xref: /illumos-gate/usr/src/uts/sun4v/io/vds.c (revision 843e19887f64dde75055cf8842fc4db2171eff45)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/mdeg.h>
41 #include <sys/modhash.h>
42 #include <sys/note.h>
43 #include <sys/pathname.h>
44 #include <sys/sdt.h>
45 #include <sys/sunddi.h>
46 #include <sys/sunldi.h>
47 #include <sys/sysmacros.h>
48 #include <sys/vio_common.h>
49 #include <sys/vdsk_mailbox.h>
50 #include <sys/vdsk_common.h>
51 #include <sys/vtoc.h>
52 #include <sys/vfs.h>
53 #include <sys/stat.h>
54 #include <sys/scsi/impl/uscsi.h>
55 #include <vm/seg_map.h>
56 
57 /* Virtual disk server initialization flags */
58 #define	VDS_LDI			0x01
59 #define	VDS_MDEG		0x02
60 
61 /* Virtual disk server tunable parameters */
62 #define	VDS_RETRIES		5
63 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
64 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
65 #define	VDS_NCHAINS		32
66 
67 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
68 #define	VDS_NAME		"virtual-disk-server"
69 
70 #define	VD_NAME			"vd"
71 #define	VD_VOLUME_NAME		"vdisk"
72 #define	VD_ASCIILABEL		"Virtual Disk"
73 
74 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
75 #define	VD_ID_PROP		"id"
76 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
77 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
78 #define	VD_REG_PROP		"reg"
79 
80 /* Virtual disk initialization flags */
81 #define	VD_DISK_READY		0x01
82 #define	VD_LOCKING		0x02
83 #define	VD_LDC			0x04
84 #define	VD_DRING		0x08
85 #define	VD_SID			0x10
86 #define	VD_SEQ_NUM		0x20
87 #define	VD_SETUP_ERROR		0x40
88 
89 /* Flags for writing to a vdisk which is a file */
90 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
91 
92 /* Number of backup labels */
93 #define	VD_FILE_NUM_BACKUP	5
94 
95 /* Timeout for SCSI I/O */
96 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
97 
98 /*
99  * By Solaris convention, slice/partition 2 represents the entire disk;
100  * unfortunately, this convention does not appear to be codified.
101  */
102 #define	VD_ENTIRE_DISK_SLICE	2
103 
104 /* Return a cpp token as a string */
105 #define	STRINGIZE(token)	#token
106 
107 /*
108  * Print a message prefixed with the current function name to the message log
109  * (and optionally to the console for verbose boots); these macros use cpp's
110  * concatenation of string literals and C99 variable-length-argument-list
111  * macros
112  */
113 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
114 #define	_PRN(format, ...)					\
115 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
116 
117 /* Return a pointer to the "i"th vdisk dring element */
118 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
119 	    (vd->dring + (i)*vd->descriptor_size))
120 
121 /* Return the virtual disk client's type as a string (for use in messages) */
122 #define	VD_CLIENT(vd)							\
123 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
124 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
125 		(((vd)->xfer_mode == 0) ? "null client" :		\
126 		    "unsupported client")))
127 
128 /* Read disk label from a disk on file */
129 #define	VD_FILE_LABEL_READ(vd, labelp) \
130 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
131 	    0, sizeof (struct dk_label))
132 
133 /* Write disk label to a disk on file */
134 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
135 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
136 	    0, sizeof (struct dk_label))
137 
138 /*
139  * Specification of an MD node passed to the MDEG to filter any
140  * 'vport' nodes that do not belong to the specified node. This
141  * template is copied for each vds instance and filled in with
142  * the appropriate 'cfg-handle' value before being passed to the MDEG.
143  */
144 static mdeg_prop_spec_t	vds_prop_template[] = {
145 	{ MDET_PROP_STR,	"name",		VDS_NAME },
146 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
147 	{ MDET_LIST_END,	NULL, 		NULL }
148 };
149 
150 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
151 
152 /*
153  * Matching criteria passed to the MDEG to register interest
154  * in changes to 'virtual-device-port' nodes identified by their
155  * 'id' property.
156  */
157 static md_prop_match_t	vd_prop_match[] = {
158 	{ MDET_PROP_VAL,	VD_ID_PROP },
159 	{ MDET_LIST_END,	NULL }
160 };
161 
162 static mdeg_node_match_t vd_match = {"virtual-device-port",
163 				    vd_prop_match};
164 
165 /*
166  * Options for the VD_BLOCK_DEVICE_OPTS property.
167  */
168 #define	VD_OPT_RDONLY		0x1	/* read-only  */
169 #define	VD_OPT_SLICE		0x2	/* single slice */
170 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
171 
172 #define	VD_OPTION_NLEN	128
173 
174 typedef struct vd_option {
175 	char vdo_name[VD_OPTION_NLEN];
176 	uint64_t vdo_value;
177 } vd_option_t;
178 
179 vd_option_t vd_bdev_options[] = {
180 	{ "ro",		VD_OPT_RDONLY },
181 	{ "slice", 	VD_OPT_SLICE },
182 	{ "excl",	VD_OPT_EXCLUSIVE }
183 };
184 
185 /* Debugging macros */
186 #ifdef DEBUG
187 
188 static int	vd_msglevel = 0;
189 
190 #define	PR0 if (vd_msglevel > 0)	PRN
191 #define	PR1 if (vd_msglevel > 1)	PRN
192 #define	PR2 if (vd_msglevel > 2)	PRN
193 
194 #define	VD_DUMP_DRING_ELEM(elem)					\
195 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
196 	    elem->hdr.dstate,						\
197 	    elem->payload.operation,					\
198 	    elem->payload.status,					\
199 	    elem->payload.nbytes,					\
200 	    elem->payload.addr,						\
201 	    elem->payload.ncookies);
202 
203 char *
204 vd_decode_state(int state)
205 {
206 	char *str;
207 
208 #define	CASE_STATE(_s)	case _s: str = #_s; break;
209 
210 	switch (state) {
211 	CASE_STATE(VD_STATE_INIT)
212 	CASE_STATE(VD_STATE_VER)
213 	CASE_STATE(VD_STATE_ATTR)
214 	CASE_STATE(VD_STATE_DRING)
215 	CASE_STATE(VD_STATE_RDX)
216 	CASE_STATE(VD_STATE_DATA)
217 	default: str = "unknown"; break;
218 	}
219 
220 #undef CASE_STATE
221 
222 	return (str);
223 }
224 
225 void
226 vd_decode_tag(vio_msg_t *msg)
227 {
228 	char *tstr, *sstr, *estr;
229 
230 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
231 
232 	switch (msg->tag.vio_msgtype) {
233 	CASE_TYPE(VIO_TYPE_CTRL)
234 	CASE_TYPE(VIO_TYPE_DATA)
235 	CASE_TYPE(VIO_TYPE_ERR)
236 	default: tstr = "unknown"; break;
237 	}
238 
239 #undef CASE_TYPE
240 
241 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
242 
243 	switch (msg->tag.vio_subtype) {
244 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
245 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
246 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
247 	default: sstr = "unknown"; break;
248 	}
249 
250 #undef CASE_SUBTYPE
251 
252 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
253 
254 	switch (msg->tag.vio_subtype_env) {
255 	CASE_ENV(VIO_VER_INFO)
256 	CASE_ENV(VIO_ATTR_INFO)
257 	CASE_ENV(VIO_DRING_REG)
258 	CASE_ENV(VIO_DRING_UNREG)
259 	CASE_ENV(VIO_RDX)
260 	CASE_ENV(VIO_PKT_DATA)
261 	CASE_ENV(VIO_DESC_DATA)
262 	CASE_ENV(VIO_DRING_DATA)
263 	default: estr = "unknown"; break;
264 	}
265 
266 #undef CASE_ENV
267 
268 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
269 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
270 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
271 }
272 
273 #else	/* !DEBUG */
274 
275 #define	PR0(...)
276 #define	PR1(...)
277 #define	PR2(...)
278 
279 #define	VD_DUMP_DRING_ELEM(elem)
280 
281 #define	vd_decode_state(_s)	(NULL)
282 #define	vd_decode_tag(_s)	(NULL)
283 
284 #endif	/* DEBUG */
285 
286 
287 /*
288  * Soft state structure for a vds instance
289  */
290 typedef struct vds {
291 	uint_t		initialized;	/* driver inst initialization flags */
292 	dev_info_t	*dip;		/* driver inst devinfo pointer */
293 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
294 	mod_hash_t	*vd_table;	/* table of virtual disks served */
295 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
296 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
297 } vds_t;
298 
299 /*
300  * Types of descriptor-processing tasks
301  */
302 typedef enum vd_task_type {
303 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
304 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
305 } vd_task_type_t;
306 
307 /*
308  * Structure describing the task for processing a descriptor
309  */
310 typedef struct vd_task {
311 	struct vd		*vd;		/* vd instance task is for */
312 	vd_task_type_t		type;		/* type of descriptor task */
313 	int			index;		/* dring elem index for task */
314 	vio_msg_t		*msg;		/* VIO message task is for */
315 	size_t			msglen;		/* length of message content */
316 	vd_dring_payload_t	*request;	/* request task will perform */
317 	struct buf		buf;		/* buf(9s) for I/O request */
318 	ldc_mem_handle_t	mhdl;		/* task memory handle */
319 	int			status;		/* status of processing task */
320 	int	(*completef)(struct vd_task *task); /* completion func ptr */
321 } vd_task_t;
322 
323 /*
324  * Soft state structure for a virtual disk instance
325  */
326 typedef struct vd {
327 	uint_t			initialized;	/* vdisk initialization flags */
328 	vds_t			*vds;		/* server for this vdisk */
329 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
330 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
331 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
332 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
333 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
334 	int			open_flags;	/* open flags */
335 	uint_t			nslices;	/* number of slices */
336 	size_t			vdisk_size;	/* number of blocks in vdisk */
337 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
338 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
339 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
340 	boolean_t		pseudo;		/* underlying pseudo dev */
341 	boolean_t		file;		/* underlying file */
342 	vnode_t			*file_vnode;	/* file vnode */
343 	size_t			file_size;	/* file size */
344 	ddi_devid_t		file_devid;	/* devid for disk image */
345 	struct dk_efi		dk_efi;		/* synthetic for slice type */
346 	struct dk_geom		dk_geom;	/* synthetic for slice type */
347 	struct vtoc		vtoc;		/* synthetic for slice type */
348 	ldc_status_t		ldc_state;	/* LDC connection state */
349 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
350 	size_t			max_msglen;	/* largest LDC message len */
351 	vd_state_t		state;		/* client handshake state */
352 	uint8_t			xfer_mode;	/* transfer mode with client */
353 	uint32_t		sid;		/* client's session ID */
354 	uint64_t		seq_num;	/* message sequence number */
355 	uint64_t		dring_ident;	/* identifier of dring */
356 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
357 	uint32_t		descriptor_size;	/* num bytes in desc */
358 	uint32_t		dring_len;	/* number of dring elements */
359 	caddr_t			dring;		/* address of dring */
360 	caddr_t			vio_msgp;	/* vio msg staging buffer */
361 	vd_task_t		inband_task;	/* task for inband descriptor */
362 	vd_task_t		*dring_task;	/* tasks dring elements */
363 
364 	kmutex_t		lock;		/* protects variables below */
365 	boolean_t		enabled;	/* is vdisk enabled? */
366 	boolean_t		reset_state;	/* reset connection state? */
367 	boolean_t		reset_ldc;	/* reset LDC channel? */
368 } vd_t;
369 
370 typedef struct vds_operation {
371 	char	*namep;
372 	uint8_t	operation;
373 	int	(*start)(vd_task_t *task);
374 	int	(*complete)(vd_task_t *task);
375 } vds_operation_t;
376 
377 typedef struct vd_ioctl {
378 	uint8_t		operation;		/* vdisk operation */
379 	const char	*operation_name;	/* vdisk operation name */
380 	size_t		nbytes;			/* size of operation buffer */
381 	int		cmd;			/* corresponding ioctl cmd */
382 	const char	*cmd_name;		/* ioctl cmd name */
383 	void		*arg;			/* ioctl cmd argument */
384 	/* convert input vd_buf to output ioctl_arg */
385 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
386 	/* convert input ioctl_arg to output vd_buf */
387 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
388 	/* write is true if the operation writes any data to the backend */
389 	boolean_t	write;
390 } vd_ioctl_t;
391 
392 /* Define trivial copyin/copyout conversion function flag */
393 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
394 
395 
396 static int	vds_ldc_retries = VDS_RETRIES;
397 static int	vds_ldc_delay = VDS_LDC_DELAY;
398 static int	vds_dev_retries = VDS_RETRIES;
399 static int	vds_dev_delay = VDS_DEV_DELAY;
400 static void	*vds_state;
401 static uint64_t	vds_operations;	/* see vds_operation[] definition below */
402 
403 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
404 
405 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
406 
407 /*
408  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
409  *
410  * Each supported major version should appear only once, paired with (and only
411  * with) its highest supported minor version number (as the protocol requires
412  * supporting all lower minor version numbers as well)
413  */
414 static const vio_ver_t	vds_version[] = {{1, 0}};
415 static const size_t	vds_num_versions =
416     sizeof (vds_version)/sizeof (vds_version[0]);
417 
418 static void vd_free_dring_task(vd_t *vdp);
419 static int vd_setup_vd(vd_t *vd);
420 static int vd_setup_single_slice_disk(vd_t *vd);
421 static boolean_t vd_enabled(vd_t *vd);
422 static ushort_t vd_lbl2cksum(struct dk_label *label);
423 static int vd_file_validate_geometry(vd_t *vd);
424 
425 /*
426  * Function:
427  *	vd_file_rw
428  *
429  * Description:
430  * 	Read or write to a disk on file.
431  *
432  * Parameters:
433  *	vd		- disk on which the operation is performed.
434  *	slice		- slice on which the operation is performed,
435  *			  VD_SLICE_NONE indicates that the operation
436  *			  is done using an absolute disk offset.
437  *	operation	- operation to execute: read (VD_OP_BREAD) or
438  *			  write (VD_OP_BWRITE).
439  *	data		- buffer where data are read to or written from.
440  *	blk		- starting block for the operation.
441  *	len		- number of bytes to read or write.
442  *
443  * Return Code:
444  *	n >= 0		- success, n indicates the number of bytes read
445  *			  or written.
446  *	-1		- error.
447  */
448 static ssize_t
449 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
450     size_t len)
451 {
452 	caddr_t	maddr;
453 	size_t offset, maxlen, moffset, mlen, n;
454 	uint_t smflags;
455 	enum seg_rw srw;
456 
457 	ASSERT(vd->file);
458 	ASSERT(len > 0);
459 
460 	/*
461 	 * If a file is exported as a slice then we don't care about the vtoc.
462 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
463 	 * handle any I/O as a raw disk access so that we can have access to the
464 	 * entire backend.
465 	 */
466 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
467 		/* raw disk access */
468 		offset = blk * DEV_BSIZE;
469 	} else {
470 		ASSERT(slice >= 0 && slice < V_NUMPAR);
471 
472 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
473 		    vd_file_validate_geometry(vd) != 0) {
474 			PR0("Unknown disk label, can't do I/O from slice %d",
475 			    slice);
476 			return (-1);
477 		}
478 
479 		if (blk >= vd->vtoc.v_part[slice].p_size) {
480 			/* address past the end of the slice */
481 			PR0("req_addr (0x%lx) > psize (0x%lx)",
482 			    blk, vd->vtoc.v_part[slice].p_size);
483 			return (0);
484 		}
485 
486 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
487 
488 		/*
489 		 * If the requested size is greater than the size
490 		 * of the partition, truncate the read/write.
491 		 */
492 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
493 
494 		if (len > maxlen) {
495 			PR0("I/O size truncated to %lu bytes from %lu bytes",
496 			    maxlen, len);
497 			len = maxlen;
498 		}
499 	}
500 
501 	/*
502 	 * We have to ensure that we are reading/writing into the mmap
503 	 * range. If we have a partial disk image (e.g. an image of
504 	 * s0 instead s2) the system can try to access slices that
505 	 * are not included into the disk image.
506 	 */
507 	if ((offset + len) >= vd->file_size) {
508 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
509 		    "file_size (0x%lx)", offset, len, vd->file_size);
510 		return (-1);
511 	}
512 
513 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
514 	smflags = (operation == VD_OP_BREAD)? 0 :
515 	    (SM_WRITE | vd_file_write_flags);
516 	n = len;
517 
518 	do {
519 		/*
520 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
521 		 * MAXBSIZE aligned.
522 		 */
523 		moffset = offset & MAXBOFFSET;
524 		mlen = MIN(MAXBSIZE - moffset, n);
525 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
526 		    mlen, 1, srw);
527 		/*
528 		 * Fault in the pages so we can check for error and ensure
529 		 * that we can safely used the mapped address.
530 		 */
531 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
532 		    F_SOFTLOCK, srw) != 0) {
533 			(void) segmap_release(segkmap, maddr, 0);
534 			return (-1);
535 		}
536 
537 		if (operation == VD_OP_BREAD)
538 			bcopy(maddr + moffset, data, mlen);
539 		else
540 			bcopy(data, maddr + moffset, mlen);
541 
542 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
543 		    F_SOFTUNLOCK, srw) != 0) {
544 			(void) segmap_release(segkmap, maddr, 0);
545 			return (-1);
546 		}
547 		if (segmap_release(segkmap, maddr, smflags) != 0)
548 			return (-1);
549 		n -= mlen;
550 		offset += mlen;
551 		data += mlen;
552 
553 	} while (n > 0);
554 
555 	return (len);
556 }
557 
558 /*
559  * Function:
560  *	vd_file_build_default_label
561  *
562  * Description:
563  *	Return a default label for the given disk. This is used when the disk
564  *	does not have a valid VTOC so that the user can get a valid default
565  *	configuration. The default label have all slices size set to 0 (except
566  *	slice 2 which is the entire disk) to force the user to write a valid
567  *	label onto the disk image.
568  *
569  * Parameters:
570  *	vd		- disk on which the operation is performed.
571  *	label		- the returned default label.
572  *
573  * Return Code:
574  *	none.
575  */
576 static void
577 vd_file_build_default_label(vd_t *vd, struct dk_label *label)
578 {
579 	size_t size;
580 	char prefix;
581 	int slice, nparts;
582 	uint16_t tag;
583 
584 	ASSERT(vd->file);
585 
586 	/*
587 	 * We must have a resonable number of cylinders and sectors so
588 	 * that newfs can run using default values.
589 	 *
590 	 * if (disk_size < 2MB)
591 	 * 	phys_cylinders = disk_size / 100K
592 	 * else
593 	 * 	phys_cylinders = disk_size / 300K
594 	 *
595 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
596 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
597 	 * data_cylinders = phys_cylinders - alt_cylinders
598 	 *
599 	 * sectors = disk_size / (phys_cylinders * blk_size)
600 	 *
601 	 * The file size test is an attempt to not have too few cylinders
602 	 * for a small file, or so many on a big file that you waste space
603 	 * for backup superblocks or cylinder group structures.
