xref: /illumos-gate/usr/src/uts/sun4v/io/vds.c (revision a0e56b0eb1fdc159ff8348ca0e77d884bb7d126b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sunddi.h>
45 #include <sys/sunldi.h>
46 #include <sys/sysmacros.h>
47 #include <sys/vio_common.h>
48 #include <sys/vdsk_mailbox.h>
49 #include <sys/vdsk_common.h>
50 #include <sys/vtoc.h>
51 
52 
53 /* Virtual disk server initialization flags */
54 #define	VDS_LDI			0x01
55 #define	VDS_MDEG		0x02
56 
57 /* Virtual disk server tunable parameters */
58 #define	VDS_LDC_RETRIES		3
59 #define	VDS_NCHAINS		32
60 
61 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
62 #define	VDS_NAME		"virtual-disk-server"
63 
64 #define	VD_NAME			"vd"
65 #define	VD_VOLUME_NAME		"vdisk"
66 #define	VD_ASCIILABEL		"Virtual Disk"
67 
68 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
69 #define	VD_ID_PROP		"id"
70 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
71 
72 /* Virtual disk initialization flags */
73 #define	VD_LOCKING		0x01
74 #define	VD_LDC			0x02
75 #define	VD_DRING		0x04
76 #define	VD_SID			0x08
77 #define	VD_SEQ_NUM		0x10
78 
79 /* Flags for opening/closing backing devices via LDI */
80 #define	VD_OPEN_FLAGS		(FEXCL | FREAD | FWRITE)
81 
82 /*
83  * By Solaris convention, slice/partition 2 represents the entire disk;
84  * unfortunately, this convention does not appear to be codified.
85  */
86 #define	VD_ENTIRE_DISK_SLICE	2
87 
88 /* Return a cpp token as a string */
89 #define	STRINGIZE(token)	#token
90 
91 /*
92  * Print a message prefixed with the current function name to the message log
93  * (and optionally to the console for verbose boots); these macros use cpp's
94  * concatenation of string literals and C99 variable-length-argument-list
95  * macros
96  */
97 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
98 #define	_PRN(format, ...)					\
99 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
100 
101 /* Return a pointer to the "i"th vdisk dring element */
102 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
103 	    (vd->dring + (i)*vd->descriptor_size))
104 
105 /* Return the virtual disk client's type as a string (for use in messages) */
106 #define	VD_CLIENT(vd)							\
107 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
108 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
109 		(((vd)->xfer_mode == 0) ? "null client" :		\
110 		    "unsupported client")))
111 
112 /* Debugging macros */
113 #ifdef DEBUG
114 #define	PR0 if (vd_msglevel > 0)	PRN
115 #define	PR1 if (vd_msglevel > 1)	PRN
116 #define	PR2 if (vd_msglevel > 2)	PRN
117 
118 #define	VD_DUMP_DRING_ELEM(elem)					\
119 	PRN("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
120 	    elem->hdr.dstate,						\
121 	    elem->payload.operation,					\
122 	    elem->payload.status,					\
123 	    elem->payload.nbytes,					\
124 	    elem->payload.addr,						\
125 	    elem->payload.ncookies);
126 
127 #else	/* !DEBUG */
128 #define	PR0(...)
129 #define	PR1(...)
130 #define	PR2(...)
131 
132 #define	VD_DUMP_DRING_ELEM(elem)
133 
134 #endif	/* DEBUG */
135 
136 
137 /*
138  * Soft state structure for a vds instance
139  */
140 typedef struct vds {
141 	uint_t		initialized;	/* driver inst initialization flags */
142 	dev_info_t	*dip;		/* driver inst devinfo pointer */
143 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
144 	mod_hash_t	*vd_table;	/* table of virtual disks served */
145 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
146 } vds_t;
147 
148 /*
149  * Types of descriptor-processing tasks
150  */
151 typedef enum vd_task_type {
152 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
153 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
154 } vd_task_type_t;
155 
156 /*
157  * Structure describing the task for processing a descriptor
158  */
159 typedef struct vd_task {
160 	struct vd		*vd;		/* vd instance task is for */
161 	vd_task_type_t		type;		/* type of descriptor task */
162 	int			index;		/* dring elem index for task */
163 	vio_msg_t		*msg;		/* VIO message task is for */
164 	size_t			msglen;		/* length of message content */
165 	size_t			msgsize;	/* size of message buffer */
166 	vd_dring_payload_t	*request;	/* request task will perform */
167 	struct buf		buf;		/* buf(9s) for I/O request */
168 	ldc_mem_handle_t	mhdl;		/* task memory handle */
169 } vd_task_t;
170 
171 /*
172  * Soft state structure for a virtual disk instance
173  */
174 typedef struct vd {
175 	uint_t			initialized;	/* vdisk initialization flags */
176 	vds_t			*vds;		/* server for this vdisk */
177 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
178 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
179 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
180 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
181 	uint_t			nslices;	/* number of slices */
182 	size_t			vdisk_size;	/* number of blocks in vdisk */
183 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
184 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
185 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
186 	boolean_t		pseudo;		/* underlying pseudo dev */
187 	struct dk_efi		dk_efi;		/* synthetic for slice type */
188 	struct dk_geom		dk_geom;	/* synthetic for slice type */
189 	struct vtoc		vtoc;		/* synthetic for slice type */
190 	ldc_status_t		ldc_state;	/* LDC connection state */
191 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
192 	size_t			max_msglen;	/* largest LDC message len */
193 	vd_state_t		state;		/* client handshake state */
194 	uint8_t			xfer_mode;	/* transfer mode with client */
195 	uint32_t		sid;		/* client's session ID */
196 	uint64_t		seq_num;	/* message sequence number */
197 	uint64_t		dring_ident;	/* identifier of dring */
198 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
199 	uint32_t		descriptor_size;	/* num bytes in desc */
200 	uint32_t		dring_len;	/* number of dring elements */
201 	caddr_t			dring;		/* address of dring */
202 	vd_task_t		inband_task;	/* task for inband descriptor */
203 	vd_task_t		*dring_task;	/* tasks dring elements */
204 
205 	kmutex_t		lock;		/* protects variables below */
206 	boolean_t		enabled;	/* is vdisk enabled? */
207 	boolean_t		reset_state;	/* reset connection state? */
208 	boolean_t		reset_ldc;	/* reset LDC channel? */
209 } vd_t;
210 
211 typedef struct vds_operation {
212 	uint8_t	operation;
213 	int	(*start)(vd_task_t *task);
214 	void	(*complete)(void *arg);
215 } vds_operation_t;
216 
217 typedef struct vd_ioctl {
218 	uint8_t		operation;		/* vdisk operation */
219 	const char	*operation_name;	/* vdisk operation name */
220 	size_t		nbytes;			/* size of operation buffer */
221 	int		cmd;			/* corresponding ioctl cmd */
222 	const char	*cmd_name;		/* ioctl cmd name */
223 	void		*arg;			/* ioctl cmd argument */
224 	/* convert input vd_buf to output ioctl_arg */
225 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
226 	/* convert input ioctl_arg to output vd_buf */
227 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
228 } vd_ioctl_t;
229 
230 /* Define trivial copyin/copyout conversion function flag */
231 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
232 
233 
234 static int	vds_ldc_retries = VDS_LDC_RETRIES;
235 static void	*vds_state;
236 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
237 
238 static int	vd_open_flags = VD_OPEN_FLAGS;
239 
240 /*
241  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
242  *
243  * Each supported major version should appear only once, paired with (and only
244  * with) its highest supported minor version number (as the protocol requires
245  * supporting all lower minor version numbers as well)
246  */
247 static const vio_ver_t	vds_version[] = {{1, 0}};
248 static const size_t	vds_num_versions =
249     sizeof (vds_version)/sizeof (vds_version[0]);
250 
251 #ifdef DEBUG
252 static int	vd_msglevel;
253 #endif /* DEBUG */
254 
255 
256 static int
257 vd_start_bio(vd_task_t *task)
258 {
259 	int			rv, status = 0;
260 	vd_t			*vd		= task->vd;
261 	vd_dring_payload_t	*request	= task->request;
262 	struct buf		*buf		= &task->buf;
263 	uint8_t			mtype;
264 
265 
266 	ASSERT(vd != NULL);
267 	ASSERT(request != NULL);
268 	ASSERT(request->slice < vd->nslices);
269 	ASSERT((request->operation == VD_OP_BREAD) ||
270 	    (request->operation == VD_OP_BWRITE));
271 
272 	if (request->nbytes == 0)
273 		return (EINVAL);	/* no service for trivial requests */
274 
275 	PR1("%s %lu bytes at block %lu",
276 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
277 	    request->nbytes, request->addr);
278 
279 	bioinit(buf);
280 	buf->b_flags		= B_BUSY;
281 	buf->b_bcount		= request->nbytes;
282 	buf->b_lblkno		= request->addr;
283 	buf->b_edev		= vd->dev[request->slice];
284 
285 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
286 
287 	/* Map memory exported by client */
288 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
289 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
290 	    &(buf->b_un.b_addr), NULL);
291 	if (status != 0) {
292 		PRN("ldc_mem_map() returned err %d ", status);
293 		biofini(buf);
294 		return (status);
295 	}
296 
297 	status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount);
298 	if (status != 0) {
299 		(void) ldc_mem_unmap(task->mhdl);
300 		PRN("ldc_mem_map() returned err %d ", status);
301 		biofini(buf);
302 		return (status);
303 	}
304 
305 	buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE;
306 
307 	/* Start the block I/O */
308 	if ((status = ldi_strategy(vd->ldi_handle[request->slice], buf)) == 0)
309 		return (EINPROGRESS);	/* will complete on completionq */
310 
311 	/* Clean up after error */
312 	rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
313 	if (rv) {
314 		PRN("ldc_mem_release() returned err %d ", status);
315 	}
316 	rv = ldc_mem_unmap(task->mhdl);
317 	if (rv) {
318 		PRN("ldc_mem_unmap() returned err %d ", status);
319 	}
320 
321 	biofini(buf);
322 	return (status);
323 }
324 
325 static int
326 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
327 {
328 	int	retry, status;
329 	size_t	nbytes;
330 
331 
332 	for (retry = 0, status = EWOULDBLOCK;
333 	    retry < vds_ldc_retries && status == EWOULDBLOCK;
334 	    retry++) {
335 		PR1("ldc_write() attempt %d", (retry + 1));
336 		nbytes = msglen;
337 		status = ldc_write(ldc_handle, msg, &nbytes);
338 	}
339 
340 	if (status != 0) {
341 		PRN("ldc_write() returned errno %d", status);
342 		return (status);
343 	} else if (nbytes != msglen) {
344 		PRN("ldc_write() performed only partial write");
345 		return (EIO);
346 	}
347 
348 	PR1("SENT %lu bytes", msglen);
349 	return (0);
350 }
351 
352 static void
353 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
354 {
355 	mutex_enter(&vd->lock);
356 	vd->reset_state	= B_TRUE;
357 	vd->reset_ldc	= reset_ldc;
358 	mutex_exit(&vd->lock);
359 }
360 
361 /*
362  * Reset the state of the connection with a client, if needed; reset the LDC
363  * transport as well, if needed.  This function should only be called from the
364  * "startq", as it waits for tasks on the "completionq" and will deadlock if
365  * called from that queue.
