1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual disk server 31 */ 32 33 34 #include <sys/types.h> 35 #include <sys/conf.h> 36 #include <sys/crc32.h> 37 #include <sys/ddi.h> 38 #include <sys/dkio.h> 39 #include <sys/file.h> 40 #include <sys/fs/hsfs_isospec.h> 41 #include <sys/mdeg.h> 42 #include <sys/mhd.h> 43 #include <sys/modhash.h> 44 #include <sys/note.h> 45 #include <sys/pathname.h> 46 #include <sys/sdt.h> 47 #include <sys/sunddi.h> 48 #include <sys/sunldi.h> 49 #include <sys/sysmacros.h> 50 #include <sys/vio_common.h> 51 #include <sys/vio_util.h> 52 #include <sys/vdsk_mailbox.h> 53 #include <sys/vdsk_common.h> 54 #include <sys/vtoc.h> 55 #include <sys/vfs.h> 56 #include <sys/stat.h> 57 #include <sys/scsi/impl/uscsi.h> 58 #include <vm/seg_map.h> 59 60 /* Virtual disk server initialization flags */ 61 #define VDS_LDI 0x01 62 #define VDS_MDEG 0x02 63 64 /* Virtual disk server tunable parameters */ 65 #define VDS_RETRIES 5 66 #define VDS_LDC_DELAY 1000 /* 1 msecs */ 67 #define VDS_DEV_DELAY 10000000 /* 10 secs */ 68 #define VDS_NCHAINS 32 69 70 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 71 #define VDS_NAME "virtual-disk-server" 72 73 #define VD_NAME "vd" 74 #define VD_VOLUME_NAME "vdisk" 75 #define VD_ASCIILABEL "Virtual Disk" 76 77 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 78 #define VD_ID_PROP "id" 79 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 80 #define VD_BLOCK_DEVICE_OPTS "vds-block-device-opts" 81 #define VD_REG_PROP "reg" 82 83 /* Virtual disk initialization flags */ 84 #define VD_DISK_READY 0x01 85 #define VD_LOCKING 0x02 86 #define VD_LDC 0x04 87 #define VD_DRING 0x08 88 #define VD_SID 0x10 89 #define VD_SEQ_NUM 0x20 90 #define VD_SETUP_ERROR 0x40 91 92 /* Flags for writing to a vdisk which is a file */ 93 #define VD_FILE_WRITE_FLAGS SM_ASYNC 94 95 /* Number of backup labels */ 96 #define VD_FILE_NUM_BACKUP 5 97 98 /* Timeout for SCSI I/O */ 99 #define VD_SCSI_RDWR_TIMEOUT 30 /* 30 secs */ 100 101 /* Maximum number of logical partitions */ 102 #define VD_MAXPART (NDKMAP + 1) 103 104 /* 105 * By Solaris convention, slice/partition 2 represents the entire disk; 106 * unfortunately, this convention does not appear to be codified. 107 */ 108 #define VD_ENTIRE_DISK_SLICE 2 109 110 /* Driver types */ 111 typedef enum vd_driver { 112 VD_DRIVER_UNKNOWN = 0, /* driver type unknown */ 113 VD_DRIVER_DISK, /* disk driver */ 114 VD_DRIVER_VOLUME /* volume driver */ 115 } vd_driver_t; 116 117 #define VD_DRIVER_NAME_LEN 64 118 119 #define VDS_NUM_DRIVERS (sizeof (vds_driver_types) / sizeof (vd_driver_type_t)) 120 121 typedef struct vd_driver_type { 122 char name[VD_DRIVER_NAME_LEN]; /* driver name */ 123 vd_driver_t type; /* driver type (disk or volume) */ 124 } vd_driver_type_t; 125 126 /* 127 * There is no reliable way to determine if a device is representing a disk 128 * or a volume, especially with pseudo devices. So we maintain a list of well 129 * known drivers and the type of device they represent (either a disk or a 130 * volume). 131 * 132 * The list can be extended by adding a "driver-type-list" entry in vds.conf 133 * with the following syntax: 134 * 135 * driver-type-list="<driver>:<type>", ... ,"<driver>:<type>"; 136 * 137 * Where: 138 * <driver> is the name of a driver (limited to 64 characters) 139 * <type> is either the string "disk" or "volume" 140 * 141 * Invalid entries in "driver-type-list" will be ignored. 142 * 143 * For example, the following line in vds.conf: 144 * 145 * driver-type-list="foo:disk","bar:volume"; 146 * 147 * defines that "foo" is a disk driver, and driver "bar" is a volume driver. 148 * 149 * When a list is defined in vds.conf, it is checked before the built-in list 150 * (vds_driver_types[]) so that any definition from this list can be overriden 151 * using vds.conf. 152 */ 153 vd_driver_type_t vds_driver_types[] = { 154 { "dad", VD_DRIVER_DISK }, /* Solaris */ 155 { "did", VD_DRIVER_DISK }, /* Sun Cluster */ 156 { "lofi", VD_DRIVER_VOLUME }, /* Solaris */ 157 { "md", VD_DRIVER_VOLUME }, /* Solaris - SVM */ 158 { "sd", VD_DRIVER_DISK }, /* Solaris */ 159 { "ssd", VD_DRIVER_DISK }, /* Solaris */ 160 { "vdc", VD_DRIVER_DISK }, /* Solaris */ 161 { "vxdmp", VD_DRIVER_DISK }, /* Veritas */ 162 { "vxio", VD_DRIVER_VOLUME }, /* Veritas - VxVM */ 163 { "zfs", VD_DRIVER_VOLUME } /* Solaris */ 164 }; 165 166 /* Return a cpp token as a string */ 167 #define STRINGIZE(token) #token 168 169 /* 170 * Print a message prefixed with the current function name to the message log 171 * (and optionally to the console for verbose boots); these macros use cpp's 172 * concatenation of string literals and C99 variable-length-argument-list 173 * macros 174 */ 175 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 176 #define _PRN(format, ...) \ 177 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 178 179 /* Return a pointer to the "i"th vdisk dring element */ 180 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 181 (vd->dring + (i)*vd->descriptor_size)) 182 183 /* Return the virtual disk client's type as a string (for use in messages) */ 184 #define VD_CLIENT(vd) \ 185 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 186 (((vd)->xfer_mode == VIO_DRING_MODE_V1_0) ? "dring client" : \ 187 (((vd)->xfer_mode == 0) ? "null client" : \ 188 "unsupported client"))) 189 190 /* Read disk label from a disk on file */ 191 #define VD_FILE_LABEL_READ(vd, labelp) \ 192 vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \ 193 0, sizeof (struct dk_label)) 194 195 /* Write disk label to a disk on file */ 196 #define VD_FILE_LABEL_WRITE(vd, labelp) \ 197 vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \ 198 0, sizeof (struct dk_label)) 199 200 /* Message for disk access rights reset failure */ 201 #define VD_RESET_ACCESS_FAILURE_MSG \ 202 "Fail to reset disk access rights for disk %s" 203 204 /* 205 * Specification of an MD node passed to the MDEG to filter any 206 * 'vport' nodes that do not belong to the specified node. This 207 * template is copied for each vds instance and filled in with 208 * the appropriate 'cfg-handle' value before being passed to the MDEG. 209 */ 210 static mdeg_prop_spec_t vds_prop_template[] = { 211 { MDET_PROP_STR, "name", VDS_NAME }, 212 { MDET_PROP_VAL, "cfg-handle", NULL }, 213 { MDET_LIST_END, NULL, NULL } 214 }; 215 216 #define VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val); 217 218 /* 219 * Matching criteria passed to the MDEG to register interest 220 * in changes to 'virtual-device-port' nodes identified by their 221 * 'id' property. 222 */ 223 static md_prop_match_t vd_prop_match[] = { 224 { MDET_PROP_VAL, VD_ID_PROP }, 225 { MDET_LIST_END, NULL } 226 }; 227 228 static mdeg_node_match_t vd_match = {"virtual-device-port", 229 vd_prop_match}; 230 231 /* 232 * Options for the VD_BLOCK_DEVICE_OPTS property. 233 */ 234 #define VD_OPT_RDONLY 0x1 /* read-only */ 235 #define VD_OPT_SLICE 0x2 /* single slice */ 236 #define VD_OPT_EXCLUSIVE 0x4 /* exclusive access */ 237 238 #define VD_OPTION_NLEN 128 239 240 typedef struct vd_option { 241 char vdo_name[VD_OPTION_NLEN]; 242 uint64_t vdo_value; 243 } vd_option_t; 244 245 vd_option_t vd_bdev_options[] = { 246 { "ro", VD_OPT_RDONLY }, 247 { "slice", VD_OPT_SLICE }, 248 { "excl", VD_OPT_EXCLUSIVE } 249 }; 250 251 /* Debugging macros */ 252 #ifdef DEBUG 253 254 static int vd_msglevel = 0; 255 256 #define PR0 if (vd_msglevel > 0) PRN 257 #define PR1 if (vd_msglevel > 1) PRN 258 #define PR2 if (vd_msglevel > 2) PRN 259 260 #define VD_DUMP_DRING_ELEM(elem) \ 261 PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 262 elem->hdr.dstate, \ 263 elem->payload.operation, \ 264 elem->payload.status, \ 265 elem->payload.nbytes, \ 266 elem->payload.addr, \ 267 elem->payload.ncookies); 268 269 char * 270 vd_decode_state(int state) 271 { 272 char *str; 273 274 #define CASE_STATE(_s) case _s: str = #_s; break; 275 276 switch (state) { 277 CASE_STATE(VD_STATE_INIT) 278 CASE_STATE(VD_STATE_VER) 279 CASE_STATE(VD_STATE_ATTR) 280 CASE_STATE(VD_STATE_DRING) 281 CASE_STATE(VD_STATE_RDX) 282 CASE_STATE(VD_STATE_DATA) 283 default: str = "unknown"; break; 284 } 285 286 #undef CASE_STATE 287 288 return (str); 289 } 290 291 void 292 vd_decode_tag(vio_msg_t *msg) 293 { 294 char *tstr, *sstr, *estr; 295 296 #define CASE_TYPE(_s) case _s: tstr = #_s; break; 297 298 switch (msg->tag.vio_msgtype) { 299 CASE_TYPE(VIO_TYPE_CTRL) 300 CASE_TYPE(VIO_TYPE_DATA) 301 CASE_TYPE(VIO_TYPE_ERR) 302 default: tstr = "unknown"; break; 303 } 304 305 #undef CASE_TYPE 306 307 #define CASE_SUBTYPE(_s) case _s: sstr = #_s; break; 308 309 switch (msg->tag.vio_subtype) { 310 CASE_SUBTYPE(VIO_SUBTYPE_INFO) 311 CASE_SUBTYPE(VIO_SUBTYPE_ACK) 312 CASE_SUBTYPE(VIO_SUBTYPE_NACK) 313 default: sstr = "unknown"; break; 314 } 315 316 #undef CASE_SUBTYPE 317 318 #define CASE_ENV(_s) case _s: estr = #_s; break; 319 320 switch (msg->tag.vio_subtype_env) { 321 CASE_ENV(VIO_VER_INFO) 322 CASE_ENV(VIO_ATTR_INFO) 323 CASE_ENV(VIO_DRING_REG) 324 CASE_ENV(VIO_DRING_UNREG) 325 CASE_ENV(VIO_RDX) 326 CASE_ENV(VIO_PKT_DATA) 327 CASE_ENV(VIO_DESC_DATA) 328 CASE_ENV(VIO_DRING_DATA) 329 default: estr = "unknown"; break; 330 } 331 332 #undef CASE_ENV 333 334 PR1("(%x/%x/%x) message : (%s/%s/%s)", 335 msg->tag.vio_msgtype, msg->tag.vio_subtype, 336 msg->tag.vio_subtype_env, tstr, sstr, estr); 337 } 338 339 #else /* !DEBUG */ 340 341 #define PR0(...) 342 #define PR1(...) 343 #define PR2(...) 344 345 #define VD_DUMP_DRING_ELEM(elem) 346 347 #define vd_decode_state(_s) (NULL) 348 #define vd_decode_tag(_s) (NULL) 349 350 #endif /* DEBUG */ 351 352 353 /* 354 * Soft state structure for a vds instance 355 */ 356 typedef struct vds { 357 uint_t initialized; /* driver inst initialization flags */ 358 dev_info_t *dip; /* driver inst devinfo pointer */ 359 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 360 mod_hash_t *vd_table; /* table of virtual disks served */ 361 mdeg_node_spec_t *ispecp; /* mdeg node specification */ 362 mdeg_handle_t mdeg; /* handle for MDEG operations */ 363 vd_driver_type_t *driver_types; /* extra driver types (from vds.conf) */ 364 int num_drivers; /* num of extra driver types */ 365 } vds_t; 366 367 /* 368 * Types of descriptor-processing tasks 369 */ 370 typedef enum vd_task_type { 371 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 372 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 373 } vd_task_type_t; 374 375 /* 376 * Structure describing the task for processing a descriptor 377 */ 378 typedef struct vd_task { 379 struct vd *vd; /* vd instance task is for */ 380 vd_task_type_t type; /* type of descriptor task */ 381 int index; /* dring elem index for task */ 382 vio_msg_t *msg; /* VIO message task is for */ 383 size_t msglen; /* length of message content */ 384 vd_dring_payload_t *request; /* request task will perform */ 385 struct buf buf; /* buf(9s) for I/O request */ 386 ldc_mem_handle_t mhdl; /* task memory handle */ 387 int status; /* status of processing task */ 388 int (*completef)(struct vd_task *task); /* completion func ptr */ 389 } vd_task_t; 390 391 /* 392 * Soft state structure for a virtual disk instance 393 */ 394 typedef struct vd { 395 uint_t initialized; /* vdisk initialization flags */ 396 uint64_t operations; /* bitmask of VD_OPs exported */ 397 vio_ver_t version; /* ver negotiated with client */ 398 vds_t *vds; /* server for this vdisk */ 399 ddi_taskq_t *startq; /* queue for I/O start tasks */ 400 ddi_taskq_t *completionq; /* queue for completion tasks */ 401 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 402 char device_path[MAXPATHLEN + 1]; /* vdisk device */ 403 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 404 int open_flags; /* open flags */ 405 uint_t nslices; /* number of slices */ 406 size_t vdisk_size; /* number of blocks in vdisk */ 407 size_t vdisk_block_size; /* size of each vdisk block */ 408 vd_disk_type_t vdisk_type; /* slice or entire disk */ 409 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 410 vd_media_t vdisk_media; /* media type of backing dev. */ 411 boolean_t is_atapi_dev; /* Is this an IDE CD-ROM dev? */ 412 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 413 size_t block_size; /* blk size of actual device */ 414 boolean_t volume; /* is vDisk backed by volume */ 415 boolean_t file; /* is vDisk backed by a file? */ 416 boolean_t scsi; /* is vDisk backed by scsi? */ 417 vnode_t *file_vnode; /* file vnode */ 418 size_t file_size; /* file size */ 419 ddi_devid_t file_devid; /* devid for disk image */ 420 efi_gpt_t efi_gpt; /* EFI GPT for slice type */ 421 efi_gpe_t efi_gpe; /* EFI GPE for slice type */ 422 int efi_reserved; /* EFI reserved slice */ 423 struct dk_geom dk_geom; /* synthetic for slice type */ 424 struct vtoc vtoc; /* synthetic for slice type */ 425 vd_slice_t slices[VD_MAXPART]; /* logical partitions */ 426 boolean_t ownership; /* disk ownership status */ 427 ldc_status_t ldc_state; /* LDC connection state */ 428 ldc_handle_t ldc_handle; /* handle for LDC comm */ 429 size_t max_msglen; /* largest LDC message len */ 430 vd_state_t state; /* client handshake state */ 431 uint8_t xfer_mode; /* transfer mode with client */ 432 uint32_t sid; /* client's session ID */ 433 uint64_t seq_num; /* message sequence number */ 434 uint64_t dring_ident; /* identifier of dring */ 435 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 436 uint32_t descriptor_size; /* num bytes in desc */ 437 uint32_t dring_len; /* number of dring elements */ 438 caddr_t dring; /* address of dring */ 439 caddr_t vio_msgp; /* vio msg staging buffer */ 440 vd_task_t inband_task; /* task for inband descriptor */ 441 vd_task_t *dring_task; /* tasks dring elements */ 442 443 kmutex_t lock; /* protects variables below */ 444 boolean_t enabled; /* is vdisk enabled? */ 445 boolean_t reset_state; /* reset connection state? */ 446 boolean_t reset_ldc; /* reset LDC channel? */ 447 } vd_t; 448 449 typedef struct vds_operation { 450 char *namep; 451 uint8_t operation; 452 int (*start)(vd_task_t *task); 453 int (*complete)(vd_task_t *task); 454 } vds_operation_t; 455 456 typedef struct vd_ioctl { 457 uint8_t operation; /* vdisk operation */ 458 const char *operation_name; /* vdisk operation name */ 459 size_t nbytes; /* size of operation buffer */ 460 int cmd; /* corresponding ioctl cmd */ 461 const char *cmd_name; /* ioctl cmd name */ 462 void *arg; /* ioctl cmd argument */ 463 /* convert input vd_buf to output ioctl_arg */ 464 int (*copyin)(void *vd_buf, size_t, void *ioctl_arg); 465 /* convert input ioctl_arg to output vd_buf */ 466 void (*copyout)(void *ioctl_arg, void *vd_buf); 467 /* write is true if the operation writes any data to the backend */ 468 boolean_t write; 469 } vd_ioctl_t; 470 471 /* Define trivial copyin/copyout conversion function flag */ 472 #define VD_IDENTITY_IN ((int (*)(void *, size_t, void *))-1) 473 #define VD_IDENTITY_OUT ((void (*)(void *, void *))-1) 474 475 476 static int vds_ldc_retries = VDS_RETRIES; 477 static int vds_ldc_delay = VDS_LDC_DELAY; 478 static int vds_dev_retries = VDS_RETRIES; 479 static int vds_dev_delay = VDS_DEV_DELAY; 480 static void *vds_state; 481 482 static uint_t vd_file_write_flags = VD_FILE_WRITE_FLAGS; 483 484 static short vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT; 485 static int vd_scsi_debug = USCSI_SILENT; 486 487 /* 488 * Tunable to define the behavior of the service domain if the vdisk server 489 * fails to reset disk exclusive access when a LDC channel is reset. When a 490 * LDC channel is reset the vdisk server will try to reset disk exclusive 491 * access by releasing any SCSI-2 reservation or resetting the disk. If these 492 * actions fail then the default behavior (vd_reset_access_failure = 0) is to 493 * print a warning message. This default behavior can be changed by setting 494 * the vd_reset_access_failure variable to A_REBOOT (= 0x1) and that will 495 * cause the service domain to reboot, or A_DUMP (= 0x5) and that will cause 496 * the service domain to panic. In both cases, the reset of the service domain 497 * should trigger a reset SCSI buses and hopefully clear any SCSI-2 reservation. 498 */ 499 static int vd_reset_access_failure = 0; 500 501 /* 502 * Tunable for backward compatibility. When this variable is set to B_TRUE, 503 * all disk volumes (ZFS, SVM, VxvM volumes) will be exported as single 504 * slice disks whether or not they have the "slice" option set. This is 505 * to provide a simple backward compatibility mechanism when upgrading 506 * the vds driver and using a domain configuration created before the 507 * "slice" option was available. 508 */ 509 static boolean_t vd_volume_force_slice = B_FALSE; 510 511 /* 512 * The label of disk images created with some earlier versions of the virtual 513 * disk software is not entirely correct and have an incorrect v_sanity field 514 * (usually 0) instead of VTOC_SANE. This creates a compatibility problem with 515 * these images because we are now validating that the disk label (and the 516 * sanity) is correct when a disk image is opened. 517 * 518 * This tunable is set to false to not validate the sanity field and ensure 519 * compatibility. If the tunable is set to true, we will do a strict checking 520 * of the sanity but this can create compatibility problems with old disk 521 * images. 522 */ 523 static boolean_t vd_file_validate_sanity = B_FALSE; 524 525 /* 526 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 527 * 528 * Each supported major version should appear only once, paired with (and only 529 * with) its highest supported minor version number (as the protocol requires 530 * supporting all lower minor version numbers as well) 531 */ 532 static const vio_ver_t vds_version[] = {{1, 1}}; 533 static const size_t vds_num_versions = 534 sizeof (vds_version)/sizeof (vds_version[0]); 535 536 static void vd_free_dring_task(vd_t *vdp); 537 static int vd_setup_vd(vd_t *vd); 538 static int vd_setup_single_slice_disk(vd_t *vd); 539 static int vd_setup_mediainfo(vd_t *vd); 540 static boolean_t vd_enabled(vd_t *vd); 541 static ushort_t vd_lbl2cksum(struct dk_label *label); 542 static int vd_file_validate_geometry(vd_t *vd); 543 static boolean_t vd_file_is_iso_image(vd_t *vd); 544 static void vd_set_exported_operations(vd_t *vd); 545 static void vd_reset_access(vd_t *vd); 546 static int vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg); 547 static int vds_efi_alloc_and_read(vd_t *, efi_gpt_t **, efi_gpe_t **); 548 static void vds_efi_free(vd_t *, efi_gpt_t *, efi_gpe_t *); 549 static void vds_driver_types_free(vds_t *vds); 550 551 /* 552 * Function: 553 * vd_file_rw 554 * 555 * Description: 556 * Read or write to a disk on file. 557 * 558 * Parameters: 559 * vd - disk on which the operation is performed. 560 * slice - slice on which the operation is performed, 561 * VD_SLICE_NONE indicates that the operation 562 * is done using an absolute disk offset. 563 * operation - operation to execute: read (VD_OP_BREAD) or 564 * write (VD_OP_BWRITE). 565 * data - buffer where data are read to or written from. 566 * blk - starting block for the operation. 567 * len - number of bytes to read or write. 568 * 569 * Return Code: 570 * n >= 0 - success, n indicates the number of bytes read 571 * or written. 572 * -1 - error. 573 */ 574 static ssize_t 575 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk, 576 size_t len) 577 { 578 caddr_t maddr; 579 size_t offset, maxlen, moffset, mlen, n; 580 uint_t smflags; 581 enum seg_rw srw; 582 583 ASSERT(vd->file); 584 ASSERT(len > 0); 585 586 /* 587 * If a file is exported as a slice then we don't care about the vtoc. 588 * In that case, the vtoc is a fake mainly to make newfs happy and we 589 * handle any I/O as a raw disk access so that we can have access to the 590 * entire backend. 591 */ 592 if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) { 593 /* raw disk access */ 594 offset = blk * DEV_BSIZE; 595 } else { 596 ASSERT(slice >= 0 && slice < V_NUMPAR); 597 598 /* 599 * v1.0 vDisk clients depended on the server not verifying 600 * the label of a unformatted disk. This "feature" is 601 * maintained for backward compatibility but all versions 602 * from v1.1 onwards must do the right thing. 603 */ 604 if (vd->vdisk_label == VD_DISK_LABEL_UNK && 605 vio_ver_is_supported(vd->version, 1, 1)) { 606 (void) vd_file_validate_geometry(vd); 607 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 608 PR0("Unknown disk label, can't do I/O " 609 "from slice %d", slice); 610 return (-1); 611 } 612 } 613 614 if (vd->vdisk_label == VD_DISK_LABEL_VTOC) { 615 ASSERT(vd->vtoc.v_sectorsz == DEV_BSIZE); 616 } else { 617 ASSERT(vd->vdisk_label == VD_DISK_LABEL_EFI); 618 ASSERT(vd->vdisk_block_size == DEV_BSIZE); 619 } 620 621 if (blk >= vd->slices[slice].nblocks) { 622 /* address past the end of the slice */ 623 PR0("req_addr (0x%lx) > psize (0x%lx)", 624 blk, vd->slices[slice].nblocks); 625 return (0); 626 } 627 628 offset = (vd->slices[slice].start + blk) * DEV_BSIZE; 629 630 /* 631 * If the requested size is greater than the size 632 * of the partition, truncate the read/write. 633 */ 634 maxlen = (vd->slices[slice].nblocks - blk) * DEV_BSIZE; 635 636 if (len > maxlen) { 637 PR0("I/O size truncated to %lu bytes from %lu bytes", 638 maxlen, len); 639 len = maxlen; 640 } 641 } 642 643 /* 644 * We have to ensure that we are reading/writing into the mmap 645 * range. If we have a partial disk image (e.g. an image of 646 * s0 instead s2) the system can try to access slices that 647 * are not included into the disk image. 648 */ 649 if ((offset + len) > vd->file_size) { 650 PR0("offset + nbytes (0x%lx + 0x%lx) > " 651 "file_size (0x%lx)", offset, len, vd->file_size); 652 return (-1); 653 } 654 655 srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE; 656 smflags = (operation == VD_OP_BREAD)? 0 : 657 (SM_WRITE | vd_file_write_flags); 658 n = len; 659 660 do { 661 /* 662 * segmap_getmapflt() returns a MAXBSIZE chunk which is 663 * MAXBSIZE aligned. 664 */ 665 moffset = offset & MAXBOFFSET; 666 mlen = MIN(MAXBSIZE - moffset, n); 667 maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset, 668 mlen, 1, srw); 669 /* 670 * Fault in the pages so we can check for error and ensure 671 * that we can safely used the mapped address. 672 */ 673 if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, 674 F_SOFTLOCK, srw) != 0) { 675 (void) segmap_release(segkmap, maddr, 0); 676 return (-1); 677 } 678 679 if (operation == VD_OP_BREAD) 680 bcopy(maddr + moffset, data, mlen); 681 else 682 bcopy(data, maddr + moffset, mlen); 683 684 if (segmap_fault(kas.a_hat, segkmap, maddr, mlen, 685 F_SOFTUNLOCK, srw) != 0) { 686 (void) segmap_release(segkmap, maddr, 0); 687 return (-1); 688 } 689 if (segmap_release(segkmap, maddr, smflags) != 0) 690 return (-1); 691 n -= mlen; 692 offset += mlen; 693 data += mlen; 694 695 } while (n > 0); 696 697 return (len); 698 } 699 700 /* 701 * Function: 702 * vd_file_build_default_label 703 * 704 * Description: 705 * Return a default label for the given disk. This is used when the disk 706 * does not have a valid VTOC so that the user can get a valid default 707 * configuration. The default label has all slice sizes set to 0 (except 708 * slice 2 which is the entire disk) to force the user to write a valid 709 * label onto the disk image. 710 * 711 * Parameters: 712 * vd - disk on which the operation is performed. 