1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual disk server 31 */ 32 33 34 #include <sys/types.h> 35 #include <sys/conf.h> 36 #include <sys/crc32.h> 37 #include <sys/ddi.h> 38 #include <sys/dkio.h> 39 #include <sys/file.h> 40 #include <sys/mdeg.h> 41 #include <sys/modhash.h> 42 #include <sys/note.h> 43 #include <sys/pathname.h> 44 #include <sys/sunddi.h> 45 #include <sys/sunldi.h> 46 #include <sys/sysmacros.h> 47 #include <sys/vio_common.h> 48 #include <sys/vdsk_mailbox.h> 49 #include <sys/vdsk_common.h> 50 #include <sys/vtoc.h> 51 52 53 /* Virtual disk server initialization flags */ 54 #define VDS_LDI 0x01 55 #define VDS_MDEG 0x02 56 57 /* Virtual disk server tunable parameters */ 58 #define VDS_LDC_RETRIES 3 59 #define VDS_NCHAINS 32 60 61 /* Identification parameters for MD, synthetic dkio(7i) structures, etc. */ 62 #define VDS_NAME "virtual-disk-server" 63 64 #define VD_NAME "vd" 65 #define VD_VOLUME_NAME "vdisk" 66 #define VD_ASCIILABEL "Virtual Disk" 67 68 #define VD_CHANNEL_ENDPOINT "channel-endpoint" 69 #define VD_ID_PROP "id" 70 #define VD_BLOCK_DEVICE_PROP "vds-block-device" 71 72 /* Virtual disk initialization flags */ 73 #define VD_LOCKING 0x01 74 #define VD_LDC 0x02 75 #define VD_DRING 0x04 76 #define VD_SID 0x08 77 #define VD_SEQ_NUM 0x10 78 79 /* Flags for opening/closing backing devices via LDI */ 80 #define VD_OPEN_FLAGS (FEXCL | FREAD | FWRITE) 81 82 /* 83 * By Solaris convention, slice/partition 2 represents the entire disk; 84 * unfortunately, this convention does not appear to be codified. 85 */ 86 #define VD_ENTIRE_DISK_SLICE 2 87 88 /* Return a cpp token as a string */ 89 #define STRINGIZE(token) #token 90 91 /* 92 * Print a message prefixed with the current function name to the message log 93 * (and optionally to the console for verbose boots); these macros use cpp's 94 * concatenation of string literals and C99 variable-length-argument-list 95 * macros 96 */ 97 #define PRN(...) _PRN("?%s(): "__VA_ARGS__, "") 98 #define _PRN(format, ...) \ 99 cmn_err(CE_CONT, format"%s", __func__, __VA_ARGS__) 100 101 /* Return a pointer to the "i"th vdisk dring element */ 102 #define VD_DRING_ELEM(i) ((vd_dring_entry_t *)(void *) \ 103 (vd->dring + (i)*vd->descriptor_size)) 104 105 /* Return the virtual disk client's type as a string (for use in messages) */ 106 #define VD_CLIENT(vd) \ 107 (((vd)->xfer_mode == VIO_DESC_MODE) ? "in-band client" : \ 108 (((vd)->xfer_mode == VIO_DRING_MODE) ? "dring client" : \ 109 (((vd)->xfer_mode == 0) ? "null client" : \ 110 "unsupported client"))) 111 112 /* Debugging macros */ 113 #ifdef DEBUG 114 #define PR0 if (vd_msglevel > 0) PRN 115 #define PR1 if (vd_msglevel > 1) PRN 116 #define PR2 if (vd_msglevel > 2) PRN 117 118 #define VD_DUMP_DRING_ELEM(elem) \ 119 PRN("dst:%x op:%x st:%u nb:%lx addr:%lx ncook:%u\n", \ 120 elem->hdr.dstate, \ 121 elem->payload.operation, \ 122 elem->payload.status, \ 123 elem->payload.nbytes, \ 124 elem->payload.addr, \ 125 elem->payload.ncookies); 126 127 #else /* !DEBUG */ 128 #define PR0(...) 129 #define PR1(...) 130 #define PR2(...) 131 132 #define VD_DUMP_DRING_ELEM(elem) 133 134 #endif /* DEBUG */ 135 136 137 /* 138 * Soft state structure for a vds instance 139 */ 140 typedef struct vds { 141 uint_t initialized; /* driver inst initialization flags */ 142 dev_info_t *dip; /* driver inst devinfo pointer */ 143 ldi_ident_t ldi_ident; /* driver's identifier for LDI */ 144 mod_hash_t *vd_table; /* table of virtual disks served */ 145 mdeg_handle_t mdeg; /* handle for MDEG operations */ 146 } vds_t; 147 148 /* 149 * Types of descriptor-processing tasks 150 */ 151 typedef enum vd_task_type { 152 VD_NONFINAL_RANGE_TASK, /* task for intermediate descriptor in range */ 153 VD_FINAL_RANGE_TASK, /* task for last in a range of descriptors */ 154 } vd_task_type_t; 155 156 /* 157 * Structure describing the task for processing a descriptor 158 */ 159 typedef struct vd_task { 160 struct vd *vd; /* vd instance task is for */ 161 vd_task_type_t type; /* type of descriptor task */ 162 int index; /* dring elem index for task */ 163 vio_msg_t *msg; /* VIO message task is for */ 164 size_t msglen; /* length of message content */ 165 size_t msgsize; /* size of message buffer */ 166 vd_dring_payload_t *request; /* request task will perform */ 167 struct buf buf; /* buf(9s) for I/O request */ 168 ldc_mem_handle_t mhdl; /* task memory handle */ 169 } vd_task_t; 170 171 /* 172 * Soft state structure for a virtual disk instance 173 */ 174 typedef struct vd { 175 uint_t initialized; /* vdisk initialization flags */ 176 vds_t *vds; /* server for this vdisk */ 177 ddi_taskq_t *startq; /* queue for I/O start tasks */ 178 ddi_taskq_t *completionq; /* queue for completion tasks */ 179 ldi_handle_t ldi_handle[V_NUMPAR]; /* LDI slice handles */ 180 dev_t dev[V_NUMPAR]; /* dev numbers for slices */ 181 uint_t nslices; /* number of slices */ 182 size_t vdisk_size; /* number of blocks in vdisk */ 183 