
1819 	request->nbytes = 0;
1820 
1821 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
1822 
1823 		if (slice != 0) {
1824 			/* handle any fake I/O */
1825 			rv = vd_slice_fake_rdwr(vd, slice, request->operation,
1826 			    &bufaddr, &offset, &length);
1827 
1828 			/* record the number of bytes from the fake I/O */
1829 			request->nbytes = nbytes - length;
1830 
1831 			if (rv == 0) {
1832 				request->status = 0;
1833 				goto io_done;
1834 			}
1835 
1836 			if (rv != EAGAIN) {
1837 				request->nbytes = 0;
1838 				request->status = EIO;
1839 				goto io_done;
1840 			}
1841 
1842 			/*
1843 			 * If we return with EAGAIN then this means that there
1844 			 * are still data to read or write.
1845 			 */
1846 			ASSERT(length != 0);
1847 
1848 			/*
1849 			 * We need to continue the I/O from the slice backend to
1850 			 * complete the request. The variables bufaddr, offset
1851 			 * and length have been adjusted to have the right
1852 			 * information to do the remaining I/O from the backend.
1853 			 * The backend is entirely mapped to slice 0 so we just
1854 			 * have to complete the I/O from that slice.
1855 			 */
1856 			slice = 0;
1857 		}
1858 
1859 	} else if ((slice == VD_SLICE_NONE) && (!vd->file)) {
1860 
1861 		/*
1862 		 * This is not a disk image so it is a real disk. We
1863 		 * assume that the underlying device driver supports
1864 		 * USCSICMD ioctls. This is the case of all SCSI devices
1865 		 * (sd, ssd...).
1866 		 *
1867 		 * In the future if we have non-SCSI disks we would need
1868 		 * to invoke the appropriate function to do I/O using an
1869 		 * absolute disk offset (for example using DIOCTL_RWCMD
1870 		 * for IDE disks).
1871 		 */
1872 		rv = vd_scsi_rdwr(vd, request->operation, bufaddr, offset,
1873 		    length);
1874 		if (rv != 0) {
1875 			request->status = EIO;
1876 		} else {
1877 			request->nbytes = length;
1878 			request->status = 0;
1879 		}
1880 		goto io_done;
1881 	}
1882 
1883 	/* Start the block I/O */
1884 	if (vd->file) {
1885 		rv = vd_file_rw(vd, slice, request->operation, bufaddr, offset,
1886 		    length);
1887 		if (rv < 0) {
1888 			request->nbytes = 0;
1889 			request->status = EIO;
1890 		} else {
1891 			request->nbytes += rv;
1892 			request->status = 0;
1893 		}
1894 	} else {
1895 		bioinit(buf);
1896 		buf->b_flags	= B_BUSY;
1897 		buf->b_bcount	= length;
1898 		buf->b_lblkno	= offset;
1899 		buf->b_bufsize	= buflen;
1900 		buf->b_edev 	= vd->dev[slice];
1901 		buf->b_un.b_addr = bufaddr;
1902 		buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1903 		    B_READ : B_WRITE;
1904 
1905 		request->status = ldi_strategy(vd->ldi_handle[slice], buf);
1906 
1907 		/*
1908 		 * This is to indicate to the caller that the request
1909 		 * needs to be finished by vd_complete_bio() by calling
1910 		 * biowait() there and waiting for that to return before
1911 		 * triggering the notification of the vDisk client.
1912 		 *
1913 		 * This is necessary when writing to real disks as
1914 		 * otherwise calls to ldi_strategy() would be serialized
1915 		 * behind the calls to biowait() and performance would
1916 		 * suffer.
1917 		 */
1918 		if (request->status == 0)
1919 			return (EINPROGRESS);
1920 
1921 		biofini(buf);
1922 	}
1923 
1924 io_done:
1925 	/* Clean up after error or completion */
1926 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1927 	if (rv) {
1928 		PR0("ldc_mem_release() returned err %d ", rv);
1929 		status = EIO;
1930 	}
1931 	rv = ldc_mem_unmap(task->mhdl);
1932 	if (rv) {
1933 		PR0("ldc_mem_unmap() returned err %d ", rv);
1934 		status = EIO;
1935 	}
1936 
1937 	return (status);
1938 }
1939 
1940 /*
1941  * This function should only be called from vd_notify to ensure that requests
1942  * are responded to in the order that they are received.
1943  */
1944 static int
1945 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1946 {
1947 	int	status;
1948 	size_t	nbytes;
1949 
1950 	do {
1951 		nbytes = msglen;
1952 		status = ldc_write(ldc_handle, msg, &nbytes);
1953 		if (status != EWOULDBLOCK)
1954 			break;
1955 		drv_usecwait(vds_ldc_delay);
1956 	} while (status == EWOULDBLOCK);
1957 
1958 	if (status != 0) {
1959 		if (status != ECONNRESET)
1960 			PR0("ldc_write() returned errno %d", status);
1961 		return (status);
1962 	} else if (nbytes != msglen) {
1963 		PR0("ldc_write() performed only partial write");
1964 		return (EIO);
1965 	}
1966 
1967 	PR1("SENT %lu bytes", msglen);
1968 	return (0);
1969 }
1970 
1971 static void
1972 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1973 {
1974 	mutex_enter(&vd->lock);
1975 	vd->reset_state	= B_TRUE;
1976 	vd->reset_ldc	= reset_ldc;
1977 	mutex_exit(&vd->lock);
1978 }
1979 
1980 /*
1981  * Reset the state of the connection with a client, if needed; reset the LDC
1982  * transport as well, if needed.  This function should only be called from the
1983  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1984  */
1985 static void
1986 vd_reset_if_needed(vd_t *vd)
1987 {
1988 	int	status = 0;
1989 
1990 	mutex_enter(&vd->lock);
1991 	if (!vd->reset_state) {
1992 		ASSERT(!vd->reset_ldc);
1993 		mutex_exit(&vd->lock);
1994 		return;
1995 	}
1996 	mutex_exit(&vd->lock);
1997 
1998 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1999 
2000 	/*
2001 	 * Let any asynchronous I/O complete before possibly pulling the rug
2002 	 * out from under it; defer checking vd->reset_ldc, as one of the
2003 	 * asynchronous tasks might set it
2004 	 */
2005 	ddi_taskq_wait(vd->completionq);
2006 
2007 	if (vd->file) {
2008 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
2009 		if (status) {
2010 			PR0("VOP_FSYNC returned errno %d", status);
2011 		}
2012 	}
2013 
2014 	if ((vd->initialized & VD_DRING) &&
2015 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
2016 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
2017 
2018 	vd_free_dring_task(vd);
2019 
2020 	/* Free the staging buffer for msgs */
2021 	if (vd->vio_msgp != NULL) {
2022 		kmem_free(vd->vio_msgp, vd->max_msglen);
2023 		vd->vio_msgp = NULL;
2024 	}
2025 
2026 	/* Free the inband message buffer */
2027 	if (vd->inband_task.msg != NULL) {
2028 		kmem_free(vd->inband_task.msg, vd->max_msglen);
2029 		vd->inband_task.msg = NULL;
2030 	}
2031 
2032 	mutex_enter(&vd->lock);
2033 
2034 	if (vd->reset_ldc)
2035 		PR0("taking down LDC channel");
2036 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
2037 		PR0("ldc_down() returned errno %d", status);
2038 
2039 	/* Reset exclusive access rights */
2040 	vd_reset_access(vd);
2041 
2042 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
2043 	vd->state	= VD_STATE_INIT;
2044 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
2045 
2046 	/* Allocate the staging buffer */
2047 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
2048 
2049 	PR0("calling ldc_up\n");
2050 	(void) ldc_up(vd->ldc_handle);
2051 
2052 	vd->reset_state	= B_FALSE;
2053 	vd->reset_ldc	= B_FALSE;
2054 
2055 	mutex_exit(&vd->lock);
2056 }
2057 
2058 static void vd_recv_msg(void *arg);
2059 
2060 static void
2061 vd_mark_in_reset(vd_t *vd)
2062 {
2063 	int status;
2064 
2065 	PR0("vd_mark_in_reset: marking vd in reset\n");
2066 
2067 	vd_need_reset(vd, B_FALSE);
2068 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
2069 	if (status == DDI_FAILURE) {
2070 		PR0("cannot schedule task to recv msg\n");
2071 		vd_need_reset(vd, B_TRUE);
2072 		return;
2073 	}
2074 }
2075 
2076 static int
2077 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
2078 {
2079 	boolean_t		accepted;
2080 	int			status;
2081 	on_trap_data_t		otd;
2082 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2083 
2084 	if (vd->reset_state)
2085 		return (0);
2086 
2087 	/* Acquire the element */
2088 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
2089 	    vd->dring_handle, idx, idx)) != 0) {
2090 		if (status == ECONNRESET) {
2091 			vd_mark_in_reset(vd);
2092 			return (0);
2093 		} else {
2094 			return (status);
2095 		}
2096 	}
2097 
2098 	/* Set the element's status and mark it done */
2099 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
2100 	if (accepted) {
2101 		elem->payload.nbytes	= elem_nbytes;
2102 		elem->payload.status	= elem_status;
2103 		elem->hdr.dstate	= VIO_DESC_DONE;
2104 	} else {
2105 		/* Perhaps client timed out waiting for I/O... */
2106 		PR0("element %u no longer \"accepted\"", idx);
2107 		VD_DUMP_DRING_ELEM(elem);
2108 	}
2109 	/* Release the element */
2110 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
2111 	    vd->dring_handle, idx, idx)) != 0) {
2112 		if (status == ECONNRESET) {
2113 			vd_mark_in_reset(vd);
2114 			return (0);
2115 		} else {
2116 			PR0("VIO_DRING_RELEASE() returned errno %d",
2117 			    status);
2118 			return (status);
2119 		}
2120 	}
2121 
2122 	return (accepted ? 0 : EINVAL);
2123 }
2124 
2125 /*
2126  * Return Values
2127  *	0	- operation completed successfully
2128  *	EIO	- encountered LDC / task error
2129  *
2130  * Side Effect
2131  *	sets request->status = <disk operation status>
2132  */
2133 static int
2134 vd_complete_bio(vd_task_t *task)
2135 {
2136 	int			status		= 0;
2137 	int			rv		= 0;
2138 	vd_t			*vd		= task->vd;
2139 	vd_dring_payload_t	*request	= task->request;
2140 	struct buf		*buf		= &task->buf;
2141 
2142 
2143 	ASSERT(vd != NULL);
2144 	ASSERT(request != NULL);
2145 	ASSERT(task->msg != NULL);
2146 	ASSERT(task->msglen >= sizeof (*task->msg));
2147 	ASSERT(!vd->file);
2148 	ASSERT(request->slice != VD_SLICE_NONE || (!vd_slice_single_slice &&
2149 	    vd->vdisk_type == VD_DISK_TYPE_SLICE));
2150 
2151 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
2152 	request->status = biowait(buf);
2153 
2154 	/* Update the number of bytes read/written */
2155 	request->nbytes += buf->b_bcount - buf->b_resid;
2156 
2157 	/* Release the buffer */
2158 	if (!vd->reset_state)
2159 		status = ldc_mem_release(task->mhdl, 0, buf->b_bufsize);
2160 	if (status) {
2161 		PR0("ldc_mem_release() returned errno %d copying to "
2162 		    "client", status);
2163 		if (status == ECONNRESET) {
2164 			vd_mark_in_reset(vd);
2165 		}
2166 		rv = EIO;
2167 	}
2168 
2169 	/* Unmap the memory, even if in reset */
2170 	status = ldc_mem_unmap(task->mhdl);
2171 	if (status) {
2172 		PR0("ldc_mem_unmap() returned errno %d copying to client",
2173 		    status);
2174 		if (status == ECONNRESET) {
2175 			vd_mark_in_reset(vd);
2176 		}
2177 		rv = EIO;
2178 	}
2179 
2180 	biofini(buf);
2181 
2182 	return (rv);
2183 }
2184 
2185 /*
2186  * Description:
2187  *	This function is called by the two functions called by a taskq
2188  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
2189  *	message to the client.
2190  *
2191  * Parameters:
2192  *	arg 	- opaque pointer to structure containing task to be completed
2193  *
2194  * Return Values
2195  *	None
2196  */
2197 static void
2198 vd_notify(vd_task_t *task)
2199 {
2200 	int	status;
2201 
2202 	ASSERT(task != NULL);
2203 	ASSERT(task->vd != NULL);
2204 
2205 	/*
2206 	 * Send the "ack" or "nack" back to the client; if sending the message
2207 	 * via LDC fails, arrange to reset both the connection state and LDC
2208 	 * itself
2209 	 */
2210 	PR2("Sending %s",
2211 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
2212 
2213 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
2214 	switch (status) {
2215 	case 0:
2216 		break;
2217 	case ECONNRESET:
2218 		vd_mark_in_reset(task->vd);
2219 		break;
2220 	default:
2221 		PR0("initiating full reset");
2222 		vd_need_reset(task->vd, B_TRUE);
2223 		break;
2224 	}
2225 
2226 	DTRACE_PROBE1(task__end, vd_task_t *, task);
2227 }
2228 
2229 /*
2230  * Description:
2231  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
2232  *	the vDisk client
2233  *
2234  * Parameters:
2235  *	task 		- structure containing the request sent from client
2236  *
2237  * Return Values
2238  *	None
2239  */
2240 static void
2241 vd_complete_notify(vd_task_t *task)
2242 {
2243 	int			status		= 0;
2244 	vd_t			*vd		= task->vd;
2245 	vd_dring_payload_t	*request	= task->request;
2246 
2247 	/* Update the dring element for a dring client */
2248 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
2249 		status = vd_mark_elem_done(vd, task->index,
2250 		    request->status, request->nbytes);
2251 		if (status == ECONNRESET)
2252 			vd_mark_in_reset(vd);
2253 		else if (status == EACCES)
2254 			vd_need_reset(vd, B_TRUE);
2255 	}
2256 
2257 	/*
2258 	 * If a transport error occurred while marking the element done or
2259 	 * previously while executing the task, arrange to "nack" the message
2260 	 * when the final task in the descriptor element range completes
2261 	 */
2262 	if ((status != 0) || (task->status != 0))
2263 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
2264 
2265 	/*
2266 	 * Only the final task for a range of elements will respond to and
2267 	 * free the message
2268 	 */
2269 	if (task->type == VD_NONFINAL_RANGE_TASK) {
2270 		return;
2271 	}
2272 
2273 	/*
2274 	 * We should only send an ACK/NACK here if we are not currently in
2275 	 * reset as, depending on how we reset, the dring may have been
2276 	 * blown away and we don't want to ACK/NACK a message that isn't
2277 	 * there.
2278 	 */
2279 	if (!vd->reset_state)
2280 		vd_notify(task);
2281 }
2282 
2283 /*
2284  * Description:
2285  *	This is the basic completion function called to handle inband data
2286  *	requests and handshake messages. All it needs to do is trigger a
2287  *	message to the client that the request is completed.
2288  *
2289  * Parameters:
2290  *	arg 	- opaque pointer to structure containing task to be completed
2291  *
2292  * Return Values
2293  *	None
2294  */
2295 static void
2296 vd_serial_notify(void *arg)
2297 {
2298 	vd_task_t		*task = (vd_task_t *)arg;
2299 
2300 	ASSERT(task != NULL);
2301 	vd_notify(task);
2302 }
2303 
2304 /* ARGSUSED */
2305 static int
2306 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2307 {
2308 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
2309 	return (0);
2310 }
2311 
2312 /* ARGSUSED */
2313 static int
2314 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2315 {
2316 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
2317 	return (0);
2318 }
2319 
2320 static void
2321 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
2322 {
2323 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
2324 }
2325 
2326 static void
2327 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
2328 {
2329 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
2330 }
2331 
2332 static int
2333 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2334 {
2335 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2336 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2337 	size_t data_len;
2338 
2339 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2340 	if (vd_efi->length > data_len)
2341 		return (EINVAL);
2342 
2343 	dk_efi->dki_lba = vd_efi->lba;
2344 	dk_efi->dki_length = vd_efi->length;
2345 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
2346 	return (0);
2347 }
2348 
2349 static void
2350 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
2351 {
2352 	int len;
2353 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2354 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2355 
2356 	len = vd_efi->length;
2357 	DK_EFI2VD_EFI(dk_efi, vd_efi);
2358 	kmem_free(dk_efi->dki_data, len);
2359 }
2360 
2361 static int
2362 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2363 {
2364 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2365 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2366 	size_t data_len;
2367 
2368 	data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t));
2369 	if (vd_efi->length > data_len)
2370 		return (EINVAL);
2371 
2372 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
2373 	VD_EFI2DK_EFI(vd_efi, dk_efi);
2374 	return (0);
2375 }
2376 
2377 static void
2378 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
2379 {
2380 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
2381 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
2382 
2383 	kmem_free(dk_efi->dki_data, vd_efi->length);
2384 }
2385 
2386 static int
2387 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg)
2388 {
2389 	size_t vd_scsi_len;
2390 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2391 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2392 
2393 	/* check buffer size */
2394 	vd_scsi_len = VD_SCSI_SIZE;
2395 	vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t));
2396 	vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t));
2397 	vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t));
2398 	vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t));
2399 
2400 	ASSERT(vd_scsi_len % sizeof (uint64_t) == 0);
2401 
2402 	if (vd_buf_len < vd_scsi_len)
2403 		return (EINVAL);
2404 
2405 	/* set flags */
2406 	uscsi->uscsi_flags = vd_scsi_debug;
2407 
2408 	if (vd_scsi->options & VD_SCSI_OPT_NORETRY) {
2409 		uscsi->uscsi_flags |= USCSI_ISOLATE;
2410 		uscsi->uscsi_flags |= USCSI_DIAGNOSE;
2411 	}
2412 
2413 	/* task attribute */
2414 	switch (vd_scsi->task_attribute) {
2415 	case VD_SCSI_TASK_ACA:
2416 		uscsi->uscsi_flags |= USCSI_HEAD;
2417 		break;
2418 	case VD_SCSI_TASK_HQUEUE:
2419 		uscsi->uscsi_flags |= USCSI_HTAG;
2420 		break;
2421 	case VD_SCSI_TASK_ORDERED:
2422 		uscsi->uscsi_flags |= USCSI_OTAG;
2423 		break;
2424 	default:
2425 		uscsi->uscsi_flags |= USCSI_NOTAG;
2426 		break;
2427 	}
2428 
2429 	/* timeout */
2430 	uscsi->uscsi_timeout = vd_scsi->timeout;
2431 
2432 	/* cdb data */
2433 	uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi);
2434 	uscsi->uscsi_cdblen = vd_scsi->cdb_len;
2435 
2436 	/* sense buffer */
2437 	if (vd_scsi->sense_len != 0) {
2438 		uscsi->uscsi_flags |= USCSI_RQENABLE;
2439 		uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi);
2440 		uscsi->uscsi_rqlen = vd_scsi->sense_len;
2441 	}
2442 
2443 	if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) {
2444 		/* uscsi does not support read/write request */
2445 		return (EINVAL);
2446 	}
2447 
2448 	/* request data-in */
2449 	if (vd_scsi->datain_len != 0) {
2450 		uscsi->uscsi_flags |= USCSI_READ;
2451 		uscsi->uscsi_buflen = vd_scsi->datain_len;
2452 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi);
2453 	}
2454 
2455 	/* request data-out */
2456 	if (vd_scsi->dataout_len != 0) {
2457 		uscsi->uscsi_buflen = vd_scsi->dataout_len;
2458 		uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi);
2459 	}
2460 
2461 	return (0);
2462 }
2463 
2464 static void
2465 vd_scsicmd_out(void *ioctl_arg, void *vd_buf)
2466 {
2467 	vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf;
2468 	struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg;
2469 
2470 	/* output fields */
2471 	vd_scsi->cmd_status = uscsi->uscsi_status;
2472 
2473 	/* sense data */
2474 	if ((uscsi->uscsi_flags & USCSI_RQENABLE) &&
2475 	    (uscsi->uscsi_status == STATUS_CHECK ||
2476 	    uscsi->uscsi_status == STATUS_TERMINATED)) {
2477 		vd_scsi->sense_status = uscsi->uscsi_rqstatus;
2478 		if (uscsi->uscsi_rqstatus == STATUS_GOOD)
2479 			vd_scsi->sense_len -= uscsi->uscsi_rqresid;
2480 		else
2481 			vd_scsi->sense_len = 0;
2482 	} else {
2483 		vd_scsi->sense_len = 0;
2484 	}
2485 
2486 	if (uscsi->uscsi_status != STATUS_GOOD) {
2487 		vd_scsi->dataout_len = 0;
2488 		vd_scsi->datain_len = 0;
2489 		return;
2490 	}
2491 
2492 	if (uscsi->uscsi_flags & USCSI_READ) {
2493 		/* request data (read) */
2494 		vd_scsi->datain_len -= uscsi->uscsi_resid;
2495 		vd_scsi->dataout_len = 0;
2496 	} else {
2497 		/* request data (write) */
2498 		vd_scsi->datain_len = 0;
2499 		vd_scsi->dataout_len -= uscsi->uscsi_resid;
2500 	}
2501 }
2502 
2503 static ushort_t
2504 vd_lbl2cksum(struct dk_label *label)
2505 {
2506 	int	count;
2507 	ushort_t sum, *sp;
2508 
2509 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
2510 	sp = (ushort_t *)label;
2511 	sum = 0;
2512 	while (count--) {
2513 		sum ^= *sp++;
2514 	}
2515 
2516 	return (sum);
2517 }
2518 
2519 /*
2520  * Copy information from a vtoc and dk_geom structures to a dk_label structure.