713 * label - the returned default label. 714 * 715 * Return Code: 716 * none. 717 */ 718 static void 719 vd_file_build_default_label(vd_t *vd, struct dk_label *label) 720 { 721 size_t size; 722 char prefix; 723 724 ASSERT(vd->file); 725 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 726 727 bzero(label, sizeof (struct dk_label)); 728 729 /* 730 * We must have a resonable number of cylinders and sectors so 731 * that newfs can run using default values. 732 * 733 * if (disk_size < 2MB) 734 * phys_cylinders = disk_size / 100K 735 * else 736 * phys_cylinders = disk_size / 300K 737 * 738 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders 739 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0; 740 * data_cylinders = phys_cylinders - alt_cylinders 741 * 742 * sectors = disk_size / (phys_cylinders * blk_size) 743 * 744 * The file size test is an attempt to not have too few cylinders 745 * for a small file, or so many on a big file that you waste space 746 * for backup superblocks or cylinder group structures. 747 */ 748 if (vd->file_size < (2 * 1024 * 1024)) 749 label->dkl_pcyl = vd->file_size / (100 * 1024); 750 else 751 label->dkl_pcyl = vd->file_size / (300 * 1024); 752 753 if (label->dkl_pcyl == 0) 754 label->dkl_pcyl = 1; 755 756 label->dkl_acyl = 0; 757 758 if (label->dkl_pcyl > 2) 759 label->dkl_acyl = 2; 760 761 label->dkl_nsect = vd->file_size / 762 (DEV_BSIZE * label->dkl_pcyl); 763 label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl; 764 label->dkl_nhead = 1; 765 label->dkl_write_reinstruct = 0; 766 label->dkl_read_reinstruct = 0; 767 label->dkl_rpm = 7200; 768 label->dkl_apc = 0; 769 label->dkl_intrlv = 0; 770 771 PR0("requested disk size: %ld bytes\n", vd->file_size); 772 PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl, 773 label->dkl_nhead, label->dkl_nsect); 774 PR0("provided disk size: %ld bytes\n", (uint64_t) 775 (label->dkl_pcyl * label->dkl_nhead * 776 label->dkl_nsect * DEV_BSIZE)); 777 778 if (vd->file_size < (1ULL << 20)) { 779 size = vd->file_size >> 10; 780 prefix = 'K'; /* Kilobyte */ 781 } else if (vd->file_size < (1ULL << 30)) { 782 size = vd->file_size >> 20; 783 prefix = 'M'; /* Megabyte */ 784 } else if (vd->file_size < (1ULL << 40)) { 785 size = vd->file_size >> 30; 786 prefix = 'G'; /* Gigabyte */ 787 } else { 788 size = vd->file_size >> 40; 789 prefix = 'T'; /* Terabyte */ 790 } 791 792 /* 793 * We must have a correct label name otherwise format(1m) will 794 * not recognized the disk as labeled. 795 */ 796 (void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII, 797 "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d", 798 size, prefix, 799 label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead, 800 label->dkl_nsect); 801 802 /* default VTOC */ 803 label->dkl_vtoc.v_version = V_VERSION; 804 label->dkl_vtoc.v_nparts = V_NUMPAR; 805 label->dkl_vtoc.v_sanity = VTOC_SANE; 806 label->dkl_vtoc.v_part[VD_ENTIRE_DISK_SLICE].p_tag = V_BACKUP; 807 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_cylno = 0; 808 label->dkl_map[VD_ENTIRE_DISK_SLICE].dkl_nblk = label->dkl_ncyl * 809 label->dkl_nhead * label->dkl_nsect; 810 label->dkl_magic = DKL_MAGIC; 811 label->dkl_cksum = vd_lbl2cksum(label); 812 } 813 814 /* 815 * Function: 816 * vd_file_set_vtoc 817 * 818 * Description: 819 * Set the vtoc of a disk image by writing the label and backup 820 * labels into the disk image backend. 821 * 822 * Parameters: 823 * vd - disk on which the operation is performed. 824 * label - the data to be written. 825 * 826 * Return Code: 827 * 0 - success. 828 * n > 0 - error, n indicates the errno code. 829 */ 830 static int 831 vd_file_set_vtoc(vd_t *vd, struct dk_label *label) 832 { 833 int blk, sec, cyl, head, cnt; 834 835 ASSERT(vd->file); 836 837 if (VD_FILE_LABEL_WRITE(vd, label) < 0) { 838 PR0("fail to write disk label"); 839 return (EIO); 840 } 841 842 /* 843 * Backup labels are on the last alternate cylinder's 844 * first five odd sectors. 845 */ 846 if (label->dkl_acyl == 0) { 847 PR0("no alternate cylinder, can not store backup labels"); 848 return (0); 849 } 850 851 cyl = label->dkl_ncyl + label->dkl_acyl - 1; 852 head = label->dkl_nhead - 1; 853 854 blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) + 855 (head * label->dkl_nsect); 856 857 /* 858 * Write the backup labels. Make sure we don't try to write past 859 * the last cylinder. 860 */ 861 sec = 1; 862 863 for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) { 864 865 if (sec >= label->dkl_nsect) { 866 PR0("not enough sector to store all backup labels"); 867 return (0); 868 } 869 870 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label, 871 blk + sec, sizeof (struct dk_label)) < 0) { 872 PR0("error writing backup label at block %d\n", 873 blk + sec); 874 return (EIO); 875 } 876 877 PR1("wrote backup label at block %d\n", blk + sec); 878 879 sec += 2; 880 } 881 882 return (0); 883 } 884 885 /* 886 * Function: 887 * vd_file_get_devid_block 888 * 889 * Description: 890 * Return the block number where the device id is stored. 891 * 892 * Parameters: 893 * vd - disk on which the operation is performed. 894 * blkp - pointer to the block number 895 * 896 * Return Code: 897 * 0 - success 898 * ENOSPC - disk has no space to store a device id 899 */ 900 static int 901 vd_file_get_devid_block(vd_t *vd, size_t *blkp) 902 { 903 diskaddr_t spc, head, cyl; 904 905 ASSERT(vd->file); 906 907 if (vd->vdisk_label == VD_DISK_LABEL_UNK) { 908 /* 909 * If no label is defined we don't know where to find 910 * a device id. 911 */ 912 return (ENOSPC); 913 } 914 915 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 916 /* 917 * For an EFI disk, the devid is at the beginning of 918 * the reserved slice 919 */ 920 if (vd->efi_reserved == -1) { 921 PR0("EFI disk has no reserved slice"); 922 return (ENOSPC); 923 } 924 925 *blkp = vd->slices[vd->efi_reserved].start; 926 return (0); 927 } 928 929 ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC); 930 931 /* this geometry doesn't allow us to have a devid */ 932 if (vd->dk_geom.dkg_acyl < 2) { 933 PR0("not enough alternate cylinder available for devid " 934 "(acyl=%u)", vd->dk_geom.dkg_acyl); 935 return (ENOSPC); 936 } 937 938 /* the devid is in on the track next to the last cylinder */ 939 cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2; 940 spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect; 941 head = vd->dk_geom.dkg_nhead - 1; 942 943 *blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) + 944 (head * vd->dk_geom.dkg_nsect) + 1; 945 946 return (0); 947 } 948 949 /* 950 * Return the checksum of a disk block containing an on-disk devid. 951 */ 952 static uint_t 953 vd_dkdevid2cksum(struct dk_devid *dkdevid) 954 { 955 uint_t chksum, *ip; 956 int i; 957 958 chksum = 0; 959 ip = (uint_t *)dkdevid; 960 for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++) 961 chksum ^= ip[i]; 962 963 return (chksum); 964 } 965 966 /* 967 * Function: 968 * vd_file_read_devid 969 * 970 * Description: 971 * Read the device id stored on a disk image. 972 * 973 * Parameters: 974 * vd - disk on which the operation is performed. 975 * devid - the return address of the device ID. 976 * 977 * Return Code: 978 * 0 - success 979 * EIO - I/O error while trying to access the disk image 980 * EINVAL - no valid device id was found 981 * ENOSPC - disk has no space to store a device id 982 */ 983 static int 984 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid) 985 { 986 struct dk_devid *dkdevid; 987 size_t blk; 988 uint_t chksum; 989 int status, sz; 990 991 if ((status = vd_file_get_devid_block(vd, &blk)) != 0) 992 return (status); 993 994 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 995 996 /* get the devid */ 997 if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk, 998 DEV_BSIZE)) < 0) { 999 PR0("error reading devid block at %lu", blk); 1000 status = EIO; 1001 goto done; 1002 } 1003 1004 /* validate the revision */ 1005 if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) || 1006 (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) { 1007 PR0("invalid devid found at block %lu (bad revision)", blk); 1008 status = EINVAL; 1009 goto done; 1010 } 1011 1012 /* compute checksum */ 1013 chksum = vd_dkdevid2cksum(dkdevid); 1014 1015 /* compare the checksums */ 1016 if (DKD_GETCHKSUM(dkdevid) != chksum) { 1017 PR0("invalid devid found at block %lu (bad checksum)", blk); 1018 status = EINVAL; 1019 goto done; 1020 } 1021 1022 /* validate the device id */ 1023 if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) { 1024 PR0("invalid devid found at block %lu", blk); 1025 status = EINVAL; 1026 goto done; 1027 } 1028 1029 PR1("devid read at block %lu", blk); 1030 1031 sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid); 1032 *devid = kmem_alloc(sz, KM_SLEEP); 1033 bcopy(&dkdevid->dkd_devid, *devid, sz); 1034 1035 done: 1036 kmem_free(dkdevid, DEV_BSIZE); 1037 return (status); 1038 1039 } 1040 1041 /* 1042 * Function: 1043 * vd_file_write_devid 1044 * 1045 * Description: 1046 * Write a device id into disk image. 1047 * 1048 * Parameters: 1049 * vd - disk on which the operation is performed. 1050 * devid - the device ID to store. 1051 * 1052 * Return Code: 1053 * 0 - success 1054 * EIO - I/O error while trying to access the disk image 1055 * ENOSPC - disk has no space to store a device id 1056 */ 1057 static int 1058 vd_file_write_devid(vd_t *vd, ddi_devid_t devid) 1059 { 1060 struct dk_devid *dkdevid; 1061 uint_t chksum; 1062 size_t blk; 1063 int status; 1064 1065 if (devid == NULL) { 1066 /* nothing to write */ 1067 return (0); 1068 } 1069 1070 if ((status = vd_file_get_devid_block(vd, &blk)) != 0) 1071 return (status); 1072 1073 dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP); 1074 1075 /* set revision */ 1076 dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB; 1077 dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB; 1078 1079 /* copy devid */ 1080 bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid)); 1081 1082 /* compute checksum */ 1083 chksum = vd_dkdevid2cksum(dkdevid); 1084 1085 /* set checksum */ 1086 DKD_FORMCHKSUM(chksum, dkdevid); 1087 1088 /* store the devid */ 1089 if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 1090 (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) { 1091 PR0("Error writing devid block at %lu", blk); 1092 status = EIO; 1093 } else { 1094 PR1("devid written at block %lu", blk); 1095 status = 0; 1096 } 1097 1098 kmem_free(dkdevid, DEV_BSIZE); 1099 return (status); 1100 } 1101 1102 /* 1103 * Function: 1104 * vd_do_scsi_rdwr 1105 * 1106 * Description: 1107 * Read or write to a SCSI disk using an absolute disk offset. 1108 * 1109 * Parameters: 1110 * vd - disk on which the operation is performed. 1111 * operation - operation to execute: read (VD_OP_BREAD) or 1112 * write (VD_OP_BWRITE). 1113 * data - buffer where data are read to or written from. 1114 * blk - starting block for the operation. 1115 * len - number of bytes to read or write. 1116 * 1117 * Return Code: 1118 * 0 - success 1119 * n != 0 - error. 1120 */ 1121 static int 1122 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len) 1123 { 1124 struct uscsi_cmd ucmd; 1125 union scsi_cdb cdb; 1126 int nsectors, nblk; 1127 int max_sectors; 1128 int status, rval; 1129 1130 ASSERT(!vd->file); 1131 ASSERT(vd->vdisk_block_size > 0); 1132 1133 max_sectors = vd->max_xfer_sz; 1134 nblk = (len / vd->vdisk_block_size); 1135 1136 if (len % vd->vdisk_block_size != 0) 1137 return (EINVAL); 1138 1139 /* 1140 * Build and execute the uscsi ioctl. We build a group0, group1 1141 * or group4 command as necessary, since some targets 1142 * do not support group1 commands. 1143 */ 1144 while (nblk) { 1145 1146 bzero(&ucmd, sizeof (ucmd)); 1147 bzero(&cdb, sizeof (cdb)); 1148 1149 nsectors = (max_sectors < nblk) ? max_sectors : nblk; 1150 1151 /* 1152 * Some of the optical drives on sun4v machines are ATAPI 1153 * devices which use Group 1 Read/Write commands so we need 1154 * to explicitly check a flag which is set when a domain 1155 * is bound. 1156 */ 1157 if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) { 1158 FORMG0ADDR(&cdb, blk); 1159 FORMG0COUNT(&cdb, nsectors); 1160 ucmd.uscsi_cdblen = CDB_GROUP0; 1161 } else if (blk > 0xffffffff) { 1162 FORMG4LONGADDR(&cdb, blk); 1163 FORMG4COUNT(&cdb, nsectors); 1164 ucmd.uscsi_cdblen = CDB_GROUP4; 1165 cdb.scc_cmd |= SCMD_GROUP4; 1166 } else { 1167 FORMG1ADDR(&cdb, blk); 1168 FORMG1COUNT(&cdb, nsectors); 1169 ucmd.uscsi_cdblen = CDB_GROUP1; 1170 cdb.scc_cmd |= SCMD_GROUP1; 1171 } 1172 ucmd.uscsi_cdb = (caddr_t)&cdb; 1173 ucmd.uscsi_bufaddr = data; 1174 ucmd.uscsi_buflen = nsectors * vd->block_size; 1175 ucmd.uscsi_timeout = vd_scsi_rdwr_timeout; 1176 /* 1177 * Set flags so that the command is isolated from normal 1178 * commands and no error message is printed. 1179 */ 1180 ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT; 1181 1182 if (operation == VD_OP_BREAD) { 1183 cdb.scc_cmd |= SCMD_READ; 1184 ucmd.uscsi_flags |= USCSI_READ; 1185 } else { 1186 cdb.scc_cmd |= SCMD_WRITE; 1187 } 1188 1189 status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE], 1190 USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL), 1191 kcred, &rval); 1192 1193 if (status == 0) 1194 status = ucmd.uscsi_status; 1195 1196 if (status != 0) 1197 break; 1198 1199 /* 1200 * Check if partial DMA breakup is required. If so, reduce 1201 * the request size by half and retry the last request. 1202 */ 1203 if (ucmd.uscsi_resid == ucmd.uscsi_buflen) { 1204 max_sectors >>= 1; 1205 if (max_sectors <= 0) { 1206 status = EIO; 1207 break; 1208 } 1209 continue; 1210 } 1211 1212 if (ucmd.uscsi_resid != 0) { 1213 status = EIO; 1214 break; 1215 } 1216 1217 blk += nsectors; 1218 nblk -= nsectors; 1219 data += nsectors * vd->vdisk_block_size; /* SECSIZE */ 1220 } 1221 1222 return (status); 1223 } 1224 1225 /* 1226 * Function: 1227 * vd_scsi_rdwr 1228 * 1229 * Description: 1230 * Wrapper function to read or write to a SCSI disk using an absolute 1231 * disk offset. It checks the blocksize of the underlying device and, 1232 * if necessary, adjusts the buffers accordingly before calling 1233 * vd_do_scsi_rdwr() to do the actual read or write. 1234 * 1235 * Parameters: 1236 * vd - disk on which the operation is performed. 1237 * operation - operation to execute: read (VD_OP_BREAD) or 1238 * write (VD_OP_BWRITE). 1239 * data - buffer where data are read to or written from. 1240 * blk - starting block for the operation. 1241 * len - number of bytes to read or write. 1242 * 1243 * Return Code: 1244 * 0 - success 1245 * n != 0 - error. 1246 */ 1247 static int 1248 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen) 1249 { 1250 int rv; 1251 1252 size_t pblk; /* physical device block number of data on device */ 1253 size_t delta; /* relative offset between pblk and vblk */ 1254 size_t pnblk; /* number of physical blocks to be read from device */ 1255 size_t plen; /* length of data to be read from physical device */ 1256 char *buf; /* buffer area to fit physical device's block size */ 1257 1258 if (vd->block_size == 0) { 1259 /* 1260 * The block size was not available during the attach, 1261 * try to update it now. 1262 */ 1263 if (vd_setup_mediainfo(vd) != 0) 1264 return (EIO); 1265 } 1266 1267 /* 1268 * If the vdisk block size and the block size of the underlying device 1269 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need 1270 * to create a buffer large enough to handle the device's block size 1271 * and adjust the block to be read from and the amount of data to 1272 * read to correspond with the device's block size. 1273 */ 1274 if (vd->vdisk_block_size == vd->block_size) 1275 return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen)); 1276 1277 if (vd->vdisk_block_size > vd->block_size) 1278 return (EINVAL); 1279 1280 /* 1281 * Writing of physical block sizes larger than the virtual block size 1282 * is not supported. This would be added if/when support for guests 1283 * writing to DVDs is implemented. 1284 */ 1285 if (operation == VD_OP_BWRITE) 1286 return (ENOTSUP); 1287 1288 /* BEGIN CSTYLED */ 1289 /* 1290 * Below is a diagram showing the relationship between the physical 1291 * and virtual blocks. If the virtual blocks marked by 'X' below are 1292 * requested, then the physical blocks denoted by 'Y' are read. 1293 * 1294 * vblk 1295 * | vlen 1296 * |<--------------->| 1297 * v v 1298 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- virtual disk: 1299 * | | | |XX|XX|XX|XX|XX|XX| | | | | | } block size is 1300 * --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+- vd->vdisk_block_size 1301 * : : : : 1302 * >:==:< delta : : 1303 * : : : : 1304 * --+-----+-----+-----+-----+-----+-----+-----+-- physical disk: 1305 * | |YY:YY|YYYYY|YYYYY|YY:YY| | | } block size is 1306 * --+-----+-----+-----+-----+-----+-----+-----+-- vd->block_size 1307 * ^ ^ 1308 * |<--------------------->| 1309 * | plen 1310 * pblk 1311 */ 1312 /* END CSTYLED */ 1313 pblk = (vblk * vd->vdisk_block_size) / vd->block_size; 1314 delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size); 1315 pnblk = ((delta + vlen - 1) / vd->block_size) + 1; 1316 plen = pnblk * vd->block_size; 1317 1318 PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen); 1319 1320 buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP); 1321 rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen); 1322 bcopy(buf + delta, data, vlen); 1323 1324 kmem_free(buf, sizeof (caddr_t) * plen); 1325 1326 return (rv); 1327 } 1328 1329 /* 1330 * Return Values 1331 * EINPROGRESS - operation was successfully started 1332 * EIO - encountered LDC (aka. task error) 1333 * 0 - operation completed successfully 1334 * 1335 * Side Effect 1336 * sets request->status = <disk operation status> 1337 */ 1338 static int 1339 vd_start_bio(vd_task_t *task) 1340 { 1341 int rv, status = 0; 1342 vd_t *vd = task->vd; 1343 vd_dring_payload_t *request = task->request; 1344 struct buf *buf = &task->buf; 1345 uint8_t mtype; 1346 int slice; 1347 char *bufaddr = 0; 1348 size_t buflen; 1349 1350 ASSERT(vd != NULL); 1351 ASSERT(request != NULL); 1352 1353 slice = request->slice; 1354 1355 ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices); 1356 ASSERT((request->operation == VD_OP_BREAD) || 1357 (request->operation == VD_OP_BWRITE)); 1358 1359 if (request->nbytes == 0) { 1360 /* no service for trivial requests */ 1361 request->status = EINVAL; 1362 return (0); 1363 } 1364 1365 PR1("%s %lu bytes at block %lu", 1366 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 1367 request->nbytes, request->addr); 1368 1369 /* 1370 * We have to check the open flags because the functions processing 1371 * the read/write request will not do it. 1372 */ 1373 if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) { 1374 PR0("write fails because backend is opened read-only"); 1375 request->nbytes = 0; 1376 request->status = EROFS; 1377 return (0); 1378 } 1379 1380 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 1381 1382 /* Map memory exported by client */ 1383 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 1384 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 1385 &bufaddr, NULL); 1386 if (status != 0) { 1387 PR0("ldc_mem_map() returned err %d ", status); 1388 return (EIO); 1389 } 1390 1391 buflen = request->nbytes; 1392 1393 status = ldc_mem_acquire(task->mhdl, 0, buflen); 1394 if (status != 0) { 1395 (void) ldc_mem_unmap(task->mhdl); 1396 PR0("ldc_mem_acquire() returned err %d ", status); 1397 return (EIO); 1398 } 1399 1400 /* Start the block I/O */ 1401 if (vd->file) { 1402 rv = vd_file_rw(vd, slice, request->operation, bufaddr, 1403 request->addr, request->nbytes); 1404 if (rv < 0) { 1405 request->nbytes = 0; 1406 request->status = EIO; 1407 } else { 1408 request->nbytes = rv; 1409 request->status = 0; 1410 } 1411 } else { 1412 if (slice == VD_SLICE_NONE) { 1413 /* 1414 * This is not a disk image so it is a real disk. We 1415 * assume that the underlying device driver supports 1416 * USCSICMD ioctls. This is the case of all SCSI devices 1417 * (sd, ssd...). 1418 * 1419 * In the future if we have non-SCSI disks we would need 1420 * to invoke the appropriate function to do I/O using an 1421 * absolute disk offset (for example using DIOCTL_RWCMD 1422 * for IDE disks). 1423 */ 1424 rv = vd_scsi_rdwr(vd, request->operation, bufaddr, 1425 request->addr, request->nbytes); 1426 if (rv != 0) { 1427 request->nbytes = 0; 1428 request->status = EIO; 1429 } else { 1430 request->status = 0; 1431 } 1432 } else { 1433 bioinit(buf); 1434 buf->b_flags = B_BUSY; 1435 buf->b_bcount = request->nbytes; 1436 buf->b_lblkno = request->addr; 1437 buf->b_edev = vd->dev[slice]; 1438 buf->b_un.b_addr = bufaddr; 1439 buf->b_flags |= (request->operation == VD_OP_BREAD)? 1440 B_READ : B_WRITE; 1441 1442 request->status = 1443 ldi_strategy(vd->ldi_handle[slice], buf); 1444 1445 /* 1446 * This is to indicate to the caller that the request 1447 * needs to be finished by vd_complete_bio() by calling 1448 * biowait() there and waiting for that to return before 1449 * triggering the notification of the vDisk client. 1450 * 1451 * This is necessary when writing to real disks as 1452 * otherwise calls to ldi_strategy() would be serialized 1453 * behind the calls to biowait() and performance would 1454 * suffer. 1455 */ 1456 if (request->status == 0) 1457 return (EINPROGRESS); 1458 1459 biofini(buf); 1460 } 1461 } 1462 1463 /* Clean up after error */ 1464 rv = ldc_mem_release(task->mhdl, 0, buflen); 1465 if (rv) { 1466 PR0("ldc_mem_release() returned err %d ", rv); 1467 status = EIO; 1468 } 1469 rv = ldc_mem_unmap(task->mhdl); 1470 if (rv) { 1471 PR0("ldc_mem_unmap() returned err %d ", rv); 1472 status = EIO; 1473 } 1474 1475 return (status); 1476 } 1477 1478 /* 1479 * This function should only be called from vd_notify to ensure that requests 1480 * are responded to in the order that they are received. 