604 	 */
605 	if (vd->file_size < (2 * 1024 * 1024))
606 		label->dkl_pcyl = vd->file_size / (100 * 1024);
607 	else
608 		label->dkl_pcyl = vd->file_size / (300 * 1024);
609 
610 	if (label->dkl_pcyl == 0)
611 		label->dkl_pcyl = 1;
612 
613 	label->dkl_acyl = 0;
614 
615 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
616 		nparts = 1;
617 		slice = 0;
618 		tag = V_UNASSIGNED;
619 	} else {
620 		if (label->dkl_pcyl > 2)
621 			label->dkl_acyl = 2;
622 		nparts = V_NUMPAR;
623 		slice = VD_ENTIRE_DISK_SLICE;
624 		tag = V_BACKUP;
625 	}
626 
627 	label->dkl_nsect = vd->file_size /
628 	    (DEV_BSIZE * label->dkl_pcyl);
629 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
630 	label->dkl_nhead = 1;
631 	label->dkl_write_reinstruct = 0;
632 	label->dkl_read_reinstruct = 0;
633 	label->dkl_rpm = 7200;
634 	label->dkl_apc = 0;
635 	label->dkl_intrlv = 0;
636 
637 	PR0("requested disk size: %ld bytes\n", vd->file_size);
638 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
639 	    label->dkl_nhead, label->dkl_nsect);
640 	PR0("provided disk size: %ld bytes\n", (uint64_t)
641 	    (label->dkl_pcyl * label->dkl_nhead *
642 	    label->dkl_nsect * DEV_BSIZE));
643 
644 	if (vd->file_size < (1ULL << 20)) {
645 		size = vd->file_size >> 10;
646 		prefix = 'K'; /* Kilobyte */
647 	} else if (vd->file_size < (1ULL << 30)) {
648 		size = vd->file_size >> 20;
649 		prefix = 'M'; /* Megabyte */
650 	} else if (vd->file_size < (1ULL << 40)) {
651 		size = vd->file_size >> 30;
652 		prefix = 'G'; /* Gigabyte */
653 	} else {
654 		size = vd->file_size >> 40;
655 		prefix = 'T'; /* Terabyte */
656 	}
657 
658 	/*
659 	 * We must have a correct label name otherwise format(1m) will
660 	 * not recognized the disk as labeled.
661 	 */
662 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
663 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
664 	    size, prefix,
665 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
666 	    label->dkl_nsect);
667 
668 	/* default VTOC */
669 	label->dkl_vtoc.v_version = V_VERSION;
670 	label->dkl_vtoc.v_nparts = nparts;
671 	label->dkl_vtoc.v_sanity = VTOC_SANE;
672 	label->dkl_vtoc.v_part[slice].p_tag = tag;
673 	label->dkl_map[slice].dkl_cylno = 0;
674 	label->dkl_map[slice].dkl_nblk = label->dkl_ncyl *
675 	    label->dkl_nhead * label->dkl_nsect;
676 	label->dkl_cksum = vd_lbl2cksum(label);
677 }
678 
679 /*
680  * Function:
681  *	vd_file_set_vtoc
682  *
683  * Description:
684  *	Set the vtoc of a disk image by writing the label and backup
685  *	labels into the disk image backend.
686  *
687  * Parameters:
688  *	vd		- disk on which the operation is performed.
689  *	label		- the data to be written.
690  *
691  * Return Code:
692  *	0		- success.
693  *	n > 0		- error, n indicates the errno code.
694  */
695 static int
696 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
697 {
698 	int blk, sec, cyl, head, cnt;
699 
700 	ASSERT(vd->file);
701 
702 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
703 		PR0("fail to write disk label");
704 		return (EIO);
705 	}
706 
707 	/*
708 	 * Backup labels are on the last alternate cylinder's
709 	 * first five odd sectors.
710 	 */
711 	if (label->dkl_acyl == 0) {
712 		PR0("no alternate cylinder, can not store backup labels");
713 		return (0);
714 	}
715 
716 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
717 	head = label->dkl_nhead - 1;
718 
719 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
720 	    (head * label->dkl_nsect);
721 
722 	/*
723 	 * Write the backup labels. Make sure we don't try to write past
724 	 * the last cylinder.
725 	 */
726 	sec = 1;
727 
728 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
729 
730 		if (sec >= label->dkl_nsect) {
731 			PR0("not enough sector to store all backup labels");
732 			return (0);
733 		}
734 
735 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
736 		    blk + sec, sizeof (struct dk_label)) < 0) {
737 			PR0("error writing backup label at block %d\n",
738 			    blk + sec);
739 			return (EIO);
740 		}
741 
742 		PR1("wrote backup label at block %d\n", blk + sec);
743 
744 		sec += 2;
745 	}
746 
747 	return (0);
748 }
749 
750 /*
751  * Function:
752  *	vd_file_get_devid_block
753  *
754  * Description:
755  *	Return the block number where the device id is stored.
756  *
757  * Parameters:
758  *	vd		- disk on which the operation is performed.
759  *	blkp		- pointer to the block number
760  *
761  * Return Code:
762  *	0		- success
763  *	ENOSPC		- disk has no space to store a device id
764  */
765 static int
766 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
767 {
768 	diskaddr_t spc, head, cyl;
769 
770 	ASSERT(vd->file);
771 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
772 
773 	/* this geometry doesn't allow us to have a devid */
774 	if (vd->dk_geom.dkg_acyl < 2) {
775 		PR0("not enough alternate cylinder available for devid "
776 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
777 		return (ENOSPC);
778 	}
779 
780 	/* the devid is in on the track next to the last cylinder */
781 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
782 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
783 	head = vd->dk_geom.dkg_nhead - 1;
784 
785 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
786 	    (head * vd->dk_geom.dkg_nsect) + 1;
787 
788 	return (0);
789 }
790 
791 /*
792  * Return the checksum of a disk block containing an on-disk devid.
793  */
794 static uint_t
795 vd_dkdevid2cksum(struct dk_devid *dkdevid)
796 {
797 	uint_t chksum, *ip;
798 	int i;
799 
800 	chksum = 0;
801 	ip = (uint_t *)dkdevid;
802 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
803 		chksum ^= ip[i];
804 
805 	return (chksum);
806 }
807 
808 /*
809  * Function:
810  *	vd_file_read_devid
811  *
812  * Description:
813  *	Read the device id stored on a disk image.
814  *
815  * Parameters:
816  *	vd		- disk on which the operation is performed.
817  *	devid		- the return address of the device ID.
818  *
819  * Return Code:
820  *	0		- success
821  *	EIO		- I/O error while trying to access the disk image
822  *	EINVAL		- no valid device id was found
823  *	ENOSPC		- disk has no space to store a device id
824  */
825 static int
826 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
827 {
828 	struct dk_devid *dkdevid;
829 	size_t blk;
830 	uint_t chksum;
831 	int status, sz;
832 
833 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
834 		return (status);
835 
836 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
837 
838 	/* get the devid */
839 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
840 	    DEV_BSIZE)) < 0) {
841 		PR0("error reading devid block at %lu", blk);
842 		status = EIO;
843 		goto done;
844 	}
845 
846 	/* validate the revision */
847 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
848 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
849 		PR0("invalid devid found at block %lu (bad revision)", blk);
850 		status = EINVAL;
851 		goto done;
852 	}
853 
854 	/* compute checksum */
855 	chksum = vd_dkdevid2cksum(dkdevid);
856 
857 	/* compare the checksums */
858 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
859 		PR0("invalid devid found at block %lu (bad checksum)", blk);
860 		status = EINVAL;
861 		goto done;
862 	}
863 
864 	/* validate the device id */
865 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
866 		PR0("invalid devid found at block %lu", blk);
867 		status = EINVAL;
868 		goto done;
869 	}
870 
871 	PR1("devid read at block %lu", blk);
872 
873 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
874 	*devid = kmem_alloc(sz, KM_SLEEP);
875 	bcopy(&dkdevid->dkd_devid, *devid, sz);
876 
877 done:
878 	kmem_free(dkdevid, DEV_BSIZE);
879 	return (status);
880 
881 }
882 
883 /*
884  * Function:
885  *	vd_file_write_devid
886  *
887  * Description:
888  *	Write a device id into disk image.
889  *
890  * Parameters:
891  *	vd		- disk on which the operation is performed.
892  *	devid		- the device ID to store.
893  *
894  * Return Code:
895  *	0		- success
896  *	EIO		- I/O error while trying to access the disk image
897  *	ENOSPC		- disk has no space to store a device id
898  */
899 static int
900 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
901 {
902 	struct dk_devid *dkdevid;
903 	uint_t chksum;
904 	size_t blk;
905 	int status;
906 
907 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
908 		return (status);
909 
910 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
911 
912 	/* set revision */
913 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
914 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
915 
916 	/* copy devid */
917 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
918 
919 	/* compute checksum */
920 	chksum = vd_dkdevid2cksum(dkdevid);
921 
922 	/* set checksum */
923 	DKD_FORMCHKSUM(chksum, dkdevid);
924 
925 	/* store the devid */
926 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
927 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
928 		PR0("Error writing devid block at %lu", blk);
929 		status = EIO;
930 	} else {
931 		PR1("devid written at block %lu", blk);
932 		status = 0;
933 	}
934 
935 	kmem_free(dkdevid, DEV_BSIZE);
936 	return (status);
937 }
938 
939 /*
940  * Function:
941  *	vd_scsi_rdwr
942  *
943  * Description:
944  * 	Read or write to a SCSI disk using an absolute disk offset.
945  *
946  * Parameters:
947  *	vd		- disk on which the operation is performed.
948  *	operation	- operation to execute: read (VD_OP_BREAD) or
949  *			  write (VD_OP_BWRITE).
950  *	data		- buffer where data are read to or written from.
951  *	blk		- starting block for the operation.
952  *	len		- number of bytes to read or write.
953  *
954  * Return Code:
955  *	0		- success
956  *	n != 0		- error.
957  */
958 static int
959 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
960 {
961 	struct uscsi_cmd ucmd;
962 	union scsi_cdb cdb;
963 	int nsectors, nblk;
964 	int max_sectors;
965 	int status, rval;
966 
967 	ASSERT(!vd->file);
968 
969 	max_sectors = vd->max_xfer_sz;
970 	nblk = (len / DEV_BSIZE);
971 
972 	if (len % DEV_BSIZE != 0)
973 		return (EINVAL);
974 
975 	/*
976 	 * Build and execute the uscsi ioctl.  We build a group0, group1
977 	 * or group4 command as necessary, since some targets
978 	 * do not support group1 commands.
979 	 */
980 	while (nblk) {
981 
982 		bzero(&ucmd, sizeof (ucmd));
983 		bzero(&cdb, sizeof (cdb));
984 
985 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
986 
987 		if (blk < (2 << 20) && nsectors <= 0xff) {
988 			FORMG0ADDR(&cdb, blk);
989 			FORMG0COUNT(&cdb, nsectors);
990 			ucmd.uscsi_cdblen = CDB_GROUP0;
991 		} else if (blk > 0xffffffff) {
992 			FORMG4LONGADDR(&cdb, blk);
993 			FORMG4COUNT(&cdb, nsectors);
994 			ucmd.uscsi_cdblen = CDB_GROUP4;
995 			cdb.scc_cmd |= SCMD_GROUP4;
996 		} else {
997 			FORMG1ADDR(&cdb, blk);
998 			FORMG1COUNT(&cdb, nsectors);
999 			ucmd.uscsi_cdblen = CDB_GROUP1;
1000 			cdb.scc_cmd |= SCMD_GROUP1;
1001 		}
1002 
1003 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1004 		ucmd.uscsi_bufaddr = data;
1005 		ucmd.uscsi_buflen = nsectors * DEV_BSIZE;
1006 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1007 		/*
1008 		 * Set flags so that the command is isolated from normal
1009 		 * commands and no error message is printed.
1010 		 */
1011 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1012 
1013 		if (operation == VD_OP_BREAD) {
1014 			cdb.scc_cmd |= SCMD_READ;
1015 			ucmd.uscsi_flags |= USCSI_READ;
1016 		} else {
1017 			cdb.scc_cmd |= SCMD_WRITE;
1018 		}
1019 
1020 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1021 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1022 		    kcred, &rval);
1023 
1024 		if (status == 0)
1025 			status = ucmd.uscsi_status;
1026 
1027 		if (status != 0)
1028 			break;
1029 
1030 		/*
1031 		 * Check if partial DMA breakup is required. If so, reduce
1032 		 * the request size by half and retry the last request.
1033 		 */
1034 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1035 			max_sectors >>= 1;
1036 			if (max_sectors <= 0) {
1037 				status = EIO;
1038 				break;
1039 			}
1040 			continue;
1041 		}
1042 
1043 		if (ucmd.uscsi_resid != 0) {
1044 			status = EIO;
1045 			break;
1046 		}
1047 
1048 		blk += nsectors;
1049 		nblk -= nsectors;
1050 		data += nsectors * DEV_BSIZE; /* SECSIZE */
1051 	}
1052 
1053 	return (status);
1054 }
1055 
1056 /*
1057  * Return Values
1058  *	EINPROGRESS	- operation was successfully started
1059  *	EIO		- encountered LDC (aka. task error)
1060  *	0		- operation completed successfully
1061  *
1062  * Side Effect
1063  *     sets request->status = <disk operation status>
1064  */
1065 static int
1066 vd_start_bio(vd_task_t *task)
1067 {
1068 	int			rv, status = 0;
1069 	vd_t			*vd		= task->vd;
1070 	vd_dring_payload_t	*request	= task->request;
1071 	struct buf		*buf		= &task->buf;
1072 	uint8_t			mtype;
1073 	int 			slice;
1074 	char			*bufaddr = 0;
1075 	size_t			buflen;
1076 
1077 	ASSERT(vd != NULL);
1078 	ASSERT(request != NULL);
1079 
1080 	slice = request->slice;
1081 
1082 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1083 	ASSERT((request->operation == VD_OP_BREAD) ||
1084 	    (request->operation == VD_OP_BWRITE));
1085 
1086 	if (request->nbytes == 0) {
1087 		/* no service for trivial requests */
1088 		request->status = EINVAL;
1089 		return (0);
1090 	}
1091 
1092 	PR1("%s %lu bytes at block %lu",
1093 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1094 	    request->nbytes, request->addr);
1095 
1096 	/*
1097 	 * We have to check the open flags because the functions processing
1098 	 * the read/write request will not do it.
1099 	 */
1100 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1101 		PR0("write fails because backend is opened read-only");
1102 		request->nbytes = 0;
1103 		request->status = EROFS;
1104 		return (0);
1105 	}
1106 
1107 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1108 
1109 	/* Map memory exported by client */
1110 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1111 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1112 	    &bufaddr, NULL);
1113 	if (status != 0) {
1114 		PR0("ldc_mem_map() returned err %d ", status);
1115 		return (EIO);
1116 	}
1117 
1118 	buflen = request->nbytes;
1119 
1120 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1121 	if (status != 0) {
1122 		(void) ldc_mem_unmap(task->mhdl);
1123 		PR0("ldc_mem_acquire() returned err %d ", status);
1124 		return (EIO);
1125 	}
1126 
1127 	/* Start the block I/O */
1128 	if (vd->file) {
1129 		rv = vd_file_rw(vd, slice, request->operation, bufaddr,
1130 		    request->addr, request->nbytes);
1131 		if (rv < 0) {
1132 			request->nbytes = 0;
1133 			request->status = EIO;
1134 		} else {
1135 			request->nbytes = rv;
1136 			request->status = 0;
1137 		}
1138 	} else {
1139 		if (slice == VD_SLICE_NONE) {
1140 			/*
1141 			 * This is not a disk image so it is a real disk. We
1142 			 * assume that the underlying device driver supports
1143 			 * USCSICMD ioctls. This is the case of all SCSI devices
1144 			 * (sd, ssd...).
1145 			 *
1146 			 * In the future if we have non-SCSI disks we would need
1147 			 * to invoke the appropriate function to do I/O using an
1148 			 * absolute disk offset (for example using DKIOCTL_RWCMD
1149 			 * for IDE disks).
1150 			 */
1151 			rv = vd_scsi_rdwr(vd, request->operation, bufaddr,
1152 			    request->addr, request->nbytes);
1153 			if (rv != 0) {
1154 				request->nbytes = 0;
1155 				request->status = EIO;
1156 			} else {
1157 				request->status = 0;
1158 			}
1159 		} else {
1160 			bioinit(buf);
1161 			buf->b_flags	= B_BUSY;
1162 			buf->b_bcount	= request->nbytes;
1163 			buf->b_lblkno	= request->addr;
1164 			buf->b_edev 	= vd->dev[slice];
1165 			buf->b_un.b_addr = bufaddr;
1166 			buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1167 			    B_READ : B_WRITE;
1168 
1169 			request->status =
1170 			    ldi_strategy(vd->ldi_handle[slice], buf);
1171 
1172 			/*
1173 			 * This is to indicate to the caller that the request
1174 			 * needs to be finished by vd_complete_bio() by calling
1175 			 * biowait() there and waiting for that to return before
1176 			 * triggering the notification of the vDisk client.
1177 			 *
1178 			 * This is necessary when writing to real disks as
1179 			 * otherwise calls to ldi_strategy() would be serialized
1180 			 * behind the calls to biowait() and performance would
1181 			 * suffer.
1182 			 */
1183 			if (request->status == 0)
1184 				return (EINPROGRESS);
1185 
1186 			biofini(buf);
1187 		}
1188 	}
1189 
1190 	/* Clean up after error */
1191 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1192 	if (rv) {
1193 		PR0("ldc_mem_release() returned err %d ", rv);
1194 		status = EIO;
1195 	}
1196 	rv = ldc_mem_unmap(task->mhdl);
1197 	if (rv) {
1198 		PR0("ldc_mem_unmap() returned err %d ", rv);
1199 		status = EIO;
1200 	}
1201 
1202 	return (status);
1203 }
1204 
1205 /*
1206  * This function should only be called from vd_notify to ensure that requests
1207  * are responded to in the order that they are received.