2521  */
2522 static void
2523 vd_vtocgeom_to_label(struct vtoc *vtoc, struct dk_geom *geom,
2524     struct dk_label *label)
2525 {
2526 	int i;
2527 
2528 	ASSERT(vtoc->v_nparts == V_NUMPAR);
2529 	ASSERT(vtoc->v_sanity == VTOC_SANE);
2530 
2531 	bzero(label, sizeof (struct dk_label));
2532 
2533 	label->dkl_ncyl = geom->dkg_ncyl;
2534 	label->dkl_acyl = geom->dkg_acyl;
2535 	label->dkl_pcyl = geom->dkg_pcyl;
2536 	label->dkl_nhead = geom->dkg_nhead;
2537 	label->dkl_nsect = geom->dkg_nsect;
2538 	label->dkl_intrlv = geom->dkg_intrlv;
2539 	label->dkl_apc = geom->dkg_apc;
2540 	label->dkl_rpm = geom->dkg_rpm;
2541 	label->dkl_write_reinstruct = geom->dkg_write_reinstruct;
2542 	label->dkl_read_reinstruct = geom->dkg_read_reinstruct;
2543 
2544 	label->dkl_vtoc.v_nparts = V_NUMPAR;
2545 	label->dkl_vtoc.v_sanity = VTOC_SANE;
2546 	label->dkl_vtoc.v_version = vtoc->v_version;
2547 	for (i = 0; i < V_NUMPAR; i++) {
2548 		label->dkl_vtoc.v_timestamp[i] = vtoc->timestamp[i];
2549 		label->dkl_vtoc.v_part[i].p_tag = vtoc->v_part[i].p_tag;
2550 		label->dkl_vtoc.v_part[i].p_flag = vtoc->v_part[i].p_flag;
2551 		label->dkl_map[i].dkl_cylno = vtoc->v_part[i].p_start /
2552 		    (label->dkl_nhead * label->dkl_nsect);
2553 		label->dkl_map[i].dkl_nblk = vtoc->v_part[i].p_size;
2554 	}
2555 
2556 	/*
2557 	 * The bootinfo array can not be copied with bcopy() because
2558 	 * elements are of type long in vtoc (so 64-bit) and of type
2559 	 * int in dk_vtoc (so 32-bit).
2560 	 */
2561 	label->dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2562 	label->dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2563 	label->dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2564 	bcopy(vtoc->v_asciilabel, label->dkl_asciilabel, LEN_DKL_ASCII);
2565 	bcopy(vtoc->v_volume, label->dkl_vtoc.v_volume, LEN_DKL_VVOL);
2566 
2567 	/* re-compute checksum */
2568 	label->dkl_magic = DKL_MAGIC;
2569 	label->dkl_cksum = vd_lbl2cksum(label);
2570 }
2571 
2572 /*
2573  * Copy information from a dk_label structure to a vtoc and dk_geom structures.
2574  */
2575 static void
2576 vd_label_to_vtocgeom(struct dk_label *label, struct vtoc *vtoc,
2577     struct dk_geom *geom)
2578 {
2579 	int i;
2580 
2581 	bzero(vtoc, sizeof (struct vtoc));
2582 	bzero(geom, sizeof (struct dk_geom));
2583 
2584 	geom->dkg_ncyl = label->dkl_ncyl;
2585 	geom->dkg_acyl = label->dkl_acyl;
2586 	geom->dkg_nhead = label->dkl_nhead;
2587 	geom->dkg_nsect = label->dkl_nsect;
2588 	geom->dkg_intrlv = label->dkl_intrlv;
2589 	geom->dkg_apc = label->dkl_apc;
2590 	geom->dkg_rpm = label->dkl_rpm;
2591 	geom->dkg_pcyl = label->dkl_pcyl;
2592 	geom->dkg_write_reinstruct = label->dkl_write_reinstruct;
2593 	geom->dkg_read_reinstruct = label->dkl_read_reinstruct;
2594 
2595 	vtoc->v_sanity = label->dkl_vtoc.v_sanity;
2596 	vtoc->v_version = label->dkl_vtoc.v_version;
2597 	vtoc->v_sectorsz = DEV_BSIZE;
2598 	vtoc->v_nparts = label->dkl_vtoc.v_nparts;
2599 
2600 	for (i = 0; i < vtoc->v_nparts; i++) {
2601 		vtoc->v_part[i].p_tag = label->dkl_vtoc.v_part[i].p_tag;
2602 		vtoc->v_part[i].p_flag = label->dkl_vtoc.v_part[i].p_flag;
2603 		vtoc->v_part[i].p_start = label->dkl_map[i].dkl_cylno *
2604 		    (label->dkl_nhead * label->dkl_nsect);
2605 		vtoc->v_part[i].p_size = label->dkl_map[i].dkl_nblk;
2606 		vtoc->timestamp[i] = label->dkl_vtoc.v_timestamp[i];
2607 	}
2608 
2609 	/*
2610 	 * The bootinfo array can not be copied with bcopy() because
2611 	 * elements are of type long in vtoc (so 64-bit) and of type
2612 	 * int in dk_vtoc (so 32-bit).
2613 	 */
2614 	vtoc->v_bootinfo[0] = label->dkl_vtoc.v_bootinfo[0];
2615 	vtoc->v_bootinfo[1] = label->dkl_vtoc.v_bootinfo[1];
2616 	vtoc->v_bootinfo[2] = label->dkl_vtoc.v_bootinfo[2];
2617 	bcopy(label->dkl_asciilabel, vtoc->v_asciilabel, LEN_DKL_ASCII);
2618 	bcopy(label->dkl_vtoc.v_volume, vtoc->v_volume, LEN_DKL_VVOL);
2619 }
2620 
2621 /*
2622  * Check if a geometry is valid for a single-slice disk. A geometry is
2623  * considered valid if the main attributes of the geometry match with the
2624  * attributes of the fake geometry we have created.
2625  */
2626 static boolean_t
2627 vd_slice_geom_isvalid(vd_t *vd, struct dk_geom *geom)
2628 {
2629 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2630 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2631 
2632 	if (geom->dkg_ncyl != vd->dk_geom.dkg_ncyl ||
2633 	    geom->dkg_acyl != vd->dk_geom.dkg_acyl ||
2634 	    geom->dkg_nsect != vd->dk_geom.dkg_nsect ||
2635 	    geom->dkg_pcyl != vd->dk_geom.dkg_pcyl)
2636 		return (B_FALSE);
2637 
2638 	return (B_TRUE);
2639 }
2640 
2641 /*
2642  * Check if a vtoc is valid for a single-slice disk. A vtoc is considered
2643  * valid if the main attributes of the vtoc match with the attributes of the
2644  * fake vtoc we have created.
2645  */
2646 static boolean_t
2647 vd_slice_vtoc_isvalid(vd_t *vd, struct vtoc *vtoc)
2648 {
2649 	size_t csize;
2650 	int i;
2651 
2652 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2653 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
2654 
2655 	if (vtoc->v_sanity != vd->vtoc.v_sanity ||
2656 	    vtoc->v_version != vd->vtoc.v_version ||
2657 	    vtoc->v_nparts != vd->vtoc.v_nparts ||
2658 	    strcmp(vtoc->v_volume, vd->vtoc.v_volume) != 0 ||
2659 	    strcmp(vtoc->v_asciilabel, vd->vtoc.v_asciilabel) != 0)
2660 		return (B_FALSE);
2661 
2662 	/* slice 2 should be unchanged */
2663 	if (vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_start !=
2664 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start ||
2665 	    vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size !=
2666 	    vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size)
2667 		return (B_FALSE);
2668 
2669 	/*
2670 	 * Slice 0 should be mostly unchanged and cover most of the disk.
2671 	 * However we allow some flexibility wrt to the start and the size
2672 	 * of this slice mainly because we can't exactly know how it will
2673 	 * be defined by the OS installer.
2674 	 *
2675 	 * We allow slice 0 to be defined as starting on any of the first
2676 	 * 4 cylinders.
2677 	 */
2678 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
2679 
2680 	if (vtoc->v_part[0].p_start > 4 * csize ||
2681 	    vtoc->v_part[0].p_size > vtoc->v_part[VD_ENTIRE_DISK_SLICE].p_size)
2682 			return (B_FALSE);
2683 
2684 	if (vd->vtoc.v_part[0].p_size >= 4 * csize &&
2685 	    vtoc->v_part[0].p_size < vd->vtoc.v_part[0].p_size - 4 *csize)
2686 			return (B_FALSE);
2687 
2688 	/* any other slice should have a size of 0 */
2689 	for (i = 1; i < vtoc->v_nparts; i++) {
2690 		if (i != VD_ENTIRE_DISK_SLICE &&
2691 		    vtoc->v_part[i].p_size != 0)
2692 			return (B_FALSE);
2693 	}
2694 
2695 	return (B_TRUE);
2696 }
2697 
2698 /*
2699  * Handle ioctls to a disk slice.
2700  *
2701  * Return Values
2702  *	0	- Indicates that there are no errors in disk operations
2703  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
2704  *	EINVAL	- Not enough room to copy the EFI label
2705  *
2706  */
2707 static int
2708 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2709 {
2710 	dk_efi_t *dk_ioc;
2711 	struct vtoc *vtoc;
2712 	struct dk_geom *geom;
2713 	size_t len, lba;
2714 	int rval;
2715 
2716 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
2717 
2718 	if (cmd == DKIOCFLUSHWRITECACHE) {
2719 		if (vd->file) {
2720 			return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2721 		} else {
2722 			return (ldi_ioctl(vd->ldi_handle[0], cmd,
2723 			    (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL,
2724 			    kcred, &rval));
2725 		}
2726 	}
2727 
2728 	switch (vd->vdisk_label) {
2729 
2730 	/* ioctls for a single slice disk with a VTOC label */
2731 	case VD_DISK_LABEL_VTOC:
2732 
2733 		switch (cmd) {
2734 
2735 		case DKIOCGGEOM:
2736 			ASSERT(ioctl_arg != NULL);
2737 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
2738 			return (0);
2739 
2740 		case DKIOCGVTOC:
2741 			ASSERT(ioctl_arg != NULL);
2742 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
2743 			return (0);
2744 
2745 		case DKIOCSGEOM:
2746 			ASSERT(ioctl_arg != NULL);
2747 			if (vd_slice_single_slice)
2748 				return (ENOTSUP);
2749 
2750 			/* fake success only if new geometry is valid */
2751 			geom = (struct dk_geom *)ioctl_arg;
2752 			if (!vd_slice_geom_isvalid(vd, geom))
2753 				return (EINVAL);
2754 
2755 			return (0);
2756 
2757 		case DKIOCSVTOC:
2758 			ASSERT(ioctl_arg != NULL);
2759 			if (vd_slice_single_slice)
2760 				return (ENOTSUP);
2761 
2762 			/* fake sucess only if the new vtoc is valid */
2763 			vtoc = (struct vtoc *)ioctl_arg;
2764 			if (!vd_slice_vtoc_isvalid(vd, vtoc))
2765 				return (EINVAL);
2766 
2767 			return (0);
2768 
2769 		default:
2770 			return (ENOTSUP);
2771 		}
2772 
2773 	/* ioctls for a single slice disk with an EFI label */
2774 	case VD_DISK_LABEL_EFI:
2775 
2776 		if (cmd != DKIOCGETEFI && cmd != DKIOCSETEFI)
2777 			return (ENOTSUP);
2778 
2779 		ASSERT(ioctl_arg != NULL);
2780 		dk_ioc = (dk_efi_t *)ioctl_arg;
2781 
2782 		len = dk_ioc->dki_length;
2783 		lba = dk_ioc->dki_lba;
2784 
2785 		if ((lba != VD_EFI_LBA_GPT && lba != VD_EFI_LBA_GPE) ||
2786 		    (lba == VD_EFI_LBA_GPT && len < sizeof (efi_gpt_t)) ||
2787 		    (lba == VD_EFI_LBA_GPE && len < sizeof (efi_gpe_t)))
2788 			return (EINVAL);
2789 
2790 		switch (cmd) {
2791 		case DKIOCGETEFI:
2792 			len = vd_slice_flabel_read(vd,
2793 			    (caddr_t)dk_ioc->dki_data, lba * DEV_BSIZE, len);
2794 
2795 			ASSERT(len > 0);
2796 
2797 			return (0);
2798 
2799 		case DKIOCSETEFI:
2800 			if (vd_slice_single_slice)
2801 				return (ENOTSUP);
2802 
2803 			/* we currently don't support writing EFI */
2804 			return (EIO);
2805 		}
2806 
2807 	default:
2808 		/* Unknown disk label type */
2809 		return (ENOTSUP);
2810 	}
2811 }
2812 
2813 static int
2814 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe)
2815 {
2816 	vd_efi_dev_t edev;
2817 	int status;
2818 
2819 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2820 
2821 	status = vd_efi_alloc_and_read(&edev, gpt, gpe);
2822 
2823 	return (status);
2824 }
2825 
2826 static void
2827 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe)
2828 {
2829 	vd_efi_dev_t edev;
2830 
2831 	VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl);
2832 
2833 	vd_efi_free(&edev, gpt, gpe);
2834 }
2835 
2836 static int
2837 vd_file_validate_efi(vd_t *vd)
2838 {
2839 	efi_gpt_t *gpt;
2840 	efi_gpe_t *gpe;
2841 	int i, nparts, status;
2842 	struct uuid efi_reserved = EFI_RESERVED;
2843 
2844 	if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0)
2845 		return (status);
2846 
2847 	bzero(&vd->vtoc, sizeof (struct vtoc));
2848 	bzero(&vd->dk_geom, sizeof (struct dk_geom));
2849 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2850 
2851 	vd->efi_reserved = -1;
2852 
2853 	nparts = gpt->efi_gpt_NumberOfPartitionEntries;
2854 
2855 	for (i = 0; i < nparts && i < VD_MAXPART; i++) {
2856 
2857 		if (gpe[i].efi_gpe_StartingLBA == 0 ||
2858 		    gpe[i].efi_gpe_EndingLBA == 0) {
2859 			continue;
2860 		}
2861 
2862 		vd->slices[i].start = gpe[i].efi_gpe_StartingLBA;
2863 		vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA -
2864 		    gpe[i].efi_gpe_StartingLBA + 1;
2865 
2866 		if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved,
2867 		    sizeof (struct uuid)) == 0)
2868 			vd->efi_reserved = i;
2869 
2870 	}
2871 
2872 	ASSERT(vd->vdisk_size != 0);
2873 	vd->slices[VD_EFI_WD_SLICE].start = 0;
2874 	vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size;
2875 
2876 	vds_efi_free(vd, gpt, gpe);
2877 
2878 	return (status);
2879 }
2880 
2881 /*
2882  * Function:
2883  *	vd_file_validate_geometry
2884  *
2885  * Description:
2886  *	Read the label and validate the geometry of a disk image. The driver
2887  *	label, vtoc and geometry information are updated according to the
2888  *	label read from the disk image.
2889  *
2890  *	If no valid label is found, the label is set to unknown and the
2891  *	function returns EINVAL, but a default vtoc and geometry are provided
2892  *	to the driver. If an EFI label is found, ENOTSUP is returned.
2893  *
2894  * Parameters:
2895  *	vd	- disk on which the operation is performed.
2896  *
2897  * Return Code:
2898  *	0	- success.
2899  *	EIO	- error reading the label from the disk image.
2900  *	EINVAL	- unknown disk label.
2901  *	ENOTSUP	- geometry not applicable (EFI label).
2902  */
2903 static int
2904 vd_file_validate_geometry(vd_t *vd)
2905 {
2906 	struct dk_label label;
2907 	struct dk_geom *geom = &vd->dk_geom;
2908 	struct vtoc *vtoc = &vd->vtoc;
2909 	int i;
2910 	int status = 0;
2911 
2912 	ASSERT(vd->file);
2913 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2914 
2915 	if (VD_FILE_LABEL_READ(vd, &label) < 0)
2916 		return (EIO);
2917 
2918 	if (label.dkl_magic != DKL_MAGIC ||
2919 	    label.dkl_cksum != vd_lbl2cksum(&label) ||
2920 	    (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) ||
2921 	    label.dkl_vtoc.v_nparts != V_NUMPAR) {
2922 
2923 		if (vd_file_validate_efi(vd) == 0) {
2924 			vd->vdisk_label = VD_DISK_LABEL_EFI;
2925 			return (ENOTSUP);
2926 		}
2927 
2928 		vd->vdisk_label = VD_DISK_LABEL_UNK;
2929 		vd_build_default_label(vd->file_size, &label);
2930 		status = EINVAL;
2931 	} else {
2932 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
2933 	}
2934 
2935 	/* Update the driver geometry and vtoc */
2936 	vd_label_to_vtocgeom(&label, vtoc, geom);
2937 
2938 	/* Update logical partitions */
2939 	bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART);
2940 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
2941 		for (i = 0; i < vtoc->v_nparts; i++) {
2942 			vd->slices[i].start = vtoc->v_part[i].p_start;
2943 			vd->slices[i].nblocks = vtoc->v_part[i].p_size;
2944 		}
2945 	}
2946 
2947 	return (status);
2948 }
2949 
2950 /*
2951  * Handle ioctls to a disk image (file-based).
2952  *
2953  * Return Values
2954  *	0	- Indicates that there are no errors
2955  *	!= 0	- Disk operation returned an error
2956  */
2957 static int
2958 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
2959 {
2960 	struct dk_label label;
2961 	struct dk_geom *geom;
2962 	struct vtoc *vtoc;
2963 	dk_efi_t *efi;
2964 	int rc;
2965 
2966 	ASSERT(vd->file);
2967 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
2968 
2969 	switch (cmd) {
2970 
2971 	case DKIOCGGEOM:
2972 		ASSERT(ioctl_arg != NULL);
2973 		geom = (struct dk_geom *)ioctl_arg;
2974 
2975 		rc = vd_file_validate_geometry(vd);
2976 		if (rc != 0 && rc != EINVAL)
2977 			return (rc);
2978 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
2979 		return (0);
2980 
2981 	case DKIOCGVTOC:
2982 		ASSERT(ioctl_arg != NULL);
2983 		vtoc = (struct vtoc *)ioctl_arg;
2984 
2985 		rc = vd_file_validate_geometry(vd);
2986 		if (rc != 0 && rc != EINVAL)
2987 			return (rc);
2988 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
2989 		return (0);
2990 
2991 	case DKIOCSGEOM:
2992 		ASSERT(ioctl_arg != NULL);
2993 		geom = (struct dk_geom *)ioctl_arg;
2994 
2995 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
2996 			return (EINVAL);
2997 
2998 		/*
2999 		 * The current device geometry is not updated, just the driver
3000 		 * "notion" of it. The device geometry will be effectively
3001 		 * updated when a label is written to the device during a next
3002 		 * DKIOCSVTOC.
3003 		 */
3004 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
3005 		return (0);
3006 
3007 	case DKIOCSVTOC:
3008 		ASSERT(ioctl_arg != NULL);
3009 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
3010 		    vd->dk_geom.dkg_nsect != 0);
3011 		vtoc = (struct vtoc *)ioctl_arg;
3012 
3013 		if (vtoc->v_sanity != VTOC_SANE ||
3014 		    vtoc->v_sectorsz != DEV_BSIZE ||
3015 		    vtoc->v_nparts != V_NUMPAR)
3016 			return (EINVAL);
3017 
3018 		vd_vtocgeom_to_label(vtoc, &vd->dk_geom, &label);
3019 
3020 		/* write label to the disk image */
3021 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
3022 			return (rc);
3023 
3024 		break;
3025 
3026 	case DKIOCFLUSHWRITECACHE:
3027 		return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
3028 
3029 	case DKIOCGETEFI:
3030 		ASSERT(ioctl_arg != NULL);
3031 		efi = (dk_efi_t *)ioctl_arg;
3032 
3033 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD,
3034 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3035 			return (EIO);
3036 
3037 		return (0);
3038 
3039 	case DKIOCSETEFI:
3040 		ASSERT(ioctl_arg != NULL);
3041 		efi = (dk_efi_t *)ioctl_arg;
3042 
3043 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
3044 		    (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0)
3045 			return (EIO);
3046 
3047 		break;
3048 
3049 
3050 	default:
3051 		return (ENOTSUP);
3052 	}
3053 
3054 	ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI);
3055 
3056 	/* label has changed, revalidate the geometry */
3057 	(void) vd_file_validate_geometry(vd);
3058 
3059 	/*
3060 	 * The disk geometry may have changed, so we need to write
3061 	 * the devid (if there is one) so that it is stored at the
3062 	 * right location.
3063 	 */
3064 	if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3065 		PR0("Fail to write devid");
3066 	}
3067 
3068 	return (0);
3069 }
3070 
3071 static int
3072 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg)
3073 {
3074 	int rval = 0, status;
3075 
3076 	/*
3077 	 * Call the appropriate function to execute the ioctl depending
3078 	 * on the type of vdisk.
3079 	 */
3080 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3081 
3082 		/* slice, file or volume exported as a single slice disk */
3083 		status = vd_do_slice_ioctl(vd, cmd, arg);
3084 
3085 	} else if (vd->file) {
3086 
3087 		/* file or volume exported as a full disk */
3088 		status = vd_do_file_ioctl(vd, cmd, arg);
3089 
3090 	} else {
3091 
3092 		/* disk device exported as a full disk */
3093 		status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg,
3094 		    vd->open_flags | FKIOCTL, kcred, &rval);
3095 	}
3096 
3097 #ifdef DEBUG
3098 	if (rval != 0) {
3099 		PR0("ioctl %x set rval = %d, which is not being returned"
3100 		    " to caller", cmd, rval);
3101 	}
3102 #endif /* DEBUG */
3103 
3104 	return (status);
3105 }
3106 
3107 /*
3108  * Description:
3109  *	This is the function that processes the ioctl requests (farming it
3110  *	out to functions that handle slices, files or whole disks)
3111  *
3112  * Return Values
3113  *     0		- ioctl operation completed successfully
3114  *     != 0		- The LDC error value encountered
3115  *			  (propagated back up the call stack as a task error)
3116  *
3117  * Side Effect
3118  *     sets request->status to the return value of the ioctl function.