1481 */ 1482 static int 1483 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 1484 { 1485 int status; 1486 size_t nbytes; 1487 1488 do { 1489 nbytes = msglen; 1490 status = ldc_write(ldc_handle, msg, &nbytes); 1491 if (status != EWOULDBLOCK) 1492 break; 1493 drv_usecwait(vds_ldc_delay); 1494 } while (status == EWOULDBLOCK); 1495 1496 if (status != 0) { 1497 if (status != ECONNRESET) 1498 PR0("ldc_write() returned errno %d", status); 1499 return (status); 1500 } else if (nbytes != msglen) { 1501 PR0("ldc_write() performed only partial write"); 1502 return (EIO); 1503 } 1504 1505 PR1("SENT %lu bytes", msglen); 1506 return (0); 1507 } 1508 1509 static void 1510 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 1511 { 1512 mutex_enter(&vd->lock); 1513 vd->reset_state = B_TRUE; 1514 vd->reset_ldc = reset_ldc; 1515 mutex_exit(&vd->lock); 1516 } 1517 1518 /* 1519 * Reset the state of the connection with a client, if needed; reset the LDC 1520 * transport as well, if needed. This function should only be called from the 1521 * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur. 1522 */ 1523 static void 1524 vd_reset_if_needed(vd_t *vd) 1525 { 1526 int status = 0; 1527 1528 mutex_enter(&vd->lock); 1529 if (!vd->reset_state) { 1530 ASSERT(!vd->reset_ldc); 1531 mutex_exit(&vd->lock); 1532 return; 1533 } 1534 mutex_exit(&vd->lock); 1535 1536 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 1537 1538 /* 1539 * Let any asynchronous I/O complete before possibly pulling the rug 1540 * out from under it; defer checking vd->reset_ldc, as one of the 1541 * asynchronous tasks might set it 1542 */ 1543 ddi_taskq_wait(vd->completionq); 1544 1545 if (vd->file) { 1546 status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL); 1547 if (status) { 1548 PR0("VOP_FSYNC returned errno %d", status); 1549 } 1550 } 1551 1552 if ((vd->initialized & VD_DRING) && 1553 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 1554 PR0("ldc_mem_dring_unmap() returned errno %d", status); 1555 1556 vd_free_dring_task(vd); 1557 1558 /* Free the staging buffer for msgs */ 1559 if (vd->vio_msgp != NULL) { 1560 kmem_free(vd->vio_msgp, vd->max_msglen); 1561 vd->vio_msgp = NULL; 1562 } 1563 1564 /* Free the inband message buffer */ 1565 if (vd->inband_task.msg != NULL) { 1566 kmem_free(vd->inband_task.msg, vd->max_msglen); 1567 vd->inband_task.msg = NULL; 1568 } 1569 1570 mutex_enter(&vd->lock); 1571 1572 if (vd->reset_ldc) 1573 PR0("taking down LDC channel"); 1574 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 1575 PR0("ldc_down() returned errno %d", status); 1576 1577 /* Reset exclusive access rights */ 1578 vd_reset_access(vd); 1579 1580 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 1581 vd->state = VD_STATE_INIT; 1582 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 1583 1584 /* Allocate the staging buffer */ 1585 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 1586 1587 PR0("calling ldc_up\n"); 1588 (void) ldc_up(vd->ldc_handle); 1589 1590 vd->reset_state = B_FALSE; 1591 vd->reset_ldc = B_FALSE; 1592 1593 mutex_exit(&vd->lock); 1594 } 1595 1596 static void vd_recv_msg(void *arg); 1597 1598 static void 1599 vd_mark_in_reset(vd_t *vd) 1600 { 1601 int status; 1602 1603 PR0("vd_mark_in_reset: marking vd in reset\n"); 1604 1605 vd_need_reset(vd, B_FALSE); 1606 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP); 1607 if (status == DDI_FAILURE) { 1608 PR0("cannot schedule task to recv msg\n"); 1609 vd_need_reset(vd, B_TRUE); 1610 return; 1611 } 1612 } 1613 1614 static int 1615 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes) 1616 { 1617 boolean_t accepted; 1618 int status; 1619 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 1620 1621 if (vd->reset_state) 1622 return (0); 1623 1624 /* Acquire the element */ 1625 if (!vd->reset_state && 1626 (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 1627 if (status == ECONNRESET) { 1628 vd_mark_in_reset(vd); 1629 return (0); 1630 } else { 1631 PR0("ldc_mem_dring_acquire() returned errno %d", 1632 status); 1633 return (status); 1634 } 1635 } 1636 1637 /* Set the element's status and mark it done */ 1638 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 1639 if (accepted) { 1640 elem->payload.nbytes = elem_nbytes; 1641 elem->payload.status = elem_status; 1642 elem->hdr.dstate = VIO_DESC_DONE; 1643 } else { 1644 /* Perhaps client timed out waiting for I/O... */ 1645 PR0("element %u no longer \"accepted\"", idx); 1646 VD_DUMP_DRING_ELEM(elem); 1647 } 1648 /* Release the element */ 1649 if (!vd->reset_state && 1650 (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 1651 if (status == ECONNRESET) { 1652 vd_mark_in_reset(vd); 1653 return (0); 1654 } else { 1655 PR0("ldc_mem_dring_release() returned errno %d", 1656 status); 1657 return (status); 1658 } 1659 } 1660 1661 return (accepted ? 0 : EINVAL); 1662 } 1663 1664 /* 1665 * Return Values 1666 * 0 - operation completed successfully 1667 * EIO - encountered LDC / task error 1668 * 1669 * Side Effect 1670 * sets request->status = <disk operation status> 1671 */ 1672 static int 1673 vd_complete_bio(vd_task_t *task) 1674 { 1675 int status = 0; 1676 int rv = 0; 1677 vd_t *vd = task->vd; 1678 vd_dring_payload_t *request = task->request; 1679 struct buf *buf = &task->buf; 1680 1681 1682 ASSERT(vd != NULL); 1683 ASSERT(request != NULL); 1684 ASSERT(task->msg != NULL); 1685 ASSERT(task->msglen >= sizeof (*task->msg)); 1686 ASSERT(!vd->file); 1687 ASSERT(request->slice != VD_SLICE_NONE); 1688 1689 /* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */ 1690 request->status = biowait(buf); 1691 1692 /* return back the number of bytes read/written */ 1693 request->nbytes = buf->b_bcount - buf->b_resid; 1694 1695 /* Release the buffer */ 1696 if (!vd->reset_state) 1697 status = ldc_mem_release(task->mhdl, 0, buf->b_bcount); 1698 if (status) { 1699 PR0("ldc_mem_release() returned errno %d copying to " 1700 "client", status); 1701 if (status == ECONNRESET) { 1702 vd_mark_in_reset(vd); 1703 } 1704 rv = EIO; 1705 } 1706 1707 /* Unmap the memory, even if in reset */ 1708 status = ldc_mem_unmap(task->mhdl); 1709 if (status) { 1710 PR0("ldc_mem_unmap() returned errno %d copying to client", 1711 status); 1712 if (status == ECONNRESET) { 1713 vd_mark_in_reset(vd); 1714 } 1715 rv = EIO; 1716 } 1717 1718 biofini(buf); 1719 1720 return (rv); 1721 } 1722 1723 /* 1724 * Description: 1725 * This function is called by the two functions called by a taskq 1726 * [ vd_complete_notify() and vd_serial_notify()) ] to send the 1727 * message to the client. 1728 * 1729 * Parameters: 1730 * arg - opaque pointer to structure containing task to be completed 1731 * 1732 * Return Values 1733 * None 1734 */ 1735 static void 1736 vd_notify(vd_task_t *task) 1737 { 1738 int status; 1739 1740 ASSERT(task != NULL); 1741 ASSERT(task->vd != NULL); 1742 1743 if (task->vd->reset_state) 1744 return; 1745 1746 /* 1747 * Send the "ack" or "nack" back to the client; if sending the message 1748 * via LDC fails, arrange to reset both the connection state and LDC 1749 * itself 1750 */ 1751 PR2("Sending %s", 1752 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 1753 1754 status = send_msg(task->vd->ldc_handle, task->msg, task->msglen); 1755 switch (status) { 1756 case 0: 1757 break; 1758 case ECONNRESET: 1759 vd_mark_in_reset(task->vd); 1760 break; 1761 default: 1762 PR0("initiating full reset"); 1763 vd_need_reset(task->vd, B_TRUE); 1764 break; 1765 } 1766 1767 DTRACE_PROBE1(task__end, vd_task_t *, task); 1768 } 1769 1770 /* 1771 * Description: 1772 * Mark the Dring entry as Done and (if necessary) send an ACK/NACK to 1773 * the vDisk client 1774 * 1775 * Parameters: 1776 * task - structure containing the request sent from client 1777 * 1778 * Return Values 1779 * None 1780 */ 1781 static void 1782 vd_complete_notify(vd_task_t *task) 1783 { 1784 int status = 0; 1785 vd_t *vd = task->vd; 1786 vd_dring_payload_t *request = task->request; 1787 1788 /* Update the dring element for a dring client */ 1789 if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 1790 status = vd_mark_elem_done(vd, task->index, 1791 request->status, request->nbytes); 1792 if (status == ECONNRESET) 1793 vd_mark_in_reset(vd); 1794 } 1795 1796 /* 1797 * If a transport error occurred while marking the element done or 1798 * previously while executing the task, arrange to "nack" the message 1799 * when the final task in the descriptor element range completes 1800 */ 1801 if ((status != 0) || (task->status != 0)) 1802 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 1803 1804 /* 1805 * Only the final task for a range of elements will respond to and 1806 * free the message 1807 */ 1808 if (task->type == VD_NONFINAL_RANGE_TASK) { 1809 return; 1810 } 1811 1812 vd_notify(task); 1813 } 1814 1815 /* 1816 * Description: 1817 * This is the basic completion function called to handle inband data 1818 * requests and handshake messages. All it needs to do is trigger a 1819 * message to the client that the request is completed. 1820 * 1821 * Parameters: 1822 * arg - opaque pointer to structure containing task to be completed 1823 * 1824 * Return Values 1825 * None 1826 */ 1827 static void 1828 vd_serial_notify(void *arg) 1829 { 1830 vd_task_t *task = (vd_task_t *)arg; 1831 1832 ASSERT(task != NULL); 1833 vd_notify(task); 1834 } 1835 1836 /* ARGSUSED */ 1837 static int 1838 vd_geom2dk_geom(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 1839 { 1840 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 1841 return (0); 1842 } 1843 1844 /* ARGSUSED */ 1845 static int 1846 vd_vtoc2vtoc(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 1847 { 1848 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg); 1849 return (0); 1850 } 1851 1852 static void 1853 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 1854 { 1855 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 1856 } 1857 1858 static void 1859 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 1860 { 1861 VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 1862 } 1863 1864 static int 1865 vd_get_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 1866 { 1867 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 1868 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 1869 size_t data_len; 1870 1871 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 1872 if (vd_efi->length > data_len) 1873 return (EINVAL); 1874 1875 dk_efi->dki_lba = vd_efi->lba; 1876 dk_efi->dki_length = vd_efi->length; 1877 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 1878 return (0); 1879 } 1880 1881 static void 1882 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 1883 { 1884 int len; 1885 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 1886 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 1887 1888 len = vd_efi->length; 1889 DK_EFI2VD_EFI(dk_efi, vd_efi); 1890 kmem_free(dk_efi->dki_data, len); 1891 } 1892 1893 static int 1894 vd_set_efi_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 1895 { 1896 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 1897 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 1898 size_t data_len; 1899 1900 data_len = vd_buf_len - (sizeof (vd_efi_t) - sizeof (uint64_t)); 1901 if (vd_efi->length > data_len) 1902 return (EINVAL); 1903 1904 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 1905 VD_EFI2DK_EFI(vd_efi, dk_efi); 1906 return (0); 1907 } 1908 1909 static void 1910 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 1911 { 1912 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 1913 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 1914 1915 kmem_free(dk_efi->dki_data, vd_efi->length); 1916 } 1917 1918 static int 1919 vd_scsicmd_in(void *vd_buf, size_t vd_buf_len, void *ioctl_arg) 1920 { 1921 size_t vd_scsi_len; 1922 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 1923 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 1924 1925 /* check buffer size */ 1926 vd_scsi_len = VD_SCSI_SIZE; 1927 vd_scsi_len += P2ROUNDUP(vd_scsi->cdb_len, sizeof (uint64_t)); 1928 vd_scsi_len += P2ROUNDUP(vd_scsi->sense_len, sizeof (uint64_t)); 1929 vd_scsi_len += P2ROUNDUP(vd_scsi->datain_len, sizeof (uint64_t)); 1930 vd_scsi_len += P2ROUNDUP(vd_scsi->dataout_len, sizeof (uint64_t)); 1931 1932 ASSERT(vd_scsi_len % sizeof (uint64_t) == 0); 1933 1934 if (vd_buf_len < vd_scsi_len) 1935 return (EINVAL); 1936 1937 /* set flags */ 1938 uscsi->uscsi_flags = vd_scsi_debug; 1939 1940 if (vd_scsi->options & VD_SCSI_OPT_NORETRY) { 1941 uscsi->uscsi_flags |= USCSI_ISOLATE; 1942 uscsi->uscsi_flags |= USCSI_DIAGNOSE; 1943 } 1944 1945 /* task attribute */ 1946 switch (vd_scsi->task_attribute) { 1947 case VD_SCSI_TASK_ACA: 1948 uscsi->uscsi_flags |= USCSI_HEAD; 1949 break; 1950 case VD_SCSI_TASK_HQUEUE: 1951 uscsi->uscsi_flags |= USCSI_HTAG; 1952 break; 1953 case VD_SCSI_TASK_ORDERED: 1954 uscsi->uscsi_flags |= USCSI_OTAG; 1955 break; 1956 default: 1957 uscsi->uscsi_flags |= USCSI_NOTAG; 1958 break; 1959 } 1960 1961 /* timeout */ 1962 uscsi->uscsi_timeout = vd_scsi->timeout; 1963 1964 /* cdb data */ 1965 uscsi->uscsi_cdb = (caddr_t)VD_SCSI_DATA_CDB(vd_scsi); 1966 uscsi->uscsi_cdblen = vd_scsi->cdb_len; 1967 1968 /* sense buffer */ 1969 if (vd_scsi->sense_len != 0) { 1970 uscsi->uscsi_flags |= USCSI_RQENABLE; 1971 uscsi->uscsi_rqbuf = (caddr_t)VD_SCSI_DATA_SENSE(vd_scsi); 1972 uscsi->uscsi_rqlen = vd_scsi->sense_len; 1973 } 1974 1975 if (vd_scsi->datain_len != 0 && vd_scsi->dataout_len != 0) { 1976 /* uscsi does not support read/write request */ 1977 return (EINVAL); 1978 } 1979 1980 /* request data-in */ 1981 if (vd_scsi->datain_len != 0) { 1982 uscsi->uscsi_flags |= USCSI_READ; 1983 uscsi->uscsi_buflen = vd_scsi->datain_len; 1984 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_IN(vd_scsi); 1985 } 1986 1987 /* request data-out */ 1988 if (vd_scsi->dataout_len != 0) { 1989 uscsi->uscsi_buflen = vd_scsi->dataout_len; 1990 uscsi->uscsi_bufaddr = (char *)VD_SCSI_DATA_OUT(vd_scsi); 1991 } 1992 1993 return (0); 1994 } 1995 1996 static void 1997 vd_scsicmd_out(void *ioctl_arg, void *vd_buf) 1998 { 1999 vd_scsi_t *vd_scsi = (vd_scsi_t *)vd_buf; 2000 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl_arg; 2001 2002 /* output fields */ 2003 vd_scsi->cmd_status = uscsi->uscsi_status; 2004 2005 /* sense data */ 2006 if ((uscsi->uscsi_flags & USCSI_RQENABLE) && 2007 (uscsi->uscsi_status == STATUS_CHECK || 2008 uscsi->uscsi_status == STATUS_TERMINATED)) { 2009 vd_scsi->sense_status = uscsi->uscsi_rqstatus; 2010 if (uscsi->uscsi_rqstatus == STATUS_GOOD) 2011 vd_scsi->sense_len -= uscsi->uscsi_resid; 2012 else 2013 vd_scsi->sense_len = 0; 2014 } else { 2015 vd_scsi->sense_len = 0; 2016 } 2017 2018 if (uscsi->uscsi_status != STATUS_GOOD) { 2019 vd_scsi->dataout_len = 0; 2020 vd_scsi->datain_len = 0; 2021 return; 2022 } 2023 2024 if (uscsi->uscsi_flags & USCSI_READ) { 2025 /* request data (read) */ 2026 vd_scsi->datain_len -= uscsi->uscsi_resid; 2027 vd_scsi->dataout_len = 0; 2028 } else { 2029 /* request data (write) */ 2030 vd_scsi->datain_len = 0; 2031 vd_scsi->dataout_len -= uscsi->uscsi_resid; 2032 } 2033 } 2034 2035 static ushort_t 2036 vd_lbl2cksum(struct dk_label *label) 2037 { 2038 int count; 2039 ushort_t sum, *sp; 2040 2041 count = (sizeof (struct dk_label)) / (sizeof (short)) - 1; 2042 sp = (ushort_t *)label; 2043 sum = 0; 2044 while (count--) { 2045 sum ^= *sp++; 2046 } 2047 2048 return (sum); 2049 } 2050 2051 /* 2052 * Handle ioctls to a disk slice. 2053 * 2054 * Return Values 2055 * 0 - Indicates that there are no errors in disk operations 2056 * ENOTSUP - Unknown disk label type or unsupported DKIO ioctl 2057 * EINVAL - Not enough room to copy the EFI label 2058 * 2059 */ 2060 static int 2061 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 2062 { 2063 dk_efi_t *dk_ioc; 2064 int rval; 2065 2066 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 2067 2068 if (cmd == DKIOCFLUSHWRITECACHE) { 2069 if (vd->file) { 2070 return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL)); 2071 } else { 2072 return (ldi_ioctl(vd->ldi_handle[0], cmd, 2073 (intptr_t)ioctl_arg, vd->open_flags | FKIOCTL, 2074 kcred, &rval)); 2075 } 2076 } 2077 2078 switch (vd->vdisk_label) { 2079 2080 /* ioctls for a single slice disk with a VTOC label */ 2081 case VD_DISK_LABEL_VTOC: 2082 2083 switch (cmd) { 2084 case DKIOCGGEOM: 2085 ASSERT(ioctl_arg != NULL); 2086 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 2087 return (0); 2088 case DKIOCGVTOC: 2089 ASSERT(ioctl_arg != NULL); 2090 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 2091 return (0); 2092 default: 2093 return (ENOTSUP); 2094 } 2095 2096 /* ioctls for a single slice disk with an EFI label */ 2097 case VD_DISK_LABEL_EFI: 2098 2099 switch (cmd) { 2100 case DKIOCGETEFI: 2101 ASSERT(ioctl_arg != NULL); 2102 dk_ioc = (dk_efi_t *)ioctl_arg; 2103 2104 /* 2105 * For a single slice disk with an EFI label, we define 2106 * a fake EFI label with the GPT at LBA 1 and one GPE 2107 * at LBA 2. So we return the GPT or the GPE depending 2108 * on which LBA is requested. 2109 */ 2110 if (dk_ioc->dki_lba == 1) { 2111 2112 /* return the EFI GPT */ 2113 if (dk_ioc->dki_length < sizeof (efi_gpt_t)) 2114 return (EINVAL); 2115 2116 bcopy(&vd->efi_gpt, dk_ioc->dki_data, 2117 sizeof (efi_gpt_t)); 2118 2119 /* also return the GPE if possible */ 2120 if (dk_ioc->dki_length >= sizeof (efi_gpt_t) + 2121 sizeof (efi_gpe_t)) { 2122 bcopy(&vd->efi_gpe, dk_ioc->dki_data + 2123 1, sizeof (efi_gpe_t)); 2124 } 2125 2126 } else if (dk_ioc->dki_lba == 2) { 2127 2128 /* return the EFI GPE */ 2129 if (dk_ioc->dki_length < sizeof (efi_gpe_t)) 2130 return (EINVAL); 2131 2132 bcopy(&vd->efi_gpe, dk_ioc->dki_data, 2133 sizeof (efi_gpe_t)); 2134 2135 } else { 2136 return (EINVAL); 2137 } 2138 2139 return (0); 2140 default: 2141 return (ENOTSUP); 2142 } 2143 2144 default: 2145 /* Unknown disk label type */ 2146 return (ENOTSUP); 2147 } 2148 } 2149 2150 static int 2151 vds_efi_alloc_and_read(vd_t *vd, efi_gpt_t **gpt, efi_gpe_t **gpe) 2152 { 2153 vd_efi_dev_t edev; 2154 int status; 2155 2156 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 2157 2158 status = vd_efi_alloc_and_read(&edev, gpt, gpe); 2159 2160 return (status); 2161 } 2162 2163 static void 2164 vds_efi_free(vd_t *vd, efi_gpt_t *gpt, efi_gpe_t *gpe) 2165 { 2166 vd_efi_dev_t edev; 2167 2168 VD_EFI_DEV_SET(edev, vd, (vd_efi_ioctl_func)vd_backend_ioctl); 2169 2170 vd_efi_free(&edev, gpt, gpe); 2171 } 2172 2173 static int 2174 vd_file_validate_efi(vd_t *vd) 2175 { 2176 efi_gpt_t *gpt; 2177 efi_gpe_t *gpe; 2178 int i, nparts, status; 2179 struct uuid efi_reserved = EFI_RESERVED; 2180 2181 if ((status = vds_efi_alloc_and_read(vd, &gpt, &gpe)) != 0) 2182 return (status); 2183 2184 bzero(&vd->vtoc, sizeof (struct vtoc)); 2185 bzero(&vd->dk_geom, sizeof (struct dk_geom)); 2186 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 2187 2188 vd->efi_reserved = -1; 2189 2190 nparts = gpt->efi_gpt_NumberOfPartitionEntries; 2191 2192 for (i = 0; i < nparts && i < VD_MAXPART; i++) { 2193 2194 if (gpe[i].efi_gpe_StartingLBA == 0 || 2195 gpe[i].efi_gpe_EndingLBA == 0) { 2196 continue; 2197 } 2198 2199 vd->slices[i].start = gpe[i].efi_gpe_StartingLBA; 2200 vd->slices[i].nblocks = gpe[i].efi_gpe_EndingLBA - 2201 gpe[i].efi_gpe_StartingLBA + 1; 2202 2203 if (bcmp(&gpe[i].efi_gpe_PartitionTypeGUID, &efi_reserved, 2204 sizeof (struct uuid)) == 0) 2205 vd->efi_reserved = i; 2206 2207 } 2208 2209 ASSERT(vd->vdisk_size != 0); 2210 vd->slices[VD_EFI_WD_SLICE].start = 0; 2211 vd->slices[VD_EFI_WD_SLICE].nblocks = vd->vdisk_size; 2212 2213 vds_efi_free(vd, gpt, gpe); 2214 2215 return (status); 2216 } 2217 2218 /* 2219 * Function: 2220 * vd_file_validate_geometry 2221 * 2222 * Description: 2223 * Read the label and validate the geometry of a disk image. The driver 2224 * label, vtoc and geometry information are updated according to the 2225 * label read from the disk image. 2226 * 2227 * If no valid label is found, the label is set to unknown and the 2228 * function returns EINVAL, but a default vtoc and geometry are provided 2229 * to the driver. If an EFI label is found, ENOTSUP is returned. 2230 * 2231 * Parameters: 2232 * vd - disk on which the operation is performed. 2233 * 2234 * Return Code: 2235 * 0 - success. 2236 * EIO - error reading the label from the disk image. 2237 * EINVAL - unknown disk label. 2238 * ENOTSUP - geometry not applicable (EFI label). 2239 */ 2240 static int 2241 vd_file_validate_geometry(vd_t *vd) 2242 { 2243 struct dk_label label; 2244 struct dk_geom *geom = &vd->dk_geom; 2245 struct vtoc *vtoc = &vd->vtoc; 2246 int i; 2247 int status = 0; 2248 2249 ASSERT(vd->file); 2250 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 2251 2252 if (VD_FILE_LABEL_READ(vd, &label) < 0) 2253 return (EIO); 2254 2255 if (label.dkl_magic != DKL_MAGIC || 2256 label.dkl_cksum != vd_lbl2cksum(&label) || 2257 (vd_file_validate_sanity && label.dkl_vtoc.v_sanity != VTOC_SANE) || 2258 label.dkl_vtoc.v_nparts != V_NUMPAR) { 2259 2260 if (vd_file_validate_efi(vd) == 0) { 2261 vd->vdisk_label = VD_DISK_LABEL_EFI; 2262 return (ENOTSUP); 2263 } 2264 2265 vd->vdisk_label = VD_DISK_LABEL_UNK; 2266 vd_file_build_default_label(vd, &label); 2267 status = EINVAL; 2268 } else { 2269 vd->vdisk_label = VD_DISK_LABEL_VTOC; 2270 } 2271 2272 /* Update the driver geometry */ 2273 bzero(geom, sizeof (struct dk_geom)); 2274 2275 geom->dkg_ncyl = label.dkl_ncyl; 2276 geom->dkg_acyl = label.dkl_acyl; 2277 geom->dkg_nhead = label.dkl_nhead; 2278 geom->dkg_nsect = label.dkl_nsect; 2279 geom->dkg_intrlv = label.dkl_intrlv; 2280 geom->dkg_apc = label.dkl_apc; 2281 geom->dkg_rpm = label.dkl_rpm; 2282 geom->dkg_pcyl = label.dkl_pcyl; 2283 geom->dkg_write_reinstruct = label.dkl_write_reinstruct; 2284 geom->dkg_read_reinstruct = label.dkl_read_reinstruct; 2285 2286 /* Update the driver vtoc */ 2287 bzero(vtoc, sizeof (struct vtoc)); 2288 2289 vtoc->v_sanity = label.dkl_vtoc.v_sanity; 2290 vtoc->v_version = label.dkl_vtoc.v_version; 2291 vtoc->v_sectorsz = DEV_BSIZE; 2292 vtoc->v_nparts = label.dkl_vtoc.v_nparts; 2293 2294 for (i = 0; i < vtoc->v_nparts; i++) { 2295 vtoc->v_part[i].p_tag = 2296 label.dkl_vtoc.v_part[i].p_tag; 2297 vtoc->v_part[i].p_flag = 2298 label.dkl_vtoc.v_part[i].p_flag; 2299 vtoc->v_part[i].p_start = 2300 label.dkl_map[i].dkl_cylno * 2301 (label.dkl_nhead * label.dkl_nsect); 2302 vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk; 2303 vtoc->timestamp[i] = 2304 label.dkl_vtoc.v_timestamp[i]; 2305 } 2306 /* 2307 * The bootinfo array can not be copied with bcopy() because 2308 * elements are of type long in vtoc (so 64-bit) and of type 2309 * int in dk_vtoc (so 32-bit). 2310 */ 2311 vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0]; 2312 vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1]; 2313 vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2]; 2314 bcopy(label.dkl_asciilabel, vtoc->v_asciilabel, 2315 LEN_DKL_ASCII); 2316 bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume, 2317 LEN_DKL_VVOL); 2318 2319 /* Update logical partitions */ 2320 bzero(vd->slices, sizeof (vd_slice_t) * VD_MAXPART); 2321 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 2322 for (i = 0; i < vtoc->v_nparts; i++) { 2323 vd->slices[i].start = vtoc->v_part[i].p_start; 2324 vd->slices[i].nblocks = vtoc->v_part[i].p_size; 2325 } 2326 } 2327 2328 return (status); 2329 } 2330 2331 /* 2332 * Handle ioctls to a disk image (file-based). 2333 * 2334 * Return Values 2335 * 0 - Indicates that there are no errors 2336 * != 0 - Disk operation returned an error 2337 */ 2338 static int 2339 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 2340 { 2341 struct dk_label label; 2342 struct dk_geom *geom; 2343 struct vtoc *vtoc; 2344 dk_efi_t *efi; 2345 int i, rc; 2346 2347 ASSERT(vd->file); 2348 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 2349 2350 switch (cmd) { 2351 2352 case DKIOCGGEOM: 2353 ASSERT(ioctl_arg != NULL); 2354 geom = (struct dk_geom *)ioctl_arg; 2355 2356 rc = vd_file_validate_geometry(vd); 2357 if (rc != 0 && rc != EINVAL) 2358 return (rc); 2359 bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom)); 2360 return (0); 2361 2362 case DKIOCGVTOC: 2363 ASSERT(ioctl_arg != NULL); 2364 vtoc = (struct vtoc *)ioctl_arg; 2365 2366 rc = vd_file_validate_geometry(vd); 2367 if (rc != 0 && rc != EINVAL) 2368 return (rc); 2369 bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc)); 2370 return (0); 2371 2372 case DKIOCSGEOM: 2373 ASSERT(ioctl_arg != NULL); 2374 geom = (struct dk_geom *)ioctl_arg; 2375 2376 if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0) 2377 return (EINVAL); 2378 2379 /* 2380 * The current device geometry is not updated, just the driver 2381 * "notion" of it. The device geometry will be effectively 2382 * updated when a label is written to the device during a next 2383 * DKIOCSVTOC. 