366  */
367 static void
368 vd_reset_if_needed(vd_t *vd)
369 {
370 	int		status = 0;
371 
372 
373 	mutex_enter(&vd->lock);
374 	if (!vd->reset_state) {
375 		ASSERT(!vd->reset_ldc);
376 		mutex_exit(&vd->lock);
377 		return;
378 	}
379 	mutex_exit(&vd->lock);
380 
381 
382 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
383 
384 	/*
385 	 * Let any asynchronous I/O complete before possibly pulling the rug
386 	 * out from under it; defer checking vd->reset_ldc, as one of the
387 	 * asynchronous tasks might set it
388 	 */
389 	ddi_taskq_wait(vd->completionq);
390 
391 	if ((vd->initialized & VD_DRING) &&
392 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
393 		PRN("ldc_mem_dring_unmap() returned errno %d", status);
394 
395 	if (vd->dring_task != NULL) {
396 		ASSERT(vd->dring_len != 0);
397 		/* Free all dring_task memory handles */
398 		for (int i = 0; i < vd->dring_len; i++)
399 			(void) ldc_mem_free_handle(vd->dring_task[i].mhdl);
400 		kmem_free(vd->dring_task,
401 		    (sizeof (*vd->dring_task)) * vd->dring_len);
402 		vd->dring_task = NULL;
403 	}
404 
405 
406 	mutex_enter(&vd->lock);
407 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
408 		PRN("ldc_down() returned errno %d", status);
409 
410 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
411 	vd->state	= VD_STATE_INIT;
412 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
413 
414 	vd->reset_state	= B_FALSE;
415 	vd->reset_ldc	= B_FALSE;
416 	mutex_exit(&vd->lock);
417 }
418 
419 static int
420 vd_mark_elem_done(vd_t *vd, int idx, int elem_status)
421 {
422 	boolean_t		accepted;
423 	int			status;
424 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
425 
426 
427 	/* Acquire the element */
428 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
429 		PRN("ldc_mem_dring_acquire() returned errno %d", status);
430 		return (status);
431 	}
432 
433 	/* Set the element's status and mark it done */
434 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
435 	if (accepted) {
436 		elem->payload.status	= elem_status;
437 		elem->hdr.dstate	= VIO_DESC_DONE;
438 	} else {
439 		/* Perhaps client timed out waiting for I/O... */
440 		PRN("element %u no longer \"accepted\"", idx);
441 		VD_DUMP_DRING_ELEM(elem);
442 	}
443 	/* Release the element */
444 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
445 		PRN("ldc_mem_dring_release() returned errno %d", status);
446 		return (status);
447 	}
448 
449 	return (accepted ? 0 : EINVAL);
450 }
451 
452 static void
453 vd_complete_bio(void *arg)
454 {
455 	int			status		= 0;
456 	vd_task_t		*task		= (vd_task_t *)arg;
457 	vd_t			*vd		= task->vd;
458 	vd_dring_payload_t	*request	= task->request;
459 	struct buf		*buf		= &task->buf;
460 
461 
462 	ASSERT(vd != NULL);
463 	ASSERT(request != NULL);
464 	ASSERT(task->msg != NULL);
465 	ASSERT(task->msglen >= sizeof (*task->msg));
466 	ASSERT(task->msgsize >= task->msglen);
467 
468 	/* Wait for the I/O to complete */
469 	request->status = biowait(buf);
470 
471 	/* Release the buffer */
472 	status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
473 	if (status) {
474 		PRN("ldc_mem_release() returned errno %d copying to client",
475 		    status);
476 	}
477 
478 	/* Unmap the memory */
479 	status = ldc_mem_unmap(task->mhdl);
480 	if (status) {
481 		PRN("ldc_mem_unmap() returned errno %d copying to client",
482 		    status);
483 	}
484 
485 	biofini(buf);
486 
487 	/* Update the dring element for a dring client */
488 	if ((status == 0) && (vd->xfer_mode == VIO_DRING_MODE))
489 		status = vd_mark_elem_done(vd, task->index, request->status);
490 
491 	/*
492 	 * If a transport error occurred, arrange to "nack" the message when
493 	 * the final task in the descriptor element range completes
494 	 */
495 	if (status != 0)
496 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
497 
498 	/*
499 	 * Only the final task for a range of elements will respond to and
500 	 * free the message
501 	 */
502 	if (task->type == VD_NONFINAL_RANGE_TASK)
503 		return;
504 
505 	/*
506 	 * Send the "ack" or "nack" back to the client; if sending the message
507 	 * via LDC fails, arrange to reset both the connection state and LDC
508 	 * itself
509 	 */
510 	PR1("Sending %s",
511 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
512 	if (send_msg(vd->ldc_handle, task->msg, task->msglen) != 0)
513 		vd_need_reset(vd, B_TRUE);
514 
515 	/* Free the message now that it has been used for the reply */
516 	kmem_free(task->msg, task->msgsize);
517 }
518 
519 static void
520 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
521 {
522 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
523 }
524 
525 static void
526 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
527 {
528 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
529 }
530 
531 static void
532 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
533 {
534 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
535 }
536 
537 static void
538 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
539 {
540 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
541 }
542 
543 static void
544 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
545 {
546 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
547 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
548 
549 	dk_efi->dki_lba = vd_efi->lba;
550 	dk_efi->dki_length = vd_efi->length;
551 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
552 }
553 
554 static void
555 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
556 {
557 	int len;
558 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
559 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
560 
561 	len = vd_efi->length;
562 	DK_EFI2VD_EFI(dk_efi, vd_efi);
563 	kmem_free(dk_efi->dki_data, len);
564 }
565 
566 static void
567 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
568 {
569 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
570 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
571 
572 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
573 	VD_EFI2DK_EFI(vd_efi, dk_efi);
574 }
575 
576 static void
577 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
578 {
579 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
580 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
581 
582 	kmem_free(dk_efi->dki_data, vd_efi->length);
583 }
584 
585 static int
586 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label)
587 {
588 	int status, rval;
589 	struct dk_gpt *efi;
590 	size_t efi_len;
591 
592 	*label = VD_DISK_LABEL_UNK;
593 
594 	status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc,
595 	    (vd_open_flags | FKIOCTL), kcred, &rval);
596 
597 	if (status == 0) {
598 		*label = VD_DISK_LABEL_VTOC;
599 		return (0);
600 	} else if (status != ENOTSUP) {
601 		PRN("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
602 		return (status);
603 	}
604 
605 	status = vds_efi_alloc_and_read(handle, &efi, &efi_len);
606 
607 	if (status) {
608 		PRN("vds_efi_alloc_and_read returned error %d", status);
609 		return (status);
610 	}
611 
612 	*label = VD_DISK_LABEL_EFI;
613 	vd_efi_to_vtoc(efi, vtoc);
614 	vd_efi_free(efi, efi_len);
615 
616 	return (0);
617 }
618 
619 static int
620 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
621 {
622 	dk_efi_t *dk_ioc;
623 
624 	switch (vd->vdisk_label) {
625 
626 	case VD_DISK_LABEL_VTOC:
627 
628 		switch (cmd) {
629 		case DKIOCGGEOM:
630 			ASSERT(ioctl_arg != NULL);
631 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
632 			return (0);
633 		case DKIOCGVTOC:
634 			ASSERT(ioctl_arg != NULL);
635 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
636 			return (0);
637 		default:
638 			return (ENOTSUP);
639 		}
640 
641 	case VD_DISK_LABEL_EFI:
642 
643 		switch (cmd) {
644 		case DKIOCGETEFI:
645 			ASSERT(ioctl_arg != NULL);
646 			dk_ioc = (dk_efi_t *)ioctl_arg;
647 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
648 				return (EINVAL);
649 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
650 			    vd->dk_efi.dki_length);
651 			return (0);
652 		default:
653 			return (ENOTSUP);
654 		}
655 
656 	default:
657 		return (ENOTSUP);
658 	}
659 }
660 
661 static int
662 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
663 {
664 	int	rval = 0, status;
665 	size_t	nbytes = request->nbytes;	/* modifiable copy */
666 
667 
668 	ASSERT(request->slice < vd->nslices);
669 	PR0("Performing %s", ioctl->operation_name);
670 
671 	/* Get data from client and convert, if necessary */
672 	if (ioctl->copyin != NULL)  {
673 		ASSERT(nbytes != 0 && buf != NULL);
674 		PR1("Getting \"arg\" data from client");
675 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
676 			    request->cookie, request->ncookies,
677 			    LDC_COPY_IN)) != 0) {
678 			PRN("ldc_mem_copy() returned errno %d "
679 			    "copying from client", status);
680 			return (status);
681 		}
682 
683 		/* Convert client's data, if necessary */
684 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
685 			ioctl->arg = buf;
686 		else	/* convert client vdisk operation data to ioctl data */
687 			(ioctl->copyin)(buf, (void *)ioctl->arg);
688 	}
689 
690 	/*
691 	 * Handle single-slice block devices internally; otherwise, have the
692 	 * real driver perform the ioctl()
693 	 */
694 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
695 		if ((status = vd_do_slice_ioctl(vd, ioctl->cmd,
696 			    (void *)ioctl->arg)) != 0)
697 			return (status);
698 	} else if ((status = ldi_ioctl(vd->ldi_handle[request->slice],
699 		    ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL),
700 		    kcred, &rval)) != 0) {
701 		PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status);
702 		return (status);
703 	}
704 #ifdef DEBUG
705 	if (rval != 0) {
706 		PRN("%s set rval = %d, which is not being returned to client",
707 		    ioctl->cmd_name, rval);
708 	}
709 #endif /* DEBUG */
710 
711 	/* Convert data and send to client, if necessary */
712 	if (ioctl->copyout != NULL)  {
713 		ASSERT(nbytes != 0 && buf != NULL);
714 		PR1("Sending \"arg\" data to client");
715 
716 		/* Convert ioctl data to vdisk operation data, if necessary */
717 		if (ioctl->copyout != VD_IDENTITY)
718 			(ioctl->copyout)((void *)ioctl->arg, buf);
719 
720 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
721 			    request->cookie, request->ncookies,
722 			    LDC_COPY_OUT)) != 0) {
723 			PRN("ldc_mem_copy() returned errno %d "
724 			    "copying to client", status);
725 			return (status);
726 		}
727 	}
728 
729 	return (status);
730 }
731 
732 /*
733  * Open any slices which have become non-empty as a result of performing a
734  * set-VTOC operation for the client.
735  *
736  * When serving a full disk, vds attempts to exclusively open all of the
737  * disk's slices to prevent another thread or process in the service domain
738  * from "stealing" a slice or from performing I/O to a slice while a vds
739  * client is accessing it.  Unfortunately, underlying drivers, such as sd(7d)
740  * and cmdk(7d), return an error when attempting to open the device file for a
741  * slice which is currently empty according to the VTOC.  This driver behavior
742  * means that vds must skip opening empty slices when initializing a vdisk for
743  * full-disk service and try to open slices that become non-empty (via a
744  * set-VTOC operation) during use of the full disk in order to begin serving
745  * such slices to the client.  This approach has an inherent (and therefore
746  * unavoidable) race condition; it also means that failure to open a
747  * newly-non-empty slice has different semantics than failure to open an
748  * initially-non-empty slice:  Due to driver bahavior, opening a
749  * newly-non-empty slice is a necessary side effect of vds performing a
750  * (successful) set-VTOC operation for a client on an in-service (and in-use)
751  * disk in order to begin serving the slice; failure of this side-effect
752  * operation does not mean that the client's set-VTOC operation failed or that
753  * operations on other slices must fail.  Therefore, this function prints an
754  * error message on failure to open a slice, but does not return an error to
755  * its caller--unlike failure to open a slice initially, which results in an
756  * error that prevents serving the vdisk (and thereby requires an
757  * administrator to resolve the problem).  Note that, apart from another
758  * thread or process opening a new slice during the race-condition window,
759  * failure to open a slice in this function will likely indicate an underlying
760  * drive problem, which will also likely become evident in errors returned by
761  * operations on other slices, and which will require administrative
762  * intervention and possibly servicing the drive.