3119  */
3120 static int
3121 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
3122 {
3123 	int	status = 0;
3124 	size_t	nbytes = request->nbytes;	/* modifiable copy */
3125 
3126 
3127 	ASSERT(request->slice < vd->nslices);
3128 	PR0("Performing %s", ioctl->operation_name);
3129 
3130 	/* Get data from client and convert, if necessary */
3131 	if (ioctl->copyin != NULL)  {
3132 		ASSERT(nbytes != 0 && buf != NULL);
3133 		PR1("Getting \"arg\" data from client");
3134 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3135 		    request->cookie, request->ncookies,
3136 		    LDC_COPY_IN)) != 0) {
3137 			PR0("ldc_mem_copy() returned errno %d "
3138 			    "copying from client", status);
3139 			return (status);
3140 		}
3141 
3142 		/* Convert client's data, if necessary */
3143 		if (ioctl->copyin == VD_IDENTITY_IN) {
3144 			/* use client buffer */
3145 			ioctl->arg = buf;
3146 		} else {
3147 			/* convert client vdisk operation data to ioctl data */
3148 			status = (ioctl->copyin)(buf, nbytes,
3149 			    (void *)ioctl->arg);
3150 			if (status != 0) {
3151 				request->status = status;
3152 				return (0);
3153 			}
3154 		}
3155 	}
3156 
3157 	if (ioctl->operation == VD_OP_SCSICMD) {
3158 		struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg;
3159 
3160 		/* check write permission */
3161 		if (!(vd->open_flags & FWRITE) &&
3162 		    !(uscsi->uscsi_flags & USCSI_READ)) {
3163 			PR0("uscsi fails because backend is opened read-only");
3164 			request->status = EROFS;
3165 			return (0);
3166 		}
3167 	}
3168 
3169 	/*
3170 	 * Send the ioctl to the disk backend.
3171 	 */
3172 	request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg);
3173 
3174 	if (request->status != 0) {
3175 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
3176 		if (ioctl->operation == VD_OP_SCSICMD &&
3177 		    ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0)
3178 			/*
3179 			 * USCSICMD has reported an error and the uscsi_status
3180 			 * field is not zero. This means that the SCSI command
3181 			 * has completed but it has an error. So we should
3182 			 * mark the VD operation has succesfully completed
3183 			 * and clients can check the SCSI status field for
3184 			 * SCSI errors.
3185 			 */
3186 			request->status = 0;
3187 		else
3188 			return (0);
3189 	}
3190 
3191 	/* Convert data and send to client, if necessary */
3192 	if (ioctl->copyout != NULL)  {
3193 		ASSERT(nbytes != 0 && buf != NULL);
3194 		PR1("Sending \"arg\" data to client");
3195 
3196 		/* Convert ioctl data to vdisk operation data, if necessary */
3197 		if (ioctl->copyout != VD_IDENTITY_OUT)
3198 			(ioctl->copyout)((void *)ioctl->arg, buf);
3199 
3200 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
3201 		    request->cookie, request->ncookies,
3202 		    LDC_COPY_OUT)) != 0) {
3203 			PR0("ldc_mem_copy() returned errno %d "
3204 			    "copying to client", status);
3205 			return (status);
3206 		}
3207 	}
3208 
3209 	return (status);
3210 }
3211 
3212 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
3213 
3214 /*
3215  * Description:
3216  *	This generic function is called by the task queue to complete
3217  *	the processing of the tasks. The specific completion function
3218  *	is passed in as a field in the task pointer.
3219  *
3220  * Parameters:
3221  *	arg 	- opaque pointer to structure containing task to be completed
3222  *
3223  * Return Values
3224  *	None
3225  */
3226 static void
3227 vd_complete(void *arg)
3228 {
3229 	vd_task_t	*task = (vd_task_t *)arg;
3230 
3231 	ASSERT(task != NULL);
3232 	ASSERT(task->status == EINPROGRESS);
3233 	ASSERT(task->completef != NULL);
3234 
3235 	task->status = task->completef(task);
3236 	if (task->status)
3237 		PR0("%s: Error %d completing task", __func__, task->status);
3238 
3239 	/* Now notify the vDisk client */
3240 	vd_complete_notify(task);
3241 }
3242 
3243 static int
3244 vd_ioctl(vd_task_t *task)
3245 {
3246 	int			i, status;
3247 	void			*buf = NULL;
3248 	struct dk_geom		dk_geom = {0};
3249 	struct vtoc		vtoc = {0};
3250 	struct dk_efi		dk_efi = {0};
3251 	struct uscsi_cmd	uscsi = {0};
3252 	vd_t			*vd		= task->vd;
3253 	vd_dring_payload_t	*request	= task->request;
3254 	vd_ioctl_t		ioctl[] = {
3255 		/* Command (no-copy) operations */
3256 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
3257 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
3258 		    NULL, NULL, NULL, B_TRUE},
3259 
3260 		/* "Get" (copy-out) operations */
3261 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
3262 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
3263 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE},
3264 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
3265 		    RNDSIZE(vd_geom_t),
3266 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
3267 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
3268 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
3269 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
3270 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
3271 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
3272 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
3273 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
3274 
3275 		/* "Set" (copy-in) operations */
3276 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
3277 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
3278 		    NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE},
3279 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
3280 		    RNDSIZE(vd_geom_t),
3281 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
3282 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
3283 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
3284 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
3285 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
3286 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
3287 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
3288 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
3289 
3290 		{VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t),
3291 		    USCSICMD, STRINGIZE(USCSICMD),
3292 		    &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE},
3293 	};
3294 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
3295 
3296 
3297 	ASSERT(vd != NULL);
3298 	ASSERT(request != NULL);
3299 	ASSERT(request->slice < vd->nslices);
3300 
3301 	/*
3302 	 * Determine ioctl corresponding to caller's "operation" and
3303 	 * validate caller's "nbytes"
3304 	 */
3305 	for (i = 0; i < nioctls; i++) {
3306 		if (request->operation == ioctl[i].operation) {
3307 			/* LDC memory operations require 8-byte multiples */
3308 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
3309 
3310 			if (request->operation == VD_OP_GET_EFI ||
3311 			    request->operation == VD_OP_SET_EFI ||
3312 			    request->operation == VD_OP_SCSICMD) {
3313 				if (request->nbytes >= ioctl[i].nbytes)
3314 					break;
3315 				PR0("%s:  Expected at least nbytes = %lu, "
3316 				    "got %lu", ioctl[i].operation_name,
3317 				    ioctl[i].nbytes, request->nbytes);
3318 				return (EINVAL);
3319 			}
3320 
3321 			if (request->nbytes != ioctl[i].nbytes) {
3322 				PR0("%s:  Expected nbytes = %lu, got %lu",
3323 				    ioctl[i].operation_name, ioctl[i].nbytes,
3324 				    request->nbytes);
3325 				return (EINVAL);
3326 			}
3327 
3328 			break;
3329 		}
3330 	}
3331 	ASSERT(i < nioctls);	/* because "operation" already validated */
3332 
3333 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
3334 		PR0("%s fails because backend is opened read-only",
3335 		    ioctl[i].operation_name);
3336 		request->status = EROFS;
3337 		return (0);
3338 	}
3339 
3340 	if (request->nbytes)
3341 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
3342 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
3343 	if (request->nbytes)
3344 		kmem_free(buf, request->nbytes);
3345 
3346 	return (status);
3347 }
3348 
3349 static int
3350 vd_get_devid(vd_task_t *task)
3351 {
3352 	vd_t *vd = task->vd;
3353 	vd_dring_payload_t *request = task->request;
3354 	vd_devid_t *vd_devid;
3355 	impl_devid_t *devid;
3356 	int status, bufid_len, devid_len, len, sz;
3357 	int bufbytes;
3358 
3359 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
3360 
3361 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
3362 		/*
3363 		 * We don't support devid for single-slice disks because we
3364 		 * have no space to store a fabricated devid and for physical
3365 		 * disk slices, we can't use the devid of the disk otherwise
3366 		 * exporting multiple slices from the same disk will produce
3367 		 * the same devids.
3368 		 */
3369 		PR2("No Device ID for slices");
3370 		request->status = ENOTSUP;
3371 		return (0);
3372 	}
3373 
3374 	if (vd->file) {
3375 		if (vd->file_devid == NULL) {
3376 			PR2("No Device ID");
3377 			request->status = ENOENT;
3378 			return (0);
3379 		} else {
3380 			sz = ddi_devid_sizeof(vd->file_devid);
3381 			devid = kmem_alloc(sz, KM_SLEEP);
3382 			bcopy(vd->file_devid, devid, sz);
3383 		}
3384 	} else {
3385 		if (ddi_lyr_get_devid(vd->dev[request->slice],
3386 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
3387 			PR2("No Device ID");
3388 			request->status = ENOENT;
3389 			return (0);
3390 		}
3391 	}
3392 
3393 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
3394 	devid_len = DEVID_GETLEN(devid);
3395 
3396 	/*
3397 	 * Save the buffer size here for use in deallocation.
3398 	 * The actual number of bytes copied is returned in
3399 	 * the 'nbytes' field of the request structure.
3400 	 */
3401 	bufbytes = request->nbytes;
3402 
3403 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
3404 	vd_devid->length = devid_len;
3405 	vd_devid->type = DEVID_GETTYPE(devid);
3406 
3407 	len = (devid_len > bufid_len)? bufid_len : devid_len;
3408 
3409 	bcopy(devid->did_id, vd_devid->id, len);
3410 
3411 	request->status = 0;
3412 
3413 	/* LDC memory operations require 8-byte multiples */
3414 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
3415 
3416 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
3417 	    &request->nbytes, request->cookie, request->ncookies,
3418 	    LDC_COPY_OUT)) != 0) {
3419 		PR0("ldc_mem_copy() returned errno %d copying to client",
3420 		    status);
3421 	}
3422 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
3423 
3424 	kmem_free(vd_devid, bufbytes);
3425 	ddi_devid_free((ddi_devid_t)devid);
3426 
3427 	return (status);
3428 }
3429 
3430 static int
3431 vd_scsi_reset(vd_t *vd)
3432 {
3433 	int rval, status;
3434 	struct uscsi_cmd uscsi = { 0 };
3435 
3436 	uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET;
3437 	uscsi.uscsi_timeout = vd_scsi_rdwr_timeout;
3438 
3439 	status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi,
3440 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3441 
3442 	return (status);
3443 }
3444 
3445 static int
3446 vd_reset(vd_task_t *task)
3447 {
3448 	vd_t *vd = task->vd;
3449 	vd_dring_payload_t *request = task->request;
3450 
3451 	ASSERT(request->operation == VD_OP_RESET);
3452 	ASSERT(vd->scsi);
3453 
3454 	PR0("Performing VD_OP_RESET");
3455 
3456 	if (request->nbytes != 0) {
3457 		PR0("VD_OP_RESET:  Expected nbytes = 0, got %lu",
3458 		    request->nbytes);
3459 		return (EINVAL);
3460 	}
3461 
3462 	request->status = vd_scsi_reset(vd);
3463 
3464 	return (0);
3465 }
3466 
3467 static int
3468 vd_get_capacity(vd_task_t *task)
3469 {
3470 	int rv;
3471 	size_t nbytes;
3472 	vd_t *vd = task->vd;
3473 	vd_dring_payload_t *request = task->request;
3474 	vd_capacity_t vd_cap = { 0 };
3475 
3476 	ASSERT(request->operation == VD_OP_GET_CAPACITY);
3477 
3478 	PR0("Performing VD_OP_GET_CAPACITY");
3479 
3480 	nbytes = request->nbytes;
3481 
3482 	if (nbytes != RNDSIZE(vd_capacity_t)) {
3483 		PR0("VD_OP_GET_CAPACITY:  Expected nbytes = %lu, got %lu",
3484 		    RNDSIZE(vd_capacity_t), nbytes);
3485 		return (EINVAL);
3486 	}
3487 
3488 	/*
3489 	 * Check the backend size in case it has changed. If the check fails
3490 	 * then we will return the last known size.
3491 	 */
3492 
3493 	(void) vd_backend_check_size(vd);
3494 	ASSERT(vd->vdisk_size != 0);
3495 
3496 	request->status = 0;
3497 
3498 	vd_cap.vdisk_block_size = vd->vdisk_block_size;
3499 	vd_cap.vdisk_size = vd->vdisk_size;
3500 
3501 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes,
3502 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3503 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3504 		return (rv);
3505 	}
3506 
3507 	return (0);
3508 }
3509 
3510 static int
3511 vd_get_access(vd_task_t *task)
3512 {
3513 	uint64_t access;
3514 	int rv, rval = 0;
3515 	size_t nbytes;
3516 	vd_t *vd = task->vd;
3517 	vd_dring_payload_t *request = task->request;
3518 
3519 	ASSERT(request->operation == VD_OP_GET_ACCESS);
3520 	ASSERT(vd->scsi);
3521 
3522 	PR0("Performing VD_OP_GET_ACCESS");
3523 
3524 	nbytes = request->nbytes;
3525 
3526 	if (nbytes != sizeof (uint64_t)) {
3527 		PR0("VD_OP_GET_ACCESS:  Expected nbytes = %lu, got %lu",
3528 		    sizeof (uint64_t), nbytes);
3529 		return (EINVAL);
3530 	}
3531 
3532 	request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS,
3533 	    NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3534 
3535 	if (request->status != 0)
3536 		return (0);
3537 
3538 	access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED;
3539 
3540 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes,
3541 	    request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) {
3542 		PR0("ldc_mem_copy() returned errno %d copying to client", rv);
3543 		return (rv);
3544 	}
3545 
3546 	return (0);
3547 }
3548 
3549 static int
3550 vd_set_access(vd_task_t *task)
3551 {
3552 	uint64_t flags;
3553 	int rv, rval;
3554 	size_t nbytes;
3555 	vd_t *vd = task->vd;
3556 	vd_dring_payload_t *request = task->request;
3557 
3558 	ASSERT(request->operation == VD_OP_SET_ACCESS);
3559 	ASSERT(vd->scsi);
3560 
3561 	nbytes = request->nbytes;
3562 
3563 	if (nbytes != sizeof (uint64_t)) {
3564 		PR0("VD_OP_SET_ACCESS:  Expected nbytes = %lu, got %lu",
3565 		    sizeof (uint64_t), nbytes);
3566 		return (EINVAL);
3567 	}
3568 
3569 	if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes,
3570 	    request->cookie, request->ncookies, LDC_COPY_IN)) != 0) {
3571 		PR0("ldc_mem_copy() returned errno %d copying from client", rv);
3572 		return (rv);
3573 	}
3574 
3575 	if (flags == VD_ACCESS_SET_CLEAR) {
3576 		PR0("Performing VD_OP_SET_ACCESS (CLEAR)");
3577 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3578 		    MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred,
3579 		    &rval);
3580 		if (request->status == 0)
3581 			vd->ownership = B_FALSE;
3582 		return (0);
3583 	}
3584 
3585 	/*
3586 	 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid
3587 	 * when the EXCLUSIVE flag is set.
3588 	 */
3589 	if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) {
3590 		PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags);
3591 		request->status = EINVAL;
3592 		return (0);
3593 	}
3594 
3595 	switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) {
3596 
3597 	case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE:
3598 		/*
3599 		 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to
3600 		 * acquire exclusive access rights, preserve them and we
3601 		 * can use preemption. So we can use the MHIOCTKNOWN ioctl.
3602 		 */
3603 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)");
3604 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3605 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3606 		break;
3607 
3608 	case VD_ACCESS_SET_PRESERVE:
3609 		/*
3610 		 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive
3611 		 * access rights and preserve them, but not preempt any other
3612 		 * host. So we need to use the MHIOCTKOWN ioctl to enable the
3613 		 * "preserve" feature but we can not called it directly
3614 		 * because it uses preemption. So before that, we use the
3615 		 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights
3616 		 * without preempting anyone.
3617 		 */
3618 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)");
3619 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3620 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3621 		    &rval);
3622 		if (request->status != 0)
3623 			break;
3624 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3625 		    MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval);
3626 		break;
3627 
3628 	case VD_ACCESS_SET_PREEMPT:
3629 		/*
3630 		 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive
3631 		 * access rights and we can use preemption. So we try to do
3632 		 * a SCSI reservation, if it fails we reset the disk to clear
3633 		 * any reservation and we try to reserve again.
3634 		 */
3635 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)");
3636 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3637 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3638 		    &rval);
3639 		if (request->status == 0)
3640 			break;
3641 
3642 		/* reset the disk */
3643 		(void) vd_scsi_reset(vd);
3644 
3645 		/* try again even if the reset has failed */
3646 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3647 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3648 		    &rval);
3649 		break;
3650 
3651 	case 0:
3652 		/* Flag EXCLUSIVE only. Just issue a SCSI reservation */
3653 		PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)");
3654 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
3655 		    MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred,
3656 		    &rval);
3657 		break;
3658 	}
3659 
3660 	if (request->status == 0)
3661 		vd->ownership = B_TRUE;
3662 	else
3663 		PR0("VD_OP_SET_ACCESS: error %d", request->status);
3664 
3665 	return (0);
3666 }
3667 
3668 static void
3669 vd_reset_access(vd_t *vd)
3670 {
3671 	int status, rval;
3672 
3673 	if (vd->file || !vd->ownership)
3674 		return;
3675 
3676 	PR0("Releasing disk ownership");
3677 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3678 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3679 
3680 	/*
3681 	 * An EACCES failure means that there is a reservation conflict,
3682 	 * so we are not the owner of the disk anymore.
3683 	 */
3684 	if (status == 0 || status == EACCES) {
3685 		vd->ownership = B_FALSE;
3686 		return;
3687 	}
3688 
3689 	PR0("Fail to release ownership, error %d", status);
3690 
3691 	/*
3692 	 * We have failed to release the ownership, try to reset the disk
3693 	 * to release reservations.
3694 	 */
3695 	PR0("Resetting disk");
3696 	status = vd_scsi_reset(vd);
3697 
3698 	if (status != 0)
3699 		PR0("Fail to reset disk, error %d", status);
3700 
3701 	/* whatever the result of the reset is, we try the release again */
3702 	status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL,
3703 	    (vd->open_flags | FKIOCTL), kcred, &rval);
3704 
3705 	if (status == 0 || status == EACCES) {
3706 		vd->ownership = B_FALSE;
3707 		return;
3708 	}
3709 
3710 	PR0("Fail to release ownership, error %d", status);
3711 
3712 	/*
3713 	 * At this point we have done our best to try to reset the
3714 	 * access rights to the disk and we don't know if we still
3715 	 * own a reservation and if any mechanism to preserve the
3716 	 * ownership is still in place. The ultimate solution would
3717 	 * be to reset the system but this is usually not what we
3718 	 * want to happen.
3719 	 */
3720 
3721 	if (vd_reset_access_failure == A_REBOOT) {
3722 		cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG
3723 		    ", rebooting the system", vd->device_path);
3724 		(void) uadmin(A_SHUTDOWN, AD_BOOT, NULL);
3725 	} else if (vd_reset_access_failure == A_DUMP) {
3726 		panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3727 	}
3728 
3729 	cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path);
3730 }
3731 
3732 /*
3733  * Define the supported operations once the functions for performing them have
3734  * been defined
3735  */
3736 static const vds_operation_t	vds_operation[] = {
3737 #define	X(_s)	#_s, _s
3738 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
3739 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
3740 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
3741 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
3742 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
3743 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
3744 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
3745 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
3746 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
3747 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
3748 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
3749 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
3750 	{X(VD_OP_SCSICMD),	vd_ioctl,	NULL},
3751 	{X(VD_OP_RESET),	vd_reset,	NULL},
3752 	{X(VD_OP_GET_CAPACITY),	vd_get_capacity, NULL},
3753 	{X(VD_OP_SET_ACCESS),	vd_set_access,	NULL},
3754 	{X(VD_OP_GET_ACCESS),	vd_get_access,	NULL},
3755 #undef	X
3756 };
3757 
3758 static const size_t	vds_noperations =
3759 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
3760 
3761 /*
3762  * Process a task specifying a client I/O request
3763  *
3764  * Parameters:
3765  *	task 		- structure containing the request sent from client
3766  *
3767  * Return Value
3768  *	0	- success
3769  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
3770  *	EINVAL	- Invalid disk slice
3771  *	!= 0	- some other non-zero return value from start function
3772  */
3773 static int
3774 vd_do_process_task(vd_task_t *task)
3775 {
3776 	int			i;
3777 	vd_t			*vd		= task->vd;
3778 	vd_dring_payload_t	*request	= task->request;
3779 
3780 	ASSERT(vd != NULL);
3781 	ASSERT(request != NULL);
3782 
3783 	/* Find the requested operation */
3784 	for (i = 0; i < vds_noperations; i++) {
3785 		if (request->operation == vds_operation[i].operation) {
3786 			/* all operations should have a start func */
3787 			ASSERT(vds_operation[i].start != NULL);
3788 
3789 			task->completef = vds_operation[i].complete;
3790 			break;
3791 		}
3792 	}
3793 
3794 	/*
3795 	 * We need to check that the requested operation is permitted
3796 	 * for the particular client that sent it or that the loop above
3797 	 * did not complete without finding the operation type (indicating
3798 	 * that the requested operation is unknown/unimplemented)
3799 	 */
3800 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
3801 	    (i == vds_noperations)) {
3802 		PR0("Unsupported operation %u", request->operation);
3803 		request->status = ENOTSUP;
3804 		return (0);
3805 	}
3806 
3807 	/* Range-check slice */
3808 	if (request->slice >= vd->nslices &&
3809 	    ((vd->vdisk_type != VD_DISK_TYPE_DISK && vd_slice_single_slice) ||
3810 	    request->slice != VD_SLICE_NONE)) {
3811 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
3812 		    request->slice, (vd->nslices - 1));
3813 		request->status = EINVAL;
3814 		return (0);
3815 	}
3816 
3817 	/*
3818 	 * Call the function pointer that starts the operation.