2384 */ 2385 bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom)); 2386 return (0); 2387 2388 case DKIOCSVTOC: 2389 ASSERT(ioctl_arg != NULL); 2390 ASSERT(vd->dk_geom.dkg_nhead != 0 && 2391 vd->dk_geom.dkg_nsect != 0); 2392 vtoc = (struct vtoc *)ioctl_arg; 2393 2394 if (vtoc->v_sanity != VTOC_SANE || 2395 vtoc->v_sectorsz != DEV_BSIZE || 2396 vtoc->v_nparts != V_NUMPAR) 2397 return (EINVAL); 2398 2399 bzero(&label, sizeof (label)); 2400 label.dkl_ncyl = vd->dk_geom.dkg_ncyl; 2401 label.dkl_acyl = vd->dk_geom.dkg_acyl; 2402 label.dkl_pcyl = vd->dk_geom.dkg_pcyl; 2403 label.dkl_nhead = vd->dk_geom.dkg_nhead; 2404 label.dkl_nsect = vd->dk_geom.dkg_nsect; 2405 label.dkl_intrlv = vd->dk_geom.dkg_intrlv; 2406 label.dkl_apc = vd->dk_geom.dkg_apc; 2407 label.dkl_rpm = vd->dk_geom.dkg_rpm; 2408 label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct; 2409 label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct; 2410 2411 label.dkl_vtoc.v_nparts = V_NUMPAR; 2412 label.dkl_vtoc.v_sanity = VTOC_SANE; 2413 label.dkl_vtoc.v_version = vtoc->v_version; 2414 for (i = 0; i < V_NUMPAR; i++) { 2415 label.dkl_vtoc.v_timestamp[i] = 2416 vtoc->timestamp[i]; 2417 label.dkl_vtoc.v_part[i].p_tag = 2418 vtoc->v_part[i].p_tag; 2419 label.dkl_vtoc.v_part[i].p_flag = 2420 vtoc->v_part[i].p_flag; 2421 label.dkl_map[i].dkl_cylno = 2422 vtoc->v_part[i].p_start / 2423 (label.dkl_nhead * label.dkl_nsect); 2424 label.dkl_map[i].dkl_nblk = 2425 vtoc->v_part[i].p_size; 2426 } 2427 /* 2428 * The bootinfo array can not be copied with bcopy() because 2429 * elements are of type long in vtoc (so 64-bit) and of type 2430 * int in dk_vtoc (so 32-bit). 2431 */ 2432 label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0]; 2433 label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1]; 2434 label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2]; 2435 bcopy(vtoc->v_asciilabel, label.dkl_asciilabel, 2436 LEN_DKL_ASCII); 2437 bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume, 2438 LEN_DKL_VVOL); 2439 2440 /* re-compute checksum */ 2441 label.dkl_magic = DKL_MAGIC; 2442 label.dkl_cksum = vd_lbl2cksum(&label); 2443 2444 /* write label to the disk image */ 2445 if ((rc = vd_file_set_vtoc(vd, &label)) != 0) 2446 return (rc); 2447 2448 break; 2449 2450 case DKIOCFLUSHWRITECACHE: 2451 return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL)); 2452 2453 case DKIOCGETEFI: 2454 ASSERT(ioctl_arg != NULL); 2455 efi = (dk_efi_t *)ioctl_arg; 2456 2457 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, 2458 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 2459 return (EIO); 2460 2461 return (0); 2462 2463 case DKIOCSETEFI: 2464 ASSERT(ioctl_arg != NULL); 2465 efi = (dk_efi_t *)ioctl_arg; 2466 2467 if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, 2468 (caddr_t)efi->dki_data, efi->dki_lba, efi->dki_length) < 0) 2469 return (EIO); 2470 2471 break; 2472 2473 2474 default: 2475 return (ENOTSUP); 2476 } 2477 2478 ASSERT(cmd == DKIOCSVTOC || cmd == DKIOCSETEFI); 2479 2480 /* label has changed, revalidate the geometry */ 2481 (void) vd_file_validate_geometry(vd); 2482 2483 /* 2484 * The disk geometry may have changed, so we need to write 2485 * the devid (if there is one) so that it is stored at the 2486 * right location. 2487 */ 2488 if (vd_file_write_devid(vd, vd->file_devid) != 0) { 2489 PR0("Fail to write devid"); 2490 } 2491 2492 return (0); 2493 } 2494 2495 static int 2496 vd_backend_ioctl(vd_t *vd, int cmd, caddr_t arg) 2497 { 2498 int rval = 0, status; 2499 2500 /* 2501 * Call the appropriate function to execute the ioctl depending 2502 * on the type of vdisk. 2503 */ 2504 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 2505 2506 /* slice, file or volume exported as a single slice disk */ 2507 status = vd_do_slice_ioctl(vd, cmd, arg); 2508 2509 } else if (vd->file) { 2510 2511 /* file or volume exported as a full disk */ 2512 status = vd_do_file_ioctl(vd, cmd, arg); 2513 2514 } else { 2515 2516 /* disk device exported as a full disk */ 2517 status = ldi_ioctl(vd->ldi_handle[0], cmd, (intptr_t)arg, 2518 vd->open_flags | FKIOCTL, kcred, &rval); 2519 } 2520 2521 #ifdef DEBUG 2522 if (rval != 0) { 2523 PR0("ioctl %x set rval = %d, which is not being returned" 2524 " to caller", cmd, rval); 2525 } 2526 #endif /* DEBUG */ 2527 2528 return (status); 2529 } 2530 2531 /* 2532 * Description: 2533 * This is the function that processes the ioctl requests (farming it 2534 * out to functions that handle slices, files or whole disks) 2535 * 2536 * Return Values 2537 * 0 - ioctl operation completed successfully 2538 * != 0 - The LDC error value encountered 2539 * (propagated back up the call stack as a task error) 2540 * 2541 * Side Effect 2542 * sets request->status to the return value of the ioctl function. 2543 */ 2544 static int 2545 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 2546 { 2547 int status = 0; 2548 size_t nbytes = request->nbytes; /* modifiable copy */ 2549 2550 2551 ASSERT(request->slice < vd->nslices); 2552 PR0("Performing %s", ioctl->operation_name); 2553 2554 /* Get data from client and convert, if necessary */ 2555 if (ioctl->copyin != NULL) { 2556 ASSERT(nbytes != 0 && buf != NULL); 2557 PR1("Getting \"arg\" data from client"); 2558 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 2559 request->cookie, request->ncookies, 2560 LDC_COPY_IN)) != 0) { 2561 PR0("ldc_mem_copy() returned errno %d " 2562 "copying from client", status); 2563 return (status); 2564 } 2565 2566 /* Convert client's data, if necessary */ 2567 if (ioctl->copyin == VD_IDENTITY_IN) { 2568 /* use client buffer */ 2569 ioctl->arg = buf; 2570 } else { 2571 /* convert client vdisk operation data to ioctl data */ 2572 status = (ioctl->copyin)(buf, nbytes, 2573 (void *)ioctl->arg); 2574 if (status != 0) { 2575 request->status = status; 2576 return (0); 2577 } 2578 } 2579 } 2580 2581 if (ioctl->operation == VD_OP_SCSICMD) { 2582 struct uscsi_cmd *uscsi = (struct uscsi_cmd *)ioctl->arg; 2583 2584 /* check write permission */ 2585 if (!(vd->open_flags & FWRITE) && 2586 !(uscsi->uscsi_flags & USCSI_READ)) { 2587 PR0("uscsi fails because backend is opened read-only"); 2588 request->status = EROFS; 2589 return (0); 2590 } 2591 } 2592 2593 /* 2594 * Send the ioctl to the disk backend. 2595 */ 2596 request->status = vd_backend_ioctl(vd, ioctl->cmd, ioctl->arg); 2597 2598 if (request->status != 0) { 2599 PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status); 2600 if (ioctl->operation == VD_OP_SCSICMD && 2601 ((struct uscsi_cmd *)ioctl->arg)->uscsi_status != 0) 2602 /* 2603 * USCSICMD has reported an error and the uscsi_status 2604 * field is not zero. This means that the SCSI command 2605 * has completed but it has an error. So we should 2606 * mark the VD operation has succesfully completed 2607 * and clients can check the SCSI status field for 2608 * SCSI errors. 2609 */ 2610 request->status = 0; 2611 else 2612 return (0); 2613 } 2614 2615 /* Convert data and send to client, if necessary */ 2616 if (ioctl->copyout != NULL) { 2617 ASSERT(nbytes != 0 && buf != NULL); 2618 PR1("Sending \"arg\" data to client"); 2619 2620 /* Convert ioctl data to vdisk operation data, if necessary */ 2621 if (ioctl->copyout != VD_IDENTITY_OUT) 2622 (ioctl->copyout)((void *)ioctl->arg, buf); 2623 2624 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 2625 request->cookie, request->ncookies, 2626 LDC_COPY_OUT)) != 0) { 2627 PR0("ldc_mem_copy() returned errno %d " 2628 "copying to client", status); 2629 return (status); 2630 } 2631 } 2632 2633 return (status); 2634 } 2635 2636 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 2637 2638 /* 2639 * Description: 2640 * This generic function is called by the task queue to complete 2641 * the processing of the tasks. The specific completion function 2642 * is passed in as a field in the task pointer. 2643 * 2644 * Parameters: 2645 * arg - opaque pointer to structure containing task to be completed 2646 * 2647 * Return Values 2648 * None 2649 */ 2650 static void 2651 vd_complete(void *arg) 2652 { 2653 vd_task_t *task = (vd_task_t *)arg; 2654 2655 ASSERT(task != NULL); 2656 ASSERT(task->status == EINPROGRESS); 2657 ASSERT(task->completef != NULL); 2658 2659 task->status = task->completef(task); 2660 if (task->status) 2661 PR0("%s: Error %d completing task", __func__, task->status); 2662 2663 /* Now notify the vDisk client */ 2664 vd_complete_notify(task); 2665 } 2666 2667 static int 2668 vd_ioctl(vd_task_t *task) 2669 { 2670 int i, status; 2671 void *buf = NULL; 2672 struct dk_geom dk_geom = {0}; 2673 struct vtoc vtoc = {0}; 2674 struct dk_efi dk_efi = {0}; 2675 struct uscsi_cmd uscsi = {0}; 2676 vd_t *vd = task->vd; 2677 vd_dring_payload_t *request = task->request; 2678 vd_ioctl_t ioctl[] = { 2679 /* Command (no-copy) operations */ 2680 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 2681 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 2682 NULL, NULL, NULL, B_TRUE}, 2683 2684 /* "Get" (copy-out) operations */ 2685 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 2686 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 2687 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_FALSE}, 2688 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 2689 RNDSIZE(vd_geom_t), 2690 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 2691 &dk_geom, NULL, dk_geom2vd_geom, B_FALSE}, 2692 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 2693 DKIOCGVTOC, STRINGIZE(DKIOCGVTOC), 2694 &vtoc, NULL, vtoc2vd_vtoc, B_FALSE}, 2695 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 2696 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 2697 &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE}, 2698 2699 /* "Set" (copy-in) operations */ 2700 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 2701 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 2702 NULL, VD_IDENTITY_IN, VD_IDENTITY_OUT, B_TRUE}, 2703 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 2704 RNDSIZE(vd_geom_t), 2705 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 2706 &dk_geom, vd_geom2dk_geom, NULL, B_TRUE}, 2707 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 2708 DKIOCSVTOC, STRINGIZE(DKIOCSVTOC), 2709 &vtoc, vd_vtoc2vtoc, NULL, B_TRUE}, 2710 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 2711 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 2712 &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE}, 2713 2714 {VD_OP_SCSICMD, STRINGIZE(VD_OP_SCSICMD), RNDSIZE(vd_scsi_t), 2715 USCSICMD, STRINGIZE(USCSICMD), 2716 &uscsi, vd_scsicmd_in, vd_scsicmd_out, B_FALSE}, 2717 }; 2718 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 2719 2720 2721 ASSERT(vd != NULL); 2722 ASSERT(request != NULL); 2723 ASSERT(request->slice < vd->nslices); 2724 2725 /* 2726 * Determine ioctl corresponding to caller's "operation" and 2727 * validate caller's "nbytes" 2728 */ 2729 for (i = 0; i < nioctls; i++) { 2730 if (request->operation == ioctl[i].operation) { 2731 /* LDC memory operations require 8-byte multiples */ 2732 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 2733 2734 if (request->operation == VD_OP_GET_EFI || 2735 request->operation == VD_OP_SET_EFI || 2736 request->operation == VD_OP_SCSICMD) { 2737 if (request->nbytes >= ioctl[i].nbytes) 2738 break; 2739 PR0("%s: Expected at least nbytes = %lu, " 2740 "got %lu", ioctl[i].operation_name, 2741 ioctl[i].nbytes, request->nbytes); 2742 return (EINVAL); 2743 } 2744 2745 if (request->nbytes != ioctl[i].nbytes) { 2746 PR0("%s: Expected nbytes = %lu, got %lu", 2747 ioctl[i].operation_name, ioctl[i].nbytes, 2748 request->nbytes); 2749 return (EINVAL); 2750 } 2751 2752 break; 2753 } 2754 } 2755 ASSERT(i < nioctls); /* because "operation" already validated */ 2756 2757 if (!(vd->open_flags & FWRITE) && ioctl[i].write) { 2758 PR0("%s fails because backend is opened read-only", 2759 ioctl[i].operation_name); 2760 request->status = EROFS; 2761 return (0); 2762 } 2763 2764 if (request->nbytes) 2765 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 2766 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 2767 if (request->nbytes) 2768 kmem_free(buf, request->nbytes); 2769 2770 return (status); 2771 } 2772 2773 static int 2774 vd_get_devid(vd_task_t *task) 2775 { 2776 vd_t *vd = task->vd; 2777 vd_dring_payload_t *request = task->request; 2778 vd_devid_t *vd_devid; 2779 impl_devid_t *devid; 2780 int status, bufid_len, devid_len, len, sz; 2781 int bufbytes; 2782 2783 PR1("Get Device ID, nbytes=%ld", request->nbytes); 2784 2785 if (vd->file) { 2786 if (vd->file_devid == NULL) { 2787 PR2("No Device ID"); 2788 request->status = ENOENT; 2789 return (0); 2790 } else { 2791 sz = ddi_devid_sizeof(vd->file_devid); 2792 devid = kmem_alloc(sz, KM_SLEEP); 2793 bcopy(vd->file_devid, devid, sz); 2794 } 2795 } else { 2796 if (ddi_lyr_get_devid(vd->dev[request->slice], 2797 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 2798 PR2("No Device ID"); 2799 request->status = ENOENT; 2800 return (0); 2801 } 2802 } 2803 2804 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 2805 devid_len = DEVID_GETLEN(devid); 2806 2807 /* 2808 * Save the buffer size here for use in deallocation. 2809 * The actual number of bytes copied is returned in 2810 * the 'nbytes' field of the request structure. 2811 */ 2812 bufbytes = request->nbytes; 2813 2814 vd_devid = kmem_zalloc(bufbytes, KM_SLEEP); 2815 vd_devid->length = devid_len; 2816 vd_devid->type = DEVID_GETTYPE(devid); 2817 2818 len = (devid_len > bufid_len)? bufid_len : devid_len; 2819 2820 bcopy(devid->did_id, vd_devid->id, len); 2821 2822 request->status = 0; 2823 2824 /* LDC memory operations require 8-byte multiples */ 2825 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 2826 2827 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 2828 &request->nbytes, request->cookie, request->ncookies, 2829 LDC_COPY_OUT)) != 0) { 2830 PR0("ldc_mem_copy() returned errno %d copying to client", 2831 status); 2832 } 2833 PR1("post mem_copy: nbytes=%ld", request->nbytes); 2834 2835 kmem_free(vd_devid, bufbytes); 2836 ddi_devid_free((ddi_devid_t)devid); 2837 2838 return (status); 2839 } 2840 2841 static int 2842 vd_scsi_reset(vd_t *vd) 2843 { 2844 int rval, status; 2845 struct uscsi_cmd uscsi = { 0 }; 2846 2847 uscsi.uscsi_flags = vd_scsi_debug | USCSI_RESET; 2848 uscsi.uscsi_timeout = vd_scsi_rdwr_timeout; 2849 2850 status = ldi_ioctl(vd->ldi_handle[0], USCSICMD, (intptr_t)&uscsi, 2851 (vd->open_flags | FKIOCTL), kcred, &rval); 2852 2853 return (status); 2854 } 2855 2856 static int 2857 vd_reset(vd_task_t *task) 2858 { 2859 vd_t *vd = task->vd; 2860 vd_dring_payload_t *request = task->request; 2861 2862 ASSERT(request->operation == VD_OP_RESET); 2863 ASSERT(vd->scsi); 2864 2865 PR0("Performing VD_OP_RESET"); 2866 2867 if (request->nbytes != 0) { 2868 PR0("VD_OP_RESET: Expected nbytes = 0, got %lu", 2869 request->nbytes); 2870 return (EINVAL); 2871 } 2872 2873 request->status = vd_scsi_reset(vd); 2874 2875 return (0); 2876 } 2877 2878 static int 2879 vd_get_capacity(vd_task_t *task) 2880 { 2881 int rv; 2882 size_t nbytes; 2883 vd_t *vd = task->vd; 2884 vd_dring_payload_t *request = task->request; 2885 vd_capacity_t vd_cap = { 0 }; 2886 2887 ASSERT(request->operation == VD_OP_GET_CAPACITY); 2888 ASSERT(vd->scsi); 2889 2890 PR0("Performing VD_OP_GET_CAPACITY"); 2891 2892 nbytes = request->nbytes; 2893 2894 if (nbytes != RNDSIZE(vd_capacity_t)) { 2895 PR0("VD_OP_GET_CAPACITY: Expected nbytes = %lu, got %lu", 2896 RNDSIZE(vd_capacity_t), nbytes); 2897 return (EINVAL); 2898 } 2899 2900 if (vd->vdisk_size == VD_SIZE_UNKNOWN) { 2901 if (vd_setup_mediainfo(vd) != 0) 2902 ASSERT(vd->vdisk_size == VD_SIZE_UNKNOWN); 2903 } 2904 2905 ASSERT(vd->vdisk_size != 0); 2906 2907 request->status = 0; 2908 2909 vd_cap.vdisk_block_size = vd->vdisk_block_size; 2910 vd_cap.vdisk_size = vd->vdisk_size; 2911 2912 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&vd_cap, 0, &nbytes, 2913 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 2914 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 2915 return (rv); 2916 } 2917 2918 return (0); 2919 } 2920 2921 static int 2922 vd_get_access(vd_task_t *task) 2923 { 2924 uint64_t access; 2925 int rv, rval = 0; 2926 size_t nbytes; 2927 vd_t *vd = task->vd; 2928 vd_dring_payload_t *request = task->request; 2929 2930 ASSERT(request->operation == VD_OP_GET_ACCESS); 2931 ASSERT(vd->scsi); 2932 2933 PR0("Performing VD_OP_GET_ACCESS"); 2934 2935 nbytes = request->nbytes; 2936 2937 if (nbytes != sizeof (uint64_t)) { 2938 PR0("VD_OP_GET_ACCESS: Expected nbytes = %lu, got %lu", 2939 sizeof (uint64_t), nbytes); 2940 return (EINVAL); 2941 } 2942 2943 request->status = ldi_ioctl(vd->ldi_handle[request->slice], MHIOCSTATUS, 2944 NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 2945 2946 if (request->status != 0) 2947 return (0); 2948 2949 access = (rval == 0)? VD_ACCESS_ALLOWED : VD_ACCESS_DENIED; 2950 2951 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&access, 0, &nbytes, 2952 request->cookie, request->ncookies, LDC_COPY_OUT)) != 0) { 2953 PR0("ldc_mem_copy() returned errno %d copying to client", rv); 2954 return (rv); 2955 } 2956 2957 return (0); 2958 } 2959 2960 static int 2961 vd_set_access(vd_task_t *task) 2962 { 2963 uint64_t flags; 2964 int rv, rval; 2965 size_t nbytes; 2966 vd_t *vd = task->vd; 2967 vd_dring_payload_t *request = task->request; 2968 2969 ASSERT(request->operation == VD_OP_SET_ACCESS); 2970 ASSERT(vd->scsi); 2971 2972 nbytes = request->nbytes; 2973 2974 if (nbytes != sizeof (uint64_t)) { 2975 PR0("VD_OP_SET_ACCESS: Expected nbytes = %lu, got %lu", 2976 sizeof (uint64_t), nbytes); 2977 return (EINVAL); 2978 } 2979 2980 if ((rv = ldc_mem_copy(vd->ldc_handle, (char *)&flags, 0, &nbytes, 2981 request->cookie, request->ncookies, LDC_COPY_IN)) != 0) { 2982 PR0("ldc_mem_copy() returned errno %d copying from client", rv); 2983 return (rv); 2984 } 2985 2986 if (flags == VD_ACCESS_SET_CLEAR) { 2987 PR0("Performing VD_OP_SET_ACCESS (CLEAR)"); 2988 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 2989 MHIOCRELEASE, NULL, (vd->open_flags | FKIOCTL), kcred, 2990 &rval); 2991 if (request->status == 0) 2992 vd->ownership = B_FALSE; 2993 return (0); 2994 } 2995 2996 /* 2997 * As per the VIO spec, the PREEMPT and PRESERVE flags are only valid 2998 * when the EXCLUSIVE flag is set. 2999 */ 3000 if (!(flags & VD_ACCESS_SET_EXCLUSIVE)) { 3001 PR0("Invalid VD_OP_SET_ACCESS flags: 0x%lx", flags); 3002 request->status = EINVAL; 3003 return (0); 3004 } 3005 3006 switch (flags & (VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE)) { 3007 3008 case VD_ACCESS_SET_PREEMPT | VD_ACCESS_SET_PRESERVE: 3009 /* 3010 * Flags EXCLUSIVE and PREEMPT and PRESERVE. We have to 3011 * acquire exclusive access rights, preserve them and we 3012 * can use preemption. So we can use the MHIOCTKNOWN ioctl. 3013 */ 3014 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT|PRESERVE)"); 3015 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3016 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3017 break; 3018 3019 case VD_ACCESS_SET_PRESERVE: 3020 /* 3021 * Flags EXCLUSIVE and PRESERVE. We have to acquire exclusive 3022 * access rights and preserve them, but not preempt any other 3023 * host. So we need to use the MHIOCTKOWN ioctl to enable the 3024 * "preserve" feature but we can not called it directly 3025 * because it uses preemption. So before that, we use the 3026 * MHIOCQRESERVE ioctl to ensure we can get exclusive rights 3027 * without preempting anyone. 3028 */ 3029 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PRESERVE)"); 3030 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3031 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3032 &rval); 3033 if (request->status != 0) 3034 break; 3035 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3036 MHIOCTKOWN, NULL, (vd->open_flags | FKIOCTL), kcred, &rval); 3037 break; 3038 3039 case VD_ACCESS_SET_PREEMPT: 3040 /* 3041 * Flags EXCLUSIVE and PREEMPT. We have to acquire exclusive 3042 * access rights and we can use preemption. So we try to do 3043 * a SCSI reservation, if it fails we reset the disk to clear 3044 * any reservation and we try to reserve again. 3045 */ 3046 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE|PREEMPT)"); 3047 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3048 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3049 &rval); 3050 if (request->status == 0) 3051 break; 3052 3053 /* reset the disk */ 3054 (void) vd_scsi_reset(vd); 3055 3056 /* try again even if the reset has failed */ 3057 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3058 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3059 &rval); 3060 break; 3061 3062 case 0: 3063 /* Flag EXCLUSIVE only. Just issue a SCSI reservation */ 3064 PR0("Performing VD_OP_SET_ACCESS (EXCLUSIVE)"); 3065 request->status = ldi_ioctl(vd->ldi_handle[request->slice], 3066 MHIOCQRESERVE, NULL, (vd->open_flags | FKIOCTL), kcred, 3067 &rval); 3068 break; 3069 } 3070 3071 if (request->status == 0) 3072 vd->ownership = B_TRUE; 3073 else 3074 PR0("VD_OP_SET_ACCESS: error %d", request->status); 3075 3076 return (0); 3077 } 3078 3079 static void 3080 vd_reset_access(vd_t *vd) 3081 { 3082 int status, rval; 3083 3084 if (vd->file || !vd->ownership) 3085 return; 3086 3087 PR0("Releasing disk ownership"); 3088 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 3089 (vd->open_flags | FKIOCTL), kcred, &rval); 3090 3091 /* 3092 * An EACCES failure means that there is a reservation conflict, 3093 * so we are not the owner of the disk anymore. 3094 */ 3095 if (status == 0 || status == EACCES) { 3096 vd->ownership = B_FALSE; 3097 return; 3098 } 3099 3100 PR0("Fail to release ownership, error %d", status); 3101 3102 /* 3103 * We have failed to release the ownership, try to reset the disk 3104 * to release reservations. 3105 */ 3106 PR0("Resetting disk"); 3107 status = vd_scsi_reset(vd); 3108 3109 if (status != 0) 3110 PR0("Fail to reset disk, error %d", status); 3111 3112 /* whatever the result of the reset is, we try the release again */ 3113 status = ldi_ioctl(vd->ldi_handle[0], MHIOCRELEASE, NULL, 3114 (vd->open_flags | FKIOCTL), kcred, &rval); 3115 3116 if (status == 0 || status == EACCES) { 3117 vd->ownership = B_FALSE; 3118 return; 3119 } 3120 3121 PR0("Fail to release ownership, error %d", status); 3122 3123 /* 3124 * At this point we have done our best to try to reset the 3125 * access rights to the disk and we don't know if we still 3126 * own a reservation and if any mechanism to preserve the 3127 * ownership is still in place. The ultimate solution would 3128 * be to reset the system but this is usually not what we 3129 * want to happen. 