1208  */
1209 static int
1210 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1211 {
1212 	int	status;
1213 	size_t	nbytes;
1214 
1215 	do {
1216 		nbytes = msglen;
1217 		status = ldc_write(ldc_handle, msg, &nbytes);
1218 		if (status != EWOULDBLOCK)
1219 			break;
1220 		drv_usecwait(vds_ldc_delay);
1221 	} while (status == EWOULDBLOCK);
1222 
1223 	if (status != 0) {
1224 		if (status != ECONNRESET)
1225 			PR0("ldc_write() returned errno %d", status);
1226 		return (status);
1227 	} else if (nbytes != msglen) {
1228 		PR0("ldc_write() performed only partial write");
1229 		return (EIO);
1230 	}
1231 
1232 	PR1("SENT %lu bytes", msglen);
1233 	return (0);
1234 }
1235 
1236 static void
1237 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1238 {
1239 	mutex_enter(&vd->lock);
1240 	vd->reset_state	= B_TRUE;
1241 	vd->reset_ldc	= reset_ldc;
1242 	mutex_exit(&vd->lock);
1243 }
1244 
1245 /*
1246  * Reset the state of the connection with a client, if needed; reset the LDC
1247  * transport as well, if needed.  This function should only be called from the
1248  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1249  */
1250 static void
1251 vd_reset_if_needed(vd_t *vd)
1252 {
1253 	int	status = 0;
1254 
1255 	mutex_enter(&vd->lock);
1256 	if (!vd->reset_state) {
1257 		ASSERT(!vd->reset_ldc);
1258 		mutex_exit(&vd->lock);
1259 		return;
1260 	}
1261 	mutex_exit(&vd->lock);
1262 
1263 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1264 
1265 	/*
1266 	 * Let any asynchronous I/O complete before possibly pulling the rug
1267 	 * out from under it; defer checking vd->reset_ldc, as one of the
1268 	 * asynchronous tasks might set it
1269 	 */
1270 	ddi_taskq_wait(vd->completionq);
1271 
1272 	if (vd->file) {
1273 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred);
1274 		if (status) {
1275 			PR0("VOP_FSYNC returned errno %d", status);
1276 		}
1277 	}
1278 
1279 	if ((vd->initialized & VD_DRING) &&
1280 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1281 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1282 
1283 	vd_free_dring_task(vd);
1284 
1285 	/* Free the staging buffer for msgs */
1286 	if (vd->vio_msgp != NULL) {
1287 		kmem_free(vd->vio_msgp, vd->max_msglen);
1288 		vd->vio_msgp = NULL;
1289 	}
1290 
1291 	/* Free the inband message buffer */
1292 	if (vd->inband_task.msg != NULL) {
1293 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1294 		vd->inband_task.msg = NULL;
1295 	}
1296 
1297 	mutex_enter(&vd->lock);
1298 
1299 	if (vd->reset_ldc)
1300 		PR0("taking down LDC channel");
1301 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1302 		PR0("ldc_down() returned errno %d", status);
1303 
1304 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1305 	vd->state	= VD_STATE_INIT;
1306 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1307 
1308 	/* Allocate the staging buffer */
1309 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1310 
1311 	PR0("calling ldc_up\n");
1312 	(void) ldc_up(vd->ldc_handle);
1313 
1314 	vd->reset_state	= B_FALSE;
1315 	vd->reset_ldc	= B_FALSE;
1316 
1317 	mutex_exit(&vd->lock);
1318 }
1319 
1320 static void vd_recv_msg(void *arg);
1321 
1322 static void
1323 vd_mark_in_reset(vd_t *vd)
1324 {
1325 	int status;
1326 
1327 	PR0("vd_mark_in_reset: marking vd in reset\n");
1328 
1329 	vd_need_reset(vd, B_FALSE);
1330 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1331 	if (status == DDI_FAILURE) {
1332 		PR0("cannot schedule task to recv msg\n");
1333 		vd_need_reset(vd, B_TRUE);
1334 		return;
1335 	}
1336 }
1337 
1338 static int
1339 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1340 {
1341 	boolean_t		accepted;
1342 	int			status;
1343 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1344 
1345 	if (vd->reset_state)
1346 		return (0);
1347 
1348 	/* Acquire the element */
1349 	if (!vd->reset_state &&
1350 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1351 		if (status == ECONNRESET) {
1352 			vd_mark_in_reset(vd);
1353 			return (0);
1354 		} else {
1355 			PR0("ldc_mem_dring_acquire() returned errno %d",
1356 			    status);
1357 			return (status);
1358 		}
1359 	}
1360 
1361 	/* Set the element's status and mark it done */
1362 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1363 	if (accepted) {
1364 		elem->payload.nbytes	= elem_nbytes;
1365 		elem->payload.status	= elem_status;
1366 		elem->hdr.dstate	= VIO_DESC_DONE;
1367 	} else {
1368 		/* Perhaps client timed out waiting for I/O... */
1369 		PR0("element %u no longer \"accepted\"", idx);
1370 		VD_DUMP_DRING_ELEM(elem);
1371 	}
1372 	/* Release the element */
1373 	if (!vd->reset_state &&
1374 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1375 		if (status == ECONNRESET) {
1376 			vd_mark_in_reset(vd);
1377 			return (0);
1378 		} else {
1379 			PR0("ldc_mem_dring_release() returned errno %d",
1380 			    status);
1381 			return (status);
1382 		}
1383 	}
1384 
1385 	return (accepted ? 0 : EINVAL);
1386 }
1387 
1388 /*
1389  * Return Values
1390  *	0	- operation completed successfully
1391  *	EIO	- encountered LDC / task error
1392  *
1393  * Side Effect
1394  *	sets request->status = <disk operation status>
1395  */
1396 static int
1397 vd_complete_bio(vd_task_t *task)
1398 {
1399 	int			status		= 0;
1400 	int			rv		= 0;
1401 	vd_t			*vd		= task->vd;
1402 	vd_dring_payload_t	*request	= task->request;
1403 	struct buf		*buf		= &task->buf;
1404 
1405 
1406 	ASSERT(vd != NULL);
1407 	ASSERT(request != NULL);
1408 	ASSERT(task->msg != NULL);
1409 	ASSERT(task->msglen >= sizeof (*task->msg));
1410 	ASSERT(!vd->file);
1411 	ASSERT(request->slice != VD_SLICE_NONE);
1412 
1413 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
1414 	request->status = biowait(buf);
1415 
1416 	/* return back the number of bytes read/written */
1417 	request->nbytes = buf->b_bcount - buf->b_resid;
1418 
1419 	/* Release the buffer */
1420 	if (!vd->reset_state)
1421 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1422 	if (status) {
1423 		PR0("ldc_mem_release() returned errno %d copying to "
1424 		    "client", status);
1425 		if (status == ECONNRESET) {
1426 			vd_mark_in_reset(vd);
1427 		}
1428 		rv = EIO;
1429 	}
1430 
1431 	/* Unmap the memory, even if in reset */
1432 	status = ldc_mem_unmap(task->mhdl);
1433 	if (status) {
1434 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1435 		    status);
1436 		if (status == ECONNRESET) {
1437 			vd_mark_in_reset(vd);
1438 		}
1439 		rv = EIO;
1440 	}
1441 
1442 	biofini(buf);
1443 
1444 	return (rv);
1445 }
1446 
1447 /*
1448  * Description:
1449  *	This function is called by the two functions called by a taskq
1450  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
1451  *	message to the client.
1452  *
1453  * Parameters:
1454  *	arg 	- opaque pointer to structure containing task to be completed
1455  *
1456  * Return Values
1457  *	None
1458  */
1459 static void
1460 vd_notify(vd_task_t *task)
1461 {
1462 	int	status;
1463 
1464 	ASSERT(task != NULL);
1465 	ASSERT(task->vd != NULL);
1466 
1467 	if (task->vd->reset_state)
1468 		return;
1469 
1470 	/*
1471 	 * Send the "ack" or "nack" back to the client; if sending the message
1472 	 * via LDC fails, arrange to reset both the connection state and LDC
1473 	 * itself
1474 	 */
1475 	PR2("Sending %s",
1476 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1477 
1478 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
1479 	switch (status) {
1480 	case 0:
1481 		break;
1482 	case ECONNRESET:
1483 		vd_mark_in_reset(task->vd);
1484 		break;
1485 	default:
1486 		PR0("initiating full reset");
1487 		vd_need_reset(task->vd, B_TRUE);
1488 		break;
1489 	}
1490 
1491 	DTRACE_PROBE1(task__end, vd_task_t *, task);
1492 }
1493 
1494 /*
1495  * Description:
1496  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
1497  *	the vDisk client
1498  *
1499  * Parameters:
1500  *	task 		- structure containing the request sent from client
1501  *
1502  * Return Values
1503  *	None
1504  */
1505 static void
1506 vd_complete_notify(vd_task_t *task)
1507 {
1508 	int			status		= 0;
1509 	vd_t			*vd		= task->vd;
1510 	vd_dring_payload_t	*request	= task->request;
1511 
1512 	/* Update the dring element for a dring client */
1513 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
1514 		status = vd_mark_elem_done(vd, task->index,
1515 		    request->status, request->nbytes);
1516 		if (status == ECONNRESET)
1517 			vd_mark_in_reset(vd);
1518 	}
1519 
1520 	/*
1521 	 * If a transport error occurred while marking the element done or
1522 	 * previously while executing the task, arrange to "nack" the message
1523 	 * when the final task in the descriptor element range completes
1524 	 */
1525 	if ((status != 0) || (task->status != 0))
1526 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1527 
1528 	/*
1529 	 * Only the final task for a range of elements will respond to and
1530 	 * free the message
1531 	 */
1532 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1533 		return;
1534 	}
1535 
1536 	vd_notify(task);
1537 }
1538 
1539 /*
1540  * Description:
1541  *	This is the basic completion function called to handle inband data
1542  *	requests and handshake messages. All it needs to do is trigger a
1543  *	message to the client that the request is completed.
1544  *
1545  * Parameters:
1546  *	arg 	- opaque pointer to structure containing task to be completed
1547  *
1548  * Return Values
1549  *	None
1550  */
1551 static void
1552 vd_serial_notify(void *arg)
1553 {
1554 	vd_task_t		*task = (vd_task_t *)arg;
1555 
1556 	ASSERT(task != NULL);
1557 	vd_notify(task);
1558 }
1559 
1560 static void
1561 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
1562 {
1563 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1564 }
1565 
1566 static void
1567 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
1568 {
1569 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1570 }
1571 
1572 static void
1573 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1574 {
1575 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1576 }
1577 
1578 static void
1579 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1580 {
1581 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1582 }
1583 
1584 static void
1585 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
1586 {
1587 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1588 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1589 
1590 	dk_efi->dki_lba = vd_efi->lba;
1591 	dk_efi->dki_length = vd_efi->length;
1592 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1593 }
1594 
1595 static void
1596 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1597 {
1598 	int len;
1599 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1600 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1601 
1602 	len = vd_efi->length;
1603 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1604 	kmem_free(dk_efi->dki_data, len);
1605 }
1606 
1607 static void
1608 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
1609 {
1610 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1611 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1612 
1613 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1614 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1615 }
1616 
1617 static void
1618 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1619 {
1620 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1621 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1622 
1623 	kmem_free(dk_efi->dki_data, vd_efi->length);
1624 }
1625 
1626 static vd_disk_label_t
1627 vd_read_vtoc(vd_t *vd, struct vtoc *vtoc)
1628 {
1629 	int status, rval;
1630 	struct dk_gpt *efi;
1631 	size_t efi_len;
1632 
1633 	ASSERT(vd->ldi_handle[0] != NULL);
1634 
1635 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, (intptr_t)vtoc,
1636 	    (vd->open_flags | FKIOCTL), kcred, &rval);
1637 
1638 	if (status == 0) {
1639 		return (VD_DISK_LABEL_VTOC);
1640 	} else if (status != ENOTSUP) {
1641 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
1642 		return (VD_DISK_LABEL_UNK);
1643 	}
1644 
1645 	status = vds_efi_alloc_and_read(vd->ldi_handle[0], &efi, &efi_len);
1646 
1647 	if (status) {
1648 		PR0("vds_efi_alloc_and_read returned error %d", status);
1649 		return (VD_DISK_LABEL_UNK);
1650 	}
1651 
1652 	vd_efi_to_vtoc(efi, vtoc);
1653 	vd_efi_free(efi, efi_len);
1654 
1655 	return (VD_DISK_LABEL_EFI);
1656 }
1657 
1658 static ushort_t
1659 vd_lbl2cksum(struct dk_label *label)
1660 {
1661 	int	count;
1662 	ushort_t sum, *sp;
1663 
1664 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
1665 	sp = (ushort_t *)label;
1666 	sum = 0;
1667 	while (count--) {
1668 		sum ^= *sp++;
1669 	}
1670 
1671 	return (sum);
1672 }
1673 
1674 /*
1675  * Handle ioctls to a disk slice.
1676  *
1677  * Return Values
1678  *	0	- Indicates that there are no errors in disk operations
1679  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
1680  *	EINVAL	- Not enough room to copy the EFI label
1681  *
1682  */
1683 static int
1684 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1685 {
1686 	dk_efi_t *dk_ioc;
1687 
1688 	switch (vd->vdisk_label) {
1689 
1690 	/* ioctls for a slice from a disk with a VTOC label */
1691 	case VD_DISK_LABEL_VTOC:
1692 
1693 		switch (cmd) {
1694 		case DKIOCGGEOM:
1695 			ASSERT(ioctl_arg != NULL);
1696 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
1697 			return (0);
1698 		case DKIOCGVTOC:
1699 			ASSERT(ioctl_arg != NULL);
1700 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
1701 			return (0);
1702 		default:
1703 			return (ENOTSUP);
1704 		}
1705 
1706 	/* ioctls for a slice from a disk with an EFI label */
1707 	case VD_DISK_LABEL_EFI:
1708 
1709 		switch (cmd) {
1710 		case DKIOCGETEFI:
1711 			ASSERT(ioctl_arg != NULL);
1712 			dk_ioc = (dk_efi_t *)ioctl_arg;
1713 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1714 				return (EINVAL);
1715 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1716 			    vd->dk_efi.dki_length);
1717 			return (0);
1718 		default:
1719 			return (ENOTSUP);
1720 		}
1721 
1722 	default:
1723 		/* Unknown disk label type */
1724 		return (ENOTSUP);
1725 	}
1726 }
1727 
1728 /*
1729  * Function:
1730  *	vd_file_validate_geometry
1731  *
1732  * Description:
1733  *	Read the label and validate the geometry of a disk image. The driver
1734  *	label, vtoc and geometry information are updated according to the
1735  *	label read from the disk image.
1736  *
1737  *	If no valid label is found, the label is set to unknown and the
1738  *	function returns EINVAL, but a default vtoc and geometry are provided
1739  *	to the driver.
1740  *
1741  * Parameters:
1742  *	vd	- disk on which the operation is performed.
1743  *
1744  * Return Code:
1745  *	0	- success.
1746  *	EIO	- error reading the label from the disk image.
1747  *	EINVAL	- unknown disk label.
1748  */
1749 static int
1750 vd_file_validate_geometry(vd_t *vd)
1751 {
1752 	struct dk_label label;
1753 	struct dk_geom *geom = &vd->dk_geom;
1754 	struct vtoc *vtoc = &vd->vtoc;
1755 	int i;
1756 	int status = 0;
1757 
1758 	ASSERT(vd->file);
1759 
1760 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
1761 		/*
1762 		 * For single slice disk we always fake the geometry, and we
1763 		 * only need to do it once because the geometry will never
1764 		 * change.
1765 		 */
1766 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC)
1767 			/* geometry was already validated */
1768 			return (0);
1769 
1770 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_UNK);
1771 		vd_file_build_default_label(vd, &label);
1772 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
1773 	} else {
1774 		if (VD_FILE_LABEL_READ(vd, &label) < 0)
1775 			return (EIO);
1776 
1777 		if (label.dkl_magic != DKL_MAGIC ||
1778 		    label.dkl_cksum != vd_lbl2cksum(&label) ||
1779 		    label.dkl_vtoc.v_sanity != VTOC_SANE ||
1780 		    label.dkl_vtoc.v_nparts != V_NUMPAR) {
1781 			vd->vdisk_label = VD_DISK_LABEL_UNK;
1782 			vd_file_build_default_label(vd, &label);
1783 			status = EINVAL;
1784 		} else {
1785 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
1786 		}
1787 	}
1788 
1789 	/* Update the driver geometry */
1790 	bzero(geom, sizeof (struct dk_geom));
1791 
1792 	geom->dkg_ncyl = label.dkl_ncyl;
1793 	geom->dkg_acyl = label.dkl_acyl;
1794 	geom->dkg_nhead = label.dkl_nhead;
1795 	geom->dkg_nsect = label.dkl_nsect;
1796 	geom->dkg_intrlv = label.dkl_intrlv;
1797 	geom->dkg_apc = label.dkl_apc;
1798 	geom->dkg_rpm = label.dkl_rpm;
1799 	geom->dkg_pcyl = label.dkl_pcyl;
1800 	geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
1801 	geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
1802 
1803 	/* Update the driver vtoc */
1804 	bzero(vtoc, sizeof (struct vtoc));
1805 
1806 	vtoc->v_sanity = label.dkl_vtoc.v_sanity;
1807 	vtoc->v_version = label.dkl_vtoc.v_version;
1808 	vtoc->v_sectorsz = DEV_BSIZE;
1809 	vtoc->v_nparts = label.dkl_vtoc.v_nparts;
1810 
1811 	for (i = 0; i < vtoc->v_nparts; i++) {
1812 		vtoc->v_part[i].p_tag =
1813 		    label.dkl_vtoc.v_part[i].p_tag;
1814 		vtoc->v_part[i].p_flag =
1815 		    label.dkl_vtoc.v_part[i].p_flag;
1816 		vtoc->v_part[i].p_start =
1817 		    label.dkl_map[i].dkl_cylno *
1818 		    (label.dkl_nhead * label.dkl_nsect);
1819 		vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
1820 		vtoc->timestamp[i] =
1821 		    label.dkl_vtoc.v_timestamp[i];
1822 	}
1823 	/*
1824 	 * The bootinfo array can not be copied with bcopy() because
1825 	 * elements are of type long in vtoc (so 64-bit) and of type
1826 	 * int in dk_vtoc (so 32-bit).
1827 	 */
1828 	vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
1829 	vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
1830 	vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
1831 	bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
1832 	    LEN_DKL_ASCII);
1833 	bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
1834 	    LEN_DKL_VVOL);
1835 
1836 	return (status);
1837 }
1838 
1839 /*
1840  * Handle ioctls to a disk image (file-based).
1841  *
1842  * Return Values
1843  *	0	- Indicates that there are no errors
1844  *	!= 0	- Disk operation returned an error
1845  */
1846 static int
1847 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1848 {
1849 	struct dk_label label;
1850 	struct dk_geom *geom;
1851 	struct vtoc *vtoc;
1852 	int i, rc;
1853 
1854 	ASSERT(vd->file);
1855 
1856 	switch (cmd) {
1857 
1858 	case DKIOCGGEOM:
1859 		ASSERT(ioctl_arg != NULL);
1860 		geom = (struct dk_geom *)ioctl_arg;
1861 
1862 		rc = vd_file_validate_geometry(vd);
1863 		if (rc != 0 && rc != EINVAL) {
1864 			ASSERT(vd->vdisk_type != VD_DISK_TYPE_SLICE);
1865 			return (rc);
1866 		}
1867 
1868 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
1869 		return (0);
1870 
1871 	case DKIOCGVTOC:
1872 		ASSERT(ioctl_arg != NULL);
1873 		vtoc = (struct vtoc *)ioctl_arg;
1874 
1875 		rc = vd_file_validate_geometry(vd);
1876 		if (rc != 0 && rc != EINVAL) {
1877 			ASSERT(vd->vdisk_type != VD_DISK_TYPE_SLICE);
1878 			return (rc);
1879 		}
1880 
1881 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
1882 		return (0);
1883 
1884 	case DKIOCSGEOM:
1885 		ASSERT(ioctl_arg != NULL);
1886 		geom = (struct dk_geom *)ioctl_arg;
1887 
1888 		/* geometry can only be changed for full disk */
1889 		if (vd->vdisk_type != VD_DISK_TYPE_DISK)
1890 			return (ENOTSUP);
1891 
1892 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
1893 			return (EINVAL);
1894 
1895 		/*
1896 		 * The current device geometry is not updated, just the driver
1897 		 * "notion" of it. The device geometry will be effectively
1898 		 * updated when a label is written to the device during a next
1899 		 * DKIOCSVTOC.