3819 	 */
3820 	return (vds_operation[i].start(task));
3821 }
3822 
3823 /*
3824  * Description:
3825  *	This function is called by both the in-band and descriptor ring
3826  *	message processing functions paths to actually execute the task
3827  *	requested by the vDisk client. It in turn calls its worker
3828  *	function, vd_do_process_task(), to carry our the request.
3829  *
3830  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
3831  *	saved in the 'status' field of the task and are propagated back
3832  *	up the call stack to trigger a NACK
3833  *
3834  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
3835  *	the 'status' field of the request and result in an ACK being sent
3836  *	by the completion handler.
3837  *
3838  * Parameters:
3839  *	task 		- structure containing the request sent from client
3840  *
3841  * Return Value
3842  *	0		- successful synchronous request.
3843  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
3844  *	EINPROGRESS	- task will be finished in a completion handler
3845  */
3846 static int
3847 vd_process_task(vd_task_t *task)
3848 {
3849 	vd_t	*vd = task->vd;
3850 	int	status;
3851 
3852 	DTRACE_PROBE1(task__start, vd_task_t *, task);
3853 
3854 	task->status =  vd_do_process_task(task);
3855 
3856 	/*
3857 	 * If the task processing function returned EINPROGRESS indicating
3858 	 * that the task needs completing then schedule a taskq entry to
3859 	 * finish it now.
3860 	 *
3861 	 * Otherwise the task processing function returned either zero
3862 	 * indicating that the task was finished in the start function (and we
3863 	 * don't need to wait in a completion function) or the start function
3864 	 * returned an error - in both cases all that needs to happen is the
3865 	 * notification to the vDisk client higher up the call stack.
3866 	 * If the task was using a Descriptor Ring, we need to mark it as done
3867 	 * at this stage.
3868 	 */
3869 	if (task->status == EINPROGRESS) {
3870 		/* Queue a task to complete the operation */
3871 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
3872 		    task, DDI_SLEEP);
3873 
3874 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) {
3875 		/* Update the dring element if it's a dring client */
3876 		status = vd_mark_elem_done(vd, task->index,
3877 		    task->request->status, task->request->nbytes);
3878 		if (status == ECONNRESET)
3879 			vd_mark_in_reset(vd);
3880 		else if (status == EACCES)
3881 			vd_need_reset(vd, B_TRUE);
3882 	}
3883 
3884 	return (task->status);
3885 }
3886 
3887 /*
3888  * Return true if the "type", "subtype", and "env" fields of the "tag" first
3889  * argument match the corresponding remaining arguments; otherwise, return false
3890  */
3891 boolean_t
3892 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
3893 {
3894 	return ((tag->vio_msgtype == type) &&
3895 	    (tag->vio_subtype == subtype) &&
3896 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
3897 }
3898 
3899 /*
3900  * Check whether the major/minor version specified in "ver_msg" is supported
3901  * by this server.
3902  */
3903 static boolean_t
3904 vds_supported_version(vio_ver_msg_t *ver_msg)
3905 {
3906 	for (int i = 0; i < vds_num_versions; i++) {
3907 		ASSERT(vds_version[i].major > 0);
3908 		ASSERT((i == 0) ||
3909 		    (vds_version[i].major < vds_version[i-1].major));
3910 
3911 		/*
3912 		 * If the major versions match, adjust the minor version, if
3913 		 * necessary, down to the highest value supported by this
3914 		 * server and return true so this message will get "ack"ed;
3915 		 * the client should also support all minor versions lower
3916 		 * than the value it sent
3917 		 */
3918 		if (ver_msg->ver_major == vds_version[i].major) {
3919 			if (ver_msg->ver_minor > vds_version[i].minor) {
3920 				PR0("Adjusting minor version from %u to %u",
3921 				    ver_msg->ver_minor, vds_version[i].minor);
3922 				ver_msg->ver_minor = vds_version[i].minor;
3923 			}
3924 			return (B_TRUE);
3925 		}
3926 
3927 		/*
3928 		 * If the message contains a higher major version number, set
3929 		 * the message's major/minor versions to the current values
3930 		 * and return false, so this message will get "nack"ed with
3931 		 * these values, and the client will potentially try again
3932 		 * with the same or a lower version
3933 		 */
3934 		if (ver_msg->ver_major > vds_version[i].major) {
3935 			ver_msg->ver_major = vds_version[i].major;
3936 			ver_msg->ver_minor = vds_version[i].minor;
3937 			return (B_FALSE);
3938 		}
3939 
3940 		/*
3941 		 * Otherwise, the message's major version is less than the
3942 		 * current major version, so continue the loop to the next
3943 		 * (lower) supported version
3944 		 */
3945 	}
3946 
3947 	/*
3948 	 * No common version was found; "ground" the version pair in the
3949 	 * message to terminate negotiation
3950 	 */
3951 	ver_msg->ver_major = 0;
3952 	ver_msg->ver_minor = 0;
3953 	return (B_FALSE);
3954 }
3955 
3956 /*
3957  * Process a version message from a client.  vds expects to receive version
3958  * messages from clients seeking service, but never issues version messages
3959  * itself; therefore, vds can ACK or NACK client version messages, but does
3960  * not expect to receive version-message ACKs or NACKs (and will treat such
3961  * messages as invalid).
3962  */
3963 static int
3964 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3965 {
3966 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
3967 
3968 
3969 	ASSERT(msglen >= sizeof (msg->tag));
3970 
3971 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
3972 	    VIO_VER_INFO)) {
3973 		return (ENOMSG);	/* not a version message */
3974 	}
3975 
3976 	if (msglen != sizeof (*ver_msg)) {
3977 		PR0("Expected %lu-byte version message; "
3978 		    "received %lu bytes", sizeof (*ver_msg), msglen);
3979 		return (EBADMSG);
3980 	}
3981 
3982 	if (ver_msg->dev_class != VDEV_DISK) {
3983 		PR0("Expected device class %u (disk); received %u",
3984 		    VDEV_DISK, ver_msg->dev_class);
3985 		return (EBADMSG);
3986 	}
3987 
3988 	/*
3989 	 * We're talking to the expected kind of client; set our device class
3990 	 * for "ack/nack" back to the client
3991 	 */
3992 	ver_msg->dev_class = VDEV_DISK_SERVER;
3993 
3994 	/*
3995 	 * Check whether the (valid) version message specifies a version
3996 	 * supported by this server.  If the version is not supported, return
3997 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
3998 	 * will have updated the message with a supported version for the
3999 	 * client to consider
4000 	 */
4001 	if (!vds_supported_version(ver_msg))
4002 		return (EBADMSG);
4003 
4004 
4005 	/*
4006 	 * A version has been agreed upon; use the client's SID for
4007 	 * communication on this channel now
4008 	 */
4009 	ASSERT(!(vd->initialized & VD_SID));
4010 	vd->sid = ver_msg->tag.vio_sid;
4011 	vd->initialized |= VD_SID;
4012 
4013 	/*
4014 	 * Store the negotiated major and minor version values in the "vd" data
4015 	 * structure so that we can check if certain operations are supported
4016 	 * by the client.
4017 	 */
4018 	vd->version.major = ver_msg->ver_major;
4019 	vd->version.minor = ver_msg->ver_minor;
4020 
4021 	PR0("Using major version %u, minor version %u",
4022 	    ver_msg->ver_major, ver_msg->ver_minor);
4023 	return (0);
4024 }
4025 
4026 static void
4027 vd_set_exported_operations(vd_t *vd)
4028 {
4029 	vd->operations = 0;	/* clear field */
4030 
4031 	/*
4032 	 * We need to check from the highest version supported to the
4033 	 * lowest because versions with a higher minor number implicitly
4034 	 * support versions with a lower minor number.
4035 	 */
4036 	if (vio_ver_is_supported(vd->version, 1, 1)) {
4037 		ASSERT(vd->open_flags & FREAD);
4038 		vd->operations |= VD_OP_MASK_READ | (1 << VD_OP_GET_CAPACITY);
4039 
4040 		if (vd->open_flags & FWRITE)
4041 			vd->operations |= VD_OP_MASK_WRITE;
4042 
4043 		if (vd->scsi)
4044 			vd->operations |= VD_OP_MASK_SCSI;
4045 
4046 		if (vd->file && vd_file_is_iso_image(vd)) {
4047 			/*
4048 			 * can't write to ISO images, make sure that write
4049 			 * support is not set in case administrator did not
4050 			 * use "options=ro" when doing an ldm add-vdsdev
4051 			 */
4052 			vd->operations &= ~VD_OP_MASK_WRITE;
4053 		}
4054 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
4055 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
4056 	}
4057 
4058 	/* we should have already agreed on a version */
4059 	ASSERT(vd->operations != 0);
4060 }
4061 
4062 static int
4063 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4064 {
4065 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
4066 	int		status, retry = 0;
4067 
4068 
4069 	ASSERT(msglen >= sizeof (msg->tag));
4070 
4071 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4072 	    VIO_ATTR_INFO)) {
4073 		PR0("Message is not an attribute message");
4074 		return (ENOMSG);
4075 	}
4076 
4077 	if (msglen != sizeof (*attr_msg)) {
4078 		PR0("Expected %lu-byte attribute message; "
4079 		    "received %lu bytes", sizeof (*attr_msg), msglen);
4080 		return (EBADMSG);
4081 	}
4082 
4083 	if (attr_msg->max_xfer_sz == 0) {
4084 		PR0("Received maximum transfer size of 0 from client");
4085 		return (EBADMSG);
4086 	}
4087 
4088 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
4089 	    (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) {
4090 		PR0("Client requested unsupported transfer mode");
4091 		return (EBADMSG);
4092 	}
4093 
4094 	/*
4095 	 * check if the underlying disk is ready, if not try accessing
4096 	 * the device again. Open the vdisk device and extract info
4097 	 * about it, as this is needed to respond to the attr info msg
4098 	 */
4099 	if ((vd->initialized & VD_DISK_READY) == 0) {
4100 		PR0("Retry setting up disk (%s)", vd->device_path);
4101 		do {
4102 			status = vd_setup_vd(vd);
4103 			if (status != EAGAIN || ++retry > vds_dev_retries)
4104 				break;
4105 
4106 			/* incremental delay */
4107 			delay(drv_usectohz(vds_dev_delay));
4108 
4109 			/* if vdisk is no longer enabled - return error */
4110 			if (!vd_enabled(vd))
4111 				return (ENXIO);
4112 
4113 		} while (status == EAGAIN);
4114 
4115 		if (status)
4116 			return (ENXIO);
4117 
4118 		vd->initialized |= VD_DISK_READY;
4119 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4120 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
4121 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4122 		    (vd->volume ? "yes" : "no"),
4123 		    (vd->file ? "yes" : "no"),
4124 		    vd->nslices);
4125 	}
4126 
4127 	/* Success:  valid message and transfer mode */
4128 	vd->xfer_mode = attr_msg->xfer_mode;
4129 
4130 	if (vd->xfer_mode == VIO_DESC_MODE) {
4131 
4132 		/*
4133 		 * The vd_dring_inband_msg_t contains one cookie; need room
4134 		 * for up to n-1 more cookies, where "n" is the number of full
4135 		 * pages plus possibly one partial page required to cover
4136 		 * "max_xfer_sz".  Add room for one more cookie if
4137 		 * "max_xfer_sz" isn't an integral multiple of the page size.
4138 		 * Must first get the maximum transfer size in bytes.
4139 		 */
4140 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
4141 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
4142 		    attr_msg->max_xfer_sz;
4143 		size_t	max_inband_msglen =
4144 		    sizeof (vd_dring_inband_msg_t) +
4145 		    ((max_xfer_bytes/PAGESIZE +
4146 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
4147 		    (sizeof (ldc_mem_cookie_t)));
4148 
4149 		/*
4150 		 * Set the maximum expected message length to
4151 		 * accommodate in-band-descriptor messages with all
4152 		 * their cookies
4153 		 */
4154 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
4155 
4156 		/*
4157 		 * Initialize the data structure for processing in-band I/O
4158 		 * request descriptors
4159 		 */
4160 		vd->inband_task.vd	= vd;
4161 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
4162 		vd->inband_task.index	= 0;
4163 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
4164 	}
4165 
4166 	/* Return the device's block size and max transfer size to the client */
4167 	attr_msg->vdisk_block_size	= vd->vdisk_block_size;
4168 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
4169 
4170 	attr_msg->vdisk_size = vd->vdisk_size;
4171 	attr_msg->vdisk_type = (vd_slice_single_slice)? vd->vdisk_type :
4172 	    VD_DISK_TYPE_DISK;
4173 	attr_msg->vdisk_media = vd->vdisk_media;
4174 
4175 	/* Discover and save the list of supported VD_OP_XXX operations */
4176 	vd_set_exported_operations(vd);
4177 	attr_msg->operations = vd->operations;
4178 
4179 	PR0("%s", VD_CLIENT(vd));
4180 
4181 	ASSERT(vd->dring_task == NULL);
4182 
4183 	return (0);
4184 }
4185 
4186 static int
4187 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4188 {
4189 	int			status;
4190 	size_t			expected;
4191 	ldc_mem_info_t		dring_minfo;
4192 	uint8_t			mtype;
4193 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
4194 
4195 
4196 	ASSERT(msglen >= sizeof (msg->tag));
4197 
4198 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4199 	    VIO_DRING_REG)) {
4200 		PR0("Message is not a register-dring message");
4201 		return (ENOMSG);
4202 	}
4203 
4204 	if (msglen < sizeof (*reg_msg)) {
4205 		PR0("Expected at least %lu-byte register-dring message; "
4206 		    "received %lu bytes", sizeof (*reg_msg), msglen);
4207 		return (EBADMSG);
4208 	}
4209 
4210 	expected = sizeof (*reg_msg) +
4211 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
4212 	if (msglen != expected) {
4213 		PR0("Expected %lu-byte register-dring message; "
4214 		    "received %lu bytes", expected, msglen);
4215 		return (EBADMSG);
4216 	}
4217 
4218 	if (vd->initialized & VD_DRING) {
4219 		PR0("A dring was previously registered; only support one");
4220 		return (EBADMSG);
4221 	}
4222 
4223 	if (reg_msg->num_descriptors > INT32_MAX) {
4224 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
4225 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
4226 		return (EBADMSG);
4227 	}
4228 
4229 	if (reg_msg->ncookies != 1) {
4230 		/*
4231 		 * In addition to fixing the assertion in the success case
4232 		 * below, supporting drings which require more than one
4233 		 * "cookie" requires increasing the value of vd->max_msglen
4234 		 * somewhere in the code path prior to receiving the message
4235 		 * which results in calling this function.  Note that without
4236 		 * making this change, the larger message size required to
4237 		 * accommodate multiple cookies cannot be successfully
4238 		 * received, so this function will not even get called.
4239 		 * Gracefully accommodating more dring cookies might
4240 		 * reasonably demand exchanging an additional attribute or
4241 		 * making a minor protocol adjustment
4242 		 */
4243 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
4244 		return (EBADMSG);
4245 	}
4246 
4247 	if (vd_direct_mapped_drings)
4248 		mtype = LDC_DIRECT_MAP;
4249 	else
4250 		mtype = LDC_SHADOW_MAP;
4251 
4252 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
4253 	    reg_msg->ncookies, reg_msg->num_descriptors,
4254 	    reg_msg->descriptor_size, mtype, &vd->dring_handle);
4255 	if (status != 0) {
4256 		PR0("ldc_mem_dring_map() returned errno %d", status);
4257 		return (status);
4258 	}
4259 
4260 	/*
4261 	 * To remove the need for this assertion, must call
4262 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
4263 	 * successful call to ldc_mem_dring_map()
4264 	 */
4265 	ASSERT(reg_msg->ncookies == 1);
4266 
4267 	if ((status =
4268 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
4269 		PR0("ldc_mem_dring_info() returned errno %d", status);
4270 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
4271 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
4272 		return (status);
4273 	}
4274 
4275 	if (dring_minfo.vaddr == NULL) {
4276 		PR0("Descriptor ring virtual address is NULL");
4277 		return (ENXIO);
4278 	}
4279 
4280 
4281 	/* Initialize for valid message and mapped dring */
4282 	vd->initialized |= VD_DRING;
4283 	vd->dring_ident = 1;	/* "There Can Be Only One" */
4284 	vd->dring = dring_minfo.vaddr;
4285 	vd->descriptor_size = reg_msg->descriptor_size;
4286 	vd->dring_len = reg_msg->num_descriptors;
4287 	vd->dring_mtype = dring_minfo.mtype;
4288 	reg_msg->dring_ident = vd->dring_ident;
4289 	PR1("descriptor size = %u, dring length = %u",
4290 	    vd->descriptor_size, vd->dring_len);
4291 
4292 	/*
4293 	 * Allocate and initialize a "shadow" array of data structures for
4294 	 * tasks to process I/O requests in dring elements
4295 	 */
4296 	vd->dring_task =
4297 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
4298 	for (int i = 0; i < vd->dring_len; i++) {
4299 		vd->dring_task[i].vd		= vd;
4300 		vd->dring_task[i].index		= i;
4301 
4302 		status = ldc_mem_alloc_handle(vd->ldc_handle,
4303 		    &(vd->dring_task[i].mhdl));
4304 		if (status) {
4305 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
4306 			return (ENXIO);
4307 		}
4308 
4309 		/*
4310 		 * The descriptor payload varies in length. Calculate its
4311 		 * size by subtracting the header size from the total
4312 		 * descriptor size.
4313 		 */
4314 		vd->dring_task[i].request = kmem_zalloc((vd->descriptor_size -
4315 		    sizeof (vio_dring_entry_hdr_t)), KM_SLEEP);
4316 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
4317 	}
4318 
4319 	return (0);
4320 }
4321 
4322 static int
4323 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4324 {
4325 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
4326 
4327 
4328 	ASSERT(msglen >= sizeof (msg->tag));
4329 
4330 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
4331 	    VIO_DRING_UNREG)) {
4332 		PR0("Message is not an unregister-dring message");
4333 		return (ENOMSG);
4334 	}
4335 
4336 	if (msglen != sizeof (*unreg_msg)) {
4337 		PR0("Expected %lu-byte unregister-dring message; "
4338 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
4339 		return (EBADMSG);
4340 	}
4341 
4342 	if (unreg_msg->dring_ident != vd->dring_ident) {
4343 		PR0("Expected dring ident %lu; received %lu",
4344 		    vd->dring_ident, unreg_msg->dring_ident);
4345 		return (EBADMSG);
4346 	}
4347 
4348 	return (0);
4349 }
4350 
4351 static int
4352 process_rdx_msg(vio_msg_t *msg, size_t msglen)
4353 {
4354 	ASSERT(msglen >= sizeof (msg->tag));
4355 
4356 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
4357 		PR0("Message is not an RDX message");
4358 		return (ENOMSG);
4359 	}
4360 
4361 	if (msglen != sizeof (vio_rdx_msg_t)) {
4362 		PR0("Expected %lu-byte RDX message; received %lu bytes",
4363 		    sizeof (vio_rdx_msg_t), msglen);
4364 		return (EBADMSG);
4365 	}
4366 
4367 	PR0("Valid RDX message");
4368 	return (0);
4369 }
4370 
4371 static int
4372 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
4373 {
4374 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
4375 		PR0("Received seq_num %lu; expected %lu",
4376 		    seq_num, (vd->seq_num + 1));
4377 		PR0("initiating soft reset");
4378 		vd_need_reset(vd, B_FALSE);
4379 		return (1);
4380 	}
4381 
4382 	vd->seq_num = seq_num;
4383 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
4384 	return (0);
4385 }
4386 
4387 /*
4388  * Return the expected size of an inband-descriptor message with all the
4389  * cookies it claims to include
4390  */
4391 static size_t
4392 expected_inband_size(vd_dring_inband_msg_t *msg)
4393 {
4394 	return ((sizeof (*msg)) +
4395 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
4396 }
4397 
4398 /*
4399  * Process an in-band descriptor message:  used with clients like OBP, with
4400  * which vds exchanges descriptors within VIO message payloads, rather than
4401  * operating on them within a descriptor ring
4402  */
4403 static int
4404 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4405 {
4406 	size_t			expected;
4407 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
4408 
4409 
4410 	ASSERT(msglen >= sizeof (msg->tag));
4411 
4412 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4413 	    VIO_DESC_DATA)) {
4414 		PR1("Message is not an in-band-descriptor message");
4415 		return (ENOMSG);
4416 	}
4417 
4418 	if (msglen < sizeof (*desc_msg)) {
4419 		PR0("Expected at least %lu-byte descriptor message; "
4420 		    "received %lu bytes", sizeof (*desc_msg), msglen);
4421 		return (EBADMSG);
4422 	}
4423 
4424 	if (msglen != (expected = expected_inband_size(desc_msg))) {
4425 		PR0("Expected %lu-byte descriptor message; "
4426 		    "received %lu bytes", expected, msglen);
4427 		return (EBADMSG);
4428 	}
4429 
4430 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
4431 		return (EBADMSG);
4432 
4433 	/*
4434 	 * Valid message:  Set up the in-band descriptor task and process the
4435 	 * request.  Arrange to acknowledge the client's message, unless an
4436 	 * error processing the descriptor task results in setting
4437 	 * VIO_SUBTYPE_NACK
4438 	 */
4439 	PR1("Valid in-band-descriptor message");
4440 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4441 
4442 	ASSERT(vd->inband_task.msg != NULL);
4443 
4444 	bcopy(msg, vd->inband_task.msg, msglen);
4445 	vd->inband_task.msglen	= msglen;
4446 
4447 	/*
4448 	 * The task request is now the payload of the message
4449 	 * that was just copied into the body of the task.