vd_disk_type_t vdisk_type; /* slice or entire disk */ 184 vd_disk_label_t vdisk_label; /* EFI or VTOC label */ 185 ushort_t max_xfer_sz; /* max xfer size in DEV_BSIZE */ 186 boolean_t pseudo; /* underlying pseudo dev */ 187 struct dk_efi dk_efi; /* synthetic for slice type */ 188 struct dk_geom dk_geom; /* synthetic for slice type */ 189 struct vtoc vtoc; /* synthetic for slice type */ 190 ldc_status_t ldc_state; /* LDC connection state */ 191 ldc_handle_t ldc_handle; /* handle for LDC comm */ 192 size_t max_msglen; /* largest LDC message len */ 193 vd_state_t state; /* client handshake state */ 194 uint8_t xfer_mode; /* transfer mode with client */ 195 uint32_t sid; /* client's session ID */ 196 uint64_t seq_num; /* message sequence number */ 197 uint64_t dring_ident; /* identifier of dring */ 198 ldc_dring_handle_t dring_handle; /* handle for dring ops */ 199 uint32_t descriptor_size; /* num bytes in desc */ 200 uint32_t dring_len; /* number of dring elements */ 201 caddr_t dring; /* address of dring */ 202 vd_task_t inband_task; /* task for inband descriptor */ 203 vd_task_t *dring_task; /* tasks dring elements */ 204 205 kmutex_t lock; /* protects variables below */ 206 boolean_t enabled; /* is vdisk enabled? */ 207 boolean_t reset_state; /* reset connection state? */ 208 boolean_t reset_ldc; /* reset LDC channel? */ 209 } vd_t; 210 211 typedef struct vds_operation { 212 uint8_t operation; 213 int (*start)(vd_task_t *task); 214 void (*complete)(void *arg); 215 } vds_operation_t; 216 217 typedef struct vd_ioctl { 218 uint8_t operation; /* vdisk operation */ 219 const char *operation_name; /* vdisk operation name */ 220 size_t nbytes; /* size of operation buffer */ 221 int cmd; /* corresponding ioctl cmd */ 222 const char *cmd_name; /* ioctl cmd name */ 223 void *arg; /* ioctl cmd argument */ 224 /* convert input vd_buf to output ioctl_arg */ 225 void (*copyin)(void *vd_buf, void *ioctl_arg); 226 /* convert input ioctl_arg to output vd_buf */ 227 void (*copyout)(void *ioctl_arg, void *vd_buf); 228 } vd_ioctl_t; 229 230 /* Define trivial copyin/copyout conversion function flag */ 231 #define VD_IDENTITY ((void (*)(void *, void *))-1) 232 233 234 static int vds_ldc_retries = VDS_LDC_RETRIES; 235 static void *vds_state; 236 static uint64_t vds_operations; /* see vds_operation[] definition below */ 237 238 static int vd_open_flags = VD_OPEN_FLAGS; 239 240 /* 241 * Supported protocol version pairs, from highest (newest) to lowest (oldest) 242 * 243 * Each supported major version should appear only once, paired with (and only 244 * with) its highest supported minor version number (as the protocol requires 245 * supporting all lower minor version numbers as well) 246 */ 247 static const vio_ver_t vds_version[] = {{1, 0}}; 248 static const size_t vds_num_versions = 249 sizeof (vds_version)/sizeof (vds_version[0]); 250 251 #ifdef DEBUG 252 static int vd_msglevel; 253 #endif /* DEBUG */ 254 255 256 static int 257 vd_start_bio(vd_task_t *task) 258 { 259 int rv, status = 0; 260 vd_t *vd = task->vd; 261 vd_dring_payload_t *request = task->request; 262 struct buf *buf = &task->buf; 263 uint8_t mtype; 264 265 266 ASSERT(vd != NULL); 267 ASSERT(request != NULL); 268 ASSERT(request->slice < vd->nslices); 269 ASSERT((request->operation == VD_OP_BREAD) || 270 (request->operation == VD_OP_BWRITE)); 271 272 if (request->nbytes == 0) 273 return (EINVAL); /* no service for trivial requests */ 274 275 PR1("%s %lu bytes at block %lu", 276 (request->operation == VD_OP_BREAD) ? "Read" : "Write", 277 request->nbytes, request->addr); 278 279 bioinit(buf); 280 buf->b_flags = B_BUSY; 281 buf->b_bcount = request->nbytes; 282 buf->b_lblkno = request->addr; 283 buf->b_edev = vd->dev[request->slice]; 284 285 mtype = (&vd->inband_task == task) ? LDC_SHADOW_MAP : LDC_DIRECT_MAP; 286 287 /* Map memory exported by client */ 288 status = ldc_mem_map(task->mhdl, request->cookie, request->ncookies, 289 mtype, (request->operation == VD_OP_BREAD) ? LDC_MEM_W : LDC_MEM_R, 290 &(buf->b_un.b_addr), NULL); 291 if (status != 0) { 292 PRN("ldc_mem_map() returned err %d ", status); 293 biofini(buf); 294 return (status); 295 } 296 297 status = ldc_mem_acquire(task->mhdl, 0, buf->b_bcount); 298 if (status != 0) { 299 (void) ldc_mem_unmap(task->mhdl); 300 PRN("ldc_mem_map() returned err %d ", status); 301 biofini(buf); 302 return (status); 303 } 304 305 buf->b_flags |= (request->operation == VD_OP_BREAD) ? B_READ : B_WRITE; 306 307 /* Start the block I/O */ 308 if ((status = ldi_strategy(vd->ldi_handle[request->slice], buf)) == 0) 309 return (EINPROGRESS); /* will complete on completionq */ 310 311 /* Clean up after error */ 312 rv = ldc_mem_release(task->mhdl, 0, buf->b_bcount); 313 if (rv) { 314 PRN("ldc_mem_release() returned err %d ", status); 315 } 316 rv = ldc_mem_unmap(task->mhdl); 317 if (rv) { 318 PRN("ldc_mem_unmap() returned err %d ", status); 319 } 320 321 biofini(buf); 322 return (status); 