3130 */ 3131 3132 if (vd_reset_access_failure == A_REBOOT) { 3133 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG 3134 ", rebooting the system", vd->device_path); 3135 (void) uadmin(A_SHUTDOWN, AD_BOOT, NULL); 3136 } else if (vd_reset_access_failure == A_DUMP) { 3137 panic(VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 3138 } 3139 3140 cmn_err(CE_WARN, VD_RESET_ACCESS_FAILURE_MSG, vd->device_path); 3141 } 3142 3143 /* 3144 * Define the supported operations once the functions for performing them have 3145 * been defined 3146 */ 3147 static const vds_operation_t vds_operation[] = { 3148 #define X(_s) #_s, _s 3149 {X(VD_OP_BREAD), vd_start_bio, vd_complete_bio}, 3150 {X(VD_OP_BWRITE), vd_start_bio, vd_complete_bio}, 3151 {X(VD_OP_FLUSH), vd_ioctl, NULL}, 3152 {X(VD_OP_GET_WCE), vd_ioctl, NULL}, 3153 {X(VD_OP_SET_WCE), vd_ioctl, NULL}, 3154 {X(VD_OP_GET_VTOC), vd_ioctl, NULL}, 3155 {X(VD_OP_SET_VTOC), vd_ioctl, NULL}, 3156 {X(VD_OP_GET_DISKGEOM), vd_ioctl, NULL}, 3157 {X(VD_OP_SET_DISKGEOM), vd_ioctl, NULL}, 3158 {X(VD_OP_GET_EFI), vd_ioctl, NULL}, 3159 {X(VD_OP_SET_EFI), vd_ioctl, NULL}, 3160 {X(VD_OP_GET_DEVID), vd_get_devid, NULL}, 3161 {X(VD_OP_SCSICMD), vd_ioctl, NULL}, 3162 {X(VD_OP_RESET), vd_reset, NULL}, 3163 {X(VD_OP_GET_CAPACITY), vd_get_capacity, NULL}, 3164 {X(VD_OP_SET_ACCESS), vd_set_access, NULL}, 3165 {X(VD_OP_GET_ACCESS), vd_get_access, NULL}, 3166 #undef X 3167 }; 3168 3169 static const size_t vds_noperations = 3170 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 3171 3172 /* 3173 * Process a task specifying a client I/O request 3174 * 3175 * Parameters: 3176 * task - structure containing the request sent from client 3177 * 3178 * Return Value 3179 * 0 - success 3180 * ENOTSUP - Unknown/Unsupported VD_OP_XXX operation 3181 * EINVAL - Invalid disk slice 3182 * != 0 - some other non-zero return value from start function 3183 */ 3184 static int 3185 vd_do_process_task(vd_task_t *task) 3186 { 3187 int i; 3188 vd_t *vd = task->vd; 3189 vd_dring_payload_t *request = task->request; 3190 3191 ASSERT(vd != NULL); 3192 ASSERT(request != NULL); 3193 3194 /* Find the requested operation */ 3195 for (i = 0; i < vds_noperations; i++) { 3196 if (request->operation == vds_operation[i].operation) { 3197 /* all operations should have a start func */ 3198 ASSERT(vds_operation[i].start != NULL); 3199 3200 task->completef = vds_operation[i].complete; 3201 break; 3202 } 3203 } 3204 3205 /* 3206 * We need to check that the requested operation is permitted 3207 * for the particular client that sent it or that the loop above 3208 * did not complete without finding the operation type (indicating 3209 * that the requested operation is unknown/unimplemented) 3210 */ 3211 if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) || 3212 (i == vds_noperations)) { 3213 PR0("Unsupported operation %u", request->operation); 3214 request->status = ENOTSUP; 3215 return (0); 3216 } 3217 3218 /* Range-check slice */ 3219 if (request->slice >= vd->nslices && 3220 (vd->vdisk_type != VD_DISK_TYPE_DISK || 3221 request->slice != VD_SLICE_NONE)) { 3222 PR0("Invalid \"slice\" %u (max %u) for virtual disk", 3223 request->slice, (vd->nslices - 1)); 3224 return (EINVAL); 3225 } 3226 3227 /* 3228 * Call the function pointer that starts the operation. 3229 */ 3230 return (vds_operation[i].start(task)); 3231 } 3232 3233 /* 3234 * Description: 3235 * This function is called by both the in-band and descriptor ring 3236 * message processing functions paths to actually execute the task 3237 * requested by the vDisk client. It in turn calls its worker 3238 * function, vd_do_process_task(), to carry our the request. 3239 * 3240 * Any transport errors (e.g. LDC errors, vDisk protocol errors) are 3241 * saved in the 'status' field of the task and are propagated back 3242 * up the call stack to trigger a NACK 3243 * 3244 * Any request errors (e.g. ENOTTY from an ioctl) are saved in 3245 * the 'status' field of the request and result in an ACK being sent 3246 * by the completion handler. 3247 * 3248 * Parameters: 3249 * task - structure containing the request sent from client 3250 * 3251 * Return Value 3252 * 0 - successful synchronous request. 3253 * != 0 - transport error (e.g. LDC errors, vDisk protocol) 3254 * EINPROGRESS - task will be finished in a completion handler 3255 */ 3256 static int 3257 vd_process_task(vd_task_t *task) 3258 { 3259 vd_t *vd = task->vd; 3260 int status; 3261 3262 DTRACE_PROBE1(task__start, vd_task_t *, task); 3263 3264 task->status = vd_do_process_task(task); 3265 3266 /* 3267 * If the task processing function returned EINPROGRESS indicating 3268 * that the task needs completing then schedule a taskq entry to 3269 * finish it now. 3270 * 3271 * Otherwise the task processing function returned either zero 3272 * indicating that the task was finished in the start function (and we 3273 * don't need to wait in a completion function) or the start function 3274 * returned an error - in both cases all that needs to happen is the 3275 * notification to the vDisk client higher up the call stack. 3276 * If the task was using a Descriptor Ring, we need to mark it as done 3277 * at this stage. 3278 */ 3279 if (task->status == EINPROGRESS) { 3280 /* Queue a task to complete the operation */ 3281 (void) ddi_taskq_dispatch(vd->completionq, vd_complete, 3282 task, DDI_SLEEP); 3283 3284 } else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE_V1_0)) { 3285 /* Update the dring element if it's a dring client */ 3286 status = vd_mark_elem_done(vd, task->index, 3287 task->request->status, task->request->nbytes); 3288 if (status == ECONNRESET) 3289 vd_mark_in_reset(vd); 3290 } 3291 3292 return (task->status); 3293 } 3294 3295 /* 3296 * Return true if the "type", "subtype", and "env" fields of the "tag" first 3297 * argument match the corresponding remaining arguments; otherwise, return false 3298 */ 3299 boolean_t 3300 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 3301 { 3302 return ((tag->vio_msgtype == type) && 3303 (tag->vio_subtype == subtype) && 3304 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 3305 } 3306 3307 /* 3308 * Check whether the major/minor version specified in "ver_msg" is supported 3309 * by this server. 3310 */ 3311 static boolean_t 3312 vds_supported_version(vio_ver_msg_t *ver_msg) 3313 { 3314 for (int i = 0; i < vds_num_versions; i++) { 3315 ASSERT(vds_version[i].major > 0); 3316 ASSERT((i == 0) || 3317 (vds_version[i].major < vds_version[i-1].major)); 3318 3319 /* 3320 * If the major versions match, adjust the minor version, if 3321 * necessary, down to the highest value supported by this 3322 * server and return true so this message will get "ack"ed; 3323 * the client should also support all minor versions lower 3324 * than the value it sent 3325 */ 3326 if (ver_msg->ver_major == vds_version[i].major) { 3327 if (ver_msg->ver_minor > vds_version[i].minor) { 3328 PR0("Adjusting minor version from %u to %u", 3329 ver_msg->ver_minor, vds_version[i].minor); 3330 ver_msg->ver_minor = vds_version[i].minor; 3331 } 3332 return (B_TRUE); 3333 } 3334 3335 /* 3336 * If the message contains a higher major version number, set 3337 * the message's major/minor versions to the current values 3338 * and return false, so this message will get "nack"ed with 3339 * these values, and the client will potentially try again 3340 * with the same or a lower version 3341 */ 3342 if (ver_msg->ver_major > vds_version[i].major) { 3343 ver_msg->ver_major = vds_version[i].major; 3344 ver_msg->ver_minor = vds_version[i].minor; 3345 return (B_FALSE); 3346 } 3347 3348 /* 3349 * Otherwise, the message's major version is less than the 3350 * current major version, so continue the loop to the next 3351 * (lower) supported version 3352 */ 3353 } 3354 3355 /* 3356 * No common version was found; "ground" the version pair in the 3357 * message to terminate negotiation 3358 */ 3359 ver_msg->ver_major = 0; 3360 ver_msg->ver_minor = 0; 3361 return (B_FALSE); 3362 } 3363 3364 /* 3365 * Process a version message from a client. vds expects to receive version 3366 * messages from clients seeking service, but never issues version messages 3367 * itself; therefore, vds can ACK or NACK client version messages, but does 3368 * not expect to receive version-message ACKs or NACKs (and will treat such 3369 * messages as invalid). 3370 */ 3371 static int 3372 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3373 { 3374 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 3375 3376 3377 ASSERT(msglen >= sizeof (msg->tag)); 3378 3379 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 3380 VIO_VER_INFO)) { 3381 return (ENOMSG); /* not a version message */ 3382 } 3383 3384 if (msglen != sizeof (*ver_msg)) { 3385 PR0("Expected %lu-byte version message; " 3386 "received %lu bytes", sizeof (*ver_msg), msglen); 3387 return (EBADMSG); 3388 } 3389 3390 if (ver_msg->dev_class != VDEV_DISK) { 3391 PR0("Expected device class %u (disk); received %u", 3392 VDEV_DISK, ver_msg->dev_class); 3393 return (EBADMSG); 3394 } 3395 3396 /* 3397 * We're talking to the expected kind of client; set our device class 3398 * for "ack/nack" back to the client 3399 */ 3400 ver_msg->dev_class = VDEV_DISK_SERVER; 3401 3402 /* 3403 * Check whether the (valid) version message specifies a version 3404 * supported by this server. If the version is not supported, return 3405 * EBADMSG so the message will get "nack"ed; vds_supported_version() 3406 * will have updated the message with a supported version for the 3407 * client to consider 3408 */ 3409 if (!vds_supported_version(ver_msg)) 3410 return (EBADMSG); 3411 3412 3413 /* 3414 * A version has been agreed upon; use the client's SID for 3415 * communication on this channel now 3416 */ 3417 ASSERT(!(vd->initialized & VD_SID)); 3418 vd->sid = ver_msg->tag.vio_sid; 3419 vd->initialized |= VD_SID; 3420 3421 /* 3422 * Store the negotiated major and minor version values in the "vd" data 3423 * structure so that we can check if certain operations are supported 3424 * by the client. 3425 */ 3426 vd->version.major = ver_msg->ver_major; 3427 vd->version.minor = ver_msg->ver_minor; 3428 3429 PR0("Using major version %u, minor version %u", 3430 ver_msg->ver_major, ver_msg->ver_minor); 3431 return (0); 3432 } 3433 3434 static void 3435 vd_set_exported_operations(vd_t *vd) 3436 { 3437 vd->operations = 0; /* clear field */ 3438 3439 /* 3440 * We need to check from the highest version supported to the 3441 * lowest because versions with a higher minor number implicitly 3442 * support versions with a lower minor number. 3443 */ 3444 if (vio_ver_is_supported(vd->version, 1, 1)) { 3445 ASSERT(vd->open_flags & FREAD); 3446 vd->operations |= VD_OP_MASK_READ; 3447 3448 if (vd->open_flags & FWRITE) 3449 vd->operations |= VD_OP_MASK_WRITE; 3450 3451 if (vd->scsi) 3452 vd->operations |= VD_OP_MASK_SCSI; 3453 3454 if (vd->file && vd_file_is_iso_image(vd)) { 3455 /* 3456 * can't write to ISO images, make sure that write 3457 * support is not set in case administrator did not 3458 * use "options=ro" when doing an ldm add-vdsdev 3459 */ 3460 vd->operations &= ~VD_OP_MASK_WRITE; 3461 } 3462 } else if (vio_ver_is_supported(vd->version, 1, 0)) { 3463 vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE; 3464 } 3465 3466 /* we should have already agreed on a version */ 3467 ASSERT(vd->operations != 0); 3468 } 3469 3470 static int 3471 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3472 { 3473 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 3474 int status, retry = 0; 3475 3476 3477 ASSERT(msglen >= sizeof (msg->tag)); 3478 3479 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 3480 VIO_ATTR_INFO)) { 3481 PR0("Message is not an attribute message"); 3482 return (ENOMSG); 3483 } 3484 3485 if (msglen != sizeof (*attr_msg)) { 3486 PR0("Expected %lu-byte attribute message; " 3487 "received %lu bytes", sizeof (*attr_msg), msglen); 3488 return (EBADMSG); 3489 } 3490 3491 if (attr_msg->max_xfer_sz == 0) { 3492 PR0("Received maximum transfer size of 0 from client"); 3493 return (EBADMSG); 3494 } 3495 3496 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 3497 (attr_msg->xfer_mode != VIO_DRING_MODE_V1_0)) { 3498 PR0("Client requested unsupported transfer mode"); 3499 return (EBADMSG); 3500 } 3501 3502 /* 3503 * check if the underlying disk is ready, if not try accessing 3504 * the device again. Open the vdisk device and extract info 3505 * about it, as this is needed to respond to the attr info msg 3506 */ 3507 if ((vd->initialized & VD_DISK_READY) == 0) { 3508 PR0("Retry setting up disk (%s)", vd->device_path); 3509 do { 3510 status = vd_setup_vd(vd); 3511 if (status != EAGAIN || ++retry > vds_dev_retries) 3512 break; 3513 3514 /* incremental delay */ 3515 delay(drv_usectohz(vds_dev_delay)); 3516 3517 /* if vdisk is no longer enabled - return error */ 3518 if (!vd_enabled(vd)) 3519 return (ENXIO); 3520 3521 } while (status == EAGAIN); 3522 3523 if (status) 3524 return (ENXIO); 3525 3526 vd->initialized |= VD_DISK_READY; 3527 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 3528 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 3529 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 3530 (vd->volume ? "yes" : "no"), 3531 (vd->file ? "yes" : "no"), 3532 vd->nslices); 3533 } 3534 3535 /* Success: valid message and transfer mode */ 3536 vd->xfer_mode = attr_msg->xfer_mode; 3537 3538 if (vd->xfer_mode == VIO_DESC_MODE) { 3539 3540 /* 3541 * The vd_dring_inband_msg_t contains one cookie; need room 3542 * for up to n-1 more cookies, where "n" is the number of full 3543 * pages plus possibly one partial page required to cover 3544 * "max_xfer_sz". Add room for one more cookie if 3545 * "max_xfer_sz" isn't an integral multiple of the page size. 3546 * Must first get the maximum transfer size in bytes. 3547 */ 3548 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 3549 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 3550 attr_msg->max_xfer_sz; 3551 size_t max_inband_msglen = 3552 sizeof (vd_dring_inband_msg_t) + 3553 ((max_xfer_bytes/PAGESIZE + 3554 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 3555 (sizeof (ldc_mem_cookie_t))); 3556 3557 /* 3558 * Set the maximum expected message length to 3559 * accommodate in-band-descriptor messages with all 3560 * their cookies 3561 */ 3562 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 3563 3564 /* 3565 * Initialize the data structure for processing in-band I/O 3566 * request descriptors 3567 */ 3568 vd->inband_task.vd = vd; 3569 vd->inband_task.msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 3570 vd->inband_task.index = 0; 3571 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 3572 } 3573 3574 /* Return the device's block size and max transfer size to the client */ 3575 attr_msg->vdisk_block_size = vd->vdisk_block_size; 3576 attr_msg->max_xfer_sz = vd->max_xfer_sz; 3577 3578 attr_msg->vdisk_size = vd->vdisk_size; 3579 attr_msg->vdisk_type = vd->vdisk_type; 3580 attr_msg->vdisk_media = vd->vdisk_media; 3581 3582 /* Discover and save the list of supported VD_OP_XXX operations */ 3583 vd_set_exported_operations(vd); 3584 attr_msg->operations = vd->operations; 3585 3586 PR0("%s", VD_CLIENT(vd)); 3587 3588 ASSERT(vd->dring_task == NULL); 3589 3590 return (0); 3591 } 3592 3593 static int 3594 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3595 { 3596 int status; 3597 size_t expected; 3598 ldc_mem_info_t dring_minfo; 3599 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 3600 3601 3602 ASSERT(msglen >= sizeof (msg->tag)); 3603 3604 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 3605 VIO_DRING_REG)) { 3606 PR0("Message is not a register-dring message"); 3607 return (ENOMSG); 3608 } 3609 3610 if (msglen < sizeof (*reg_msg)) { 3611 PR0("Expected at least %lu-byte register-dring message; " 3612 "received %lu bytes", sizeof (*reg_msg), msglen); 3613 return (EBADMSG); 3614 } 3615 3616 expected = sizeof (*reg_msg) + 3617 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 3618 if (msglen != expected) { 3619 PR0("Expected %lu-byte register-dring message; " 3620 "received %lu bytes", expected, msglen); 3621 return (EBADMSG); 3622 } 3623 3624 if (vd->initialized & VD_DRING) { 3625 PR0("A dring was previously registered; only support one"); 3626 return (EBADMSG); 3627 } 3628 3629 if (reg_msg->num_descriptors > INT32_MAX) { 3630 PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)", 3631 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 3632 return (EBADMSG); 3633 } 3634 3635 if (reg_msg->ncookies != 1) { 3636 /* 3637 * In addition to fixing the assertion in the success case 3638 * below, supporting drings which require more than one 3639 * "cookie" requires increasing the value of vd->max_msglen 3640 * somewhere in the code path prior to receiving the message 3641 * which results in calling this function. Note that without 3642 * making this change, the larger message size required to 3643 * accommodate multiple cookies cannot be successfully 3644 * received, so this function will not even get called. 3645 * Gracefully accommodating more dring cookies might 3646 * reasonably demand exchanging an additional attribute or 3647 * making a minor protocol adjustment 3648 */ 3649 PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 3650 return (EBADMSG); 3651 } 3652 3653 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 3654 reg_msg->ncookies, reg_msg->num_descriptors, 3655 reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle); 3656 if (status != 0) { 3657 PR0("ldc_mem_dring_map() returned errno %d", status); 3658 return (status); 3659 } 3660 3661 /* 3662 * To remove the need for this assertion, must call 3663 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 3664 * successful call to ldc_mem_dring_map() 3665 */ 3666 ASSERT(reg_msg->ncookies == 1); 3667 3668 if ((status = 3669 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 3670 PR0("ldc_mem_dring_info() returned errno %d", status); 3671 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 3672 PR0("ldc_mem_dring_unmap() returned errno %d", status); 3673 return (status); 3674 } 3675 3676 if (dring_minfo.vaddr == NULL) { 3677 PR0("Descriptor ring virtual address is NULL"); 3678 return (ENXIO); 3679 } 3680 3681 3682 /* Initialize for valid message and mapped dring */ 3683 PR1("descriptor size = %u, dring length = %u", 3684 vd->descriptor_size, vd->dring_len); 3685 vd->initialized |= VD_DRING; 3686 vd->dring_ident = 1; /* "There Can Be Only One" */ 3687 vd->dring = dring_minfo.vaddr; 3688 vd->descriptor_size = reg_msg->descriptor_size; 3689 vd->dring_len = reg_msg->num_descriptors; 3690 reg_msg->dring_ident = vd->dring_ident; 3691 3692 /* 3693 * Allocate and initialize a "shadow" array of data structures for 3694 * tasks to process I/O requests in dring elements 3695 */ 3696 vd->dring_task = 3697 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 3698 for (int i = 0; i < vd->dring_len; i++) { 3699 vd->dring_task[i].vd = vd; 3700 vd->dring_task[i].index = i; 3701 vd->dring_task[i].request = &VD_DRING_ELEM(i)->payload; 3702 3703 status = ldc_mem_alloc_handle(vd->ldc_handle, 3704 &(vd->dring_task[i].mhdl)); 3705 if (status) { 3706 PR0("ldc_mem_alloc_handle() returned err %d ", status); 3707 return (ENXIO); 3708 } 3709 3710 vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP); 3711 } 3712 3713 return (0); 3714 } 3715 3716 static int 3717 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3718 { 3719 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 3720 3721 3722 ASSERT(msglen >= sizeof (msg->tag)); 3723 3724 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 3725 VIO_DRING_UNREG)) { 3726 PR0("Message is not an unregister-dring message"); 3727 return (ENOMSG); 3728 } 3729 3730 if (msglen != sizeof (*unreg_msg)) { 3731 PR0("Expected %lu-byte unregister-dring message; " 3732 "received %lu bytes", sizeof (*unreg_msg), msglen); 3733 return (EBADMSG); 3734 } 3735 3736 if (unreg_msg->dring_ident != vd->dring_ident) { 3737 PR0("Expected dring ident %lu; received %lu", 3738 vd->dring_ident, unreg_msg->dring_ident); 3739 return (EBADMSG); 3740 } 3741 3742 return (0); 3743 } 3744 3745 static int 3746 process_rdx_msg(vio_msg_t *msg, size_t msglen) 3747 { 3748 ASSERT(msglen >= sizeof (msg->tag)); 3749 3750 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 3751 PR0("Message is not an RDX message"); 3752 return (ENOMSG); 3753 } 3754 3755 if (msglen != sizeof (vio_rdx_msg_t)) { 3756 PR0("Expected %lu-byte RDX message; received %lu bytes", 3757 sizeof (vio_rdx_msg_t), msglen); 3758 return (EBADMSG); 3759 } 3760 3761 PR0("Valid RDX message"); 3762 return (0); 3763 } 3764 3765 static int 3766 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 3767 { 3768 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 3769 PR0("Received seq_num %lu; expected %lu", 3770 seq_num, (vd->seq_num + 1)); 3771 PR0("initiating soft reset"); 3772 vd_need_reset(vd, B_FALSE); 3773 return (1); 3774 } 3775 3776 vd->seq_num = seq_num; 3777 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 3778 return (0); 3779 } 3780 3781 /* 3782 * Return the expected size of an inband-descriptor message with all the 3783 * cookies it claims to include 3784 */ 3785 static size_t 3786 expected_inband_size(vd_dring_inband_msg_t *msg) 3787 { 3788 return ((sizeof (*msg)) + 3789 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 3790 } 3791 3792 /* 3793 * Process an in-band descriptor message: used with clients like OBP, with 3794 * which vds exchanges descriptors within VIO message payloads, rather than 3795 * operating on them within a descriptor ring 3796 */ 3797 static int 3798 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3799 { 3800 size_t expected; 3801 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 3802 3803 3804 ASSERT(msglen >= sizeof (msg->tag)); 3805 3806 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 3807 VIO_DESC_DATA)) { 3808 PR1("Message is not an in-band-descriptor message"); 3809 return (ENOMSG); 3810 } 3811 3812 if (msglen < sizeof (*desc_msg)) { 3813 PR0("Expected at least %lu-byte descriptor message; " 3814 "received %lu bytes", sizeof (*desc_msg), msglen); 3815 return (EBADMSG); 3816 } 3817 3818 if (msglen != (expected = expected_inband_size(desc_msg))) { 3819 PR0("Expected %lu-byte descriptor message; " 3820 "received %lu bytes", expected, msglen); 3821 return (EBADMSG); 3822 } 3823 3824 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 3825 return (EBADMSG); 3826 3827 /* 3828 * Valid message: Set up the in-band descriptor task and process the 3829 * request. Arrange to acknowledge the client's message, unless an 3830 * error processing the descriptor task results in setting 3831 * VIO_SUBTYPE_NACK 3832 */ 3833 PR1("Valid in-band-descriptor message"); 3834 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 3835 3836 ASSERT(vd->inband_task.msg != NULL); 3837 3838 bcopy(msg, vd->inband_task.msg, msglen); 3839 vd->inband_task.msglen = msglen; 3840 3841 /* 3842 * The task request is now the payload of the message 3843 * that was just copied into the body of the task. 3844 */ 3845 desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg; 3846 vd->inband_task.request = &desc_msg->payload; 3847 3848 return (vd_process_task(&vd->inband_task)); 3849 } 3850 3851 static int 3852 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 3853 vio_msg_t *msg, size_t msglen) 3854 { 3855 int status; 3856 boolean_t ready; 3857 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 3858 3859 3860 /* Accept the updated dring element */ 3861 if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 3862 PR0("ldc_mem_dring_acquire() returned errno %d", status); 3863 return (status); 3864 } 3865 ready = (elem->hdr.dstate == VIO_DESC_READY); 3866 if (ready) { 3867 elem->hdr.dstate = VIO_DESC_ACCEPTED; 3868 } else { 3869 PR0("descriptor %u not ready", idx); 3870 VD_DUMP_DRING_ELEM(elem); 3871 } 3872 if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 3873 PR0("ldc_mem_dring_release() returned errno %d", status); 3874 return (status); 3875 } 3876 if (!ready) 3877 return (EBUSY); 3878 3879 3880 /* Initialize a task and process the accepted element */ 3881 PR1("Processing dring element %u", idx); 3882 vd->dring_task[idx].type = type; 3883 3884 /* duplicate msg buf for cookies etc. */ 3885 bcopy(msg, vd->dring_task[idx].msg, msglen); 3886 3887 vd->dring_task[idx].msglen = msglen; 3888 return (vd_process_task(&vd->dring_task[idx])); 3889 } 3890 3891 static int 3892 vd_process_element_range(vd_t *vd, int start, int end, 3893 vio_msg_t *msg, size_t msglen) 3894 { 3895 int i, n, nelem, status = 0; 3896 boolean_t inprogress = B_FALSE; 3897 vd_task_type_t type; 3898 3899 3900 ASSERT(start >= 0); 3901 ASSERT(end >= 0); 3902 3903 /* 3904 * Arrange to acknowledge the client's message, unless an error 3905 * processing one of the dring elements results in setting 3906 * VIO_SUBTYPE_NACK 3907 */ 3908 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 3909 3910 /* 3911 * Process the dring elements in the range 3912 */ 3913 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 3914 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 3915 ((vio_dring_msg_t *)msg)->end_idx = i; 3916 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 3917 status = vd_process_element(vd, type, i, msg, msglen); 3918 if (status == EINPROGRESS) 3919 inprogress = B_TRUE; 3920 else if (status != 0) 3921 break; 3922 } 3923 3924 /* 3925 * If some, but not all, operations of a multi-element range are in 3926 * progress, wait for other operations to complete before returning 3927 * (which will result in "ack" or "nack" of the message). Note that 3928 * all outstanding operations will need to complete, not just the ones 3929 * corresponding to the current range of dring elements; howevever, as 3930 * this situation is an error case, performance is less critical. 