4450 	 */
4451 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
4452 	vd->inband_task.request	= &desc_msg->payload;
4453 
4454 	return (vd_process_task(&vd->inband_task));
4455 }
4456 
4457 static int
4458 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
4459     vio_msg_t *msg, size_t msglen)
4460 {
4461 	int			status;
4462 	boolean_t		ready;
4463 	on_trap_data_t		otd;
4464 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
4465 
4466 	/* Accept the updated dring element */
4467 	if ((status = VIO_DRING_ACQUIRE(&otd, vd->dring_mtype,
4468 	    vd->dring_handle, idx, idx)) != 0) {
4469 		return (status);
4470 	}
4471 	ready = (elem->hdr.dstate == VIO_DESC_READY);
4472 	if (ready) {
4473 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
4474 		bcopy(&elem->payload, vd->dring_task[idx].request,
4475 		    (vd->descriptor_size - sizeof (vio_dring_entry_hdr_t)));
4476 	} else {
4477 		PR0("descriptor %u not ready", idx);
4478 		VD_DUMP_DRING_ELEM(elem);
4479 	}
4480 	if ((status = VIO_DRING_RELEASE(vd->dring_mtype,
4481 	    vd->dring_handle, idx, idx)) != 0) {
4482 		PR0("VIO_DRING_RELEASE() returned errno %d", status);
4483 		return (status);
4484 	}
4485 	if (!ready)
4486 		return (EBUSY);
4487 
4488 
4489 	/* Initialize a task and process the accepted element */
4490 	PR1("Processing dring element %u", idx);
4491 	vd->dring_task[idx].type	= type;
4492 
4493 	/* duplicate msg buf for cookies etc. */
4494 	bcopy(msg, vd->dring_task[idx].msg, msglen);
4495 
4496 	vd->dring_task[idx].msglen	= msglen;
4497 	return (vd_process_task(&vd->dring_task[idx]));
4498 }
4499 
4500 static int
4501 vd_process_element_range(vd_t *vd, int start, int end,
4502     vio_msg_t *msg, size_t msglen)
4503 {
4504 	int		i, n, nelem, status = 0;
4505 	boolean_t	inprogress = B_FALSE;
4506 	vd_task_type_t	type;
4507 
4508 
4509 	ASSERT(start >= 0);
4510 	ASSERT(end >= 0);
4511 
4512 	/*
4513 	 * Arrange to acknowledge the client's message, unless an error
4514 	 * processing one of the dring elements results in setting
4515 	 * VIO_SUBTYPE_NACK
4516 	 */
4517 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4518 
4519 	/*
4520 	 * Process the dring elements in the range
4521 	 */
4522 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
4523 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
4524 		((vio_dring_msg_t *)msg)->end_idx = i;
4525 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
4526 		status = vd_process_element(vd, type, i, msg, msglen);
4527 		if (status == EINPROGRESS)
4528 			inprogress = B_TRUE;
4529 		else if (status != 0)
4530 			break;
4531 	}
4532 
4533 	/*
4534 	 * If some, but not all, operations of a multi-element range are in
4535 	 * progress, wait for other operations to complete before returning
4536 	 * (which will result in "ack" or "nack" of the message).  Note that
4537 	 * all outstanding operations will need to complete, not just the ones
4538 	 * corresponding to the current range of dring elements; howevever, as
4539 	 * this situation is an error case, performance is less critical.
4540 	 */
4541 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
4542 		ddi_taskq_wait(vd->completionq);
4543 
4544 	return (status);
4545 }
4546 
4547 static int
4548 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4549 {
4550 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
4551 
4552 
4553 	ASSERT(msglen >= sizeof (msg->tag));
4554 
4555 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
4556 	    VIO_DRING_DATA)) {
4557 		PR1("Message is not a dring-data message");
4558 		return (ENOMSG);
4559 	}
4560 
4561 	if (msglen != sizeof (*dring_msg)) {
4562 		PR0("Expected %lu-byte dring message; received %lu bytes",
4563 		    sizeof (*dring_msg), msglen);
4564 		return (EBADMSG);
4565 	}
4566 
4567 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
4568 		return (EBADMSG);
4569 
4570 	if (dring_msg->dring_ident != vd->dring_ident) {
4571 		PR0("Expected dring ident %lu; received ident %lu",
4572 		    vd->dring_ident, dring_msg->dring_ident);
4573 		return (EBADMSG);
4574 	}
4575 
4576 	if (dring_msg->start_idx >= vd->dring_len) {
4577 		PR0("\"start_idx\" = %u; must be less than %u",
4578 		    dring_msg->start_idx, vd->dring_len);
4579 		return (EBADMSG);
4580 	}
4581 
4582 	if ((dring_msg->end_idx < 0) ||
4583 	    (dring_msg->end_idx >= vd->dring_len)) {
4584 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
4585 		    dring_msg->end_idx, vd->dring_len);
4586 		return (EBADMSG);
4587 	}
4588 
4589 	/* Valid message; process range of updated dring elements */
4590 	PR1("Processing descriptor range, start = %u, end = %u",
4591 	    dring_msg->start_idx, dring_msg->end_idx);
4592 	return (vd_process_element_range(vd, dring_msg->start_idx,
4593 	    dring_msg->end_idx, msg, msglen));
4594 }
4595 
4596 static int
4597 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
4598 {
4599 	int	retry, status;
4600 	size_t	size = *nbytes;
4601 
4602 
4603 	for (retry = 0, status = ETIMEDOUT;
4604 	    retry < vds_ldc_retries && status == ETIMEDOUT;
4605 	    retry++) {
4606 		PR1("ldc_read() attempt %d", (retry + 1));
4607 		*nbytes = size;
4608 		status = ldc_read(ldc_handle, msg, nbytes);
4609 	}
4610 
4611 	if (status) {
4612 		PR0("ldc_read() returned errno %d", status);
4613 		if (status != ECONNRESET)
4614 			return (ENOMSG);
4615 		return (status);
4616 	} else if (*nbytes == 0) {
4617 		PR1("ldc_read() returned 0 and no message read");
4618 		return (ENOMSG);
4619 	}
4620 
4621 	PR1("RCVD %lu-byte message", *nbytes);
4622 	return (0);
4623 }
4624 
4625 static int
4626 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4627 {
4628 	int		status;
4629 
4630 
4631 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
4632 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
4633 #ifdef	DEBUG
4634 	vd_decode_tag(msg);
4635 #endif
4636 
4637 	/*
4638 	 * Validate session ID up front, since it applies to all messages
4639 	 * once set
4640 	 */
4641 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
4642 		PR0("Expected SID %u, received %u", vd->sid,
4643 		    msg->tag.vio_sid);
4644 		return (EBADMSG);
4645 	}
4646 
4647 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
4648 
4649 	/*
4650 	 * Process the received message based on connection state
4651 	 */
4652 	switch (vd->state) {
4653 	case VD_STATE_INIT:	/* expect version message */
4654 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
4655 			return (status);
4656 
4657 		/* Version negotiated, move to that state */
4658 		vd->state = VD_STATE_VER;
4659 		return (0);
4660 
4661 	case VD_STATE_VER:	/* expect attribute message */
4662 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
4663 			return (status);
4664 
4665 		/* Attributes exchanged, move to that state */
4666 		vd->state = VD_STATE_ATTR;
4667 		return (0);
4668 
4669 	case VD_STATE_ATTR:
4670 		switch (vd->xfer_mode) {
4671 		case VIO_DESC_MODE:	/* expect RDX message */
4672 			if ((status = process_rdx_msg(msg, msglen)) != 0)
4673 				return (status);
4674 
4675 			/* Ready to receive in-band descriptors */
4676 			vd->state = VD_STATE_DATA;
4677 			return (0);
4678 
4679 		case VIO_DRING_MODE_V1_0:  /* expect register-dring message */
4680 			if ((status =
4681 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
4682 				return (status);
4683 
4684 			/* One dring negotiated, move to that state */
4685 			vd->state = VD_STATE_DRING;
4686 			return (0);
4687 
4688 		default:
4689 			ASSERT("Unsupported transfer mode");
4690 			PR0("Unsupported transfer mode");
4691 			return (ENOTSUP);
4692 		}
4693 
4694 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
4695 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
4696 			/* Ready to receive data */
4697 			vd->state = VD_STATE_DATA;
4698 			return (0);
4699 		} else if (status != ENOMSG) {
4700 			return (status);
4701 		}
4702 
4703 
4704 		/*
4705 		 * If another register-dring message is received, stay in
4706 		 * dring state in case the client sends RDX; although the
4707 		 * protocol allows multiple drings, this server does not
4708 		 * support using more than one
4709 		 */
4710 		if ((status =
4711 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
4712 			return (status);
4713 
4714 		/*
4715 		 * Acknowledge an unregister-dring message, but reset the
4716 		 * connection anyway:  Although the protocol allows
4717 		 * unregistering drings, this server cannot serve a vdisk
4718 		 * without its only dring
4719 		 */
4720 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
4721 		return ((status == 0) ? ENOTSUP : status);
4722 
4723 	case VD_STATE_DATA:
4724 		switch (vd->xfer_mode) {
4725 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
4726 			return (vd_process_desc_msg(vd, msg, msglen));
4727 
4728 		case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */
4729 			/*
4730 			 * Typically expect dring-data messages, so handle
4731 			 * them first
4732 			 */
4733 			if ((status = vd_process_dring_msg(vd, msg,
4734 			    msglen)) != ENOMSG)
4735 				return (status);
4736 
4737 			/*
4738 			 * Acknowledge an unregister-dring message, but reset
4739 			 * the connection anyway:  Although the protocol
4740 			 * allows unregistering drings, this server cannot
4741 			 * serve a vdisk without its only dring
4742 			 */
4743 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
4744 			return ((status == 0) ? ENOTSUP : status);
4745 
4746 		default:
4747 			ASSERT("Unsupported transfer mode");
4748 			PR0("Unsupported transfer mode");
4749 			return (ENOTSUP);
4750 		}
4751 
4752 	default:
4753 		ASSERT("Invalid client connection state");
4754 		PR0("Invalid client connection state");
4755 		return (ENOTSUP);
4756 	}
4757 }
4758 
4759 static int
4760 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
4761 {
4762 	int		status;
4763 	boolean_t	reset_ldc = B_FALSE;
4764 	vd_task_t	task;
4765 
4766 	/*
4767 	 * Check that the message is at least big enough for a "tag", so that
4768 	 * message processing can proceed based on tag-specified message type
4769 	 */
4770 	if (msglen < sizeof (vio_msg_tag_t)) {
4771 		PR0("Received short (%lu-byte) message", msglen);
4772 		/* Can't "nack" short message, so drop the big hammer */
4773 		PR0("initiating full reset");
4774 		vd_need_reset(vd, B_TRUE);
4775 		return (EBADMSG);
4776 	}
4777 
4778 	/*
4779 	 * Process the message
4780 	 */
4781 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
4782 	case 0:
4783 		/* "ack" valid, successfully-processed messages */
4784 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
4785 		break;
4786 
4787 	case EINPROGRESS:
4788 		/* The completion handler will "ack" or "nack" the message */
4789 		return (EINPROGRESS);
4790 	case ENOMSG:
4791 		PR0("Received unexpected message");
4792 		_NOTE(FALLTHROUGH);
4793 	case EBADMSG:
4794 	case ENOTSUP:
4795 		/* "transport" error will cause NACK of invalid messages */
4796 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4797 		break;
4798 
4799 	default:
4800 		/* "transport" error will cause NACK of invalid messages */
4801 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
4802 		/* An LDC error probably occurred, so try resetting it */
4803 		reset_ldc = B_TRUE;
4804 		break;
4805 	}
4806 
4807 	PR1("\tResulting in state %d (%s)", vd->state,
4808 	    vd_decode_state(vd->state));
4809 
4810 	/* populate the task so we can dispatch it on the taskq */
4811 	task.vd = vd;
4812 	task.msg = msg;
4813 	task.msglen = msglen;
4814 
4815 	/*
4816 	 * Queue a task to send the notification that the operation completed.
4817 	 * We need to ensure that requests are responded to in the correct
4818 	 * order and since the taskq is processed serially this ordering
4819 	 * is maintained.
4820 	 */
4821 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
4822 	    &task, DDI_SLEEP);
4823 
4824 	/*
4825 	 * To ensure handshake negotiations do not happen out of order, such
4826 	 * requests that come through this path should not be done in parallel
4827 	 * so we need to wait here until the response is sent to the client.
4828 	 */
4829 	ddi_taskq_wait(vd->completionq);
4830 
4831 	/* Arrange to reset the connection for nack'ed or failed messages */
4832 	if ((status != 0) || reset_ldc) {
4833 		PR0("initiating %s reset",
4834 		    (reset_ldc) ? "full" : "soft");
4835 		vd_need_reset(vd, reset_ldc);
4836 	}
4837 
4838 	return (status);
4839 }
4840 
4841 static boolean_t
4842 vd_enabled(vd_t *vd)
4843 {
4844 	boolean_t	enabled;
4845 
4846 	mutex_enter(&vd->lock);
4847 	enabled = vd->enabled;
4848 	mutex_exit(&vd->lock);
4849 	return (enabled);
4850 }
4851 
4852 static void
4853 vd_recv_msg(void *arg)
4854 {
4855 	vd_t	*vd = (vd_t *)arg;
4856 	int	rv = 0, status = 0;
4857 
4858 	ASSERT(vd != NULL);
4859 
4860 	PR2("New task to receive incoming message(s)");
4861 
4862 
4863 	while (vd_enabled(vd) && status == 0) {
4864 		size_t		msglen, msgsize;
4865 		ldc_status_t	lstatus;
4866 
4867 		/*
4868 		 * Receive and process a message
4869 		 */
4870 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
4871 
4872 		/*
4873 		 * check if channel is UP - else break out of loop
4874 		 */
4875 		status = ldc_status(vd->ldc_handle, &lstatus);
4876 		if (lstatus != LDC_UP) {
4877 			PR0("channel not up (status=%d), exiting recv loop\n",
4878 			    lstatus);
4879 			break;
4880 		}
4881 
4882 		ASSERT(vd->max_msglen != 0);
4883 
4884 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
4885 		msglen	= msgsize;	  /* actual len after recv_msg() */
4886 
4887 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
4888 		switch (status) {
4889 		case 0:
4890 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
4891 			    msglen);
4892 			/* check if max_msglen changed */
4893 			if (msgsize != vd->max_msglen) {
4894 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
4895 				    msgsize, vd->max_msglen);
4896 				kmem_free(vd->vio_msgp, msgsize);
4897 				vd->vio_msgp =
4898 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
4899 			}
4900 			if (rv == EINPROGRESS)
4901 				continue;
4902 			break;
4903 
4904 		case ENOMSG:
4905 			break;
4906 
4907 		case ECONNRESET:
4908 			PR0("initiating soft reset (ECONNRESET)\n");
4909 			vd_need_reset(vd, B_FALSE);
4910 			status = 0;
4911 			break;
4912 
4913 		default:
4914 			/* Probably an LDC failure; arrange to reset it */
4915 			PR0("initiating full reset (status=0x%x)", status);
4916 			vd_need_reset(vd, B_TRUE);
4917 			break;
4918 		}
4919 	}
4920 
4921 	PR2("Task finished");
4922 }
4923 
4924 static uint_t
4925 vd_handle_ldc_events(uint64_t event, caddr_t arg)
4926 {
4927 	vd_t	*vd = (vd_t *)(void *)arg;
4928 	int	status;
4929 
4930 	ASSERT(vd != NULL);
4931 
4932 	if (!vd_enabled(vd))
4933 		return (LDC_SUCCESS);
4934 
4935 	if (event & LDC_EVT_DOWN) {
4936 		PR0("LDC_EVT_DOWN: LDC channel went down");
4937 
4938 		vd_need_reset(vd, B_TRUE);
4939 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4940 		    DDI_SLEEP);
4941 		if (status == DDI_FAILURE) {
4942 			PR0("cannot schedule task to recv msg\n");
4943 			vd_need_reset(vd, B_TRUE);
4944 		}
4945 	}
4946 
4947 	if (event & LDC_EVT_RESET) {
4948 		PR0("LDC_EVT_RESET: LDC channel was reset");
4949 
4950 		if (vd->state != VD_STATE_INIT) {
4951 			PR0("scheduling full reset");
4952 			vd_need_reset(vd, B_FALSE);
4953 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4954 			    vd, DDI_SLEEP);
4955 			if (status == DDI_FAILURE) {
4956 				PR0("cannot schedule task to recv msg\n");
4957 				vd_need_reset(vd, B_TRUE);
4958 			}
4959 
4960 		} else {
4961 			PR0("channel already reset, ignoring...\n");
4962 			PR0("doing ldc up...\n");
4963 			(void) ldc_up(vd->ldc_handle);
4964 		}
4965 
4966 		return (LDC_SUCCESS);
4967 	}
4968 
4969 	if (event & LDC_EVT_UP) {
4970 		PR0("EVT_UP: LDC is up\nResetting client connection state");
4971 		PR0("initiating soft reset");
4972 		vd_need_reset(vd, B_FALSE);
4973 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
4974 		    vd, DDI_SLEEP);
4975 		if (status == DDI_FAILURE) {
4976 			PR0("cannot schedule task to recv msg\n");
4977 			vd_need_reset(vd, B_TRUE);
4978 			return (LDC_SUCCESS);
4979 		}
4980 	}
4981 
4982 	if (event & LDC_EVT_READ) {
4983 		int	status;
4984 
4985 		PR1("New data available");
4986 		/* Queue a task to receive the new data */
4987 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
4988 		    DDI_SLEEP);
4989 
4990 		if (status == DDI_FAILURE) {
4991 			PR0("cannot schedule task to recv msg\n");
4992 			vd_need_reset(vd, B_TRUE);
4993 		}
4994 	}
4995 
4996 	return (LDC_SUCCESS);
4997 }
4998 
4999 static uint_t
5000 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
5001 {
5002 	_NOTE(ARGUNUSED(key, val))
5003 	(*((uint_t *)arg))++;
5004 	return (MH_WALK_TERMINATE);
5005 }
5006 
5007 
5008 static int
5009 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
5010 {
5011 	uint_t	vd_present = 0;
5012 	minor_t	instance;
5013 	vds_t	*vds;
5014 
5015 
5016 	switch (cmd) {
5017 	case DDI_DETACH:
5018 		/* the real work happens below */
5019 		break;
5020 	case DDI_SUSPEND:
5021 		PR0("No action required for DDI_SUSPEND");
5022 		return (DDI_SUCCESS);
5023 	default:
5024 		PR0("Unrecognized \"cmd\"");
5025 		return (DDI_FAILURE);
5026 	}
5027 
5028 	ASSERT(cmd == DDI_DETACH);
5029 	instance = ddi_get_instance(dip);
5030 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5031 		PR0("Could not get state for instance %u", instance);
5032 		ddi_soft_state_free(vds_state, instance);
5033 		return (DDI_FAILURE);
5034 	}
5035 
5036 	/* Do no detach when serving any vdisks */
5037 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
5038 	if (vd_present) {
5039 		PR0("Not detaching because serving vdisks");
5040 		return (DDI_FAILURE);
5041 	}
5042 
5043 	PR0("Detaching");
5044 	if (vds->initialized & VDS_MDEG) {
5045 		(void) mdeg_unregister(vds->mdeg);
5046 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
5047 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
5048 		vds->ispecp = NULL;
5049 		vds->mdeg = NULL;
5050 	}
5051 
5052 	vds_driver_types_free(vds);
5053 
5054 	if (vds->initialized & VDS_LDI)
5055 		(void) ldi_ident_release(vds->ldi_ident);
5056 	mod_hash_destroy_hash(vds->vd_table);
5057 	ddi_soft_state_free(vds_state, instance);
5058 	return (DDI_SUCCESS);
5059 }
5060 
5061 /*
5062  * Description:
5063  *	This function checks to see if the file being used as a
5064  *	virtual disk is an ISO image. An ISO image is a special
5065  *	case which can be booted/installed from like a CD/DVD
5066  *
5067  * Parameters:
5068  *	vd		- disk on which the operation is performed.
5069  *
5070  * Return Code:
5071  *	B_TRUE		- The file is an ISO 9660 compliant image
5072  *	B_FALSE		- just a regular disk image file
5073  */
5074 static boolean_t
5075 vd_file_is_iso_image(vd_t *vd)
5076 {
5077 	char	iso_buf[ISO_SECTOR_SIZE];
5078 	int	i, rv;
5079 	uint_t	sec;
5080 
5081 	ASSERT(vd->file);
5082 
5083 	/*
5084 	 * If we have already discovered and saved this info we can
5085 	 * short-circuit the check and avoid reading the file.
5086 	 */
5087 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
5088 		return (B_TRUE);
5089 
5090 	/*
5091 	 * We wish to read the sector that should contain the 2nd ISO volume
5092 	 * descriptor. The second field in this descriptor is called the
5093 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
5094 	 * to the ISO 9660 standard.
5095 	 */
5096 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
5097 	rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
5098 	    sec, ISO_SECTOR_SIZE);
5099 
5100 	if (rv < 0)
5101 		return (B_FALSE);
5102 
5103 	for (i = 0; i < ISO_ID_STRLEN; i++) {
5104 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
5105 			return (B_FALSE);
5106 	}
5107 
5108 	return (B_TRUE);
5109 }
5110 
5111 /*
5112  * Description:
5113  *	This function checks to see if the virtual device is an ATAPI
5114  *	device. ATAPI devices use Group 1 Read/Write commands, so
5115  *	any USCSI calls vds makes need to take this into account.
5116  *
5117  * Parameters:
5118  *	vd		- disk on which the operation is performed.