323 } 324 325 static int 326 send_msg(ldc_handle_t ldc_handle, void *msg, size_t msglen) 327 { 328 int retry, status; 329 size_t nbytes; 330 331 332 for (retry = 0, status = EWOULDBLOCK; 333 retry < vds_ldc_retries && status == EWOULDBLOCK; 334 retry++) { 335 PR1("ldc_write() attempt %d", (retry + 1)); 336 nbytes = msglen; 337 status = ldc_write(ldc_handle, msg, &nbytes); 338 } 339 340 if (status != 0) { 341 PRN("ldc_write() returned errno %d", status); 342 return (status); 343 } else if (nbytes != msglen) { 344 PRN("ldc_write() performed only partial write"); 345 return (EIO); 346 } 347 348 PR1("SENT %lu bytes", msglen); 349 return (0); 350 } 351 352 static void 353 vd_need_reset(vd_t *vd, boolean_t reset_ldc) 354 { 355 mutex_enter(&vd->lock); 356 vd->reset_state = B_TRUE; 357 vd->reset_ldc = reset_ldc; 358 mutex_exit(&vd->lock); 359 } 360 361 /* 362 * Reset the state of the connection with a client, if needed; reset the LDC 363 * transport as well, if needed. This function should only be called from the 364 * "startq", as it waits for tasks on the "completionq" and will deadlock if 365 * called from that queue. 366 */ 367 static void 368 vd_reset_if_needed(vd_t *vd) 369 { 370 int status = 0; 371 372 373 mutex_enter(&vd->lock); 374 if (!vd->reset_state) { 375 ASSERT(!vd->reset_ldc); 376 mutex_exit(&vd->lock); 377 return; 378 } 379 mutex_exit(&vd->lock); 380 381 382 PR0("Resetting connection state with %s", VD_CLIENT(vd)); 383 384 /* 385 * Let any asynchronous I/O complete before possibly pulling the rug 386 * out from under it; defer checking vd->reset_ldc, as one of the 387 * asynchronous tasks might set it 388 */ 389 ddi_taskq_wait(vd->completionq); 390 391 if ((vd->initialized & VD_DRING) && 392 ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0)) 393 PRN("ldc_mem_dring_unmap() returned errno %d", status); 394 395 if (vd->dring_task != NULL) { 396 ASSERT(vd->dring_len != 0); 397 /* Free all dring_task memory handles */ 398 for (int i = 0; i < vd->dring_len; i++) 399 (void) ldc_mem_free_handle(vd->dring_task[i].mhdl); 400 kmem_free(vd->dring_task, 401 (sizeof (*vd->dring_task)) * vd->dring_len); 402 vd->dring_task = NULL; 403 } 404 405 406 mutex_enter(&vd->lock); 407 if (vd->reset_ldc && ((status = ldc_down(vd->ldc_handle)) != 0)) 408 PRN("ldc_down() returned errno %d", status); 409 410 vd->initialized &= ~(VD_SID | VD_SEQ_NUM | VD_DRING); 411 vd->state = VD_STATE_INIT; 412 vd->max_msglen = sizeof (vio_msg_t); /* baseline vio message size */ 413 414 vd->reset_state = B_FALSE; 415 vd->reset_ldc = B_FALSE; 416 mutex_exit(&vd->lock); 417 } 418 419 static int 420 vd_mark_elem_done(vd_t *vd, int idx, int elem_status) 421 { 422 boolean_t accepted; 423 int status; 424 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 425 426 427 /* Acquire the element */ 428 if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 429 PRN("ldc_mem_dring_acquire() returned errno %d", status); 430 return (status); 431 } 432 433 /* Set the element's status and mark it done */ 434 accepted = (elem->hdr.dstate == VIO_DESC_ACCEPTED); 435 if (accepted) { 436 elem->payload.status = elem_status; 437 elem->hdr.dstate = VIO_DESC_DONE; 438 } else { 439 /* Perhaps client timed out waiting for I/O... */ 440 PRN("element %u no longer \"accepted\"", idx); 441 VD_DUMP_DRING_ELEM(elem); 442 } 443 /* Release the element */ 444 if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 445 PRN("ldc_mem_dring_release() returned errno %d", status); 446 return (status); 447 } 448 449 return (accepted ? 0 : EINVAL); 450 } 451 452 static void 453 vd_complete_bio(void *arg) 454 { 455 int status = 0; 456 vd_task_t *task = (vd_task_t *)arg; 457 vd_t *vd = task->vd; 458 vd_dring_payload_t *request = task->request; 459 struct buf *buf = &task->buf; 460 461 462 ASSERT(vd != NULL); 463 ASSERT(request != NULL); 464 ASSERT(task->msg != NULL); 465 ASSERT(task->msglen >= sizeof (*task->msg)); 466 ASSERT(task->msgsize >= task->msglen); 467 468 /* Wait for the I/O to complete */ 469 request->status = biowait(buf); 470 471 /* Release the buffer */ 472 status = ldc_mem_release(task->mhdl, 0, buf->b_bcount); 473 if (status) { 474 PRN("ldc_mem_release() returned errno %d copying to client", 475 status); 476 } 477 478 /* Unmap the memory */ 479 status = ldc_mem_unmap(task->mhdl); 480 if (status) { 481 PRN("ldc_mem_unmap() returned errno %d copying to client", 482 status); 483 } 484 485 biofini(buf); 486 487 /* Update the dring element for a dring client */ 488 if ((status == 0) && (vd->xfer_mode == VIO_DRING_MODE)) 489 status = vd_mark_elem_done(vd, task->index, request->status); 490 491 /* 492 * If a transport error occurred, arrange to "nack" the message when 493 * the final task in the descriptor element range completes 494 */ 495 if (status != 0) 496 task->msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 497 498 /* 499 * Only the final task for a range of elements will respond to and 500 * free