763  */
764 static void
765 vd_open_new_slices(vd_t *vd)
766 {
767 	int		status;
768 	struct vtoc	vtoc;
769 
770 	/* Get the (new) partitions for updated slice sizes */
771 	if ((status = vd_read_vtoc(vd->ldi_handle[0], &vtoc,
772 	    &vd->vdisk_label)) != 0) {
773 		PRN("vd_read_vtoc returned error %d", status);
774 		return;
775 	}
776 
777 	/* Open any newly-non-empty slices */
778 	for (int slice = 0; slice < vd->nslices; slice++) {
779 		/* Skip zero-length slices */
780 		if (vtoc.v_part[slice].p_size == 0) {
781 			if (vd->ldi_handle[slice] != NULL)
782 				PR0("Open slice %u now has zero length", slice);
783 			continue;
784 		}
785 
786 		/* Skip already-open slices */
787 		if (vd->ldi_handle[slice] != NULL)
788 			continue;
789 
790 		PR0("Opening newly-non-empty slice %u", slice);
791 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
792 			    vd_open_flags, kcred, &vd->ldi_handle[slice],
793 			    vd->vds->ldi_ident)) != 0) {
794 			PRN("ldi_open_by_dev() returned errno %d "
795 			    "for slice %u", status, slice);
796 		}
797 	}
798 }
799 
800 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
801 static int
802 vd_ioctl(vd_task_t *task)
803 {
804 	int			i, status;
805 	void			*buf = NULL;
806 	struct dk_geom		dk_geom = {0};
807 	struct vtoc		vtoc = {0};
808 	struct dk_efi		dk_efi = {0};
809 	vd_t			*vd		= task->vd;
810 	vd_dring_payload_t	*request	= task->request;
811 	vd_ioctl_t		ioctl[] = {
812 		/* Command (no-copy) operations */
813 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
814 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
815 		    NULL, NULL, NULL},
816 
817 		/* "Get" (copy-out) operations */
818 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
819 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
820 		    NULL, VD_IDENTITY, VD_IDENTITY},
821 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
822 		    RNDSIZE(vd_geom_t),
823 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
824 		    &dk_geom, NULL, dk_geom2vd_geom},
825 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
826 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
827 		    &vtoc, NULL, vtoc2vd_vtoc},
828 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
829 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
830 		    &dk_efi, vd_get_efi_in, vd_get_efi_out},
831 
832 		/* "Set" (copy-in) operations */
833 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
834 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
835 		    NULL, VD_IDENTITY, VD_IDENTITY},
836 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
837 		    RNDSIZE(vd_geom_t),
838 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
839 		    &dk_geom, vd_geom2dk_geom, NULL},
840 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
841 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
842 		    &vtoc, vd_vtoc2vtoc, NULL},
843 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
844 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
845 		    &dk_efi, vd_set_efi_in, vd_set_efi_out},
846 	};
847 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
848 
849 
850 	ASSERT(vd != NULL);
851 	ASSERT(request != NULL);
852 	ASSERT(request->slice < vd->nslices);
853 
854 	/*
855 	 * Determine ioctl corresponding to caller's "operation" and
856 	 * validate caller's "nbytes"
857 	 */
858 	for (i = 0; i < nioctls; i++) {
859 		if (request->operation == ioctl[i].operation) {
860 			/* LDC memory operations require 8-byte multiples */
861 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
862 
863 			if (request->operation == VD_OP_GET_EFI ||
864 			    request->operation == VD_OP_SET_EFI) {
865 				if (request->nbytes >= ioctl[i].nbytes)
866 					break;
867 				PRN("%s:  Expected at least nbytes = %lu, "
868 				    "got %lu", ioctl[i].operation_name,
869 				    ioctl[i].nbytes, request->nbytes);
870 				return (EINVAL);
871 			}
872 
873 			if (request->nbytes != ioctl[i].nbytes) {
874 				PRN("%s:  Expected nbytes = %lu, got %lu",
875 				    ioctl[i].operation_name, ioctl[i].nbytes,
876 				    request->nbytes);
877 				return (EINVAL);
878 			}
879 
880 			break;
881 		}
882 	}
883 	ASSERT(i < nioctls);	/* because "operation" already validated */
884 
885 	if (request->nbytes)
886 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
887 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
888 	if (request->nbytes)
889 		kmem_free(buf, request->nbytes);
890 	if (vd->vdisk_type == VD_DISK_TYPE_DISK &&
891 	    (request->operation == VD_OP_SET_VTOC ||
892 	    request->operation == VD_OP_SET_EFI))
893 		vd_open_new_slices(vd);
894 	PR0("Returning %d", status);
895 	return (status);
896 }
897 
898 static int
899 vd_get_devid(vd_task_t *task)
900 {
901 	vd_t *vd = task->vd;
902 	vd_dring_payload_t *request = task->request;
903 	vd_devid_t *vd_devid;
904 	impl_devid_t *devid;
905 	int status, bufid_len, devid_len, len;
906 
907 	PR1("Get Device ID");
908 
909 	if (ddi_lyr_get_devid(vd->dev[request->slice],
910 	    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
911 		/* the most common failure is that no devid is available */
912 		return (ENOENT);
913 	}
914 
915 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
916 	devid_len = DEVID_GETLEN(devid);
917 
918 	vd_devid = kmem_zalloc(request->nbytes, KM_SLEEP);
919 	vd_devid->length = devid_len;
920 	vd_devid->type = DEVID_GETTYPE(devid);
921 
922 	len = (devid_len > bufid_len)? bufid_len : devid_len;
923 
924 	bcopy(devid->did_id, vd_devid->id, len);
925 
926 	/* LDC memory operations require 8-byte multiples */
927 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
928 
929 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
930 	    &request->nbytes, request->cookie, request->ncookies,
931 	    LDC_COPY_OUT)) != 0) {
932 		PRN("ldc_mem_copy() returned errno %d copying to client",
933 		    status);
934 	}
935 
936 	kmem_free(vd_devid, request->nbytes);
937 	ddi_devid_free((ddi_devid_t)devid);
938 
939 	return (status);
940 }
941 
942 /*
943  * Define the supported operations once the functions for performing them have
944  * been defined
945  */
946 static const vds_operation_t	vds_operation[] = {
947 	{VD_OP_BREAD,		vd_start_bio,	vd_complete_bio},
948 	{VD_OP_BWRITE,		vd_start_bio,	vd_complete_bio},
949 	{VD_OP_FLUSH,		vd_ioctl,	NULL},
950 	{VD_OP_GET_WCE,		vd_ioctl,	NULL},
951 	{VD_OP_SET_WCE,		vd_ioctl,	NULL},
952 	{VD_OP_GET_VTOC,	vd_ioctl,	NULL},
953 	{VD_OP_SET_VTOC,	vd_ioctl,	NULL},
954 	{VD_OP_GET_DISKGEOM,	vd_ioctl,	NULL},
955 	{VD_OP_SET_DISKGEOM,	vd_ioctl,	NULL},
956 	{VD_OP_GET_EFI,		vd_ioctl,	NULL},
957 	{VD_OP_SET_EFI,		vd_ioctl,	NULL},
958 	{VD_OP_GET_DEVID,	vd_get_devid,	NULL},
959 };
960 
961 static const size_t	vds_noperations =
962 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
963 
964 /*
965  * Process a task specifying a client I/O request
966  */
967 static int
968 vd_process_task(vd_task_t *task)
969 {
970 	int			i, status;
971 	vd_t			*vd		= task->vd;
972 	vd_dring_payload_t	*request	= task->request;
973 
974 
975 	ASSERT(vd != NULL);
976 	ASSERT(request != NULL);
977 
978 	/* Find the requested operation */
979 	for (i = 0; i < vds_noperations; i++)
980 		if (request->operation == vds_operation[i].operation)
981 			break;
982 	if (i == vds_noperations) {
983 		PRN("Unsupported operation %u", request->operation);
984 		return (ENOTSUP);
985 	}
986 
987 	/* Handle client using absolute disk offsets */
988 	if ((vd->vdisk_type == VD_DISK_TYPE_DISK) &&
989 	    (request->slice == UINT8_MAX))
990 		request->slice = VD_ENTIRE_DISK_SLICE;
991 
992 	/* Range-check slice */
993 	if (request->slice >= vd->nslices) {
994 		PRN("Invalid \"slice\" %u (max %u) for virtual disk",
995 		    request->slice, (vd->nslices - 1));
996 		return (EINVAL);
997 	}
998 
999 	/* Start the operation */
1000 	if ((status = vds_operation[i].start(task)) != EINPROGRESS) {
1001 		request->status = status;	/* op succeeded or failed */
1002 		return (0);			/* but request completed */
1003 	}
1004 
1005 	ASSERT(vds_operation[i].complete != NULL);	/* debug case */
1006 	if (vds_operation[i].complete == NULL) {	/* non-debug case */
1007 		PRN("Unexpected return of EINPROGRESS "
1008 		    "with no I/O completion handler");
1009 		request->status = EIO;	/* operation failed */
1010 		return (0);		/* but request completed */
1011 	}
1012 
1013 	/* Queue a task to complete the operation */
1014 	status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete,
1015 	    task, DDI_SLEEP);
1016 	/* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */
1017 	ASSERT(status == DDI_SUCCESS);
1018 
1019 	PR1("Operation in progress");
1020 	return (EINPROGRESS);	/* completion handler will finish request */
1021 }
1022 
1023 /*
1024  * Return true if the "type", "subtype", and "env" fields of the "tag" first
1025  * argument match the corresponding remaining arguments; otherwise, return false
1026  */
1027 boolean_t
1028 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
1029 {
1030 	return ((tag->vio_msgtype == type) &&
1031 		(tag->vio_subtype == subtype) &&
1032 		(tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
1033 }
1034 
1035 /*
1036  * Check whether the major/minor version specified in "ver_msg" is supported
1037  * by this server.
