xref: /illumos-gate/usr/src/uts/sun4v/io/vds.c (revision 1f7ad2e1275fff503991bf4b43bc5cf1d815669f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Virtual disk server
31  */
32 
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/crc32.h>
37 #include <sys/ddi.h>
38 #include <sys/dkio.h>
39 #include <sys/file.h>
40 #include <sys/fs/hsfs_isospec.h>
41 #include <sys/mdeg.h>
42 #include <sys/modhash.h>
43 #include <sys/note.h>
44 #include <sys/pathname.h>
45 #include <sys/sdt.h>
46 #include <sys/sunddi.h>
47 #include <sys/sunldi.h>
48 #include <sys/sysmacros.h>
49 #include <sys/vio_common.h>
50 #include <sys/vio_util.h>
51 #include <sys/vdsk_mailbox.h>
52 #include <sys/vdsk_common.h>
53 #include <sys/vtoc.h>
54 #include <sys/vfs.h>
55 #include <sys/stat.h>
56 #include <sys/scsi/impl/uscsi.h>
57 #include <vm/seg_map.h>
58 
59 /* Virtual disk server initialization flags */
60 #define	VDS_LDI			0x01
61 #define	VDS_MDEG		0x02
62 
63 /* Virtual disk server tunable parameters */
64 #define	VDS_RETRIES		5
65 #define	VDS_LDC_DELAY		1000 /* 1 msecs */
66 #define	VDS_DEV_DELAY		10000000 /* 10 secs */
67 #define	VDS_NCHAINS		32
68 
69 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */
70 #define	VDS_NAME		"virtual-disk-server"
71 
72 #define	VD_NAME			"vd"
73 #define	VD_VOLUME_NAME		"vdisk"
74 #define	VD_ASCIILABEL		"Virtual Disk"
75 
76 #define	VD_CHANNEL_ENDPOINT	"channel-endpoint"
77 #define	VD_ID_PROP		"id"
78 #define	VD_BLOCK_DEVICE_PROP	"vds-block-device"
79 #define	VD_BLOCK_DEVICE_OPTS	"vds-block-device-opts"
80 #define	VD_REG_PROP		"reg"
81 
82 /* Virtual disk initialization flags */
83 #define	VD_DISK_READY		0x01
84 #define	VD_LOCKING		0x02
85 #define	VD_LDC			0x04
86 #define	VD_DRING		0x08
87 #define	VD_SID			0x10
88 #define	VD_SEQ_NUM		0x20
89 #define	VD_SETUP_ERROR		0x40
90 
91 /* Flags for writing to a vdisk which is a file */
92 #define	VD_FILE_WRITE_FLAGS	SM_ASYNC
93 
94 /* Number of backup labels */
95 #define	VD_FILE_NUM_BACKUP	5
96 
97 /* Timeout for SCSI I/O */
98 #define	VD_SCSI_RDWR_TIMEOUT	30	/* 30 secs */
99 
100 /*
101  * By Solaris convention, slice/partition 2 represents the entire disk;
102  * unfortunately, this convention does not appear to be codified.
103  */
104 #define	VD_ENTIRE_DISK_SLICE	2
105 
106 /* Return a cpp token as a string */
107 #define	STRINGIZE(token)	#token
108 
109 /*
110  * Print a message prefixed with the current function name to the message log
111  * (and optionally to the console for verbose boots); these macros use cpp's
112  * concatenation of string literals and C99 variable-length-argument-list
113  * macros
114  */
115 #define	PRN(...)	_PRN("?%s():  "__VA_ARGS__, "")
116 #define	_PRN(format, ...)					\
117 	cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__)
118 
119 /* Return a pointer to the "i"th vdisk dring element */
120 #define	VD_DRING_ELEM(i)	((vd_dring_entry_t *)(void *)	\
121 	    (vd->dring + (i)*vd->descriptor_size))
122 
123 /* Return the virtual disk client's type as a string (for use in messages) */
124 #define	VD_CLIENT(vd)							\
125 	(((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" :	\
126 	    (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" :	\
127 		(((vd)->xfer_mode == 0) ? "null client" :		\
128 		    "unsupported client")))
129 
130 /* Read disk label from a disk on file */
131 #define	VD_FILE_LABEL_READ(vd, labelp) \
132 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)labelp, \
133 	    0, sizeof (struct dk_label))
134 
135 /* Write disk label to a disk on file */
136 #define	VD_FILE_LABEL_WRITE(vd, labelp)	\
137 	vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)labelp, \
138 	    0, sizeof (struct dk_label))
139 
140 /*
141  * Specification of an MD node passed to the MDEG to filter any
142  * 'vport' nodes that do not belong to the specified node. This
143  * template is copied for each vds instance and filled in with
144  * the appropriate 'cfg-handle' value before being passed to the MDEG.
145  */
146 static mdeg_prop_spec_t	vds_prop_template[] = {
147 	{ MDET_PROP_STR,	"name",		VDS_NAME },
148 	{ MDET_PROP_VAL,	"cfg-handle",	NULL },
149 	{ MDET_LIST_END,	NULL, 		NULL }
150 };
151 
152 #define	VDS_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val);
153 
154 /*
155  * Matching criteria passed to the MDEG to register interest
156  * in changes to 'virtual-device-port' nodes identified by their
157  * 'id' property.
158  */
159 static md_prop_match_t	vd_prop_match[] = {
160 	{ MDET_PROP_VAL,	VD_ID_PROP },
161 	{ MDET_LIST_END,	NULL }
162 };
163 
164 static mdeg_node_match_t vd_match = {"virtual-device-port",
165 				    vd_prop_match};
166 
167 /*
168  * Options for the VD_BLOCK_DEVICE_OPTS property.
169  */
170 #define	VD_OPT_RDONLY		0x1	/* read-only  */
171 #define	VD_OPT_SLICE		0x2	/* single slice */
172 #define	VD_OPT_EXCLUSIVE	0x4	/* exclusive access */
173 
174 #define	VD_OPTION_NLEN	128
175 
176 typedef struct vd_option {
177 	char vdo_name[VD_OPTION_NLEN];
178 	uint64_t vdo_value;
179 } vd_option_t;
180 
181 vd_option_t vd_bdev_options[] = {
182 	{ "ro",		VD_OPT_RDONLY },
183 	{ "slice", 	VD_OPT_SLICE },
184 	{ "excl",	VD_OPT_EXCLUSIVE }
185 };
186 
187 /* Debugging macros */
188 #ifdef DEBUG
189 
190 static int	vd_msglevel = 0;
191 
192 #define	PR0 if (vd_msglevel > 0)	PRN
193 #define	PR1 if (vd_msglevel > 1)	PRN
194 #define	PR2 if (vd_msglevel > 2)	PRN
195 
196 #define	VD_DUMP_DRING_ELEM(elem)					\
197 	PR0("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n",		\
198 	    elem->hdr.dstate,						\
199 	    elem->payload.operation,					\
200 	    elem->payload.status,					\
201 	    elem->payload.nbytes,					\
202 	    elem->payload.addr,						\
203 	    elem->payload.ncookies);
204 
205 char *
206 vd_decode_state(int state)
207 {
208 	char *str;
209 
210 #define	CASE_STATE(_s)	case _s: str = #_s; break;
211 
212 	switch (state) {
213 	CASE_STATE(VD_STATE_INIT)
214 	CASE_STATE(VD_STATE_VER)
215 	CASE_STATE(VD_STATE_ATTR)
216 	CASE_STATE(VD_STATE_DRING)
217 	CASE_STATE(VD_STATE_RDX)
218 	CASE_STATE(VD_STATE_DATA)
219 	default: str = "unknown"; break;
220 	}
221 
222 #undef CASE_STATE
223 
224 	return (str);
225 }
226 
227 void
228 vd_decode_tag(vio_msg_t *msg)
229 {
230 	char *tstr, *sstr, *estr;
231 
232 #define	CASE_TYPE(_s)	case _s: tstr = #_s; break;
233 
234 	switch (msg->tag.vio_msgtype) {
235 	CASE_TYPE(VIO_TYPE_CTRL)
236 	CASE_TYPE(VIO_TYPE_DATA)
237 	CASE_TYPE(VIO_TYPE_ERR)
238 	default: tstr = "unknown"; break;
239 	}
240 
241 #undef CASE_TYPE
242 
243 #define	CASE_SUBTYPE(_s) case _s: sstr = #_s; break;
244 
245 	switch (msg->tag.vio_subtype) {
246 	CASE_SUBTYPE(VIO_SUBTYPE_INFO)
247 	CASE_SUBTYPE(VIO_SUBTYPE_ACK)
248 	CASE_SUBTYPE(VIO_SUBTYPE_NACK)
249 	default: sstr = "unknown"; break;
250 	}
251 
252 #undef CASE_SUBTYPE
253 
254 #define	CASE_ENV(_s)	case _s: estr = #_s; break;
255 
256 	switch (msg->tag.vio_subtype_env) {
257 	CASE_ENV(VIO_VER_INFO)
258 	CASE_ENV(VIO_ATTR_INFO)
259 	CASE_ENV(VIO_DRING_REG)
260 	CASE_ENV(VIO_DRING_UNREG)
261 	CASE_ENV(VIO_RDX)
262 	CASE_ENV(VIO_PKT_DATA)
263 	CASE_ENV(VIO_DESC_DATA)
264 	CASE_ENV(VIO_DRING_DATA)
265 	default: estr = "unknown"; break;
266 	}
267 
268 #undef CASE_ENV
269 
270 	PR1("(%x/%x/%x) message : (%s/%s/%s)",
271 	    msg->tag.vio_msgtype, msg->tag.vio_subtype,
272 	    msg->tag.vio_subtype_env, tstr, sstr, estr);
273 }
274 
275 #else	/* !DEBUG */
276 
277 #define	PR0(...)
278 #define	PR1(...)
279 #define	PR2(...)
280 
281 #define	VD_DUMP_DRING_ELEM(elem)
282 
283 #define	vd_decode_state(_s)	(NULL)
284 #define	vd_decode_tag(_s)	(NULL)
285 
286 #endif	/* DEBUG */
287 
288 
289 /*
290  * Soft state structure for a vds instance
291  */
292 typedef struct vds {
293 	uint_t		initialized;	/* driver inst initialization flags */
294 	dev_info_t	*dip;		/* driver inst devinfo pointer */
295 	ldi_ident_t	ldi_ident;	/* driver's identifier for LDI */
296 	mod_hash_t	*vd_table;	/* table of virtual disks served */
297 	mdeg_node_spec_t *ispecp;	/* mdeg node specification */
298 	mdeg_handle_t	mdeg;		/* handle for MDEG operations  */
299 } vds_t;
300 
301 /*
302  * Types of descriptor-processing tasks
303  */
304 typedef enum vd_task_type {
305 	VD_NONFINAL_RANGE_TASK,	/* task for intermediate descriptor in range */
306 	VD_FINAL_RANGE_TASK,	/* task for last in a range of descriptors */
307 } vd_task_type_t;
308 
309 /*
310  * Structure describing the task for processing a descriptor
311  */
312 typedef struct vd_task {
313 	struct vd		*vd;		/* vd instance task is for */
314 	vd_task_type_t		type;		/* type of descriptor task */
315 	int			index;		/* dring elem index for task */
316 	vio_msg_t		*msg;		/* VIO message task is for */
317 	size_t			msglen;		/* length of message content */
318 	vd_dring_payload_t	*request;	/* request task will perform */
319 	struct buf		buf;		/* buf(9s) for I/O request */
320 	ldc_mem_handle_t	mhdl;		/* task memory handle */
321 	int			status;		/* status of processing task */
322 	int	(*completef)(struct vd_task *task); /* completion func ptr */
323 } vd_task_t;
324 
325 /*
326  * Soft state structure for a virtual disk instance
327  */
328 typedef struct vd {
329 	uint_t			initialized;	/* vdisk initialization flags */
330 	uint64_t		operations;	/* bitmask of VD_OPs exported */
331 	vio_ver_t		version;	/* ver negotiated with client */
332 	vds_t			*vds;		/* server for this vdisk */
333 	ddi_taskq_t		*startq;	/* queue for I/O start tasks */
334 	ddi_taskq_t		*completionq;	/* queue for completion tasks */
335 	ldi_handle_t		ldi_handle[V_NUMPAR];	/* LDI slice handles */
336 	char			device_path[MAXPATHLEN + 1]; /* vdisk device */
337 	dev_t			dev[V_NUMPAR];	/* dev numbers for slices */
338 	int			open_flags;	/* open flags */
339 	uint_t			nslices;	/* number of slices */
340 	size_t			vdisk_size;	/* number of blocks in vdisk */
341 	size_t			vdisk_block_size; /* size of each vdisk block */
342 	vd_disk_type_t		vdisk_type;	/* slice or entire disk */
343 	vd_disk_label_t		vdisk_label;	/* EFI or VTOC label */
344 	vd_media_t		vdisk_media;	/* media type of backing dev. */
345 	boolean_t		is_atapi_dev;	/* Is this an IDE CD-ROM dev? */
346 	ushort_t		max_xfer_sz;	/* max xfer size in DEV_BSIZE */
347 	size_t			block_size;	/* blk size of actual device */
348 	boolean_t		pseudo;		/* underlying pseudo dev */
349 	boolean_t		file;		/* is vDisk backed by a file? */
350 	vnode_t			*file_vnode;	/* file vnode */
351 	size_t			file_size;	/* file size */
352 	ddi_devid_t		file_devid;	/* devid for disk image */
353 	struct dk_efi		dk_efi;		/* synthetic for slice type */
354 	struct dk_geom		dk_geom;	/* synthetic for slice type */
355 	struct dk_minfo		dk_minfo;	/* synthetic for slice type */
356 	struct vtoc		vtoc;		/* synthetic for slice type */
357 	ldc_status_t		ldc_state;	/* LDC connection state */
358 	ldc_handle_t		ldc_handle;	/* handle for LDC comm */
359 	size_t			max_msglen;	/* largest LDC message len */
360 	vd_state_t		state;		/* client handshake state */
361 	uint8_t			xfer_mode;	/* transfer mode with client */
362 	uint32_t		sid;		/* client's session ID */
363 	uint64_t		seq_num;	/* message sequence number */
364 	uint64_t		dring_ident;	/* identifier of dring */
365 	ldc_dring_handle_t	dring_handle;	/* handle for dring ops */
366 	uint32_t		descriptor_size;	/* num bytes in desc */
367 	uint32_t		dring_len;	/* number of dring elements */
368 	caddr_t			dring;		/* address of dring */
369 	caddr_t			vio_msgp;	/* vio msg staging buffer */
370 	vd_task_t		inband_task;	/* task for inband descriptor */
371 	vd_task_t		*dring_task;	/* tasks dring elements */
372 
373 	kmutex_t		lock;		/* protects variables below */
374 	boolean_t		enabled;	/* is vdisk enabled? */
375 	boolean_t		reset_state;	/* reset connection state? */
376 	boolean_t		reset_ldc;	/* reset LDC channel? */
377 } vd_t;
378 
379 typedef struct vds_operation {
380 	char	*namep;
381 	uint8_t	operation;
382 	int	(*start)(vd_task_t *task);
383 	int	(*complete)(vd_task_t *task);
384 } vds_operation_t;
385 
386 typedef struct vd_ioctl {
387 	uint8_t		operation;		/* vdisk operation */
388 	const char	*operation_name;	/* vdisk operation name */
389 	size_t		nbytes;			/* size of operation buffer */
390 	int		cmd;			/* corresponding ioctl cmd */
391 	const char	*cmd_name;		/* ioctl cmd name */
392 	void		*arg;			/* ioctl cmd argument */
393 	/* convert input vd_buf to output ioctl_arg */
394 	void		(*copyin)(void *vd_buf, void *ioctl_arg);
395 	/* convert input ioctl_arg to output vd_buf */
396 	void		(*copyout)(void *ioctl_arg, void *vd_buf);
397 	/* write is true if the operation writes any data to the backend */
398 	boolean_t	write;
399 } vd_ioctl_t;
400 
401 /* Define trivial copyin/copyout conversion function flag */
402 #define	VD_IDENTITY	((void (*)(void *, void *))-1)
403 
404 
405 static int	vds_ldc_retries = VDS_RETRIES;
406 static int	vds_ldc_delay = VDS_LDC_DELAY;
407 static int	vds_dev_retries = VDS_RETRIES;
408 static int	vds_dev_delay = VDS_DEV_DELAY;
409 static void	*vds_state;
410 
411 static uint_t	vd_file_write_flags = VD_FILE_WRITE_FLAGS;
412 
413 static short	vd_scsi_rdwr_timeout = VD_SCSI_RDWR_TIMEOUT;
414 
415 /*
416  * Supported protocol version pairs, from highest (newest) to lowest (oldest)
417  *
418  * Each supported major version should appear only once, paired with (and only
419  * with) its highest supported minor version number (as the protocol requires
420  * supporting all lower minor version numbers as well)
421  */
422 static const vio_ver_t	vds_version[] = {{1, 1}};
423 static const size_t	vds_num_versions =
424     sizeof (vds_version)/sizeof (vds_version[0]);
425 
426 static void vd_free_dring_task(vd_t *vdp);
427 static int vd_setup_vd(vd_t *vd);
428 static int vd_setup_single_slice_disk(vd_t *vd);
429 static boolean_t vd_enabled(vd_t *vd);
430 static ushort_t vd_lbl2cksum(struct dk_label *label);
431 static int vd_file_validate_geometry(vd_t *vd);
432 static boolean_t vd_file_is_iso_image(vd_t *vd);
433 static void vd_set_exported_operations(vd_t *vd);
434 
435 /*
436  * Function:
437  *	vd_file_rw
438  *
439  * Description:
440  * 	Read or write to a disk on file.
441  *
442  * Parameters:
443  *	vd		- disk on which the operation is performed.
444  *	slice		- slice on which the operation is performed,
445  *			  VD_SLICE_NONE indicates that the operation
446  *			  is done using an absolute disk offset.
447  *	operation	- operation to execute: read (VD_OP_BREAD) or
448  *			  write (VD_OP_BWRITE).
449  *	data		- buffer where data are read to or written from.
450  *	blk		- starting block for the operation.
451  *	len		- number of bytes to read or write.
452  *
453  * Return Code:
454  *	n >= 0		- success, n indicates the number of bytes read
455  *			  or written.
456  *	-1		- error.
457  */
458 static ssize_t
459 vd_file_rw(vd_t *vd, int slice, int operation, caddr_t data, size_t blk,
460     size_t len)
461 {
462 	caddr_t	maddr;
463 	size_t offset, maxlen, moffset, mlen, n;
464 	uint_t smflags;
465 	enum seg_rw srw;
466 
467 	ASSERT(vd->file);
468 	ASSERT(len > 0);
469 
470 	/*
471 	 * If a file is exported as a slice then we don't care about the vtoc.
472 	 * In that case, the vtoc is a fake mainly to make newfs happy and we
473 	 * handle any I/O as a raw disk access so that we can have access to the
474 	 * entire backend.
475 	 */
476 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE || slice == VD_SLICE_NONE) {
477 		/* raw disk access */
478 		offset = blk * DEV_BSIZE;
479 	} else {
480 		ASSERT(slice >= 0 && slice < V_NUMPAR);
481 
482 		/*
483 		 * v1.0 vDisk clients depended on the server not verifying
484 		 * the label of a unformatted disk.  This "feature" is
485 		 * maintained for backward compatibility but all versions
486 		 * from v1.1 onwards must do the right thing.
487 		 */
488 		if (vd->vdisk_label == VD_DISK_LABEL_UNK &&
489 		    vio_ver_is_supported(vd->version, 1, 1) &&
490 		    vd_file_validate_geometry(vd) != 0) {
491 			PR0("Unknown disk label, can't do I/O from slice %d",
492 			    slice);
493 			return (-1);
494 		}
495 
496 		if (blk >= vd->vtoc.v_part[slice].p_size) {
497 			/* address past the end of the slice */
498 			PR0("req_addr (0x%lx) > psize (0x%lx)",
499 			    blk, vd->vtoc.v_part[slice].p_size);
500 			return (0);
501 		}
502 
503 		offset = (vd->vtoc.v_part[slice].p_start + blk) * DEV_BSIZE;
504 
505 		/*
506 		 * If the requested size is greater than the size
507 		 * of the partition, truncate the read/write.
508 		 */
509 		maxlen = (vd->vtoc.v_part[slice].p_size - blk) * DEV_BSIZE;
510 
511 		if (len > maxlen) {
512 			PR0("I/O size truncated to %lu bytes from %lu bytes",
513 			    maxlen, len);
514 			len = maxlen;
515 		}
516 	}
517 
518 	/*
519 	 * We have to ensure that we are reading/writing into the mmap
520 	 * range. If we have a partial disk image (e.g. an image of
521 	 * s0 instead s2) the system can try to access slices that
522 	 * are not included into the disk image.
523 	 */
524 	if ((offset + len) >= vd->file_size) {
525 		PR0("offset + nbytes (0x%lx + 0x%lx) >= "
526 		    "file_size (0x%lx)", offset, len, vd->file_size);
527 		return (-1);
528 	}
529 
530 	srw = (operation == VD_OP_BREAD)? S_READ : S_WRITE;
531 	smflags = (operation == VD_OP_BREAD)? 0 :
532 	    (SM_WRITE | vd_file_write_flags);
533 	n = len;
534 
535 	do {
536 		/*
537 		 * segmap_getmapflt() returns a MAXBSIZE chunk which is
538 		 * MAXBSIZE aligned.
539 		 */
540 		moffset = offset & MAXBOFFSET;
541 		mlen = MIN(MAXBSIZE - moffset, n);
542 		maddr = segmap_getmapflt(segkmap, vd->file_vnode, offset,
543 		    mlen, 1, srw);
544 		/*
545 		 * Fault in the pages so we can check for error and ensure
546 		 * that we can safely used the mapped address.
547 		 */
548 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
549 		    F_SOFTLOCK, srw) != 0) {
550 			(void) segmap_release(segkmap, maddr, 0);
551 			return (-1);
552 		}
553 
554 		if (operation == VD_OP_BREAD)
555 			bcopy(maddr + moffset, data, mlen);
556 		else
557 			bcopy(data, maddr + moffset, mlen);
558 
559 		if (segmap_fault(kas.a_hat, segkmap, maddr, mlen,
560 		    F_SOFTUNLOCK, srw) != 0) {
561 			(void) segmap_release(segkmap, maddr, 0);
562 			return (-1);
563 		}
564 		if (segmap_release(segkmap, maddr, smflags) != 0)
565 			return (-1);
566 		n -= mlen;
567 		offset += mlen;
568 		data += mlen;
569 
570 	} while (n > 0);
571 
572 	return (len);
573 }
574 
575 /*
576  * Function:
577  *	vd_file_build_default_label
578  *
579  * Description:
580  *	Return a default label for the given disk. This is used when the disk
581  *	does not have a valid VTOC so that the user can get a valid default
582  *	configuration. The default label has all slice sizes set to 0 (except
583  *	slice 2 which is the entire disk) to force the user to write a valid
584  *	label onto the disk image.
585  *
586  * Parameters:
587  *	vd		- disk on which the operation is performed.
588  *	label		- the returned default label.
589  *
590  * Return Code:
591  *	none.
592  */
593 static void
594 vd_file_build_default_label(vd_t *vd, struct dk_label *label)
595 {
596 	size_t size;
597 	char prefix;
598 	int slice, nparts;
599 	uint16_t tag;
600 
601 	ASSERT(vd->file);
602 
603 	/*
604 	 * We must have a resonable number of cylinders and sectors so
605 	 * that newfs can run using default values.
606 	 *
607 	 * if (disk_size < 2MB)
608 	 * 	phys_cylinders = disk_size / 100K
609 	 * else
610 	 * 	phys_cylinders = disk_size / 300K
611 	 *
612 	 * phys_cylinders = (phys_cylinders == 0) ? 1 : phys_cylinders
613 	 * alt_cylinders = (phys_cylinders > 2) ? 2 : 0;
614 	 * data_cylinders = phys_cylinders - alt_cylinders
615 	 *
616 	 * sectors = disk_size / (phys_cylinders * blk_size)
617 	 *
618 	 * The file size test is an attempt to not have too few cylinders
619 	 * for a small file, or so many on a big file that you waste space
620 	 * for backup superblocks or cylinder group structures.