the message 501 */ 502 if (task->type == VD_NONFINAL_RANGE_TASK) 503 return; 504 505 /* 506 * Send the "ack" or "nack" back to the client; if sending the message 507 * via LDC fails, arrange to reset both the connection state and LDC 508 * itself 509 */ 510 PR1("Sending %s", 511 (task->msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 512 if (send_msg(vd->ldc_handle, task->msg, task->msglen) != 0) 513 vd_need_reset(vd, B_TRUE); 514 515 /* Free the message now that it has been used for the reply */ 516 kmem_free(task->msg, task->msgsize); 517 } 518 519 static void 520 vd_geom2dk_geom(void *vd_buf, void *ioctl_arg) 521 { 522 VD_GEOM2DK_GEOM((vd_geom_t *)vd_buf, (struct dk_geom *)ioctl_arg); 523 } 524 525 static void 526 vd_vtoc2vtoc(void *vd_buf, void *ioctl_arg) 527 { 528 VD_VTOC2VTOC((vd_vtoc_t *)vd_buf, (struct vtoc *)ioctl_arg); 529 } 530 531 static void 532 dk_geom2vd_geom(void *ioctl_arg, void *vd_buf) 533 { 534 DK_GEOM2VD_GEOM((struct dk_geom *)ioctl_arg, (vd_geom_t *)vd_buf); 535 } 536 537 static void 538 vtoc2vd_vtoc(void *ioctl_arg, void *vd_buf) 539 { 540 VTOC2VD_VTOC((struct vtoc *)ioctl_arg, (vd_vtoc_t *)vd_buf); 541 } 542 543 static void 544 vd_get_efi_in(void *vd_buf, void *ioctl_arg) 545 { 546 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 547 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 548 549 dk_efi->dki_lba = vd_efi->lba; 550 dk_efi->dki_length = vd_efi->length; 551 dk_efi->dki_data = kmem_zalloc(vd_efi->length, KM_SLEEP); 552 } 553 554 static void 555 vd_get_efi_out(void *ioctl_arg, void *vd_buf) 556 { 557 int len; 558 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 559 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 560 561 len = vd_efi->length; 562 DK_EFI2VD_EFI(dk_efi, vd_efi); 563 kmem_free(dk_efi->dki_data, len); 564 } 565 566 static void 567 vd_set_efi_in(void *vd_buf, void *ioctl_arg) 568 { 569 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 570 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 571 572 dk_efi->dki_data = kmem_alloc(vd_efi->length, KM_SLEEP); 573 VD_EFI2DK_EFI(vd_efi, dk_efi); 574 } 575 576 static void 577 vd_set_efi_out(void *ioctl_arg, void *vd_buf) 578 { 579 vd_efi_t *vd_efi = (vd_efi_t *)vd_buf; 580 dk_efi_t *dk_efi = (dk_efi_t *)ioctl_arg; 581 582 kmem_free(dk_efi->dki_data, vd_efi->length); 583 } 584 585 static int 586 vd_read_vtoc(ldi_handle_t handle, struct vtoc *vtoc, vd_disk_label_t *label) 587 { 588 int status, rval; 589 struct dk_gpt *efi; 590 size_t efi_len; 591 592 *label = VD_DISK_LABEL_UNK; 593 594 status = ldi_ioctl(handle, DKIOCGVTOC, (intptr_t)vtoc, 595 (vd_open_flags | FKIOCTL), kcred, &rval); 596 597 if (status == 0) { 598 *label = VD_DISK_LABEL_VTOC; 599 return (0); 600 } else if (status != ENOTSUP) { 601 PRN("ldi_ioctl(DKIOCGVTOC) returned error %d", status); 602 return (status); 603 } 604 605 status = vds_efi_alloc_and_read(handle, &efi, &efi_len); 606 607 if (status) { 608 PRN("vds_efi_alloc_and_read returned error %d", status); 609 return (status); 610 } 611 612 *label = VD_DISK_LABEL_EFI; 613 vd_efi_to_vtoc(efi, vtoc); 614 vd_efi_free(efi, efi_len); 615 616 return (0); 617 } 618 619 static int 620 vd_do_slice_ioctl(vd_t *vd, int cmd, void *ioctl_arg) 621 { 622 dk_efi_t *dk_ioc; 623 624 switch (vd->vdisk_label) { 625 626 case VD_DISK_LABEL_VTOC: 627 628 switch (cmd) { 629 case DKIOCGGEOM: 630 ASSERT(ioctl_arg != NULL); 631 bcopy(&vd->dk_geom, ioctl_arg, sizeof (vd->dk_geom)); 632 return (0); 633 case DKIOCGVTOC: 634 ASSERT(ioctl_arg != NULL); 635 bcopy(&vd->vtoc, ioctl_arg, sizeof (vd->vtoc)); 636 return (0); 637 default: 638 return (ENOTSUP); 639 } 640 641 case VD_DISK_LABEL_EFI: 642 643 switch (cmd) { 644 case DKIOCGETEFI: 645 ASSERT(ioctl_arg != NULL); 646 dk_ioc = (dk_efi_t *)ioctl_arg; 647 if (dk_ioc->dki_length < vd->dk_efi.dki_length) 648 return (EINVAL); 649 bcopy(vd->dk_efi.dki_data, dk_ioc->dki_data, 650 vd->dk_efi.dki_length); 651 return (0); 652 default: 653 return (ENOTSUP); 654 } 655 656 default: 657 return (ENOTSUP); 658 } 659 } 660 661 static int 662 vd_do_ioctl(vd_t *vd, vd_dring_payload_t *request, void* buf, vd_ioctl_t *ioctl) 663 { 664 int rval = 0, status; 665 size_t nbytes = request->nbytes; /* modifiable copy */ 666 667 668 ASSERT(request->slice < vd->nslices); 669 PR0("Performing %s", ioctl->operation_name); 670 671 /* Get data from client and convert, if necessary */ 672 if (ioctl->copyin != NULL) { 673 ASSERT(nbytes != 0 && buf != NULL); 674 PR1("Getting \"arg\" data from client"); 675 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 676 request->cookie, request->ncookies, 677 LDC_COPY_IN)) != 0) { 678 PRN("ldc_mem_copy() returned errno %d " 679 "copying from client", status); 680 return (status); 681 } 682 683 /* Convert client's data, if necessary */ 684 if (ioctl->copyin == VD_IDENTITY) /* use client buffer */ 685 ioctl->arg = buf; 686 else /* convert client vdisk operation data to ioctl data */ 687 (ioctl->copyin)(buf, (void *)ioctl->arg); 688 } 689 690 /* 691 * Handle single-slice block devices internally; otherwise, have the 692 * real driver perform the ioctl() 693 */ 694 if (vd->vdisk_type == VD_DISK_TYPE_SLICE && !vd->pseudo) { 695 if ((status = vd_do_slice_ioctl(vd, ioctl->cmd, 696 (void *)ioctl->arg)) != 0) 697 return (status); 698 } else if ((status = ldi_ioctl(vd->ldi_handle[request->slice], 699 ioctl->cmd, (intptr_t)ioctl->arg, (vd_open_flags | FKIOCTL), 700 kcred, &rval)) != 0) { 701 PR0("ldi_ioctl(%s) = errno %d", ioctl->cmd_name, status); 702 return (status); 703 } 704 #ifdef DEBUG 705 if (rval != 0) { 706 PRN("%s set rval = %d, which is not being returned to client", 707 ioctl->cmd_name, rval); 708 } 709 #endif /* DEBUG */ 710 711 /* Convert data and send to client, if necessary */ 712 if (ioctl->copyout != NULL) { 713 ASSERT(nbytes != 0 && buf != NULL); 714 PR1("Sending \"arg\" data to client"); 715 716 /* Convert ioctl data to vdisk operation data, if necessary */ 717 if (ioctl->copyout != VD_IDENTITY) 718 (ioctl->copyout)((void *)ioctl->arg, buf); 719 720 if ((status = ldc_mem_copy(vd->ldc_handle, buf, 0, &nbytes, 721 request->cookie, request->ncookies, 722 LDC_COPY_OUT)) != 0) { 723 PRN("ldc_mem_copy() returned errno %d " 724 "copying to client", status); 725 return (status); 726 } 727 } 728 729 return (status); 730 } 731 732 /* 733 * Open any slices which have become non-empty as a result of performing a 734 * set-VTOC operation for the client. 735 * 736 * When serving a full disk, vds attempts to exclusively open all of the 737 * disk's slices to prevent another thread or process in the service domain 738 * from "stealing" a slice or from performing I/O to a slice while a vds 739 * client is accessing it. Unfortunately, underlying drivers, such as sd(7d) 740 * and cmdk(7d), return an error when attempting to open the device file for a 741 * slice which is currently empty according to the VTOC. This driver behavior 742 * means that vds must skip opening empty slices when initializing a vdisk for 743 * full-disk service and try to open slices that become non-empty (via a 744 * set-VTOC operation) during use of the full disk in order to begin serving 745 * such slices to the client. This approach has an inherent (and therefore 746 * unavoidable) race condition; it also means that failure to open a 747 * newly-non-empty slice has different semantics than failure to open an 748 * initially-non-empty slice: Due to driver bahavior, opening a 749 * newly-non-empty slice is a necessary side effect of vds performing a 750 * (successful) set-VTOC operation for a client on an in-service (and in-use) 751 * disk in order to begin serving the slice; failure of this side-effect 752 * operation does not mean that the client's set-VTOC operation failed or that 753 * operations on other slices must fail. Therefore, this function prints an 754 * error message on failure to open a slice, but does not return an error to 755 * its caller--unlike failure to open a slice initially, which results in an 756 * error that prevents serving the vdisk (and thereby requires an 757 * administrator to resolve the problem). Note that, apart from another 758 * thread or process opening a new slice during the race-condition window, 759 * failure to open a slice in this function will likely indicate an underlying 760 * drive problem, which will also likely become evident in errors returned by 761 * operations on other slices, and which will require administrative 762 * intervention and possibly servicing the drive. 763 */ 764 static void 765 vd_open_new_slices(vd_t *vd) 766 { 767 int status; 768 struct vtoc vtoc; 769 770 /* Get the (new) partitions for updated slice sizes */ 771 if ((status = vd_read_vtoc(vd->ldi_handle[0], &vtoc, 772 &vd->vdisk_label)) != 0) { 773 PRN("vd_read_vtoc returned error %d", status); 774 return; 775 } 776 777 /* Open any newly-non-empty slices */ 778 for (int slice = 0; slice < vd->nslices; slice++) { 779 /* Skip zero-length slices */ 780 if (vtoc.v_part[slice].p_size == 0) { 781 if (vd->ldi_handle[slice] != NULL) 782 PR0("Open slice %u now has zero length", slice); 783 continue; 784 } 785 786 /* Skip already-open slices */ 787 if (vd->ldi_handle[slice] != NULL) 788 continue; 789 790 PR0("Opening newly-non-empty slice %u", slice); 791 if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 792 vd_open_flags, kcred, &vd->ldi_handle[slice], 793 vd->vds->ldi_ident)) != 0) { 794 PRN("ldi_open_by_dev() returned errno %d " 795 "for slice %u", status, slice); 796 } 797 } 798 } 799 800 #define RNDSIZE(expr) P2ROUNDUP(sizeof (expr), sizeof (uint64_t)) 801 static int 802 vd_ioctl(vd_task_t *task) 803 { 804 int i, status; 805 void *buf = NULL; 806 struct dk_geom dk_geom = {0}; 807 struct vtoc vtoc = {0}; 808 struct dk_efi dk_efi = {0}; 809 vd_t *vd = task->vd; 810 vd_dring_payload_t *request = task->request; 811 vd_ioctl_t ioctl[] = { 812 /* Command (no-copy) operations */ 813 {VD_OP_FLUSH, STRINGIZE(VD_OP_FLUSH), 0, 814 DKIOCFLUSHWRITECACHE, STRINGIZE(DKIOCFLUSHWRITECACHE), 815 NULL, NULL, NULL}, 816 817 /* "Get" (copy-out) operations */ 818 {VD_OP_GET_WCE, STRINGIZE(VD_OP_GET_WCE), RNDSIZE(int), 819 DKIOCGETWCE, STRINGIZE(DKIOCGETWCE), 820 NULL, VD_IDENTITY, VD_IDENTITY}, 821 {VD_OP_GET_DISKGEOM, STRINGIZE(VD_OP_GET_DISKGEOM), 822 RNDSIZE(vd_geom_t), 823 DKIOCGGEOM, STRINGIZE(DKIOCGGEOM), 824 &dk_geom, NULL, dk_geom2vd_geom}, 825 {VD_OP_GET_VTOC, STRINGIZE(VD_OP_GET_VTOC), RNDSIZE(vd_vtoc_t), 826 DKIOCGVTOC, STRINGIZE(DKIOCGVTOC), 827 &vtoc, NULL, vtoc2vd_vtoc}, 828 {VD_OP_GET_EFI, STRINGIZE(VD_OP_GET_EFI), RNDSIZE(vd_efi_t), 829 DKIOCGETEFI, STRINGIZE(DKIOCGETEFI), 830 &dk_efi, vd_get_efi_in, vd_get_efi_out}, 831 832 /* "Set" (copy-in) operations */ 833 {VD_OP_SET_WCE, STRINGIZE(VD_OP_SET_WCE), RNDSIZE(int), 834 DKIOCSETWCE, STRINGIZE(DKIOCSETWCE), 835 NULL, VD_IDENTITY, VD_IDENTITY}, 836 {VD_OP_SET_DISKGEOM, STRINGIZE(VD_OP_SET_DISKGEOM), 837 RNDSIZE(vd_geom_t), 838 DKIOCSGEOM, STRINGIZE(DKIOCSGEOM), 839 &dk_geom, vd_geom2dk_geom, NULL}, 840 {VD_OP_SET_VTOC, STRINGIZE(VD_OP_SET_VTOC), RNDSIZE(vd_vtoc_t), 841 DKIOCSVTOC, STRINGIZE(DKIOCSVTOC), 842 &vtoc, vd_vtoc2vtoc, NULL}, 843 {VD_OP_SET_EFI, STRINGIZE(VD_OP_SET_EFI), RNDSIZE(vd_efi_t), 844 DKIOCSETEFI, STRINGIZE(DKIOCSETEFI), 845 &dk_efi, vd_set_efi_in, vd_set_efi_out}, 846 }; 847 size_t nioctls = (sizeof (ioctl))/(sizeof (ioctl[0])); 848 849 850 ASSERT(vd != NULL); 851 ASSERT(request != NULL); 852 ASSERT(request->slice < vd->nslices); 853 854 /* 855 * Determine ioctl corresponding to caller's "operation" and 856 * validate caller's "nbytes" 857 */ 858 for (i = 0; i < nioctls; i++) { 859 if (request->operation == ioctl[i].operation) { 860 /* LDC memory operations require 8-byte multiples */ 861 ASSERT(ioctl[i].nbytes % sizeof (uint64_t) == 0); 862 863 if (request->operation == VD_OP_GET_EFI || 864 request->operation == VD_OP_SET_EFI) { 865 if (request->nbytes >= ioctl[i].nbytes) 866 break; 867 PRN("%s: Expected at least nbytes = %lu, " 868 "got %lu", ioctl[i].operation_name, 869 ioctl[i].nbytes, request->nbytes); 870 return (EINVAL); 871 } 872 873 if (request->nbytes != ioctl[i].nbytes) { 874 PRN("%s: Expected nbytes = %lu, got %lu", 875 ioctl[i].operation_name, ioctl[i].nbytes, 876 request->nbytes); 877 return (EINVAL); 878 } 879 880 break; 881 } 882 } 883 ASSERT(i < nioctls); /* because "operation" already validated */ 884 885 if (request->nbytes) 886 buf = kmem_zalloc(request->nbytes, KM_SLEEP); 887 status = vd_do_ioctl(vd, request, buf, &ioctl[i]); 888 if (request->nbytes) 889 kmem_free(buf, request->nbytes); 890 if (vd->vdisk_type == VD_DISK_TYPE_DISK && 891 (request->operation == VD_OP_SET_VTOC || 892 request->operation == VD_OP_SET_EFI)) 893 vd_open_new_slices(vd); 894 PR0("Returning %d", status); 895 return (status); 896 } 897 898 static int 899 vd_get_devid(vd_task_t *task) 900 { 901 vd_t *vd = task->vd; 902 vd_dring_payload_t *request = task->request; 903 vd_devid_t *vd_devid; 904 impl_devid_t *devid; 905 int status, bufid_len, devid_len, len; 906 907 PR1("Get Device ID"); 908 909 if (ddi_lyr_get_devid(vd->dev[request->slice], 910 (ddi_devid_t *)&devid) != DDI_SUCCESS) { 911 /* the most common failure is that no devid is available */ 912 return (ENOENT); 913 } 914 915 bufid_len = request->nbytes - sizeof (vd_devid_t) + 1; 916 devid_len = DEVID_GETLEN(devid); 917 918 vd_devid = kmem_zalloc(request->nbytes, KM_SLEEP); 919 vd_devid->length = devid_len; 920 vd_devid->type = DEVID_GETTYPE(devid); 921 922 len = (devid_len > bufid_len)? bufid_len : devid_len; 923 924 bcopy(devid->did_id, vd_devid->id, len); 925 926 /* LDC memory operations require 8-byte multiples */ 927 ASSERT(request->nbytes % sizeof (uint64_t) == 0); 928 929 if ((status = ldc_mem_copy(vd->ldc_handle, (caddr_t)vd_devid, 0, 930 &request->nbytes, request->cookie, request->ncookies, 931 LDC_COPY_OUT)) != 0) { 932 PRN("ldc_mem_copy() returned errno %d copying to client", 933 status); 934 } 935 936 kmem_free(vd_devid, request->nbytes); 937 ddi_devid_free((ddi_devid_t)devid); 938 939 return (status); 940 } 941 942 /* 943 * Define the supported operations once the functions for performing them have 944 * been defined 945 */ 946 static const vds_operation_t vds_operation[] = { 947 {VD_OP_BREAD, vd_start_bio, vd_complete_bio}, 948 {VD_OP_BWRITE, vd_start_bio, vd_complete_bio}, 949 {VD_OP_FLUSH, vd_ioctl, NULL}, 950 {VD_OP_GET_WCE, vd_ioctl, NULL}, 951 {VD_OP_SET_WCE, vd_ioctl, NULL}, 952 {VD_OP_GET_VTOC, vd_ioctl, NULL}, 953 {VD_OP_SET_VTOC, vd_ioctl, NULL}, 954 {VD_OP_GET_DISKGEOM, vd_ioctl, NULL}, 955 {VD_OP_SET_DISKGEOM, vd_ioctl, NULL}, 956 {VD_OP_GET_EFI, vd_ioctl, NULL}, 957 {VD_OP_SET_EFI, vd_ioctl, NULL}, 958 {VD_OP_GET_DEVID, vd_get_devid, NULL}, 959 }; 960 961 static const size_t vds_noperations = 962 (sizeof (vds_operation))/(sizeof (vds_operation[0])); 963 964 /* 965 * Process a task specifying a client I/O request 966 */ 967 static int 968 vd_process_task(vd_task_t *task) 969 { 970 int i, status; 971 vd_t *vd = task->vd; 972 vd_dring_payload_t *request = task->request; 973 974 975 ASSERT(vd != NULL); 976 ASSERT(request != NULL); 977 978 /* Range-check slice */ 979 if (request->slice >= vd->nslices) { 980 PRN("Invalid \"slice\" %u (max %u) for virtual disk", 981 request->slice, (vd->nslices - 1)); 982 return (EINVAL); 983 } 984 985 /* Find the requested operation */ 986 for (i = 0; i < vds_noperations; i++) 987 if (request->operation == vds_operation[i].operation) 988 break; 989 if (i == vds_noperations) { 990 PRN("Unsupported operation %u", request->operation); 991 return (ENOTSUP); 992 } 993 994 /* Start the operation */ 995 if ((status = vds_operation[i].start(task)) != EINPROGRESS) { 996 request->status = status; /* op succeeded or failed */ 997 return (0); /* but request completed */ 998 } 999 1000 ASSERT(vds_operation[i].complete != NULL); /* debug case */ 1001 if (vds_operation[i].complete == NULL) { /* non-debug case */ 1002 PRN("Unexpected return of EINPROGRESS " 1003 "with no I/O completion handler"); 1004 request->status = EIO; /* operation failed */ 1005 return (0); /* but request completed */ 1006 } 1007 1008 /* Queue a task to complete the operation */ 1009 status = ddi_taskq_dispatch(vd->completionq, vds_operation[i].complete, 1010 task, DDI_SLEEP); 1011 /* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */ 1012 ASSERT(status == DDI_SUCCESS); 1013 1014 PR1("Operation in progress"); 1015 return (EINPROGRESS); /* completion handler will finish request */ 1016 } 1017 1018 /* 1019 * Return true if the "type", "subtype", and "env" fields of the "tag" first 1020 * argument match the corresponding remaining arguments; otherwise, return false 1021 */ 1022 boolean_t 1023 vd_msgtype(vio_msg_tag_t *tag, int type, int subtype, int env) 1024 { 1025 return ((tag->vio_msgtype == type) && 1026 (tag->vio_subtype == subtype) && 1027 (tag->vio_subtype_env == env)) ? B_TRUE : B_FALSE; 1028 } 1029 1030 /* 1031 * Check whether the major/minor version specified in "ver_msg" is supported 1032 * by this server. 1033 */ 1034 static boolean_t 1035 vds_supported_version(vio_ver_msg_t *ver_msg) 1036 { 1037 for (int i = 0; i < vds_num_versions; i++) { 1038 ASSERT(vds_version[i].major > 0); 1039 ASSERT((i == 0) || 1040 (vds_version[i].major < vds_version[i-1].major)); 1041 1042 /* 1043 * If the major versions match, adjust the minor version, if 1044 * necessary, down to the highest value supported by this 1045 * server and return true so this message will get "ack"ed; 1046 * the client should also support all minor versions lower 1047 * than the value it sent 1048 */ 1049 if (ver_msg->ver_major == vds_version[i].major) { 1050 if (ver_msg->ver_minor > vds_version[i].minor) { 1051 PR0("Adjusting minor version from %u to %u", 1052 ver_msg->ver_minor, vds_version[i].minor); 1053 ver_msg->ver_minor = vds_version[i].minor; 1054 } 1055 return (B_TRUE); 1056 } 1057 1058 /* 1059 * If the message contains a higher major version number, set 1060 * the message's major/minor versions to the current values 1061 * and return false, so this message will get "nack"ed with 1062 * these values, and the client will potentially try again 1063 * with the same or a lower version 1064 */ 1065 if (ver_msg->ver_major > vds_version[i].major) { 1066 ver_msg->ver_major = vds_version[i].major; 1067 ver_msg->ver_minor = vds_version[i].minor; 1068 return (B_FALSE); 1069 } 1070 1071 /* 1072 * Otherwise, the message's major version is less than the 1073 * current major version, so continue the loop to the next 1074 * (lower) supported version 1075 */ 1076 } 1077 1078 /* 1079 * No common version was found; "ground" the version pair in the 1080 * message to terminate negotiation 1081 */ 1082 ver_msg->ver_major = 0; 1083 ver_msg->ver_minor = 0; 1084 return (B_FALSE); 1085 } 1086 1087 /* 1088 * Process a version message from a client. vds expects to receive version 1089 * messages from clients seeking service, but never issues version messages 1090 * itself; therefore, vds can ACK or NACK client version messages, but does 1091 * not expect to receive version-message ACKs or NACKs (and will treat such 1092 * messages as invalid). 