1038  */
1039 static boolean_t
1040 vds_supported_version(vio_ver_msg_t *ver_msg)
1041 {
1042 	for (int i = 0; i < vds_num_versions; i++) {
1043 		ASSERT(vds_version[i].major > 0);
1044 		ASSERT((i == 0) ||
1045 		    (vds_version[i].major < vds_version[i-1].major));
1046 
1047 		/*
1048 		 * If the major versions match, adjust the minor version, if
1049 		 * necessary, down to the highest value supported by this
1050 		 * server and return true so this message will get "ack"ed;
1051 		 * the client should also support all minor versions lower
1052 		 * than the value it sent
1053 		 */
1054 		if (ver_msg->ver_major == vds_version[i].major) {
1055 			if (ver_msg->ver_minor > vds_version[i].minor) {
1056 				PR0("Adjusting minor version from %u to %u",
1057 				    ver_msg->ver_minor, vds_version[i].minor);
1058 				ver_msg->ver_minor = vds_version[i].minor;
1059 			}
1060 			return (B_TRUE);
1061 		}
1062 
1063 		/*
1064 		 * If the message contains a higher major version number, set
1065 		 * the message's major/minor versions to the current values
1066 		 * and return false, so this message will get "nack"ed with
1067 		 * these values, and the client will potentially try again
1068 		 * with the same or a lower version
1069 		 */
1070 		if (ver_msg->ver_major > vds_version[i].major) {
1071 			ver_msg->ver_major = vds_version[i].major;
1072 			ver_msg->ver_minor = vds_version[i].minor;
1073 			return (B_FALSE);
1074 		}
1075 
1076 		/*
1077 		 * Otherwise, the message's major version is less than the
1078 		 * current major version, so continue the loop to the next
1079 		 * (lower) supported version
1080 		 */
1081 	}
1082 
1083 	/*
1084 	 * No common version was found; "ground" the version pair in the
1085 	 * message to terminate negotiation
1086 	 */
1087 	ver_msg->ver_major = 0;
1088 	ver_msg->ver_minor = 0;
1089 	return (B_FALSE);
1090 }
1091 
1092 /*
1093  * Process a version message from a client.  vds expects to receive version
1094  * messages from clients seeking service, but never issues version messages
1095  * itself; therefore, vds can ACK or NACK client version messages, but does
1096  * not expect to receive version-message ACKs or NACKs (and will treat such
1097  * messages as invalid).
1098  */
1099 static int
1100 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1101 {
1102 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
1103 
1104 
1105 	ASSERT(msglen >= sizeof (msg->tag));
1106 
1107 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1108 		VIO_VER_INFO)) {
1109 		return (ENOMSG);	/* not a version message */
1110 	}
1111 
1112 	if (msglen != sizeof (*ver_msg)) {
1113 		PRN("Expected %lu-byte version message; "
1114 		    "received %lu bytes", sizeof (*ver_msg), msglen);
1115 		return (EBADMSG);
1116 	}
1117 
1118 	if (ver_msg->dev_class != VDEV_DISK) {
1119 		PRN("Expected device class %u (disk); received %u",
1120 		    VDEV_DISK, ver_msg->dev_class);
1121 		return (EBADMSG);
1122 	}
1123 
1124 	/*
1125 	 * We're talking to the expected kind of client; set our device class
1126 	 * for "ack/nack" back to the client
1127 	 */
1128 	ver_msg->dev_class = VDEV_DISK_SERVER;
1129 
1130 	/*
1131 	 * Check whether the (valid) version message specifies a version
1132 	 * supported by this server.  If the version is not supported, return
1133 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
1134 	 * will have updated the message with a supported version for the
1135 	 * client to consider
1136 	 */
1137 	if (!vds_supported_version(ver_msg))
1138 		return (EBADMSG);
1139 
1140 
1141 	/*
1142 	 * A version has been agreed upon; use the client's SID for
1143 	 * communication on this channel now
1144 	 */
1145 	ASSERT(!(vd->initialized & VD_SID));
1146 	vd->sid = ver_msg->tag.vio_sid;
1147 	vd->initialized |= VD_SID;
1148 
1149 	/*
1150 	 * When multiple versions are supported, this function should store
1151 	 * the negotiated major and minor version values in the "vd" data
1152 	 * structure to govern further communication; in particular, note that
1153 	 * the client might have specified a lower minor version for the
1154 	 * agreed major version than specifed in the vds_version[] array.  The
1155 	 * following assertions should help remind future maintainers to make
1156 	 * the appropriate changes to support multiple versions.
1157 	 */
1158 	ASSERT(vds_num_versions == 1);
1159 	ASSERT(ver_msg->ver_major == vds_version[0].major);
1160 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
1161 
1162 	PR0("Using major version %u, minor version %u",
1163 	    ver_msg->ver_major, ver_msg->ver_minor);
1164 	return (0);
1165 }
1166 
1167 static int
1168 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1169 {
1170 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
1171 
1172 
1173 	ASSERT(msglen >= sizeof (msg->tag));
1174 
1175 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1176 		VIO_ATTR_INFO)) {
1177 		PR0("Message is not an attribute message");
1178 		return (ENOMSG);
1179 	}
1180 
1181 	if (msglen != sizeof (*attr_msg)) {
1182 		PRN("Expected %lu-byte attribute message; "
1183 		    "received %lu bytes", sizeof (*attr_msg), msglen);
1184 		return (EBADMSG);
1185 	}
1186 
1187 	if (attr_msg->max_xfer_sz == 0) {
1188 		PRN("Received maximum transfer size of 0 from client");
1189 		return (EBADMSG);
1190 	}
1191 
1192 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
1193 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
1194 		PRN("Client requested unsupported transfer mode");
1195 		return (EBADMSG);
1196 	}
1197 
1198 
1199 	/* Success:  valid message and transfer mode */
1200 	vd->xfer_mode = attr_msg->xfer_mode;
1201 	if (vd->xfer_mode == VIO_DESC_MODE) {
1202 		/*
1203 		 * The vd_dring_inband_msg_t contains one cookie; need room
1204 		 * for up to n-1 more cookies, where "n" is the number of full
1205 		 * pages plus possibly one partial page required to cover
1206 		 * "max_xfer_sz".  Add room for one more cookie if
1207 		 * "max_xfer_sz" isn't an integral multiple of the page size.
1208 		 * Must first get the maximum transfer size in bytes.
1209 		 */
1210 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
1211 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
1212 		    attr_msg->max_xfer_sz;
1213 		size_t	max_inband_msglen =
1214 		    sizeof (vd_dring_inband_msg_t) +
1215 		    ((max_xfer_bytes/PAGESIZE +
1216 			((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
1217 			(sizeof (ldc_mem_cookie_t)));
1218 
1219 		/*
1220 		 * Set the maximum expected message length to
1221 		 * accommodate in-band-descriptor messages with all
1222 		 * their cookies
1223 		 */
1224 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
1225 
1226 		/*
1227 		 * Initialize the data structure for processing in-band I/O
1228 		 * request descriptors
1229 		 */
1230 		vd->inband_task.vd	= vd;
1231 		vd->inband_task.index	= 0;
1232 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
1233 	}
1234 
1235 	/* Return the device's block size and max transfer size to the client */
1236 	attr_msg->vdisk_block_size	= DEV_BSIZE;
1237 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
1238 
1239 	attr_msg->vdisk_size = vd->vdisk_size;
1240 	attr_msg->vdisk_type = vd->vdisk_type;
1241 	attr_msg->operations = vds_operations;
1242 	PR0("%s", VD_CLIENT(vd));
1243 	return (0);
1244 }
1245 
1246 static int
1247 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1248 {
1249 	int			status;
1250 	size_t			expected;
1251 	ldc_mem_info_t		dring_minfo;
1252 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
1253 
1254 
1255 	ASSERT(msglen >= sizeof (msg->tag));
1256 
1257 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1258 		VIO_DRING_REG)) {
1259 		PR0("Message is not a register-dring message");
1260 		return (ENOMSG);
1261 	}
1262 
1263 	if (msglen < sizeof (*reg_msg)) {
1264 		PRN("Expected at least %lu-byte register-dring message; "
1265 		    "received %lu bytes", sizeof (*reg_msg), msglen);
1266 		return (EBADMSG);
1267 	}
1268 
1269 	expected = sizeof (*reg_msg) +
1270 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
1271 	if (msglen != expected) {
1272 		PRN("Expected %lu-byte register-dring message; "
1273 		    "received %lu bytes", expected, msglen);
1274 		return (EBADMSG);
1275 	}
1276 
1277 	if (vd->initialized & VD_DRING) {
1278 		PRN("A dring was previously registered; only support one");
1279 		return (EBADMSG);
1280 	}
1281 
1282 	if (reg_msg->num_descriptors > INT32_MAX) {
1283 		PRN("reg_msg->num_descriptors = %u; must be <= %u (%s)",
1284 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
1285 		return (EBADMSG);
1286 	}
1287 
1288 	if (reg_msg->ncookies != 1) {
1289 		/*
1290 		 * In addition to fixing the assertion in the success case
1291 		 * below, supporting drings which require more than one
1292 		 * "cookie" requires increasing the value of vd->max_msglen
1293 		 * somewhere in the code path prior to receiving the message
1294 		 * which results in calling this function.  Note that without
1295 		 * making this change, the larger message size required to
1296 		 * accommodate multiple cookies cannot be successfully
1297 		 * received, so this function will not even get called.