3931 */ 3932 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) 3933 ddi_taskq_wait(vd->completionq); 3934 3935 return (status); 3936 } 3937 3938 static int 3939 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 3940 { 3941 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 3942 3943 3944 ASSERT(msglen >= sizeof (msg->tag)); 3945 3946 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 3947 VIO_DRING_DATA)) { 3948 PR1("Message is not a dring-data message"); 3949 return (ENOMSG); 3950 } 3951 3952 if (msglen != sizeof (*dring_msg)) { 3953 PR0("Expected %lu-byte dring message; received %lu bytes", 3954 sizeof (*dring_msg), msglen); 3955 return (EBADMSG); 3956 } 3957 3958 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 3959 return (EBADMSG); 3960 3961 if (dring_msg->dring_ident != vd->dring_ident) { 3962 PR0("Expected dring ident %lu; received ident %lu", 3963 vd->dring_ident, dring_msg->dring_ident); 3964 return (EBADMSG); 3965 } 3966 3967 if (dring_msg->start_idx >= vd->dring_len) { 3968 PR0("\"start_idx\" = %u; must be less than %u", 3969 dring_msg->start_idx, vd->dring_len); 3970 return (EBADMSG); 3971 } 3972 3973 if ((dring_msg->end_idx < 0) || 3974 (dring_msg->end_idx >= vd->dring_len)) { 3975 PR0("\"end_idx\" = %u; must be >= 0 and less than %u", 3976 dring_msg->end_idx, vd->dring_len); 3977 return (EBADMSG); 3978 } 3979 3980 /* Valid message; process range of updated dring elements */ 3981 PR1("Processing descriptor range, start = %u, end = %u", 3982 dring_msg->start_idx, dring_msg->end_idx); 3983 return (vd_process_element_range(vd, dring_msg->start_idx, 3984 dring_msg->end_idx, msg, msglen)); 3985 } 3986 3987 static int 3988 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 3989 { 3990 int retry, status; 3991 size_t size = *nbytes; 3992 3993 3994 for (retry = 0, status = ETIMEDOUT; 3995 retry < vds_ldc_retries && status == ETIMEDOUT; 3996 retry++) { 3997 PR1("ldc_read() attempt %d", (retry + 1)); 3998 *nbytes = size; 3999 status = ldc_read(ldc_handle, msg, nbytes); 4000 } 4001 4002 if (status) { 4003 PR0("ldc_read() returned errno %d", status); 4004 if (status != ECONNRESET) 4005 return (ENOMSG); 4006 return (status); 4007 } else if (*nbytes == 0) { 4008 PR1("ldc_read() returned 0 and no message read"); 4009 return (ENOMSG); 4010 } 4011 4012 PR1("RCVD %lu-byte message", *nbytes); 4013 return (0); 4014 } 4015 4016 static int 4017 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4018 { 4019 int status; 4020 4021 4022 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 4023 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 4024 #ifdef DEBUG 4025 vd_decode_tag(msg); 4026 #endif 4027 4028 /* 4029 * Validate session ID up front, since it applies to all messages 4030 * once set 4031 */ 4032 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 4033 PR0("Expected SID %u, received %u", vd->sid, 4034 msg->tag.vio_sid); 4035 return (EBADMSG); 4036 } 4037 4038 PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state)); 4039 4040 /* 4041 * Process the received message based on connection state 4042 */ 4043 switch (vd->state) { 4044 case VD_STATE_INIT: /* expect version message */ 4045 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 4046 return (status); 4047 4048 /* Version negotiated, move to that state */ 4049 vd->state = VD_STATE_VER; 4050 return (0); 4051 4052 case VD_STATE_VER: /* expect attribute message */ 4053 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 4054 return (status); 4055 4056 /* Attributes exchanged, move to that state */ 4057 vd->state = VD_STATE_ATTR; 4058 return (0); 4059 4060 case VD_STATE_ATTR: 4061 switch (vd->xfer_mode) { 4062 case VIO_DESC_MODE: /* expect RDX message */ 4063 if ((status = process_rdx_msg(msg, msglen)) != 0) 4064 return (status); 4065 4066 /* Ready to receive in-band descriptors */ 4067 vd->state = VD_STATE_DATA; 4068 return (0); 4069 4070 case VIO_DRING_MODE_V1_0: /* expect register-dring message */ 4071 if ((status = 4072 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 4073 return (status); 4074 4075 /* One dring negotiated, move to that state */ 4076 vd->state = VD_STATE_DRING; 4077 return (0); 4078 4079 default: 4080 ASSERT("Unsupported transfer mode"); 4081 PR0("Unsupported transfer mode"); 4082 return (ENOTSUP); 4083 } 4084 4085 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 4086 if ((status = process_rdx_msg(msg, msglen)) == 0) { 4087 /* Ready to receive data */ 4088 vd->state = VD_STATE_DATA; 4089 return (0); 4090 } else if (status != ENOMSG) { 4091 return (status); 4092 } 4093 4094 4095 /* 4096 * If another register-dring message is received, stay in 4097 * dring state in case the client sends RDX; although the 4098 * protocol allows multiple drings, this server does not 4099 * support using more than one 4100 */ 4101 if ((status = 4102 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 4103 return (status); 4104 4105 /* 4106 * Acknowledge an unregister-dring message, but reset the 4107 * connection anyway: Although the protocol allows 4108 * unregistering drings, this server cannot serve a vdisk 4109 * without its only dring 4110 */ 4111 status = vd_process_dring_unreg_msg(vd, msg, msglen); 4112 return ((status == 0) ? ENOTSUP : status); 4113 4114 case VD_STATE_DATA: 4115 switch (vd->xfer_mode) { 4116 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 4117 return (vd_process_desc_msg(vd, msg, msglen)); 4118 4119 case VIO_DRING_MODE_V1_0: /* expect dring-data or unreg-dring */ 4120 /* 4121 * Typically expect dring-data messages, so handle 4122 * them first 4123 */ 4124 if ((status = vd_process_dring_msg(vd, msg, 4125 msglen)) != ENOMSG) 4126 return (status); 4127 4128 /* 4129 * Acknowledge an unregister-dring message, but reset 4130 * the connection anyway: Although the protocol 4131 * allows unregistering drings, this server cannot 4132 * serve a vdisk without its only dring 4133 */ 4134 status = vd_process_dring_unreg_msg(vd, msg, msglen); 4135 return ((status == 0) ? ENOTSUP : status); 4136 4137 default: 4138 ASSERT("Unsupported transfer mode"); 4139 PR0("Unsupported transfer mode"); 4140 return (ENOTSUP); 4141 } 4142 4143 default: 4144 ASSERT("Invalid client connection state"); 4145 PR0("Invalid client connection state"); 4146 return (ENOTSUP); 4147 } 4148 } 4149 4150 static int 4151 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 4152 { 4153 int status; 4154 boolean_t reset_ldc = B_FALSE; 4155 vd_task_t task; 4156 4157 /* 4158 * Check that the message is at least big enough for a "tag", so that 4159 * message processing can proceed based on tag-specified message type 4160 */ 4161 if (msglen < sizeof (vio_msg_tag_t)) { 4162 PR0("Received short (%lu-byte) message", msglen); 4163 /* Can't "nack" short message, so drop the big hammer */ 4164 PR0("initiating full reset"); 4165 vd_need_reset(vd, B_TRUE); 4166 return (EBADMSG); 4167 } 4168 4169 /* 4170 * Process the message 4171 */ 4172 switch (status = vd_do_process_msg(vd, msg, msglen)) { 4173 case 0: 4174 /* "ack" valid, successfully-processed messages */ 4175 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 4176 break; 4177 4178 case EINPROGRESS: 4179 /* The completion handler will "ack" or "nack" the message */ 4180 return (EINPROGRESS); 4181 case ENOMSG: 4182 PR0("Received unexpected message"); 4183 _NOTE(FALLTHROUGH); 4184 case EBADMSG: 4185 case ENOTSUP: 4186 /* "transport" error will cause NACK of invalid messages */ 4187 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 4188 break; 4189 4190 default: 4191 /* "transport" error will cause NACK of invalid messages */ 4192 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 4193 /* An LDC error probably occurred, so try resetting it */ 4194 reset_ldc = B_TRUE; 4195 break; 4196 } 4197 4198 PR1("\tResulting in state %d (%s)", vd->state, 4199 vd_decode_state(vd->state)); 4200 4201 /* populate the task so we can dispatch it on the taskq */ 4202 task.vd = vd; 4203 task.msg = msg; 4204 task.msglen = msglen; 4205 4206 /* 4207 * Queue a task to send the notification that the operation completed. 4208 * We need to ensure that requests are responded to in the correct 4209 * order and since the taskq is processed serially this ordering 4210 * is maintained. 4211 */ 4212 (void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify, 4213 &task, DDI_SLEEP); 4214 4215 /* 4216 * To ensure handshake negotiations do not happen out of order, such 4217 * requests that come through this path should not be done in parallel 4218 * so we need to wait here until the response is sent to the client. 4219 */ 4220 ddi_taskq_wait(vd->completionq); 4221 4222 /* Arrange to reset the connection for nack'ed or failed messages */ 4223 if ((status != 0) || reset_ldc) { 4224 PR0("initiating %s reset", 4225 (reset_ldc) ? "full" : "soft"); 4226 vd_need_reset(vd, reset_ldc); 4227 } 4228 4229 return (status); 4230 } 4231 4232 static boolean_t 4233 vd_enabled(vd_t *vd) 4234 { 4235 boolean_t enabled; 4236 4237 mutex_enter(&vd->lock); 4238 enabled = vd->enabled; 4239 mutex_exit(&vd->lock); 4240 return (enabled); 4241 } 4242 4243 static void 4244 vd_recv_msg(void *arg) 4245 { 4246 vd_t *vd = (vd_t *)arg; 4247 int rv = 0, status = 0; 4248 4249 ASSERT(vd != NULL); 4250 4251 PR2("New task to receive incoming message(s)"); 4252 4253 4254 while (vd_enabled(vd) && status == 0) { 4255 size_t msglen, msgsize; 4256 ldc_status_t lstatus; 4257 4258 /* 4259 * Receive and process a message 4260 */ 4261 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 4262 4263 /* 4264 * check if channel is UP - else break out of loop 4265 */ 4266 status = ldc_status(vd->ldc_handle, &lstatus); 4267 if (lstatus != LDC_UP) { 4268 PR0("channel not up (status=%d), exiting recv loop\n", 4269 lstatus); 4270 break; 4271 } 4272 4273 ASSERT(vd->max_msglen != 0); 4274 4275 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 4276 msglen = msgsize; /* actual len after recv_msg() */ 4277 4278 status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen); 4279 switch (status) { 4280 case 0: 4281 rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp, 4282 msglen); 4283 /* check if max_msglen changed */ 4284 if (msgsize != vd->max_msglen) { 4285 PR0("max_msglen changed 0x%lx to 0x%lx bytes\n", 4286 msgsize, vd->max_msglen); 4287 kmem_free(vd->vio_msgp, msgsize); 4288 vd->vio_msgp = 4289 kmem_alloc(vd->max_msglen, KM_SLEEP); 4290 } 4291 if (rv == EINPROGRESS) 4292 continue; 4293 break; 4294 4295 case ENOMSG: 4296 break; 4297 4298 case ECONNRESET: 4299 PR0("initiating soft reset (ECONNRESET)\n"); 4300 vd_need_reset(vd, B_FALSE); 4301 status = 0; 4302 break; 4303 4304 default: 4305 /* Probably an LDC failure; arrange to reset it */ 4306 PR0("initiating full reset (status=0x%x)", status); 4307 vd_need_reset(vd, B_TRUE); 4308 break; 4309 } 4310 } 4311 4312 PR2("Task finished"); 4313 } 4314 4315 static uint_t 4316 vd_handle_ldc_events(uint64_t event, caddr_t arg) 4317 { 4318 vd_t *vd = (vd_t *)(void *)arg; 4319 int status; 4320 4321 ASSERT(vd != NULL); 4322 4323 if (!vd_enabled(vd)) 4324 return (LDC_SUCCESS); 4325 4326 if (event & LDC_EVT_DOWN) { 4327 PR0("LDC_EVT_DOWN: LDC channel went down"); 4328 4329 vd_need_reset(vd, B_TRUE); 4330 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 4331 DDI_SLEEP); 4332 if (status == DDI_FAILURE) { 4333 PR0("cannot schedule task to recv msg\n"); 4334 vd_need_reset(vd, B_TRUE); 4335 } 4336 } 4337 4338 if (event & LDC_EVT_RESET) { 4339 PR0("LDC_EVT_RESET: LDC channel was reset"); 4340 4341 if (vd->state != VD_STATE_INIT) { 4342 PR0("scheduling full reset"); 4343 vd_need_reset(vd, B_FALSE); 4344 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 4345 vd, DDI_SLEEP); 4346 if (status == DDI_FAILURE) { 4347 PR0("cannot schedule task to recv msg\n"); 4348 vd_need_reset(vd, B_TRUE); 4349 } 4350 4351 } else { 4352 PR0("channel already reset, ignoring...\n"); 4353 PR0("doing ldc up...\n"); 4354 (void) ldc_up(vd->ldc_handle); 4355 } 4356 4357 return (LDC_SUCCESS); 4358 } 4359 4360 if (event & LDC_EVT_UP) { 4361 PR0("EVT_UP: LDC is up\nResetting client connection state"); 4362 PR0("initiating soft reset"); 4363 vd_need_reset(vd, B_FALSE); 4364 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, 4365 vd, DDI_SLEEP); 4366 if (status == DDI_FAILURE) { 4367 PR0("cannot schedule task to recv msg\n"); 4368 vd_need_reset(vd, B_TRUE); 4369 return (LDC_SUCCESS); 4370 } 4371 } 4372 4373 if (event & LDC_EVT_READ) { 4374 int status; 4375 4376 PR1("New data available"); 4377 /* Queue a task to receive the new data */ 4378 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 4379 DDI_SLEEP); 4380 4381 if (status == DDI_FAILURE) { 4382 PR0("cannot schedule task to recv msg\n"); 4383 vd_need_reset(vd, B_TRUE); 4384 } 4385 } 4386 4387 return (LDC_SUCCESS); 4388 } 4389 4390 static uint_t 4391 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 4392 { 4393 _NOTE(ARGUNUSED(key, val)) 4394 (*((uint_t *)arg))++; 4395 return (MH_WALK_TERMINATE); 4396 } 4397 4398 4399 static int 4400 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 4401 { 4402 uint_t vd_present = 0; 4403 minor_t instance; 4404 vds_t *vds; 4405 4406 4407 switch (cmd) { 4408 case DDI_DETACH: 4409 /* the real work happens below */ 4410 break; 4411 case DDI_SUSPEND: 4412 PR0("No action required for DDI_SUSPEND"); 4413 return (DDI_SUCCESS); 4414 default: 4415 PR0("Unrecognized \"cmd\""); 4416 return (DDI_FAILURE); 4417 } 4418 4419 ASSERT(cmd == DDI_DETACH); 4420 instance = ddi_get_instance(dip); 4421 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 4422 PR0("Could not get state for instance %u", instance); 4423 ddi_soft_state_free(vds_state, instance); 4424 return (DDI_FAILURE); 4425 } 4426 4427 /* Do no detach when serving any vdisks */ 4428 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 4429 if (vd_present) { 4430 PR0("Not detaching because serving vdisks"); 4431 return (DDI_FAILURE); 4432 } 4433 4434 PR0("Detaching"); 4435 if (vds->initialized & VDS_MDEG) { 4436 (void) mdeg_unregister(vds->mdeg); 4437 kmem_free(vds->ispecp->specp, sizeof (vds_prop_template)); 4438 kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t)); 4439 vds->ispecp = NULL; 4440 vds->mdeg = NULL; 4441 } 4442 4443 vds_driver_types_free(vds); 4444 4445 if (vds->initialized & VDS_LDI) 4446 (void) ldi_ident_release(vds->ldi_ident); 4447 mod_hash_destroy_hash(vds->vd_table); 4448 ddi_soft_state_free(vds_state, instance); 4449 return (DDI_SUCCESS); 4450 } 4451 4452 static boolean_t 4453 is_pseudo_device(dev_info_t *dip) 4454 { 4455 dev_info_t *parent, *root = ddi_root_node(); 4456 4457 4458 for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root); 4459 parent = ddi_get_parent(parent)) { 4460 if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0) 4461 return (B_TRUE); 4462 } 4463 4464 return (B_FALSE); 4465 } 4466 4467 /* 4468 * Description: 4469 * This function checks to see if the file being used as a 4470 * virtual disk is an ISO image. An ISO image is a special 4471 * case which can be booted/installed from like a CD/DVD 4472 * 4473 * Parameters: 4474 * vd - disk on which the operation is performed. 4475 * 4476 * Return Code: 4477 * B_TRUE - The file is an ISO 9660 compliant image 4478 * B_FALSE - just a regular disk image file 4479 */ 4480 static boolean_t 4481 vd_file_is_iso_image(vd_t *vd) 4482 { 4483 char iso_buf[ISO_SECTOR_SIZE]; 4484 int i, rv; 4485 uint_t sec; 4486 4487 ASSERT(vd->file); 4488 4489 /* 4490 * If we have already discovered and saved this info we can 4491 * short-circuit the check and avoid reading the file. 4492 */ 4493 if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD) 4494 return (B_TRUE); 4495 4496 /* 4497 * We wish to read the sector that should contain the 2nd ISO volume 4498 * descriptor. The second field in this descriptor is called the 4499 * Standard Identifier and is set to CD001 for a CD-ROM compliant 4500 * to the ISO 9660 standard. 4501 */ 4502 sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size; 4503 rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf, 4504 sec, ISO_SECTOR_SIZE); 4505 4506 if (rv < 0) 4507 return (B_FALSE); 4508 4509 for (i = 0; i < ISO_ID_STRLEN; i++) { 4510 if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i]) 4511 return (B_FALSE); 4512 } 4513 4514 return (B_TRUE); 4515 } 4516 4517 /* 4518 * Description: 4519 * This function checks to see if the virtual device is an ATAPI 4520 * device. ATAPI devices use Group 1 Read/Write commands, so 4521 * any USCSI calls vds makes need to take this into account. 4522 * 4523 * Parameters: 4524 * vd - disk on which the operation is performed. 4525 * 4526 * Return Code: 4527 * B_TRUE - The virtual disk is backed by an ATAPI device 4528 * B_FALSE - not an ATAPI device (presumably SCSI) 4529 */ 4530 static boolean_t 4531 vd_is_atapi_device(vd_t *vd) 4532 { 4533 boolean_t is_atapi = B_FALSE; 4534 char *variantp; 4535 int rv; 4536 4537 ASSERT(vd->ldi_handle[0] != NULL); 4538 ASSERT(!vd->file); 4539 4540 rv = ldi_prop_lookup_string(vd->ldi_handle[0], 4541 (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp); 4542 if (rv == DDI_PROP_SUCCESS) { 4543 PR0("'variant' property exists for %s", vd->device_path); 4544 if (strcmp(variantp, "atapi") == 0) 4545 is_atapi = B_TRUE; 4546 ddi_prop_free(variantp); 4547 } 4548 4549 rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi"); 4550 if (rv) { 4551 PR0("'atapi' property exists for %s", vd->device_path); 4552 is_atapi = B_TRUE; 4553 } 4554 4555 return (is_atapi); 4556 } 4557 4558 static int 4559 vd_setup_mediainfo(vd_t *vd) 4560 { 4561 int status, rval; 4562 struct dk_minfo dk_minfo; 4563 4564 ASSERT(vd->ldi_handle[0] != NULL); 4565 ASSERT(vd->vdisk_block_size != 0); 4566 4567 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 4568 (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL), 4569 kcred, &rval)) != 0) 4570 return (status); 4571 4572 ASSERT(dk_minfo.dki_lbsize % vd->vdisk_block_size == 0); 4573 4574 vd->block_size = dk_minfo.dki_lbsize; 4575 vd->vdisk_size = (dk_minfo.dki_capacity * dk_minfo.dki_lbsize) / 4576 vd->vdisk_block_size; 4577 vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type); 4578 return (0); 4579 } 4580 4581 static int 4582 vd_setup_full_disk(vd_t *vd) 4583 { 4584 int status; 4585 major_t major = getmajor(vd->dev[0]); 4586 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 4587 4588 ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK); 4589 4590 vd->vdisk_block_size = DEV_BSIZE; 4591 4592 /* 4593 * At this point, vdisk_size is set to the size of partition 2 but 4594 * this does not represent the size of the disk because partition 2 4595 * may not cover the entire disk and its size does not include reserved 4596 * blocks. So we call vd_get_mediainfo to udpate this information and 4597 * set the block size and the media type of the disk. 4598 */ 4599 status = vd_setup_mediainfo(vd); 4600 4601 if (status != 0) { 4602 if (!vd->scsi) { 4603 /* unexpected failure */ 4604 PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 4605 status); 4606 return (status); 4607 } 4608 4609 /* 4610 * The function can fail for SCSI disks which are present but 4611 * reserved by another system. In that case, we don't know the 4612 * size of the disk and the block size. 4613 */ 4614 vd->vdisk_size = VD_SIZE_UNKNOWN; 4615 vd->block_size = 0; 4616 vd->vdisk_media = VD_MEDIA_FIXED; 4617 } 4618 4619 /* Move dev number and LDI handle to entire-disk-slice array elements */ 4620 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 4621 vd->dev[0] = 0; 4622 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 4623 vd->ldi_handle[0] = NULL; 4624 4625 /* Initialize device numbers for remaining slices and open them */ 4626 for (int slice = 0; slice < vd->nslices; slice++) { 4627 /* 4628 * Skip the entire-disk slice, as it's already open and its 4629 * device known 4630 */ 4631 if (slice == VD_ENTIRE_DISK_SLICE) 4632 continue; 4633 ASSERT(vd->dev[slice] == 0); 4634 ASSERT(vd->ldi_handle[slice] == NULL); 4635 4636 /* 4637 * Construct the device number for the current slice 4638 */ 4639 vd->dev[slice] = makedevice(major, (minor + slice)); 4640 4641 /* 4642 * Open all slices of the disk to serve them to the client. 4643 * Slices are opened exclusively to prevent other threads or 4644 * processes in the service domain from performing I/O to 4645 * slices being accessed by a client. Failure to open a slice 4646 * results in vds not serving this disk, as the client could 4647 * attempt (and should be able) to access any slice immediately. 4648 * Any slices successfully opened before a failure will get 4649 * closed by vds_destroy_vd() as a result of the error returned 4650 * by this function. 4651 * 4652 * We need to do the open with FNDELAY so that opening an empty 4653 * slice does not fail. 4654 */ 4655 PR0("Opening device major %u, minor %u = slice %u", 4656 major, minor, slice); 4657 4658 /* 4659 * Try to open the device. This can fail for example if we are 4660 * opening an empty slice. So in case of a failure, we try the 4661 * open again but this time with the FNDELAY flag. 4662 */ 4663 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 4664 vd->open_flags, kcred, &vd->ldi_handle[slice], 4665 vd->vds->ldi_ident); 4666 4667 if (status != 0) { 4668 status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 4669 vd->open_flags | FNDELAY, kcred, 4670 &vd->ldi_handle[slice], vd->vds->ldi_ident); 4671 } 4672 4673 if (status != 0) { 4674 PRN("ldi_open_by_dev() returned errno %d " 4675 "for slice %u", status, slice); 4676 /* vds_destroy_vd() will close any open slices */ 4677 vd->ldi_handle[slice] = NULL; 4678 return (status); 4679 } 4680 } 4681 4682 return (0); 4683 } 4684 4685 /* 4686 * When a slice or a volume is exported as a single-slice disk, we want 4687 * the disk backend (i.e. the slice or volume) to be entirely mapped as 4688 * a slice without the addition of any metadata. 