1900 		 */
1901 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
1902 		return (0);
1903 
1904 	case DKIOCSVTOC:
1905 		ASSERT(ioctl_arg != NULL);
1906 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
1907 		    vd->dk_geom.dkg_nsect != 0);
1908 		vtoc = (struct vtoc *)ioctl_arg;
1909 
1910 		/* vtoc can only be changed for full disk */
1911 		if (vd->vdisk_type != VD_DISK_TYPE_DISK)
1912 			return (ENOTSUP);
1913 
1914 		if (vtoc->v_sanity != VTOC_SANE ||
1915 		    vtoc->v_sectorsz != DEV_BSIZE ||
1916 		    vtoc->v_nparts != V_NUMPAR)
1917 			return (EINVAL);
1918 
1919 		bzero(&label, sizeof (label));
1920 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
1921 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
1922 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
1923 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
1924 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
1925 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
1926 		label.dkl_apc = vd->dk_geom.dkg_apc;
1927 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
1928 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
1929 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
1930 
1931 		label.dkl_vtoc.v_nparts = V_NUMPAR;
1932 		label.dkl_vtoc.v_sanity = VTOC_SANE;
1933 		label.dkl_vtoc.v_version = vtoc->v_version;
1934 		for (i = 0; i < V_NUMPAR; i++) {
1935 			label.dkl_vtoc.v_timestamp[i] =
1936 			    vtoc->timestamp[i];
1937 			label.dkl_vtoc.v_part[i].p_tag =
1938 			    vtoc->v_part[i].p_tag;
1939 			label.dkl_vtoc.v_part[i].p_flag =
1940 			    vtoc->v_part[i].p_flag;
1941 			label.dkl_map[i].dkl_cylno =
1942 			    vtoc->v_part[i].p_start /
1943 			    (label.dkl_nhead * label.dkl_nsect);
1944 			label.dkl_map[i].dkl_nblk =
1945 			    vtoc->v_part[i].p_size;
1946 		}
1947 		/*
1948 		 * The bootinfo array can not be copied with bcopy() because
1949 		 * elements are of type long in vtoc (so 64-bit) and of type
1950 		 * int in dk_vtoc (so 32-bit).
1951 		 */
1952 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
1953 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
1954 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
1955 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
1956 		    LEN_DKL_ASCII);
1957 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
1958 		    LEN_DKL_VVOL);
1959 
1960 		/* re-compute checksum */
1961 		label.dkl_magic = DKL_MAGIC;
1962 		label.dkl_cksum = vd_lbl2cksum(&label);
1963 
1964 		/* write label to the disk image */
1965 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
1966 			return (rc);
1967 
1968 		/* check the geometry and update the driver info */
1969 		if ((rc = vd_file_validate_geometry(vd)) != 0)
1970 			return (rc);
1971 
1972 		/*
1973 		 * The disk geometry may have changed, so we need to write
1974 		 * the devid (if there is one) so that it is stored at the
1975 		 * right location.
1976 		 */
1977 		if (vd->file_devid != NULL &&
1978 		    vd_file_write_devid(vd, vd->file_devid) != 0) {
1979 			PR0("Fail to write devid");
1980 		}
1981 
1982 		return (0);
1983 
1984 	default:
1985 		return (ENOTSUP);
1986 	}
1987 }
1988 
1989 /*
1990  * Description:
1991  *	This is the function that processes the ioctl requests (farming it
1992  *	out to functions that handle slices, files or whole disks)
1993  *
1994  * Return Values
1995  *     0		- ioctl operation completed successfully
1996  *     != 0		- The LDC error value encountered
1997  *			  (propagated back up the call stack as a task error)
1998  *
1999  * Side Effect
2000  *     sets request->status to the return value of the ioctl function.
2001  */
2002 static int
2003 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
2004 {
2005 	int	rval = 0, status = 0;
2006 	size_t	nbytes = request->nbytes;	/* modifiable copy */
2007 
2008 
2009 	ASSERT(request->slice < vd->nslices);
2010 	PR0("Performing %s", ioctl->operation_name);
2011 
2012 	/* Get data from client and convert, if necessary */
2013 	if (ioctl->copyin != NULL)  {
2014 		ASSERT(nbytes != 0 && buf != NULL);
2015 		PR1("Getting \"arg\" data from client");
2016 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2017 		    request->cookie, request->ncookies,
2018 		    LDC_COPY_IN)) != 0) {
2019 			PR0("ldc_mem_copy() returned errno %d "
2020 			    "copying from client", status);
2021 			return (status);
2022 		}
2023 
2024 		/* Convert client's data, if necessary */
2025 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
2026 			ioctl->arg = buf;
2027 		else	/* convert client vdisk operation data to ioctl data */
2028 			(ioctl->copyin)(buf, (void *)ioctl->arg);
2029 	}
2030 
2031 	/*
2032 	 * Handle single-slice block devices internally; otherwise, have the
2033 	 * real driver perform the ioctl()
2034 	 */
2035 	if (vd->file) {
2036 		request->status =
2037 		    vd_do_file_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
2038 
2039 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
2040 		request->status =
2041 		    vd_do_slice_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
2042 
2043 	} else {
2044 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2045 		    ioctl->cmd, (intptr_t)ioctl->arg, vd->open_flags | FKIOCTL,
2046 		    kcred, &rval);
2047 
2048 #ifdef DEBUG
2049 		if (rval != 0) {
2050 			PR0("%s set rval = %d, which is not being returned to"
2051 			    " client", ioctl->cmd_name, rval);
2052 		}
2053 #endif /* DEBUG */
2054 	}
2055 
2056 	if (request->status != 0) {
2057 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
2058 		return (0);
2059 	}
2060 
2061 	/* Convert data and send to client, if necessary */
2062 	if (ioctl->copyout != NULL)  {
2063 		ASSERT(nbytes != 0 && buf != NULL);
2064 		PR1("Sending \"arg\" data to client");
2065 
2066 		/* Convert ioctl data to vdisk operation data, if necessary */
2067 		if (ioctl->copyout != VD_IDENTITY)
2068 			(ioctl->copyout)((void *)ioctl->arg, buf);
2069 
2070 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2071 		    request->cookie, request->ncookies,
2072 		    LDC_COPY_OUT)) != 0) {
2073 			PR0("ldc_mem_copy() returned errno %d "
2074 			    "copying to client", status);
2075 			return (status);
2076 		}
2077 	}
2078 
2079 	return (status);
2080 }
2081 
2082 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
2083 
2084 /*
2085  * Description:
2086  *	This generic function is called by the task queue to complete
2087  *	the processing of the tasks. The specific completion function
2088  *	is passed in as a field in the task pointer.
2089  *
2090  * Parameters:
2091  *	arg 	- opaque pointer to structure containing task to be completed
2092  *
2093  * Return Values
2094  *	None
2095  */
2096 static void
2097 vd_complete(void *arg)
2098 {
2099 	vd_task_t	*task = (vd_task_t *)arg;
2100 
2101 	ASSERT(task != NULL);
2102 	ASSERT(task->status == EINPROGRESS);
2103 	ASSERT(task->completef != NULL);
2104 
2105 	task->status = task->completef(task);
2106 	if (task->status)
2107 		PR0("%s: Error %d completing task", __func__, task->status);
2108 
2109 	/* Now notify the vDisk client */
2110 	vd_complete_notify(task);
2111 }
2112 
2113 static int
2114 vd_ioctl(vd_task_t *task)
2115 {
2116 	int			i, status;
2117 	void			*buf = NULL;
2118 	struct dk_geom		dk_geom = {0};
2119 	struct vtoc		vtoc = {0};
2120 	struct dk_efi		dk_efi = {0};
2121 	vd_t			*vd		= task->vd;
2122 	vd_dring_payload_t	*request	= task->request;
2123 	vd_ioctl_t		ioctl[] = {
2124 		/* Command (no-copy) operations */
2125 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
2126 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
2127 		    NULL, NULL, NULL, B_TRUE},
2128 
2129 		/* "Get" (copy-out) operations */
2130 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
2131 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
2132 		    NULL, VD_IDENTITY, VD_IDENTITY, B_FALSE},
2133 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
2134 		    RNDSIZE(vd_geom_t),
2135 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
2136 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
2137 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
2138 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
2139 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
2140 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
2141 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
2142 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
2143 
2144 		/* "Set" (copy-in) operations */
2145 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
2146 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
2147 		    NULL, VD_IDENTITY, VD_IDENTITY, B_TRUE},
2148 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
2149 		    RNDSIZE(vd_geom_t),
2150 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
2151 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
2152 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
2153 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
2154 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
2155 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
2156 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
2157 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
2158 	};
2159 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
2160 
2161 
2162 	ASSERT(vd != NULL);
2163 	ASSERT(request != NULL);
2164 	ASSERT(request->slice < vd->nslices);
2165 
2166 	/*
2167 	 * Determine ioctl corresponding to caller's "operation" and
2168 	 * validate caller's "nbytes"
2169 	 */
2170 	for (i = 0; i < nioctls; i++) {
2171 		if (request->operation == ioctl[i].operation) {
2172 			/* LDC memory operations require 8-byte multiples */
2173 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
2174 
2175 			if (request->operation == VD_OP_GET_EFI ||
2176 			    request->operation == VD_OP_SET_EFI) {
2177 				if (request->nbytes >= ioctl[i].nbytes)
2178 					break;
2179 				PR0("%s:  Expected at least nbytes = %lu, "
2180 				    "got %lu", ioctl[i].operation_name,
2181 				    ioctl[i].nbytes, request->nbytes);
2182 				return (EINVAL);
2183 			}
2184 
2185 			if (request->nbytes != ioctl[i].nbytes) {
2186 				PR0("%s:  Expected nbytes = %lu, got %lu",
2187 				    ioctl[i].operation_name, ioctl[i].nbytes,
2188 				    request->nbytes);
2189 				return (EINVAL);
2190 			}
2191 
2192 			break;
2193 		}
2194 	}
2195 	ASSERT(i < nioctls);	/* because "operation" already validated */
2196 
2197 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
2198 		PR0("%s fails because backend is opened read-only",
2199 		    ioctl[i].operation_name);
2200 		request->status = EROFS;
2201 		return (0);
2202 	}
2203 
2204 	if (request->nbytes)
2205 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
2206 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
2207 	if (request->nbytes)
2208 		kmem_free(buf, request->nbytes);
2209 
2210 	return (status);
2211 }
2212 
2213 static int
2214 vd_get_devid(vd_task_t *task)
2215 {
2216 	vd_t *vd = task->vd;
2217 	vd_dring_payload_t *request = task->request;
2218 	vd_devid_t *vd_devid;
2219 	impl_devid_t *devid;
2220 	int status, bufid_len, devid_len, len, sz;
2221 	int bufbytes;
2222 
2223 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
2224 
2225 	if (vd->file) {
2226 		if (vd->file_devid == NULL) {
2227 			PR2("No Device ID");
2228 			request->status = ENOENT;
2229 			return (0);
2230 		} else {
2231 			sz = ddi_devid_sizeof(vd->file_devid);
2232 			devid = kmem_alloc(sz, KM_SLEEP);
2233 			bcopy(vd->file_devid, devid, sz);
2234 		}
2235 	} else {
2236 		if (ddi_lyr_get_devid(vd->dev[request->slice],
2237 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
2238 			PR2("No Device ID");
2239 			request->status = ENOENT;
2240 			return (0);
2241 		}
2242 	}
2243 
2244 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
2245 	devid_len = DEVID_GETLEN(devid);
2246 
2247 	/*
2248 	 * Save the buffer size here for use in deallocation.
2249 	 * The actual number of bytes copied is returned in
2250 	 * the 'nbytes' field of the request structure.
2251 	 */
2252 	bufbytes = request->nbytes;
2253 
2254 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
2255 	vd_devid->length = devid_len;
2256 	vd_devid->type = DEVID_GETTYPE(devid);
2257 
2258 	len = (devid_len > bufid_len)? bufid_len : devid_len;
2259 
2260 	bcopy(devid->did_id, vd_devid->id, len);
2261 
2262 	request->status = 0;
2263 
2264 	/* LDC memory operations require 8-byte multiples */
2265 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
2266 
2267 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
2268 	    &request->nbytes, request->cookie, request->ncookies,
2269 	    LDC_COPY_OUT)) != 0) {
2270 		PR0("ldc_mem_copy() returned errno %d copying to client",
2271 		    status);
2272 	}
2273 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
2274 
2275 	kmem_free(vd_devid, bufbytes);
2276 	ddi_devid_free((ddi_devid_t)devid);
2277 
2278 	return (status);
2279 }
2280 
2281 /*
2282  * Define the supported operations once the functions for performing them have
2283  * been defined
2284  */
2285 static const vds_operation_t	vds_operation[] = {
2286 #define	X(_s)	#_s, _s
2287 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
2288 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
2289 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
2290 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
2291 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
2292 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
2293 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
2294 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
2295 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
2296 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
2297 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
2298 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
2299 #undef	X
2300 };
2301 
2302 static const size_t	vds_noperations =
2303 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
2304 
2305 /*
2306  * Process a task specifying a client I/O request
2307  *
2308  * Parameters:
2309  *	task 		- structure containing the request sent from client
2310  *
2311  * Return Value
2312  *	0	- success
2313  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
2314  *	EINVAL	- Invalid disk slice
2315  *	!= 0	- some other non-zero return value from start function
2316  */
2317 static int
2318 vd_do_process_task(vd_task_t *task)
2319 {
2320 	int			i;
2321 	vd_t			*vd		= task->vd;
2322 	vd_dring_payload_t	*request	= task->request;
2323 
2324 	ASSERT(vd != NULL);
2325 	ASSERT(request != NULL);
2326 
2327 	/* Find the requested operation */
2328 	for (i = 0; i < vds_noperations; i++) {
2329 		if (request->operation == vds_operation[i].operation) {
2330 			/* all operations should have a start func */
2331 			ASSERT(vds_operation[i].start != NULL);
2332 
2333 			task->completef = vds_operation[i].complete;
2334 			break;
2335 		}
2336 	}
2337 	if (i == vds_noperations) {
2338 		PR0("Unsupported operation %u", request->operation);
2339 		return (ENOTSUP);
2340 	}
2341 
2342 	/* Range-check slice */
2343 	if (request->slice >= vd->nslices &&
2344 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
2345 	    request->slice != VD_SLICE_NONE)) {
2346 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
2347 		    request->slice, (vd->nslices - 1));
2348 		return (EINVAL);
2349 	}
2350 
2351 	/*
2352 	 * Call the function pointer that starts the operation.
2353 	 */
2354 	return (vds_operation[i].start(task));
2355 }
2356 
2357 /*
2358  * Description:
2359  *	This function is called by both the in-band and descriptor ring
2360  *	message processing functions paths to actually execute the task
2361  *	requested by the vDisk client. It in turn calls its worker
2362  *	function, vd_do_process_task(), to carry our the request.
2363  *
2364  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
2365  *	saved in the 'status' field of the task and are propagated back
2366  *	up the call stack to trigger a NACK
2367  *
2368  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
2369  *	the 'status' field of the request and result in an ACK being sent
2370  *	by the completion handler.
2371  *
2372  * Parameters:
2373  *	task 		- structure containing the request sent from client
2374  *
2375  * Return Value
2376  *	0		- successful synchronous request.
2377  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
2378  *	EINPROGRESS	- task will be finished in a completion handler
2379  */
2380 static int
2381 vd_process_task(vd_task_t *task)
2382 {
2383 	vd_t	*vd = task->vd;
2384 	int	status;
2385 
2386 	DTRACE_PROBE1(task__start, vd_task_t *, task);
2387 
2388 	task->status =  vd_do_process_task(task);
2389 
2390 	/*
2391 	 * If the task processing function returned EINPROGRESS indicating
2392 	 * that the task needs completing then schedule a taskq entry to
2393 	 * finish it now.
2394 	 *
2395 	 * Otherwise the task processing function returned either zero
2396 	 * indicating that the task was finished in the start function (and we
2397 	 * don't need to wait in a completion function) or the start function
2398 	 * returned an error - in both cases all that needs to happen is the
2399 	 * notification to the vDisk client higher up the call stack.
2400 	 * If the task was using a Descriptor Ring, we need to mark it as done
2401 	 * at this stage.
2402 	 */
2403 	if (task->status == EINPROGRESS) {
2404 		/* Queue a task to complete the operation */
2405 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
2406 		    task, DDI_SLEEP);
2407 
2408 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
2409 		/* Update the dring element if it's a dring client */
2410 		status = vd_mark_elem_done(vd, task->index,
2411 		    task->request->status, task->request->nbytes);
2412 		if (status == ECONNRESET)
2413 			vd_mark_in_reset(vd);
2414 	}
2415 
2416 	return (task->status);
2417 }
2418 
2419 /*
2420  * Return true if the "type", "subtype", and "env" fields of the "tag" first
2421  * argument match the corresponding remaining arguments; otherwise, return false
2422  */
2423 boolean_t
2424 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
2425 {
2426 	return ((tag->vio_msgtype == type) &&
2427 	    (tag->vio_subtype == subtype) &&
2428 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
2429 }
2430 
2431 /*
2432  * Check whether the major/minor version specified in "ver_msg" is supported
2433  * by this server.