1298 		 * Gracefully accommodating more dring cookies might
1299 		 * reasonably demand exchanging an additional attribute or
1300 		 * making a minor protocol adjustment
1301 		 */
1302 		PRN("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
1303 		return (EBADMSG);
1304 	}
1305 
1306 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
1307 	    reg_msg->ncookies, reg_msg->num_descriptors,
1308 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
1309 	if (status != 0) {
1310 		PRN("ldc_mem_dring_map() returned errno %d", status);
1311 		return (status);
1312 	}
1313 
1314 	/*
1315 	 * To remove the need for this assertion, must call
1316 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
1317 	 * successful call to ldc_mem_dring_map()
1318 	 */
1319 	ASSERT(reg_msg->ncookies == 1);
1320 
1321 	if ((status =
1322 		ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
1323 		PRN("ldc_mem_dring_info() returned errno %d", status);
1324 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
1325 			PRN("ldc_mem_dring_unmap() returned errno %d", status);
1326 		return (status);
1327 	}
1328 
1329 	if (dring_minfo.vaddr == NULL) {
1330 		PRN("Descriptor ring virtual address is NULL");
1331 		return (ENXIO);
1332 	}
1333 
1334 
1335 	/* Initialize for valid message and mapped dring */
1336 	PR1("descriptor size = %u, dring length = %u",
1337 	    vd->descriptor_size, vd->dring_len);
1338 	vd->initialized |= VD_DRING;
1339 	vd->dring_ident = 1;	/* "There Can Be Only One" */
1340 	vd->dring = dring_minfo.vaddr;
1341 	vd->descriptor_size = reg_msg->descriptor_size;
1342 	vd->dring_len = reg_msg->num_descriptors;
1343 	reg_msg->dring_ident = vd->dring_ident;
1344 
1345 	/*
1346 	 * Allocate and initialize a "shadow" array of data structures for
1347 	 * tasks to process I/O requests in dring elements
1348 	 */
1349 	vd->dring_task =
1350 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
1351 	for (int i = 0; i < vd->dring_len; i++) {
1352 		vd->dring_task[i].vd		= vd;
1353 		vd->dring_task[i].index		= i;
1354 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
1355 
1356 		status = ldc_mem_alloc_handle(vd->ldc_handle,
1357 		    &(vd->dring_task[i].mhdl));
1358 		if (status) {
1359 			PRN("ldc_mem_alloc_handle() returned err %d ", status);
1360 			return (ENXIO);
1361 		}
1362 	}
1363 
1364 	return (0);
1365 }
1366 
1367 static int
1368 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
1369 {
1370 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
1371 
1372 
1373 	ASSERT(msglen >= sizeof (msg->tag));
1374 
1375 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
1376 		VIO_DRING_UNREG)) {
1377 		PR0("Message is not an unregister-dring message");
1378 		return (ENOMSG);
1379 	}
1380 
1381 	if (msglen != sizeof (*unreg_msg)) {
1382 		PRN("Expected %lu-byte unregister-dring message; "
1383 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
1384 		return (EBADMSG);
1385 	}
1386 
1387 	if (unreg_msg->dring_ident != vd->dring_ident) {
1388 		PRN("Expected dring ident %lu; received %lu",
1389 		    vd->dring_ident, unreg_msg->dring_ident);
1390 		return (EBADMSG);
1391 	}
1392 
1393 	return (0);
1394 }
1395 
1396 static int
1397 process_rdx_msg(vio_msg_t *msg, size_t msglen)
1398 {
1399 	ASSERT(msglen >= sizeof (msg->tag));
1400 
1401 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
1402 		PR0("Message is not an RDX message");
1403 		return (ENOMSG);
1404 	}
1405 
1406 	if (msglen != sizeof (vio_rdx_msg_t)) {
1407 		PRN("Expected %lu-byte RDX message; received %lu bytes",
1408 		    sizeof (vio_rdx_msg_t), msglen);
1409 		return (EBADMSG);
1410 	}
1411 
1412 	PR0("Valid RDX message");
1413 	return (0);
1414 }
1415 
1416 static int
1417 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
1418 {
1419 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
1420 		PRN("Received seq_num %lu; expected %lu",
1421 		    seq_num, (vd->seq_num + 1));
1422 		vd_need_reset(vd, B_FALSE);
1423 		return (1);
1424 	}
1425 
1426 	vd->seq_num = seq_num;
1427 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
1428 	return (0);
1429 }
1430 
1431 /*
1432  * Return the expected size of an inband-descriptor message with all the
1433  * cookies it claims to include
1434  */
1435 static size_t
1436 expected_inband_size(vd_dring_inband_msg_t *msg)
1437 {
1438 	return ((sizeof (*msg)) +
1439 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
1440 }
1441 
1442 /*
1443  * Process an in-band descriptor message:  used with clients like OBP, with
1444  * which vds exchanges descriptors within VIO message payloads, rather than
1445  * operating on them within a descriptor ring
1446  */
1447 static int
1448 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize)
1449 {
1450 	size_t			expected;
1451 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
1452 
1453 
1454 	ASSERT(msglen >= sizeof (msg->tag));
1455 
1456 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
1457 		VIO_DESC_DATA)) {
1458 		PR1("Message is not an in-band-descriptor message");
1459 		return (ENOMSG);
1460 	}
1461 
1462 	if (msglen < sizeof (*desc_msg)) {
1463 		PRN("Expected at least %lu-byte descriptor message; "
1464 		    "received %lu bytes", sizeof (*desc_msg), msglen);
1465 		return (EBADMSG);
1466 	}
1467 
1468 	if (msglen != (expected = expected_inband_size(desc_msg))) {
1469 		PRN("Expected %lu-byte descriptor message; "
1470 		    "received %lu bytes", expected, msglen);
1471 		return (EBADMSG);
1472 	}
1473 
1474 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
1475 		return (EBADMSG);
1476 
1477 	/*
1478 	 * Valid message:  Set up the in-band descriptor task and process the
1479 	 * request.  Arrange to acknowledge the client's message, unless an
1480 	 * error processing the descriptor task results in setting
1481 	 * VIO_SUBTYPE_NACK
1482 	 */
1483 	PR1("Valid in-band-descriptor message");
1484 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1485 	vd->inband_task.msg	= msg;
1486 	vd->inband_task.msglen	= msglen;
1487 	vd->inband_task.msgsize	= msgsize;
1488 	vd->inband_task.request	= &desc_msg->payload;
1489 	return (vd_process_task(&vd->inband_task));
1490 }
1491 
1492 static int
1493 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
1494     vio_msg_t *msg, size_t msglen, size_t msgsize)
1495 {
1496 	int			status;
1497 	boolean_t		ready;
1498 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1499 
1500 
1501 	/* Accept the updated dring element */
1502 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1503 		PRN("ldc_mem_dring_acquire() returned errno %d", status);
1504 		return (status);
1505 	}
1506 	ready = (elem->hdr.dstate == VIO_DESC_READY);
1507 	if (ready) {
1508 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
1509 	} else {
1510 		PRN("descriptor %u not ready", idx);
1511 		VD_DUMP_DRING_ELEM(elem);
1512 	}
1513 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1514 		PRN("ldc_mem_dring_release() returned errno %d", status);
1515 		return (status);
1516 	}
1517 	if (!ready)
1518 		return (EBUSY);
1519 
1520 
1521 	/* Initialize a task and process the accepted element */
1522 	PR1("Processing dring element %u", idx);
1523 	vd->dring_task[idx].type	= type;
1524 	vd->dring_task[idx].msg		= msg;
1525 	vd->dring_task[idx].msglen	= msglen;
1526 	vd->dring_task[idx].msgsize	= msgsize;
1527 	if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS)
1528 		status = vd_mark_elem_done(vd, idx, elem->payload.status);
1529 
1530 	return (status);
1531 }
1532 
1533 static int
1534 vd_process_element_range(vd_t *vd, int start, int end,
1535     vio_msg_t *msg, size_t msglen, size_t msgsize)
1536 {
1537 	int		i, n, nelem, status = 0;
1538 	boolean_t	inprogress = B_FALSE;
1539 	vd_task_type_t	type;
1540 
1541 
1542 	ASSERT(start >= 0);
1543 	ASSERT(end >= 0);
1544 
1545 	/*
1546 	 * Arrange to acknowledge the client's message, unless an error
1547 	 * processing one of the dring elements results in setting
1548 	 * VIO_SUBTYPE_NACK
1549 	 */
1550 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1551 
1552 	/*
1553 	 * Process the dring elements in the range
1554 	 */
1555 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
1556 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
1557 		((vio_dring_msg_t *)msg)->end_idx = i;
1558 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
1559 		status = vd_process_element(vd, type, i, msg, msglen, msgsize);
1560 		if (status == EINPROGRESS)
1561 			inprogress = B_TRUE;
1562 		else if (status != 0)
1563 			break;
1564 	}
1565 
1566 	/*
1567 	 * If some, but not all, operations of a multi-element range are in
1568 	 * progress, wait for other operations to complete before returning
1569 	 * (which will result in "ack" or "nack" of the message).  Note that
1570 	 * all outstanding operations will need to complete, not just the ones
1571 	 * corresponding to the current range of dring elements; howevever, as
1572 	 * this situation is an error case, performance is less critical.
1573 	 */
1574 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
1575 		ddi_taskq_wait(vd->completionq);
1576 
1577 	return (status);
1578 }
1579 
1580 static int
1581 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize)
1582 {
1583 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
1584 
1585 
1586 	ASSERT(msglen >= sizeof (msg->tag));
1587 
1588 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
1589 		VIO_DRING_DATA)) {
1590 		PR1("Message is not a dring-data message");
1591 		return (ENOMSG);
1592 	}
1593 
1594 	if (msglen != sizeof (*dring_msg)) {
1595 		PRN("Expected %lu-byte dring message; received %lu bytes",
1596 		    sizeof (*dring_msg), msglen);
1597 		return (EBADMSG);
1598 	}
1599 
1600 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
1601 		return (EBADMSG);
1602 
1603 	if (dring_msg->dring_ident != vd->dring_ident) {
1604 		PRN("Expected dring ident %lu; received ident %lu",
1605 		    vd->dring_ident, dring_msg->dring_ident);
1606 		return (EBADMSG);
1607 	}
1608 
1609 	if (dring_msg->start_idx >= vd->dring_len) {
1610 		PRN("\"start_idx\" = %u; must be less than %u",
1611 		    dring_msg->start_idx, vd->dring_len);
1612 		return (EBADMSG);
1613 	}
1614 
1615 	if ((dring_msg->end_idx < 0) ||
1616 	    (dring_msg->end_idx >= vd->dring_len)) {
1617 		PRN("\"end_idx\" = %u; must be >= 0 and less than %u",
1618 		    dring_msg->end_idx, vd->dring_len);
1619 		return (EBADMSG);
1620 	}
1621 
1622 	/* Valid message; process range of updated dring elements */
1623 	PR1("Processing descriptor range, start = %u, end = %u",
1624 	    dring_msg->start_idx, dring_msg->end_idx);
1625 	return (vd_process_element_range(vd, dring_msg->start_idx,
1626 		dring_msg->end_idx, msg, msglen, msgsize));
1627 }
1628 
1629 static int
1630 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
1631 {
1632 	int	retry, status;
1633 	size_t	size = *nbytes;
1634 
1635 
1636 	for (retry = 0, status = ETIMEDOUT;
1637 	    retry < vds_ldc_retries && status == ETIMEDOUT;
1638 	    retry++) {
1639 		PR1("ldc_read() attempt %d", (retry + 1));
1640 		*nbytes = size;
1641 		status = ldc_read(ldc_handle, msg, nbytes);
1642 	}
1643 
1644 	if (status != 0) {
1645 		PRN("ldc_read() returned errno %d", status);
1646 		return (status);
1647 	} else if (*nbytes == 0) {
1648 		PR1("ldc_read() returned 0 and no message read");
1649 		return (ENOMSG);
1650 	}
1651 
1652 	PR1("RCVD %lu-byte message", *nbytes);
1653 	return (0);
1654 }
1655 
1656 static int
1657 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize)
1658 {
1659 	int		status;
1660 
1661 
1662 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
1663 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
1664 
1665 	/*
1666 	 * Validate session ID up front, since it applies to all messages
1667 	 * once set
1668 	 */
1669 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
1670 		PRN("Expected SID %u, received %u", vd->sid,
1671 		    msg->tag.vio_sid);
1672 		return (EBADMSG);
1673 	}
1674 
1675 
1676 	/*
1677 	 * Process the received message based on connection state