5119  *
5120  * Return Code:
5121  *	B_TRUE		- The virtual disk is backed by an ATAPI device
5122  *	B_FALSE		- not an ATAPI device (presumably SCSI)
5123  */
5124 static boolean_t
5125 vd_is_atapi_device(vd_t *vd)
5126 {
5127 	boolean_t	is_atapi = B_FALSE;
5128 	char		*variantp;
5129 	int		rv;
5130 
5131 	ASSERT(vd->ldi_handle[0] != NULL);
5132 	ASSERT(!vd->file);
5133 
5134 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
5135 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
5136 	if (rv == DDI_PROP_SUCCESS) {
5137 		PR0("'variant' property exists for %s", vd->device_path);
5138 		if (strcmp(variantp, "atapi") == 0)
5139 			is_atapi = B_TRUE;
5140 		ddi_prop_free(variantp);
5141 	}
5142 
5143 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
5144 	if (rv) {
5145 		PR0("'atapi' property exists for %s", vd->device_path);
5146 		is_atapi = B_TRUE;
5147 	}
5148 
5149 	return (is_atapi);
5150 }
5151 
5152 static int
5153 vd_setup_full_disk(vd_t *vd)
5154 {
5155 	int		status;
5156 	major_t		major = getmajor(vd->dev[0]);
5157 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
5158 
5159 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5160 
5161 	vd->vdisk_block_size = DEV_BSIZE;
5162 
5163 	/* set the disk size, block size and the media type of the disk */
5164 	status = vd_backend_check_size(vd);
5165 
5166 	if (status != 0) {
5167 		if (!vd->scsi) {
5168 			/* unexpected failure */
5169 			PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
5170 			    status);
5171 			return (status);
5172 		}
5173 
5174 		/*
5175 		 * The function can fail for SCSI disks which are present but
5176 		 * reserved by another system. In that case, we don't know the
5177 		 * size of the disk and the block size.
5178 		 */
5179 		vd->vdisk_size = VD_SIZE_UNKNOWN;
5180 		vd->block_size = 0;
5181 		vd->vdisk_media = VD_MEDIA_FIXED;
5182 	}
5183 
5184 	/* Move dev number and LDI handle to entire-disk-slice array elements */
5185 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
5186 	vd->dev[0]				= 0;
5187 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
5188 	vd->ldi_handle[0]			= NULL;
5189 
5190 	/* Initialize device numbers for remaining slices and open them */
5191 	for (int slice = 0; slice < vd->nslices; slice++) {
5192 		/*
5193 		 * Skip the entire-disk slice, as it's already open and its
5194 		 * device known
5195 		 */
5196 		if (slice == VD_ENTIRE_DISK_SLICE)
5197 			continue;
5198 		ASSERT(vd->dev[slice] == 0);
5199 		ASSERT(vd->ldi_handle[slice] == NULL);
5200 
5201 		/*
5202 		 * Construct the device number for the current slice
5203 		 */
5204 		vd->dev[slice] = makedevice(major, (minor + slice));
5205 
5206 		/*
5207 		 * Open all slices of the disk to serve them to the client.
5208 		 * Slices are opened exclusively to prevent other threads or
5209 		 * processes in the service domain from performing I/O to
5210 		 * slices being accessed by a client.  Failure to open a slice
5211 		 * results in vds not serving this disk, as the client could
5212 		 * attempt (and should be able) to access any slice immediately.
5213 		 * Any slices successfully opened before a failure will get
5214 		 * closed by vds_destroy_vd() as a result of the error returned
5215 		 * by this function.
5216 		 *
5217 		 * We need to do the open with FNDELAY so that opening an empty
5218 		 * slice does not fail.
5219 		 */
5220 		PR0("Opening device major %u, minor %u = slice %u",
5221 		    major, minor, slice);
5222 
5223 		/*
5224 		 * Try to open the device. This can fail for example if we are
5225 		 * opening an empty slice. So in case of a failure, we try the
5226 		 * open again but this time with the FNDELAY flag.
5227 		 */
5228 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5229 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
5230 		    vd->vds->ldi_ident);
5231 
5232 		if (status != 0) {
5233 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
5234 			    vd->open_flags | FNDELAY, kcred,
5235 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
5236 		}
5237 
5238 		if (status != 0) {
5239 			PRN("ldi_open_by_dev() returned errno %d "
5240 			    "for slice %u", status, slice);
5241 			/* vds_destroy_vd() will close any open slices */
5242 			vd->ldi_handle[slice] = NULL;
5243 			return (status);
5244 		}
5245 	}
5246 
5247 	return (0);
5248 }
5249 
5250 /*
5251  * When a slice or a volume is exported as a single-slice disk, we want
5252  * the disk backend (i.e. the slice or volume) to be entirely mapped as
5253  * a slice without the addition of any metadata.
5254  *
5255  * So when exporting the disk as a VTOC disk, we fake a disk with the following
5256  * layout:
5257  *                flabel +--- flabel_limit
5258  *                 <->   V
5259  *                 0 1   C                          D  E
5260  *                 +-+---+--------------------------+--+
5261  *  virtual disk:  |L|XXX|           slice 0        |AA|
5262  *                 +-+---+--------------------------+--+
5263  *                  ^    :                          :
5264  *                  |    :                          :
5265  *      VTOC LABEL--+    :                          :
5266  *                       +--------------------------+
5267  *  disk backend:        |     slice/volume/file    |
5268  *                       +--------------------------+
5269  *                       0                          N
5270  *
5271  * N is the number of blocks in the slice/volume/file.
5272  *
5273  * We simulate a disk with N+M blocks, where M is the number of blocks
5274  * simluated at the beginning and at the end of the disk (blocks 0-C
5275  * and D-E).
5276  *
5277  * The first blocks (0 to C-1) are emulated and can not be changed. Blocks C
5278  * to D defines slice 0 and are mapped to the backend. Finally we emulate 2
5279  * alternate cylinders at the end of the disk (blocks D-E). In summary we have:
5280  *
5281  * - block 0 (L) returns a fake VTOC label
5282  * - blocks 1 to C-1 (X) are unused and return 0
5283  * - blocks C to D-1 are mapped to the exported slice or volume
5284  * - blocks D and E (A) are blocks defining alternate cylinders (2 cylinders)
5285  *
5286  * Note: because we define a fake disk geometry, it is possible that the length
5287  * of the backend is not a multiple of the size of cylinder, in that case the
5288  * very end of the backend will not map to any block of the virtual disk.
5289  */
5290 static int
5291 vd_setup_partition_vtoc(vd_t *vd)
5292 {
5293 	char *device_path = vd->device_path;
5294 	char unit;
5295 	size_t size, csize;
5296 
5297 	/* Initialize dk_geom structure for single-slice device */
5298 	if (vd->dk_geom.dkg_nsect == 0) {
5299 		PRN("%s geometry claims 0 sectors per track", device_path);
5300 		return (EIO);
5301 	}
5302 	if (vd->dk_geom.dkg_nhead == 0) {
5303 		PRN("%s geometry claims 0 heads", device_path);
5304 		return (EIO);
5305 	}
5306 
5307 	/* size of a cylinder in block */
5308 	csize = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
5309 
5310 	/*
5311 	 * Add extra cylinders: we emulate the first cylinder (which contains
5312 	 * the disk label).
5313 	 */
5314 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / csize + 1;
5315 
5316 	/* we emulate 2 alternate cylinders */
5317 	vd->dk_geom.dkg_acyl = 2;
5318 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
5319 
5320 
5321 	/* Initialize vtoc structure for single-slice device */
5322 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
5323 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
5324 	vd->vtoc.v_part[0].p_flag = 0;
5325 	/*
5326 	 * Partition 0 starts on cylinder 1 and its size has to be
5327 	 * a multiple of a number of cylinder.
5328 	 */
5329 	vd->vtoc.v_part[0].p_start = csize; /* start on cylinder 1 */
5330 	vd->vtoc.v_part[0].p_size = (vd->vdisk_size / csize) * csize;
5331 
5332 	if (vd_slice_single_slice) {
5333 		vd->vtoc.v_nparts = 1;
5334 		bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
5335 		    MIN(sizeof (VD_ASCIILABEL),
5336 		    sizeof (vd->vtoc.v_asciilabel)));
5337 		bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
5338 		    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
5339 	} else {
5340 		/* adjust the number of slices */
5341 		vd->nslices = V_NUMPAR;
5342 		vd->vtoc.v_nparts = V_NUMPAR;
5343 
5344 		/* define slice 2 representing the entire disk */
5345 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP;
5346 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_flag = 0;
5347 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_start = 0;
5348 		vd->vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_size =
5349 		    vd->dk_geom.dkg_ncyl * csize;
5350 
5351 		vd_get_readable_size(vd->vdisk_size * vd->vdisk_block_size,
5352 		    &size, &unit);
5353 
5354 		/*
5355 		 * Set some attributes of the geometry to what format(1m) uses
5356 		 * so that writing a default label using format(1m) does not
5357 		 * produce any error.
5358 		 */
5359 		vd->dk_geom.dkg_bcyl = 0;
5360 		vd->dk_geom.dkg_intrlv = 1;
5361 		vd->dk_geom.dkg_write_reinstruct = 0;
5362 		vd->dk_geom.dkg_read_reinstruct = 0;
5363 
5364 		/*
5365 		 * We must have a correct label name otherwise format(1m) will
5366 		 * not recognized the disk as labeled.
5367 		 */
5368 		(void) snprintf(vd->vtoc.v_asciilabel, LEN_DKL_ASCII,
5369 		    "SUN-DiskSlice-%ld%cB cyl %d alt %d hd %d sec %d",
5370 		    size, unit,
5371 		    vd->dk_geom.dkg_ncyl, vd->dk_geom.dkg_acyl,
5372 		    vd->dk_geom.dkg_nhead, vd->dk_geom.dkg_nsect);
5373 		bzero(vd->vtoc.v_volume, sizeof (vd->vtoc.v_volume));
5374 
5375 		/* create a fake label from the vtoc and geometry */
5376 		vd->flabel_limit = csize;
5377 		vd->flabel_size = VD_LABEL_VTOC_SIZE;
5378 		vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5379 		vd_vtocgeom_to_label(&vd->vtoc, &vd->dk_geom,
5380 		    VD_LABEL_VTOC(vd));
5381 	}
5382 
5383 	/* adjust the vdisk_size, we emulate 3 cylinders */
5384 	vd->vdisk_size += csize * 3;
5385 
5386 	return (0);
5387 }
5388 
5389 /*
5390  * When a slice, volume or file is exported as a single-slice disk, we want
5391  * the disk backend (i.e. the slice, volume or file) to be entirely mapped
5392  * as a slice without the addition of any metadata.
5393  *
5394  * So when exporting the disk as an EFI disk, we fake a disk with the following
5395  * layout:
5396  *
5397  *                  flabel        +--- flabel_limit
5398  *                 <------>       v
5399  *                 0 1 2  L      34                        34+N      P
5400  *                 +-+-+--+-------+--------------------------+-------+
5401  *  virtual disk:  |X|T|EE|XXXXXXX|           slice 0        |RRRRRRR|
5402  *                 +-+-+--+-------+--------------------------+-------+
5403  *                    ^ ^         :                          :
5404  *                    | |         :                          :
5405  *                GPT-+ +-GPE     :                          :
5406  *                                +--------------------------+
5407  *  disk backend:                 |     slice/volume/file    |
5408  *                                +--------------------------+
5409  *                                0                          N
5410  *
5411  * N is the number of blocks in the slice/volume/file.
5412  *
5413  * We simulate a disk with N+M blocks, where M is the number of blocks
5414  * simluated at the beginning and at the end of the disk (blocks 0-34
5415  * and 34+N-P).
5416  *
5417  * The first 34 blocks (0 to 33) are emulated and can not be changed. Blocks 34
5418  * to 34+N defines slice 0 and are mapped to the exported backend, and we
5419  * emulate some blocks at the end of the disk (blocks 34+N to P) as a the EFI
5420  * reserved partition.
5421  *
5422  * - block 0 (X) is unused and return 0
5423  * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI)
5424  * - blocks 2 to L-1 (E) defines a fake EFI GPE (via DKIOCGETEFI)
5425  * - blocks L to 33 (X) are unused and return 0
5426  * - blocks 34 to 34+N are mapped to the exported slice, volume or file
5427  * - blocks 34+N+1 to P define a fake reserved partition and backup label, it
5428  *   returns 0
5429  *
5430  * Note: if the backend size is not a multiple of the vdisk block size
5431  * (DEV_BSIZE = 512 byte) then the very end of the backend will not map to
5432  * any block of the virtual disk.
5433  */
5434 static int
5435 vd_setup_partition_efi(vd_t *vd)
5436 {
5437 	efi_gpt_t *gpt;
5438 	efi_gpe_t *gpe;
5439 	struct uuid uuid = EFI_USR;
5440 	struct uuid efi_reserved = EFI_RESERVED;
5441 	uint32_t crc;
5442 	uint64_t s0_start, s0_end;
5443 
5444 	vd->flabel_limit = 34;
5445 	vd->flabel_size = VD_LABEL_EFI_SIZE;
5446 	vd->flabel = kmem_zalloc(vd->flabel_size, KM_SLEEP);
5447 	gpt = VD_LABEL_EFI_GPT(vd);
5448 	gpe = VD_LABEL_EFI_GPE(vd);
5449 
5450 	/* adjust the vdisk_size, we emulate the first 34 blocks */
5451 	vd->vdisk_size += 34;
5452 	s0_start = 34;
5453 	s0_end = vd->vdisk_size - 1;
5454 
5455 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
5456 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
5457 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
5458 	gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL);
5459 	gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
5460 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
5461 
5462 	UUID_LE_CONVERT(gpe[0].efi_gpe_PartitionTypeGUID, uuid);
5463 	gpe[0].efi_gpe_StartingLBA = LE_64(s0_start);
5464 	gpe[0].efi_gpe_EndingLBA = LE_64(s0_end);
5465 
5466 	if (vd_slice_single_slice) {
5467 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
5468 	} else {
5469 		/* adjust the number of slices */
5470 		gpt->efi_gpt_NumberOfPartitionEntries = LE_32(VD_MAXPART);
5471 		vd->nslices = V_NUMPAR;
5472 
5473 		/* define a fake reserved partition */
5474 		UUID_LE_CONVERT(gpe[VD_MAXPART - 1].efi_gpe_PartitionTypeGUID,
5475 		    efi_reserved);
5476 		gpe[VD_MAXPART - 1].efi_gpe_StartingLBA =
5477 		    LE_64(s0_end + 1);
5478 		gpe[VD_MAXPART - 1].efi_gpe_EndingLBA =
5479 		    LE_64(s0_end + EFI_MIN_RESV_SIZE);
5480 
5481 		/* adjust the vdisk_size to include the reserved slice */
5482 		vd->vdisk_size += EFI_MIN_RESV_SIZE;
5483 	}
5484 
5485 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
5486 
5487 	/* adjust the vdisk size for the backup GPT and GPE */
5488 	vd->vdisk_size += 33;
5489 
5490 	CRC32(crc, gpe, sizeof (efi_gpe_t) * VD_MAXPART, -1U, crc32_table);
5491 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
5492 
5493 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
5494 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
5495 
5496 	return (0);
5497 }
5498 
5499 /*
5500  * Setup for a virtual disk whose backend is a file (exported as a single slice
5501  * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume)
5502  * exported as a full disk. In these cases, the backend is accessed using the
5503  * vnode interface.
5504  */
5505 static int
5506 vd_setup_backend_vnode(vd_t *vd)
5507 {
5508 	int 		rval, status;
5509 	vattr_t		vattr;
5510 	dev_t		dev;
5511 	char		*file_path = vd->device_path;
5512 	ldi_handle_t	lhandle;
5513 	struct dk_cinfo	dk_cinfo;
5514 	struct dk_label label;
5515 
5516 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
5517 	    0, &vd->file_vnode, 0, 0)) != 0) {
5518 		PRN("vn_open(%s) = errno %d", file_path, status);
5519 		return (status);
5520 	}
5521 
5522 	/*
5523 	 * We set vd->file now so that vds_destroy_vd will take care of
5524 	 * closing the file and releasing the vnode in case of an error.
5525 	 */
5526 	vd->file = B_TRUE;
5527 
5528 	vattr.va_mask = AT_SIZE;
5529 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
5530 	    != 0) {
5531 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
5532 		return (EIO);
5533 	}
5534 
5535 	vd->file_size = vattr.va_size;
5536 	/* size should be at least sizeof(dk_label) */
5537 	if (vd->file_size < sizeof (struct dk_label)) {
5538 		PRN("Size of file has to be at least %ld bytes",
5539 		    sizeof (struct dk_label));
5540 		return (EIO);
5541 	}
5542 
5543 	if (vd->file_vnode->v_flag & VNOMAP) {
5544 		PRN("File %s cannot be mapped", file_path);
5545 		return (EIO);
5546 	}
5547 
5548 	/* sector size = block size = DEV_BSIZE */
5549 	vd->block_size = DEV_BSIZE;
5550 	vd->vdisk_block_size = DEV_BSIZE;
5551 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
5552 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
5553 
5554 	/*
5555 	 * Get max_xfer_sz from the device where the file is or from the device
5556 	 * itself if we have a volume device.
5557 	 */
5558 	if (vd->volume) {
5559 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
5560 		    vd->vds->ldi_ident);
5561 	} else {
5562 		dev = vd->file_vnode->v_vfsp->vfs_dev;
5563 		PR0("underlying device of %s = (%d, %d)\n", file_path,
5564 		    getmajor(dev), getminor(dev));
5565 
5566 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
5567 		    vd->vds->ldi_ident);
5568 	}
5569 
5570 	if (status != 0) {
5571 		PR0("ldi_open() returned errno %d for underlying device",
5572 		    status);
5573 	} else {
5574 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
5575 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5576 		    &rval)) != 0) {
5577 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for "
5578 			    "underlying device", status);
5579 		} else {
5580 			/*
5581 			 * Store the device's max transfer size for
5582 			 * return to the client
5583 			 */
5584 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5585 		}
5586 
5587 		PR0("close the underlying device");
5588 		(void) ldi_close(lhandle, FREAD, kcred);
5589 	}
5590 
5591 	if (vd->volume) {
5592 		PR0("using volume %s, max_xfer = %u blks", file_path,
5593 		    vd->max_xfer_sz);
5594 	} else {
5595 		PR0("using file %s on device (%d, %d), max_xfer = %u blks",
5596 		    file_path, getmajor(dev), getminor(dev), vd->max_xfer_sz);
5597 	}
5598 
5599 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
5600 		ASSERT(!vd->volume);
5601 		vd->vdisk_media = VD_MEDIA_FIXED;
5602 		vd->vdisk_label = (vd_slice_label == VD_DISK_LABEL_UNK)?
5603 		    vd_file_slice_label : vd_slice_label;
5604 		if (vd->vdisk_label == VD_DISK_LABEL_EFI ||
5605 		    vd->file_size >= ONE_TERABYTE) {
5606 			status = vd_setup_partition_efi(vd);
5607 		} else {
5608 			/*
5609 			 * We build a default label to get a geometry for
5610 			 * the vdisk. Then the partition setup function will
5611 			 * adjust the vtoc so that it defines a single-slice
5612 			 * disk.
5613 			 */
5614 			vd_build_default_label(vd->file_size, &label);
5615 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5616 			status = vd_setup_partition_vtoc(vd);
5617 		}
5618 		return (status);
5619 	}
5620 
5621 	/*
5622 	 * Find and validate the geometry of a disk image.
5623 	 */
5624 	status = vd_file_validate_geometry(vd);
5625 	if (status != 0 && status != EINVAL && status != ENOTSUP) {
5626 		PRN("Failed to read label from %s", file_path);
5627 		return (EIO);
5628 	}
5629 
5630 	if (vd_file_is_iso_image(vd)) {
5631 		/*
5632 		 * Indicate whether to call this a CD or DVD from the size
5633 		 * of the ISO image (images for both drive types are stored
5634 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
5635 		 */
5636 		if ((vd->vdisk_size * vd->vdisk_block_size) >
5637 		    (1024 * 1024 * 1024))
5638 			vd->vdisk_media = VD_MEDIA_DVD;
5639 		else
5640 			vd->vdisk_media = VD_MEDIA_CD;
5641 	} else {
5642 		vd->vdisk_media = VD_MEDIA_FIXED;
5643 	}
5644 
5645 	/* Setup devid for the disk image */
5646 
5647 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5648 
5649 		status = vd_file_read_devid(vd, &vd->file_devid);
5650 
5651 		if (status == 0) {
5652 			/* a valid devid was found */
5653 			return (0);
5654 		}
5655 
5656 		if (status != EINVAL) {
5657 			/*
5658 			 * There was an error while trying to read the devid.
5659 			 * So this disk image may have a devid but we are
5660 			 * unable to read it.
5661 			 */
5662 			PR0("can not read devid for %s", file_path);
5663 			vd->file_devid = NULL;
5664 			return (0);
5665 		}
5666 	}
5667 
5668 	/*
5669 	 * No valid device id was found so we create one. Note that a failure
5670 	 * to create a device id is not fatal and does not prevent the disk
5671 	 * image from being attached.
5672 	 */
5673 	PR1("creating devid for %s", file_path);
5674 
5675 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
5676 	    &vd->file_devid) != DDI_SUCCESS) {
5677 		PR0("fail to create devid for %s", file_path);
5678 		vd->file_devid = NULL;
5679 		return (0);
5680 	}
5681 
5682 	/*
5683 	 * Write devid to the disk image. The devid is stored into the disk
5684 	 * image if we have a valid label; otherwise the devid will be stored
5685 	 * when the user writes a valid label.