621 	 */
622 	if (vd->file_size < (2 * 1024 * 1024))
623 		label->dkl_pcyl = vd->file_size / (100 * 1024);
624 	else
625 		label->dkl_pcyl = vd->file_size / (300 * 1024);
626 
627 	if (label->dkl_pcyl == 0)
628 		label->dkl_pcyl = 1;
629 
630 	label->dkl_acyl = 0;
631 
632 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
633 		nparts = 1;
634 		slice = 0;
635 		tag = V_UNASSIGNED;
636 	} else {
637 		if (label->dkl_pcyl > 2)
638 			label->dkl_acyl = 2;
639 		nparts = V_NUMPAR;
640 		slice = VD_ENTIRE_DISK_SLICE;
641 		tag = V_BACKUP;
642 	}
643 
644 	label->dkl_nsect = vd->file_size /
645 	    (DEV_BSIZE * label->dkl_pcyl);
646 	label->dkl_ncyl = label->dkl_pcyl - label->dkl_acyl;
647 	label->dkl_nhead = 1;
648 	label->dkl_write_reinstruct = 0;
649 	label->dkl_read_reinstruct = 0;
650 	label->dkl_rpm = 7200;
651 	label->dkl_apc = 0;
652 	label->dkl_intrlv = 0;
653 
654 	PR0("requested disk size: %ld bytes\n", vd->file_size);
655 	PR0("setup: ncyl=%d nhead=%d nsec=%d\n", label->dkl_pcyl,
656 	    label->dkl_nhead, label->dkl_nsect);
657 	PR0("provided disk size: %ld bytes\n", (uint64_t)
658 	    (label->dkl_pcyl * label->dkl_nhead *
659 	    label->dkl_nsect * DEV_BSIZE));
660 
661 	if (vd->file_size < (1ULL << 20)) {
662 		size = vd->file_size >> 10;
663 		prefix = 'K'; /* Kilobyte */
664 	} else if (vd->file_size < (1ULL << 30)) {
665 		size = vd->file_size >> 20;
666 		prefix = 'M'; /* Megabyte */
667 	} else if (vd->file_size < (1ULL << 40)) {
668 		size = vd->file_size >> 30;
669 		prefix = 'G'; /* Gigabyte */
670 	} else {
671 		size = vd->file_size >> 40;
672 		prefix = 'T'; /* Terabyte */
673 	}
674 
675 	/*
676 	 * We must have a correct label name otherwise format(1m) will
677 	 * not recognized the disk as labeled.
678 	 */
679 	(void) snprintf(label->dkl_asciilabel, LEN_DKL_ASCII,
680 	    "SUN-DiskImage-%ld%cB cyl %d alt %d hd %d sec %d",
681 	    size, prefix,
682 	    label->dkl_ncyl, label->dkl_acyl, label->dkl_nhead,
683 	    label->dkl_nsect);
684 
685 	/* default VTOC */
686 	label->dkl_vtoc.v_version = V_VERSION;
687 	label->dkl_vtoc.v_nparts = nparts;
688 	label->dkl_vtoc.v_sanity = VTOC_SANE;
689 	label->dkl_vtoc.v_part[slice].p_tag = tag;
690 	label->dkl_map[slice].dkl_cylno = 0;
691 	label->dkl_map[slice].dkl_nblk = label->dkl_ncyl *
692 	    label->dkl_nhead * label->dkl_nsect;
693 	label->dkl_cksum = vd_lbl2cksum(label);
694 }
695 
696 /*
697  * Function:
698  *	vd_file_set_vtoc
699  *
700  * Description:
701  *	Set the vtoc of a disk image by writing the label and backup
702  *	labels into the disk image backend.
703  *
704  * Parameters:
705  *	vd		- disk on which the operation is performed.
706  *	label		- the data to be written.
707  *
708  * Return Code:
709  *	0		- success.
710  *	n > 0		- error, n indicates the errno code.
711  */
712 static int
713 vd_file_set_vtoc(vd_t *vd, struct dk_label *label)
714 {
715 	int blk, sec, cyl, head, cnt;
716 
717 	ASSERT(vd->file);
718 
719 	if (VD_FILE_LABEL_WRITE(vd, label) < 0) {
720 		PR0("fail to write disk label");
721 		return (EIO);
722 	}
723 
724 	/*
725 	 * Backup labels are on the last alternate cylinder's
726 	 * first five odd sectors.
727 	 */
728 	if (label->dkl_acyl == 0) {
729 		PR0("no alternate cylinder, can not store backup labels");
730 		return (0);
731 	}
732 
733 	cyl = label->dkl_ncyl  + label->dkl_acyl - 1;
734 	head = label->dkl_nhead - 1;
735 
736 	blk = (cyl * ((label->dkl_nhead * label->dkl_nsect) - label->dkl_apc)) +
737 	    (head * label->dkl_nsect);
738 
739 	/*
740 	 * Write the backup labels. Make sure we don't try to write past
741 	 * the last cylinder.
742 	 */
743 	sec = 1;
744 
745 	for (cnt = 0; cnt < VD_FILE_NUM_BACKUP; cnt++) {
746 
747 		if (sec >= label->dkl_nsect) {
748 			PR0("not enough sector to store all backup labels");
749 			return (0);
750 		}
751 
752 		if (vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE, (caddr_t)label,
753 		    blk + sec, sizeof (struct dk_label)) < 0) {
754 			PR0("error writing backup label at block %d\n",
755 			    blk + sec);
756 			return (EIO);
757 		}
758 
759 		PR1("wrote backup label at block %d\n", blk + sec);
760 
761 		sec += 2;
762 	}
763 
764 	return (0);
765 }
766 
767 /*
768  * Function:
769  *	vd_file_get_devid_block
770  *
771  * Description:
772  *	Return the block number where the device id is stored.
773  *
774  * Parameters:
775  *	vd		- disk on which the operation is performed.
776  *	blkp		- pointer to the block number
777  *
778  * Return Code:
779  *	0		- success
780  *	ENOSPC		- disk has no space to store a device id
781  */
782 static int
783 vd_file_get_devid_block(vd_t *vd, size_t *blkp)
784 {
785 	diskaddr_t spc, head, cyl;
786 
787 	ASSERT(vd->file);
788 	ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
789 
790 	/* this geometry doesn't allow us to have a devid */
791 	if (vd->dk_geom.dkg_acyl < 2) {
792 		PR0("not enough alternate cylinder available for devid "
793 		    "(acyl=%u)", vd->dk_geom.dkg_acyl);
794 		return (ENOSPC);
795 	}
796 
797 	/* the devid is in on the track next to the last cylinder */
798 	cyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl - 2;
799 	spc = vd->dk_geom.dkg_nhead * vd->dk_geom.dkg_nsect;
800 	head = vd->dk_geom.dkg_nhead - 1;
801 
802 	*blkp = (cyl * (spc - vd->dk_geom.dkg_apc)) +
803 	    (head * vd->dk_geom.dkg_nsect) + 1;
804 
805 	return (0);
806 }
807 
808 /*
809  * Return the checksum of a disk block containing an on-disk devid.
810  */
811 static uint_t
812 vd_dkdevid2cksum(struct dk_devid *dkdevid)
813 {
814 	uint_t chksum, *ip;
815 	int i;
816 
817 	chksum = 0;
818 	ip = (uint_t *)dkdevid;
819 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int)); i++)
820 		chksum ^= ip[i];
821 
822 	return (chksum);
823 }
824 
825 /*
826  * Function:
827  *	vd_file_read_devid
828  *
829  * Description:
830  *	Read the device id stored on a disk image.
831  *
832  * Parameters:
833  *	vd		- disk on which the operation is performed.
834  *	devid		- the return address of the device ID.
835  *
836  * Return Code:
837  *	0		- success
838  *	EIO		- I/O error while trying to access the disk image
839  *	EINVAL		- no valid device id was found
840  *	ENOSPC		- disk has no space to store a device id
841  */
842 static int
843 vd_file_read_devid(vd_t *vd, ddi_devid_t *devid)
844 {
845 	struct dk_devid *dkdevid;
846 	size_t blk;
847 	uint_t chksum;
848 	int status, sz;
849 
850 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
851 		return (status);
852 
853 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
854 
855 	/* get the devid */
856 	if ((vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)dkdevid, blk,
857 	    DEV_BSIZE)) < 0) {
858 		PR0("error reading devid block at %lu", blk);
859 		status = EIO;
860 		goto done;
861 	}
862 
863 	/* validate the revision */
864 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
865 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
866 		PR0("invalid devid found at block %lu (bad revision)", blk);
867 		status = EINVAL;
868 		goto done;
869 	}
870 
871 	/* compute checksum */
872 	chksum = vd_dkdevid2cksum(dkdevid);
873 
874 	/* compare the checksums */
875 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
876 		PR0("invalid devid found at block %lu (bad checksum)", blk);
877 		status = EINVAL;
878 		goto done;
879 	}
880 
881 	/* validate the device id */
882 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
883 		PR0("invalid devid found at block %lu", blk);
884 		status = EINVAL;
885 		goto done;
886 	}
887 
888 	PR1("devid read at block %lu", blk);
889 
890 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
891 	*devid = kmem_alloc(sz, KM_SLEEP);
892 	bcopy(&dkdevid->dkd_devid, *devid, sz);
893 
894 done:
895 	kmem_free(dkdevid, DEV_BSIZE);
896 	return (status);
897 
898 }
899 
900 /*
901  * Function:
902  *	vd_file_write_devid
903  *
904  * Description:
905  *	Write a device id into disk image.
906  *
907  * Parameters:
908  *	vd		- disk on which the operation is performed.
909  *	devid		- the device ID to store.
910  *
911  * Return Code:
912  *	0		- success
913  *	EIO		- I/O error while trying to access the disk image
914  *	ENOSPC		- disk has no space to store a device id
915  */
916 static int
917 vd_file_write_devid(vd_t *vd, ddi_devid_t devid)
918 {
919 	struct dk_devid *dkdevid;
920 	uint_t chksum;
921 	size_t blk;
922 	int status;
923 
924 	if ((status = vd_file_get_devid_block(vd, &blk)) != 0)
925 		return (status);
926 
927 	dkdevid = kmem_zalloc(DEV_BSIZE, KM_SLEEP);
928 
929 	/* set revision */
930 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
931 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
932 
933 	/* copy devid */
934 	bcopy(devid, &dkdevid->dkd_devid, ddi_devid_sizeof(devid));
935 
936 	/* compute checksum */
937 	chksum = vd_dkdevid2cksum(dkdevid);
938 
939 	/* set checksum */
940 	DKD_FORMCHKSUM(chksum, dkdevid);
941 
942 	/* store the devid */
943 	if ((status = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BWRITE,
944 	    (caddr_t)dkdevid, blk, DEV_BSIZE)) < 0) {
945 		PR0("Error writing devid block at %lu", blk);
946 		status = EIO;
947 	} else {
948 		PR1("devid written at block %lu", blk);
949 		status = 0;
950 	}
951 
952 	kmem_free(dkdevid, DEV_BSIZE);
953 	return (status);
954 }
955 
956 /*
957  * Function:
958  *	vd_do_scsi_rdwr
959  *
960  * Description:
961  * 	Read or write to a SCSI disk using an absolute disk offset.
962  *
963  * Parameters:
964  *	vd		- disk on which the operation is performed.
965  *	operation	- operation to execute: read (VD_OP_BREAD) or
966  *			  write (VD_OP_BWRITE).
967  *	data		- buffer where data are read to or written from.
968  *	blk		- starting block for the operation.
969  *	len		- number of bytes to read or write.
970  *
971  * Return Code:
972  *	0		- success
973  *	n != 0		- error.
974  */
975 static int
976 vd_do_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t blk, size_t len)
977 {
978 	struct uscsi_cmd ucmd;
979 	union scsi_cdb cdb;
980 	int nsectors, nblk;
981 	int max_sectors;
982 	int status, rval;
983 
984 	ASSERT(!vd->file);
985 	ASSERT(vd->vdisk_block_size > 0);
986 
987 	max_sectors = vd->max_xfer_sz;
988 	nblk = (len / vd->vdisk_block_size);
989 
990 	if (len % vd->vdisk_block_size != 0)
991 		return (EINVAL);
992 
993 	/*
994 	 * Build and execute the uscsi ioctl.  We build a group0, group1
995 	 * or group4 command as necessary, since some targets
996 	 * do not support group1 commands.
997 	 */
998 	while (nblk) {
999 
1000 		bzero(&ucmd, sizeof (ucmd));
1001 		bzero(&cdb, sizeof (cdb));
1002 
1003 		nsectors = (max_sectors < nblk) ? max_sectors : nblk;
1004 
1005 		/*
1006 		 * Some of the optical drives on sun4v machines are ATAPI
1007 		 * devices which use Group 1 Read/Write commands so we need
1008 		 * to explicitly check a flag which is set when a domain
1009 		 * is bound.
1010 		 */
1011 		if (blk < (2 << 20) && nsectors <= 0xff && !vd->is_atapi_dev) {
1012 			FORMG0ADDR(&cdb, blk);
1013 			FORMG0COUNT(&cdb, nsectors);
1014 			ucmd.uscsi_cdblen = CDB_GROUP0;
1015 		} else if (blk > 0xffffffff) {
1016 			FORMG4LONGADDR(&cdb, blk);
1017 			FORMG4COUNT(&cdb, nsectors);
1018 			ucmd.uscsi_cdblen = CDB_GROUP4;
1019 			cdb.scc_cmd |= SCMD_GROUP4;
1020 		} else {
1021 			FORMG1ADDR(&cdb, blk);
1022 			FORMG1COUNT(&cdb, nsectors);
1023 			ucmd.uscsi_cdblen = CDB_GROUP1;
1024 			cdb.scc_cmd |= SCMD_GROUP1;
1025 		}
1026 		ucmd.uscsi_cdb = (caddr_t)&cdb;
1027 		ucmd.uscsi_bufaddr = data;
1028 		ucmd.uscsi_buflen = nsectors * vd->block_size;
1029 		ucmd.uscsi_timeout = vd_scsi_rdwr_timeout;
1030 		/*
1031 		 * Set flags so that the command is isolated from normal
1032 		 * commands and no error message is printed.
1033 		 */
1034 		ucmd.uscsi_flags = USCSI_ISOLATE | USCSI_SILENT;
1035 
1036 		if (operation == VD_OP_BREAD) {
1037 			cdb.scc_cmd |= SCMD_READ;
1038 			ucmd.uscsi_flags |= USCSI_READ;
1039 		} else {
1040 			cdb.scc_cmd |= SCMD_WRITE;
1041 		}
1042 
1043 		status = ldi_ioctl(vd->ldi_handle[VD_ENTIRE_DISK_SLICE],
1044 		    USCSICMD, (intptr_t)&ucmd, (vd->open_flags | FKIOCTL),
1045 		    kcred, &rval);
1046 
1047 		if (status == 0)
1048 			status = ucmd.uscsi_status;
1049 
1050 		if (status != 0)
1051 			break;
1052 
1053 		/*
1054 		 * Check if partial DMA breakup is required. If so, reduce
1055 		 * the request size by half and retry the last request.
1056 		 */
1057 		if (ucmd.uscsi_resid == ucmd.uscsi_buflen) {
1058 			max_sectors >>= 1;
1059 			if (max_sectors <= 0) {
1060 				status = EIO;
1061 				break;
1062 			}
1063 			continue;
1064 		}
1065 
1066 		if (ucmd.uscsi_resid != 0) {
1067 			status = EIO;
1068 			break;
1069 		}
1070 
1071 		blk += nsectors;
1072 		nblk -= nsectors;
1073 		data += nsectors * vd->vdisk_block_size; /* SECSIZE */
1074 	}
1075 
1076 	return (status);
1077 }
1078 
1079 /*
1080  * Function:
1081  *	vd_scsi_rdwr
1082  *
1083  * Description:
1084  * 	Wrapper function to read or write to a SCSI disk using an absolute
1085  *	disk offset. It checks the blocksize of the underlying device and,
1086  *	if necessary, adjusts the buffers accordingly before calling
1087  *	vd_do_scsi_rdwr() to do the actual read or write.
1088  *
1089  * Parameters:
1090  *	vd		- disk on which the operation is performed.
1091  *	operation	- operation to execute: read (VD_OP_BREAD) or
1092  *			  write (VD_OP_BWRITE).
1093  *	data		- buffer where data are read to or written from.
1094  *	blk		- starting block for the operation.
1095  *	len		- number of bytes to read or write.
1096  *
1097  * Return Code:
1098  *	0		- success
1099  *	n != 0		- error.
1100  */
1101 static int
1102 vd_scsi_rdwr(vd_t *vd, int operation, caddr_t data, size_t vblk, size_t vlen)
1103 {
1104 	int	rv;
1105 
1106 	size_t	pblk;	/* physical device block number of data on device */
1107 	size_t	delta;	/* relative offset between pblk and vblk */
1108 	size_t	pnblk;	/* number of physical blocks to be read from device */
1109 	size_t	plen;	/* length of data to be read from physical device */
1110 	char	*buf;	/* buffer area to fit physical device's block size */
1111 
1112 	/*
1113 	 * If the vdisk block size and the block size of the underlying device
1114 	 * match we can skip straight to vd_do_scsi_rdwr(), otherwise we need
1115 	 * to create a buffer large enough to handle the device's block size
1116 	 * and adjust the block to be read from and the amount of data to
1117 	 * read to correspond with the device's block size.
1118 	 */
1119 	if (vd->vdisk_block_size == vd->block_size)
1120 		return (vd_do_scsi_rdwr(vd, operation, data, vblk, vlen));
1121 
1122 	if (vd->vdisk_block_size > vd->block_size)
1123 		return (EINVAL);
1124 
1125 	/*
1126 	 * Writing of physical block sizes larger than the virtual block size
1127 	 * is not supported. This would be added if/when support for guests
1128 	 * writing to DVDs is implemented.
1129 	 */
1130 	if (operation == VD_OP_BWRITE)
1131 		return (ENOTSUP);
1132 
1133 	/* BEGIN CSTYLED */
1134 	/*
1135 	 * Below is a diagram showing the relationship between the physical
1136 	 * and virtual blocks. If the virtual blocks marked by 'X' below are
1137 	 * requested, then the physical blocks denoted by 'Y' are read.
1138 	 *
1139 	 *           vblk
1140 	 *             |      vlen
1141 	 *             |<--------------->|
1142 	 *             v                 v
1143 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-   virtual disk:
1144 	 *    |  |  |  |XX|XX|XX|XX|XX|XX|  |  |  |  |  |  } block size is
1145 	 *  --+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-  vd->vdisk_block_size
1146 	 *          :  :                 :  :
1147 	 *         >:==:< delta          :  :
1148 	 *          :  :                 :  :
1149 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   physical disk:
1150 	 *    |     |YY:YY|YYYYY|YYYYY|YY:YY|     |     |   } block size is
1151 	 *  --+-----+-----+-----+-----+-----+-----+-----+--   vd->block_size
1152 	 *          ^                       ^
1153 	 *          |<--------------------->|
1154 	 *          |         plen
1155 	 *         pblk
1156 	 */
1157 	/* END CSTYLED */
1158 	pblk = (vblk * vd->vdisk_block_size) / vd->block_size;
1159 	delta = (vblk * vd->vdisk_block_size) - (pblk * vd->block_size);
1160 	pnblk = ((delta + vlen - 1) / vd->block_size) + 1;
1161 	plen = pnblk * vd->block_size;
1162 
1163 	PR2("vblk %lx:pblk %lx: vlen %ld:plen %ld", vblk, pblk, vlen, plen);
1164 
1165 	buf = kmem_zalloc(sizeof (caddr_t) * plen, KM_SLEEP);
1166 	rv = vd_do_scsi_rdwr(vd, operation, (caddr_t)buf, pblk, plen);
1167 	bcopy(buf + delta, data, vlen);
1168 
1169 	kmem_free(buf, sizeof (caddr_t) * plen);
1170 
1171 	return (rv);
1172 }
1173 
1174 /*
1175  * Return Values
1176  *	EINPROGRESS	- operation was successfully started
1177  *	EIO		- encountered LDC (aka. task error)
1178  *	0		- operation completed successfully
1179  *
1180  * Side Effect
1181  *     sets request->status = <disk operation status>
1182  */
1183 static int
1184 vd_start_bio(vd_task_t *task)
1185 {
1186 	int			rv, status = 0;
1187 	vd_t			*vd		= task->vd;
1188 	vd_dring_payload_t	*request	= task->request;
1189 	struct buf		*buf		= &task->buf;
1190 	uint8_t			mtype;
1191 	int 			slice;
1192 	char			*bufaddr = 0;
1193 	size_t			buflen;
1194 
1195 	ASSERT(vd != NULL);
1196 	ASSERT(request != NULL);
1197 
1198 	slice = request->slice;
1199 
1200 	ASSERT(slice == VD_SLICE_NONE || slice < vd->nslices);
1201 	ASSERT((request->operation == VD_OP_BREAD) ||
1202 	    (request->operation == VD_OP_BWRITE));
1203 
1204 	if (request->nbytes == 0) {
1205 		/* no service for trivial requests */
1206 		request->status = EINVAL;
1207 		return (0);
1208 	}
1209 
1210 	PR1("%s %lu bytes at block %lu",
1211 	    (request->operation == VD_OP_BREAD) ? "Read" : "Write",
1212 	    request->nbytes, request->addr);
1213 
1214 	/*
1215 	 * We have to check the open flags because the functions processing
1216 	 * the read/write request will not do it.
1217 	 */
1218 	if (request->operation == VD_OP_BWRITE && !(vd->open_flags & FWRITE)) {
1219 		PR0("write fails because backend is opened read-only");
1220 		request->nbytes = 0;
1221 		request->status = EROFS;
1222 		return (0);
1223 	}
1224 
1225 	mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP;
1226 
1227 	/* Map memory exported by client */
1228 	status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies,
1229 	    mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R,
1230 	    &bufaddr, NULL);
1231 	if (status != 0) {
1232 		PR0("ldc_mem_map() returned err %d ", status);
1233 		return (EIO);
1234 	}
1235 
1236 	buflen = request->nbytes;
1237 
1238 	status = ldc_mem_acquire(task->mhdl, 0, buflen);
1239 	if (status != 0) {
1240 		(void) ldc_mem_unmap(task->mhdl);
1241 		PR0("ldc_mem_acquire() returned err %d ", status);
1242 		return (EIO);
1243 	}
1244 
1245 	/* Start the block I/O */
1246 	if (vd->file) {
1247 		rv = vd_file_rw(vd, slice, request->operation, bufaddr,
1248 		    request->addr, request->nbytes);
1249 		if (rv < 0) {
1250 			request->nbytes = 0;
1251 			request->status = EIO;
1252 		} else {
1253 			request->nbytes = rv;
1254 			request->status = 0;
1255 		}
1256 	} else {
1257 		if (slice == VD_SLICE_NONE) {
1258 			/*
1259 			 * This is not a disk image so it is a real disk. We
1260 			 * assume that the underlying device driver supports
1261 			 * USCSICMD ioctls. This is the case of all SCSI devices
1262 			 * (sd, ssd...).
1263 			 *
1264 			 * In the future if we have non-SCSI disks we would need
1265 			 * to invoke the appropriate function to do I/O using an
1266 			 * absolute disk offset (for example using DIOCTL_RWCMD
1267 			 * for IDE disks).
1268 			 */
1269 			rv = vd_scsi_rdwr(vd, request->operation, bufaddr,
1270 			    request->addr, request->nbytes);
1271 			if (rv != 0) {
1272 				request->nbytes = 0;
1273 				request->status = EIO;
1274 			} else {
1275 				request->status = 0;
1276 			}
1277 		} else {
1278 			bioinit(buf);
1279 			buf->b_flags	= B_BUSY;
1280 			buf->b_bcount	= request->nbytes;
1281 			buf->b_lblkno	= request->addr;
1282 			buf->b_edev 	= vd->dev[slice];
1283 			buf->b_un.b_addr = bufaddr;
1284 			buf->b_flags 	|= (request->operation == VD_OP_BREAD)?
1285 			    B_READ : B_WRITE;
1286 
1287 			request->status =
1288 			    ldi_strategy(vd->ldi_handle[slice], buf);
1289 
1290 			/*
1291 			 * This is to indicate to the caller that the request
1292 			 * needs to be finished by vd_complete_bio() by calling
1293 			 * biowait() there and waiting for that to return before
1294 			 * triggering the notification of the vDisk client.