1678 	 */
1679 	switch (vd->state) {
1680 	case VD_STATE_INIT:	/* expect version message */
1681 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
1682 			return (status);
1683 
1684 		/* Version negotiated, move to that state */
1685 		vd->state = VD_STATE_VER;
1686 		return (0);
1687 
1688 	case VD_STATE_VER:	/* expect attribute message */
1689 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
1690 			return (status);
1691 
1692 		/* Attributes exchanged, move to that state */
1693 		vd->state = VD_STATE_ATTR;
1694 		return (0);
1695 
1696 	case VD_STATE_ATTR:
1697 		switch (vd->xfer_mode) {
1698 		case VIO_DESC_MODE:	/* expect RDX message */
1699 			if ((status = process_rdx_msg(msg, msglen)) != 0)
1700 				return (status);
1701 
1702 			/* Ready to receive in-band descriptors */
1703 			vd->state = VD_STATE_DATA;
1704 			return (0);
1705 
1706 		case VIO_DRING_MODE:	/* expect register-dring message */
1707 			if ((status =
1708 				vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
1709 				return (status);
1710 
1711 			/* One dring negotiated, move to that state */
1712 			vd->state = VD_STATE_DRING;
1713 			return (0);
1714 
1715 		default:
1716 			ASSERT("Unsupported transfer mode");
1717 			PRN("Unsupported transfer mode");
1718 			return (ENOTSUP);
1719 		}
1720 
1721 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
1722 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
1723 			/* Ready to receive data */
1724 			vd->state = VD_STATE_DATA;
1725 			return (0);
1726 		} else if (status != ENOMSG) {
1727 			return (status);
1728 		}
1729 
1730 
1731 		/*
1732 		 * If another register-dring message is received, stay in
1733 		 * dring state in case the client sends RDX; although the
1734 		 * protocol allows multiple drings, this server does not
1735 		 * support using more than one
1736 		 */
1737 		if ((status =
1738 			vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
1739 			return (status);
1740 
1741 		/*
1742 		 * Acknowledge an unregister-dring message, but reset the
1743 		 * connection anyway:  Although the protocol allows
1744 		 * unregistering drings, this server cannot serve a vdisk
1745 		 * without its only dring
1746 		 */
1747 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
1748 		return ((status == 0) ? ENOTSUP : status);
1749 
1750 	case VD_STATE_DATA:
1751 		switch (vd->xfer_mode) {
1752 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
1753 			return (vd_process_desc_msg(vd, msg, msglen, msgsize));
1754 
1755 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
1756 			/*
1757 			 * Typically expect dring-data messages, so handle
1758 			 * them first
1759 			 */
1760 			if ((status = vd_process_dring_msg(vd, msg,
1761 				    msglen, msgsize)) != ENOMSG)
1762 				return (status);
1763 
1764 			/*
1765 			 * Acknowledge an unregister-dring message, but reset
1766 			 * the connection anyway:  Although the protocol
1767 			 * allows unregistering drings, this server cannot
1768 			 * serve a vdisk without its only dring
1769 			 */
1770 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
1771 			return ((status == 0) ? ENOTSUP : status);
1772 
1773 		default:
1774 			ASSERT("Unsupported transfer mode");
1775 			PRN("Unsupported transfer mode");
1776 			return (ENOTSUP);
1777 		}
1778 
1779 	default:
1780 		ASSERT("Invalid client connection state");
1781 		PRN("Invalid client connection state");
1782 		return (ENOTSUP);
1783 	}
1784 }
1785 
1786 static int
1787 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize)
1788 {
1789 	int		status;
1790 	boolean_t	reset_ldc = B_FALSE;
1791 
1792 
1793 	/*
1794 	 * Check that the message is at least big enough for a "tag", so that
1795 	 * message processing can proceed based on tag-specified message type
1796 	 */
1797 	if (msglen < sizeof (vio_msg_tag_t)) {
1798 		PRN("Received short (%lu-byte) message", msglen);
1799 		/* Can't "nack" short message, so drop the big hammer */
1800 		vd_need_reset(vd, B_TRUE);
1801 		return (EBADMSG);
1802 	}
1803 
1804 	/*
1805 	 * Process the message
1806 	 */
1807 	switch (status = vd_do_process_msg(vd, msg, msglen, msgsize)) {
1808 	case 0:
1809 		/* "ack" valid, successfully-processed messages */
1810 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
1811 		break;
1812 
1813 	case EINPROGRESS:
1814 		/* The completion handler will "ack" or "nack" the message */
1815 		return (EINPROGRESS);
1816 	case ENOMSG:
1817 		PRN("Received unexpected message");
1818 		_NOTE(FALLTHROUGH);
1819 	case EBADMSG:
1820 	case ENOTSUP:
1821 		/* "nack" invalid messages */
1822 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1823 		break;
1824 
1825 	default:
1826 		/* "nack" failed messages */
1827 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1828 		/* An LDC error probably occurred, so try resetting it */
1829 		reset_ldc = B_TRUE;
1830 		break;
1831 	}
1832 
1833 	/* Send the "ack" or "nack" to the client */
1834 	PR1("Sending %s",
1835 	    (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1836 	if (send_msg(vd->ldc_handle, msg, msglen) != 0)
1837 		reset_ldc = B_TRUE;
1838 
1839 	/* Arrange to reset the connection for nack'ed or failed messages */
1840 	if ((status != 0) || reset_ldc)
1841 		vd_need_reset(vd, reset_ldc);
1842 
1843 	return (status);
1844 }
1845 
1846 static boolean_t
1847 vd_enabled(vd_t *vd)
1848 {
1849 	boolean_t	enabled;
1850 
1851 
1852 	mutex_enter(&vd->lock);
1853 	enabled = vd->enabled;
1854 	mutex_exit(&vd->lock);
1855 	return (enabled);
1856 }
1857 
1858 static void
1859 vd_recv_msg(void *arg)
1860 {
1861 	vd_t	*vd = (vd_t *)arg;
1862 	int	status = 0;
1863 
1864 
1865 	ASSERT(vd != NULL);
1866 	PR2("New task to receive incoming message(s)");
1867 	while (vd_enabled(vd) && status == 0) {
1868 		size_t		msglen, msgsize;
1869 		vio_msg_t	*vio_msg;
1870 
1871 
1872 		/*
1873 		 * Receive and process a message
1874 		 */
1875 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
1876 		msgsize = vd->max_msglen;	/* stable copy for alloc/free */
1877 		msglen	= msgsize;	/* actual length after recv_msg() */
1878 		vio_msg = kmem_alloc(msgsize, KM_SLEEP);
1879 		if ((status = recv_msg(vd->ldc_handle, vio_msg, &msglen)) ==
1880 		    0) {
1881 			if (vd_process_msg(vd, vio_msg, msglen, msgsize) ==
1882 			    EINPROGRESS)
1883 				continue;	/* handler will free msg */
1884 		} else if (status != ENOMSG) {
1885 			/* Probably an LDC failure; arrange to reset it */
1886 			vd_need_reset(vd, B_TRUE);
1887 		}
1888 		kmem_free(vio_msg, msgsize);
1889 	}
1890 	PR2("Task finished");
1891 }
1892 
1893 static uint_t
1894 vd_handle_ldc_events(uint64_t event, caddr_t arg)
1895 {
1896 	vd_t	*vd = (vd_t *)(void *)arg;
1897 
1898 
1899 	ASSERT(vd != NULL);
1900 
1901 	if (!vd_enabled(vd))
1902 		return (LDC_SUCCESS);
1903 
1904 	if (event & LDC_EVT_RESET) {
1905 		PR0("LDC channel was reset");
1906 		return (LDC_SUCCESS);
1907 	}
1908 
1909 	if (event & LDC_EVT_UP) {
1910 		PR0("LDC channel came up:  Resetting client connection state");
1911 		vd_need_reset(vd, B_FALSE);
1912 	}
1913 
1914 	if (event & LDC_EVT_READ) {
1915 		int	status;
1916 
1917 		PR1("New data available");
1918 		/* Queue a task to receive the new data */
1919 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
1920 		    DDI_SLEEP);
1921 		/* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */
1922 		ASSERT(status == DDI_SUCCESS);
1923 	}
1924 
1925 	return (LDC_SUCCESS);
1926 }
1927 
1928 static uint_t
1929 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
1930 {
1931 	_NOTE(ARGUNUSED(key, val))
1932 	(*((uint_t *)arg))++;
1933 	return (MH_WALK_TERMINATE);
1934 }
1935 
1936 
1937 static int
1938 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1939 {
1940 	uint_t	vd_present = 0;
1941 	minor_t	instance;
1942 	vds_t	*vds;
1943 
1944 
1945 	switch (cmd) {
1946 	case DDI_DETACH:
1947 		/* the real work happens below */
1948 		break;
1949 	case DDI_SUSPEND:
1950 		PR0("No action required for DDI_SUSPEND");
1951 		return (DDI_SUCCESS);
1952 	default:
1953 		PRN("Unrecognized \"cmd\"");
1954 		return (DDI_FAILURE);
1955 	}
1956 
1957 	ASSERT(cmd == DDI_DETACH);
1958 	instance = ddi_get_instance(dip);
1959 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
1960 		PRN("Could not get state for instance %u", instance);
1961 		ddi_soft_state_free(vds_state, instance);
1962 		return (DDI_FAILURE);
1963 	}
1964 
1965 	/* Do no detach when serving any vdisks */
1966 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
1967 	if (vd_present) {
1968 		PR0("Not detaching because serving vdisks");
1969 		return (DDI_FAILURE);
1970 	}
1971 
1972 	PR0("Detaching");
1973 	if (vds->initialized & VDS_MDEG)
1974 		(void) mdeg_unregister(vds->mdeg);
1975 	if (vds->initialized & VDS_LDI)
1976 		(void) ldi_ident_release(vds->ldi_ident);
1977 	mod_hash_destroy_hash(vds->vd_table);
1978 	ddi_soft_state_free(vds_state, instance);
1979 	return (DDI_SUCCESS);
1980 }
1981 
1982 static boolean_t
1983 is_pseudo_device(dev_info_t *dip)
1984 {
1985 	dev_info_t	*parent, *root = ddi_root_node();
1986 
1987 
1988 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
1989 	    parent = ddi_get_parent(parent)) {
1990 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
1991 			return (B_TRUE);
1992 	}
1993 
1994 	return (B_FALSE);
1995 }
1996 
1997 static int
1998 vd_setup_full_disk(vd_t *vd)
1999 {
2000 	int		rval, status;
2001 	major_t		major = getmajor(vd->dev[0]);
2002 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
2003 	struct dk_minfo	dk_minfo;
2004 
2005 	/*
2006 	 * At this point, vdisk_size is set to the size of partition 2 but
2007 	 * this does not represent the size of the disk because partition 2
2008 	 * may not cover the entire disk and its size does not include reserved
2009 	 * blocks. So we update vdisk_size to be the size of the entire disk.
2010 	 */
2011 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
2012 	    (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL),
2013 	    kcred, &rval)) != 0) {
2014 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
2015 		    status);
2016 		return (status);
2017 	}
2018 	vd->vdisk_size = dk_minfo.dki_capacity;
2019 
2020 	/* Set full-disk parameters */
2021 	vd->vdisk_type	= VD_DISK_TYPE_DISK;
2022 	vd->nslices	= (sizeof (vd->dev))/(sizeof (vd->dev[0]));
2023 
2024 	/* Move dev number and LDI handle to entire-disk-slice array elements */
2025 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
2026 	vd->dev[0]				= 0;
2027 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
2028 	vd->ldi_handle[0]			= NULL;
2029 
2030 	/* Initialize device numbers for remaining slices and open them */
2031 	for (int slice = 0; slice < vd->nslices; slice++) {
2032 		/*
2033 		 * Skip the entire-disk slice, as it's already open and its
2034 		 * device known
2035 		 */
2036 		if (slice == VD_ENTIRE_DISK_SLICE)
2037 			continue;
2038 		ASSERT(vd->dev[slice] == 0);
2039 		ASSERT(vd->ldi_handle[slice] == NULL);
2040 
2041 		/*
2042 		 * Construct the device number for the current slice
2043 		 */
2044 		vd->dev[slice] = makedevice(major, (minor + slice));
2045 
2046 		/*
2047 		 * At least some underlying drivers refuse to open
2048 		 * devices for (currently) zero-length slices, so skip
2049 		 * them for now
2050 		 */
2051 		if (vd->vtoc.v_part[slice].p_size == 0) {
2052 			PR0("Skipping zero-length slice %u", slice);
2053 			continue;
2054 		}
2055 
2056 		/*
2057 		 * Open all non-empty slices of the disk to serve them to the
2058 		 * client.  Slices are opened exclusively to prevent other
2059 		 * threads or processes in the service domain from performing
2060 		 * I/O to slices being accessed by a client.  Failure to open
2061 		 * a slice results in vds not serving this disk, as the client
2062 		 * could attempt (and should be able) to access any non-empty
2063 		 * slice immediately.  Any slices successfully opened before a
2064 		 * failure will get closed by vds_destroy_vd() as a result of
2065 		 * the error returned by this function.