2434  */
2435 static boolean_t
2436 vds_supported_version(vio_ver_msg_t *ver_msg)
2437 {
2438 	for (int i = 0; i < vds_num_versions; i++) {
2439 		ASSERT(vds_version[i].major > 0);
2440 		ASSERT((i == 0) ||
2441 		    (vds_version[i].major < vds_version[i-1].major));
2442 
2443 		/*
2444 		 * If the major versions match, adjust the minor version, if
2445 		 * necessary, down to the highest value supported by this
2446 		 * server and return true so this message will get "ack"ed;
2447 		 * the client should also support all minor versions lower
2448 		 * than the value it sent
2449 		 */
2450 		if (ver_msg->ver_major == vds_version[i].major) {
2451 			if (ver_msg->ver_minor > vds_version[i].minor) {
2452 				PR0("Adjusting minor version from %u to %u",
2453 				    ver_msg->ver_minor, vds_version[i].minor);
2454 				ver_msg->ver_minor = vds_version[i].minor;
2455 			}
2456 			return (B_TRUE);
2457 		}
2458 
2459 		/*
2460 		 * If the message contains a higher major version number, set
2461 		 * the message's major/minor versions to the current values
2462 		 * and return false, so this message will get "nack"ed with
2463 		 * these values, and the client will potentially try again
2464 		 * with the same or a lower version
2465 		 */
2466 		if (ver_msg->ver_major > vds_version[i].major) {
2467 			ver_msg->ver_major = vds_version[i].major;
2468 			ver_msg->ver_minor = vds_version[i].minor;
2469 			return (B_FALSE);
2470 		}
2471 
2472 		/*
2473 		 * Otherwise, the message's major version is less than the
2474 		 * current major version, so continue the loop to the next
2475 		 * (lower) supported version
2476 		 */
2477 	}
2478 
2479 	/*
2480 	 * No common version was found; "ground" the version pair in the
2481 	 * message to terminate negotiation
2482 	 */
2483 	ver_msg->ver_major = 0;
2484 	ver_msg->ver_minor = 0;
2485 	return (B_FALSE);
2486 }
2487 
2488 /*
2489  * Process a version message from a client.  vds expects to receive version
2490  * messages from clients seeking service, but never issues version messages
2491  * itself; therefore, vds can ACK or NACK client version messages, but does
2492  * not expect to receive version-message ACKs or NACKs (and will treat such
2493  * messages as invalid).
2494  */
2495 static int
2496 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2497 {
2498 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
2499 
2500 
2501 	ASSERT(msglen >= sizeof (msg->tag));
2502 
2503 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2504 	    VIO_VER_INFO)) {
2505 		return (ENOMSG);	/* not a version message */
2506 	}
2507 
2508 	if (msglen != sizeof (*ver_msg)) {
2509 		PR0("Expected %lu-byte version message; "
2510 		    "received %lu bytes", sizeof (*ver_msg), msglen);
2511 		return (EBADMSG);
2512 	}
2513 
2514 	if (ver_msg->dev_class != VDEV_DISK) {
2515 		PR0("Expected device class %u (disk); received %u",
2516 		    VDEV_DISK, ver_msg->dev_class);
2517 		return (EBADMSG);
2518 	}
2519 
2520 	/*
2521 	 * We're talking to the expected kind of client; set our device class
2522 	 * for "ack/nack" back to the client
2523 	 */
2524 	ver_msg->dev_class = VDEV_DISK_SERVER;
2525 
2526 	/*
2527 	 * Check whether the (valid) version message specifies a version
2528 	 * supported by this server.  If the version is not supported, return
2529 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
2530 	 * will have updated the message with a supported version for the
2531 	 * client to consider
2532 	 */
2533 	if (!vds_supported_version(ver_msg))
2534 		return (EBADMSG);
2535 
2536 
2537 	/*
2538 	 * A version has been agreed upon; use the client's SID for
2539 	 * communication on this channel now
2540 	 */
2541 	ASSERT(!(vd->initialized & VD_SID));
2542 	vd->sid = ver_msg->tag.vio_sid;
2543 	vd->initialized |= VD_SID;
2544 
2545 	/*
2546 	 * When multiple versions are supported, this function should store
2547 	 * the negotiated major and minor version values in the "vd" data
2548 	 * structure to govern further communication; in particular, note that
2549 	 * the client might have specified a lower minor version for the
2550 	 * agreed major version than specifed in the vds_version[] array.  The
2551 	 * following assertions should help remind future maintainers to make
2552 	 * the appropriate changes to support multiple versions.
2553 	 */
2554 	ASSERT(vds_num_versions == 1);
2555 	ASSERT(ver_msg->ver_major == vds_version[0].major);
2556 	ASSERT(ver_msg->ver_minor == vds_version[0].minor);
2557 
2558 	PR0("Using major version %u, minor version %u",
2559 	    ver_msg->ver_major, ver_msg->ver_minor);
2560 	return (0);
2561 }
2562 
2563 static int
2564 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2565 {
2566 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
2567 	int		status, retry = 0;
2568 
2569 
2570 	ASSERT(msglen >= sizeof (msg->tag));
2571 
2572 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2573 	    VIO_ATTR_INFO)) {
2574 		PR0("Message is not an attribute message");
2575 		return (ENOMSG);
2576 	}
2577 
2578 	if (msglen != sizeof (*attr_msg)) {
2579 		PR0("Expected %lu-byte attribute message; "
2580 		    "received %lu bytes", sizeof (*attr_msg), msglen);
2581 		return (EBADMSG);
2582 	}
2583 
2584 	if (attr_msg->max_xfer_sz == 0) {
2585 		PR0("Received maximum transfer size of 0 from client");
2586 		return (EBADMSG);
2587 	}
2588 
2589 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
2590 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
2591 		PR0("Client requested unsupported transfer mode");
2592 		return (EBADMSG);
2593 	}
2594 
2595 	/*
2596 	 * check if the underlying disk is ready, if not try accessing
2597 	 * the device again. Open the vdisk device and extract info
2598 	 * about it, as this is needed to respond to the attr info msg
2599 	 */
2600 	if ((vd->initialized & VD_DISK_READY) == 0) {
2601 		PR0("Retry setting up disk (%s)", vd->device_path);
2602 		do {
2603 			status = vd_setup_vd(vd);
2604 			if (status != EAGAIN || ++retry > vds_dev_retries)
2605 				break;
2606 
2607 			/* incremental delay */
2608 			delay(drv_usectohz(vds_dev_delay));
2609 
2610 			/* if vdisk is no longer enabled - return error */
2611 			if (!vd_enabled(vd))
2612 				return (ENXIO);
2613 
2614 		} while (status == EAGAIN);
2615 
2616 		if (status)
2617 			return (ENXIO);
2618 
2619 		vd->initialized |= VD_DISK_READY;
2620 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2621 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
2622 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2623 		    (vd->pseudo ? "yes" : "no"),
2624 		    (vd->file ? "yes" : "no"),
2625 		    vd->nslices);
2626 	}
2627 
2628 	/* Success:  valid message and transfer mode */
2629 	vd->xfer_mode = attr_msg->xfer_mode;
2630 
2631 	if (vd->xfer_mode == VIO_DESC_MODE) {
2632 
2633 		/*
2634 		 * The vd_dring_inband_msg_t contains one cookie; need room
2635 		 * for up to n-1 more cookies, where "n" is the number of full
2636 		 * pages plus possibly one partial page required to cover
2637 		 * "max_xfer_sz".  Add room for one more cookie if
2638 		 * "max_xfer_sz" isn't an integral multiple of the page size.
2639 		 * Must first get the maximum transfer size in bytes.
2640 		 */
2641 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
2642 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
2643 		    attr_msg->max_xfer_sz;
2644 		size_t	max_inband_msglen =
2645 		    sizeof (vd_dring_inband_msg_t) +
2646 		    ((max_xfer_bytes/PAGESIZE +
2647 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
2648 		    (sizeof (ldc_mem_cookie_t)));
2649 
2650 		/*
2651 		 * Set the maximum expected message length to
2652 		 * accommodate in-band-descriptor messages with all
2653 		 * their cookies
2654 		 */
2655 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
2656 
2657 		/*
2658 		 * Initialize the data structure for processing in-band I/O
2659 		 * request descriptors
2660 		 */
2661 		vd->inband_task.vd	= vd;
2662 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
2663 		vd->inband_task.index	= 0;
2664 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
2665 	}
2666 
2667 	/* Return the device's block size and max transfer size to the client */
2668 	attr_msg->vdisk_block_size	= DEV_BSIZE;
2669 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
2670 
2671 	attr_msg->vdisk_size = vd->vdisk_size;
2672 	attr_msg->vdisk_type = vd->vdisk_type;
2673 	attr_msg->operations = vds_operations;
2674 	PR0("%s", VD_CLIENT(vd));
2675 
2676 	ASSERT(vd->dring_task == NULL);
2677 
2678 	return (0);
2679 }
2680 
2681 static int
2682 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2683 {
2684 	int			status;
2685 	size_t			expected;
2686 	ldc_mem_info_t		dring_minfo;
2687 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
2688 
2689 
2690 	ASSERT(msglen >= sizeof (msg->tag));
2691 
2692 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2693 	    VIO_DRING_REG)) {
2694 		PR0("Message is not a register-dring message");
2695 		return (ENOMSG);
2696 	}
2697 
2698 	if (msglen < sizeof (*reg_msg)) {
2699 		PR0("Expected at least %lu-byte register-dring message; "
2700 		    "received %lu bytes", sizeof (*reg_msg), msglen);
2701 		return (EBADMSG);
2702 	}
2703 
2704 	expected = sizeof (*reg_msg) +
2705 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
2706 	if (msglen != expected) {
2707 		PR0("Expected %lu-byte register-dring message; "
2708 		    "received %lu bytes", expected, msglen);
2709 		return (EBADMSG);
2710 	}
2711 
2712 	if (vd->initialized & VD_DRING) {
2713 		PR0("A dring was previously registered; only support one");
2714 		return (EBADMSG);
2715 	}
2716 
2717 	if (reg_msg->num_descriptors > INT32_MAX) {
2718 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
2719 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
2720 		return (EBADMSG);
2721 	}
2722 
2723 	if (reg_msg->ncookies != 1) {
2724 		/*
2725 		 * In addition to fixing the assertion in the success case
2726 		 * below, supporting drings which require more than one
2727 		 * "cookie" requires increasing the value of vd->max_msglen
2728 		 * somewhere in the code path prior to receiving the message
2729 		 * which results in calling this function.  Note that without
2730 		 * making this change, the larger message size required to
2731 		 * accommodate multiple cookies cannot be successfully
2732 		 * received, so this function will not even get called.
2733 		 * Gracefully accommodating more dring cookies might
2734 		 * reasonably demand exchanging an additional attribute or
2735 		 * making a minor protocol adjustment
2736 		 */
2737 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
2738 		return (EBADMSG);
2739 	}
2740 
2741 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
2742 	    reg_msg->ncookies, reg_msg->num_descriptors,
2743 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
2744 	if (status != 0) {
2745 		PR0("ldc_mem_dring_map() returned errno %d", status);
2746 		return (status);
2747 	}
2748 
2749 	/*
2750 	 * To remove the need for this assertion, must call
2751 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
2752 	 * successful call to ldc_mem_dring_map()
2753 	 */
2754 	ASSERT(reg_msg->ncookies == 1);
2755 
2756 	if ((status =
2757 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
2758 		PR0("ldc_mem_dring_info() returned errno %d", status);
2759 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
2760 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
2761 		return (status);
2762 	}
2763 
2764 	if (dring_minfo.vaddr == NULL) {
2765 		PR0("Descriptor ring virtual address is NULL");
2766 		return (ENXIO);
2767 	}
2768 
2769 
2770 	/* Initialize for valid message and mapped dring */
2771 	PR1("descriptor size = %u, dring length = %u",
2772 	    vd->descriptor_size, vd->dring_len);
2773 	vd->initialized |= VD_DRING;
2774 	vd->dring_ident = 1;	/* "There Can Be Only One" */
2775 	vd->dring = dring_minfo.vaddr;
2776 	vd->descriptor_size = reg_msg->descriptor_size;
2777 	vd->dring_len = reg_msg->num_descriptors;
2778 	reg_msg->dring_ident = vd->dring_ident;
2779 
2780 	/*
2781 	 * Allocate and initialize a "shadow" array of data structures for
2782 	 * tasks to process I/O requests in dring elements
2783 	 */
2784 	vd->dring_task =
2785 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
2786 	for (int i = 0; i < vd->dring_len; i++) {
2787 		vd->dring_task[i].vd		= vd;
2788 		vd->dring_task[i].index		= i;
2789 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
2790 
2791 		status = ldc_mem_alloc_handle(vd->ldc_handle,
2792 		    &(vd->dring_task[i].mhdl));
2793 		if (status) {
2794 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
2795 			return (ENXIO);
2796 		}
2797 
2798 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
2799 	}
2800 
2801 	return (0);
2802 }
2803 
2804 static int
2805 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2806 {
2807 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
2808 
2809 
2810 	ASSERT(msglen >= sizeof (msg->tag));
2811 
2812 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2813 	    VIO_DRING_UNREG)) {
2814 		PR0("Message is not an unregister-dring message");
2815 		return (ENOMSG);
2816 	}
2817 
2818 	if (msglen != sizeof (*unreg_msg)) {
2819 		PR0("Expected %lu-byte unregister-dring message; "
2820 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
2821 		return (EBADMSG);
2822 	}
2823 
2824 	if (unreg_msg->dring_ident != vd->dring_ident) {
2825 		PR0("Expected dring ident %lu; received %lu",
2826 		    vd->dring_ident, unreg_msg->dring_ident);
2827 		return (EBADMSG);
2828 	}
2829 
2830 	return (0);
2831 }
2832 
2833 static int
2834 process_rdx_msg(vio_msg_t *msg, size_t msglen)
2835 {
2836 	ASSERT(msglen >= sizeof (msg->tag));
2837 
2838 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
2839 		PR0("Message is not an RDX message");
2840 		return (ENOMSG);
2841 	}
2842 
2843 	if (msglen != sizeof (vio_rdx_msg_t)) {
2844 		PR0("Expected %lu-byte RDX message; received %lu bytes",
2845 		    sizeof (vio_rdx_msg_t), msglen);
2846 		return (EBADMSG);
2847 	}
2848 
2849 	PR0("Valid RDX message");
2850 	return (0);
2851 }
2852 
2853 static int
2854 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
2855 {
2856 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
2857 		PR0("Received seq_num %lu; expected %lu",
2858 		    seq_num, (vd->seq_num + 1));
2859 		PR0("initiating soft reset");
2860 		vd_need_reset(vd, B_FALSE);
2861 		return (1);
2862 	}
2863 
2864 	vd->seq_num = seq_num;
2865 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
2866 	return (0);
2867 }
2868 
2869 /*
2870  * Return the expected size of an inband-descriptor message with all the
2871  * cookies it claims to include
2872  */
2873 static size_t
2874 expected_inband_size(vd_dring_inband_msg_t *msg)
2875 {
2876 	return ((sizeof (*msg)) +
2877 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
2878 }
2879 
2880 /*
2881  * Process an in-band descriptor message:  used with clients like OBP, with
2882  * which vds exchanges descriptors within VIO message payloads, rather than
2883  * operating on them within a descriptor ring
2884  */
2885 static int
2886 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2887 {
2888 	size_t			expected;
2889 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
2890 
2891 
2892 	ASSERT(msglen >= sizeof (msg->tag));
2893 
2894 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
2895 	    VIO_DESC_DATA)) {
2896 		PR1("Message is not an in-band-descriptor message");
2897 		return (ENOMSG);
2898 	}
2899 
2900 	if (msglen < sizeof (*desc_msg)) {
2901 		PR0("Expected at least %lu-byte descriptor message; "
2902 		    "received %lu bytes", sizeof (*desc_msg), msglen);
2903 		return (EBADMSG);
2904 	}
2905 
2906 	if (msglen != (expected = expected_inband_size(desc_msg))) {
2907 		PR0("Expected %lu-byte descriptor message; "
2908 		    "received %lu bytes", expected, msglen);
2909 		return (EBADMSG);
2910 	}
2911 
2912 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
2913 		return (EBADMSG);
2914 
2915 	/*
2916 	 * Valid message:  Set up the in-band descriptor task and process the
2917 	 * request.  Arrange to acknowledge the client's message, unless an
2918 	 * error processing the descriptor task results in setting
2919 	 * VIO_SUBTYPE_NACK
2920 	 */
2921 	PR1("Valid in-band-descriptor message");
2922 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2923 
2924 	ASSERT(vd->inband_task.msg != NULL);
2925 
2926 	bcopy(msg, vd->inband_task.msg, msglen);
2927 	vd->inband_task.msglen	= msglen;
2928 
2929 	/*
2930 	 * The task request is now the payload of the message
2931 	 * that was just copied into the body of the task.
2932 	 */
2933 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
2934 	vd->inband_task.request	= &desc_msg->payload;
2935 
2936 	return (vd_process_task(&vd->inband_task));
2937 }
2938 
2939 static int
2940 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
2941     vio_msg_t *msg, size_t msglen)
2942 {
2943 	int			status;
2944 	boolean_t		ready;
2945 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
2946 
2947 
2948 	/* Accept the updated dring element */
2949 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
2950 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
2951 		return (status);
2952 	}
2953 	ready = (elem->hdr.dstate == VIO_DESC_READY);
2954 	if (ready) {
2955 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
2956 	} else {
2957 		PR0("descriptor %u not ready", idx);
2958 		VD_DUMP_DRING_ELEM(elem);
2959 	}
2960 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
2961 		PR0("ldc_mem_dring_release() returned errno %d", status);
2962 		return (status);
2963 	}
2964 	if (!ready)
2965 		return (EBUSY);
2966 
2967 
2968 	/* Initialize a task and process the accepted element */
2969 	PR1("Processing dring element %u", idx);
2970 	vd->dring_task[idx].type	= type;
2971 
2972 	/* duplicate msg buf for cookies etc. */
2973 	bcopy(msg, vd->dring_task[idx].msg, msglen);
2974 
2975 	vd->dring_task[idx].msglen	= msglen;
2976 	return (vd_process_task(&vd->dring_task[idx]));
2977 }
2978 
2979 static int
2980 vd_process_element_range(vd_t *vd, int start, int end,
2981     vio_msg_t *msg, size_t msglen)
2982 {
2983 	int		i, n, nelem, status = 0;
2984 	boolean_t	inprogress = B_FALSE;
2985 	vd_task_type_t	type;
2986 
2987 
2988 	ASSERT(start >= 0);
2989 	ASSERT(end >= 0);
2990 
2991 	/*
2992 	 * Arrange to acknowledge the client's message, unless an error
2993 	 * processing one of the dring elements results in setting
2994 	 * VIO_SUBTYPE_NACK
2995 	 */
2996 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
2997 
2998 	/*
2999 	 * Process the dring elements in the range
3000 	 */
3001 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
3002 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
3003 		((vio_dring_msg_t *)msg)->end_idx = i;
3004 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
3005 		status = vd_process_element(vd, type, i, msg, msglen);
3006 		if (status == EINPROGRESS)
3007 			inprogress = B_TRUE;
3008 		else if (status != 0)
3009 			break;
3010 	}
3011 
3012 	/*
3013 	 * If some, but not all, operations of a multi-element range are in
3014 	 * progress, wait for other operations to complete before returning
3015 	 * (which will result in "ack" or "nack" of the message).  Note that
3016 	 * all outstanding operations will need to complete, not just the ones
3017 	 * corresponding to the current range of dring elements; howevever, as
3018 	 * this situation is an error case, performance is less critical.