1295 			 *
1296 			 * This is necessary when writing to real disks as
1297 			 * otherwise calls to ldi_strategy() would be serialized
1298 			 * behind the calls to biowait() and performance would
1299 			 * suffer.
1300 			 */
1301 			if (request->status == 0)
1302 				return (EINPROGRESS);
1303 
1304 			biofini(buf);
1305 		}
1306 	}
1307 
1308 	/* Clean up after error */
1309 	rv = ldc_mem_release(task->mhdl, 0, buflen);
1310 	if (rv) {
1311 		PR0("ldc_mem_release() returned err %d ", rv);
1312 		status = EIO;
1313 	}
1314 	rv = ldc_mem_unmap(task->mhdl);
1315 	if (rv) {
1316 		PR0("ldc_mem_unmap() returned err %d ", rv);
1317 		status = EIO;
1318 	}
1319 
1320 	return (status);
1321 }
1322 
1323 /*
1324  * This function should only be called from vd_notify to ensure that requests
1325  * are responded to in the order that they are received.
1326  */
1327 static int
1328 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen)
1329 {
1330 	int	status;
1331 	size_t	nbytes;
1332 
1333 	do {
1334 		nbytes = msglen;
1335 		status = ldc_write(ldc_handle, msg, &nbytes);
1336 		if (status != EWOULDBLOCK)
1337 			break;
1338 		drv_usecwait(vds_ldc_delay);
1339 	} while (status == EWOULDBLOCK);
1340 
1341 	if (status != 0) {
1342 		if (status != ECONNRESET)
1343 			PR0("ldc_write() returned errno %d", status);
1344 		return (status);
1345 	} else if (nbytes != msglen) {
1346 		PR0("ldc_write() performed only partial write");
1347 		return (EIO);
1348 	}
1349 
1350 	PR1("SENT %lu bytes", msglen);
1351 	return (0);
1352 }
1353 
1354 static void
1355 vd_need_reset(vd_t *vd, boolean_t reset_ldc)
1356 {
1357 	mutex_enter(&vd->lock);
1358 	vd->reset_state	= B_TRUE;
1359 	vd->reset_ldc	= reset_ldc;
1360 	mutex_exit(&vd->lock);
1361 }
1362 
1363 /*
1364  * Reset the state of the connection with a client, if needed; reset the LDC
1365  * transport as well, if needed.  This function should only be called from the
1366  * "vd_recv_msg", as it waits for tasks - otherwise a deadlock can occur.
1367  */
1368 static void
1369 vd_reset_if_needed(vd_t *vd)
1370 {
1371 	int	status = 0;
1372 
1373 	mutex_enter(&vd->lock);
1374 	if (!vd->reset_state) {
1375 		ASSERT(!vd->reset_ldc);
1376 		mutex_exit(&vd->lock);
1377 		return;
1378 	}
1379 	mutex_exit(&vd->lock);
1380 
1381 	PR0("Resetting connection state with %s", VD_CLIENT(vd));
1382 
1383 	/*
1384 	 * Let any asynchronous I/O complete before possibly pulling the rug
1385 	 * out from under it; defer checking vd->reset_ldc, as one of the
1386 	 * asynchronous tasks might set it
1387 	 */
1388 	ddi_taskq_wait(vd->completionq);
1389 
1390 	if (vd->file) {
1391 		status = VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL);
1392 		if (status) {
1393 			PR0("VOP_FSYNC returned errno %d", status);
1394 		}
1395 	}
1396 
1397 	if ((vd->initialized & VD_DRING) &&
1398 	    ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0))
1399 		PR0("ldc_mem_dring_unmap() returned errno %d", status);
1400 
1401 	vd_free_dring_task(vd);
1402 
1403 	/* Free the staging buffer for msgs */
1404 	if (vd->vio_msgp != NULL) {
1405 		kmem_free(vd->vio_msgp, vd->max_msglen);
1406 		vd->vio_msgp = NULL;
1407 	}
1408 
1409 	/* Free the inband message buffer */
1410 	if (vd->inband_task.msg != NULL) {
1411 		kmem_free(vd->inband_task.msg, vd->max_msglen);
1412 		vd->inband_task.msg = NULL;
1413 	}
1414 
1415 	mutex_enter(&vd->lock);
1416 
1417 	if (vd->reset_ldc)
1418 		PR0("taking down LDC channel");
1419 	if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0))
1420 		PR0("ldc_down() returned errno %d", status);
1421 
1422 	vd->initialized	&= ~(VD_SID | VD_SEQ_NUM | VD_DRING);
1423 	vd->state	= VD_STATE_INIT;
1424 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
1425 
1426 	/* Allocate the staging buffer */
1427 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
1428 
1429 	PR0("calling ldc_up\n");
1430 	(void) ldc_up(vd->ldc_handle);
1431 
1432 	vd->reset_state	= B_FALSE;
1433 	vd->reset_ldc	= B_FALSE;
1434 
1435 	mutex_exit(&vd->lock);
1436 }
1437 
1438 static void vd_recv_msg(void *arg);
1439 
1440 static void
1441 vd_mark_in_reset(vd_t *vd)
1442 {
1443 	int status;
1444 
1445 	PR0("vd_mark_in_reset: marking vd in reset\n");
1446 
1447 	vd_need_reset(vd, B_FALSE);
1448 	status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, DDI_SLEEP);
1449 	if (status == DDI_FAILURE) {
1450 		PR0("cannot schedule task to recv msg\n");
1451 		vd_need_reset(vd, B_TRUE);
1452 		return;
1453 	}
1454 }
1455 
1456 static int
1457 vd_mark_elem_done(vd_t *vd, int idx, int elem_status, int elem_nbytes)
1458 {
1459 	boolean_t		accepted;
1460 	int			status;
1461 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
1462 
1463 	if (vd->reset_state)
1464 		return (0);
1465 
1466 	/* Acquire the element */
1467 	if (!vd->reset_state &&
1468 	    (status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
1469 		if (status == ECONNRESET) {
1470 			vd_mark_in_reset(vd);
1471 			return (0);
1472 		} else {
1473 			PR0("ldc_mem_dring_acquire() returned errno %d",
1474 			    status);
1475 			return (status);
1476 		}
1477 	}
1478 
1479 	/* Set the element's status and mark it done */
1480 	accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED);
1481 	if (accepted) {
1482 		elem->payload.nbytes	= elem_nbytes;
1483 		elem->payload.status	= elem_status;
1484 		elem->hdr.dstate	= VIO_DESC_DONE;
1485 	} else {
1486 		/* Perhaps client timed out waiting for I/O... */
1487 		PR0("element %u no longer \"accepted\"", idx);
1488 		VD_DUMP_DRING_ELEM(elem);
1489 	}
1490 	/* Release the element */
1491 	if (!vd->reset_state &&
1492 	    (status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
1493 		if (status == ECONNRESET) {
1494 			vd_mark_in_reset(vd);
1495 			return (0);
1496 		} else {
1497 			PR0("ldc_mem_dring_release() returned errno %d",
1498 			    status);
1499 			return (status);
1500 		}
1501 	}
1502 
1503 	return (accepted ? 0 : EINVAL);
1504 }
1505 
1506 /*
1507  * Return Values
1508  *	0	- operation completed successfully
1509  *	EIO	- encountered LDC / task error
1510  *
1511  * Side Effect
1512  *	sets request->status = <disk operation status>
1513  */
1514 static int
1515 vd_complete_bio(vd_task_t *task)
1516 {
1517 	int			status		= 0;
1518 	int			rv		= 0;
1519 	vd_t			*vd		= task->vd;
1520 	vd_dring_payload_t	*request	= task->request;
1521 	struct buf		*buf		= &task->buf;
1522 
1523 
1524 	ASSERT(vd != NULL);
1525 	ASSERT(request != NULL);
1526 	ASSERT(task->msg != NULL);
1527 	ASSERT(task->msglen >= sizeof (*task->msg));
1528 	ASSERT(!vd->file);
1529 	ASSERT(request->slice != VD_SLICE_NONE);
1530 
1531 	/* Wait for the I/O to complete [ call to ldi_strategy(9f) ] */
1532 	request->status = biowait(buf);
1533 
1534 	/* return back the number of bytes read/written */
1535 	request->nbytes = buf->b_bcount - buf->b_resid;
1536 
1537 	/* Release the buffer */
1538 	if (!vd->reset_state)
1539 		status = ldc_mem_release(task->mhdl, 0, buf->b_bcount);
1540 	if (status) {
1541 		PR0("ldc_mem_release() returned errno %d copying to "
1542 		    "client", status);
1543 		if (status == ECONNRESET) {
1544 			vd_mark_in_reset(vd);
1545 		}
1546 		rv = EIO;
1547 	}
1548 
1549 	/* Unmap the memory, even if in reset */
1550 	status = ldc_mem_unmap(task->mhdl);
1551 	if (status) {
1552 		PR0("ldc_mem_unmap() returned errno %d copying to client",
1553 		    status);
1554 		if (status == ECONNRESET) {
1555 			vd_mark_in_reset(vd);
1556 		}
1557 		rv = EIO;
1558 	}
1559 
1560 	biofini(buf);
1561 
1562 	return (rv);
1563 }
1564 
1565 /*
1566  * Description:
1567  *	This function is called by the two functions called by a taskq
1568  *	[ vd_complete_notify() and vd_serial_notify()) ] to send the
1569  *	message to the client.
1570  *
1571  * Parameters:
1572  *	arg 	- opaque pointer to structure containing task to be completed
1573  *
1574  * Return Values
1575  *	None
1576  */
1577 static void
1578 vd_notify(vd_task_t *task)
1579 {
1580 	int	status;
1581 
1582 	ASSERT(task != NULL);
1583 	ASSERT(task->vd != NULL);
1584 
1585 	if (task->vd->reset_state)
1586 		return;
1587 
1588 	/*
1589 	 * Send the "ack" or "nack" back to the client; if sending the message
1590 	 * via LDC fails, arrange to reset both the connection state and LDC
1591 	 * itself
1592 	 */
1593 	PR2("Sending %s",
1594 	    (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK");
1595 
1596 	status = send_msg(task->vd->ldc_handle, task->msg, task->msglen);
1597 	switch (status) {
1598 	case 0:
1599 		break;
1600 	case ECONNRESET:
1601 		vd_mark_in_reset(task->vd);
1602 		break;
1603 	default:
1604 		PR0("initiating full reset");
1605 		vd_need_reset(task->vd, B_TRUE);
1606 		break;
1607 	}
1608 
1609 	DTRACE_PROBE1(task__end, vd_task_t *, task);
1610 }
1611 
1612 /*
1613  * Description:
1614  *	Mark the Dring entry as Done and (if necessary) send an ACK/NACK to
1615  *	the vDisk client
1616  *
1617  * Parameters:
1618  *	task 		- structure containing the request sent from client
1619  *
1620  * Return Values
1621  *	None
1622  */
1623 static void
1624 vd_complete_notify(vd_task_t *task)
1625 {
1626 	int			status		= 0;
1627 	vd_t			*vd		= task->vd;
1628 	vd_dring_payload_t	*request	= task->request;
1629 
1630 	/* Update the dring element for a dring client */
1631 	if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
1632 		status = vd_mark_elem_done(vd, task->index,
1633 		    request->status, request->nbytes);
1634 		if (status == ECONNRESET)
1635 			vd_mark_in_reset(vd);
1636 	}
1637 
1638 	/*
1639 	 * If a transport error occurred while marking the element done or
1640 	 * previously while executing the task, arrange to "nack" the message
1641 	 * when the final task in the descriptor element range completes
1642 	 */
1643 	if ((status != 0) || (task->status != 0))
1644 		task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
1645 
1646 	/*
1647 	 * Only the final task for a range of elements will respond to and
1648 	 * free the message
1649 	 */
1650 	if (task->type == VD_NONFINAL_RANGE_TASK) {
1651 		return;
1652 	}
1653 
1654 	vd_notify(task);
1655 }
1656 
1657 /*
1658  * Description:
1659  *	This is the basic completion function called to handle inband data
1660  *	requests and handshake messages. All it needs to do is trigger a
1661  *	message to the client that the request is completed.
1662  *
1663  * Parameters:
1664  *	arg 	- opaque pointer to structure containing task to be completed
1665  *
1666  * Return Values
1667  *	None
1668  */
1669 static void
1670 vd_serial_notify(void *arg)
1671 {
1672 	vd_task_t		*task = (vd_task_t *)arg;
1673 
1674 	ASSERT(task != NULL);
1675 	vd_notify(task);
1676 }
1677 
1678 static void
1679 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg)
1680 {
1681 	VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg);
1682 }
1683 
1684 static void
1685 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg)
1686 {
1687 	VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg);
1688 }
1689 
1690 static void
1691 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf)
1692 {
1693 	DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf);
1694 }
1695 
1696 static void
1697 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf)
1698 {
1699 	VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf);
1700 }
1701 
1702 static void
1703 vd_get_efi_in(void *vd_buf, void *ioctl_arg)
1704 {
1705 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1706 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1707 
1708 	dk_efi->dki_lba = vd_efi->lba;
1709 	dk_efi->dki_length = vd_efi->length;
1710 	dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP);
1711 }
1712 
1713 static void
1714 vd_get_efi_out(void *ioctl_arg, void *vd_buf)
1715 {
1716 	int len;
1717 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1718 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1719 
1720 	len = vd_efi->length;
1721 	DK_EFI2VD_EFI(dk_efi, vd_efi);
1722 	kmem_free(dk_efi->dki_data, len);
1723 }
1724 
1725 static void
1726 vd_set_efi_in(void *vd_buf, void *ioctl_arg)
1727 {
1728 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1729 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1730 
1731 	dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP);
1732 	VD_EFI2DK_EFI(vd_efi, dk_efi);
1733 }
1734 
1735 static void
1736 vd_set_efi_out(void *ioctl_arg, void *vd_buf)
1737 {
1738 	vd_efi_t *vd_efi = (vd_efi_t *)vd_buf;
1739 	dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg;
1740 
1741 	kmem_free(dk_efi->dki_data, vd_efi->length);
1742 }
1743 
1744 static vd_disk_label_t
1745 vd_read_vtoc(vd_t *vd, struct vtoc *vtoc)
1746 {
1747 	int status, rval;
1748 	struct dk_gpt *efi;
1749 	size_t efi_len;
1750 
1751 	ASSERT(vd->ldi_handle[0] != NULL);
1752 
1753 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGVTOC, (intptr_t)vtoc,
1754 	    (vd->open_flags | FKIOCTL), kcred, &rval);
1755 
1756 	if (status == 0) {
1757 		return (VD_DISK_LABEL_VTOC);
1758 	} else if (status != ENOTSUP) {
1759 		PR0("ldi_ioctl(DKIOCGVTOC) returned error %d", status);
1760 		return (VD_DISK_LABEL_UNK);
1761 	}
1762 
1763 	status = vds_efi_alloc_and_read(vd->ldi_handle[0], &efi, &efi_len);
1764 
1765 	if (status) {
1766 		PR0("vds_efi_alloc_and_read returned error %d", status);
1767 		return (VD_DISK_LABEL_UNK);
1768 	}
1769 
1770 	vd_efi_to_vtoc(efi, vtoc);
1771 	vd_efi_free(efi, efi_len);
1772 
1773 	return (VD_DISK_LABEL_EFI);
1774 }
1775 
1776 static ushort_t
1777 vd_lbl2cksum(struct dk_label *label)
1778 {
1779 	int	count;
1780 	ushort_t sum, *sp;
1781 
1782 	count =	(sizeof (struct dk_label)) / (sizeof (short)) - 1;
1783 	sp = (ushort_t *)label;
1784 	sum = 0;
1785 	while (count--) {
1786 		sum ^= *sp++;
1787 	}
1788 
1789 	return (sum);
1790 }
1791 
1792 /*
1793  * Handle ioctls to a disk slice.
1794  *
1795  * Return Values
1796  *	0	- Indicates that there are no errors in disk operations
1797  *	ENOTSUP	- Unknown disk label type or unsupported DKIO ioctl
1798  *	EINVAL	- Not enough room to copy the EFI label
1799  *
1800  */
1801 static int
1802 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1803 {
1804 	dk_efi_t *dk_ioc;
1805 
1806 	switch (vd->vdisk_label) {
1807 
1808 	/* ioctls for a slice from a disk with a VTOC label */
1809 	case VD_DISK_LABEL_VTOC:
1810 
1811 		switch (cmd) {
1812 		case DKIOCGGEOM:
1813 			ASSERT(ioctl_arg != NULL);
1814 			bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom));
1815 			return (0);
1816 		case DKIOCGVTOC:
1817 			ASSERT(ioctl_arg != NULL);
1818 			bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc));
1819 			return (0);
1820 		default:
1821 			return (ENOTSUP);
1822 		}
1823 
1824 	/* ioctls for a slice from a disk with an EFI label */
1825 	case VD_DISK_LABEL_EFI:
1826 
1827 		switch (cmd) {
1828 		case DKIOCGETEFI:
1829 			ASSERT(ioctl_arg != NULL);
1830 			dk_ioc = (dk_efi_t *)ioctl_arg;
1831 			if (dk_ioc->dki_length < vd->dk_efi.dki_length)
1832 				return (EINVAL);
1833 			bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data,
1834 			    vd->dk_efi.dki_length);
1835 			return (0);
1836 		default:
1837 			return (ENOTSUP);
1838 		}
1839 
1840 	default:
1841 		/* Unknown disk label type */
1842 		return (ENOTSUP);
1843 	}
1844 }
1845 
1846 /*
1847  * Function:
1848  *	vd_file_validate_geometry
1849  *
1850  * Description:
1851  *	Read the label and validate the geometry of a disk image. The driver
1852  *	label, vtoc and geometry information are updated according to the
1853  *	label read from the disk image.
1854  *
1855  *	If no valid label is found, the label is set to unknown and the
1856  *	function returns EINVAL, but a default vtoc and geometry are provided
1857  *	to the driver.
1858  *
1859  * Parameters:
1860  *	vd	- disk on which the operation is performed.
1861  *
1862  * Return Code:
1863  *	0	- success.
1864  *	EIO	- error reading the label from the disk image.
1865  *	EINVAL	- unknown disk label.
1866  */
1867 static int
1868 vd_file_validate_geometry(vd_t *vd)
1869 {
1870 	struct dk_label label;
1871 	struct dk_geom *geom = &vd->dk_geom;
1872 	struct vtoc *vtoc = &vd->vtoc;
1873 	int i;
1874 	int status = 0;
1875 
1876 	ASSERT(vd->file);
1877 
1878 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE) {
1879 		/*
1880 		 * For single slice disk we always fake the geometry, and we
1881 		 * only need to do it once because the geometry will never
1882 		 * change.
1883 		 */
1884 		if (vd->vdisk_label == VD_DISK_LABEL_VTOC)
1885 			/* geometry was already validated */
1886 			return (0);
1887 
1888 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_UNK);
1889 		vd_file_build_default_label(vd, &label);
1890 		vd->vdisk_label = VD_DISK_LABEL_VTOC;
1891 	} else {
1892 		if (VD_FILE_LABEL_READ(vd, &label) < 0)
1893 			return (EIO);
1894 
1895 		if (label.dkl_magic != DKL_MAGIC ||
1896 		    label.dkl_cksum != vd_lbl2cksum(&label) ||
1897 		    label.dkl_vtoc.v_sanity != VTOC_SANE ||
1898 		    label.dkl_vtoc.v_nparts != V_NUMPAR) {
1899 			vd->vdisk_label = VD_DISK_LABEL_UNK;
1900 			vd_file_build_default_label(vd, &label);
1901 			status = EINVAL;
1902 		} else {
1903 			vd->vdisk_label = VD_DISK_LABEL_VTOC;
1904 		}
1905 	}
1906 
1907 	/* Update the driver geometry */
1908 	bzero(geom, sizeof (struct dk_geom));
1909 
1910 	geom->dkg_ncyl = label.dkl_ncyl;
1911 	geom->dkg_acyl = label.dkl_acyl;
1912 	geom->dkg_nhead = label.dkl_nhead;
1913 	geom->dkg_nsect = label.dkl_nsect;
1914 	geom->dkg_intrlv = label.dkl_intrlv;
1915 	geom->dkg_apc = label.dkl_apc;
1916 	geom->dkg_rpm = label.dkl_rpm;
1917 	geom->dkg_pcyl = label.dkl_pcyl;
1918 	geom->dkg_write_reinstruct = label.dkl_write_reinstruct;
1919 	geom->dkg_read_reinstruct = label.dkl_read_reinstruct;
1920 
1921 	/* Update the driver vtoc */
1922 	bzero(vtoc, sizeof (struct vtoc));
1923 
1924 	vtoc->v_sanity = label.dkl_vtoc.v_sanity;
1925 	vtoc->v_version = label.dkl_vtoc.v_version;
1926 	vtoc->v_sectorsz = DEV_BSIZE;
1927 	vtoc->v_nparts = label.dkl_vtoc.v_nparts;
1928 
1929 	for (i = 0; i < vtoc->v_nparts; i++) {
1930 		vtoc->v_part[i].p_tag =
1931 		    label.dkl_vtoc.v_part[i].p_tag;
1932 		vtoc->v_part[i].p_flag =
1933 		    label.dkl_vtoc.v_part[i].p_flag;
1934 		vtoc->v_part[i].p_start =
1935 		    label.dkl_map[i].dkl_cylno *
1936 		    (label.dkl_nhead * label.dkl_nsect);
1937 		vtoc->v_part[i].p_size = label.dkl_map[i].dkl_nblk;
1938 		vtoc->timestamp[i] =
1939 		    label.dkl_vtoc.v_timestamp[i];
1940 	}
1941 	/*
1942 	 * The bootinfo array can not be copied with bcopy() because
1943 	 * elements are of type long in vtoc (so 64-bit) and of type
1944 	 * int in dk_vtoc (so 32-bit).
1945 	 */
1946 	vtoc->v_bootinfo[0] = label.dkl_vtoc.v_bootinfo[0];
1947 	vtoc->v_bootinfo[1] = label.dkl_vtoc.v_bootinfo[1];
1948 	vtoc->v_bootinfo[2] = label.dkl_vtoc.v_bootinfo[2];
1949 	bcopy(label.dkl_asciilabel, vtoc->v_asciilabel,
1950 	    LEN_DKL_ASCII);
1951 	bcopy(label.dkl_vtoc.v_volume, vtoc->v_volume,
1952 	    LEN_DKL_VVOL);
1953 
1954 	return (status);
1955 }
1956 
1957 /*
1958  * Handle ioctls to a disk image (file-based).
1959  *
1960  * Return Values
1961  *	0	- Indicates that there are no errors
1962  *	!= 0	- Disk operation returned an error
1963  */
1964 static int
1965 vd_do_file_ioctl(vd_t *vd, int cmd, void *ioctl_arg)
1966 {
1967 	struct dk_label label;
1968 	struct dk_geom *geom;
1969 	struct vtoc *vtoc;
1970 	int i, rc;
1971 
1972 	ASSERT(vd->file);
1973 
1974 	switch (cmd) {
1975 
1976 	case DKIOCGGEOM:
1977 		ASSERT(ioctl_arg != NULL);
1978 		geom = (struct dk_geom *)ioctl_arg;
1979 
1980 		rc = vd_file_validate_geometry(vd);
1981 		if (rc != 0 && rc != EINVAL) {
1982 			ASSERT(vd->vdisk_type != VD_DISK_TYPE_SLICE);
1983 			return (rc);
1984 		}
1985 
1986 		bcopy(&vd->dk_geom, geom, sizeof (struct dk_geom));
1987 		return (0);
1988 
1989 	case DKIOCGVTOC:
1990 		ASSERT(ioctl_arg != NULL);
1991 		vtoc = (struct vtoc *)ioctl_arg;
1992 
1993 		rc = vd_file_validate_geometry(vd);
1994 		if (rc != 0 && rc != EINVAL) {
1995 			ASSERT(vd->vdisk_type != VD_DISK_TYPE_SLICE);
1996 			return (rc);
1997 		}
1998 
1999 		bcopy(&vd->vtoc, vtoc, sizeof (struct vtoc));
2000 		return (0);
2001 
2002 	case DKIOCSGEOM:
2003 		ASSERT(ioctl_arg != NULL);
2004 		geom = (struct dk_geom *)ioctl_arg;
2005 
2006 		/* geometry can only be changed for full disk */
2007 		if (vd->vdisk_type != VD_DISK_TYPE_DISK)
2008 			return (ENOTSUP);
2009 
2010 		if (geom->dkg_nhead == 0 || geom->dkg_nsect == 0)
2011 			return (EINVAL);
2012 
2013 		/*
2014 		 * The current device geometry is not updated, just the driver
2015 		 * "notion" of it. The device geometry will be effectively
2016 		 * updated when a label is written to the device during a next
2017 		 * DKIOCSVTOC.