5686 	 */
5687 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
5688 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
5689 			PR0("fail to write devid for %s", file_path);
5690 			ddi_devid_free(vd->file_devid);
5691 			vd->file_devid = NULL;
5692 		}
5693 	}
5694 
5695 	return (0);
5696 }
5697 
5698 
5699 /*
5700  * Description:
5701  *	Open a device using its device path (supplied by ldm(1m))
5702  *
5703  * Parameters:
5704  *	vd 	- pointer to structure containing the vDisk info
5705  *	flags	- open flags
5706  *
5707  * Return Value
5708  *	0	- success
5709  *	!= 0	- some other non-zero return value from ldi(9F) functions
5710  */
5711 static int
5712 vd_open_using_ldi_by_name(vd_t *vd, int flags)
5713 {
5714 	int		status;
5715 	char		*device_path = vd->device_path;
5716 
5717 	/* Attempt to open device */
5718 	status = ldi_open_by_name(device_path, flags, kcred,
5719 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
5720 
5721 	/*
5722 	 * The open can fail for example if we are opening an empty slice.
5723 	 * In case of a failure, we try the open again but this time with
5724 	 * the FNDELAY flag.
5725 	 */
5726 	if (status != 0)
5727 		status = ldi_open_by_name(device_path, flags | FNDELAY,
5728 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
5729 
5730 	if (status != 0) {
5731 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
5732 		vd->ldi_handle[0] = NULL;
5733 		return (status);
5734 	}
5735 
5736 	return (0);
5737 }
5738 
5739 /*
5740  * Setup for a virtual disk which backend is a device (a physical disk,
5741  * slice or volume device) that is directly exported either as a full disk
5742  * for a physical disk or as a slice for a volume device or a disk slice.
5743  * In these cases, the backend is accessed using the LDI interface.
5744  */
5745 static int
5746 vd_setup_backend_ldi(vd_t *vd)
5747 {
5748 	int		rval, status;
5749 	struct dk_cinfo	dk_cinfo;
5750 	char		*device_path = vd->device_path;
5751 
5752 	/* device has been opened by vd_identify_dev() */
5753 	ASSERT(vd->ldi_handle[0] != NULL);
5754 	ASSERT(vd->dev[0] != NULL);
5755 
5756 	vd->file = B_FALSE;
5757 
5758 	/* Verify backing device supports dk_cinfo */
5759 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
5760 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
5761 	    &rval)) != 0) {
5762 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
5763 		    status, device_path);
5764 		return (status);
5765 	}
5766 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
5767 		PRN("slice %u >= maximum slice %u for %s",
5768 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
5769 		return (EIO);
5770 	}
5771 
5772 	/*
5773 	 * The device has been opened read-only by vd_identify_dev(), re-open
5774 	 * it read-write if the write flag is set and we don't have an optical
5775 	 * device such as a CD-ROM, which, for now, we do not permit writes to
5776 	 * and thus should not export write operations to the client.
5777 	 *
5778 	 * Future: if/when we implement support for guest domains writing to
5779 	 * optical devices we will need to do further checking of the media type
5780 	 * to distinguish between read-only and writable discs.
5781 	 */
5782 	if (dk_cinfo.dki_ctype == DKC_CDROM) {
5783 
5784 		vd->open_flags &= ~FWRITE;
5785 
5786 	} else if (vd->open_flags & FWRITE) {
5787 
5788 		(void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE,
5789 		    kcred);
5790 		status = vd_open_using_ldi_by_name(vd, vd->open_flags);
5791 		if (status != 0) {
5792 			PR0("Failed to open (%s) = errno %d",
5793 			    device_path, status);
5794 			return (status);
5795 		}
5796 	}
5797 
5798 	/* Store the device's max transfer size for return to the client */
5799 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
5800 
5801 	/*
5802 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
5803 	 * that we can use the correct CDB group when sending USCSI commands.
5804 	 */
5805 	vd->is_atapi_dev = vd_is_atapi_device(vd);
5806 
5807 	/*
5808 	 * Export a full disk.
5809 	 *
5810 	 * When we use the LDI interface, we export a device as a full disk
5811 	 * if we have an entire disk slice (slice 2) and if this slice is
5812 	 * exported as a full disk and not as a single slice disk.
5813 	 * Similarly, we want to use LDI if we are accessing a CD or DVD
5814 	 * device (even if it isn't s2)
5815 	 *
5816 	 * Note that volume devices are exported as full disks using the vnode
5817 	 * interface, not the LDI interface.
5818 	 */
5819 	if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
5820 	    vd->vdisk_type == VD_DISK_TYPE_DISK) ||
5821 	    dk_cinfo.dki_ctype == DKC_CDROM) {
5822 		ASSERT(!vd->volume);
5823 		if (dk_cinfo.dki_ctype == DKC_SCSI_CCS)
5824 			vd->scsi = B_TRUE;
5825 		return (vd_setup_full_disk(vd));
5826 	}
5827 
5828 	/*
5829 	 * Export a single slice disk.
5830 	 *
5831 	 * The exported device can be either a volume device or a disk slice. If
5832 	 * it is a disk slice different from slice 2 then it is always exported
5833 	 * as a single slice disk even if the "slice" option is not specified.
5834 	 * If it is disk slice 2 or a volume device then it is exported as a
5835 	 * single slice disk only if the "slice" option is specified.
5836 	 */
5837 	return (vd_setup_single_slice_disk(vd));
5838 }
5839 
5840 static int
5841 vd_setup_single_slice_disk(vd_t *vd)
5842 {
5843 	int status, rval;
5844 	struct dk_label label;
5845 	char *device_path = vd->device_path;
5846 
5847 	/* Get size of backing device */
5848 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
5849 		PRN("ldi_get_size() failed for %s", device_path);
5850 		return (EIO);
5851 	}
5852 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
5853 	vd->block_size = DEV_BSIZE;
5854 	vd->vdisk_block_size = DEV_BSIZE;
5855 	vd->vdisk_media = VD_MEDIA_FIXED;
5856 
5857 	if (vd->volume) {
5858 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
5859 	}
5860 
5861 	/*
5862 	 * We export the slice as a single slice disk even if the "slice"
5863 	 * option was not specified.
5864 	 */
5865 	vd->vdisk_type  = VD_DISK_TYPE_SLICE;
5866 	vd->nslices	= 1;
5867 
5868 	/*
5869 	 * When exporting a slice or a device as a single slice disk, we don't
5870 	 * care about any partitioning exposed by the backend. The goal is just
5871 	 * to export the backend as a flat storage. We provide a fake partition
5872 	 * table (either a VTOC or EFI), which presents only one slice, to
5873 	 * accommodate tools expecting a disk label. The selection of the label
5874 	 * type (VTOC or EFI) depends on the value of the vd_slice_label
5875 	 * variable.
5876 	 */
5877 	if (vd_slice_label == VD_DISK_LABEL_EFI ||
5878 	    vd->vdisk_size >= ONE_TERABYTE / DEV_BSIZE) {
5879 		vd->vdisk_label = VD_DISK_LABEL_EFI;
5880 	} else {
5881 		status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC,
5882 		    (intptr_t)&vd->vtoc, (vd->open_flags | FKIOCTL),
5883 		    kcred, &rval);
5884 
5885 		if (status == 0) {
5886 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
5887 			    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL),
5888 			    kcred, &rval);
5889 
5890 			if (status != 0) {
5891 				PRN("ldi_ioctl(DKIOCGEOM) returned errno %d "
5892 				    "for %s", status, device_path);
5893 				return (status);
5894 			}
5895 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
5896 
5897 		} else if (vd_slice_label == VD_DISK_LABEL_VTOC) {
5898 
5899 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
5900 			vd_build_default_label(vd->vdisk_size * DEV_BSIZE,
5901 			    &label);
5902 			vd_label_to_vtocgeom(&label, &vd->vtoc, &vd->dk_geom);
5903 
5904 		} else {
5905 			vd->vdisk_label = VD_DISK_LABEL_EFI;
5906 		}
5907 	}
5908 
5909 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
5910 		/* export with a fake VTOC label */
5911 		status = vd_setup_partition_vtoc(vd);
5912 
5913 	} else {
5914 		/* export with a fake EFI label */
5915 		status = vd_setup_partition_efi(vd);
5916 	}
5917 
5918 	return (status);
5919 }
5920 
5921 static int
5922 vd_backend_check_size(vd_t *vd)
5923 {
5924 	size_t backend_size, old_size, new_size;
5925 	struct dk_minfo minfo;
5926 	vattr_t vattr;
5927 	int rval, rv;
5928 
5929 	if (vd->file) {
5930 
5931 		/* file (slice or full disk) */
5932 		vattr.va_mask = AT_SIZE;
5933 		rv = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL);
5934 		if (rv != 0) {
5935 			PR0("VOP_GETATTR(%s) = errno %d", vd->device_path, rv);
5936 			return (rv);
5937 		}
5938 		backend_size = vattr.va_size;
5939 
5940 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
5941 
5942 		/* slice or device exported as a slice */
5943 		rv = ldi_get_size(vd->ldi_handle[0], &backend_size);
5944 		if (rv != DDI_SUCCESS) {
5945 			PR0("ldi_get_size() failed for %s", vd->device_path);
5946 			return (EIO);
5947 		}
5948 
5949 	} else {
5950 
5951 		/* disk or device exported as a disk */
5952 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
5953 		rv = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
5954 		    (intptr_t)&minfo, (vd->open_flags | FKIOCTL),
5955 		    kcred, &rval);
5956 		if (rv != 0) {
5957 			PR0("DKIOCGMEDIAINFO failed for %s (err=%d)",
5958 			    vd->device_path, rv);
5959 			return (rv);
5960 		}
5961 		backend_size = minfo.dki_capacity * minfo.dki_lbsize;
5962 	}
5963 
5964 	old_size = vd->vdisk_size;
5965 	new_size = backend_size / DEV_BSIZE;
5966 
5967 	/* check if size has changed */
5968 	if (old_size != VD_SIZE_UNKNOWN && old_size == new_size)
5969 		return (0);
5970 
5971 	vd->vdisk_size = new_size;
5972 
5973 	if (vd->file)
5974 		vd->file_size = backend_size;
5975 
5976 	/*
5977 	 * If we are exporting a single-slice disk and the size of the backend
5978 	 * has changed then we regenerate the partition setup so that the
5979 	 * partitioning matches with the new disk backend size.
5980 	 */
5981 
5982 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
5983 		/* slice or file or device exported as a slice */
5984 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC) {
5985 			rv = vd_setup_partition_vtoc(vd);
5986 			if (rv != 0) {
5987 				PR0("vd_setup_partition_vtoc() failed for %s "
5988 				    "(err = %d)", vd->device_path, rv);
5989 				return (rv);
5990 			}
5991 		} else {
5992 			rv = vd_setup_partition_efi(vd);
5993 			if (rv != 0) {
5994 				PR0("vd_setup_partition_efi() failed for %s "
5995 				    "(err = %d)", vd->device_path, rv);
5996 				return (rv);
5997 			}
5998 		}
5999 
6000 	} else if (!vd->file) {
6001 		/* disk or device exported as a disk */
6002 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
6003 		vd->block_size = minfo.dki_lbsize;
6004 		vd->vdisk_media =
6005 		    DK_MEDIATYPE2VD_MEDIATYPE(minfo.dki_media_type);
6006 	}
6007 
6008 	return (0);
6009 }
6010 
6011 /*
6012  * Description:
6013  *	Open a device using its device path and identify if this is
6014  *	a disk device or a volume device.
6015  *
6016  * Parameters:
6017  *	vd 	- pointer to structure containing the vDisk info
6018  *	dtype	- return the driver type of the device
6019  *
6020  * Return Value
6021  *	0	- success
6022  *	!= 0	- some other non-zero return value from ldi(9F) functions
6023  */
6024 static int
6025 vd_identify_dev(vd_t *vd, int *dtype)
6026 {
6027 	int status, i;
6028 	char *device_path = vd->device_path;
6029 	char *drv_name;
6030 	int drv_type;
6031 	vds_t *vds = vd->vds;
6032 
6033 	status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE);
6034 	if (status != 0) {
6035 		PR0("Failed to open (%s) = errno %d", device_path, status);
6036 		return (status);
6037 	}
6038 
6039 	/* Get device number of backing device */
6040 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
6041 		PRN("ldi_get_dev() returned errno %d for %s",
6042 		    status, device_path);
6043 		return (status);
6044 	}
6045 
6046 	/*
6047 	 * We start by looking if the driver is in the list from vds.conf
6048 	 * so that we can override the built-in list using vds.conf.
6049 	 */
6050 	drv_name = ddi_major_to_name(getmajor(vd->dev[0]));
6051 	drv_type = VD_DRIVER_UNKNOWN;
6052 
6053 	/* check vds.conf list */
6054 	for (i = 0; i < vds->num_drivers; i++) {
6055 		if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) {
6056 			/* ignore invalid entries */
6057 			continue;
6058 		}
6059 		if (strcmp(drv_name, vds->driver_types[i].name) == 0) {
6060 			drv_type = vds->driver_types[i].type;
6061 			goto done;
6062 		}
6063 	}
6064 
6065 	/* check built-in list */
6066 	for (i = 0; i < VDS_NUM_DRIVERS; i++) {
6067 		if (strcmp(drv_name, vds_driver_types[i].name) == 0) {
6068 			drv_type = vds_driver_types[i].type;
6069 			goto done;
6070 		}
6071 	}
6072 
6073 done:
6074 	PR0("driver %s identified as %s", drv_name,
6075 	    (drv_type == VD_DRIVER_DISK)? "DISK" :
6076 	    (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN");
6077 
6078 	*dtype = drv_type;
6079 
6080 	return (0);
6081 }
6082 
6083 static int
6084 vd_setup_vd(vd_t *vd)
6085 {
6086 	int		status, drv_type, pseudo;
6087 	dev_info_t	*dip;
6088 	vnode_t 	*vnp;
6089 	char		*path = vd->device_path;
6090 
6091 	/* make sure the vdisk backend is valid */
6092 	if ((status = lookupname(path, UIO_SYSSPACE,
6093 	    FOLLOW, NULLVPP, &vnp)) != 0) {
6094 		PR0("Cannot lookup %s errno %d", path, status);
6095 		goto done;
6096 	}
6097 
6098 	switch (vnp->v_type) {
6099 	case VREG:
6100 		/*
6101 		 * Backend is a file so it is exported as a full disk or as a
6102 		 * single slice disk using the vnode interface.
6103 		 */
6104 		VN_RELE(vnp);
6105 		vd->volume = B_FALSE;
6106 		status = vd_setup_backend_vnode(vd);
6107 		break;
6108 
6109 	case VBLK:
6110 	case VCHR:
6111 		/*
6112 		 * Backend is a device. The way it is exported depends on the
6113 		 * type of the device.
6114 		 *
6115 		 * - A volume device is exported as a full disk using the vnode
6116 		 *   interface or as a single slice disk using the LDI
6117 		 *   interface.
6118 		 *
6119 		 * - A disk (represented by the slice 2 of that disk) is
6120 		 *   exported as a full disk using the LDI interface.
6121 		 *
6122 		 * - A disk slice (different from slice 2) is always exported
6123 		 *   as a single slice disk using the LDI interface.
6124 		 *
6125 		 * - The slice 2 of a disk is exported as a single slice disk
6126 		 *   if the "slice" option is specified, otherwise the entire
6127 		 *   disk will be exported. In any case, the LDI interface is
6128 		 *   used.
6129 		 */
6130 
6131 		/* check if this is a pseudo device */
6132 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
6133 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
6134 			PRN("%s is no longer accessible", path);
6135 			VN_RELE(vnp);
6136 			status = EIO;
6137 			break;
6138 		}
6139 		pseudo = is_pseudo_device(dip);
6140 		ddi_release_devi(dip);
6141 		VN_RELE(vnp);
6142 
6143 		if (vd_identify_dev(vd, &drv_type) != 0) {
6144 			PRN("%s identification failed", path);
6145 			status = EIO;
6146 			break;
6147 		}
6148 
6149 		/*
6150 		 * If the driver hasn't been identified then we consider that
6151 		 * pseudo devices are volumes and other devices are disks.
6152 		 */
6153 		if (drv_type == VD_DRIVER_VOLUME ||
6154 		    (drv_type == VD_DRIVER_UNKNOWN && pseudo)) {
6155 			vd->volume = B_TRUE;
6156 		} else {
6157 			status = vd_setup_backend_ldi(vd);
6158 			break;
6159 		}
6160 
6161 		/*
6162 		 * If this is a volume device then its usage depends if the
6163 		 * "slice" option is set or not. If the "slice" option is set
6164 		 * then the volume device will be exported as a single slice,
6165 		 * otherwise it will be exported as a full disk.
6166 		 *
6167 		 * For backward compatibility, if vd_volume_force_slice is set
6168 		 * then we always export volume devices as slices.
6169 		 */
6170 		if (vd_volume_force_slice) {
6171 			vd->vdisk_type = VD_DISK_TYPE_SLICE;
6172 			vd->nslices = 1;
6173 		}
6174 
6175 		if (vd->vdisk_type == VD_DISK_TYPE_DISK) {
6176 			/* close device opened during identification */
6177 			(void) ldi_close(vd->ldi_handle[0],
6178 			    vd->open_flags & ~FWRITE, kcred);
6179 			vd->ldi_handle[0] = NULL;
6180 			vd->dev[0] = 0;
6181 			status = vd_setup_backend_vnode(vd);
6182 		} else {
6183 			status = vd_setup_backend_ldi(vd);
6184 		}
6185 		break;
6186 
6187 	default:
6188 		PRN("Unsupported vdisk backend %s", path);
6189 		VN_RELE(vnp);
6190 		status = EBADF;
6191 	}
6192 
6193 done:
6194 	if (status != 0) {
6195 		/*
6196 		 * If the error is retryable print an error message only
6197 		 * during the first try.
6198 		 */
6199 		if (status == ENXIO || status == ENODEV ||
6200 		    status == ENOENT || status == EROFS) {
6201 			if (!(vd->initialized & VD_SETUP_ERROR)) {
6202 				PRN("%s is currently inaccessible (error %d)",
6203 				    path, status);
6204 			}
6205 			status = EAGAIN;
6206 		} else {
6207 			PRN("%s can not be exported as a virtual disk "
6208 			    "(error %d)", path, status);
6209 		}
6210 		vd->initialized |= VD_SETUP_ERROR;
6211 
6212 	} else if (vd->initialized & VD_SETUP_ERROR) {
6213 		/* print a message only if we previously had an error */
6214 		PRN("%s is now online", path);
6215 		vd->initialized &= ~VD_SETUP_ERROR;
6216 	}
6217 
6218 	return (status);
6219 }
6220 
6221 static int
6222 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6223     uint64_t ldc_id, vd_t **vdp)
6224 {
6225 	char			tq_name[TASKQ_NAMELEN];
6226 	int			status;
6227 	ddi_iblock_cookie_t	iblock = NULL;
6228 	ldc_attr_t		ldc_attr;
6229 	vd_t			*vd;
6230 
6231 
6232 	ASSERT(vds != NULL);
6233 	ASSERT(device_path != NULL);
6234 	ASSERT(vdp != NULL);
6235 	PR0("Adding vdisk for %s", device_path);
6236 
6237 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
6238 		PRN("No memory for virtual disk");
6239 		return (EAGAIN);
6240 	}
6241 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
6242 	vd->vds = vds;
6243 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
6244 
6245 	/* Setup open flags */
6246 	vd->open_flags = FREAD;
6247 
6248 	if (!(options & VD_OPT_RDONLY))
6249 		vd->open_flags |= FWRITE;
6250 
6251 	if (options & VD_OPT_EXCLUSIVE)
6252 		vd->open_flags |= FEXCL;
6253 
6254 	/* Setup disk type */
6255 	if (options & VD_OPT_SLICE) {
6256 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
6257 		vd->nslices = 1;
6258 	} else {
6259 		vd->vdisk_type = VD_DISK_TYPE_DISK;
6260 		vd->nslices = V_NUMPAR;
6261 	}
6262 
6263 	/* default disk label */
6264 	vd->vdisk_label = VD_DISK_LABEL_UNK;
6265 
6266 	/* Open vdisk and initialize parameters */
6267 	if ((status = vd_setup_vd(vd)) == 0) {
6268 		vd->initialized |= VD_DISK_READY;
6269 
6270 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
6271 		PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u",
6272 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
6273 		    (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"),
6274 		    vd->nslices);
6275 	} else {
6276 		if (status != EAGAIN)
6277 			return (status);
6278 	}
6279 
6280 	/* Initialize locking */
6281 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
6282 	    &iblock) != DDI_SUCCESS) {
6283 		PRN("Could not get iblock cookie.");
6284 		return (EIO);
6285 	}
6286 
6287 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
6288 	vd->initialized |= VD_LOCKING;
6289 
6290 
6291 	/* Create start and completion task queues for the vdisk */
6292 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
6293 	PR1("tq_name = %s", tq_name);
6294 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
6295 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6296 		PRN("Could not create task queue");
6297 		return (EIO);
6298 	}
6299 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
6300 	PR1("tq_name = %s", tq_name);
6301 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
6302 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
6303 		PRN("Could not create task queue");
6304 		return (EIO);
6305 	}
6306 
6307 	/* Allocate the staging buffer */
6308 	vd->max_msglen = sizeof (vio_msg_t);	/* baseline vio message size */
6309 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
6310 
6311 	vd->enabled = 1;	/* before callback can dispatch to startq */
6312 
6313 
6314 	/* Bring up LDC */
6315 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
6316 	ldc_attr.instance	= ddi_get_instance(vds->dip);
6317 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
6318 	ldc_attr.mtu		= VD_LDC_MTU;
6319 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
6320 		PRN("Could not initialize LDC channel %lx, "
6321 		    "init failed with error %d", ldc_id, status);
6322 		return (status);
6323 	}
6324 	vd->initialized |= VD_LDC;
6325 
6326 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
6327 	    (caddr_t)vd)) != 0) {
6328 		PRN("Could not initialize LDC channel %lu,"
6329 		    "reg_callback failed with error %d", ldc_id, status);
6330 		return (status);
6331 	}
6332 
6333 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
6334 		PRN("Could not initialize LDC channel %lu,"
6335 		    "open failed with error %d", ldc_id, status);
6336 		return (status);
6337 	}
6338 
6339 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
6340 		PR0("ldc_up() returned errno %d", status);
6341 	}
6342 
6343 	/* Allocate the inband task memory handle */
6344 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
6345 	if (status) {
6346 		PRN("Could not initialize LDC channel %lu,"
6347 		    "alloc_handle failed with error %d", ldc_id, status);
6348 		return (ENXIO);
6349 	}
6350 
6351 	/* Add the successfully-initialized vdisk to the server's table */
6352 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
6353 		PRN("Error adding vdisk ID %lu to table", id);
6354 		return (EIO);
6355 	}
6356 
6357 	/* store initial state */
6358 	vd->state = VD_STATE_INIT;
6359 
6360 	return (0);
6361 }
6362 
6363 static void
6364 vd_free_dring_task(vd_t *vdp)
6365 {
6366 	if (vdp->dring_task != NULL) {
6367 		ASSERT(vdp->dring_len != 0);
6368 		/* Free all dring_task memory handles */
6369 		for (int i = 0; i < vdp->dring_len; i++) {
6370 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
6371 			kmem_free(vdp->dring_task[i].request,
6372 			    (vdp->descriptor_size -
6373 			    sizeof (vio_dring_entry_hdr_t)));
6374 			vdp->dring_task[i].request = NULL;
6375 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
6376 			vdp->dring_task[i].msg = NULL;
6377 		}
6378 		kmem_free(vdp->dring_task,
6379 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
6380 		vdp->dring_task = NULL;
6381 	}
6382 }
6383 
6384 /*
6385  * Destroy the state associated with a virtual disk
6386  */
6387 static void
6388 vds_destroy_vd(void *arg)
6389 {
6390 	vd_t	*vd = (vd_t *)arg;
6391 	int	retry = 0, rv;
6392 
6393 	if (vd == NULL)
6394 		return;
6395 
6396 	PR0("Destroying vdisk state");
6397 
6398 	/* Disable queuing requests for the vdisk */
6399 	if (vd->initialized & VD_LOCKING) {
6400 		mutex_enter(&vd->lock);
6401 		vd->enabled = 0;
6402 		mutex_exit(&vd->lock);
6403 	}
6404 
6405 	/* Drain and destroy start queue (*before* destroying completionq) */
6406 	if (vd->startq != NULL)
6407 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
6408 
6409 	/* Drain and destroy completion queue (*before* shutting down LDC) */
6410 	if (vd->completionq != NULL)
6411 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
6412 
6413 	vd_free_dring_task(vd);
6414 
6415 	/* Free the inband task memory handle */
6416 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
6417 
6418 	/* Shut down LDC */
6419 	if (vd->initialized & VD_LDC) {
6420 		/* unmap the dring */
6421 		if (vd->initialized & VD_DRING)
6422 			(void) ldc_mem_dring_unmap(vd->dring_handle);
6423 
6424 		/* close LDC channel - retry on EAGAIN */
6425 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
6426 			if (++retry > vds_ldc_retries) {
6427 				PR0("Timed out closing channel");
6428 				break;
6429 			}
6430 			drv_usecwait(vds_ldc_delay);
6431 		}
6432 		if (rv == 0) {
6433 			(void) ldc_unreg_callback(vd->ldc_handle);
6434 			(void) ldc_fini(vd->ldc_handle);
6435 		} else {
6436 			/*
6437 			 * Closing the LDC channel has failed. Ideally we should
6438 			 * fail here but there is no Zeus level infrastructure
6439 			 * to handle this. The MD has already been changed and
6440 			 * we have to do the close. So we try to do as much
6441 			 * clean up as we can.