3019 	 */
3020 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
3021 		ddi_taskq_wait(vd->completionq);
3022 
3023 	return (status);
3024 }
3025 
3026 static int
3027 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3028 {
3029 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
3030 
3031 
3032 	ASSERT(msglen >= sizeof (msg->tag));
3033 
3034 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3035 	    VIO_DRING_DATA)) {
3036 		PR1("Message is not a dring-data message");
3037 		return (ENOMSG);
3038 	}
3039 
3040 	if (msglen != sizeof (*dring_msg)) {
3041 		PR0("Expected %lu-byte dring message; received %lu bytes",
3042 		    sizeof (*dring_msg), msglen);
3043 		return (EBADMSG);
3044 	}
3045 
3046 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
3047 		return (EBADMSG);
3048 
3049 	if (dring_msg->dring_ident != vd->dring_ident) {
3050 		PR0("Expected dring ident %lu; received ident %lu",
3051 		    vd->dring_ident, dring_msg->dring_ident);
3052 		return (EBADMSG);
3053 	}
3054 
3055 	if (dring_msg->start_idx >= vd->dring_len) {
3056 		PR0("\"start_idx\" = %u; must be less than %u",
3057 		    dring_msg->start_idx, vd->dring_len);
3058 		return (EBADMSG);
3059 	}
3060 
3061 	if ((dring_msg->end_idx < 0) ||
3062 	    (dring_msg->end_idx >= vd->dring_len)) {
3063 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
3064 		    dring_msg->end_idx, vd->dring_len);
3065 		return (EBADMSG);
3066 	}
3067 
3068 	/* Valid message; process range of updated dring elements */
3069 	PR1("Processing descriptor range, start = %u, end = %u",
3070 	    dring_msg->start_idx, dring_msg->end_idx);
3071 	return (vd_process_element_range(vd, dring_msg->start_idx,
3072 	    dring_msg->end_idx, msg, msglen));
3073 }
3074 
3075 static int
3076 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
3077 {
3078 	int	retry, status;
3079 	size_t	size = *nbytes;
3080 
3081 
3082 	for (retry = 0, status = ETIMEDOUT;
3083 	    retry < vds_ldc_retries && status == ETIMEDOUT;
3084 	    retry++) {
3085 		PR1("ldc_read() attempt %d", (retry + 1));
3086 		*nbytes = size;
3087 		status = ldc_read(ldc_handle, msg, nbytes);
3088 	}
3089 
3090 	if (status) {
3091 		PR0("ldc_read() returned errno %d", status);
3092 		if (status != ECONNRESET)
3093 			return (ENOMSG);
3094 		return (status);
3095 	} else if (*nbytes == 0) {
3096 		PR1("ldc_read() returned 0 and no message read");
3097 		return (ENOMSG);
3098 	}
3099 
3100 	PR1("RCVD %lu-byte message", *nbytes);
3101 	return (0);
3102 }
3103 
3104 static int
3105 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3106 {
3107 	int		status;
3108 
3109 
3110 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
3111 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
3112 #ifdef	DEBUG
3113 	vd_decode_tag(msg);
3114 #endif
3115 
3116 	/*
3117 	 * Validate session ID up front, since it applies to all messages
3118 	 * once set
3119 	 */
3120 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
3121 		PR0("Expected SID %u, received %u", vd->sid,
3122 		    msg->tag.vio_sid);
3123 		return (EBADMSG);
3124 	}
3125 
3126 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
3127 
3128 	/*
3129 	 * Process the received message based on connection state
3130 	 */
3131 	switch (vd->state) {
3132 	case VD_STATE_INIT:	/* expect version message */
3133 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
3134 			return (status);
3135 
3136 		/* Version negotiated, move to that state */
3137 		vd->state = VD_STATE_VER;
3138 		return (0);
3139 
3140 	case VD_STATE_VER:	/* expect attribute message */
3141 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
3142 			return (status);
3143 
3144 		/* Attributes exchanged, move to that state */
3145 		vd->state = VD_STATE_ATTR;
3146 		return (0);
3147 
3148 	case VD_STATE_ATTR:
3149 		switch (vd->xfer_mode) {
3150 		case VIO_DESC_MODE:	/* expect RDX message */
3151 			if ((status = process_rdx_msg(msg, msglen)) != 0)
3152 				return (status);
3153 
3154 			/* Ready to receive in-band descriptors */
3155 			vd->state = VD_STATE_DATA;
3156 			return (0);
3157 
3158 		case VIO_DRING_MODE:	/* expect register-dring message */
3159 			if ((status =
3160 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
3161 				return (status);
3162 
3163 			/* One dring negotiated, move to that state */
3164 			vd->state = VD_STATE_DRING;
3165 			return (0);
3166 
3167 		default:
3168 			ASSERT("Unsupported transfer mode");
3169 			PR0("Unsupported transfer mode");
3170 			return (ENOTSUP);
3171 		}
3172 
3173 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
3174 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
3175 			/* Ready to receive data */
3176 			vd->state = VD_STATE_DATA;
3177 			return (0);
3178 		} else if (status != ENOMSG) {
3179 			return (status);
3180 		}
3181 
3182 
3183 		/*
3184 		 * If another register-dring message is received, stay in
3185 		 * dring state in case the client sends RDX; although the
3186 		 * protocol allows multiple drings, this server does not
3187 		 * support using more than one
3188 		 */
3189 		if ((status =
3190 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
3191 			return (status);
3192 
3193 		/*
3194 		 * Acknowledge an unregister-dring message, but reset the
3195 		 * connection anyway:  Although the protocol allows
3196 		 * unregistering drings, this server cannot serve a vdisk
3197 		 * without its only dring
3198 		 */
3199 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
3200 		return ((status == 0) ? ENOTSUP : status);
3201 
3202 	case VD_STATE_DATA:
3203 		switch (vd->xfer_mode) {
3204 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
3205 			return (vd_process_desc_msg(vd, msg, msglen));
3206 
3207 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
3208 			/*
3209 			 * Typically expect dring-data messages, so handle
3210 			 * them first
3211 			 */
3212 			if ((status = vd_process_dring_msg(vd, msg,
3213 			    msglen)) != ENOMSG)
3214 				return (status);
3215 
3216 			/*
3217 			 * Acknowledge an unregister-dring message, but reset
3218 			 * the connection anyway:  Although the protocol
3219 			 * allows unregistering drings, this server cannot
3220 			 * serve a vdisk without its only dring
3221 			 */
3222 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
3223 			return ((status == 0) ? ENOTSUP : status);
3224 
3225 		default:
3226 			ASSERT("Unsupported transfer mode");
3227 			PR0("Unsupported transfer mode");
3228 			return (ENOTSUP);
3229 		}
3230 
3231 	default:
3232 		ASSERT("Invalid client connection state");
3233 		PR0("Invalid client connection state");
3234 		return (ENOTSUP);
3235 	}
3236 }
3237 
3238 static int
3239 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3240 {
3241 	int		status;
3242 	boolean_t	reset_ldc = B_FALSE;
3243 	vd_task_t	task;
3244 
3245 	/*
3246 	 * Check that the message is at least big enough for a "tag", so that
3247 	 * message processing can proceed based on tag-specified message type
3248 	 */
3249 	if (msglen < sizeof (vio_msg_tag_t)) {
3250 		PR0("Received short (%lu-byte) message", msglen);
3251 		/* Can't "nack" short message, so drop the big hammer */
3252 		PR0("initiating full reset");
3253 		vd_need_reset(vd, B_TRUE);
3254 		return (EBADMSG);
3255 	}
3256 
3257 	/*
3258 	 * Process the message
3259 	 */
3260 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
3261 	case 0:
3262 		/* "ack" valid, successfully-processed messages */
3263 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3264 		break;
3265 
3266 	case EINPROGRESS:
3267 		/* The completion handler will "ack" or "nack" the message */
3268 		return (EINPROGRESS);
3269 	case ENOMSG:
3270 		PR0("Received unexpected message");
3271 		_NOTE(FALLTHROUGH);
3272 	case EBADMSG:
3273 	case ENOTSUP:
3274 		/* "transport" error will cause NACK of invalid messages */
3275 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3276 		break;
3277 
3278 	default:
3279 		/* "transport" error will cause NACK of invalid messages */
3280 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3281 		/* An LDC error probably occurred, so try resetting it */
3282 		reset_ldc = B_TRUE;
3283 		break;
3284 	}
3285 
3286 	PR1("\tResulting in state %d (%s)", vd->state,
3287 	    vd_decode_state(vd->state));
3288 
3289 	/* populate the task so we can dispatch it on the taskq */
3290 	task.vd = vd;
3291 	task.msg = msg;
3292 	task.msglen = msglen;
3293 
3294 	/*
3295 	 * Queue a task to send the notification that the operation completed.
3296 	 * We need to ensure that requests are responded to in the correct
3297 	 * order and since the taskq is processed serially this ordering
3298 	 * is maintained.
3299 	 */
3300 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
3301 	    &task, DDI_SLEEP);
3302 
3303 	/*
3304 	 * To ensure handshake negotiations do not happen out of order, such
3305 	 * requests that come through this path should not be done in parallel
3306 	 * so we need to wait here until the response is sent to the client.
3307 	 */
3308 	ddi_taskq_wait(vd->completionq);
3309 
3310 	/* Arrange to reset the connection for nack'ed or failed messages */
3311 	if ((status != 0) || reset_ldc) {
3312 		PR0("initiating %s reset",
3313 		    (reset_ldc) ? "full" : "soft");
3314 		vd_need_reset(vd, reset_ldc);
3315 	}
3316 
3317 	return (status);
3318 }
3319 
3320 static boolean_t
3321 vd_enabled(vd_t *vd)
3322 {
3323 	boolean_t	enabled;
3324 
3325 	mutex_enter(&vd->lock);
3326 	enabled = vd->enabled;
3327 	mutex_exit(&vd->lock);
3328 	return (enabled);
3329 }
3330 
3331 static void
3332 vd_recv_msg(void *arg)
3333 {
3334 	vd_t	*vd = (vd_t *)arg;
3335 	int	rv = 0, status = 0;
3336 
3337 	ASSERT(vd != NULL);
3338 
3339 	PR2("New task to receive incoming message(s)");
3340 
3341 
3342 	while (vd_enabled(vd) && status == 0) {
3343 		size_t		msglen, msgsize;
3344 		ldc_status_t	lstatus;
3345 
3346 		/*
3347 		 * Receive and process a message
3348 		 */
3349 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
3350 
3351 		/*
3352 		 * check if channel is UP - else break out of loop
3353 		 */
3354 		status = ldc_status(vd->ldc_handle, &lstatus);
3355 		if (lstatus != LDC_UP) {
3356 			PR0("channel not up (status=%d), exiting recv loop\n",
3357 			    lstatus);
3358 			break;
3359 		}
3360 
3361 		ASSERT(vd->max_msglen != 0);
3362 
3363 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
3364 		msglen	= msgsize;	  /* actual len after recv_msg() */
3365 
3366 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
3367 		switch (status) {
3368 		case 0:
3369 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
3370 			    msglen);
3371 			/* check if max_msglen changed */
3372 			if (msgsize != vd->max_msglen) {
3373 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
3374 				    msgsize, vd->max_msglen);
3375 				kmem_free(vd->vio_msgp, msgsize);
3376 				vd->vio_msgp =
3377 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
3378 			}
3379 			if (rv == EINPROGRESS)
3380 				continue;
3381 			break;
3382 
3383 		case ENOMSG:
3384 			break;
3385 
3386 		case ECONNRESET:
3387 			PR0("initiating soft reset (ECONNRESET)\n");
3388 			vd_need_reset(vd, B_FALSE);
3389 			status = 0;
3390 			break;
3391 
3392 		default:
3393 			/* Probably an LDC failure; arrange to reset it */
3394 			PR0("initiating full reset (status=0x%x)", status);
3395 			vd_need_reset(vd, B_TRUE);
3396 			break;
3397 		}
3398 	}
3399 
3400 	PR2("Task finished");
3401 }
3402 
3403 static uint_t
3404 vd_handle_ldc_events(uint64_t event, caddr_t arg)
3405 {
3406 	vd_t	*vd = (vd_t *)(void *)arg;
3407 	int	status;
3408 
3409 	ASSERT(vd != NULL);
3410 
3411 	if (!vd_enabled(vd))
3412 		return (LDC_SUCCESS);
3413 
3414 	if (event & LDC_EVT_DOWN) {
3415 		PR0("LDC_EVT_DOWN: LDC channel went down");
3416 
3417 		vd_need_reset(vd, B_TRUE);
3418 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3419 		    DDI_SLEEP);
3420 		if (status == DDI_FAILURE) {
3421 			PR0("cannot schedule task to recv msg\n");
3422 			vd_need_reset(vd, B_TRUE);
3423 		}
3424 	}
3425 
3426 	if (event & LDC_EVT_RESET) {
3427 		PR0("LDC_EVT_RESET: LDC channel was reset");
3428 
3429 		if (vd->state != VD_STATE_INIT) {
3430 			PR0("scheduling full reset");
3431 			vd_need_reset(vd, B_FALSE);
3432 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3433 			    vd, DDI_SLEEP);
3434 			if (status == DDI_FAILURE) {
3435 				PR0("cannot schedule task to recv msg\n");
3436 				vd_need_reset(vd, B_TRUE);
3437 			}
3438 
3439 		} else {
3440 			PR0("channel already reset, ignoring...\n");
3441 			PR0("doing ldc up...\n");
3442 			(void) ldc_up(vd->ldc_handle);
3443 		}
3444 
3445 		return (LDC_SUCCESS);
3446 	}
3447 
3448 	if (event & LDC_EVT_UP) {
3449 		PR0("EVT_UP: LDC is up\nResetting client connection state");
3450 		PR0("initiating soft reset");
3451 		vd_need_reset(vd, B_FALSE);
3452 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3453 		    vd, DDI_SLEEP);
3454 		if (status == DDI_FAILURE) {
3455 			PR0("cannot schedule task to recv msg\n");
3456 			vd_need_reset(vd, B_TRUE);
3457 			return (LDC_SUCCESS);
3458 		}
3459 	}
3460 
3461 	if (event & LDC_EVT_READ) {
3462 		int	status;
3463 
3464 		PR1("New data available");
3465 		/* Queue a task to receive the new data */
3466 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3467 		    DDI_SLEEP);
3468 
3469 		if (status == DDI_FAILURE) {
3470 			PR0("cannot schedule task to recv msg\n");
3471 			vd_need_reset(vd, B_TRUE);
3472 		}
3473 	}
3474 
3475 	return (LDC_SUCCESS);
3476 }
3477 
3478 static uint_t
3479 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3480 {
3481 	_NOTE(ARGUNUSED(key, val))
3482 	(*((uint_t *)arg))++;
3483 	return (MH_WALK_TERMINATE);
3484 }
3485 
3486 
3487 static int
3488 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3489 {
3490 	uint_t	vd_present = 0;
3491 	minor_t	instance;
3492 	vds_t	*vds;
3493 
3494 
3495 	switch (cmd) {
3496 	case DDI_DETACH:
3497 		/* the real work happens below */
3498 		break;
3499 	case DDI_SUSPEND:
3500 		PR0("No action required for DDI_SUSPEND");
3501 		return (DDI_SUCCESS);
3502 	default:
3503 		PR0("Unrecognized \"cmd\"");
3504 		return (DDI_FAILURE);
3505 	}
3506 
3507 	ASSERT(cmd == DDI_DETACH);
3508 	instance = ddi_get_instance(dip);
3509 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3510 		PR0("Could not get state for instance %u", instance);
3511 		ddi_soft_state_free(vds_state, instance);
3512 		return (DDI_FAILURE);
3513 	}
3514 
3515 	/* Do no detach when serving any vdisks */
3516 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
3517 	if (vd_present) {
3518 		PR0("Not detaching because serving vdisks");
3519 		return (DDI_FAILURE);
3520 	}
3521 
3522 	PR0("Detaching");
3523 	if (vds->initialized & VDS_MDEG) {
3524 		(void) mdeg_unregister(vds->mdeg);
3525 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
3526 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
3527 		vds->ispecp = NULL;
3528 		vds->mdeg = NULL;
3529 	}
3530 
3531 	if (vds->initialized & VDS_LDI)
3532 		(void) ldi_ident_release(vds->ldi_ident);
3533 	mod_hash_destroy_hash(vds->vd_table);
3534 	ddi_soft_state_free(vds_state, instance);
3535 	return (DDI_SUCCESS);
3536 }
3537 
3538 static boolean_t
3539 is_pseudo_device(dev_info_t *dip)
3540 {
3541 	dev_info_t	*parent, *root = ddi_root_node();
3542 
3543 
3544 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
3545 	    parent = ddi_get_parent(parent)) {
3546 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
3547 			return (B_TRUE);
3548 	}
3549 
3550 	return (B_FALSE);
3551 }
3552 
3553 static int
3554 vd_setup_full_disk(vd_t *vd)
3555 {
3556 	int		rval, status;
3557 	major_t		major = getmajor(vd->dev[0]);
3558 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
3559 	struct dk_minfo	dk_minfo;
3560 
3561 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
3562 
3563 	/*
3564 	 * At this point, vdisk_size is set to the size of partition 2 but
3565 	 * this does not represent the size of the disk because partition 2
3566 	 * may not cover the entire disk and its size does not include reserved
3567 	 * blocks. So we update vdisk_size to be the size of the entire disk.
3568 	 */
3569 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
3570 	    (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL),
3571 	    kcred, &rval)) != 0) {
3572 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
3573 		    status);
3574 		return (status);
3575 	}
3576 	vd->vdisk_size = dk_minfo.dki_capacity;
3577 
3578 	/* Move dev number and LDI handle to entire-disk-slice array elements */
3579 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
3580 	vd->dev[0]				= 0;
3581 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
3582 	vd->ldi_handle[0]			= NULL;
3583 
3584 	/* Initialize device numbers for remaining slices and open them */
3585 	for (int slice = 0; slice < vd->nslices; slice++) {
3586 		/*
3587 		 * Skip the entire-disk slice, as it's already open and its
3588 		 * device known
3589 		 */
3590 		if (slice == VD_ENTIRE_DISK_SLICE)
3591 			continue;
3592 		ASSERT(vd->dev[slice] == 0);
3593 		ASSERT(vd->ldi_handle[slice] == NULL);
3594 
3595 		/*
3596 		 * Construct the device number for the current slice
3597 		 */
3598 		vd->dev[slice] = makedevice(major, (minor + slice));
3599 
3600 		/*
3601 		 * Open all slices of the disk to serve them to the client.
3602 		 * Slices are opened exclusively to prevent other threads or
3603 		 * processes in the service domain from performing I/O to
3604 		 * slices being accessed by a client.  Failure to open a slice
3605 		 * results in vds not serving this disk, as the client could
3606 		 * attempt (and should be able) to access any slice immediately.
3607 		 * Any slices successfully opened before a failure will get
3608 		 * closed by vds_destroy_vd() as a result of the error returned
3609 		 * by this function.
3610 		 *
3611 		 * We need to do the open with FNDELAY so that opening an empty
3612 		 * slice does not fail.
3613 		 */
3614 		PR0("Opening device major %u, minor %u = slice %u",
3615 		    major, minor, slice);
3616 
3617 		/*
3618 		 * Try to open the device. This can fail for example if we are
3619 		 * opening an empty slice. So in case of a failure, we try the
3620 		 * open again but this time with the FNDELAY flag.