2018 		 */
2019 		bcopy(ioctl_arg, &vd->dk_geom, sizeof (vd->dk_geom));
2020 		return (0);
2021 
2022 	case DKIOCSVTOC:
2023 		ASSERT(ioctl_arg != NULL);
2024 		ASSERT(vd->dk_geom.dkg_nhead != 0 &&
2025 		    vd->dk_geom.dkg_nsect != 0);
2026 		vtoc = (struct vtoc *)ioctl_arg;
2027 
2028 		/* vtoc can only be changed for full disk */
2029 		if (vd->vdisk_type != VD_DISK_TYPE_DISK)
2030 			return (ENOTSUP);
2031 
2032 		if (vtoc->v_sanity != VTOC_SANE ||
2033 		    vtoc->v_sectorsz != DEV_BSIZE ||
2034 		    vtoc->v_nparts != V_NUMPAR)
2035 			return (EINVAL);
2036 
2037 		bzero(&label, sizeof (label));
2038 		label.dkl_ncyl = vd->dk_geom.dkg_ncyl;
2039 		label.dkl_acyl = vd->dk_geom.dkg_acyl;
2040 		label.dkl_pcyl = vd->dk_geom.dkg_pcyl;
2041 		label.dkl_nhead = vd->dk_geom.dkg_nhead;
2042 		label.dkl_nsect = vd->dk_geom.dkg_nsect;
2043 		label.dkl_intrlv = vd->dk_geom.dkg_intrlv;
2044 		label.dkl_apc = vd->dk_geom.dkg_apc;
2045 		label.dkl_rpm = vd->dk_geom.dkg_rpm;
2046 		label.dkl_write_reinstruct = vd->dk_geom.dkg_write_reinstruct;
2047 		label.dkl_read_reinstruct = vd->dk_geom.dkg_read_reinstruct;
2048 
2049 		label.dkl_vtoc.v_nparts = V_NUMPAR;
2050 		label.dkl_vtoc.v_sanity = VTOC_SANE;
2051 		label.dkl_vtoc.v_version = vtoc->v_version;
2052 		for (i = 0; i < V_NUMPAR; i++) {
2053 			label.dkl_vtoc.v_timestamp[i] =
2054 			    vtoc->timestamp[i];
2055 			label.dkl_vtoc.v_part[i].p_tag =
2056 			    vtoc->v_part[i].p_tag;
2057 			label.dkl_vtoc.v_part[i].p_flag =
2058 			    vtoc->v_part[i].p_flag;
2059 			label.dkl_map[i].dkl_cylno =
2060 			    vtoc->v_part[i].p_start /
2061 			    (label.dkl_nhead * label.dkl_nsect);
2062 			label.dkl_map[i].dkl_nblk =
2063 			    vtoc->v_part[i].p_size;
2064 		}
2065 		/*
2066 		 * The bootinfo array can not be copied with bcopy() because
2067 		 * elements are of type long in vtoc (so 64-bit) and of type
2068 		 * int in dk_vtoc (so 32-bit).
2069 		 */
2070 		label.dkl_vtoc.v_bootinfo[0] = vtoc->v_bootinfo[0];
2071 		label.dkl_vtoc.v_bootinfo[1] = vtoc->v_bootinfo[1];
2072 		label.dkl_vtoc.v_bootinfo[2] = vtoc->v_bootinfo[2];
2073 		bcopy(vtoc->v_asciilabel, label.dkl_asciilabel,
2074 		    LEN_DKL_ASCII);
2075 		bcopy(vtoc->v_volume, label.dkl_vtoc.v_volume,
2076 		    LEN_DKL_VVOL);
2077 
2078 		/* re-compute checksum */
2079 		label.dkl_magic = DKL_MAGIC;
2080 		label.dkl_cksum = vd_lbl2cksum(&label);
2081 
2082 		/* write label to the disk image */
2083 		if ((rc = vd_file_set_vtoc(vd, &label)) != 0)
2084 			return (rc);
2085 
2086 		/* check the geometry and update the driver info */
2087 		if ((rc = vd_file_validate_geometry(vd)) != 0)
2088 			return (rc);
2089 
2090 		/*
2091 		 * The disk geometry may have changed, so we need to write
2092 		 * the devid (if there is one) so that it is stored at the
2093 		 * right location.
2094 		 */
2095 		if (vd->file_devid != NULL &&
2096 		    vd_file_write_devid(vd, vd->file_devid) != 0) {
2097 			PR0("Fail to write devid");
2098 		}
2099 
2100 		return (0);
2101 
2102 	case DKIOCFLUSHWRITECACHE:
2103 		return (VOP_FSYNC(vd->file_vnode, FSYNC, kcred, NULL));
2104 
2105 	default:
2106 		return (ENOTSUP);
2107 	}
2108 }
2109 
2110 /*
2111  * Description:
2112  *	This is the function that processes the ioctl requests (farming it
2113  *	out to functions that handle slices, files or whole disks)
2114  *
2115  * Return Values
2116  *     0		- ioctl operation completed successfully
2117  *     != 0		- The LDC error value encountered
2118  *			  (propagated back up the call stack as a task error)
2119  *
2120  * Side Effect
2121  *     sets request->status to the return value of the ioctl function.
2122  */
2123 static int
2124 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl)
2125 {
2126 	int	rval = 0, status = 0;
2127 	size_t	nbytes = request->nbytes;	/* modifiable copy */
2128 
2129 
2130 	ASSERT(request->slice < vd->nslices);
2131 	PR0("Performing %s", ioctl->operation_name);
2132 
2133 	/* Get data from client and convert, if necessary */
2134 	if (ioctl->copyin != NULL)  {
2135 		ASSERT(nbytes != 0 && buf != NULL);
2136 		PR1("Getting \"arg\" data from client");
2137 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2138 		    request->cookie, request->ncookies,
2139 		    LDC_COPY_IN)) != 0) {
2140 			PR0("ldc_mem_copy() returned errno %d "
2141 			    "copying from client", status);
2142 			return (status);
2143 		}
2144 
2145 		/* Convert client's data, if necessary */
2146 		if (ioctl->copyin == VD_IDENTITY)	/* use client buffer */
2147 			ioctl->arg = buf;
2148 		else	/* convert client vdisk operation data to ioctl data */
2149 			(ioctl->copyin)(buf, (void *)ioctl->arg);
2150 	}
2151 
2152 	/*
2153 	 * Handle single-slice block devices internally; otherwise, have the
2154 	 * real driver perform the ioctl()
2155 	 */
2156 	if (vd->file) {
2157 		request->status =
2158 		    vd_do_file_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
2159 
2160 	} else if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) {
2161 		request->status =
2162 		    vd_do_slice_ioctl(vd, ioctl->cmd, (void *)ioctl->arg);
2163 
2164 	} else {
2165 		request->status = ldi_ioctl(vd->ldi_handle[request->slice],
2166 		    ioctl->cmd, (intptr_t)ioctl->arg, vd->open_flags | FKIOCTL,
2167 		    kcred, &rval);
2168 
2169 #ifdef DEBUG
2170 		if (rval != 0) {
2171 			PR0("%s set rval = %d, which is not being returned to"
2172 			    " client", ioctl->cmd_name, rval);
2173 		}
2174 #endif /* DEBUG */
2175 	}
2176 
2177 	if (request->status != 0) {
2178 		PR0("ioctl(%s) = errno %d", ioctl->cmd_name, request->status);
2179 		return (0);
2180 	}
2181 
2182 	/* Convert data and send to client, if necessary */
2183 	if (ioctl->copyout != NULL)  {
2184 		ASSERT(nbytes != 0 && buf != NULL);
2185 		PR1("Sending \"arg\" data to client");
2186 
2187 		/* Convert ioctl data to vdisk operation data, if necessary */
2188 		if (ioctl->copyout != VD_IDENTITY)
2189 			(ioctl->copyout)((void *)ioctl->arg, buf);
2190 
2191 		if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes,
2192 		    request->cookie, request->ncookies,
2193 		    LDC_COPY_OUT)) != 0) {
2194 			PR0("ldc_mem_copy() returned errno %d "
2195 			    "copying to client", status);
2196 			return (status);
2197 		}
2198 	}
2199 
2200 	return (status);
2201 }
2202 
2203 #define	RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t))
2204 
2205 /*
2206  * Description:
2207  *	This generic function is called by the task queue to complete
2208  *	the processing of the tasks. The specific completion function
2209  *	is passed in as a field in the task pointer.
2210  *
2211  * Parameters:
2212  *	arg 	- opaque pointer to structure containing task to be completed
2213  *
2214  * Return Values
2215  *	None
2216  */
2217 static void
2218 vd_complete(void *arg)
2219 {
2220 	vd_task_t	*task = (vd_task_t *)arg;
2221 
2222 	ASSERT(task != NULL);
2223 	ASSERT(task->status == EINPROGRESS);
2224 	ASSERT(task->completef != NULL);
2225 
2226 	task->status = task->completef(task);
2227 	if (task->status)
2228 		PR0("%s: Error %d completing task", __func__, task->status);
2229 
2230 	/* Now notify the vDisk client */
2231 	vd_complete_notify(task);
2232 }
2233 
2234 static int
2235 vd_ioctl(vd_task_t *task)
2236 {
2237 	int			i, status;
2238 	void			*buf = NULL;
2239 	struct dk_geom		dk_geom = {0};
2240 	struct vtoc		vtoc = {0};
2241 	struct dk_efi		dk_efi = {0};
2242 	vd_t			*vd		= task->vd;
2243 	vd_dring_payload_t	*request	= task->request;
2244 	vd_ioctl_t		ioctl[] = {
2245 		/* Command (no-copy) operations */
2246 		{VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0,
2247 		    DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE),
2248 		    NULL, NULL, NULL, B_TRUE},
2249 
2250 		/* "Get" (copy-out) operations */
2251 		{VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int),
2252 		    DKIOCGETWCE, STRINGIZE(DKIOCGETWCE),
2253 		    NULL, VD_IDENTITY, VD_IDENTITY, B_FALSE},
2254 		{VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM),
2255 		    RNDSIZE(vd_geom_t),
2256 		    DKIOCGGEOM, STRINGIZE(DKIOCGGEOM),
2257 		    &dk_geom, NULL, dk_geom2vd_geom, B_FALSE},
2258 		{VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t),
2259 		    DKIOCGVTOC, STRINGIZE(DKIOCGVTOC),
2260 		    &vtoc, NULL, vtoc2vd_vtoc, B_FALSE},
2261 		{VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t),
2262 		    DKIOCGETEFI, STRINGIZE(DKIOCGETEFI),
2263 		    &dk_efi, vd_get_efi_in, vd_get_efi_out, B_FALSE},
2264 
2265 		/* "Set" (copy-in) operations */
2266 		{VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int),
2267 		    DKIOCSETWCE, STRINGIZE(DKIOCSETWCE),
2268 		    NULL, VD_IDENTITY, VD_IDENTITY, B_TRUE},
2269 		{VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM),
2270 		    RNDSIZE(vd_geom_t),
2271 		    DKIOCSGEOM, STRINGIZE(DKIOCSGEOM),
2272 		    &dk_geom, vd_geom2dk_geom, NULL, B_TRUE},
2273 		{VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t),
2274 		    DKIOCSVTOC, STRINGIZE(DKIOCSVTOC),
2275 		    &vtoc, vd_vtoc2vtoc, NULL, B_TRUE},
2276 		{VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t),
2277 		    DKIOCSETEFI, STRINGIZE(DKIOCSETEFI),
2278 		    &dk_efi, vd_set_efi_in, vd_set_efi_out, B_TRUE},
2279 	};
2280 	size_t		nioctls = (sizeof (ioctl))/(sizeof (ioctl[0]));
2281 
2282 
2283 	ASSERT(vd != NULL);
2284 	ASSERT(request != NULL);
2285 	ASSERT(request->slice < vd->nslices);
2286 
2287 	/*
2288 	 * Determine ioctl corresponding to caller's "operation" and
2289 	 * validate caller's "nbytes"
2290 	 */
2291 	for (i = 0; i < nioctls; i++) {
2292 		if (request->operation == ioctl[i].operation) {
2293 			/* LDC memory operations require 8-byte multiples */
2294 			ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0);
2295 
2296 			if (request->operation == VD_OP_GET_EFI ||
2297 			    request->operation == VD_OP_SET_EFI) {
2298 				if (request->nbytes >= ioctl[i].nbytes)
2299 					break;
2300 				PR0("%s:  Expected at least nbytes = %lu, "
2301 				    "got %lu", ioctl[i].operation_name,
2302 				    ioctl[i].nbytes, request->nbytes);
2303 				return (EINVAL);
2304 			}
2305 
2306 			if (request->nbytes != ioctl[i].nbytes) {
2307 				PR0("%s:  Expected nbytes = %lu, got %lu",
2308 				    ioctl[i].operation_name, ioctl[i].nbytes,
2309 				    request->nbytes);
2310 				return (EINVAL);
2311 			}
2312 
2313 			break;
2314 		}
2315 	}
2316 	ASSERT(i < nioctls);	/* because "operation" already validated */
2317 
2318 	if (!(vd->open_flags & FWRITE) && ioctl[i].write) {
2319 		PR0("%s fails because backend is opened read-only",
2320 		    ioctl[i].operation_name);
2321 		request->status = EROFS;
2322 		return (0);
2323 	}
2324 
2325 	if (request->nbytes)
2326 		buf = kmem_zalloc(request->nbytes, KM_SLEEP);
2327 	status = vd_do_ioctl(vd, request, buf, &ioctl[i]);
2328 	if (request->nbytes)
2329 		kmem_free(buf, request->nbytes);
2330 
2331 	return (status);
2332 }
2333 
2334 static int
2335 vd_get_devid(vd_task_t *task)
2336 {
2337 	vd_t *vd = task->vd;
2338 	vd_dring_payload_t *request = task->request;
2339 	vd_devid_t *vd_devid;
2340 	impl_devid_t *devid;
2341 	int status, bufid_len, devid_len, len, sz;
2342 	int bufbytes;
2343 
2344 	PR1("Get Device ID, nbytes=%ld", request->nbytes);
2345 
2346 	if (vd->file) {
2347 		if (vd->file_devid == NULL) {
2348 			PR2("No Device ID");
2349 			request->status = ENOENT;
2350 			return (0);
2351 		} else {
2352 			sz = ddi_devid_sizeof(vd->file_devid);
2353 			devid = kmem_alloc(sz, KM_SLEEP);
2354 			bcopy(vd->file_devid, devid, sz);
2355 		}
2356 	} else {
2357 		if (ddi_lyr_get_devid(vd->dev[request->slice],
2358 		    (ddi_devid_t *)&devid) != DDI_SUCCESS) {
2359 			PR2("No Device ID");
2360 			request->status = ENOENT;
2361 			return (0);
2362 		}
2363 	}
2364 
2365 	bufid_len = request->nbytes - sizeof (vd_devid_t) + 1;
2366 	devid_len = DEVID_GETLEN(devid);
2367 
2368 	/*
2369 	 * Save the buffer size here for use in deallocation.
2370 	 * The actual number of bytes copied is returned in
2371 	 * the 'nbytes' field of the request structure.
2372 	 */
2373 	bufbytes = request->nbytes;
2374 
2375 	vd_devid = kmem_zalloc(bufbytes, KM_SLEEP);
2376 	vd_devid->length = devid_len;
2377 	vd_devid->type = DEVID_GETTYPE(devid);
2378 
2379 	len = (devid_len > bufid_len)? bufid_len : devid_len;
2380 
2381 	bcopy(devid->did_id, vd_devid->id, len);
2382 
2383 	request->status = 0;
2384 
2385 	/* LDC memory operations require 8-byte multiples */
2386 	ASSERT(request->nbytes % sizeof (uint64_t) == 0);
2387 
2388 	if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0,
2389 	    &request->nbytes, request->cookie, request->ncookies,
2390 	    LDC_COPY_OUT)) != 0) {
2391 		PR0("ldc_mem_copy() returned errno %d copying to client",
2392 		    status);
2393 	}
2394 	PR1("post mem_copy: nbytes=%ld", request->nbytes);
2395 
2396 	kmem_free(vd_devid, bufbytes);
2397 	ddi_devid_free((ddi_devid_t)devid);
2398 
2399 	return (status);
2400 }
2401 
2402 /*
2403  * Define the supported operations once the functions for performing them have
2404  * been defined
2405  */
2406 static const vds_operation_t	vds_operation[] = {
2407 #define	X(_s)	#_s, _s
2408 	{X(VD_OP_BREAD),	vd_start_bio,	vd_complete_bio},
2409 	{X(VD_OP_BWRITE),	vd_start_bio,	vd_complete_bio},
2410 	{X(VD_OP_FLUSH),	vd_ioctl,	NULL},
2411 	{X(VD_OP_GET_WCE),	vd_ioctl,	NULL},
2412 	{X(VD_OP_SET_WCE),	vd_ioctl,	NULL},
2413 	{X(VD_OP_GET_VTOC),	vd_ioctl,	NULL},
2414 	{X(VD_OP_SET_VTOC),	vd_ioctl,	NULL},
2415 	{X(VD_OP_GET_DISKGEOM),	vd_ioctl,	NULL},
2416 	{X(VD_OP_SET_DISKGEOM),	vd_ioctl,	NULL},
2417 	{X(VD_OP_GET_EFI),	vd_ioctl,	NULL},
2418 	{X(VD_OP_SET_EFI),	vd_ioctl,	NULL},
2419 	{X(VD_OP_GET_DEVID),	vd_get_devid,	NULL},
2420 #undef	X
2421 };
2422 
2423 static const size_t	vds_noperations =
2424 	(sizeof (vds_operation))/(sizeof (vds_operation[0]));
2425 
2426 /*
2427  * Process a task specifying a client I/O request
2428  *
2429  * Parameters:
2430  *	task 		- structure containing the request sent from client
2431  *
2432  * Return Value
2433  *	0	- success
2434  *	ENOTSUP	- Unknown/Unsupported VD_OP_XXX operation
2435  *	EINVAL	- Invalid disk slice
2436  *	!= 0	- some other non-zero return value from start function
2437  */
2438 static int
2439 vd_do_process_task(vd_task_t *task)
2440 {
2441 	int			i;
2442 	vd_t			*vd		= task->vd;
2443 	vd_dring_payload_t	*request	= task->request;
2444 
2445 	ASSERT(vd != NULL);
2446 	ASSERT(request != NULL);
2447 
2448 	/* Find the requested operation */
2449 	for (i = 0; i < vds_noperations; i++) {
2450 		if (request->operation == vds_operation[i].operation) {
2451 			/* all operations should have a start func */
2452 			ASSERT(vds_operation[i].start != NULL);
2453 
2454 			task->completef = vds_operation[i].complete;
2455 			break;
2456 		}
2457 	}
2458 
2459 	/*
2460 	 * We need to check that the requested operation is permitted
2461 	 * for the particular client that sent it or that the loop above
2462 	 * did not complete without finding the operation type (indicating
2463 	 * that the requested operation is unknown/unimplemented)
2464 	 */
2465 	if ((VD_OP_SUPPORTED(vd->operations, request->operation) == B_FALSE) ||
2466 	    (i == vds_noperations)) {
2467 		PR0("Unsupported operation %u", request->operation);
2468 		request->status = ENOTSUP;
2469 		return (0);
2470 	}
2471 
2472 	/* Range-check slice */
2473 	if (request->slice >= vd->nslices &&
2474 	    (vd->vdisk_type != VD_DISK_TYPE_DISK ||
2475 	    request->slice != VD_SLICE_NONE)) {
2476 		PR0("Invalid \"slice\" %u (max %u) for virtual disk",
2477 		    request->slice, (vd->nslices - 1));
2478 		return (EINVAL);
2479 	}
2480 
2481 	/*
2482 	 * Call the function pointer that starts the operation.
2483 	 */
2484 	return (vds_operation[i].start(task));
2485 }
2486 
2487 /*
2488  * Description:
2489  *	This function is called by both the in-band and descriptor ring
2490  *	message processing functions paths to actually execute the task
2491  *	requested by the vDisk client. It in turn calls its worker
2492  *	function, vd_do_process_task(), to carry our the request.
2493  *
2494  *	Any transport errors (e.g. LDC errors, vDisk protocol errors) are
2495  *	saved in the 'status' field of the task and are propagated back
2496  *	up the call stack to trigger a NACK
2497  *
2498  *	Any request errors (e.g. ENOTTY from an ioctl) are saved in
2499  *	the 'status' field of the request and result in an ACK being sent
2500  *	by the completion handler.
2501  *
2502  * Parameters:
2503  *	task 		- structure containing the request sent from client
2504  *
2505  * Return Value
2506  *	0		- successful synchronous request.
2507  *	!= 0		- transport error (e.g. LDC errors, vDisk protocol)
2508  *	EINPROGRESS	- task will be finished in a completion handler
2509  */
2510 static int
2511 vd_process_task(vd_task_t *task)
2512 {
2513 	vd_t	*vd = task->vd;
2514 	int	status;
2515 
2516 	DTRACE_PROBE1(task__start, vd_task_t *, task);
2517 
2518 	task->status =  vd_do_process_task(task);
2519 
2520 	/*
2521 	 * If the task processing function returned EINPROGRESS indicating
2522 	 * that the task needs completing then schedule a taskq entry to
2523 	 * finish it now.
2524 	 *
2525 	 * Otherwise the task processing function returned either zero
2526 	 * indicating that the task was finished in the start function (and we
2527 	 * don't need to wait in a completion function) or the start function
2528 	 * returned an error - in both cases all that needs to happen is the
2529 	 * notification to the vDisk client higher up the call stack.
2530 	 * If the task was using a Descriptor Ring, we need to mark it as done
2531 	 * at this stage.
2532 	 */
2533 	if (task->status == EINPROGRESS) {
2534 		/* Queue a task to complete the operation */
2535 		(void) ddi_taskq_dispatch(vd->completionq, vd_complete,
2536 		    task, DDI_SLEEP);
2537 
2538 	} else if (!vd->reset_state && (vd->xfer_mode == VIO_DRING_MODE)) {
2539 		/* Update the dring element if it's a dring client */
2540 		status = vd_mark_elem_done(vd, task->index,
2541 		    task->request->status, task->request->nbytes);
2542 		if (status == ECONNRESET)
2543 			vd_mark_in_reset(vd);
2544 	}
2545 
2546 	return (task->status);
2547 }
2548 
2549 /*
2550  * Return true if the "type", "subtype", and "env" fields of the "tag" first
2551  * argument match the corresponding remaining arguments; otherwise, return false
2552  */
2553 boolean_t
2554 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env)
2555 {
2556 	return ((tag->vio_msgtype == type) &&
2557 	    (tag->vio_subtype == subtype) &&
2558 	    (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE;
2559 }
2560 
2561 /*
2562  * Check whether the major/minor version specified in "ver_msg" is supported
2563  * by this server.