6442 			 */
6443 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
6444 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
6445 				drv_usecwait(vds_ldc_delay);
6446 		}
6447 	}
6448 
6449 	/* Free the staging buffer for msgs */
6450 	if (vd->vio_msgp != NULL) {
6451 		kmem_free(vd->vio_msgp, vd->max_msglen);
6452 		vd->vio_msgp = NULL;
6453 	}
6454 
6455 	/* Free the inband message buffer */
6456 	if (vd->inband_task.msg != NULL) {
6457 		kmem_free(vd->inband_task.msg, vd->max_msglen);
6458 		vd->inband_task.msg = NULL;
6459 	}
6460 
6461 	if (vd->file) {
6462 		/* Close file */
6463 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
6464 		    0, kcred, NULL);
6465 		VN_RELE(vd->file_vnode);
6466 		if (vd->file_devid != NULL)
6467 			ddi_devid_free(vd->file_devid);
6468 	} else {
6469 		/* Close any open backing-device slices */
6470 		for (uint_t slice = 0; slice < V_NUMPAR; slice++) {
6471 			if (vd->ldi_handle[slice] != NULL) {
6472 				PR0("Closing slice %u", slice);
6473 				(void) ldi_close(vd->ldi_handle[slice],
6474 				    vd->open_flags, kcred);
6475 			}
6476 		}
6477 	}
6478 
6479 	/* Free any fake label */
6480 	if (vd->flabel) {
6481 		kmem_free(vd->flabel, vd->flabel_size);
6482 		vd->flabel = NULL;
6483 		vd->flabel_size = 0;
6484 	}
6485 
6486 	/* Free lock */
6487 	if (vd->initialized & VD_LOCKING)
6488 		mutex_destroy(&vd->lock);
6489 
6490 	/* Finally, free the vdisk structure itself */
6491 	kmem_free(vd, sizeof (*vd));
6492 }
6493 
6494 static int
6495 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
6496     uint64_t ldc_id)
6497 {
6498 	int	status;
6499 	vd_t	*vd = NULL;
6500 
6501 
6502 	if ((status = vds_do_init_vd(vds, id, device_path, options,
6503 	    ldc_id, &vd)) != 0)
6504 		vds_destroy_vd(vd);
6505 
6506 	return (status);
6507 }
6508 
6509 static int
6510 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
6511     uint64_t *ldc_id)
6512 {
6513 	int	num_channels;
6514 
6515 
6516 	/* Look for channel endpoint child(ren) of the vdisk MD node */
6517 	if ((num_channels = md_scan_dag(md, vd_node,
6518 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
6519 	    md_find_name(md, "fwd"), channel)) <= 0) {
6520 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
6521 		return (-1);
6522 	}
6523 
6524 	/* Get the "id" value for the first channel endpoint node */
6525 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
6526 		PRN("No \"%s\" property found for \"%s\" of vdisk",
6527 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
6528 		return (-1);
6529 	}
6530 
6531 	if (num_channels > 1) {
6532 		PRN("Using ID of first of multiple channels for this vdisk");
6533 	}
6534 
6535 	return (0);
6536 }
6537 
6538 static int
6539 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
6540 {
6541 	int		num_nodes, status;
6542 	size_t		size;
6543 	mde_cookie_t	*channel;
6544 
6545 
6546 	if ((num_nodes = md_node_count(md)) <= 0) {
6547 		PRN("Invalid node count in Machine Description subtree");
6548 		return (-1);
6549 	}
6550 	size = num_nodes*(sizeof (*channel));
6551 	channel = kmem_zalloc(size, KM_SLEEP);
6552 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
6553 	kmem_free(channel, size);
6554 
6555 	return (status);
6556 }
6557 
6558 /*
6559  * Function:
6560  *	vds_get_options
6561  *
6562  * Description:
6563  * 	Parse the options of a vds node. Options are defined as an array
6564  *	of strings in the vds-block-device-opts property of the vds node
6565  *	in the machine description. Options are returned as a bitmask. The
6566  *	mapping between the bitmask options and the options strings from the
6567  *	machine description is defined in the vd_bdev_options[] array.
6568  *
6569  *	The vds-block-device-opts property is optional. If a vds has no such
6570  *	property then no option is defined.
6571  *
6572  * Parameters:
6573  *	md		- machine description.
6574  *	vd_node		- vds node in the machine description for which
6575  *			  options have to be parsed.
6576  *	options		- the returned options.
6577  *
6578  * Return Code:
6579  *	none.
6580  */
6581 static void
6582 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
6583 {
6584 	char	*optstr, *opt;
6585 	int	len, n, i;
6586 
6587 	*options = 0;
6588 
6589 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
6590 	    (uint8_t **)&optstr, &len) != 0) {
6591 		PR0("No options found");
6592 		return;
6593 	}
6594 
6595 	/* parse options */
6596 	opt = optstr;
6597 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
6598 
6599 	while (opt < optstr + len) {
6600 		for (i = 0; i < n; i++) {
6601 			if (strncmp(vd_bdev_options[i].vdo_name,
6602 			    opt, VD_OPTION_NLEN) == 0) {
6603 				*options |= vd_bdev_options[i].vdo_value;
6604 				break;
6605 			}
6606 		}
6607 
6608 		if (i < n) {
6609 			PR0("option: %s", opt);
6610 		} else {
6611 			PRN("option %s is unknown or unsupported", opt);
6612 		}
6613 
6614 		opt += strlen(opt) + 1;
6615 	}
6616 }
6617 
6618 static void
6619 vds_driver_types_free(vds_t *vds)
6620 {
6621 	if (vds->driver_types != NULL) {
6622 		kmem_free(vds->driver_types, sizeof (vd_driver_type_t) *
6623 		    vds->num_drivers);
6624 		vds->driver_types = NULL;
6625 		vds->num_drivers = 0;
6626 	}
6627 }
6628 
6629 /*
6630  * Update the driver type list with information from vds.conf.
6631  */
6632 static void
6633 vds_driver_types_update(vds_t *vds)
6634 {
6635 	char **list, *s;
6636 	uint_t i, num, count = 0, len;
6637 
6638 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip,
6639 	    DDI_PROP_DONTPASS, "driver-type-list", &list, &num) !=
6640 	    DDI_PROP_SUCCESS)
6641 		return;
6642 
6643 	/*
6644 	 * We create a driver_types list with as many as entries as there
6645 	 * is in the driver-type-list from vds.conf. However only valid
6646 	 * entries will be populated (i.e. entries from driver-type-list
6647 	 * with a valid syntax). Invalid entries will be left blank so
6648 	 * they will have no driver name and the driver type will be
6649 	 * VD_DRIVER_UNKNOWN (= 0).
6650 	 */
6651 	vds->num_drivers = num;
6652 	vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num,
6653 	    KM_SLEEP);
6654 
6655 	for (i = 0; i < num; i++) {
6656 
6657 		s = strchr(list[i], ':');
6658 
6659 		if (s == NULL) {
6660 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6661 			    "a colon is expected in the entry",
6662 			    i, list[i]);
6663 			continue;
6664 		}
6665 
6666 		len = (uintptr_t)s - (uintptr_t)list[i];
6667 
6668 		if (len == 0) {
6669 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6670 			    "the driver name is empty",
6671 			    i, list[i]);
6672 			continue;
6673 		}
6674 
6675 		if (len >= VD_DRIVER_NAME_LEN) {
6676 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6677 			    "the driver name is too long",
6678 			    i, list[i]);
6679 			continue;
6680 		}
6681 
6682 		if (strcmp(s + 1, "disk") == 0) {
6683 
6684 			vds->driver_types[i].type = VD_DRIVER_DISK;
6685 
6686 		} else if (strcmp(s + 1, "volume") == 0) {
6687 
6688 			vds->driver_types[i].type = VD_DRIVER_VOLUME;
6689 
6690 		} else {
6691 			PRN("vds.conf: driver-type-list, entry %d (%s): "
6692 			    "the driver type is invalid",
6693 			    i, list[i]);
6694 			continue;
6695 		}
6696 
6697 		(void) strncpy(vds->driver_types[i].name, list[i], len);
6698 
6699 		PR0("driver-type-list, entry %d (%s) added",
6700 		    i, list[i]);
6701 
6702 		count++;
6703 	}
6704 
6705 	ddi_prop_free(list);
6706 
6707 	if (count == 0) {
6708 		/* nothing was added, clean up */
6709 		vds_driver_types_free(vds);
6710 	}
6711 }
6712 
6713 static void
6714 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6715 {
6716 	char		*device_path = NULL;
6717 	uint64_t	id = 0, ldc_id = 0, options = 0;
6718 
6719 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6720 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
6721 		return;
6722 	}
6723 	PR0("Adding vdisk ID %lu", id);
6724 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
6725 	    &device_path) != 0) {
6726 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6727 		return;
6728 	}
6729 
6730 	vds_get_options(md, vd_node, &options);
6731 
6732 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
6733 		PRN("Error getting LDC ID for vdisk %lu", id);
6734 		return;
6735 	}
6736 
6737 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
6738 		PRN("Failed to add vdisk ID %lu", id);
6739 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6740 			PRN("No vDisk entry found for vdisk ID %lu", id);
6741 		return;
6742 	}
6743 }
6744 
6745 static void
6746 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
6747 {
6748 	uint64_t	id = 0;
6749 
6750 
6751 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
6752 		PRN("Unable to get \"%s\" property from vdisk's MD node",
6753 		    VD_ID_PROP);
6754 		return;
6755 	}
6756 	PR0("Removing vdisk ID %lu", id);
6757 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
6758 		PRN("No vdisk entry found for vdisk ID %lu", id);
6759 }
6760 
6761 static void
6762 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
6763     md_t *curr_md, mde_cookie_t curr_vd_node)
6764 {
6765 	char		*curr_dev, *prev_dev;
6766 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
6767 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
6768 	size_t		len;
6769 
6770 
6771 	/* Validate that vdisk ID has not changed */
6772 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
6773 		PRN("Error getting previous vdisk \"%s\" property",
6774 		    VD_ID_PROP);
6775 		return;
6776 	}
6777 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
6778 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
6779 		return;
6780 	}
6781 	if (curr_id != prev_id) {
6782 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
6783 		    prev_id, curr_id);
6784 		return;
6785 	}
6786 
6787 	/* Validate that LDC ID has not changed */
6788 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
6789 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
6790 		return;
6791 	}
6792 
6793 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
6794 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
6795 		return;
6796 	}
6797 	if (curr_ldc_id != prev_ldc_id) {
6798 		_NOTE(NOTREACHED);	/* lint is confused */
6799 		PRN("Not changing vdisk:  "
6800 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
6801 		return;
6802 	}
6803 
6804 	/* Determine whether device path has changed */
6805 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
6806 	    &prev_dev) != 0) {
6807 		PRN("Error getting previous vdisk \"%s\"",
6808 		    VD_BLOCK_DEVICE_PROP);
6809 		return;
6810 	}
6811 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
6812 	    &curr_dev) != 0) {
6813 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
6814 		return;
6815 	}
6816 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
6817 	    (strncmp(curr_dev, prev_dev, len) == 0))
6818 		return;	/* no relevant (supported) change */
6819 
6820 	/* Validate that options have not changed */
6821 	vds_get_options(prev_md, prev_vd_node, &prev_options);
6822 	vds_get_options(curr_md, curr_vd_node, &curr_options);
6823 	if (prev_options != curr_options) {
6824 		PRN("Not changing vdisk:  options changed from %lx to %lx",
6825 		    prev_options, curr_options);
6826 		return;
6827 	}
6828 
6829 	PR0("Changing vdisk ID %lu", prev_id);
6830 
6831 	/* Remove old state, which will close vdisk and reset */
6832 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
6833 		PRN("No entry found for vdisk ID %lu", prev_id);
6834 
6835 	/* Re-initialize vdisk with new state */
6836 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
6837 	    curr_ldc_id) != 0) {
6838 		PRN("Failed to change vdisk ID %lu", curr_id);
6839 		return;
6840 	}
6841 }
6842 
6843 static int
6844 vds_process_md(void *arg, mdeg_result_t *md)
6845 {
6846 	int	i;
6847 	vds_t	*vds = arg;
6848 
6849 
6850 	if (md == NULL)
6851 		return (MDEG_FAILURE);
6852 	ASSERT(vds != NULL);
6853 
6854 	for (i = 0; i < md->removed.nelem; i++)
6855 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
6856 	for (i = 0; i < md->match_curr.nelem; i++)
6857 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
6858 		    md->match_curr.mdp, md->match_curr.mdep[i]);
6859 	for (i = 0; i < md->added.nelem; i++)
6860 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
6861 
6862 	return (MDEG_SUCCESS);
6863 }
6864 
6865 
6866 static int
6867 vds_do_attach(dev_info_t *dip)
6868 {
6869 	int			status, sz;
6870 	int			cfg_handle;
6871 	minor_t			instance = ddi_get_instance(dip);
6872 	vds_t			*vds;
6873 	mdeg_prop_spec_t	*pspecp;
6874 	mdeg_node_spec_t	*ispecp;
6875 
6876 	/*
6877 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
6878 	 * notion of "instance", or unique identifier, for that node; OBP
6879 	 * stores the value of the "cfg-handle" MD property as the value of
6880 	 * the "reg" property on the node in the device tree it builds from
6881 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
6882 	 * "reg" property value to uniquely identify this device instance when
6883 	 * registering with the MD event-generation framework.  If the "reg"
6884 	 * property cannot be found, the device tree state is presumably so
6885 	 * broken that there is no point in continuing.
6886 	 */
6887 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6888 	    VD_REG_PROP)) {
6889 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
6890 		return (DDI_FAILURE);
6891 	}
6892 
6893 	/* Get the MD instance for later MDEG registration */
6894 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
6895 	    VD_REG_PROP, -1);
6896 
6897 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
6898 		PRN("Could not allocate state for instance %u", instance);
6899 		return (DDI_FAILURE);
6900 	}
6901 
6902 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
6903 		PRN("Could not get state for instance %u", instance);
6904 		ddi_soft_state_free(vds_state, instance);
6905 		return (DDI_FAILURE);
6906 	}
6907 
6908 	vds->dip	= dip;
6909 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
6910 	    vds_destroy_vd, sizeof (void *));
6911 
6912 	ASSERT(vds->vd_table != NULL);
6913 
6914 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
6915 		PRN("ldi_ident_from_dip() returned errno %d", status);
6916 		return (DDI_FAILURE);
6917 	}
6918 	vds->initialized |= VDS_LDI;
6919 
6920 	/* Register for MD updates */
6921 	sz = sizeof (vds_prop_template);
6922 	pspecp = kmem_alloc(sz, KM_SLEEP);
6923 	bcopy(vds_prop_template, pspecp, sz);
6924 
6925 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
6926 
6927 	/* initialize the complete prop spec structure */
6928 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
6929 	ispecp->namep = "virtual-device";
6930 	ispecp->specp = pspecp;
6931 
6932 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
6933 	    &vds->mdeg) != MDEG_SUCCESS) {
6934 		PRN("Unable to register for MD updates");
6935 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
6936 		kmem_free(pspecp, sz);
6937 		return (DDI_FAILURE);
6938 	}
6939 
6940 	vds->ispecp = ispecp;
6941 	vds->initialized |= VDS_MDEG;
6942 
6943 	/* Prevent auto-detaching so driver is available whenever MD changes */
6944 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
6945 	    DDI_PROP_SUCCESS) {
6946 		PRN("failed to set \"%s\" property for instance %u",
6947 		    DDI_NO_AUTODETACH, instance);
6948 	}
6949 
6950 	/* read any user defined driver types from conf file and update list */
6951 	vds_driver_types_update(vds);
6952 
6953 	ddi_report_dev(dip);
6954 	return (DDI_SUCCESS);
6955 }
6956 
6957 static int
6958 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
6959 {
6960 	int	status;
6961 
6962 	switch (cmd) {
6963 	case DDI_ATTACH:
6964 		PR0("Attaching");
6965 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
6966 			(void) vds_detach(dip, DDI_DETACH);
6967 		return (status);
6968 	case DDI_RESUME:
6969 		PR0("No action required for DDI_RESUME");
6970 		return (DDI_SUCCESS);
6971 	default:
6972 		return (DDI_FAILURE);
6973 	}
6974 }
6975 
6976 static struct dev_ops vds_ops = {
6977 	DEVO_REV,	/* devo_rev */
6978 	0,		/* devo_refcnt */
6979 	ddi_no_info,	/* devo_getinfo */
6980 	nulldev,	/* devo_identify */
6981 	nulldev,	/* devo_probe */
6982 	vds_attach,	/* devo_attach */
6983 	vds_detach,	/* devo_detach */
6984 	nodev,		/* devo_reset */
6985 	NULL,		/* devo_cb_ops */
6986 	NULL,		/* devo_bus_ops */
6987 	nulldev		/* devo_power */
6988 };
6989 
6990 static struct modldrv modldrv = {
6991 	&mod_driverops,
6992 	"virtual disk server",
6993 	&vds_ops,
6994 };
6995 
6996 static struct modlinkage modlinkage = {
6997 	MODREV_1,
6998 	&modldrv,
6999 	NULL
7000 };
7001 
7002 
7003 int
7004 _init(void)
7005 {
7006 	int		status;
7007 
7008 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
7009 		return (status);
7010 
7011 	if ((status = mod_install(&modlinkage)) != 0) {
7012 		ddi_soft_state_fini(&vds_state);
7013 		return (status);
7014 	}
7015 
7016 	return (0);
7017 }
7018 
7019 int
7020 _info(struct modinfo *modinfop)
7021 {
7022 	return (mod_info(&modlinkage, modinfop));
7023 }
7024 
7025 int
7026 _fini(void)
7027 {
7028 	int	status;
7029 
7030 	if ((status = mod_remove(&modlinkage)) != 0)
7031 		return (status);
7032 	ddi_soft_state_fini(&vds_state);
7033 	return (0);
7034 }
7035