2066 		 */
2067 		PR0("Opening device major %u, minor %u = slice %u",
2068 		    major, minor, slice);
2069 		if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
2070 			    vd_open_flags, kcred, &vd->ldi_handle[slice],
2071 			    vd->vds->ldi_ident)) != 0) {
2072 			PRN("ldi_open_by_dev() returned errno %d "
2073 			    "for slice %u", status, slice);
2074 			/* vds_destroy_vd() will close any open slices */
2075 			return (status);
2076 		}
2077 	}
2078 
2079 	return (0);
2080 }
2081 
2082 static int
2083 vd_setup_partition_efi(vd_t *vd)
2084 {
2085 	efi_gpt_t *gpt;
2086 	efi_gpe_t *gpe;
2087 	struct uuid uuid = EFI_RESERVED;
2088 	uint32_t crc;
2089 	int length;
2090 
2091 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
2092 
2093 	gpt = kmem_zalloc(length, KM_SLEEP);
2094 	gpe = (efi_gpe_t *)(gpt + 1);
2095 
2096 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
2097 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
2098 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
2099 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
2100 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
2101 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
2102 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
2103 
2104 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
2105 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
2106 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
2107 
2108 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
2109 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
2110 
2111 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
2112 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
2113 
2114 	vd->dk_efi.dki_lba = 0;
2115 	vd->dk_efi.dki_length = length;
2116 	vd->dk_efi.dki_data = gpt;
2117 
2118 	return (0);
2119 }
2120 
2121 static int
2122 vd_setup_vd(char *device_path, vd_t *vd)
2123 {
2124 	int		rval, status;
2125 	dev_info_t	*dip;
2126 	struct dk_cinfo	dk_cinfo;
2127 
2128 	/*
2129 	 * We need to open with FNDELAY so that opening an empty partition
2130 	 * does not fail.
2131 	 */
2132 	if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY,
2133 	    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) {
2134 		PRN("ldi_open_by_name(%s) = errno %d", device_path, status);
2135 		return (status);
2136 	}
2137 
2138 	/*
2139 	 * nslices must be updated now so that vds_destroy_vd() will close
2140 	 * the slice we have just opened in case of an error.
2141 	 */
2142 	vd->nslices = 1;
2143 
2144 	/* Get device number and size of backing device */
2145 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
2146 		PRN("ldi_get_dev() returned errno %d for %s",
2147 		    status, device_path);
2148 		return (status);
2149 	}
2150 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
2151 		PRN("ldi_get_size() failed for %s", device_path);
2152 		return (EIO);
2153 	}
2154 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
2155 
2156 	/* Verify backing device supports dk_cinfo, dk_geom, and vtoc */
2157 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
2158 		    (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred,
2159 		    &rval)) != 0) {
2160 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
2161 		    status, device_path);
2162 		return (status);
2163 	}
2164 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
2165 		PRN("slice %u >= maximum slice %u for %s",
2166 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
2167 		return (EIO);
2168 	}
2169 
2170 	status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label);
2171 
2172 	if (status != 0) {
2173 		PRN("vd_read_vtoc returned errno %d for %s",
2174 		    status, device_path);
2175 		return (status);
2176 	}
2177 
2178 	if (vd->vdisk_label == VD_DISK_LABEL_VTOC &&
2179 	    (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
2180 	    (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL),
2181 	    kcred, &rval)) != 0) {
2182 		    PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
2183 			status, device_path);
2184 		    return (status);
2185 	}
2186 
2187 	/* Store the device's max transfer size for return to the client */
2188 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
2189 
2190 
2191 	/* Determine if backing device is a pseudo device */
2192 	if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]),
2193 		    dev_to_instance(vd->dev[0]), 0))  == NULL) {
2194 		PRN("%s is no longer accessible", device_path);
2195 		return (EIO);
2196 	}
2197 	vd->pseudo = is_pseudo_device(dip);
2198 	ddi_release_devi(dip);
2199 	if (vd->pseudo) {
2200 		vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2201 		vd->nslices	= 1;
2202 		return (0);	/* ...and we're done */
2203 	}
2204 
2205 
2206 	/* If slice is entire-disk slice, initialize for full disk */
2207 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE)
2208 		return (vd_setup_full_disk(vd));
2209 
2210 
2211 	/* Otherwise, we have a non-entire slice of a device */
2212 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
2213 	vd->nslices	= 1;
2214 
2215 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
2216 		status = vd_setup_partition_efi(vd);
2217 		return (status);
2218 	}
2219 
2220 	/* Initialize dk_geom structure for single-slice device */
2221 	if (vd->dk_geom.dkg_nsect == 0) {
2222 		PRN("%s geometry claims 0 sectors per track", device_path);
2223 		return (EIO);
2224 	}
2225 	if (vd->dk_geom.dkg_nhead == 0) {
2226 		PRN("%s geometry claims 0 heads", device_path);
2227 		return (EIO);
2228 	}
2229 	vd->dk_geom.dkg_ncyl =
2230 	    vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead;
2231 	vd->dk_geom.dkg_acyl = 0;
2232 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
2233 
2234 
2235 	/* Initialize vtoc structure for single-slice device */
2236 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
2237 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
2238 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
2239 	vd->vtoc.v_nparts = 1;
2240 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
2241 	vd->vtoc.v_part[0].p_flag = 0;
2242 	vd->vtoc.v_part[0].p_start = 0;
2243 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
2244 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
2245 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
2246 
2247 
2248 	return (0);
2249 }
2250 
2251 static int
2252 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id,
2253     vd_t **vdp)
2254 {
2255 	char			tq_name[TASKQ_NAMELEN];
2256 	int			status;
2257 	ddi_iblock_cookie_t	iblock = NULL;
2258 	ldc_attr_t		ldc_attr;
2259 	vd_t			*vd;
2260 
2261 
2262 	ASSERT(vds != NULL);
2263 	ASSERT(device_path != NULL);
2264 	ASSERT(vdp != NULL);
2265 	PR0("Adding vdisk for %s", device_path);
2266 
2267 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
2268 		PRN("No memory for virtual disk");
2269 		return (EAGAIN);
2270 	}
2271 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
2272 	vd->vds = vds;
2273 
2274 
2275 	/* Open vdisk and initialize parameters */
2276 	if ((status = vd_setup_vd(device_path, vd)) != 0)
2277 		return (status);
2278 	ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2279 	PR0("vdisk_type = %s, pseudo = %s, nslices = %u",
2280 	    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2281 	    (vd->pseudo ? "yes" : "no"), vd->nslices);
2282 
2283 
2284 	/* Initialize locking */
2285 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
2286 		&iblock) != DDI_SUCCESS) {
2287 		PRN("Could not get iblock cookie.");
2288 		return (EIO);
2289 	}
2290 
2291 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
2292 	vd->initialized |= VD_LOCKING;
2293 
2294 
2295 	/* Create start and completion task queues for the vdisk */
2296 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
2297 	PR1("tq_name = %s", tq_name);
2298 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
2299 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
2300 		PRN("Could not create task queue");
2301 		return (EIO);
2302 	}
2303 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
2304 	PR1("tq_name = %s", tq_name);
2305 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
2306 		    TASKQ_DEFAULTPRI, 0)) == NULL) {
2307 		PRN("Could not create task queue");
2308 		return (EIO);
2309 	}
2310 	vd->enabled = 1;	/* before callback can dispatch to startq */
2311 
2312 
2313 	/* Bring up LDC */
2314 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
2315 	ldc_attr.instance	= ddi_get_instance(vds->dip);
2316 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
2317 	ldc_attr.mtu		= VD_LDC_MTU;
2318 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
2319 		PRN("ldc_init(%lu) = errno %d", ldc_id, status);
2320 		return (status);
2321 	}
2322 	vd->initialized |= VD_LDC;
2323 
2324 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
2325 		(caddr_t)vd)) != 0) {
2326 		PRN("ldc_reg_callback() returned errno %d", status);
2327 		return (status);
2328 	}
2329 
2330 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
2331 		PRN("ldc_open() returned errno %d", status);
2332 		return (status);
2333 	}
2334 
2335 	/* Allocate the inband task memory handle */
2336 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
2337 	if (status) {
2338 		PRN("ldc_mem_alloc_handle() returned err %d ", status);
2339 		return (ENXIO);
2340 	}
2341 
2342 	/* Add the successfully-initialized vdisk to the server's table */
2343 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
2344 		PRN("Error adding vdisk ID %lu to table", id);
2345 		return (EIO);
2346 	}
2347 
2348 	return (0);
2349 }
2350 
2351 /*
2352  * Destroy the state associated with a virtual disk
2353  */
2354 static void
2355 vds_destroy_vd(void *arg)
2356 {
2357 	vd_t	*vd = (vd_t *)arg;
2358 
2359 
2360 	if (vd == NULL)
2361 		return;
2362 
2363 	PR0("Destroying vdisk state");
2364 
2365 	if (vd->dk_efi.dki_data != NULL)
2366 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
2367 
2368 	/* Disable queuing requests for the vdisk */
2369 	if (vd->initialized & VD_LOCKING) {
2370 		mutex_enter(&vd->lock);
2371 		vd->enabled = 0;
2372 		mutex_exit(&vd->lock);
2373 	}
2374 
2375 	/* Drain and destroy start queue (*before* destroying completionq) */
2376 	if (vd->startq != NULL)
2377 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
2378 
2379 	/* Drain and destroy completion queue (*before* shutting down LDC) */
2380 	if (vd->completionq != NULL)
2381 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
2382 
2383 	if (vd->dring_task != NULL) {
2384 		ASSERT(vd->dring_len != 0);
2385 		/* Free all dring_task memory handles */
2386 		for (int i = 0; i < vd->dring_len; i++)
2387 			(void) ldc_mem_free_handle(vd->dring_task[i].mhdl);
2388 		kmem_free(vd->dring_task,
2389 		    (sizeof (*vd->dring_task)) * vd->dring_len);
2390 	}
2391 
2392 	/* Free the inband task memory handle */
2393 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
2394 
2395 	/* Shut down LDC */
2396 	if (vd->initialized & VD_LDC) {
2397 		if (vd->initialized & VD_DRING)
2398 			(void) ldc_mem_dring_unmap(vd->dring_handle);
2399 		(void) ldc_unreg_callback(vd->ldc_handle);
2400 		(void) ldc_close(vd->ldc_handle);
2401 		(void) ldc_fini(vd->ldc_handle);
2402 	}
2403 
2404 	/* Close any open backing-device slices */
2405 	for (uint_t slice = 0; slice < vd->nslices; slice++) {
2406 		if (vd->ldi_handle[slice] != NULL) {
2407 			PR0("Closing slice %u", slice);