2564  */
2565 static boolean_t
2566 vds_supported_version(vio_ver_msg_t *ver_msg)
2567 {
2568 	for (int i = 0; i < vds_num_versions; i++) {
2569 		ASSERT(vds_version[i].major > 0);
2570 		ASSERT((i == 0) ||
2571 		    (vds_version[i].major < vds_version[i-1].major));
2572 
2573 		/*
2574 		 * If the major versions match, adjust the minor version, if
2575 		 * necessary, down to the highest value supported by this
2576 		 * server and return true so this message will get "ack"ed;
2577 		 * the client should also support all minor versions lower
2578 		 * than the value it sent
2579 		 */
2580 		if (ver_msg->ver_major == vds_version[i].major) {
2581 			if (ver_msg->ver_minor > vds_version[i].minor) {
2582 				PR0("Adjusting minor version from %u to %u",
2583 				    ver_msg->ver_minor, vds_version[i].minor);
2584 				ver_msg->ver_minor = vds_version[i].minor;
2585 			}
2586 			return (B_TRUE);
2587 		}
2588 
2589 		/*
2590 		 * If the message contains a higher major version number, set
2591 		 * the message's major/minor versions to the current values
2592 		 * and return false, so this message will get "nack"ed with
2593 		 * these values, and the client will potentially try again
2594 		 * with the same or a lower version
2595 		 */
2596 		if (ver_msg->ver_major > vds_version[i].major) {
2597 			ver_msg->ver_major = vds_version[i].major;
2598 			ver_msg->ver_minor = vds_version[i].minor;
2599 			return (B_FALSE);
2600 		}
2601 
2602 		/*
2603 		 * Otherwise, the message's major version is less than the
2604 		 * current major version, so continue the loop to the next
2605 		 * (lower) supported version
2606 		 */
2607 	}
2608 
2609 	/*
2610 	 * No common version was found; "ground" the version pair in the
2611 	 * message to terminate negotiation
2612 	 */
2613 	ver_msg->ver_major = 0;
2614 	ver_msg->ver_minor = 0;
2615 	return (B_FALSE);
2616 }
2617 
2618 /*
2619  * Process a version message from a client.  vds expects to receive version
2620  * messages from clients seeking service, but never issues version messages
2621  * itself; therefore, vds can ACK or NACK client version messages, but does
2622  * not expect to receive version-message ACKs or NACKs (and will treat such
2623  * messages as invalid).
2624  */
2625 static int
2626 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2627 {
2628 	vio_ver_msg_t	*ver_msg = (vio_ver_msg_t *)msg;
2629 
2630 
2631 	ASSERT(msglen >= sizeof (msg->tag));
2632 
2633 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2634 	    VIO_VER_INFO)) {
2635 		return (ENOMSG);	/* not a version message */
2636 	}
2637 
2638 	if (msglen != sizeof (*ver_msg)) {
2639 		PR0("Expected %lu-byte version message; "
2640 		    "received %lu bytes", sizeof (*ver_msg), msglen);
2641 		return (EBADMSG);
2642 	}
2643 
2644 	if (ver_msg->dev_class != VDEV_DISK) {
2645 		PR0("Expected device class %u (disk); received %u",
2646 		    VDEV_DISK, ver_msg->dev_class);
2647 		return (EBADMSG);
2648 	}
2649 
2650 	/*
2651 	 * We're talking to the expected kind of client; set our device class
2652 	 * for "ack/nack" back to the client
2653 	 */
2654 	ver_msg->dev_class = VDEV_DISK_SERVER;
2655 
2656 	/*
2657 	 * Check whether the (valid) version message specifies a version
2658 	 * supported by this server.  If the version is not supported, return
2659 	 * EBADMSG so the message will get "nack"ed; vds_supported_version()
2660 	 * will have updated the message with a supported version for the
2661 	 * client to consider
2662 	 */
2663 	if (!vds_supported_version(ver_msg))
2664 		return (EBADMSG);
2665 
2666 
2667 	/*
2668 	 * A version has been agreed upon; use the client's SID for
2669 	 * communication on this channel now
2670 	 */
2671 	ASSERT(!(vd->initialized & VD_SID));
2672 	vd->sid = ver_msg->tag.vio_sid;
2673 	vd->initialized |= VD_SID;
2674 
2675 	/*
2676 	 * Store the negotiated major and minor version values in the "vd" data
2677 	 * structure so that we can check if certain operations are supported
2678 	 * by the client.
2679 	 */
2680 	vd->version.major = ver_msg->ver_major;
2681 	vd->version.minor = ver_msg->ver_minor;
2682 
2683 	PR0("Using major version %u, minor version %u",
2684 	    ver_msg->ver_major, ver_msg->ver_minor);
2685 	return (0);
2686 }
2687 
2688 static void
2689 vd_set_exported_operations(vd_t *vd)
2690 {
2691 	vd->operations = 0;	/* clear field */
2692 
2693 	/*
2694 	 * We need to check from the highest version supported to the
2695 	 * lowest because versions with a higher minor number implicitly
2696 	 * support versions with a lower minor number.
2697 	 */
2698 	if (vio_ver_is_supported(vd->version, 1, 1)) {
2699 		ASSERT(vd->open_flags & FREAD);
2700 		vd->operations |= VD_OP_MASK_READ;
2701 
2702 		if (vd->open_flags & FWRITE)
2703 			vd->operations |= VD_OP_MASK_WRITE;
2704 
2705 		if (vd->file && vd_file_is_iso_image(vd)) {
2706 			/*
2707 			 * can't write to ISO images, make sure that write
2708 			 * support is not set in case administrator did not
2709 			 * use "options=ro" when doing an ldm add-vdsdev
2710 			 */
2711 			vd->operations &= ~VD_OP_MASK_WRITE;
2712 		}
2713 	} else if (vio_ver_is_supported(vd->version, 1, 0)) {
2714 		vd->operations = VD_OP_MASK_READ | VD_OP_MASK_WRITE;
2715 	}
2716 
2717 	/* we should have already agreed on a version */
2718 	ASSERT(vd->operations != 0);
2719 }
2720 
2721 static int
2722 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2723 {
2724 	vd_attr_msg_t	*attr_msg = (vd_attr_msg_t *)msg;
2725 	int		status, retry = 0;
2726 
2727 
2728 	ASSERT(msglen >= sizeof (msg->tag));
2729 
2730 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2731 	    VIO_ATTR_INFO)) {
2732 		PR0("Message is not an attribute message");
2733 		return (ENOMSG);
2734 	}
2735 
2736 	if (msglen != sizeof (*attr_msg)) {
2737 		PR0("Expected %lu-byte attribute message; "
2738 		    "received %lu bytes", sizeof (*attr_msg), msglen);
2739 		return (EBADMSG);
2740 	}
2741 
2742 	if (attr_msg->max_xfer_sz == 0) {
2743 		PR0("Received maximum transfer size of 0 from client");
2744 		return (EBADMSG);
2745 	}
2746 
2747 	if ((attr_msg->xfer_mode != VIO_DESC_MODE) &&
2748 	    (attr_msg->xfer_mode != VIO_DRING_MODE)) {
2749 		PR0("Client requested unsupported transfer mode");
2750 		return (EBADMSG);
2751 	}
2752 
2753 	/*
2754 	 * check if the underlying disk is ready, if not try accessing
2755 	 * the device again. Open the vdisk device and extract info
2756 	 * about it, as this is needed to respond to the attr info msg
2757 	 */
2758 	if ((vd->initialized & VD_DISK_READY) == 0) {
2759 		PR0("Retry setting up disk (%s)", vd->device_path);
2760 		do {
2761 			status = vd_setup_vd(vd);
2762 			if (status != EAGAIN || ++retry > vds_dev_retries)
2763 				break;
2764 
2765 			/* incremental delay */
2766 			delay(drv_usectohz(vds_dev_delay));
2767 
2768 			/* if vdisk is no longer enabled - return error */
2769 			if (!vd_enabled(vd))
2770 				return (ENXIO);
2771 
2772 		} while (status == EAGAIN);
2773 
2774 		if (status)
2775 			return (ENXIO);
2776 
2777 		vd->initialized |= VD_DISK_READY;
2778 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
2779 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
2780 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
2781 		    (vd->pseudo ? "yes" : "no"),
2782 		    (vd->file ? "yes" : "no"),
2783 		    vd->nslices);
2784 	}
2785 
2786 	/* Success:  valid message and transfer mode */
2787 	vd->xfer_mode = attr_msg->xfer_mode;
2788 
2789 	if (vd->xfer_mode == VIO_DESC_MODE) {
2790 
2791 		/*
2792 		 * The vd_dring_inband_msg_t contains one cookie; need room
2793 		 * for up to n-1 more cookies, where "n" is the number of full
2794 		 * pages plus possibly one partial page required to cover
2795 		 * "max_xfer_sz".  Add room for one more cookie if
2796 		 * "max_xfer_sz" isn't an integral multiple of the page size.
2797 		 * Must first get the maximum transfer size in bytes.
2798 		 */
2799 		size_t	max_xfer_bytes = attr_msg->vdisk_block_size ?
2800 		    attr_msg->vdisk_block_size*attr_msg->max_xfer_sz :
2801 		    attr_msg->max_xfer_sz;
2802 		size_t	max_inband_msglen =
2803 		    sizeof (vd_dring_inband_msg_t) +
2804 		    ((max_xfer_bytes/PAGESIZE +
2805 		    ((max_xfer_bytes % PAGESIZE) ? 1 : 0))*
2806 		    (sizeof (ldc_mem_cookie_t)));
2807 
2808 		/*
2809 		 * Set the maximum expected message length to
2810 		 * accommodate in-band-descriptor messages with all
2811 		 * their cookies
2812 		 */
2813 		vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen);
2814 
2815 		/*
2816 		 * Initialize the data structure for processing in-band I/O
2817 		 * request descriptors
2818 		 */
2819 		vd->inband_task.vd	= vd;
2820 		vd->inband_task.msg	= kmem_alloc(vd->max_msglen, KM_SLEEP);
2821 		vd->inband_task.index	= 0;
2822 		vd->inband_task.type	= VD_FINAL_RANGE_TASK;	/* range == 1 */
2823 	}
2824 
2825 	/* Return the device's block size and max transfer size to the client */
2826 	attr_msg->vdisk_block_size	= DEV_BSIZE;
2827 	attr_msg->vdisk_block_size	= vd->block_size;
2828 	attr_msg->max_xfer_sz		= vd->max_xfer_sz;
2829 
2830 	attr_msg->vdisk_size = vd->vdisk_size;
2831 	attr_msg->vdisk_type = vd->vdisk_type;
2832 	attr_msg->vdisk_media = vd->vdisk_media;
2833 
2834 	/* Discover and save the list of supported VD_OP_XXX operations */
2835 	vd_set_exported_operations(vd);
2836 	attr_msg->operations = vd->operations;
2837 
2838 	PR0("%s", VD_CLIENT(vd));
2839 
2840 	ASSERT(vd->dring_task == NULL);
2841 
2842 	return (0);
2843 }
2844 
2845 static int
2846 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2847 {
2848 	int			status;
2849 	size_t			expected;
2850 	ldc_mem_info_t		dring_minfo;
2851 	vio_dring_reg_msg_t	*reg_msg = (vio_dring_reg_msg_t *)msg;
2852 
2853 
2854 	ASSERT(msglen >= sizeof (msg->tag));
2855 
2856 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2857 	    VIO_DRING_REG)) {
2858 		PR0("Message is not a register-dring message");
2859 		return (ENOMSG);
2860 	}
2861 
2862 	if (msglen < sizeof (*reg_msg)) {
2863 		PR0("Expected at least %lu-byte register-dring message; "
2864 		    "received %lu bytes", sizeof (*reg_msg), msglen);
2865 		return (EBADMSG);
2866 	}
2867 
2868 	expected = sizeof (*reg_msg) +
2869 	    (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0]));
2870 	if (msglen != expected) {
2871 		PR0("Expected %lu-byte register-dring message; "
2872 		    "received %lu bytes", expected, msglen);
2873 		return (EBADMSG);
2874 	}
2875 
2876 	if (vd->initialized & VD_DRING) {
2877 		PR0("A dring was previously registered; only support one");
2878 		return (EBADMSG);
2879 	}
2880 
2881 	if (reg_msg->num_descriptors > INT32_MAX) {
2882 		PR0("reg_msg->num_descriptors = %u; must be <= %u (%s)",
2883 		    reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX));
2884 		return (EBADMSG);
2885 	}
2886 
2887 	if (reg_msg->ncookies != 1) {
2888 		/*
2889 		 * In addition to fixing the assertion in the success case
2890 		 * below, supporting drings which require more than one
2891 		 * "cookie" requires increasing the value of vd->max_msglen
2892 		 * somewhere in the code path prior to receiving the message
2893 		 * which results in calling this function.  Note that without
2894 		 * making this change, the larger message size required to
2895 		 * accommodate multiple cookies cannot be successfully
2896 		 * received, so this function will not even get called.
2897 		 * Gracefully accommodating more dring cookies might
2898 		 * reasonably demand exchanging an additional attribute or
2899 		 * making a minor protocol adjustment
2900 		 */
2901 		PR0("reg_msg->ncookies = %u != 1", reg_msg->ncookies);
2902 		return (EBADMSG);
2903 	}
2904 
2905 	status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie,
2906 	    reg_msg->ncookies, reg_msg->num_descriptors,
2907 	    reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle);
2908 	if (status != 0) {
2909 		PR0("ldc_mem_dring_map() returned errno %d", status);
2910 		return (status);
2911 	}
2912 
2913 	/*
2914 	 * To remove the need for this assertion, must call
2915 	 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a
2916 	 * successful call to ldc_mem_dring_map()
2917 	 */
2918 	ASSERT(reg_msg->ncookies == 1);
2919 
2920 	if ((status =
2921 	    ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) {
2922 		PR0("ldc_mem_dring_info() returned errno %d", status);
2923 		if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)
2924 			PR0("ldc_mem_dring_unmap() returned errno %d", status);
2925 		return (status);
2926 	}
2927 
2928 	if (dring_minfo.vaddr == NULL) {
2929 		PR0("Descriptor ring virtual address is NULL");
2930 		return (ENXIO);
2931 	}
2932 
2933 
2934 	/* Initialize for valid message and mapped dring */
2935 	PR1("descriptor size = %u, dring length = %u",
2936 	    vd->descriptor_size, vd->dring_len);
2937 	vd->initialized |= VD_DRING;
2938 	vd->dring_ident = 1;	/* "There Can Be Only One" */
2939 	vd->dring = dring_minfo.vaddr;
2940 	vd->descriptor_size = reg_msg->descriptor_size;
2941 	vd->dring_len = reg_msg->num_descriptors;
2942 	reg_msg->dring_ident = vd->dring_ident;
2943 
2944 	/*
2945 	 * Allocate and initialize a "shadow" array of data structures for
2946 	 * tasks to process I/O requests in dring elements
2947 	 */
2948 	vd->dring_task =
2949 	    kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP);
2950 	for (int i = 0; i < vd->dring_len; i++) {
2951 		vd->dring_task[i].vd		= vd;
2952 		vd->dring_task[i].index		= i;
2953 		vd->dring_task[i].request	= &VD_DRING_ELEM(i)->payload;
2954 
2955 		status = ldc_mem_alloc_handle(vd->ldc_handle,
2956 		    &(vd->dring_task[i].mhdl));
2957 		if (status) {
2958 			PR0("ldc_mem_alloc_handle() returned err %d ", status);
2959 			return (ENXIO);
2960 		}
2961 
2962 		vd->dring_task[i].msg = kmem_alloc(vd->max_msglen, KM_SLEEP);
2963 	}
2964 
2965 	return (0);
2966 }
2967 
2968 static int
2969 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
2970 {
2971 	vio_dring_unreg_msg_t	*unreg_msg = (vio_dring_unreg_msg_t *)msg;
2972 
2973 
2974 	ASSERT(msglen >= sizeof (msg->tag));
2975 
2976 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO,
2977 	    VIO_DRING_UNREG)) {
2978 		PR0("Message is not an unregister-dring message");
2979 		return (ENOMSG);
2980 	}
2981 
2982 	if (msglen != sizeof (*unreg_msg)) {
2983 		PR0("Expected %lu-byte unregister-dring message; "
2984 		    "received %lu bytes", sizeof (*unreg_msg), msglen);
2985 		return (EBADMSG);
2986 	}
2987 
2988 	if (unreg_msg->dring_ident != vd->dring_ident) {
2989 		PR0("Expected dring ident %lu; received %lu",
2990 		    vd->dring_ident, unreg_msg->dring_ident);
2991 		return (EBADMSG);
2992 	}
2993 
2994 	return (0);
2995 }
2996 
2997 static int
2998 process_rdx_msg(vio_msg_t *msg, size_t msglen)
2999 {
3000 	ASSERT(msglen >= sizeof (msg->tag));
3001 
3002 	if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) {
3003 		PR0("Message is not an RDX message");
3004 		return (ENOMSG);
3005 	}
3006 
3007 	if (msglen != sizeof (vio_rdx_msg_t)) {
3008 		PR0("Expected %lu-byte RDX message; received %lu bytes",
3009 		    sizeof (vio_rdx_msg_t), msglen);
3010 		return (EBADMSG);
3011 	}
3012 
3013 	PR0("Valid RDX message");
3014 	return (0);
3015 }
3016 
3017 static int
3018 vd_check_seq_num(vd_t *vd, uint64_t seq_num)
3019 {
3020 	if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) {
3021 		PR0("Received seq_num %lu; expected %lu",
3022 		    seq_num, (vd->seq_num + 1));
3023 		PR0("initiating soft reset");
3024 		vd_need_reset(vd, B_FALSE);
3025 		return (1);
3026 	}
3027 
3028 	vd->seq_num = seq_num;
3029 	vd->initialized |= VD_SEQ_NUM;	/* superfluous after first time... */
3030 	return (0);
3031 }
3032 
3033 /*
3034  * Return the expected size of an inband-descriptor message with all the
3035  * cookies it claims to include
3036  */
3037 static size_t
3038 expected_inband_size(vd_dring_inband_msg_t *msg)
3039 {
3040 	return ((sizeof (*msg)) +
3041 	    (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0])));
3042 }
3043 
3044 /*
3045  * Process an in-band descriptor message:  used with clients like OBP, with
3046  * which vds exchanges descriptors within VIO message payloads, rather than
3047  * operating on them within a descriptor ring
3048  */
3049 static int
3050 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3051 {
3052 	size_t			expected;
3053 	vd_dring_inband_msg_t	*desc_msg = (vd_dring_inband_msg_t *)msg;
3054 
3055 
3056 	ASSERT(msglen >= sizeof (msg->tag));
3057 
3058 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3059 	    VIO_DESC_DATA)) {
3060 		PR1("Message is not an in-band-descriptor message");
3061 		return (ENOMSG);
3062 	}
3063 
3064 	if (msglen < sizeof (*desc_msg)) {
3065 		PR0("Expected at least %lu-byte descriptor message; "
3066 		    "received %lu bytes", sizeof (*desc_msg), msglen);
3067 		return (EBADMSG);
3068 	}
3069 
3070 	if (msglen != (expected = expected_inband_size(desc_msg))) {
3071 		PR0("Expected %lu-byte descriptor message; "
3072 		    "received %lu bytes", expected, msglen);
3073 		return (EBADMSG);
3074 	}
3075 
3076 	if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0)
3077 		return (EBADMSG);
3078 
3079 	/*
3080 	 * Valid message:  Set up the in-band descriptor task and process the
3081 	 * request.  Arrange to acknowledge the client's message, unless an
3082 	 * error processing the descriptor task results in setting
3083 	 * VIO_SUBTYPE_NACK
3084 	 */
3085 	PR1("Valid in-band-descriptor message");
3086 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3087 
3088 	ASSERT(vd->inband_task.msg != NULL);
3089 
3090 	bcopy(msg, vd->inband_task.msg, msglen);
3091 	vd->inband_task.msglen	= msglen;
3092 
3093 	/*
3094 	 * The task request is now the payload of the message
3095 	 * that was just copied into the body of the task.
3096 	 */
3097 	desc_msg = (vd_dring_inband_msg_t *)vd->inband_task.msg;
3098 	vd->inband_task.request	= &desc_msg->payload;
3099 
3100 	return (vd_process_task(&vd->inband_task));
3101 }
3102 
3103 static int
3104 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx,
3105     vio_msg_t *msg, size_t msglen)
3106 {
3107 	int			status;
3108 	boolean_t		ready;
3109 	vd_dring_entry_t	*elem = VD_DRING_ELEM(idx);
3110 
3111 
3112 	/* Accept the updated dring element */
3113 	if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) {
3114 		PR0("ldc_mem_dring_acquire() returned errno %d", status);
3115 		return (status);
3116 	}
3117 	ready = (elem->hdr.dstate == VIO_DESC_READY);
3118 	if (ready) {
3119 		elem->hdr.dstate = VIO_DESC_ACCEPTED;
3120 	} else {
3121 		PR0("descriptor %u not ready", idx);
3122 		VD_DUMP_DRING_ELEM(elem);
3123 	}
3124 	if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) {
3125 		PR0("ldc_mem_dring_release() returned errno %d", status);
3126 		return (status);
3127 	}
3128 	if (!ready)
3129 		return (EBUSY);
3130 
3131 
3132 	/* Initialize a task and process the accepted element */
3133 	PR1("Processing dring element %u", idx);
3134 	vd->dring_task[idx].type	= type;
3135 
3136 	/* duplicate msg buf for cookies etc. */
3137 	bcopy(msg, vd->dring_task[idx].msg, msglen);
3138 
3139 	vd->dring_task[idx].msglen	= msglen;
3140 	return (vd_process_task(&vd->dring_task[idx]));
3141 }
3142 
3143 static int
3144 vd_process_element_range(vd_t *vd, int start, int end,
3145     vio_msg_t *msg, size_t msglen)
3146 {
3147 	int		i, n, nelem, status = 0;
3148 	boolean_t	inprogress = B_FALSE;
3149 	vd_task_type_t	type;
3150 
3151 
3152 	ASSERT(start >= 0);
3153 	ASSERT(end >= 0);
3154 
3155 	/*
3156 	 * Arrange to acknowledge the client's message, unless an error
3157 	 * processing one of the dring elements results in setting
3158 	 * VIO_SUBTYPE_NACK
3159 	 */
3160 	msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3161 
3162 	/*
3163 	 * Process the dring elements in the range
3164 	 */
3165 	nelem = ((end < start) ? end + vd->dring_len : end) - start + 1;
3166 	for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) {
3167 		((vio_dring_msg_t *)msg)->end_idx = i;
3168 		type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK;
3169 		status = vd_process_element(vd, type, i, msg, msglen);
3170 		if (status == EINPROGRESS)
3171 			inprogress = B_TRUE;
3172 		else if (status != 0)
3173 			break;
3174 	}
3175 
3176 	/*
3177 	 * If some, but not all, operations of a multi-element range are in
3178 	 * progress, wait for other operations to complete before returning
3179 	 * (which will result in "ack" or "nack" of the message).  Note that
3180 	 * all outstanding operations will need to complete, not just the ones
3181 	 * corresponding to the current range of dring elements; howevever, as
3182 	 * this situation is an error case, performance is less critical.