3621 		 */
3622 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3623 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
3624 		    vd->vds->ldi_ident);
3625 
3626 		if (status != 0) {
3627 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3628 			    vd->open_flags | FNDELAY, kcred,
3629 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
3630 		}
3631 
3632 		if (status != 0) {
3633 			PRN("ldi_open_by_dev() returned errno %d "
3634 			    "for slice %u", status, slice);
3635 			/* vds_destroy_vd() will close any open slices */
3636 			vd->ldi_handle[slice] = NULL;
3637 			return (status);
3638 		}
3639 	}
3640 
3641 	return (0);
3642 }
3643 
3644 static int
3645 vd_setup_partition_vtoc(vd_t *vd)
3646 {
3647 	int rval, status;
3648 	char *device_path = vd->device_path;
3649 
3650 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
3651 	    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), kcred, &rval);
3652 
3653 	if (status != 0) {
3654 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
3655 		    status, device_path);
3656 		return (status);
3657 	}
3658 
3659 	/* Initialize dk_geom structure for single-slice device */
3660 	if (vd->dk_geom.dkg_nsect == 0) {
3661 		PRN("%s geometry claims 0 sectors per track", device_path);
3662 		return (EIO);
3663 	}
3664 	if (vd->dk_geom.dkg_nhead == 0) {
3665 		PRN("%s geometry claims 0 heads", device_path);
3666 		return (EIO);
3667 	}
3668 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / vd->dk_geom.dkg_nsect /
3669 	    vd->dk_geom.dkg_nhead;
3670 	vd->dk_geom.dkg_acyl = 0;
3671 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
3672 
3673 
3674 	/* Initialize vtoc structure for single-slice device */
3675 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3676 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3677 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3678 	vd->vtoc.v_nparts = 1;
3679 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3680 	vd->vtoc.v_part[0].p_flag = 0;
3681 	vd->vtoc.v_part[0].p_start = 0;
3682 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3683 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3684 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3685 
3686 	return (0);
3687 }
3688 
3689 static int
3690 vd_setup_partition_efi(vd_t *vd)
3691 {
3692 	efi_gpt_t *gpt;
3693 	efi_gpe_t *gpe;
3694 	struct uuid uuid = EFI_RESERVED;
3695 	uint32_t crc;
3696 	int length;
3697 
3698 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
3699 
3700 	gpt = kmem_zalloc(length, KM_SLEEP);
3701 	gpe = (efi_gpe_t *)(gpt + 1);
3702 
3703 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
3704 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
3705 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
3706 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
3707 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
3708 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
3709 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
3710 
3711 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
3712 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
3713 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
3714 
3715 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
3716 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
3717 
3718 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
3719 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
3720 
3721 	vd->dk_efi.dki_lba = 0;
3722 	vd->dk_efi.dki_length = length;
3723 	vd->dk_efi.dki_data = gpt;
3724 
3725 	return (0);
3726 }
3727 
3728 /*
3729  * Setup for a virtual disk whose backend is a file (exported as a single slice
3730  * or as a full disk) or a pseudo device (for example a ZFS, SVM or VxVM volume)
3731  * exported as a full disk. In these cases, the backend is accessed using the
3732  * vnode interface.
3733  */
3734 static int
3735 vd_setup_backend_vnode(vd_t *vd)
3736 {
3737 	int 		rval, status;
3738 	vattr_t		vattr;
3739 	dev_t		dev;
3740 	char		*file_path = vd->device_path;
3741 	char		dev_path[MAXPATHLEN + 1];
3742 	ldi_handle_t	lhandle;
3743 	struct dk_cinfo	dk_cinfo;
3744 
3745 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
3746 	    0, &vd->file_vnode, 0, 0)) != 0) {
3747 		PRN("vn_open(%s) = errno %d", file_path, status);
3748 		return (status);
3749 	}
3750 
3751 	/*
3752 	 * We set vd->file now so that vds_destroy_vd will take care of
3753 	 * closing the file and releasing the vnode in case of an error.
3754 	 */
3755 	vd->file = B_TRUE;
3756 
3757 	vattr.va_mask = AT_SIZE;
3758 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred)) != 0) {
3759 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
3760 		return (EIO);
3761 	}
3762 
3763 	vd->file_size = vattr.va_size;
3764 	/* size should be at least sizeof(dk_label) */
3765 	if (vd->file_size < sizeof (struct dk_label)) {
3766 		PRN("Size of file has to be at least %ld bytes",
3767 		    sizeof (struct dk_label));
3768 		return (EIO);
3769 	}
3770 
3771 	if (vd->file_vnode->v_flag & VNOMAP) {
3772 		PRN("File %s cannot be mapped", file_path);
3773 		return (EIO);
3774 	}
3775 
3776 	/*
3777 	 * Find and validate the geometry of a disk image. For a single slice
3778 	 * disk image, this will build a fake geometry and vtoc.
3779 	 */
3780 	status = vd_file_validate_geometry(vd);
3781 	if (status != 0 && status != EINVAL) {
3782 		PRN("Fail to read label from %s", file_path);
3783 		return (EIO);
3784 	}
3785 
3786 	/* sector size = block size = DEV_BSIZE */
3787 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
3788 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
3789 
3790 	/*
3791 	 * Get max_xfer_sz from the device where the file is or from the device
3792 	 * itself if we have a pseudo device.
3793 	 */
3794 	dev_path[0] = '\0';
3795 
3796 	if (vd->pseudo) {
3797 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
3798 		    vd->vds->ldi_ident);
3799 	} else {
3800 		dev = vd->file_vnode->v_vfsp->vfs_dev;
3801 		if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
3802 			PR0("underlying device = %s\n", dev_path);
3803 		}
3804 
3805 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
3806 		    vd->vds->ldi_ident);
3807 	}
3808 
3809 	if (status != 0) {
3810 		PR0("ldi_open() returned errno %d for device %s",
3811 		    status, (dev_path[0] == '\0')? file_path : dev_path);
3812 	} else {
3813 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
3814 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
3815 		    &rval)) != 0) {
3816 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3817 			    status, dev_path);
3818 		} else {
3819 			/*
3820 			 * Store the device's max transfer size for
3821 			 * return to the client
3822 			 */
3823 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3824 		}
3825 
3826 		PR0("close the device %s", dev_path);
3827 		(void) ldi_close(lhandle, FREAD, kcred);
3828 	}
3829 
3830 	PR0("using file %s, dev %s, max_xfer = %u blks",
3831 	    file_path, dev_path, vd->max_xfer_sz);
3832 
3833 	/* Setup devid for the disk image */
3834 
3835 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
3836 		return (0);
3837 
3838 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3839 
3840 		status = vd_file_read_devid(vd, &vd->file_devid);
3841 
3842 		if (status == 0) {
3843 			/* a valid devid was found */
3844 			return (0);
3845 		}
3846 
3847 		if (status != EINVAL) {
3848 			/*
3849 			 * There was an error while trying to read the devid.
3850 			 * So this disk image may have a devid but we are
3851 			 * unable to read it.
3852 			 */
3853 			PR0("can not read devid for %s", file_path);
3854 			vd->file_devid = NULL;
3855 			return (0);
3856 		}
3857 	}
3858 
3859 	/*
3860 	 * No valid device id was found so we create one. Note that a failure
3861 	 * to create a device id is not fatal and does not prevent the disk
3862 	 * image from being attached.
3863 	 */
3864 	PR1("creating devid for %s", file_path);
3865 
3866 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
3867 	    &vd->file_devid) != DDI_SUCCESS) {
3868 		PR0("fail to create devid for %s", file_path);
3869 		vd->file_devid = NULL;
3870 		return (0);
3871 	}
3872 
3873 	/*
3874 	 * Write devid to the disk image. The devid is stored into the disk
3875 	 * image if we have a valid label; otherwise the devid will be stored
3876 	 * when the user writes a valid label.
3877 	 */
3878 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
3879 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
3880 			PR0("fail to write devid for %s", file_path);
3881 			ddi_devid_free(vd->file_devid);
3882 			vd->file_devid = NULL;
3883 		}
3884 	}
3885 
3886 	return (0);
3887 }
3888 
3889 /*
3890  * Setup for a virtual disk which backend is a device (a physical disk,
3891  * slice or pseudo device) that is directly exported either as a full disk
3892  * for a physical disk or as a slice for a pseudo device or a disk slice.
3893  * In these cases, the backend is accessed using the LDI interface.
3894  */
3895 static int
3896 vd_setup_backend_ldi(vd_t *vd)
3897 {
3898 	int		rval, status;
3899 	struct dk_cinfo	dk_cinfo;
3900 	char		*device_path = vd->device_path;
3901 
3902 	/*
3903 	 * Try to open the device. This can fail for example if we are opening
3904 	 * an empty slice. So in case of a failure, we try the open again but
3905 	 * this time with the FNDELAY flag.
3906 	 */
3907 	status = ldi_open_by_name(device_path, vd->open_flags, kcred,
3908 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
3909 
3910 	if (status != 0)
3911 		status = ldi_open_by_name(device_path, vd->open_flags | FNDELAY,
3912 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
3913 
3914 	if (status != 0) {
3915 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
3916 		vd->ldi_handle[0] = NULL;
3917 		return (status);
3918 	}
3919 
3920 	vd->file = B_FALSE;
3921 
3922 	/* Get device number of backing device */
3923 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
3924 		PRN("ldi_get_dev() returned errno %d for %s",
3925 		    status, device_path);
3926 		return (status);
3927 	}
3928 
3929 	/* Verify backing device supports dk_cinfo */
3930 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
3931 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
3932 	    &rval)) != 0) {
3933 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
3934 		    status, device_path);
3935 		return (status);
3936 	}
3937 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
3938 		PRN("slice %u >= maximum slice %u for %s",
3939 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
3940 		return (EIO);
3941 	}
3942 
3943 	vd->vdisk_label = vd_read_vtoc(vd, &vd->vtoc);
3944 
3945 	/* Store the device's max transfer size for return to the client */
3946 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
3947 
3948 	/*
3949 	 * Export a full disk.
3950 	 *
3951 	 * When we use the LDI interface, we export a device as a full disk
3952 	 * if we have an entire disk slice (slice 2) and if this slice is
3953 	 * exported as a full disk and not as a single slice disk.
3954 	 *
3955 	 * Note that pseudo devices are exported as full disks using the vnode
3956 	 * interface, not the LDI interface.
3957 	 */
3958 	if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
3959 	    vd->vdisk_type == VD_DISK_TYPE_DISK) {
3960 		ASSERT(!vd->pseudo);
3961 		return (vd_setup_full_disk(vd));
3962 	}
3963 
3964 	/*
3965 	 * Export a single slice disk.
3966 	 *
3967 	 * The exported device can be either a pseudo device or a disk slice. If
3968 	 * it is a disk slice different from slice 2 then it is always exported
3969 	 * as a single slice disk even if the "slice" option is not specified.
3970 	 * If it is disk slice 2 or a pseudo device then it is exported as a
3971 	 * single slice disk only if the "slice" option is specified.
3972 	 */
3973 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE ||
3974 	    dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE);
3975 	return (vd_setup_single_slice_disk(vd));
3976 }
3977 
3978 static int
3979 vd_setup_single_slice_disk(vd_t *vd)
3980 {
3981 	int status;
3982 	char *device_path = vd->device_path;
3983 
3984 	/* Get size of backing device */
3985 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
3986 		PRN("ldi_get_size() failed for %s", device_path);
3987 		return (EIO);
3988 	}
3989 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
3990 
3991 	if (vd->pseudo) {
3992 
3993 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
3994 
3995 		/*
3996 		 * Currently we only support exporting pseudo devices which
3997 		 * provide a valid disk label.
3998 		 */
3999 		if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
4000 			PRN("%s is a pseudo device with an invalid disk "
4001 			    "label\n", device_path);
4002 			return (EINVAL);
4003 		}
4004 		return (0);	/* ...and we're done */
4005 	}
4006 
4007 	/* We can only export a slice if the disk has a valid label */
4008 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
4009 		PRN("%s is a slice from a disk with an unknown disk label\n",
4010 		    device_path);
4011 		return (EINVAL);
4012 	}
4013 
4014 	/*
4015 	 * We export the slice as a single slice disk even if the "slice"
4016 	 * option was not specified.
4017 	 */
4018 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
4019 	vd->nslices	= 1;
4020 
4021 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
4022 		/* Slice from a disk with an EFI label */
4023 		status = vd_setup_partition_efi(vd);
4024 	} else {
4025 		/* Slice from a disk with a VTOC label */
4026 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
4027 		status = vd_setup_partition_vtoc(vd);
4028 	}
4029 
4030 	return (status);
4031 }
4032 
4033 static int
4034 vd_setup_vd(vd_t *vd)
4035 {
4036 	int		status;
4037 	dev_info_t	*dip;
4038 	vnode_t 	*vnp;
4039 	char		*path = vd->device_path;
4040 
4041 	/* make sure the vdisk backend is valid */
4042 	if ((status = lookupname(path, UIO_SYSSPACE,
4043 	    FOLLOW, NULLVPP, &vnp)) != 0) {
4044 		PR0("Cannot lookup %s errno %d", path, status);
4045 		goto done;
4046 	}
4047 
4048 	switch (vnp->v_type) {
4049 	case VREG:
4050 		/*
4051 		 * Backend is a file so it is exported as a full disk or as a
4052 		 * single slice disk using the vnode interface.
4053 		 */
4054 		VN_RELE(vnp);
4055 		vd->pseudo = B_FALSE;
4056 		status = vd_setup_backend_vnode(vd);
4057 		break;
4058 
4059 	case VBLK:
4060 	case VCHR:
4061 		/*
4062 		 * Backend is a device. The way it is exported depends on the
4063 		 * type of the device.
4064 		 *
4065 		 * - A pseudo device is exported as a full disk using the vnode
4066 		 *   interface or as a single slice disk using the LDI
4067 		 *   interface.
4068 		 *
4069 		 * - A disk (represented by the slice 2 of that disk) is
4070 		 *   exported as a full disk using the LDI interface.
4071 		 *
4072 		 * - A disk slice (different from slice 2) is always exported
4073 		 *   as a single slice disk using the LDI interface.
4074 		 *
4075 		 * - The slice 2 of a disk is exported as a single slice disk
4076 		 *   if the "slice" option is specified, otherwise the entire
4077 		 *   disk will be exported. In any case, the LDI interface is
4078 		 *   used.
4079 		 */
4080 
4081 		/* check if this is a pseudo device */
4082 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
4083 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
4084 			PRN("%s is no longer accessible", path);
4085 			VN_RELE(vnp);
4086 			status = EIO;
4087 			break;
4088 		}
4089 		vd->pseudo = is_pseudo_device(dip);
4090 		ddi_release_devi(dip);
4091 		VN_RELE(vnp);
4092 
4093 		/*
4094 		 * If this is a pseudo device then its usage depends if the
4095 		 * "slice" option is set or not. If the "slice" option is set
4096 		 * then the pseudo device will be exported as a single slice,
4097 		 * otherwise it will be exported as a full disk.
4098 		 */
4099 		if (vd->pseudo && vd->vdisk_type == VD_DISK_TYPE_DISK)
4100 			status = vd_setup_backend_vnode(vd);
4101 		else
4102 			status = vd_setup_backend_ldi(vd);
4103 		break;
4104 
4105 	default:
4106 		PRN("Unsupported vdisk backend %s", path);
4107 		VN_RELE(vnp);
4108 		status = EBADF;
4109 	}
4110 
4111 done:
4112 	if (status != 0) {
4113 		/*
4114 		 * If the error is retryable print an error message only
4115 		 * during the first try.