2408 			(void) ldi_close(vd->ldi_handle[slice],
2409 			    vd_open_flags | FNDELAY, kcred);
2410 		}
2411 	}
2412 
2413 	/* Free lock */
2414 	if (vd->initialized & VD_LOCKING)
2415 		mutex_destroy(&vd->lock);
2416 
2417 	/* Finally, free the vdisk structure itself */
2418 	kmem_free(vd, sizeof (*vd));
2419 }
2420 
2421 static int
2422 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id)
2423 {
2424 	int	status;
2425 	vd_t	*vd = NULL;
2426 
2427 
2428 #ifdef lint
2429 	(void) vd;
2430 #endif	/* lint */
2431 
2432 	if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0)
2433 		vds_destroy_vd(vd);
2434 
2435 	return (status);
2436 }
2437 
2438 static int
2439 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
2440     uint64_t *ldc_id)
2441 {
2442 	int	num_channels;
2443 
2444 
2445 	/* Look for channel endpoint child(ren) of the vdisk MD node */
2446 	if ((num_channels = md_scan_dag(md, vd_node,
2447 		    md_find_name(md, VD_CHANNEL_ENDPOINT),
2448 		    md_find_name(md, "fwd"), channel)) <= 0) {
2449 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
2450 		return (-1);
2451 	}
2452 
2453 	/* Get the "id" value for the first channel endpoint node */
2454 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
2455 		PRN("No \"%s\" property found for \"%s\" of vdisk",
2456 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
2457 		return (-1);
2458 	}
2459 
2460 	if (num_channels > 1) {
2461 		PRN("Using ID of first of multiple channels for this vdisk");
2462 	}
2463 
2464 	return (0);
2465 }
2466 
2467 static int
2468 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
2469 {
2470 	int		num_nodes, status;
2471 	size_t		size;
2472 	mde_cookie_t	*channel;
2473 
2474 
2475 	if ((num_nodes = md_node_count(md)) <= 0) {
2476 		PRN("Invalid node count in Machine Description subtree");
2477 		return (-1);
2478 	}
2479 	size = num_nodes*(sizeof (*channel));
2480 	channel = kmem_zalloc(size, KM_SLEEP);
2481 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
2482 	kmem_free(channel, size);
2483 
2484 	return (status);
2485 }
2486 
2487 static void
2488 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
2489 {
2490 	char		*device_path = NULL;
2491 	uint64_t	id = 0, ldc_id = 0;
2492 
2493 
2494 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
2495 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
2496 		return;
2497 	}
2498 	PR0("Adding vdisk ID %lu", id);
2499 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
2500 		&device_path) != 0) {
2501 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
2502 		return;
2503 	}
2504 
2505 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
2506 		PRN("Error getting LDC ID for vdisk %lu", id);
2507 		return;
2508 	}
2509 
2510 	if (vds_init_vd(vds, id, device_path, ldc_id) != 0) {
2511 		PRN("Failed to add vdisk ID %lu", id);
2512 		return;
2513 	}
2514 }
2515 
2516 static void
2517 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
2518 {
2519 	uint64_t	id = 0;
2520 
2521 
2522 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
2523 		PRN("Unable to get \"%s\" property from vdisk's MD node",
2524 		    VD_ID_PROP);
2525 		return;
2526 	}
2527 	PR0("Removing vdisk ID %lu", id);
2528 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
2529 		PRN("No vdisk entry found for vdisk ID %lu", id);
2530 }
2531 
2532 static void
2533 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
2534     md_t *curr_md, mde_cookie_t curr_vd_node)
2535 {
2536 	char		*curr_dev, *prev_dev;
2537 	uint64_t	curr_id = 0, curr_ldc_id = 0;
2538 	uint64_t	prev_id = 0, prev_ldc_id = 0;
2539 	size_t		len;
2540 
2541 
2542 	/* Validate that vdisk ID has not changed */
2543 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
2544 		PRN("Error getting previous vdisk \"%s\" property",
2545 		    VD_ID_PROP);
2546 		return;
2547 	}
2548 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
2549 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
2550 		return;
2551 	}
2552 	if (curr_id != prev_id) {
2553 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
2554 		    prev_id, curr_id);
2555 		return;
2556 	}
2557 
2558 	/* Validate that LDC ID has not changed */
2559 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
2560 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
2561 		return;
2562 	}
2563 
2564 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
2565 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
2566 		return;
2567 	}
2568 	if (curr_ldc_id != prev_ldc_id) {
2569 		_NOTE(NOTREACHED);	/* lint is confused */
2570 		PRN("Not changing vdisk:  "
2571 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
2572 		return;
2573 	}
2574 
2575 	/* Determine whether device path has changed */
2576 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
2577 		&prev_dev) != 0) {
2578 		PRN("Error getting previous vdisk \"%s\"",
2579 		    VD_BLOCK_DEVICE_PROP);
2580 		return;
2581 	}
2582 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
2583 		&curr_dev) != 0) {
2584 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
2585 		return;
2586 	}
2587 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
2588 	    (strncmp(curr_dev, prev_dev, len) == 0))
2589 		return;	/* no relevant (supported) change */
2590 
2591 	PR0("Changing vdisk ID %lu", prev_id);
2592 	/* Remove old state, which will close vdisk and reset */
2593 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
2594 		PRN("No entry found for vdisk ID %lu", prev_id);
2595 	/* Re-initialize vdisk with new state */
2596 	if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) {
2597 		PRN("Failed to change vdisk ID %lu", curr_id);
2598 		return;
2599 	}
2600 }
2601 
2602 static int
2603 vds_process_md(void *arg, mdeg_result_t *md)
2604 {
2605 	int	i;
2606 	vds_t	*vds = arg;
2607 
2608 
2609 	if (md == NULL)
2610 		return (MDEG_FAILURE);
2611 	ASSERT(vds != NULL);
2612 
2613 	for (i = 0; i < md->removed.nelem; i++)
2614 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
2615 	for (i = 0; i < md->match_curr.nelem; i++)
2616 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
2617 		    md->match_curr.mdp, md->match_curr.mdep[i]);
2618 	for (i = 0; i < md->added.nelem; i++)
2619 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
2620 
2621 	return (MDEG_SUCCESS);
2622 }
2623 
2624 static int
2625 vds_do_attach(dev_info_t *dip)
2626 {
2627 	static char	reg_prop[] = "reg";	/* devinfo ID prop */
2628 
2629 	/* MDEG specification for a (particular) vds node */
2630 	static mdeg_prop_spec_t	vds_prop_spec[] = {
2631 		{MDET_PROP_STR, "name", {VDS_NAME}},
2632 		{MDET_PROP_VAL, "cfg-handle", {0}},
2633 		{MDET_LIST_END, NULL, {0}}};
2634 	static mdeg_node_spec_t	vds_spec = {"virtual-device", vds_prop_spec};
2635 
2636 	/* MDEG specification for matching a vd node */
2637 	static md_prop_match_t	vd_prop_spec[] = {
2638 		{MDET_PROP_VAL, VD_ID_PROP},
2639 		{MDET_LIST_END, NULL}};
2640 	static mdeg_node_match_t vd_spec = {"virtual-device-port",
2641 					    vd_prop_spec};
2642 
2643 	int			status;
2644 	uint64_t		cfg_handle;
2645 	minor_t			instance = ddi_get_instance(dip);
2646 	vds_t			*vds;
2647 
2648 
2649 	/*
2650 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
2651 	 * notion of "instance", or unique identifier, for that node; OBP
2652 	 * stores the value of the "cfg-handle" MD property as the value of
2653 	 * the "reg" property on the node in the device tree it builds from
2654 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
2655 	 * "reg" property value to uniquely identify this device instance when
2656 	 * registering with the MD event-generation framework.  If the "reg"
2657 	 * property cannot be found, the device tree state is presumably so
2658 	 * broken that there is no point in continuing.
2659 	 */
2660 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, reg_prop)) {
2661 		PRN("vds \"%s\" property does not exist", reg_prop);
2662 		return (DDI_FAILURE);
2663 	}
2664 
2665 	/* Get the MD instance for later MDEG registration */
2666 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
2667 	    reg_prop, -1);
2668 
2669 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
2670 		PRN("Could not allocate state for instance %u", instance);
2671 		return (DDI_FAILURE);
2672 	}
2673 
2674 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
2675 		PRN("Could not get state for instance %u", instance);
2676 		ddi_soft_state_free(vds_state, instance);
2677 		return (DDI_FAILURE);
2678 	}
2679 
2680 
2681 	vds->dip	= dip;
2682 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
2683 							vds_destroy_vd,
2684 							sizeof (void *));
2685 	ASSERT(vds->vd_table != NULL);
2686 
2687 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
2688 		PRN("ldi_ident_from_dip() returned errno %d", status);
2689 		return (DDI_FAILURE);
2690 	}
2691 	vds->initialized |= VDS_LDI;
2692 
2693 	/* Register for MD updates */
2694 	vds_prop_spec[1].ps_val = cfg_handle;
2695 	if (mdeg_register(&vds_spec, &vd_spec, vds_process_md, vds,
2696 		&vds->mdeg) != MDEG_SUCCESS) {
2697 		PRN("Unable to register for MD updates");
2698 		return (DDI_FAILURE);
2699 	}
2700 	vds->initialized |= VDS_MDEG;
2701 
2702 	/* Prevent auto-detaching so driver is available whenever MD changes */
2703 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
2704 	    DDI_PROP_SUCCESS) {
2705 		PRN("failed to set \"%s\" property for instance %u",
2706 		    DDI_NO_AUTODETACH, instance);
2707 	}
2708 
2709 	ddi_report_dev(dip);
2710 	return (DDI_SUCCESS);
2711 }
2712 
2713 static int
2714 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2715 {
2716 	int	status;
2717 
2718 	switch (cmd) {
2719 	case DDI_ATTACH:
2720 		PR0("Attaching");
2721 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
2722 			(void) vds_detach(dip, DDI_DETACH);
2723 		return (status);
2724 	case DDI_RESUME:
2725 		PR0("No action required for DDI_RESUME");
2726 		return (DDI_SUCCESS);
2727 	default:
2728 		return (DDI_FAILURE);
2729 	}
2730 }
2731 
2732 static struct dev_ops vds_ops = {
2733 	DEVO_REV,	/* devo_rev */
2734 	0,		/* devo_refcnt */
2735 	ddi_no_info,	/* devo_getinfo */
2736 	nulldev,	/* devo_identify */
2737 	nulldev,	/* devo_probe */
2738 	vds_attach,	/* devo_attach */
2739 	vds_detach,	/* devo_detach */
2740 	nodev,		/* devo_reset */
2741 	NULL,		/* devo_cb_ops */
2742 	NULL,		/* devo_bus_ops */
2743 	nulldev		/* devo_power */
2744 };
2745 
2746 static struct modldrv modldrv = {
2747 	&mod_driverops,
2748 	"virtual disk server v%I%",
2749 	&vds_ops,
2750 };
2751 
2752 static struct modlinkage modlinkage = {
2753 	MODREV_1,
2754 	&modldrv,
2755 	NULL
2756 };
2757 
2758 
2759 int
2760 _init(void)
2761 {
2762 	int		i, status;
2763 
2764 
2765 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
2766 		return (status);
2767 	if ((status = mod_install(&modlinkage)) != 0) {
2768 		ddi_soft_state_fini(&vds_state);
2769 		return (status);
2770 	}
2771 
2772 	/* Fill in the bit-mask of server-supported operations */
2773 	for (i = 0; i < vds_noperations; i++)
2774 		vds_operations |= 1 << (vds_operation[i].operation - 1);
2775 
2776 	return (0);
2777 }
2778 
2779 int
2780 _info(struct modinfo *modinfop)
2781 {
2782 	return (mod_info(&modlinkage, modinfop));
2783 }
2784 
2785 int
2786 _fini(void)
2787 {
2788 	int	status;
2789 
2790 
2791 	if ((status = mod_remove(&modlinkage)) != 0)
2792 		return (status);
2793 	ddi_soft_state_fini(&vds_state);
2794 	return (0);
2795 }
2796