3183 	 */
3184 	if ((nelem > 1) && (status != EINPROGRESS) && inprogress)
3185 		ddi_taskq_wait(vd->completionq);
3186 
3187 	return (status);
3188 }
3189 
3190 static int
3191 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3192 {
3193 	vio_dring_msg_t	*dring_msg = (vio_dring_msg_t *)msg;
3194 
3195 
3196 	ASSERT(msglen >= sizeof (msg->tag));
3197 
3198 	if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO,
3199 	    VIO_DRING_DATA)) {
3200 		PR1("Message is not a dring-data message");
3201 		return (ENOMSG);
3202 	}
3203 
3204 	if (msglen != sizeof (*dring_msg)) {
3205 		PR0("Expected %lu-byte dring message; received %lu bytes",
3206 		    sizeof (*dring_msg), msglen);
3207 		return (EBADMSG);
3208 	}
3209 
3210 	if (vd_check_seq_num(vd, dring_msg->seq_num) != 0)
3211 		return (EBADMSG);
3212 
3213 	if (dring_msg->dring_ident != vd->dring_ident) {
3214 		PR0("Expected dring ident %lu; received ident %lu",
3215 		    vd->dring_ident, dring_msg->dring_ident);
3216 		return (EBADMSG);
3217 	}
3218 
3219 	if (dring_msg->start_idx >= vd->dring_len) {
3220 		PR0("\"start_idx\" = %u; must be less than %u",
3221 		    dring_msg->start_idx, vd->dring_len);
3222 		return (EBADMSG);
3223 	}
3224 
3225 	if ((dring_msg->end_idx < 0) ||
3226 	    (dring_msg->end_idx >= vd->dring_len)) {
3227 		PR0("\"end_idx\" = %u; must be >= 0 and less than %u",
3228 		    dring_msg->end_idx, vd->dring_len);
3229 		return (EBADMSG);
3230 	}
3231 
3232 	/* Valid message; process range of updated dring elements */
3233 	PR1("Processing descriptor range, start = %u, end = %u",
3234 	    dring_msg->start_idx, dring_msg->end_idx);
3235 	return (vd_process_element_range(vd, dring_msg->start_idx,
3236 	    dring_msg->end_idx, msg, msglen));
3237 }
3238 
3239 static int
3240 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes)
3241 {
3242 	int	retry, status;
3243 	size_t	size = *nbytes;
3244 
3245 
3246 	for (retry = 0, status = ETIMEDOUT;
3247 	    retry < vds_ldc_retries && status == ETIMEDOUT;
3248 	    retry++) {
3249 		PR1("ldc_read() attempt %d", (retry + 1));
3250 		*nbytes = size;
3251 		status = ldc_read(ldc_handle, msg, nbytes);
3252 	}
3253 
3254 	if (status) {
3255 		PR0("ldc_read() returned errno %d", status);
3256 		if (status != ECONNRESET)
3257 			return (ENOMSG);
3258 		return (status);
3259 	} else if (*nbytes == 0) {
3260 		PR1("ldc_read() returned 0 and no message read");
3261 		return (ENOMSG);
3262 	}
3263 
3264 	PR1("RCVD %lu-byte message", *nbytes);
3265 	return (0);
3266 }
3267 
3268 static int
3269 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3270 {
3271 	int		status;
3272 
3273 
3274 	PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype,
3275 	    msg->tag.vio_subtype, msg->tag.vio_subtype_env);
3276 #ifdef	DEBUG
3277 	vd_decode_tag(msg);
3278 #endif
3279 
3280 	/*
3281 	 * Validate session ID up front, since it applies to all messages
3282 	 * once set
3283 	 */
3284 	if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) {
3285 		PR0("Expected SID %u, received %u", vd->sid,
3286 		    msg->tag.vio_sid);
3287 		return (EBADMSG);
3288 	}
3289 
3290 	PR1("\tWhile in state %d (%s)", vd->state, vd_decode_state(vd->state));
3291 
3292 	/*
3293 	 * Process the received message based on connection state
3294 	 */
3295 	switch (vd->state) {
3296 	case VD_STATE_INIT:	/* expect version message */
3297 		if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0)
3298 			return (status);
3299 
3300 		/* Version negotiated, move to that state */
3301 		vd->state = VD_STATE_VER;
3302 		return (0);
3303 
3304 	case VD_STATE_VER:	/* expect attribute message */
3305 		if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0)
3306 			return (status);
3307 
3308 		/* Attributes exchanged, move to that state */
3309 		vd->state = VD_STATE_ATTR;
3310 		return (0);
3311 
3312 	case VD_STATE_ATTR:
3313 		switch (vd->xfer_mode) {
3314 		case VIO_DESC_MODE:	/* expect RDX message */
3315 			if ((status = process_rdx_msg(msg, msglen)) != 0)
3316 				return (status);
3317 
3318 			/* Ready to receive in-band descriptors */
3319 			vd->state = VD_STATE_DATA;
3320 			return (0);
3321 
3322 		case VIO_DRING_MODE:	/* expect register-dring message */
3323 			if ((status =
3324 			    vd_process_dring_reg_msg(vd, msg, msglen)) != 0)
3325 				return (status);
3326 
3327 			/* One dring negotiated, move to that state */
3328 			vd->state = VD_STATE_DRING;
3329 			return (0);
3330 
3331 		default:
3332 			ASSERT("Unsupported transfer mode");
3333 			PR0("Unsupported transfer mode");
3334 			return (ENOTSUP);
3335 		}
3336 
3337 	case VD_STATE_DRING:	/* expect RDX, register-dring, or unreg-dring */
3338 		if ((status = process_rdx_msg(msg, msglen)) == 0) {
3339 			/* Ready to receive data */
3340 			vd->state = VD_STATE_DATA;
3341 			return (0);
3342 		} else if (status != ENOMSG) {
3343 			return (status);
3344 		}
3345 
3346 
3347 		/*
3348 		 * If another register-dring message is received, stay in
3349 		 * dring state in case the client sends RDX; although the
3350 		 * protocol allows multiple drings, this server does not
3351 		 * support using more than one
3352 		 */
3353 		if ((status =
3354 		    vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG)
3355 			return (status);
3356 
3357 		/*
3358 		 * Acknowledge an unregister-dring message, but reset the
3359 		 * connection anyway:  Although the protocol allows
3360 		 * unregistering drings, this server cannot serve a vdisk
3361 		 * without its only dring
3362 		 */
3363 		status = vd_process_dring_unreg_msg(vd, msg, msglen);
3364 		return ((status == 0) ? ENOTSUP : status);
3365 
3366 	case VD_STATE_DATA:
3367 		switch (vd->xfer_mode) {
3368 		case VIO_DESC_MODE:	/* expect in-band-descriptor message */
3369 			return (vd_process_desc_msg(vd, msg, msglen));
3370 
3371 		case VIO_DRING_MODE:	/* expect dring-data or unreg-dring */
3372 			/*
3373 			 * Typically expect dring-data messages, so handle
3374 			 * them first
3375 			 */
3376 			if ((status = vd_process_dring_msg(vd, msg,
3377 			    msglen)) != ENOMSG)
3378 				return (status);
3379 
3380 			/*
3381 			 * Acknowledge an unregister-dring message, but reset
3382 			 * the connection anyway:  Although the protocol
3383 			 * allows unregistering drings, this server cannot
3384 			 * serve a vdisk without its only dring
3385 			 */
3386 			status = vd_process_dring_unreg_msg(vd, msg, msglen);
3387 			return ((status == 0) ? ENOTSUP : status);
3388 
3389 		default:
3390 			ASSERT("Unsupported transfer mode");
3391 			PR0("Unsupported transfer mode");
3392 			return (ENOTSUP);
3393 		}
3394 
3395 	default:
3396 		ASSERT("Invalid client connection state");
3397 		PR0("Invalid client connection state");
3398 		return (ENOTSUP);
3399 	}
3400 }
3401 
3402 static int
3403 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen)
3404 {
3405 	int		status;
3406 	boolean_t	reset_ldc = B_FALSE;
3407 	vd_task_t	task;
3408 
3409 	/*
3410 	 * Check that the message is at least big enough for a "tag", so that
3411 	 * message processing can proceed based on tag-specified message type
3412 	 */
3413 	if (msglen < sizeof (vio_msg_tag_t)) {
3414 		PR0("Received short (%lu-byte) message", msglen);
3415 		/* Can't "nack" short message, so drop the big hammer */
3416 		PR0("initiating full reset");
3417 		vd_need_reset(vd, B_TRUE);
3418 		return (EBADMSG);
3419 	}
3420 
3421 	/*
3422 	 * Process the message
3423 	 */
3424 	switch (status = vd_do_process_msg(vd, msg, msglen)) {
3425 	case 0:
3426 		/* "ack" valid, successfully-processed messages */
3427 		msg->tag.vio_subtype = VIO_SUBTYPE_ACK;
3428 		break;
3429 
3430 	case EINPROGRESS:
3431 		/* The completion handler will "ack" or "nack" the message */
3432 		return (EINPROGRESS);
3433 	case ENOMSG:
3434 		PR0("Received unexpected message");
3435 		_NOTE(FALLTHROUGH);
3436 	case EBADMSG:
3437 	case ENOTSUP:
3438 		/* "transport" error will cause NACK of invalid messages */
3439 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3440 		break;
3441 
3442 	default:
3443 		/* "transport" error will cause NACK of invalid messages */
3444 		msg->tag.vio_subtype = VIO_SUBTYPE_NACK;
3445 		/* An LDC error probably occurred, so try resetting it */
3446 		reset_ldc = B_TRUE;
3447 		break;
3448 	}
3449 
3450 	PR1("\tResulting in state %d (%s)", vd->state,
3451 	    vd_decode_state(vd->state));
3452 
3453 	/* populate the task so we can dispatch it on the taskq */
3454 	task.vd = vd;
3455 	task.msg = msg;
3456 	task.msglen = msglen;
3457 
3458 	/*
3459 	 * Queue a task to send the notification that the operation completed.
3460 	 * We need to ensure that requests are responded to in the correct
3461 	 * order and since the taskq is processed serially this ordering
3462 	 * is maintained.
3463 	 */
3464 	(void) ddi_taskq_dispatch(vd->completionq, vd_serial_notify,
3465 	    &task, DDI_SLEEP);
3466 
3467 	/*
3468 	 * To ensure handshake negotiations do not happen out of order, such
3469 	 * requests that come through this path should not be done in parallel
3470 	 * so we need to wait here until the response is sent to the client.
3471 	 */
3472 	ddi_taskq_wait(vd->completionq);
3473 
3474 	/* Arrange to reset the connection for nack'ed or failed messages */
3475 	if ((status != 0) || reset_ldc) {
3476 		PR0("initiating %s reset",
3477 		    (reset_ldc) ? "full" : "soft");
3478 		vd_need_reset(vd, reset_ldc);
3479 	}
3480 
3481 	return (status);
3482 }
3483 
3484 static boolean_t
3485 vd_enabled(vd_t *vd)
3486 {
3487 	boolean_t	enabled;
3488 
3489 	mutex_enter(&vd->lock);
3490 	enabled = vd->enabled;
3491 	mutex_exit(&vd->lock);
3492 	return (enabled);
3493 }
3494 
3495 static void
3496 vd_recv_msg(void *arg)
3497 {
3498 	vd_t	*vd = (vd_t *)arg;
3499 	int	rv = 0, status = 0;
3500 
3501 	ASSERT(vd != NULL);
3502 
3503 	PR2("New task to receive incoming message(s)");
3504 
3505 
3506 	while (vd_enabled(vd) && status == 0) {
3507 		size_t		msglen, msgsize;
3508 		ldc_status_t	lstatus;
3509 
3510 		/*
3511 		 * Receive and process a message
3512 		 */
3513 		vd_reset_if_needed(vd);	/* can change vd->max_msglen */
3514 
3515 		/*
3516 		 * check if channel is UP - else break out of loop
3517 		 */
3518 		status = ldc_status(vd->ldc_handle, &lstatus);
3519 		if (lstatus != LDC_UP) {
3520 			PR0("channel not up (status=%d), exiting recv loop\n",
3521 			    lstatus);
3522 			break;
3523 		}
3524 
3525 		ASSERT(vd->max_msglen != 0);
3526 
3527 		msgsize = vd->max_msglen; /* stable copy for alloc/free */
3528 		msglen	= msgsize;	  /* actual len after recv_msg() */
3529 
3530 		status = recv_msg(vd->ldc_handle, vd->vio_msgp, &msglen);
3531 		switch (status) {
3532 		case 0:
3533 			rv = vd_process_msg(vd, (vio_msg_t *)vd->vio_msgp,
3534 			    msglen);
3535 			/* check if max_msglen changed */
3536 			if (msgsize != vd->max_msglen) {
3537 				PR0("max_msglen changed 0x%lx to 0x%lx bytes\n",
3538 				    msgsize, vd->max_msglen);
3539 				kmem_free(vd->vio_msgp, msgsize);
3540 				vd->vio_msgp =
3541 				    kmem_alloc(vd->max_msglen, KM_SLEEP);
3542 			}
3543 			if (rv == EINPROGRESS)
3544 				continue;
3545 			break;
3546 
3547 		case ENOMSG:
3548 			break;
3549 
3550 		case ECONNRESET:
3551 			PR0("initiating soft reset (ECONNRESET)\n");
3552 			vd_need_reset(vd, B_FALSE);
3553 			status = 0;
3554 			break;
3555 
3556 		default:
3557 			/* Probably an LDC failure; arrange to reset it */
3558 			PR0("initiating full reset (status=0x%x)", status);
3559 			vd_need_reset(vd, B_TRUE);
3560 			break;
3561 		}
3562 	}
3563 
3564 	PR2("Task finished");
3565 }
3566 
3567 static uint_t
3568 vd_handle_ldc_events(uint64_t event, caddr_t arg)
3569 {
3570 	vd_t	*vd = (vd_t *)(void *)arg;
3571 	int	status;
3572 
3573 	ASSERT(vd != NULL);
3574 
3575 	if (!vd_enabled(vd))
3576 		return (LDC_SUCCESS);
3577 
3578 	if (event & LDC_EVT_DOWN) {
3579 		PR0("LDC_EVT_DOWN: LDC channel went down");
3580 
3581 		vd_need_reset(vd, B_TRUE);
3582 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3583 		    DDI_SLEEP);
3584 		if (status == DDI_FAILURE) {
3585 			PR0("cannot schedule task to recv msg\n");
3586 			vd_need_reset(vd, B_TRUE);
3587 		}
3588 	}
3589 
3590 	if (event & LDC_EVT_RESET) {
3591 		PR0("LDC_EVT_RESET: LDC channel was reset");
3592 
3593 		if (vd->state != VD_STATE_INIT) {
3594 			PR0("scheduling full reset");
3595 			vd_need_reset(vd, B_FALSE);
3596 			status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3597 			    vd, DDI_SLEEP);
3598 			if (status == DDI_FAILURE) {
3599 				PR0("cannot schedule task to recv msg\n");
3600 				vd_need_reset(vd, B_TRUE);
3601 			}
3602 
3603 		} else {
3604 			PR0("channel already reset, ignoring...\n");
3605 			PR0("doing ldc up...\n");
3606 			(void) ldc_up(vd->ldc_handle);
3607 		}
3608 
3609 		return (LDC_SUCCESS);
3610 	}
3611 
3612 	if (event & LDC_EVT_UP) {
3613 		PR0("EVT_UP: LDC is up\nResetting client connection state");
3614 		PR0("initiating soft reset");
3615 		vd_need_reset(vd, B_FALSE);
3616 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg,
3617 		    vd, DDI_SLEEP);
3618 		if (status == DDI_FAILURE) {
3619 			PR0("cannot schedule task to recv msg\n");
3620 			vd_need_reset(vd, B_TRUE);
3621 			return (LDC_SUCCESS);
3622 		}
3623 	}
3624 
3625 	if (event & LDC_EVT_READ) {
3626 		int	status;
3627 
3628 		PR1("New data available");
3629 		/* Queue a task to receive the new data */
3630 		status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd,
3631 		    DDI_SLEEP);
3632 
3633 		if (status == DDI_FAILURE) {
3634 			PR0("cannot schedule task to recv msg\n");
3635 			vd_need_reset(vd, B_TRUE);
3636 		}
3637 	}
3638 
3639 	return (LDC_SUCCESS);
3640 }
3641 
3642 static uint_t
3643 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
3644 {
3645 	_NOTE(ARGUNUSED(key, val))
3646 	(*((uint_t *)arg))++;
3647 	return (MH_WALK_TERMINATE);
3648 }
3649 
3650 
3651 static int
3652 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3653 {
3654 	uint_t	vd_present = 0;
3655 	minor_t	instance;
3656 	vds_t	*vds;
3657 
3658 
3659 	switch (cmd) {
3660 	case DDI_DETACH:
3661 		/* the real work happens below */
3662 		break;
3663 	case DDI_SUSPEND:
3664 		PR0("No action required for DDI_SUSPEND");
3665 		return (DDI_SUCCESS);
3666 	default:
3667 		PR0("Unrecognized \"cmd\"");
3668 		return (DDI_FAILURE);
3669 	}
3670 
3671 	ASSERT(cmd == DDI_DETACH);
3672 	instance = ddi_get_instance(dip);
3673 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
3674 		PR0("Could not get state for instance %u", instance);
3675 		ddi_soft_state_free(vds_state, instance);
3676 		return (DDI_FAILURE);
3677 	}
3678 
3679 	/* Do no detach when serving any vdisks */
3680 	mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present);
3681 	if (vd_present) {
3682 		PR0("Not detaching because serving vdisks");
3683 		return (DDI_FAILURE);
3684 	}
3685 
3686 	PR0("Detaching");
3687 	if (vds->initialized & VDS_MDEG) {
3688 		(void) mdeg_unregister(vds->mdeg);
3689 		kmem_free(vds->ispecp->specp, sizeof (vds_prop_template));
3690 		kmem_free(vds->ispecp, sizeof (mdeg_node_spec_t));
3691 		vds->ispecp = NULL;
3692 		vds->mdeg = NULL;
3693 	}
3694 
3695 	if (vds->initialized & VDS_LDI)
3696 		(void) ldi_ident_release(vds->ldi_ident);
3697 	mod_hash_destroy_hash(vds->vd_table);
3698 	ddi_soft_state_free(vds_state, instance);
3699 	return (DDI_SUCCESS);
3700 }
3701 
3702 static boolean_t
3703 is_pseudo_device(dev_info_t *dip)
3704 {
3705 	dev_info_t	*parent, *root = ddi_root_node();
3706 
3707 
3708 	for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root);
3709 	    parent = ddi_get_parent(parent)) {
3710 		if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0)
3711 			return (B_TRUE);
3712 	}
3713 
3714 	return (B_FALSE);
3715 }
3716 
3717 /*
3718  * Description:
3719  *	This function checks to see if the file being used as a
3720  *	virtual disk is an ISO image. An ISO image is a special
3721  *	case which can be booted/installed from like a CD/DVD
3722  *
3723  * Parameters:
3724  *	vd		- disk on which the operation is performed.
3725  *
3726  * Return Code:
3727  *	B_TRUE		- The file is an ISO 9660 compliant image
3728  *	B_FALSE		- just a regular disk image file
3729  */
3730 static boolean_t
3731 vd_file_is_iso_image(vd_t *vd)
3732 {
3733 	char	iso_buf[ISO_SECTOR_SIZE];
3734 	int	i, rv;
3735 	uint_t	sec;
3736 
3737 	ASSERT(vd->file);
3738 
3739 	/*
3740 	 * If we have already discovered and saved this info we can
3741 	 * short-circuit the check and avoid reading the file.
3742 	 */
3743 	if (vd->vdisk_media == VD_MEDIA_DVD || vd->vdisk_media == VD_MEDIA_CD)
3744 		return (B_TRUE);
3745 
3746 	/*
3747 	 * We wish to read the sector that should contain the 2nd ISO volume
3748 	 * descriptor. The second field in this descriptor is called the
3749 	 * Standard Identifier and is set to CD001 for a CD-ROM compliant
3750 	 * to the ISO 9660 standard.
3751 	 */
3752 	sec = (ISO_VOLDESC_SEC * ISO_SECTOR_SIZE) / vd->vdisk_block_size;
3753 	rv = vd_file_rw(vd, VD_SLICE_NONE, VD_OP_BREAD, (caddr_t)iso_buf,
3754 	    sec, ISO_SECTOR_SIZE);
3755 
3756 	if (rv < 0)
3757 		return (B_FALSE);
3758 
3759 	for (i = 0; i < ISO_ID_STRLEN; i++) {
3760 		if (ISO_STD_ID(iso_buf)[i] != ISO_ID_STRING[i])
3761 			return (B_FALSE);
3762 	}
3763 
3764 	return (B_TRUE);
3765 }
3766 
3767 /*
3768  * Description:
3769  *	This function checks to see if the virtual device is an ATAPI
3770  *	device. ATAPI devices use Group 1 Read/Write commands, so
3771  *	any USCSI calls vds makes need to take this into account.
3772  *
3773  * Parameters:
3774  *	vd		- disk on which the operation is performed.
3775  *
3776  * Return Code:
3777  *	B_TRUE		- The virtual disk is backed by an ATAPI device
3778  *	B_FALSE		- not an ATAPI device (presumably SCSI)
3779  */
3780 static boolean_t
3781 vd_is_atapi_device(vd_t *vd)
3782 {
3783 	boolean_t	is_atapi = B_FALSE;
3784 	char		*variantp;
3785 	int		rv;
3786 
3787 	ASSERT(vd->ldi_handle[0] != NULL);
3788 	ASSERT(!vd->file);
3789 
3790 	rv = ldi_prop_lookup_string(vd->ldi_handle[0],
3791 	    (LDI_DEV_T_ANY | DDI_PROP_DONTPASS), "variant", &variantp);
3792 	if (rv == DDI_PROP_SUCCESS) {
3793 		PR0("'variant' property exists for %s", vd->device_path);
3794 		if (strcmp(variantp, "atapi") == 0)
3795 			is_atapi = B_TRUE;
3796 		ddi_prop_free(variantp);
3797 	}
3798 
3799 	rv = ldi_prop_exists(vd->ldi_handle[0], LDI_DEV_T_ANY, "atapi");
3800 	if (rv) {
3801 		PR0("'atapi' property exists for %s", vd->device_path);
3802 		is_atapi = B_TRUE;
3803 	}
3804 
3805 	return (is_atapi);
3806 }
3807 
3808 static int
3809 vd_setup_full_disk(vd_t *vd)
3810 {
3811 	int		rval, status;
3812 	major_t		major = getmajor(vd->dev[0]);
3813 	minor_t		minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE;
3814 	struct dk_minfo	dk_minfo;
3815 
3816 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_DISK);
3817 
3818 	/*
3819 	 * At this point, vdisk_size is set to the size of partition 2 but
3820 	 * this does not represent the size of the disk because partition 2
3821 	 * may not cover the entire disk and its size does not include reserved
3822 	 * blocks. So we update vdisk_size to be the size of the entire disk.
3823 	 */
3824 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO,
3825 	    (intptr_t)&dk_minfo, (vd->open_flags | FKIOCTL),
3826 	    kcred, &rval)) != 0) {
3827 		PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d",
3828 		    status);
3829 		return (status);
3830 	}
3831 	vd->vdisk_size = dk_minfo.dki_capacity;
3832 	vd->block_size = dk_minfo.dki_lbsize;
3833 	vd->vdisk_media = DK_MEDIATYPE2VD_MEDIATYPE(dk_minfo.dki_media_type);
3834 	vd->vdisk_block_size = DEV_BSIZE;
3835 
3836 	/* Move dev number and LDI handle to entire-disk-slice array elements */
3837 	vd->dev[VD_ENTIRE_DISK_SLICE]		= vd->dev[0];
3838 	vd->dev[0]				= 0;
3839 	vd->ldi_handle[VD_ENTIRE_DISK_SLICE]	= vd->ldi_handle[0];
3840 	vd->ldi_handle[0]			= NULL;
3841 
3842 	/* Initialize device numbers for remaining slices and open them */
3843 	for (int slice = 0; slice < vd->nslices; slice++) {
3844 		/*
3845 		 * Skip the entire-disk slice, as it's already open and its
3846 		 * device known
3847 		 */
3848 		if (slice == VD_ENTIRE_DISK_SLICE)
3849 			continue;
3850 		ASSERT(vd->dev[slice] == 0);
3851 		ASSERT(vd->ldi_handle[slice] == NULL);
3852 
3853 		/*
3854 		 * Construct the device number for the current slice
3855 		 */
3856 		vd->dev[slice] = makedevice(major, (minor + slice));
3857 
3858 		/*
3859 		 * Open all slices of the disk to serve them to the client.
3860 		 * Slices are opened exclusively to prevent other threads or
3861 		 * processes in the service domain from performing I/O to
3862 		 * slices being accessed by a client.  Failure to open a slice
3863 		 * results in vds not serving this disk, as the client could
3864 		 * attempt (and should be able) to access any slice immediately.
3865 		 * Any slices successfully opened before a failure will get
3866 		 * closed by vds_destroy_vd() as a result of the error returned
3867 		 * by this function.
3868 		 *
3869 		 * We need to do the open with FNDELAY so that opening an empty
3870 		 * slice does not fail.
3871 		 */
3872 		PR0("Opening device major %u, minor %u = slice %u",
3873 		    major, minor, slice);
3874 
3875 		/*
3876 		 * Try to open the device. This can fail for example if we are
3877 		 * opening an empty slice. So in case of a failure, we try the
3878 		 * open again but this time with the FNDELAY flag.