4116 		 */
4117 		if (status == ENXIO || status == ENODEV ||
4118 		    status == ENOENT || status == EROFS) {
4119 			if (!(vd->initialized & VD_SETUP_ERROR)) {
4120 				PRN("%s is currently inaccessible (error %d)",
4121 				    path, status);
4122 			}
4123 			status = EAGAIN;
4124 		} else {
4125 			PRN("%s can not be exported as a virtual disk "
4126 			    "(error %d)", path, status);
4127 		}
4128 		vd->initialized |= VD_SETUP_ERROR;
4129 
4130 	} else if (vd->initialized & VD_SETUP_ERROR) {
4131 		/* print a message only if we previously had an error */
4132 		PRN("%s is now online", path);
4133 		vd->initialized &= ~VD_SETUP_ERROR;
4134 	}
4135 
4136 	return (status);
4137 }
4138 
4139 static int
4140 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
4141     uint64_t ldc_id, vd_t **vdp)
4142 {
4143 	char			tq_name[TASKQ_NAMELEN];
4144 	int			status;
4145 	ddi_iblock_cookie_t	iblock = NULL;
4146 	ldc_attr_t		ldc_attr;
4147 	vd_t			*vd;
4148 
4149 
4150 	ASSERT(vds != NULL);
4151 	ASSERT(device_path != NULL);
4152 	ASSERT(vdp != NULL);
4153 	PR0("Adding vdisk for %s", device_path);
4154 
4155 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
4156 		PRN("No memory for virtual disk");
4157 		return (EAGAIN);
4158 	}
4159 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
4160 	vd->vds = vds;
4161 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
4162 
4163 	/* Setup open flags */
4164 	vd->open_flags = FREAD;
4165 
4166 	if (!(options & VD_OPT_RDONLY))
4167 		vd->open_flags |= FWRITE;
4168 
4169 	if (options & VD_OPT_EXCLUSIVE)
4170 		vd->open_flags |= FEXCL;
4171 
4172 	/* Setup disk type */
4173 	if (options & VD_OPT_SLICE) {
4174 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
4175 		vd->nslices = 1;
4176 	} else {
4177 		vd->vdisk_type = VD_DISK_TYPE_DISK;
4178 		vd->nslices = V_NUMPAR;
4179 	}
4180 
4181 	/* default disk label */
4182 	vd->vdisk_label = VD_DISK_LABEL_UNK;
4183 
4184 	/* Open vdisk and initialize parameters */
4185 	if ((status = vd_setup_vd(vd)) == 0) {
4186 		vd->initialized |= VD_DISK_READY;
4187 
4188 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4189 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
4190 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4191 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
4192 		    vd->nslices);
4193 	} else {
4194 		if (status != EAGAIN)
4195 			return (status);
4196 	}
4197 
4198 	/* Initialize locking */
4199 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
4200 	    &iblock) != DDI_SUCCESS) {
4201 		PRN("Could not get iblock cookie.");
4202 		return (EIO);
4203 	}
4204 
4205 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
4206 	vd->initialized |= VD_LOCKING;
4207 
4208 
4209 	/* Create start and completion task queues for the vdisk */
4210 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
4211 	PR1("tq_name = %s", tq_name);
4212 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
4213 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
4214 		PRN("Could not create task queue");
4215 		return (EIO);
4216 	}
4217 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
4218 	PR1("tq_name = %s", tq_name);
4219 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
4220 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
4221 		PRN("Could not create task queue");
4222 		return (EIO);
4223 	}
4224 	vd->enabled = 1;	/* before callback can dispatch to startq */
4225 
4226 
4227 	/* Bring up LDC */
4228 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
4229 	ldc_attr.instance	= ddi_get_instance(vds->dip);
4230 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
4231 	ldc_attr.mtu		= VD_LDC_MTU;
4232 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
4233 		PRN("Could not initialize LDC channel %lu, "
4234 		    "init failed with error %d", ldc_id, status);
4235 		return (status);
4236 	}
4237 	vd->initialized |= VD_LDC;
4238 
4239 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
4240 	    (caddr_t)vd)) != 0) {
4241 		PRN("Could not initialize LDC channel %lu,"
4242 		    "reg_callback failed with error %d", ldc_id, status);
4243 		return (status);
4244 	}
4245 
4246 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
4247 		PRN("Could not initialize LDC channel %lu,"
4248 		    "open failed with error %d", ldc_id, status);
4249 		return (status);
4250 	}
4251 
4252 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
4253 		PR0("ldc_up() returned errno %d", status);
4254 	}
4255 
4256 	/* Allocate the inband task memory handle */
4257 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
4258 	if (status) {
4259 		PRN("Could not initialize LDC channel %lu,"
4260 		    "alloc_handle failed with error %d", ldc_id, status);
4261 		return (ENXIO);
4262 	}
4263 
4264 	/* Add the successfully-initialized vdisk to the server's table */
4265 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
4266 		PRN("Error adding vdisk ID %lu to table", id);
4267 		return (EIO);
4268 	}
4269 
4270 	/* Allocate the staging buffer */
4271 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
4272 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
4273 
4274 	/* store initial state */
4275 	vd->state = VD_STATE_INIT;
4276 
4277 	return (0);
4278 }
4279 
4280 static void
4281 vd_free_dring_task(vd_t *vdp)
4282 {
4283 	if (vdp->dring_task != NULL) {
4284 		ASSERT(vdp->dring_len != 0);
4285 		/* Free all dring_task memory handles */
4286 		for (int i = 0; i < vdp->dring_len; i++) {
4287 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
4288 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
4289 			vdp->dring_task[i].msg = NULL;
4290 		}
4291 		kmem_free(vdp->dring_task,
4292 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
4293 		vdp->dring_task = NULL;
4294 	}
4295 }
4296 
4297 /*
4298  * Destroy the state associated with a virtual disk
4299  */
4300 static void
4301 vds_destroy_vd(void *arg)
4302 {
4303 	vd_t	*vd = (vd_t *)arg;
4304 	int	retry = 0, rv;
4305 
4306 	if (vd == NULL)
4307 		return;
4308 
4309 	PR0("Destroying vdisk state");
4310 
4311 	if (vd->dk_efi.dki_data != NULL)
4312 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
4313 
4314 	/* Disable queuing requests for the vdisk */
4315 	if (vd->initialized & VD_LOCKING) {
4316 		mutex_enter(&vd->lock);
4317 		vd->enabled = 0;
4318 		mutex_exit(&vd->lock);
4319 	}
4320 
4321 	/* Drain and destroy start queue (*before* destroying completionq) */
4322 	if (vd->startq != NULL)
4323 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
4324 
4325 	/* Drain and destroy completion queue (*before* shutting down LDC) */
4326 	if (vd->completionq != NULL)
4327 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
4328 
4329 	vd_free_dring_task(vd);
4330 
4331 	/* Free the inband task memory handle */
4332 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
4333 
4334 	/* Shut down LDC */
4335 	if (vd->initialized & VD_LDC) {
4336 		/* unmap the dring */
4337 		if (vd->initialized & VD_DRING)
4338 			(void) ldc_mem_dring_unmap(vd->dring_handle);
4339 
4340 		/* close LDC channel - retry on EAGAIN */
4341 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
4342 			if (++retry > vds_ldc_retries) {
4343 				PR0("Timed out closing channel");
4344 				break;
4345 			}
4346 			drv_usecwait(vds_ldc_delay);
4347 		}
4348 		if (rv == 0) {
4349 			(void) ldc_unreg_callback(vd->ldc_handle);
4350 			(void) ldc_fini(vd->ldc_handle);
4351 		} else {
4352 			/*
4353 			 * Closing the LDC channel has failed. Ideally we should
4354 			 * fail here but there is no Zeus level infrastructure
4355 			 * to handle this. The MD has already been changed and
4356 			 * we have to do the close. So we try to do as much
4357 			 * clean up as we can.
4358 			 */
4359 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
4360 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
4361 				drv_usecwait(vds_ldc_delay);
4362 		}
4363 	}
4364 
4365 	/* Free the staging buffer for msgs */
4366 	if (vd->vio_msgp != NULL) {
4367 		kmem_free(vd->vio_msgp, vd->max_msglen);
4368 		vd->vio_msgp = NULL;
4369 	}
4370 
4371 	/* Free the inband message buffer */
4372 	if (vd->inband_task.msg != NULL) {
4373 		kmem_free(vd->inband_task.msg, vd->max_msglen);
4374 		vd->inband_task.msg = NULL;
4375 	}
4376 	if (vd->file) {
4377 		/* Close file */
4378 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
4379 		    0, kcred);
4380 		VN_RELE(vd->file_vnode);
4381 		if (vd->file_devid != NULL)
4382 			ddi_devid_free(vd->file_devid);
4383 	} else {
4384 		/* Close any open backing-device slices */
4385 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
4386 			if (vd->ldi_handle[slice] != NULL) {
4387 				PR0("Closing slice %u", slice);
4388 				(void) ldi_close(vd->ldi_handle[slice],
4389 				    vd->open_flags, kcred);
4390 			}
4391 		}
4392 	}
4393 
4394 	/* Free lock */
4395 	if (vd->initialized & VD_LOCKING)
4396 		mutex_destroy(&vd->lock);
4397 
4398 	/* Finally, free the vdisk structure itself */
4399 	kmem_free(vd, sizeof (*vd));
4400 }
4401 
4402 static int
4403 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
4404     uint64_t ldc_id)
4405 {
4406 	int	status;
4407 	vd_t	*vd = NULL;
4408 
4409 
4410 	if ((status = vds_do_init_vd(vds, id, device_path, options,
4411 	    ldc_id, &vd)) != 0)
4412 		vds_destroy_vd(vd);
4413 
4414 	return (status);
4415 }
4416 
4417 static int
4418 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
4419     uint64_t *ldc_id)
4420 {
4421 	int	num_channels;
4422 
4423 
4424 	/* Look for channel endpoint child(ren) of the vdisk MD node */
4425 	if ((num_channels = md_scan_dag(md, vd_node,
4426 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
4427 	    md_find_name(md, "fwd"), channel)) <= 0) {
4428 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
4429 		return (-1);
4430 	}
4431 
4432 	/* Get the "id" value for the first channel endpoint node */
4433 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
4434 		PRN("No \"%s\" property found for \"%s\" of vdisk",
4435 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
4436 		return (-1);
4437 	}
4438 
4439 	if (num_channels > 1) {
4440 		PRN("Using ID of first of multiple channels for this vdisk");
4441 	}
4442 
4443 	return (0);
4444 }
4445 
4446 static int
4447 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
4448 {
4449 	int		num_nodes, status;
4450 	size_t		size;
4451 	mde_cookie_t	*channel;
4452 
4453 
4454 	if ((num_nodes = md_node_count(md)) <= 0) {
4455 		PRN("Invalid node count in Machine Description subtree");
4456 		return (-1);
4457 	}
4458 	size = num_nodes*(sizeof (*channel));
4459 	channel = kmem_zalloc(size, KM_SLEEP);
4460 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
4461 	kmem_free(channel, size);
4462 
4463 	return (status);
4464 }
4465 
4466 /*
4467  * Function:
4468  *	vds_get_options
4469  *
4470  * Description:
4471  * 	Parse the options of a vds node. Options are defined as an array
4472  *	of strings in the vds-block-device-opts property of the vds node
4473  *	in the machine description. Options are returned as a bitmask. The
4474  *	mapping between the bitmask options and the options strings from the
4475  *	machine description is defined in the vd_bdev_options[] array.
4476  *
4477  *	The vds-block-device-opts property is optional. If a vds has no such
4478  *	property then no option is defined.
4479  *
4480  * Parameters:
4481  *	md		- machine description.
4482  *	vd_node		- vds node in the machine description for which
4483  *			  options have to be parsed.
4484  *	options		- the returned options.
4485  *
4486  * Return Code:
4487  *	none.
4488  */
4489 static void
4490 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
4491 {
4492 	char	*optstr, *opt;
4493 	int	len, n, i;
4494 
4495 	*options = 0;
4496 
4497 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
4498 	    (uint8_t **)&optstr, &len) != 0) {
4499 		PR0("No options found");
4500 		return;
4501 	}
4502 
4503 	/* parse options */
4504 	opt = optstr;
4505 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
4506 
4507 	while (opt < optstr + len) {
4508 		for (i = 0; i < n; i++) {
4509 			if (strncmp(vd_bdev_options[i].vdo_name,
4510 			    opt, VD_OPTION_NLEN) == 0) {
4511 				*options |= vd_bdev_options[i].vdo_value;
4512 				break;
4513 			}
4514 		}
4515 
4516 		if (i < n) {
4517 			PR0("option: %s", opt);
4518 		} else {
4519 			PRN("option %s is unknown or unsupported", opt);
4520 		}
4521 
4522 		opt += strlen(opt) + 1;
4523 	}
4524 }
4525 
4526 static void
4527 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4528 {
4529 	char		*device_path = NULL;
4530 	uint64_t	id = 0, ldc_id = 0, options = 0;
4531 
4532 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4533 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
4534 		return;
4535 	}
4536 	PR0("Adding vdisk ID %lu", id);
4537 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
4538 	    &device_path) != 0) {
4539 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4540 		return;
4541 	}
4542 
4543 	vds_get_options(md, vd_node, &options);
4544 
4545 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
4546 		PRN("Error getting LDC ID for vdisk %lu", id);
4547 		return;
4548 	}
4549 
4550 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
4551 		PRN("Failed to add vdisk ID %lu", id);
4552 		return;
4553 	}
4554 }
4555 
4556 static void
4557 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4558 {
4559 	uint64_t	id = 0;
4560 
4561 
4562 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4563 		PRN("Unable to get \"%s\" property from vdisk's MD node",
4564 		    VD_ID_PROP);
4565 		return;
4566 	}
4567 	PR0("Removing vdisk ID %lu", id);
4568 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
4569 		PRN("No vdisk entry found for vdisk ID %lu", id);
4570 }
4571 
4572 static void
4573 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
4574     md_t *curr_md, mde_cookie_t curr_vd_node)
4575 {
4576 	char		*curr_dev, *prev_dev;
4577 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
4578 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
4579 	size_t		len;
4580 
4581 
4582 	/* Validate that vdisk ID has not changed */
4583 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
4584 		PRN("Error getting previous vdisk \"%s\" property",
4585 		    VD_ID_PROP);
4586 		return;
4587 	}
4588 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
4589 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
4590 		return;
4591 	}
4592 	if (curr_id != prev_id) {
4593 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
4594 		    prev_id, curr_id);
4595 		return;
4596 	}
4597 
4598 	/* Validate that LDC ID has not changed */
4599 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
4600 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
4601 		return;
4602 	}
4603 
4604 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
4605 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
4606 		return;
4607 	}
4608 	if (curr_ldc_id != prev_ldc_id) {
4609 		_NOTE(NOTREACHED);	/* lint is confused */
4610 		PRN("Not changing vdisk:  "
4611 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
4612 		return;
4613 	}
4614 
4615 	/* Determine whether device path has changed */
4616 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
4617 	    &prev_dev) != 0) {
4618 		PRN("Error getting previous vdisk \"%s\"",
4619 		    VD_BLOCK_DEVICE_PROP);
4620 		return;
4621 	}
4622 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
4623 	    &curr_dev) != 0) {
4624 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4625 		return;
4626 	}
4627 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
4628 	    (strncmp(curr_dev, prev_dev, len) == 0))
4629 		return;	/* no relevant (supported) change */
4630 
4631 	/* Validate that options have not changed */
4632 	vds_get_options(prev_md, prev_vd_node, &prev_options);
4633 	vds_get_options(curr_md, curr_vd_node, &curr_options);
4634 	if (prev_options != curr_options) {
4635 		PRN("Not changing vdisk:  options changed from %lx to %lx",
4636 		    prev_options, curr_options);
4637 		return;
4638 	}
4639 
4640 	PR0("Changing vdisk ID %lu", prev_id);
4641 
4642 	/* Remove old state, which will close vdisk and reset */
4643 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
4644 		PRN("No entry found for vdisk ID %lu", prev_id);
4645 
4646 	/* Re-initialize vdisk with new state */
4647 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
4648 	    curr_ldc_id) != 0) {
4649 		PRN("Failed to change vdisk ID %lu", curr_id);
4650 		return;
4651 	}
4652 }
4653 
4654 static int
4655 vds_process_md(void *arg, mdeg_result_t *md)
4656 {
4657 	int	i;
4658 	vds_t	*vds = arg;
4659 
4660 
4661 	if (md == NULL)
4662 		return (MDEG_FAILURE);
4663 	ASSERT(vds != NULL);
4664 
4665 	for (i = 0; i < md->removed.nelem; i++)
4666 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
4667 	for (i = 0; i < md->match_curr.nelem; i++)
4668 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
4669 		    md->match_curr.mdp, md->match_curr.mdep[i]);
4670 	for (i = 0; i < md->added.nelem; i++)
4671 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
4672 
4673 	return (MDEG_SUCCESS);
4674 }
4675 
4676 
4677 static int
4678 vds_do_attach(dev_info_t *dip)
4679 {
4680 	int			status, sz;
4681 	int			cfg_handle;
4682 	minor_t			instance = ddi_get_instance(dip);
4683 	vds_t			*vds;
4684 	mdeg_prop_spec_t	*pspecp;
4685 	mdeg_node_spec_t	*ispecp;
4686 
4687 	/*
4688 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
4689 	 * notion of "instance", or unique identifier, for that node; OBP
4690 	 * stores the value of the "cfg-handle" MD property as the value of
4691 	 * the "reg" property on the node in the device tree it builds from
4692 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
4693 	 * "reg" property value to uniquely identify this device instance when
4694 	 * registering with the MD event-generation framework.  If the "reg"
4695 	 * property cannot be found, the device tree state is presumably so
4696 	 * broken that there is no point in continuing.
4697 	 */
4698 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4699 	    VD_REG_PROP)) {
4700 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
4701 		return (DDI_FAILURE);
4702 	}
4703 
4704 	/* Get the MD instance for later MDEG registration */
4705 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
4706 	    VD_REG_PROP, -1);
4707 
4708 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
4709 		PRN("Could not allocate state for instance %u", instance);
4710 		return (DDI_FAILURE);
4711 	}
4712 
4713 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
4714 		PRN("Could not get state for instance %u", instance);
4715 		ddi_soft_state_free(vds_state, instance);
4716 		return (DDI_FAILURE);
4717 	}
4718 
4719 	vds->dip	= dip;
4720 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
4721 	    vds_destroy_vd, sizeof (void *));
4722 
4723 	ASSERT(vds->vd_table != NULL);
4724 
4725 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
4726 		PRN("ldi_ident_from_dip() returned errno %d", status);
4727 		return (DDI_FAILURE);
4728 	}
4729 	vds->initialized |= VDS_LDI;
4730 
4731 	/* Register for MD updates */
4732 	sz = sizeof (vds_prop_template);
4733 	pspecp = kmem_alloc(sz, KM_SLEEP);
4734 	bcopy(vds_prop_template, pspecp, sz);
4735 
4736 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
4737 
4738 	/* initialize the complete prop spec structure */
4739 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
4740 	ispecp->namep = "virtual-device";
4741 	ispecp->specp = pspecp;
4742 
4743 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
4744 	    &vds->mdeg) != MDEG_SUCCESS) {
4745 		PRN("Unable to register for MD updates");
4746 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
4747 		kmem_free(pspecp, sz);
4748 		return (DDI_FAILURE);
4749 	}
4750 
4751 	vds->ispecp = ispecp;
4752 	vds->initialized |= VDS_MDEG;
4753 
4754 	/* Prevent auto-detaching so driver is available whenever MD changes */
4755 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
4756 	    DDI_PROP_SUCCESS) {
4757 		PRN("failed to set \"%s\" property for instance %u",
4758 		    DDI_NO_AUTODETACH, instance);
4759 	}
4760 
4761 	ddi_report_dev(dip);
4762 	return (DDI_SUCCESS);
4763 }
4764 
4765 static int
4766 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
4767 {
4768 	int	status;
4769 
4770 	switch (cmd) {
4771 	case DDI_ATTACH:
4772 		PR0("Attaching");
4773 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
4774 			(void) vds_detach(dip, DDI_DETACH);
4775 		return (status);
4776 	case DDI_RESUME:
4777 		PR0("No action required for DDI_RESUME");
4778 		return (DDI_SUCCESS);
4779 	default:
4780 		return (DDI_FAILURE);
4781 	}
4782 }
4783 
4784 static struct dev_ops vds_ops = {
4785 	DEVO_REV,	/* devo_rev */
4786 	0,		/* devo_refcnt */
4787 	ddi_no_info,	/* devo_getinfo */
4788 	nulldev,	/* devo_identify */
4789 	nulldev,	/* devo_probe */
4790 	vds_attach,	/* devo_attach */
4791 	vds_detach,	/* devo_detach */
4792 	nodev,		/* devo_reset */
4793 	NULL,		/* devo_cb_ops */
4794 	NULL,		/* devo_bus_ops */
4795 	nulldev		/* devo_power */
4796 };
4797 
4798 static struct modldrv modldrv = {
4799 	&mod_driverops,
4800 	"virtual disk server",
4801 	&vds_ops,
4802 };
4803 
4804 static struct modlinkage modlinkage = {
4805 	MODREV_1,
4806 	&modldrv,
4807 	NULL
4808 };
4809 
4810 
4811 int
4812 _init(void)
4813 {
4814 	int		i, status;
4815 
4816 
4817 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
4818 		return (status);
4819 	if ((status = mod_install(&modlinkage)) != 0) {
4820 		ddi_soft_state_fini(&vds_state);
4821 		return (status);
4822 	}
4823 
4824 	/* Fill in the bit-mask of server-supported operations */
4825 	for (i = 0; i < vds_noperations; i++)
4826 		vds_operations |= 1 << (vds_operation[i].operation - 1);
4827 
4828 	return (0);
4829 }
4830 
4831 int
4832 _info(struct modinfo *modinfop)
4833 {
4834 	return (mod_info(&modlinkage, modinfop));
4835 }
4836 
4837 int
4838 _fini(void)
4839 {
4840 	int	status;
4841 
4842 
4843 	if ((status = mod_remove(&modlinkage)) != 0)
4844 		return (status);
4845 	ddi_soft_state_fini(&vds_state);
4846 	return (0);
4847 }
4848