4689 * 4690 * So when exporting the disk as a VTOC disk, we fake a disk with the following 4691 * layout: 4692 * 4693 * 0 1 N+1 4694 * +-+--------------------------+ 4695 * virtual disk: |L| slice 0 | 4696 * +-+--------------------------+ 4697 * ^: : 4698 * |: : 4699 * VTOC LABEL--+: : 4700 * +--------------------------+ 4701 * disk backend: | slice/volume | 4702 * +--------------------------+ 4703 * 0 N 4704 * 4705 * N is the number of blocks in the slice/volume. 4706 * 4707 * We simulate a disk with N+1 blocks. The first block (block 0) is faked and 4708 * can not be changed. The remaining blocks (1 to N+1) defines slice 0 and are 4709 * mapped to the exported slice or volume: 4710 * 4711 * - block 0 (L) can return a fake VTOC label if raw read was implemented. 4712 * - block 1 to N+1 is mapped to the exported slice or volume. 4713 * 4714 */ 4715 static int 4716 vd_setup_partition_vtoc(vd_t *vd) 4717 { 4718 int rval, status; 4719 char *device_path = vd->device_path; 4720 4721 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 4722 (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), kcred, &rval); 4723 4724 if (status != 0) { 4725 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s", 4726 status, device_path); 4727 return (status); 4728 } 4729 4730 /* Initialize dk_geom structure for single-slice device */ 4731 if (vd->dk_geom.dkg_nsect == 0) { 4732 PRN("%s geometry claims 0 sectors per track", device_path); 4733 return (EIO); 4734 } 4735 if (vd->dk_geom.dkg_nhead == 0) { 4736 PRN("%s geometry claims 0 heads", device_path); 4737 return (EIO); 4738 } 4739 vd->dk_geom.dkg_ncyl = (vd->vdisk_size + 1) / vd->dk_geom.dkg_nsect / 4740 vd->dk_geom.dkg_nhead; 4741 vd->dk_geom.dkg_acyl = 0; 4742 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 4743 4744 4745 /* Initialize vtoc structure for single-slice device */ 4746 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 4747 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 4748 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 4749 vd->vtoc.v_nparts = 1; 4750 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 4751 vd->vtoc.v_part[0].p_flag = 0; 4752 vd->vtoc.v_part[0].p_start = 1; 4753 vd->vtoc.v_part[0].p_size = vd->vdisk_size; 4754 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 4755 MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel))); 4756 4757 /* adjust the vdisk_size, we emulate the first block */ 4758 vd->vdisk_size += 1; 4759 4760 return (0); 4761 } 4762 4763 /* 4764 * When a slice, volume or file is exported as a single-slice disk, we want 4765 * the disk backend (i.e. the slice, volume or file) to be entirely mapped 4766 * as a slice without the addition of any metadata. 4767 * 4768 * So when exporting the disk as an EFI disk, we fake a disk with the following 4769 * layout: 4770 * 4771 * 0 1 2 3 34 34+N 4772 * +-+-+-+-------+--------------------------+ 4773 * virtual disk: |X|T|E|XXXXXXX| slice 0 | 4774 * +-+-+-+-------+--------------------------+ 4775 * ^ ^ : : 4776 * | | : : 4777 * GPT-+ +-GPE : : 4778 * +--------------------------+ 4779 * disk backend: | slice/volume/file | 4780 * +--------------------------+ 4781 * 0 N 4782 * 4783 * N is the number of blocks in the slice/volume/file. 4784 * 4785 * We simulate a disk with 34+N blocks. The first 34 blocks (0 to 33) are 4786 * emulated and can not be changed. The remaining blocks (34 to 34+N) defines 4787 * slice 0 and are mapped to the exported slice, volume or file: 4788 * 4789 * - block 0 (X) is unused and can return 0 if raw read was implemented. 4790 * - block 1 (T) returns a fake EFI GPT (via DKIOCGETEFI) 4791 * - block 2 (E) returns a fake EFI GPE (via DKIOCGETEFI) 4792 * - block 3 to 33 (X) are unused and return 0 if raw read is implemented. 4793 * - block 34 to 34+N is mapped to the exported slice, volume or file. 4794 * 4795 */ 4796 static int 4797 vd_setup_partition_efi(vd_t *vd) 4798 { 4799 efi_gpt_t *gpt; 4800 efi_gpe_t *gpe; 4801 struct uuid uuid = EFI_USR; 4802 uint32_t crc; 4803 4804 gpt = &vd->efi_gpt; 4805 gpe = &vd->efi_gpe; 4806 4807 bzero(gpt, sizeof (efi_gpt_t)); 4808 bzero(gpe, sizeof (efi_gpe_t)); 4809 4810 /* adjust the vdisk_size, we emulate the first 34 blocks */ 4811 vd->vdisk_size += 34; 4812 4813 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 4814 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 4815 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 4816 gpt->efi_gpt_FirstUsableLBA = LE_64(34ULL); 4817 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 4818 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 4819 gpt->efi_gpt_PartitionEntryLBA = LE_64(2ULL); 4820 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 4821 4822 UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid); 4823 gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA; 4824 gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA; 4825 4826 CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table); 4827 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 4828 4829 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 4830 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 4831 4832 return (0); 4833 } 4834 4835 /* 4836 * Setup for a virtual disk whose backend is a file (exported as a single slice 4837 * or as a full disk) or a volume device (for example a ZFS, SVM or VxVM volume) 4838 * exported as a full disk. In these cases, the backend is accessed using the 4839 * vnode interface. 4840 */ 4841 static int 4842 vd_setup_backend_vnode(vd_t *vd) 4843 { 4844 int rval, status; 4845 vattr_t vattr; 4846 dev_t dev; 4847 char *file_path = vd->device_path; 4848 char dev_path[MAXPATHLEN + 1]; 4849 ldi_handle_t lhandle; 4850 struct dk_cinfo dk_cinfo; 4851 4852 if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX, 4853 0, &vd->file_vnode, 0, 0)) != 0) { 4854 PRN("vn_open(%s) = errno %d", file_path, status); 4855 return (status); 4856 } 4857 4858 /* 4859 * We set vd->file now so that vds_destroy_vd will take care of 4860 * closing the file and releasing the vnode in case of an error. 4861 */ 4862 vd->file = B_TRUE; 4863 4864 vattr.va_mask = AT_SIZE; 4865 if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL)) 4866 != 0) { 4867 PRN("VOP_GETATTR(%s) = errno %d", file_path, status); 4868 return (EIO); 4869 } 4870 4871 vd->file_size = vattr.va_size; 4872 /* size should be at least sizeof(dk_label) */ 4873 if (vd->file_size < sizeof (struct dk_label)) { 4874 PRN("Size of file has to be at least %ld bytes", 4875 sizeof (struct dk_label)); 4876 return (EIO); 4877 } 4878 4879 if (vd->file_vnode->v_flag & VNOMAP) { 4880 PRN("File %s cannot be mapped", file_path); 4881 return (EIO); 4882 } 4883 4884 /* sector size = block size = DEV_BSIZE */ 4885 vd->block_size = DEV_BSIZE; 4886 vd->vdisk_block_size = DEV_BSIZE; 4887 vd->vdisk_size = vd->file_size / DEV_BSIZE; 4888 vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */ 4889 4890 /* 4891 * Get max_xfer_sz from the device where the file is or from the device 4892 * itself if we have a volume device. 4893 */ 4894 dev_path[0] = '\0'; 4895 4896 if (vd->volume) { 4897 status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle, 4898 vd->vds->ldi_ident); 4899 } else { 4900 dev = vd->file_vnode->v_vfsp->vfs_dev; 4901 if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) { 4902 PR0("underlying device = %s\n", dev_path); 4903 } 4904 4905 status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle, 4906 vd->vds->ldi_ident); 4907 } 4908 4909 if (status != 0) { 4910 PR0("ldi_open() returned errno %d for device %s", 4911 status, (dev_path[0] == '\0')? file_path : dev_path); 4912 } else { 4913 if ((status = ldi_ioctl(lhandle, DKIOCINFO, 4914 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 4915 &rval)) != 0) { 4916 PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 4917 status, dev_path); 4918 } else { 4919 /* 4920 * Store the device's max transfer size for 4921 * return to the client 4922 */ 4923 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 4924 } 4925 4926 PR0("close the device %s", dev_path); 4927 (void) ldi_close(lhandle, FREAD, kcred); 4928 } 4929 4930 PR0("using file %s, dev %s, max_xfer = %u blks", 4931 file_path, dev_path, vd->max_xfer_sz); 4932 4933 if (vd->vdisk_type == VD_DISK_TYPE_SLICE) { 4934 ASSERT(!vd->volume); 4935 vd->vdisk_label = VD_DISK_LABEL_EFI; 4936 status = vd_setup_partition_efi(vd); 4937 return (0); 4938 } 4939 4940 /* 4941 * Find and validate the geometry of a disk image. 4942 */ 4943 status = vd_file_validate_geometry(vd); 4944 if (status != 0 && status != EINVAL && status != ENOTSUP) { 4945 PRN("Failed to read label from %s", file_path); 4946 return (EIO); 4947 } 4948 4949 if (vd_file_is_iso_image(vd)) { 4950 /* 4951 * Indicate whether to call this a CD or DVD from the size 4952 * of the ISO image (images for both drive types are stored 4953 * in the ISO-9600 format). CDs can store up to just under 1Gb 4954 */ 4955 if ((vd->vdisk_size * vd->vdisk_block_size) > 4956 (1024 * 1024 * 1024)) 4957 vd->vdisk_media = VD_MEDIA_DVD; 4958 else 4959 vd->vdisk_media = VD_MEDIA_CD; 4960 } else { 4961 vd->vdisk_media = VD_MEDIA_FIXED; 4962 } 4963 4964 /* Setup devid for the disk image */ 4965 4966 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 4967 4968 status = vd_file_read_devid(vd, &vd->file_devid); 4969 4970 if (status == 0) { 4971 /* a valid devid was found */ 4972 return (0); 4973 } 4974 4975 if (status != EINVAL) { 4976 /* 4977 * There was an error while trying to read the devid. 4978 * So this disk image may have a devid but we are 4979 * unable to read it. 4980 */ 4981 PR0("can not read devid for %s", file_path); 4982 vd->file_devid = NULL; 4983 return (0); 4984 } 4985 } 4986 4987 /* 4988 * No valid device id was found so we create one. Note that a failure 4989 * to create a device id is not fatal and does not prevent the disk 4990 * image from being attached. 4991 */ 4992 PR1("creating devid for %s", file_path); 4993 4994 if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0, 4995 &vd->file_devid) != DDI_SUCCESS) { 4996 PR0("fail to create devid for %s", file_path); 4997 vd->file_devid = NULL; 4998 return (0); 4999 } 5000 5001 /* 5002 * Write devid to the disk image. The devid is stored into the disk 5003 * image if we have a valid label; otherwise the devid will be stored 5004 * when the user writes a valid label. 5005 */ 5006 if (vd->vdisk_label != VD_DISK_LABEL_UNK) { 5007 if (vd_file_write_devid(vd, vd->file_devid) != 0) { 5008 PR0("fail to write devid for %s", file_path); 5009 ddi_devid_free(vd->file_devid); 5010 vd->file_devid = NULL; 5011 } 5012 } 5013 5014 return (0); 5015 } 5016 5017 5018 /* 5019 * Description: 5020 * Open a device using its device path (supplied by ldm(1m)) 5021 * 5022 * Parameters: 5023 * vd - pointer to structure containing the vDisk info 5024 * flags - open flags 5025 * 5026 * Return Value 5027 * 0 - success 5028 * != 0 - some other non-zero return value from ldi(9F) functions 5029 */ 5030 static int 5031 vd_open_using_ldi_by_name(vd_t *vd, int flags) 5032 { 5033 int status; 5034 char *device_path = vd->device_path; 5035 5036 /* Attempt to open device */ 5037 status = ldi_open_by_name(device_path, flags, kcred, 5038 &vd->ldi_handle[0], vd->vds->ldi_ident); 5039 5040 /* 5041 * The open can fail for example if we are opening an empty slice. 5042 * In case of a failure, we try the open again but this time with 5043 * the FNDELAY flag. 5044 */ 5045 if (status != 0) 5046 status = ldi_open_by_name(device_path, flags | FNDELAY, 5047 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident); 5048 5049 if (status != 0) { 5050 PR0("ldi_open_by_name(%s) = errno %d", device_path, status); 5051 vd->ldi_handle[0] = NULL; 5052 return (status); 5053 } 5054 5055 return (0); 5056 } 5057 5058 /* 5059 * Setup for a virtual disk which backend is a device (a physical disk, 5060 * slice or volume device) that is directly exported either as a full disk 5061 * for a physical disk or as a slice for a volume device or a disk slice. 5062 * In these cases, the backend is accessed using the LDI interface. 5063 */ 5064 static int 5065 vd_setup_backend_ldi(vd_t *vd) 5066 { 5067 int rval, status; 5068 struct dk_cinfo dk_cinfo; 5069 char *device_path = vd->device_path; 5070 5071 /* device has been opened by vd_identify_dev() */ 5072 ASSERT(vd->ldi_handle[0] != NULL); 5073 ASSERT(vd->dev[0] != NULL); 5074 5075 vd->file = B_FALSE; 5076 5077 /* Verify backing device supports dk_cinfo */ 5078 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 5079 (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred, 5080 &rval)) != 0) { 5081 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 5082 status, device_path); 5083 return (status); 5084 } 5085 if (dk_cinfo.dki_partition >= V_NUMPAR) { 5086 PRN("slice %u >= maximum slice %u for %s", 5087 dk_cinfo.dki_partition, V_NUMPAR, device_path); 5088 return (EIO); 5089 } 5090 5091 /* 5092 * The device has been opened read-only by vd_identify_dev(), re-open 5093 * it read-write if the write flag is set and we don't have an optical 5094 * device such as a CD-ROM, which, for now, we do not permit writes to 5095 * and thus should not export write operations to the client. 5096 * 5097 * Future: if/when we implement support for guest domains writing to 5098 * optical devices we will need to do further checking of the media type 5099 * to distinguish between read-only and writable discs. 5100 */ 5101 if (dk_cinfo.dki_ctype == DKC_CDROM) { 5102 5103 vd->open_flags &= ~FWRITE; 5104 5105 } else if (vd->open_flags & FWRITE) { 5106 5107 (void) ldi_close(vd->ldi_handle[0], vd->open_flags & ~FWRITE, 5108 kcred); 5109 status = vd_open_using_ldi_by_name(vd, vd->open_flags); 5110 if (status != 0) { 5111 PR0("Failed to open (%s) = errno %d", 5112 device_path, status); 5113 return (status); 5114 } 5115 } 5116 5117 /* Store the device's max transfer size for return to the client */ 5118 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 5119 5120 /* 5121 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so 5122 * that we can use the correct CDB group when sending USCSI commands. 5123 */ 5124 vd->is_atapi_dev = vd_is_atapi_device(vd); 5125 5126 /* 5127 * Export a full disk. 5128 * 5129 * When we use the LDI interface, we export a device as a full disk 5130 * if we have an entire disk slice (slice 2) and if this slice is 5131 * exported as a full disk and not as a single slice disk. 5132 * Similarly, we want to use LDI if we are accessing a CD or DVD 5133 * device (even if it isn't s2) 5134 * 5135 * Note that volume devices are exported as full disks using the vnode 5136 * interface, not the LDI interface. 5137 */ 5138 if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE && 5139 vd->vdisk_type == VD_DISK_TYPE_DISK) || 5140 dk_cinfo.dki_ctype == DKC_CDROM) { 5141 ASSERT(!vd->volume); 5142 if (dk_cinfo.dki_ctype == DKC_SCSI_CCS) 5143 vd->scsi = B_TRUE; 5144 return (vd_setup_full_disk(vd)); 5145 } 5146 5147 /* 5148 * Export a single slice disk. 5149 * 5150 * The exported device can be either a volume device or a disk slice. If 5151 * it is a disk slice different from slice 2 then it is always exported 5152 * as a single slice disk even if the "slice" option is not specified. 5153 * If it is disk slice 2 or a volume device then it is exported as a 5154 * single slice disk only if the "slice" option is specified. 5155 */ 5156 return (vd_setup_single_slice_disk(vd)); 5157 } 5158 5159 static int 5160 vd_setup_single_slice_disk(vd_t *vd) 5161 { 5162 int status, rval; 5163 char *device_path = vd->device_path; 5164 5165 /* Get size of backing device */ 5166 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 5167 PRN("ldi_get_size() failed for %s", device_path); 5168 return (EIO); 5169 } 5170 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 5171 vd->block_size = DEV_BSIZE; 5172 vd->vdisk_block_size = DEV_BSIZE; 5173 vd->vdisk_media = VD_MEDIA_FIXED; 5174 5175 if (vd->volume) { 5176 ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE); 5177 } 5178 5179 /* 5180 * We export the slice as a single slice disk even if the "slice" 5181 * option was not specified. 5182 */ 5183 vd->vdisk_type = VD_DISK_TYPE_SLICE; 5184 vd->nslices = 1; 5185 5186 /* 5187 * When exporting a slice or a device as a single slice disk, we don't 5188 * care about any partitioning exposed by the backend. The goal is just 5189 * to export the backend as a flat storage. We provide a fake partition 5190 * table (either a VTOC or EFI), which presents only one slice, to 5191 * accommodate tools expecting a disk label. 5192 * 5193 * We check the label of the backend to export the device as a slice 5194 * using the same type of label (VTOC or EFI). If there is no label 5195 * then we create a fake EFI label. 5196 * 5197 * Note that the partition table we are creating could also be faked 5198 * by the client based on the size of the backend device. 5199 */ 5200 status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, (intptr_t)&vd->vtoc, 5201 (vd->open_flags | FKIOCTL), kcred, &rval); 5202 5203 if (status == 0) { 5204 /* export with a fake VTOC label */ 5205 vd->vdisk_label = VD_DISK_LABEL_VTOC; 5206 status = vd_setup_partition_vtoc(vd); 5207 } else { 5208 /* export with a fake EFI label */ 5209 vd->vdisk_label = VD_DISK_LABEL_EFI; 5210 status = vd_setup_partition_efi(vd); 5211 } 5212 5213 return (status); 5214 } 5215 5216 /* 5217 * Description: 5218 * Open a device using its device path and identify if this is 5219 * a disk device or a volume device. 5220 * 5221 * Parameters: 5222 * vd - pointer to structure containing the vDisk info 5223 * dtype - return the driver type of the device 5224 * 5225 * Return Value 5226 * 0 - success 5227 * != 0 - some other non-zero return value from ldi(9F) functions 5228 */ 5229 static int 5230 vd_identify_dev(vd_t *vd, int *dtype) 5231 { 5232 int status, i; 5233 char *device_path = vd->device_path; 5234 char *drv_name; 5235 int drv_type; 5236 vds_t *vds = vd->vds; 5237 5238 status = vd_open_using_ldi_by_name(vd, vd->open_flags & ~FWRITE); 5239 if (status != 0) { 5240 PR0("Failed to open (%s) = errno %d", device_path, status); 5241 return (status); 5242 } 5243 5244 /* Get device number of backing device */ 5245 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 5246 PRN("ldi_get_dev() returned errno %d for %s", 5247 status, device_path); 5248 return (status); 5249 } 5250 5251 /* 5252 * We start by looking if the driver is in the list from vds.conf 5253 * so that we can override the built-in list using vds.conf. 5254 */ 5255 drv_name = ddi_major_to_name(getmajor(vd->dev[0])); 5256 drv_type = VD_DRIVER_UNKNOWN; 5257 5258 /* check vds.conf list */ 5259 for (i = 0; i < vds->num_drivers; i++) { 5260 if (vds->driver_types[i].type == VD_DRIVER_UNKNOWN) { 5261 /* ignore invalid entries */ 5262 continue; 5263 } 5264 if (strcmp(drv_name, vds->driver_types[i].name) == 0) { 5265 drv_type = vds->driver_types[i].type; 5266 goto done; 5267 } 5268 } 5269 5270 /* check built-in list */ 5271 for (i = 0; i < VDS_NUM_DRIVERS; i++) { 5272 if (strcmp(drv_name, vds_driver_types[i].name) == 0) { 5273 drv_type = vds_driver_types[i].type; 5274 goto done; 5275 } 5276 } 5277 5278 done: 5279 PR0("driver %s identified as %s", drv_name, 5280 (drv_type == VD_DRIVER_DISK)? "DISK" : 5281 (drv_type == VD_DRIVER_VOLUME)? "VOLUME" : "UNKNOWN"); 5282 5283 *dtype = drv_type; 5284 5285 return (0); 5286 } 5287 5288 static int 5289 vd_setup_vd(vd_t *vd) 5290 { 5291 int status, drv_type, pseudo; 5292 dev_info_t *dip; 5293 vnode_t *vnp; 5294 char *path = vd->device_path; 5295 5296 /* make sure the vdisk backend is valid */ 5297 if ((status = lookupname(path, UIO_SYSSPACE, 5298 FOLLOW, NULLVPP, &vnp)) != 0) { 5299 PR0("Cannot lookup %s errno %d", path, status); 5300 goto done; 5301 } 5302 5303 switch (vnp->v_type) { 5304 case VREG: 5305 /* 5306 * Backend is a file so it is exported as a full disk or as a 5307 * single slice disk using the vnode interface. 5308 */ 5309 VN_RELE(vnp); 5310 vd->volume = B_FALSE; 5311 status = vd_setup_backend_vnode(vd); 5312 break; 5313 5314 case VBLK: 5315 case VCHR: 5316 /* 5317 * Backend is a device. The way it is exported depends on the 5318 * type of the device. 5319 * 5320 * - A volume device is exported as a full disk using the vnode 5321 * interface or as a single slice disk using the LDI 5322 * interface. 5323 * 5324 * - A disk (represented by the slice 2 of that disk) is 5325 * exported as a full disk using the LDI interface. 5326 * 5327 * - A disk slice (different from slice 2) is always exported 5328 * as a single slice disk using the LDI interface. 5329 * 5330 * - The slice 2 of a disk is exported as a single slice disk 5331 * if the "slice" option is specified, otherwise the entire 5332 * disk will be exported. In any case, the LDI interface is 5333 * used. 5334 */ 5335 5336 /* check if this is a pseudo device */ 5337 if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev), 5338 dev_to_instance(vnp->v_rdev), 0)) == NULL) { 5339 PRN("%s is no longer accessible", path); 5340 VN_RELE(vnp); 5341 status = EIO; 5342 break; 5343 } 5344 pseudo = is_pseudo_device(dip); 5345 ddi_release_devi(dip); 5346 VN_RELE(vnp); 5347 5348 if (vd_identify_dev(vd, &drv_type) != 0) { 5349 PRN("%s identification failed", path); 5350 status = EIO; 5351 break; 5352 } 5353 5354 /* 5355 * If the driver hasn't been identified then we consider that 5356 * pseudo devices are volumes and other devices are disks. 5357 */ 5358 if (drv_type == VD_DRIVER_VOLUME || 5359 (drv_type == VD_DRIVER_UNKNOWN && pseudo)) { 5360 vd->volume = B_TRUE; 5361 } else { 5362 status = vd_setup_backend_ldi(vd); 5363 break; 5364 } 5365 5366 /* 5367 * If this is a volume device then its usage depends if the 5368 * "slice" option is set or not. If the "slice" option is set 5369 * then the volume device will be exported as a single slice, 5370 * otherwise it will be exported as a full disk. 5371 * 5372 * For backward compatibility, if vd_volume_force_slice is set 5373 * then we always export volume devices as slices. 5374 */ 5375 if (vd_volume_force_slice) { 5376 vd->vdisk_type = VD_DISK_TYPE_SLICE; 5377 vd->nslices = 1; 5378 } 5379 5380 if (vd->vdisk_type == VD_DISK_TYPE_DISK) { 5381 /* close device opened during identification */ 5382 (void) ldi_close(vd->ldi_handle[0], 5383 vd->open_flags & ~FWRITE, kcred); 5384 vd->ldi_handle[0] = NULL; 5385 vd->dev[0] = 0; 5386 status = vd_setup_backend_vnode(vd); 5387 } else { 5388 status = vd_setup_backend_ldi(vd); 5389 } 5390 break; 5391 5392 default: 5393 PRN("Unsupported vdisk backend %s", path); 5394 VN_RELE(vnp); 5395 status = EBADF; 5396 } 5397 5398 done: 5399 if (status != 0) { 5400 /* 5401 * If the error is retryable print an error message only 5402 * during the first try. 5403 */ 5404 if (status == ENXIO || status == ENODEV || 5405 status == ENOENT || status == EROFS) { 5406 if (!