3879 		 */
3880 		status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3881 		    vd->open_flags, kcred, &vd->ldi_handle[slice],
3882 		    vd->vds->ldi_ident);
3883 
3884 		if (status != 0) {
3885 			status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK,
3886 			    vd->open_flags | FNDELAY, kcred,
3887 			    &vd->ldi_handle[slice], vd->vds->ldi_ident);
3888 		}
3889 
3890 		if (status != 0) {
3891 			PRN("ldi_open_by_dev() returned errno %d "
3892 			    "for slice %u", status, slice);
3893 			/* vds_destroy_vd() will close any open slices */
3894 			vd->ldi_handle[slice] = NULL;
3895 			return (status);
3896 		}
3897 	}
3898 
3899 	return (0);
3900 }
3901 
3902 static int
3903 vd_setup_partition_vtoc(vd_t *vd)
3904 {
3905 	int rval, status;
3906 	char *device_path = vd->device_path;
3907 
3908 	status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM,
3909 	    (intptr_t)&vd->dk_geom, (vd->open_flags | FKIOCTL), kcred, &rval);
3910 
3911 	if (status != 0) {
3912 		PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s",
3913 		    status, device_path);
3914 		return (status);
3915 	}
3916 
3917 	/* Initialize dk_geom structure for single-slice device */
3918 	if (vd->dk_geom.dkg_nsect == 0) {
3919 		PRN("%s geometry claims 0 sectors per track", device_path);
3920 		return (EIO);
3921 	}
3922 	if (vd->dk_geom.dkg_nhead == 0) {
3923 		PRN("%s geometry claims 0 heads", device_path);
3924 		return (EIO);
3925 	}
3926 	vd->dk_geom.dkg_ncyl = vd->vdisk_size / vd->dk_geom.dkg_nsect /
3927 	    vd->dk_geom.dkg_nhead;
3928 	vd->dk_geom.dkg_acyl = 0;
3929 	vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl;
3930 
3931 
3932 	/* Initialize vtoc structure for single-slice device */
3933 	bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume,
3934 	    MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume)));
3935 	bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part));
3936 	vd->vtoc.v_nparts = 1;
3937 	vd->vtoc.v_part[0].p_tag = V_UNASSIGNED;
3938 	vd->vtoc.v_part[0].p_flag = 0;
3939 	vd->vtoc.v_part[0].p_start = 0;
3940 	vd->vtoc.v_part[0].p_size = vd->vdisk_size;
3941 	bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel,
3942 	    MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel)));
3943 
3944 	return (0);
3945 }
3946 
3947 static int
3948 vd_setup_partition_efi(vd_t *vd)
3949 {
3950 	efi_gpt_t *gpt;
3951 	efi_gpe_t *gpe;
3952 	struct uuid uuid = EFI_RESERVED;
3953 	uint32_t crc;
3954 	int length;
3955 
3956 	length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t);
3957 
3958 	gpt = kmem_zalloc(length, KM_SLEEP);
3959 	gpe = (efi_gpe_t *)(gpt + 1);
3960 
3961 	gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
3962 	gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
3963 	gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t));
3964 	gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL);
3965 	gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1);
3966 	gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1);
3967 	gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t));
3968 
3969 	UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid);
3970 	gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA;
3971 	gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA;
3972 
3973 	CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table);
3974 	gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
3975 
3976 	CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table);
3977 	gpt->efi_gpt_HeaderCRC32 = LE_32(~crc);
3978 
3979 	vd->dk_efi.dki_lba = 0;
3980 	vd->dk_efi.dki_length = length;
3981 	vd->dk_efi.dki_data = gpt;
3982 
3983 	return (0);
3984 }
3985 
3986 /*
3987  * Setup for a virtual disk whose backend is a file (exported as a single slice
3988  * or as a full disk) or a pseudo device (for example a ZFS, SVM or VxVM volume)
3989  * exported as a full disk. In these cases, the backend is accessed using the
3990  * vnode interface.
3991  */
3992 static int
3993 vd_setup_backend_vnode(vd_t *vd)
3994 {
3995 	int 		rval, status;
3996 	vattr_t		vattr;
3997 	dev_t		dev;
3998 	char		*file_path = vd->device_path;
3999 	char		dev_path[MAXPATHLEN + 1];
4000 	ldi_handle_t	lhandle;
4001 	struct dk_cinfo	dk_cinfo;
4002 
4003 	if ((status = vn_open(file_path, UIO_SYSSPACE, vd->open_flags | FOFFMAX,
4004 	    0, &vd->file_vnode, 0, 0)) != 0) {
4005 		PRN("vn_open(%s) = errno %d", file_path, status);
4006 		return (status);
4007 	}
4008 
4009 	/*
4010 	 * We set vd->file now so that vds_destroy_vd will take care of
4011 	 * closing the file and releasing the vnode in case of an error.
4012 	 */
4013 	vd->file = B_TRUE;
4014 
4015 	vattr.va_mask = AT_SIZE;
4016 	if ((status = VOP_GETATTR(vd->file_vnode, &vattr, 0, kcred, NULL))
4017 	    != 0) {
4018 		PRN("VOP_GETATTR(%s) = errno %d", file_path, status);
4019 		return (EIO);
4020 	}
4021 
4022 	vd->file_size = vattr.va_size;
4023 	/* size should be at least sizeof(dk_label) */
4024 	if (vd->file_size < sizeof (struct dk_label)) {
4025 		PRN("Size of file has to be at least %ld bytes",
4026 		    sizeof (struct dk_label));
4027 		return (EIO);
4028 	}
4029 
4030 	if (vd->file_vnode->v_flag & VNOMAP) {
4031 		PRN("File %s cannot be mapped", file_path);
4032 		return (EIO);
4033 	}
4034 
4035 	/*
4036 	 * Find and validate the geometry of a disk image. For a single slice
4037 	 * disk image, this will build a fake geometry and vtoc.
4038 	 */
4039 	status = vd_file_validate_geometry(vd);
4040 	if (status != 0 && status != EINVAL) {
4041 		PRN("Failed to read label from %s", file_path);
4042 		return (EIO);
4043 	}
4044 
4045 	/* sector size = block size = DEV_BSIZE */
4046 	vd->block_size = DEV_BSIZE;
4047 	vd->vdisk_block_size = DEV_BSIZE;
4048 	vd->vdisk_size = vd->file_size / DEV_BSIZE;
4049 	vd->max_xfer_sz = maxphys / DEV_BSIZE; /* default transfer size */
4050 
4051 	if (vd_file_is_iso_image(vd)) {
4052 		/*
4053 		 * Indicate whether to call this a CD or DVD from the size
4054 		 * of the ISO image (images for both drive types are stored
4055 		 * in the ISO-9600 format). CDs can store up to just under 1Gb
4056 		 */
4057 		if ((vd->vdisk_size * vd->vdisk_block_size) >
4058 		    (1024 * 1024 * 1024))
4059 			vd->vdisk_media = VD_MEDIA_DVD;
4060 		else
4061 			vd->vdisk_media = VD_MEDIA_CD;
4062 	} else {
4063 		vd->vdisk_media = VD_MEDIA_FIXED;
4064 	}
4065 
4066 	/*
4067 	 * Get max_xfer_sz from the device where the file is or from the device
4068 	 * itself if we have a pseudo device.
4069 	 */
4070 	dev_path[0] = '\0';
4071 
4072 	if (vd->pseudo) {
4073 		status = ldi_open_by_name(file_path, FREAD, kcred, &lhandle,
4074 		    vd->vds->ldi_ident);
4075 	} else {
4076 		dev = vd->file_vnode->v_vfsp->vfs_dev;
4077 		if (ddi_dev_pathname(dev, S_IFBLK, dev_path) == DDI_SUCCESS) {
4078 			PR0("underlying device = %s\n", dev_path);
4079 		}
4080 
4081 		status = ldi_open_by_dev(&dev, OTYP_BLK, FREAD, kcred, &lhandle,
4082 		    vd->vds->ldi_ident);
4083 	}
4084 
4085 	if (status != 0) {
4086 		PR0("ldi_open() returned errno %d for device %s",
4087 		    status, (dev_path[0] == '\0')? file_path : dev_path);
4088 	} else {
4089 		if ((status = ldi_ioctl(lhandle, DKIOCINFO,
4090 		    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
4091 		    &rval)) != 0) {
4092 			PR0("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
4093 			    status, dev_path);
4094 		} else {
4095 			/*
4096 			 * Store the device's max transfer size for
4097 			 * return to the client
4098 			 */
4099 			vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
4100 		}
4101 
4102 		PR0("close the device %s", dev_path);
4103 		(void) ldi_close(lhandle, FREAD, kcred);
4104 	}
4105 
4106 	PR0("using file %s, dev %s, max_xfer = %u blks",
4107 	    file_path, dev_path, vd->max_xfer_sz);
4108 
4109 	/* Setup devid for the disk image */
4110 
4111 	if (vd->vdisk_type == VD_DISK_TYPE_SLICE)
4112 		return (0);
4113 
4114 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
4115 
4116 		status = vd_file_read_devid(vd, &vd->file_devid);
4117 
4118 		if (status == 0) {
4119 			/* a valid devid was found */
4120 			return (0);
4121 		}
4122 
4123 		if (status != EINVAL) {
4124 			/*
4125 			 * There was an error while trying to read the devid.
4126 			 * So this disk image may have a devid but we are
4127 			 * unable to read it.
4128 			 */
4129 			PR0("can not read devid for %s", file_path);
4130 			vd->file_devid = NULL;
4131 			return (0);
4132 		}
4133 	}
4134 
4135 	/*
4136 	 * No valid device id was found so we create one. Note that a failure
4137 	 * to create a device id is not fatal and does not prevent the disk
4138 	 * image from being attached.
4139 	 */
4140 	PR1("creating devid for %s", file_path);
4141 
4142 	if (ddi_devid_init(vd->vds->dip, DEVID_FAB, NULL, 0,
4143 	    &vd->file_devid) != DDI_SUCCESS) {
4144 		PR0("fail to create devid for %s", file_path);
4145 		vd->file_devid = NULL;
4146 		return (0);
4147 	}
4148 
4149 	/*
4150 	 * Write devid to the disk image. The devid is stored into the disk
4151 	 * image if we have a valid label; otherwise the devid will be stored
4152 	 * when the user writes a valid label.
4153 	 */
4154 	if (vd->vdisk_label != VD_DISK_LABEL_UNK) {
4155 		if (vd_file_write_devid(vd, vd->file_devid) != 0) {
4156 			PR0("fail to write devid for %s", file_path);
4157 			ddi_devid_free(vd->file_devid);
4158 			vd->file_devid = NULL;
4159 		}
4160 	}
4161 
4162 	return (0);
4163 }
4164 
4165 
4166 /*
4167  * Description:
4168  *	Open a device using its device path (supplied by ldm(1m))
4169  *
4170  * Parameters:
4171  *	vd 	- pointer to structure containing the vDisk info
4172  *
4173  * Return Value
4174  *	0	- success
4175  *	EIO	- Invalid number of partitions
4176  *	!= 0	- some other non-zero return value from ldi(9F) functions
4177  */
4178 static int
4179 vd_open_using_ldi_by_name(vd_t *vd)
4180 {
4181 	int		rval, status, open_flags;
4182 	struct dk_cinfo	dk_cinfo;
4183 	char		*device_path = vd->device_path;
4184 
4185 	/*
4186 	 * Try to open the device. If the flags indicate that the device should
4187 	 * be opened write-enabled, we first we try to open it "read-only"
4188 	 * to see if we have an optical device such as a CD-ROM which, for
4189 	 * now, we do not permit writes to and thus should not export write
4190 	 * operations to the client.
4191 	 *
4192 	 * Future: if/when we implement support for guest domains writing to
4193 	 * optical devices we will need to do further checking of the media type
4194 	 * to distinguish between read-only and writable discs.
4195 	 */
4196 	if (vd->open_flags & FWRITE) {
4197 		open_flags = vd->open_flags & ~FWRITE;
4198 		status = ldi_open_by_name(device_path, open_flags, kcred,
4199 		    &vd->ldi_handle[0], vd->vds->ldi_ident);
4200 
4201 		if (status == 0) {
4202 			/* Verify backing device supports dk_cinfo */
4203 			status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
4204 			    (intptr_t)&dk_cinfo, (open_flags | FKIOCTL),
4205 			    kcred, &rval);
4206 			if (status != 0) {
4207 				PRN("ldi_ioctl(DKIOCINFO) returned errno %d for"
4208 				    " %s opened as RO", status, device_path);
4209 				return (status);
4210 			}
4211 
4212 			if (dk_cinfo.dki_partition >= V_NUMPAR) {
4213 				PRN("slice %u >= maximum slice %u for %s",
4214 				    dk_cinfo.dki_partition, V_NUMPAR,
4215 				    device_path);
4216 				return (EIO);
4217 			}
4218 
4219 			/*
4220 			 * If this is an optical device then we disable
4221 			 * write access and return, otherwise we close
4222 			 * the device and try again with writes enabled.
4223 			 */
4224 			if (dk_cinfo.dki_ctype == DKC_CDROM) {
4225 				vd->open_flags = open_flags;
4226 				return (0);
4227 			} else {
4228 				(void) ldi_close(vd->ldi_handle[0],
4229 				    open_flags, kcred);
4230 			}
4231 		}
4232 	}
4233 
4234 	/* Attempt to (re)open device */
4235 	status = ldi_open_by_name(device_path, open_flags, kcred,
4236 	    &vd->ldi_handle[0], vd->vds->ldi_ident);
4237 
4238 	/*
4239 	 * The open can fail for example if we are opening an empty slice.
4240 	 * In case of a failure, we try the open again but this time with
4241 	 * the FNDELAY flag.
4242 	 */
4243 	if (status != 0)
4244 		status = ldi_open_by_name(device_path, vd->open_flags | FNDELAY,
4245 		    kcred, &vd->ldi_handle[0], vd->vds->ldi_ident);
4246 
4247 	if (status != 0) {
4248 		PR0("ldi_open_by_name(%s) = errno %d", device_path, status);
4249 		vd->ldi_handle[0] = NULL;
4250 		return (status);
4251 	}
4252 
4253 	/* Verify backing device supports dk_cinfo */
4254 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
4255 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
4256 	    &rval)) != 0) {
4257 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
4258 		    status, device_path);
4259 		return (status);
4260 	}
4261 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
4262 		PRN("slice %u >= maximum slice %u for %s",
4263 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
4264 		return (EIO);
4265 	}
4266 
4267 	return (0);
4268 }
4269 
4270 
4271 /*
4272  * Setup for a virtual disk which backend is a device (a physical disk,
4273  * slice or pseudo device) that is directly exported either as a full disk
4274  * for a physical disk or as a slice for a pseudo device or a disk slice.
4275  * In these cases, the backend is accessed using the LDI interface.
4276  */
4277 static int
4278 vd_setup_backend_ldi(vd_t *vd)
4279 {
4280 	int		rval, status;
4281 	struct dk_cinfo	dk_cinfo;
4282 	char		*device_path = vd->device_path;
4283 
4284 	status = vd_open_using_ldi_by_name(vd);
4285 	if (status != 0) {
4286 		PR0("Failed to open (%s) = errno %d", device_path, status);
4287 		return (status);
4288 	}
4289 
4290 	vd->file = B_FALSE;
4291 
4292 	/* Get device number of backing device */
4293 	if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) {
4294 		PRN("ldi_get_dev() returned errno %d for %s",
4295 		    status, device_path);
4296 		return (status);
4297 	}
4298 
4299 	/* Verify backing device supports dk_cinfo */
4300 	if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO,
4301 	    (intptr_t)&dk_cinfo, (vd->open_flags | FKIOCTL), kcred,
4302 	    &rval)) != 0) {
4303 		PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s",
4304 		    status, device_path);
4305 		return (status);
4306 	}
4307 	if (dk_cinfo.dki_partition >= V_NUMPAR) {
4308 		PRN("slice %u >= maximum slice %u for %s",
4309 		    dk_cinfo.dki_partition, V_NUMPAR, device_path);
4310 		return (EIO);
4311 	}
4312 
4313 	vd->vdisk_label = vd_read_vtoc(vd, &vd->vtoc);
4314 
4315 	/* Store the device's max transfer size for return to the client */
4316 	vd->max_xfer_sz = dk_cinfo.dki_maxtransfer;
4317 
4318 	/*
4319 	 * We need to work out if it's an ATAPI (IDE CD-ROM) or SCSI device so
4320 	 * that we can use the correct CDB group when sending USCSI commands.
4321 	 */
4322 	vd->is_atapi_dev = vd_is_atapi_device(vd);
4323 
4324 	/*
4325 	 * Export a full disk.
4326 	 *
4327 	 * When we use the LDI interface, we export a device as a full disk
4328 	 * if we have an entire disk slice (slice 2) and if this slice is
4329 	 * exported as a full disk and not as a single slice disk.
4330 	 * Similarly, we want to use LDI if we are accessing a CD or DVD
4331 	 * device (even if it isn't s2)
4332 	 *
4333 	 * Note that pseudo devices are exported as full disks using the vnode
4334 	 * interface, not the LDI interface.
4335 	 */
4336 	if ((dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE &&
4337 	    vd->vdisk_type == VD_DISK_TYPE_DISK) ||
4338 	    dk_cinfo.dki_ctype == DKC_CDROM) {
4339 		ASSERT(!vd->pseudo);
4340 		return (vd_setup_full_disk(vd));
4341 	}
4342 
4343 	/*
4344 	 * Export a single slice disk.
4345 	 *
4346 	 * The exported device can be either a pseudo device or a disk slice. If
4347 	 * it is a disk slice different from slice 2 then it is always exported
4348 	 * as a single slice disk even if the "slice" option is not specified.
4349 	 * If it is disk slice 2 or a pseudo device then it is exported as a
4350 	 * single slice disk only if the "slice" option is specified.
4351 	 */
4352 	ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE ||
4353 	    dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE);
4354 	return (vd_setup_single_slice_disk(vd));
4355 }
4356 
4357 static int
4358 vd_setup_single_slice_disk(vd_t *vd)
4359 {
4360 	int status;
4361 	char *device_path = vd->device_path;
4362 
4363 	/* Get size of backing device */
4364 	if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) {
4365 		PRN("ldi_get_size() failed for %s", device_path);
4366 		return (EIO);
4367 	}
4368 	vd->vdisk_size = lbtodb(vd->vdisk_size);	/* convert to blocks */
4369 	vd->block_size = DEV_BSIZE;
4370 	vd->vdisk_block_size = DEV_BSIZE;
4371 	vd->vdisk_media = VD_MEDIA_FIXED;
4372 
4373 	if (vd->pseudo) {
4374 
4375 		ASSERT(vd->vdisk_type == VD_DISK_TYPE_SLICE);
4376 
4377 		/*
4378 		 * Currently we only support exporting pseudo devices which
4379 		 * provide a valid disk label.
4380 		 */
4381 		if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
4382 			PRN("%s is a pseudo device with an invalid disk "
4383 			    "label\n", device_path);
4384 			return (EINVAL);
4385 		}
4386 		return (0);	/* ...and we're done */
4387 	}
4388 
4389 	/* We can only export a slice if the disk has a valid label */
4390 	if (vd->vdisk_label == VD_DISK_LABEL_UNK) {
4391 		PRN("%s is a slice from a disk with an unknown disk label\n",
4392 		    device_path);
4393 		return (EINVAL);
4394 	}
4395 
4396 	/*
4397 	 * We export the slice as a single slice disk even if the "slice"
4398 	 * option was not specified.
4399 	 */
4400 	vd->vdisk_type	= VD_DISK_TYPE_SLICE;
4401 	vd->nslices	= 1;
4402 
4403 	if (vd->vdisk_label == VD_DISK_LABEL_EFI) {
4404 		/* Slice from a disk with an EFI label */
4405 		status = vd_setup_partition_efi(vd);
4406 	} else {
4407 		/* Slice from a disk with a VTOC label */
4408 		ASSERT(vd->vdisk_label == VD_DISK_LABEL_VTOC);
4409 		status = vd_setup_partition_vtoc(vd);
4410 	}
4411 
4412 	return (status);
4413 }
4414 
4415 static int
4416 vd_setup_vd(vd_t *vd)
4417 {
4418 	int		status;
4419 	dev_info_t	*dip;
4420 	vnode_t 	*vnp;
4421 	char		*path = vd->device_path;
4422 
4423 	/* make sure the vdisk backend is valid */
4424 	if ((status = lookupname(path, UIO_SYSSPACE,
4425 	    FOLLOW, NULLVPP, &vnp)) != 0) {
4426 		PR0("Cannot lookup %s errno %d", path, status);
4427 		goto done;
4428 	}
4429 
4430 	switch (vnp->v_type) {
4431 	case VREG:
4432 		/*
4433 		 * Backend is a file so it is exported as a full disk or as a
4434 		 * single slice disk using the vnode interface.
4435 		 */
4436 		VN_RELE(vnp);
4437 		vd->pseudo = B_FALSE;
4438 		status = vd_setup_backend_vnode(vd);
4439 		break;
4440 
4441 	case VBLK:
4442 	case VCHR:
4443 		/*
4444 		 * Backend is a device. The way it is exported depends on the
4445 		 * type of the device.
4446 		 *
4447 		 * - A pseudo device is exported as a full disk using the vnode
4448 		 *   interface or as a single slice disk using the LDI
4449 		 *   interface.
4450 		 *
4451 		 * - A disk (represented by the slice 2 of that disk) is
4452 		 *   exported as a full disk using the LDI interface.
4453 		 *
4454 		 * - A disk slice (different from slice 2) is always exported
4455 		 *   as a single slice disk using the LDI interface.
4456 		 *
4457 		 * - The slice 2 of a disk is exported as a single slice disk
4458 		 *   if the "slice" option is specified, otherwise the entire
4459 		 *   disk will be exported. In any case, the LDI interface is
4460 		 *   used.
4461 		 */
4462 
4463 		/* check if this is a pseudo device */
4464 		if ((dip = ddi_hold_devi_by_instance(getmajor(vnp->v_rdev),
4465 		    dev_to_instance(vnp->v_rdev), 0))  == NULL) {
4466 			PRN("%s is no longer accessible", path);
4467 			VN_RELE(vnp);
4468 			status = EIO;
4469 			break;
4470 		}
4471 		vd->pseudo = is_pseudo_device(dip);
4472 		ddi_release_devi(dip);
4473 		VN_RELE(vnp);
4474 
4475 		/*
4476 		 * If this is a pseudo device then its usage depends if the
4477 		 * "slice" option is set or not. If the "slice" option is set
4478 		 * then the pseudo device will be exported as a single slice,
4479 		 * otherwise it will be exported as a full disk.
4480 		 */
4481 		if (vd->pseudo && vd->vdisk_type == VD_DISK_TYPE_DISK)
4482 			status = vd_setup_backend_vnode(vd);
4483 		else
4484 			status = vd_setup_backend_ldi(vd);
4485 		break;
4486 
4487 	default:
4488 		PRN("Unsupported vdisk backend %s", path);
4489 		VN_RELE(vnp);
4490 		status = EBADF;
4491 	}
4492 
4493 done:
4494 	if (status != 0) {
4495 		/*
4496 		 * If the error is retryable print an error message only
4497 		 * during the first try.
4498 		 */
4499 		if (status == ENXIO || status == ENODEV ||
4500 		    status == ENOENT || status == EROFS) {
4501 			if (!(vd->initialized & VD_SETUP_ERROR)) {
4502 				PRN("%s is currently inaccessible (error %d)",
4503 				    path, status);
4504 			}
4505 			status = EAGAIN;
4506 		} else {
4507 			PRN("%s can not be exported as a virtual disk "
4508 			    "(error %d)", path, status);
4509 		}
4510 		vd->initialized |= VD_SETUP_ERROR;
4511 
4512 	} else if (vd->initialized & VD_SETUP_ERROR) {
4513 		/* print a message only if we previously had an error */
4514 		PRN("%s is now online", path);
4515 		vd->initialized &= ~VD_SETUP_ERROR;
4516 	}
4517 
4518 	return (status);
4519 }
4520 
4521 static int
4522 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
4523     uint64_t ldc_id, vd_t **vdp)
4524 {
4525 	char			tq_name[TASKQ_NAMELEN];
4526 	int			status;
4527 	ddi_iblock_cookie_t	iblock = NULL;
4528 	ldc_attr_t		ldc_attr;
4529 	vd_t			*vd;
4530 
4531 
4532 	ASSERT(vds != NULL);
4533 	ASSERT(device_path != NULL);
4534 	ASSERT(vdp != NULL);
4535 	PR0("Adding vdisk for %s", device_path);
4536 
4537 	if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) {
4538 		PRN("No memory for virtual disk");
4539 		return (EAGAIN);
4540 	}
4541 	*vdp = vd;	/* assign here so vds_destroy_vd() can cleanup later */
4542 	vd->vds = vds;
4543 	(void) strncpy(vd->device_path, device_path, MAXPATHLEN);
4544 
4545 	/* Setup open flags */
4546 	vd->open_flags = FREAD;
4547 
4548 	if (!(options & VD_OPT_RDONLY))
4549 		vd->open_flags |= FWRITE;
4550 
4551 	if (options & VD_OPT_EXCLUSIVE)
4552 		vd->open_flags |= FEXCL;
4553 
4554 	/* Setup disk type */
4555 	if (options & VD_OPT_SLICE) {
4556 		vd->vdisk_type = VD_DISK_TYPE_SLICE;
4557 		vd->nslices = 1;
4558 	} else {
4559 		vd->vdisk_type = VD_DISK_TYPE_DISK;
4560 		vd->nslices = V_NUMPAR;
4561 	}
4562 
4563 	/* default disk label */
4564 	vd->vdisk_label = VD_DISK_LABEL_UNK;
4565 
4566 	/* Open vdisk and initialize parameters */
4567 	if ((status = vd_setup_vd(vd)) == 0) {
4568 		vd->initialized |= VD_DISK_READY;
4569 
4570 		ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR);
4571 		PR0("vdisk_type = %s, pseudo = %s, file = %s, nslices = %u",
4572 		    ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"),
4573 		    (vd->pseudo ? "yes" : "no"), (vd->file ? "yes" : "no"),
4574 		    vd->nslices);
4575 	} else {
4576 		if (status != EAGAIN)
4577 			return (status);
4578 	}
4579 
4580 	/* Initialize locking */
4581 	if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED,
4582 	    &iblock) != DDI_SUCCESS) {
4583 		PRN("Could not get iblock cookie.");
4584 		return (EIO);
4585 	}
4586 
4587 	mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock);
4588 	vd->initialized |= VD_LOCKING;
4589 
4590 
4591 	/* Create start and completion task queues for the vdisk */
4592 	(void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id);
4593 	PR1("tq_name = %s", tq_name);
4594 	if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1,
4595 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
4596 		PRN("Could not create task queue");
4597 		return (EIO);
4598 	}
4599 	(void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id);
4600 	PR1("tq_name = %s", tq_name);
4601 	if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1,
4602 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
4603 		PRN("Could not create task queue");
4604 		return (EIO);
4605 	}
4606 	vd->enabled = 1;	/* before callback can dispatch to startq */
4607 
4608 
4609 	/* Bring up LDC */
4610 	ldc_attr.devclass	= LDC_DEV_BLK_SVC;
4611 	ldc_attr.instance	= ddi_get_instance(vds->dip);
4612 	ldc_attr.mode		= LDC_MODE_UNRELIABLE;
4613 	ldc_attr.mtu		= VD_LDC_MTU;
4614 	if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) {
4615 		PRN("Could not initialize LDC channel %lx, "
4616 		    "init failed with error %d", ldc_id, status);
4617 		return (status);
4618 	}
4619 	vd->initialized |= VD_LDC;
4620 
4621 	if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events,
4622 	    (caddr_t)vd)) != 0) {
4623 		PRN("Could not initialize LDC channel %lu,"
4624 		    "reg_callback failed with error %d", ldc_id, status);
4625 		return (status);
4626 	}
4627 
4628 	if ((status = ldc_open(vd->ldc_handle)) != 0) {
4629 		PRN("Could not initialize LDC channel %lu,"
4630 		    "open failed with error %d", ldc_id, status);
4631 		return (status);
4632 	}
4633 
4634 	if ((status = ldc_up(vd->ldc_handle)) != 0) {
4635 		PR0("ldc_up() returned errno %d", status);
4636 	}
4637 
4638 	/* Allocate the inband task memory handle */
4639 	status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl));
4640 	if (status) {
4641 		PRN("Could not initialize LDC channel %lu,"
4642 		    "alloc_handle failed with error %d", ldc_id, status);
4643 		return (ENXIO);
4644 	}
4645 
4646 	/* Add the successfully-initialized vdisk to the server's table */
4647 	if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) {
4648 		PRN("Error adding vdisk ID %lu to table", id);
4649 		return (EIO);
4650 	}
4651 
4652 	/* Allocate the staging buffer */
4653 	vd->max_msglen	= sizeof (vio_msg_t);	/* baseline vio message size */
4654 	vd->vio_msgp = kmem_alloc(vd->max_msglen, KM_SLEEP);
4655 
4656 	/* store initial state */
4657 	vd->state = VD_STATE_INIT;
4658 
4659 	return (0);
4660 }
4661 
4662 static void
4663 vd_free_dring_task(vd_t *vdp)
4664 {
4665 	if (vdp->dring_task != NULL) {
4666 		ASSERT(vdp->dring_len != 0);
4667 		/* Free all dring_task memory handles */
4668 		for (int i = 0; i < vdp->dring_len; i++) {
4669 			(void) ldc_mem_free_handle(vdp->dring_task[i].mhdl);
4670 			kmem_free(vdp->dring_task[i].msg, vdp->max_msglen);
4671 			vdp->dring_task[i].msg = NULL;
4672 		}
4673 		kmem_free(vdp->dring_task,
4674 		    (sizeof (*vdp->dring_task)) * vdp->dring_len);
4675 		vdp->dring_task = NULL;
4676 	}
4677 }
4678 
4679 /*
4680  * Destroy the state associated with a virtual disk
4681  */
4682 static void
4683 vds_destroy_vd(void *arg)
4684 {
4685 	vd_t	*vd = (vd_t *)arg;
4686 	int	retry = 0, rv;
4687 
4688 	if (vd == NULL)
4689 		return;
4690 
4691 	PR0("Destroying vdisk state");
4692 
4693 	if (vd->dk_efi.dki_data != NULL)
4694 		kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length);
4695 
4696 	/* Disable queuing requests for the vdisk */
4697 	if (vd->initialized & VD_LOCKING) {
4698 		mutex_enter(&vd->lock);
4699 		vd->enabled = 0;
4700 		mutex_exit(&vd->lock);
4701 	}
4702 
4703 	/* Drain and destroy start queue (*before* destroying completionq) */
4704 	if (vd->startq != NULL)
4705 		ddi_taskq_destroy(vd->startq);	/* waits for queued tasks */
4706 
4707 	/* Drain and destroy completion queue (*before* shutting down LDC) */
4708 	if (vd->completionq != NULL)
4709 		ddi_taskq_destroy(vd->completionq);	/* waits for tasks */
4710 
4711 	vd_free_dring_task(vd);
4712 
4713 	/* Free the inband task memory handle */
4714 	(void) ldc_mem_free_handle(vd->inband_task.mhdl);
4715 
4716 	/* Shut down LDC */
4717 	if (vd->initialized & VD_LDC) {
4718 		/* unmap the dring */
4719 		if (vd->initialized & VD_DRING)
4720 			(void) ldc_mem_dring_unmap(vd->dring_handle);
4721 
4722 		/* close LDC channel - retry on EAGAIN */
4723 		while ((rv = ldc_close(vd->ldc_handle)) == EAGAIN) {
4724 			if (++retry > vds_ldc_retries) {
4725 				PR0("Timed out closing channel");
4726 				break;
4727 			}
4728 			drv_usecwait(vds_ldc_delay);
4729 		}
4730 		if (rv == 0) {
4731 			(void) ldc_unreg_callback(vd->ldc_handle);
4732 			(void) ldc_fini(vd->ldc_handle);
4733 		} else {
4734 			/*
4735 			 * Closing the LDC channel has failed. Ideally we should
4736 			 * fail here but there is no Zeus level infrastructure
4737 			 * to handle this. The MD has already been changed and
4738 			 * we have to do the close. So we try to do as much
4739 			 * clean up as we can.
4740 			 */
4741 			(void) ldc_set_cb_mode(vd->ldc_handle, LDC_CB_DISABLE);
4742 			while (ldc_unreg_callback(vd->ldc_handle) == EAGAIN)
4743 				drv_usecwait(vds_ldc_delay);
4744 		}
4745 	}
4746 
4747 	/* Free the staging buffer for msgs */
4748 	if (vd->vio_msgp != NULL) {
4749 		kmem_free(vd->vio_msgp, vd->max_msglen);
4750 		vd->vio_msgp = NULL;
4751 	}
4752 
4753 	/* Free the inband message buffer */
4754 	if (vd->inband_task.msg != NULL) {
4755 		kmem_free(vd->inband_task.msg, vd->max_msglen);
4756 		vd->inband_task.msg = NULL;
4757 	}
4758 
4759 	if (vd->file) {
4760 		/* Close file */
4761 		(void) VOP_CLOSE(vd->file_vnode, vd->open_flags, 1,
4762 		    0, kcred, NULL);
4763 		VN_RELE(vd->file_vnode);
4764 		if (vd->file_devid != NULL)
4765 			ddi_devid_free(vd->file_devid);
4766 	} else {
4767 		/* Close any open backing-device slices */
4768 		for (uint_t slice = 0; slice < vd->nslices; slice++) {
4769 			if (vd->ldi_handle[slice] != NULL) {
4770 				PR0("Closing slice %u", slice);
4771 				(void) ldi_close(vd->ldi_handle[slice],
4772 				    vd->open_flags, kcred);
4773 			}
4774 		}
4775 	}
4776 
4777 	/* Free lock */
4778 	if (vd->initialized & VD_LOCKING)
4779 		mutex_destroy(&vd->lock);
4780 
4781 	/* Finally, free the vdisk structure itself */
4782 	kmem_free(vd, sizeof (*vd));
4783 }
4784 
4785 static int
4786 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t options,
4787     uint64_t ldc_id)
4788 {
4789 	int	status;
4790 	vd_t	*vd = NULL;
4791 
4792 
4793 	if ((status = vds_do_init_vd(vds, id, device_path, options,
4794 	    ldc_id, &vd)) != 0)
4795 		vds_destroy_vd(vd);
4796 
4797 	return (status);
4798 }
4799 
4800 static int
4801 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel,
4802     uint64_t *ldc_id)
4803 {
4804 	int	num_channels;
4805 
4806 
4807 	/* Look for channel endpoint child(ren) of the vdisk MD node */
4808 	if ((num_channels = md_scan_dag(md, vd_node,
4809 	    md_find_name(md, VD_CHANNEL_ENDPOINT),
4810 	    md_find_name(md, "fwd"), channel)) <= 0) {
4811 		PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT);
4812 		return (-1);
4813 	}
4814 
4815 	/* Get the "id" value for the first channel endpoint node */
4816 	if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) {
4817 		PRN("No \"%s\" property found for \"%s\" of vdisk",
4818 		    VD_ID_PROP, VD_CHANNEL_ENDPOINT);
4819 		return (-1);
4820 	}
4821 
4822 	if (num_channels > 1) {
4823 		PRN("Using ID of first of multiple channels for this vdisk");
4824 	}
4825 
4826 	return (0);
4827 }
4828 
4829 static int
4830 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id)
4831 {
4832 	int		num_nodes, status;
4833 	size_t		size;
4834 	mde_cookie_t	*channel;
4835 
4836 
4837 	if ((num_nodes = md_node_count(md)) <= 0) {
4838 		PRN("Invalid node count in Machine Description subtree");
4839 		return (-1);
4840 	}
4841 	size = num_nodes*(sizeof (*channel));
4842 	channel = kmem_zalloc(size, KM_SLEEP);
4843 	status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id);
4844 	kmem_free(channel, size);
4845 
4846 	return (status);
4847 }
4848 
4849 /*
4850  * Function:
4851  *	vds_get_options
4852  *
4853  * Description:
4854  * 	Parse the options of a vds node. Options are defined as an array
4855  *	of strings in the vds-block-device-opts property of the vds node
4856  *	in the machine description. Options are returned as a bitmask. The
4857  *	mapping between the bitmask options and the options strings from the
4858  *	machine description is defined in the vd_bdev_options[] array.
4859  *
4860  *	The vds-block-device-opts property is optional. If a vds has no such
4861  *	property then no option is defined.
4862  *
4863  * Parameters:
4864  *	md		- machine description.
4865  *	vd_node		- vds node in the machine description for which
4866  *			  options have to be parsed.
4867  *	options		- the returned options.
4868  *
4869  * Return Code:
4870  *	none.
4871  */
4872 static void
4873 vds_get_options(md_t *md, mde_cookie_t vd_node, uint64_t *options)
4874 {
4875 	char	*optstr, *opt;
4876 	int	len, n, i;
4877 
4878 	*options = 0;
4879 
4880 	if (md_get_prop_data(md, vd_node, VD_BLOCK_DEVICE_OPTS,
4881 	    (uint8_t **)&optstr, &len) != 0) {
4882 		PR0("No options found");
4883 		return;
4884 	}
4885 
4886 	/* parse options */
4887 	opt = optstr;
4888 	n = sizeof (vd_bdev_options) / sizeof (vd_option_t);
4889 
4890 	while (opt < optstr + len) {
4891 		for (i = 0; i < n; i++) {
4892 			if (strncmp(vd_bdev_options[i].vdo_name,
4893 			    opt, VD_OPTION_NLEN) == 0) {
4894 				*options |= vd_bdev_options[i].vdo_value;
4895 				break;
4896 			}
4897 		}
4898 
4899 		if (i < n) {
4900 			PR0("option: %s", opt);
4901 		} else {
4902 			PRN("option %s is unknown or unsupported", opt);
4903 		}
4904 
4905 		opt += strlen(opt) + 1;
4906 	}
4907 }
4908 
4909 static void
4910 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4911 {
4912 	char		*device_path = NULL;
4913 	uint64_t	id = 0, ldc_id = 0, options = 0;
4914 
4915 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4916 		PRN("Error getting vdisk \"%s\"", VD_ID_PROP);
4917 		return;
4918 	}
4919 	PR0("Adding vdisk ID %lu", id);
4920 	if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP,
4921 	    &device_path) != 0) {
4922 		PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
4923 		return;
4924 	}
4925 
4926 	vds_get_options(md, vd_node, &options);
4927 
4928 	if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) {
4929 		PRN("Error getting LDC ID for vdisk %lu", id);
4930 		return;
4931 	}
4932 
4933 	if (vds_init_vd(vds, id, device_path, options, ldc_id) != 0) {
4934 		PRN("Failed to add vdisk ID %lu", id);
4935 		if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
4936 			PRN("No vDisk entry found for vdisk ID %lu", id);
4937 		return;
4938 	}
4939 }
4940 
4941 static void
4942 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node)
4943 {
4944 	uint64_t	id = 0;
4945 
4946 
4947 	if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) {
4948 		PRN("Unable to get \"%s\" property from vdisk's MD node",
4949 		    VD_ID_PROP);
4950 		return;
4951 	}
4952 	PR0("Removing vdisk ID %lu", id);
4953 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0)
4954 		PRN("No vdisk entry found for vdisk ID %lu", id);
4955 }
4956 
4957 static void
4958 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node,
4959     md_t *curr_md, mde_cookie_t curr_vd_node)
4960 {
4961 	char		*curr_dev, *prev_dev;
4962 	uint64_t	curr_id = 0, curr_ldc_id = 0, curr_options = 0;
4963 	uint64_t	prev_id = 0, prev_ldc_id = 0, prev_options = 0;
4964 	size_t		len;
4965 
4966 
4967 	/* Validate that vdisk ID has not changed */
4968 	if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) {
4969 		PRN("Error getting previous vdisk \"%s\" property",
4970 		    VD_ID_PROP);
4971 		return;
4972 	}
4973 	if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) {
4974 		PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP);
4975 		return;
4976 	}
4977 	if (curr_id != prev_id) {
4978 		PRN("Not changing vdisk:  ID changed from %lu to %lu",
4979 		    prev_id, curr_id);
4980 		return;
4981 	}
4982 
4983 	/* Validate that LDC ID has not changed */
4984 	if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) {
4985 		PRN("Error getting LDC ID for vdisk %lu", prev_id);
4986 		return;
4987 	}
4988 
4989 	if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) {
4990 		PRN("Error getting LDC ID for vdisk %lu", curr_id);
4991 		return;
4992 	}
4993 	if (curr_ldc_id != prev_ldc_id) {
4994 		_NOTE(NOTREACHED);	/* lint is confused */
4995 		PRN("Not changing vdisk:  "
4996 		    "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id);
4997 		return;
4998 	}
4999 
5000 	/* Determine whether device path has changed */
5001 	if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP,
5002 	    &prev_dev) != 0) {
5003 		PRN("Error getting previous vdisk \"%s\"",
5004 		    VD_BLOCK_DEVICE_PROP);
5005 		return;
5006 	}
5007 	if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP,
5008 	    &curr_dev) != 0) {
5009 		PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP);
5010 		return;
5011 	}
5012 	if (((len = strlen(curr_dev)) == strlen(prev_dev)) &&
5013 	    (strncmp(curr_dev, prev_dev, len) == 0))
5014 		return;	/* no relevant (supported) change */
5015 
5016 	/* Validate that options have not changed */
5017 	vds_get_options(prev_md, prev_vd_node, &prev_options);
5018 	vds_get_options(curr_md, curr_vd_node, &curr_options);
5019 	if (prev_options != curr_options) {
5020 		PRN("Not changing vdisk:  options changed from %lx to %lx",
5021 		    prev_options, curr_options);
5022 		return;
5023 	}
5024 
5025 	PR0("Changing vdisk ID %lu", prev_id);
5026 
5027 	/* Remove old state, which will close vdisk and reset */
5028 	if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0)
5029 		PRN("No entry found for vdisk ID %lu", prev_id);
5030 
5031 	/* Re-initialize vdisk with new state */
5032 	if (vds_init_vd(vds, curr_id, curr_dev, curr_options,
5033 	    curr_ldc_id) != 0) {
5034 		PRN("Failed to change vdisk ID %lu", curr_id);
5035 		return;
5036 	}
5037 }
5038 
5039 static int
5040 vds_process_md(void *arg, mdeg_result_t *md)
5041 {
5042 	int	i;
5043 	vds_t	*vds = arg;
5044 
5045 
5046 	if (md == NULL)
5047 		return (MDEG_FAILURE);
5048 	ASSERT(vds != NULL);
5049 
5050 	for (i = 0; i < md->removed.nelem; i++)
5051 		vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]);
5052 	for (i = 0; i < md->match_curr.nelem; i++)
5053 		vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i],
5054 		    md->match_curr.mdp, md->match_curr.mdep[i]);
5055 	for (i = 0; i < md->added.nelem; i++)
5056 		vds_add_vd(vds, md->added.mdp, md->added.mdep[i]);
5057 
5058 	return (MDEG_SUCCESS);
5059 }
5060 
5061 
5062 static int
5063 vds_do_attach(dev_info_t *dip)
5064 {
5065 	int			status, sz;
5066 	int			cfg_handle;
5067 	minor_t			instance = ddi_get_instance(dip);
5068 	vds_t			*vds;
5069 	mdeg_prop_spec_t	*pspecp;
5070 	mdeg_node_spec_t	*ispecp;
5071 
5072 	/*
5073 	 * The "cfg-handle" property of a vds node in an MD contains the MD's
5074 	 * notion of "instance", or unique identifier, for that node; OBP
5075 	 * stores the value of the "cfg-handle" MD property as the value of
5076 	 * the "reg" property on the node in the device tree it builds from
5077 	 * the MD and passes to Solaris.  Thus, we look up the devinfo node's
5078 	 * "reg" property value to uniquely identify this device instance when
5079 	 * registering with the MD event-generation framework.  If the "reg"
5080 	 * property cannot be found, the device tree state is presumably so
5081 	 * broken that there is no point in continuing.
5082 	 */
5083 	if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
5084 	    VD_REG_PROP)) {
5085 		PRN("vds \"%s\" property does not exist", VD_REG_PROP);
5086 		return (DDI_FAILURE);
5087 	}
5088 
5089 	/* Get the MD instance for later MDEG registration */
5090 	cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
5091 	    VD_REG_PROP, -1);
5092 
5093 	if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) {
5094 		PRN("Could not allocate state for instance %u", instance);
5095 		return (DDI_FAILURE);
5096 	}
5097 
5098 	if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) {
5099 		PRN("Could not get state for instance %u", instance);
5100 		ddi_soft_state_free(vds_state, instance);
5101 		return (DDI_FAILURE);
5102 	}
5103 
5104 	vds->dip	= dip;
5105 	vds->vd_table	= mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS,
5106 	    vds_destroy_vd, sizeof (void *));
5107 
5108 	ASSERT(vds->vd_table != NULL);
5109 
5110 	if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) {
5111 		PRN("ldi_ident_from_dip() returned errno %d", status);
5112 		return (DDI_FAILURE);
5113 	}
5114 	vds->initialized |= VDS_LDI;
5115 
5116 	/* Register for MD updates */
5117 	sz = sizeof (vds_prop_template);
5118 	pspecp = kmem_alloc(sz, KM_SLEEP);
5119 	bcopy(vds_prop_template, pspecp, sz);
5120 
5121 	VDS_SET_MDEG_PROP_INST(pspecp, cfg_handle);
5122 
5123 	/* initialize the complete prop spec structure */
5124 	ispecp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_SLEEP);
5125 	ispecp->namep = "virtual-device";
5126 	ispecp->specp = pspecp;
5127 
5128 	if (mdeg_register(ispecp, &vd_match, vds_process_md, vds,
5129 	    &vds->mdeg) != MDEG_SUCCESS) {
5130 		PRN("Unable to register for MD updates");
5131 		kmem_free(ispecp, sizeof (mdeg_node_spec_t));
5132 		kmem_free(pspecp, sz);
5133 		return (DDI_FAILURE);
5134 	}
5135 
5136 	vds->ispecp = ispecp;
5137 	vds->initialized |= VDS_MDEG;
5138 
5139 	/* Prevent auto-detaching so driver is available whenever MD changes */
5140 	if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) !=
5141 	    DDI_PROP_SUCCESS) {
5142 		PRN("failed to set \"%s\" property for instance %u",
5143 		    DDI_NO_AUTODETACH, instance);
5144 	}
5145 
5146 	ddi_report_dev(dip);
5147 	return (DDI_SUCCESS);
5148 }
5149 
5150 static int
5151 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
5152 {
5153 	int	status;
5154 
5155 	switch (cmd) {
5156 	case DDI_ATTACH:
5157 		PR0("Attaching");
5158 		if ((status = vds_do_attach(dip)) != DDI_SUCCESS)
5159 			(void) vds_detach(dip, DDI_DETACH);
5160 		return (status);
5161 	case DDI_RESUME:
5162 		PR0("No action required for DDI_RESUME");
5163 		return (DDI_SUCCESS);
5164 	default:
5165 		return (DDI_FAILURE);
5166 	}
5167 }
5168 
5169 static struct dev_ops vds_ops = {
5170 	DEVO_REV,	/* devo_rev */
5171 	0,		/* devo_refcnt */
5172 	ddi_no_info,	/* devo_getinfo */
5173 	nulldev,	/* devo_identify */
5174 	nulldev,	/* devo_probe */
5175 	vds_attach,	/* devo_attach */
5176 	vds_detach,	/* devo_detach */
5177 	nodev,		/* devo_reset */
5178 	NULL,		/* devo_cb_ops */
5179 	NULL,		/* devo_bus_ops */
5180 	nulldev		/* devo_power */
5181 };
5182 
5183 static struct modldrv modldrv = {
5184 	&mod_driverops,
5185 	"virtual disk server",
5186 	&vds_ops,
5187 };
5188 
5189 static struct modlinkage modlinkage = {
5190 	MODREV_1,
5191 	&modldrv,
5192 	NULL
5193 };
5194 
5195 
5196 int
5197 _init(void)
5198 {
5199 	int		status;
5200 
5201 	if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0)
5202 		return (status);
5203 
5204 	if ((status = mod_install(&modlinkage)) != 0) {
5205 		ddi_soft_state_fini(&vds_state);
5206 		return (status);
5207 	}
5208 
5209 	return (0);
5210 }
5211 
5212 int
5213 _info(struct modinfo *modinfop)
5214 {
5215 	return (mod_info(&modlinkage, modinfop));
5216 }
5217 
5218 int
5219 _fini(void)
5220 {
5221 	int	status;
5222 
5223 	if ((status = mod_remove(&modlinkage)) != 0)
5224 		return (status);
5225 	ddi_soft_state_fini(&vds_state);
5226 	return (0);
5227 }
5228