(vd->initialized & VD_SETUP_ERROR)) { 5407 PRN("%s is currently inaccessible (error %d)", 5408 path, status); 5409 } 5410 status = EAGAIN; 5411 } else { 5412 PRN("%s can not be exported as a virtual disk " 5413 "(error %d)", path, status); 5414 } 5415 vd->initialized |= VD_SETUP_ERROR; 5416 5417 } else if (vd->initialized & VD_SETUP_ERROR) { 5418 /* print a message only if we previously had an error */ 5419 PRN("%s is now online", path); 5420 vd->initialized &= ~VD_SETUP_ERROR; 5421 } 5422 5423 return (status); 5424 } 5425 5426 static int 5427 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 5428 uint64_t ldc_id, vd_t **vdp) 5429 { 5430 char tq_name[TASKQ_NAMELEN]; 5431 int status; 5432 ddi_iblock_cookie_t iblock = NULL; 5433 ldc_attr_t ldc_attr; 5434 vd_t *vd; 5435 5436 5437 ASSERT(vds != NULL); 5438 ASSERT(device_path != NULL); 5439 ASSERT(vdp != NULL); 5440 PR0("Adding vdisk for %s", device_path); 5441 5442 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 5443 PRN("No memory for virtual disk"); 5444 return (EAGAIN); 5445 } 5446 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 5447 vd->vds = vds; 5448 (void) strncpy(vd->device_path, device_path, MAXPATHLEN); 5449 5450 /* Setup open flags */ 5451 vd->open_flags = FREAD; 5452 5453 if (!(options & VD_OPT_RDONLY)) 5454 vd->open_flags |= FWRITE; 5455 5456 if (options & VD_OPT_EXCLUSIVE) 5457 vd->open_flags |= FEXCL; 5458 5459 /* Setup disk type */ 5460 if (options & VD_OPT_SLICE) { 5461 vd->vdisk_type = VD_DISK_TYPE_SLICE; 5462 vd->nslices = 1; 5463 } else { 5464 vd->vdisk_type = VD_DISK_TYPE_DISK; 5465 vd->nslices = V_NUMPAR; 5466 } 5467 5468 /* default disk label */ 5469 vd->vdisk_label = VD_DISK_LABEL_UNK; 5470 5471 /* Open vdisk and initialize parameters */ 5472 if ((status = vd_setup_vd(vd)) == 0) { 5473 vd->initialized |= VD_DISK_READY; 5474 5475 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 5476 PR0("vdisk_type = %s, volume = %s, file = %s, nslices = %u", 5477 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 5478 (vd->volume ? "yes" : "no"), (vd->file ? "yes" : "no"), 5479 vd->nslices); 5480 } else { 5481 if (status != EAGAIN) 5482 return (status); 5483 } 5484 5485 /* Initialize locking */ 5486 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 5487 &iblock) != DDI_SUCCESS) { 5488 PRN("Could not get iblock cookie."); 5489 return (EIO); 5490 } 5491 5492 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 5493 vd->initialized |= VD_LOCKING; 5494 5495 5496 /* Create start and completion task queues for the vdisk */ 5497 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 5498 PR1("tq_name = %s", tq_name); 5499 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 5500 TASKQ_DEFAULTPRI, 0)) == NULL) { 5501 PRN("Could not create task queue"); 5502 return (EIO); 5503 } 5504 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 5505 PR1("tq_name = %s", tq_name); 5506 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 5507 TASKQ_DEFAULTPRI, 0)) == NULL) { 5508 PRN("Could not create task queue"); 5509 return (EIO); 5510 } 5511 vd->enabled = 1; /* before callback can dispatch to startq */ 5512 5513 5514 /* Bring up LDC */ 5515 ldc_attr.devclass = LDC_DEV_BLK_SVC; 5516 ldc_attr.instance = ddi_get_instance(vds->dip); 5517 ldc_attr.mode = LDC_MODE_UNRELIABLE; 5518 ldc_attr.mtu = VD_LDC_MTU; 5519 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 5520 PRN("Could not initialize LDC channel %lx, " 5521 "init failed with error %d", ldc_id, status); 5522 return (status); 5523 } 5524 vd->initialized |= VD_LDC; 5525 5526 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 5527 (caddr_t)vd)) != 0) { 5528 PRN("Could not initialize LDC channel %lu," 5529 "reg_callback failed with error %d", ldc_id, status); 5530 return (status); 5531 } 5532 5533 if ((status = ldc_open(vd->ldc_handle)) != 0) { 5534 PRN("Could not initialize LDC channel %lu," 5535 "open failed with error %d", ldc_id, status); 5536 return (status); 5537 } 5538 5539 if ((status = ldc_up(vd->ldc_handle)) != 0) { 5540 PR0("ldc_up() returned errno %d", status); 5541 } 5542 5543 /* Allocate the inband task memory handle */ 5544 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 5545 if (status) { 5546 PRN("Could not initialize LDC channel %lu," 5547 "alloc_handle failed with error %d", ldc_id, status); 5548 return (ENXIO); 5549 } 5550 5551 /* Add the successfully-initialized vdisk to the server's table */ 5552 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 5553 PRN("Error adding vdisk ID %lu to table", id); 5554 return (EIO); 5555 } 5556 5557 /* Allocate the staging buffer */ 5558 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 5559 vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP); 5560 5561 /* store initial state */ 5562 vd->state = VD_STATE_INIT; 5563 5564 return (0); 5565 } 5566 5567 static void 5568 vd_free_dring_task(vd_t *vdp) 5569 { 5570 if (vdp->dring_task != NULL) { 5571 ASSERT(vdp->dring_len != 0); 5572 /* Free all dring_task memory handles */ 5573 for (int i = 0; i < vdp->dring_len; i++) { 5574 (void) ldc_mem_free_handle(vdp->dring_task[i].mhdl); 5575 kmem_free(vdp->dring_task[i].msg, vdp->max_msglen); 5576 vdp->dring_task[i].msg = NULL; 5577 } 5578 kmem_free(vdp->dring_task, 5579 (sizeof (*vdp->dring_task)) * vdp->dring_len); 5580 vdp->dring_task = NULL; 5581 } 5582 } 5583 5584 /* 5585 * Destroy the state associated with a virtual disk 5586 */ 5587 static void 5588 vds_destroy_vd(void *arg) 5589 { 5590 vd_t *vd = (vd_t *)arg; 5591 int retry = 0, rv; 5592 5593 if (vd == NULL) 5594 return; 5595 5596 PR0("Destroying vdisk state"); 5597 5598 /* Disable queuing requests for the vdisk */ 5599 if (vd->initialized & VD_LOCKING) { 5600 mutex_enter(&vd->lock); 5601 vd->enabled = 0; 5602 mutex_exit(&vd->lock); 5603 } 5604 5605 /* Drain and destroy start queue (*before* destroying completionq) */ 5606 if (vd->startq != NULL) 5607 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 5608 5609 /* Drain and destroy completion queue (*before* shutting down LDC) */ 5610 if (vd->completionq != NULL) 5611 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 5612 5613 vd_free_dring_task(vd); 5614 5615 /* Free the inband task memory handle */ 5616 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 5617 5618 /* Shut down LDC */ 5619 if (vd->initialized & VD_LDC) { 5620 /* unmap the dring */ 5621 if (vd->initialized & VD_DRING) 5622 (void) ldc_mem_dring_unmap(vd->dring_handle); 5623 5624 /* close LDC channel - retry on EAGAIN */ 5625 while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) { 5626 if (++retry > vds_ldc_retries) { 5627 PR0("Timed out closing channel"); 5628 break; 5629 } 5630 drv_usecwait(vds_ldc_delay); 5631 } 5632 if (rv == 0) { 5633 (void) ldc_unreg_callback(vd->ldc_handle); 5634 (void) ldc_fini(vd->ldc_handle); 5635 } else { 5636 /* 5637 * Closing the LDC channel has failed. Ideally we should 5638 * fail here but there is no Zeus level infrastructure 5639 * to handle this. The MD has already been changed and 5640 * we have to do the close. So we try to do as much 5641 * clean up as we can. 5642 */ 5643 (void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE); 5644 while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN) 5645 drv_usecwait(vds_ldc_delay); 5646 } 5647 } 5648 5649 /* Free the staging buffer for msgs */ 5650 if (vd->vio_msgp != NULL) { 5651 kmem_free(vd->vio_msgp, vd->max_msglen); 5652 vd->vio_msgp = NULL; 5653 } 5654 5655 /* Free the inband message buffer */ 5656 if (vd->inband_task.msg != NULL) { 5657 kmem_free(vd->inband_task.msg, vd->max_msglen); 5658 vd->inband_task.msg = NULL; 5659 } 5660 5661 if (vd->file) { 5662 /* Close file */ 5663 (void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1, 5664 0, kcred, NULL); 5665 VN_RELE(vd->file_vnode); 5666 if (vd->file_devid != NULL) 5667 ddi_devid_free(vd->file_devid); 5668 } else { 5669 /* Close any open backing-device slices */ 5670 for (uint_t slice = 0; slice < vd->nslices; slice++) { 5671 if (vd->ldi_handle[slice] != NULL) { 5672 PR0("Closing slice %u", slice); 5673 (void) ldi_close(vd->ldi_handle[slice], 5674 vd->open_flags, kcred); 5675 } 5676 } 5677 } 5678 5679 /* Free lock */ 5680 if (vd->initialized & VD_LOCKING) 5681 mutex_destroy(&vd->lock); 5682 5683 /* Finally, free the vdisk structure itself */ 5684 kmem_free(vd, sizeof (*vd)); 5685 } 5686 5687 static int 5688 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options, 5689 uint64_t ldc_id) 5690 { 5691 int status; 5692 vd_t *vd = NULL; 5693 5694 5695 if ((status = vds_do_init_vd(vds, id, device_path, options, 5696 ldc_id, &vd)) != 0) 5697 vds_destroy_vd(vd); 5698 5699 return (status); 5700 } 5701 5702 static int 5703 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 5704 uint64_t *ldc_id) 5705 { 5706 int num_channels; 5707 5708 5709 /* Look for channel endpoint child(ren) of the vdisk MD node */ 5710 if ((num_channels = md_scan_dag(md, vd_node, 5711 md_find_name(md, VD_CHANNEL_ENDPOINT), 5712 md_find_name(md, "fwd"), channel)) <= 0) { 5713 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 5714 return (-1); 5715 } 5716 5717 /* Get the "id" value for the first channel endpoint node */ 5718 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 5719 PRN("No \"%s\" property found for \"%s\" of vdisk", 5720 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 5721 return (-1); 5722 } 5723 5724 if (num_channels > 1) { 5725 PRN("Using ID of first of multiple channels for this vdisk"); 5726 } 5727 5728 return (0); 5729 } 5730 5731 static int 5732 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 5733 { 5734 int num_nodes, status; 5735 size_t size; 5736 mde_cookie_t *channel; 5737 5738 5739 if ((num_nodes = md_node_count(md)) <= 0) { 5740 PRN("Invalid node count in Machine Description subtree"); 5741 return (-1); 5742 } 5743 size = num_nodes*(sizeof (*channel)); 5744 channel = kmem_zalloc(size, KM_SLEEP); 5745 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 5746 kmem_free(channel, size); 5747 5748 return (status); 5749 } 5750 5751 /* 5752 * Function: 5753 * vds_get_options 5754 * 5755 * Description: 5756 * Parse the options of a vds node. Options are defined as an array 5757 * of strings in the vds-block-device-opts property of the vds node 5758 * in the machine description. Options are returned as a bitmask. The 5759 * mapping between the bitmask options and the options strings from the 5760 * machine description is defined in the vd_bdev_options[] array. 5761 * 5762 * The vds-block-device-opts property is optional. If a vds has no such 5763 * property then no option is defined. 5764 * 5765 * Parameters: 5766 * md - machine description. 5767 * vd_node - vds node in the machine description for which 5768 * options have to be parsed. 5769 * options - the returned options. 5770 * 5771 * Return Code: 5772 * none. 5773 */ 5774 static void 5775 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options) 5776 { 5777 char *optstr, *opt; 5778 int len, n, i; 5779 5780 *options = 0; 5781 5782 if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS, 5783 (uint8_t **)&optstr, &len) != 0) { 5784 PR0("No options found"); 5785 return; 5786 } 5787 5788 /* parse options */ 5789 opt = optstr; 5790 n = sizeof (vd_bdev_options) / sizeof (vd_option_t); 5791 5792 while (opt < optstr + len) { 5793 for (i = 0; i < n; i++) { 5794 if (strncmp(vd_bdev_options[i].vdo_name, 5795 opt, VD_OPTION_NLEN) == 0) { 5796 *options |= vd_bdev_options[i].vdo_value; 5797 break; 5798 } 5799 } 5800 5801 if (i < n) { 5802 PR0("option: %s", opt); 5803 } else { 5804 PRN("option %s is unknown or unsupported", opt); 5805 } 5806 5807 opt += strlen(opt) + 1; 5808 } 5809 } 5810 5811 static void 5812 vds_driver_types_free(vds_t *vds) 5813 { 5814 if (vds->driver_types != NULL) { 5815 kmem_free(vds->driver_types, sizeof (vd_driver_type_t) * 5816 vds->num_drivers); 5817 vds->driver_types = NULL; 5818 vds->num_drivers = 0; 5819 } 5820 } 5821 5822 /* 5823 * Update the driver type list with information from vds.conf. 5824 */ 5825 static void 5826 vds_driver_types_update(vds_t *vds) 5827 { 5828 char **list, *s; 5829 uint_t i, num, count = 0, len; 5830 5831 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, vds->dip, 5832 DDI_PROP_DONTPASS, "driver-type-list", &list, &num) != 5833 DDI_PROP_SUCCESS) 5834 return; 5835 5836 /* 5837 * We create a driver_types list with as many as entries as there 5838 * is in the driver-type-list from vds.conf. However only valid 5839 * entries will be populated (i.e. entries from driver-type-list 5840 * with a valid syntax). Invalid entries will be left blank so 5841 * they will have no driver name and the driver type will be 5842 * VD_DRIVER_UNKNOWN (= 0). 5843 */ 5844 vds->num_drivers = num; 5845 vds->driver_types = kmem_zalloc(sizeof (vd_driver_type_t) * num, 5846 KM_SLEEP); 5847 5848 for (i = 0; i < num; i++) { 5849 5850 s = strchr(list[i], ':'); 5851 5852 if (s == NULL) { 5853 PRN("vds.conf: driver-type-list, entry %d (%s): " 5854 "a colon is expected in the entry", 5855 i, list[i]); 5856 continue; 5857 } 5858 5859 len = (uintptr_t)s - (uintptr_t)list[i]; 5860 5861 if (len == 0) { 5862 PRN("vds.conf: driver-type-list, entry %d (%s): " 5863 "the driver name is empty", 5864 i, list[i]); 5865 continue; 5866 } 5867 5868 if (len >= VD_DRIVER_NAME_LEN) { 5869 PRN("vds.conf: driver-type-list, entry %d (%s): " 5870 "the driver name is too long", 5871 i, list[i]); 5872 continue; 5873 } 5874 5875 if (strcmp(s + 1, "disk") == 0) { 5876 5877 vds->driver_types[i].type = VD_DRIVER_DISK; 5878 5879 } else if (strcmp(s + 1, "volume") == 0) { 5880 5881 vds->driver_types[i].type = VD_DRIVER_VOLUME; 5882 5883 } else { 5884 PRN("vds.conf: driver-type-list, entry %d (%s): " 5885 "the driver type is invalid", 5886 i, list[i]); 5887 continue; 5888 } 5889 5890 (void) strncpy(vds->driver_types[i].name, list[i], len); 5891 5892 PR0("driver-type-list, entry %d (%s) added", 5893 i, list[i]); 5894 5895 count++; 5896 } 5897 5898 ddi_prop_free(list); 5899 5900 if (count == 0) { 5901 /* nothing was added, clean up */ 5902 vds_driver_types_free(vds); 5903 } 5904 } 5905 5906 static void 5907 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 5908 { 5909 char *device_path = NULL; 5910 uint64_t id = 0, ldc_id = 0, options = 0; 5911 5912 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 5913 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 5914 return; 5915 } 5916 PR0("Adding vdisk ID %lu", id); 5917 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 5918 &device_path) != 0) { 5919 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 5920 return; 5921 } 5922 5923 vds_get_options(md, vd_node, &options); 5924 5925 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 5926 PRN("Error getting LDC ID for vdisk %lu", id); 5927 return; 5928 } 5929 5930 if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) { 5931 PRN("Failed to add vdisk ID %lu", id); 5932 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 5933 PRN("No vDisk entry found for vdisk ID %lu", id); 5934 return; 5935 } 5936 } 5937 5938 static void 5939 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 5940 { 5941 uint64_t id = 0; 5942 5943 5944 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 5945 PRN("Unable to get \"%s\" property from vdisk's MD node", 5946 VD_ID_PROP); 5947 return; 5948 } 5949 PR0("Removing vdisk ID %lu", id); 5950 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 5951 PRN("No vdisk entry found for vdisk ID %lu", id); 5952 } 5953 5954 static void 5955 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 5956 md_t *curr_md, mde_cookie_t curr_vd_node) 5957 { 5958 char *curr_dev, *prev_dev; 5959 uint64_t curr_id = 0, curr_ldc_id = 0, curr_options = 0; 5960 uint64_t prev_id = 0, prev_ldc_id = 0, prev_options = 0; 5961 size_t len; 5962 5963 5964 /* Validate that vdisk ID has not changed */ 5965 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 5966 PRN("Error getting previous vdisk \"%s\" property", 5967 VD_ID_PROP); 5968 return; 5969 } 5970 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 5971 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 5972 return; 5973 } 5974 if (curr_id != prev_id) { 5975 PRN("Not changing vdisk: ID changed from %lu to %lu", 5976 prev_id, curr_id); 5977 return; 5978 } 5979 5980 /* Validate that LDC ID has not changed */ 5981 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 5982 PRN("Error getting LDC ID for vdisk %lu", prev_id); 5983 return; 5984 } 5985 5986 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 5987 PRN("Error getting LDC ID for vdisk %lu", curr_id); 5988 return; 5989 } 5990 if (curr_ldc_id != prev_ldc_id) { 5991 _NOTE(NOTREACHED); /* lint is confused */ 5992 PRN("Not changing vdisk: " 5993 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 5994 return; 5995 } 5996 5997 /* Determine whether device path has changed */ 5998 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 5999 &prev_dev) != 0) { 6000 PRN("Error getting previous vdisk \"%s\"", 6001 VD_BLOCK_DEVICE_PROP); 6002 return; 6003 } 6004 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 6005 &curr_dev) != 0) { 6006 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 6007 return; 6008 } 6009 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 6010 (strncmp(curr_dev, prev_dev, len) == 0)) 6011 return; /* no relevant (supported) change */ 6012 6013 /* Validate that options have not changed */ 6014 vds_get_options(prev_md, prev_vd_node, &prev_options); 6015 vds_get_options(curr_md, curr_vd_node, &curr_options); 6016 if (prev_options != curr_options) { 6017 PRN("Not changing vdisk: options changed from %lx to %lx", 6018 prev_options, curr_options); 6019 return; 6020 } 6021 6022 PR0("Changing vdisk ID %lu", prev_id); 6023 6024 /* Remove old state, which will close vdisk and reset */ 6025 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 6026 PRN("No entry found for vdisk ID %lu", prev_id); 6027 6028 /* Re-initialize vdisk with new state */ 6029 if (vds_init_vd(vds, curr_id, curr_dev, curr_options, 6030 curr_ldc_id) != 0) { 6031 PRN("Failed to change vdisk ID %lu", curr_id); 6032 return; 6033 } 6034 } 6035 6036 static int 6037 vds_process_md(void *arg, mdeg_result_t *md) 6038 { 6039 int i; 6040 vds_t *vds = arg; 6041 6042 6043 if (md == NULL) 6044 return (MDEG_FAILURE); 6045 ASSERT(vds != NULL); 6046 6047 for (i = 0; i < md->removed.nelem; i++) 6048 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 6049 for (i = 0; i < md->match_curr.nelem; i++) 6050 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 6051 md->match_curr.mdp, md->match_curr.mdep[i]); 6052 for (i = 0; i < md->added.nelem; i++) 6053 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 6054 6055 return (MDEG_SUCCESS); 6056 } 6057 6058 6059 static int 6060 vds_do_attach(dev_info_t *dip) 6061 { 6062 int status, sz; 6063 int cfg_handle; 6064 minor_t instance = ddi_get_instance(dip); 6065 vds_t *vds; 6066 mdeg_prop_spec_t *pspecp; 6067 mdeg_node_spec_t *ispecp; 6068 6069 /* 6070 * The "cfg-handle" property of a vds node in an MD contains the MD's 6071 * notion of "instance", or unique identifier, for that node; OBP 6072 * stores the value of the "cfg-handle" MD property as the value of 6073 * the "reg" property on the node in the device tree it builds from 6074 * the MD and passes to Solaris. Thus, we look up the devinfo node's 6075 * "reg" property value to uniquely identify this device instance when 6076 * registering with the MD event-generation framework. If the "reg" 6077 * property cannot be found, the device tree state is presumably so 6078 * broken that there is no point in continuing. 6079 */ 6080 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6081 VD_REG_PROP)) { 6082 PRN("vds \"%s\" property does not exist", VD_REG_PROP); 6083 return (DDI_FAILURE); 6084 } 6085 6086 /* Get the MD instance for later MDEG registration */ 6087 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 6088 VD_REG_PROP, -1); 6089 6090 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 6091 PRN("Could not allocate state for instance %u", instance); 6092 return (DDI_FAILURE); 6093 } 6094 6095 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 6096 PRN("Could not get state for instance %u", instance); 6097 ddi_soft_state_free(vds_state, instance); 6098 return (DDI_FAILURE); 6099 } 6100 6101 vds->dip = dip; 6102 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 6103 vds_destroy_vd, sizeof (void *)); 6104 6105 ASSERT(vds->vd_table != NULL); 6106 6107 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 6108 PRN("ldi_ident_from_dip() returned errno %d", status); 6109 return (DDI_FAILURE); 6110 } 6111 vds->initialized |= VDS_LDI; 6112 6113 /* Register for MD updates */ 6114 sz = sizeof (vds_prop_template); 6115 pspecp = kmem_alloc(sz, KM_SLEEP); 6116 bcopy(vds_prop_template, pspecp, sz); 6117 6118 VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle); 6119 6120 /* initialize the complete prop spec structure */ 6121 ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP); 6122 ispecp->namep = "virtual-device"; 6123 ispecp->specp = pspecp; 6124 6125 if (mdeg_register(ispecp, &vd_match, vds_process_md, vds, 6126 &vds->mdeg) != MDEG_SUCCESS) { 6127 PRN("Unable to register for MD updates"); 6128 kmem_free(ispecp, sizeof (mdeg_node_spec_t)); 6129 kmem_free(pspecp, sz); 6130 return (DDI_FAILURE); 6131 } 6132 6133 vds->ispecp = ispecp; 6134 vds->initialized |= VDS_MDEG; 6135 6136 /* Prevent auto-detaching so driver is available whenever MD changes */ 6137 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 6138 DDI_PROP_SUCCESS) { 6139 PRN("failed to set \"%s\" property for instance %u", 6140 DDI_NO_AUTODETACH, instance); 6141 } 6142 6143 /* read any user defined driver types from conf file and update list */ 6144 vds_driver_types_update(vds); 6145 6146 ddi_report_dev(dip); 6147 return (DDI_SUCCESS); 6148 } 6149 6150 static int 6151 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 6152 { 6153 int status; 6154 6155 switch (cmd) { 6156 case DDI_ATTACH: 6157 PR0("Attaching"); 6158 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 6159 (void) vds_detach(dip, DDI_DETACH); 6160 return (status); 6161 case DDI_RESUME: 6162 PR0("No action required for DDI_RESUME"); 6163 return (DDI_SUCCESS); 6164 default: 6165 return (DDI_FAILURE); 6166 } 6167 } 6168 6169 static struct dev_ops vds_ops = { 6170 DEVO_REV, /* devo_rev */ 6171 0, /* devo_refcnt */ 6172 ddi_no_info, /* devo_getinfo */ 6173 nulldev, /* devo_identify */ 6174 nulldev, /* devo_probe */ 6175 vds_attach, /* devo_attach */ 6176 vds_detach, /* devo_detach */ 6177 nodev, /* devo_reset */ 6178 NULL, /* devo_cb_ops */ 6179 NULL, /* devo_bus_ops */ 6180 nulldev /* devo_power */ 6181 }; 6182 6183 static struct modldrv modldrv = { 6184 &mod_driverops, 6185 "virtual disk server", 6186 &vds_ops, 6187 }; 6188 6189 static struct modlinkage modlinkage = { 6190 MODREV_1, 6191 &modldrv, 6192 NULL 6193 }; 6194 6195 6196 int 6197 _init(void) 6198 { 6199 int status; 6200 6201 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 6202 return (status); 6203 6204 if ((status = mod_install(&modlinkage)) != 0) { 6205 ddi_soft_state_fini(&vds_state); 6206 return (status); 6207 } 6208 6209 return (0); 6210 } 6211 6212 int 6213 _info(struct modinfo *modinfop) 6214 { 6215 return (mod_info(&modlinkage, modinfop)); 6216 } 6217 6218 int 6219 _fini(void) 6220 { 6221 int status; 6222 6223 if ((status = mod_remove(&modlinkage)) != 0) 6224 return (status); 6225 ddi_soft_state_fini(&vds_state); 6226 return (0); 6227 } 6228