1093 */ 1094 static int 1095 vd_process_ver_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1096 { 1097 vio_ver_msg_t *ver_msg = (vio_ver_msg_t *)msg; 1098 1099 1100 ASSERT(msglen >= sizeof (msg->tag)); 1101 1102 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1103 VIO_VER_INFO)) { 1104 return (ENOMSG); /* not a version message */ 1105 } 1106 1107 if (msglen != sizeof (*ver_msg)) { 1108 PRN("Expected %lu-byte version message; " 1109 "received %lu bytes", sizeof (*ver_msg), msglen); 1110 return (EBADMSG); 1111 } 1112 1113 if (ver_msg->dev_class != VDEV_DISK) { 1114 PRN("Expected device class %u (disk); received %u", 1115 VDEV_DISK, ver_msg->dev_class); 1116 return (EBADMSG); 1117 } 1118 1119 /* 1120 * We're talking to the expected kind of client; set our device class 1121 * for "ack/nack" back to the client 1122 */ 1123 ver_msg->dev_class = VDEV_DISK_SERVER; 1124 1125 /* 1126 * Check whether the (valid) version message specifies a version 1127 * supported by this server. If the version is not supported, return 1128 * EBADMSG so the message will get "nack"ed; vds_supported_version() 1129 * will have updated the message with a supported version for the 1130 * client to consider 1131 */ 1132 if (!vds_supported_version(ver_msg)) 1133 return (EBADMSG); 1134 1135 1136 /* 1137 * A version has been agreed upon; use the client's SID for 1138 * communication on this channel now 1139 */ 1140 ASSERT(!(vd->initialized & VD_SID)); 1141 vd->sid = ver_msg->tag.vio_sid; 1142 vd->initialized |= VD_SID; 1143 1144 /* 1145 * When multiple versions are supported, this function should store 1146 * the negotiated major and minor version values in the "vd" data 1147 * structure to govern further communication; in particular, note that 1148 * the client might have specified a lower minor version for the 1149 * agreed major version than specifed in the vds_version[] array. The 1150 * following assertions should help remind future maintainers to make 1151 * the appropriate changes to support multiple versions. 1152 */ 1153 ASSERT(vds_num_versions == 1); 1154 ASSERT(ver_msg->ver_major == vds_version[0].major); 1155 ASSERT(ver_msg->ver_minor == vds_version[0].minor); 1156 1157 PR0("Using major version %u, minor version %u", 1158 ver_msg->ver_major, ver_msg->ver_minor); 1159 return (0); 1160 } 1161 1162 static int 1163 vd_process_attr_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1164 { 1165 vd_attr_msg_t *attr_msg = (vd_attr_msg_t *)msg; 1166 1167 1168 ASSERT(msglen >= sizeof (msg->tag)); 1169 1170 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1171 VIO_ATTR_INFO)) { 1172 PR0("Message is not an attribute message"); 1173 return (ENOMSG); 1174 } 1175 1176 if (msglen != sizeof (*attr_msg)) { 1177 PRN("Expected %lu-byte attribute message; " 1178 "received %lu bytes", sizeof (*attr_msg), msglen); 1179 return (EBADMSG); 1180 } 1181 1182 if (attr_msg->max_xfer_sz == 0) { 1183 PRN("Received maximum transfer size of 0 from client"); 1184 return (EBADMSG); 1185 } 1186 1187 if ((attr_msg->xfer_mode != VIO_DESC_MODE) && 1188 (attr_msg->xfer_mode != VIO_DRING_MODE)) { 1189 PRN("Client requested unsupported transfer mode"); 1190 return (EBADMSG); 1191 } 1192 1193 1194 /* Success: valid message and transfer mode */ 1195 vd->xfer_mode = attr_msg->xfer_mode; 1196 if (vd->xfer_mode == VIO_DESC_MODE) { 1197 /* 1198 * The vd_dring_inband_msg_t contains one cookie; need room 1199 * for up to n-1 more cookies, where "n" is the number of full 1200 * pages plus possibly one partial page required to cover 1201 * "max_xfer_sz". Add room for one more cookie if 1202 * "max_xfer_sz" isn't an integral multiple of the page size. 1203 * Must first get the maximum transfer size in bytes. 1204 */ 1205 size_t max_xfer_bytes = attr_msg->vdisk_block_size ? 1206 attr_msg->vdisk_block_size*attr_msg->max_xfer_sz : 1207 attr_msg->max_xfer_sz; 1208 size_t max_inband_msglen = 1209 sizeof (vd_dring_inband_msg_t) + 1210 ((max_xfer_bytes/PAGESIZE + 1211 ((max_xfer_bytes % PAGESIZE) ? 1 : 0))* 1212 (sizeof (ldc_mem_cookie_t))); 1213 1214 /* 1215 * Set the maximum expected message length to 1216 * accommodate in-band-descriptor messages with all 1217 * their cookies 1218 */ 1219 vd->max_msglen = MAX(vd->max_msglen, max_inband_msglen); 1220 1221 /* 1222 * Initialize the data structure for processing in-band I/O 1223 * request descriptors 1224 */ 1225 vd->inband_task.vd = vd; 1226 vd->inband_task.index = 0; 1227 vd->inband_task.type = VD_FINAL_RANGE_TASK; /* range == 1 */ 1228 } 1229 1230 /* Return the device's block size and max transfer size to the client */ 1231 attr_msg->vdisk_block_size = DEV_BSIZE; 1232 attr_msg->max_xfer_sz = vd->max_xfer_sz; 1233 1234 attr_msg->vdisk_size = vd->vdisk_size; 1235 attr_msg->vdisk_type = vd->vdisk_type; 1236 attr_msg->operations = vds_operations; 1237 PR0("%s", VD_CLIENT(vd)); 1238 return (0); 1239 } 1240 1241 static int 1242 vd_process_dring_reg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1243 { 1244 int status; 1245 size_t expected; 1246 ldc_mem_info_t dring_minfo; 1247 vio_dring_reg_msg_t *reg_msg = (vio_dring_reg_msg_t *)msg; 1248 1249 1250 ASSERT(msglen >= sizeof (msg->tag)); 1251 1252 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1253 VIO_DRING_REG)) { 1254 PR0("Message is not a register-dring message"); 1255 return (ENOMSG); 1256 } 1257 1258 if (msglen < sizeof (*reg_msg)) { 1259 PRN("Expected at least %lu-byte register-dring message; " 1260 "received %lu bytes", sizeof (*reg_msg), msglen); 1261 return (EBADMSG); 1262 } 1263 1264 expected = sizeof (*reg_msg) + 1265 (reg_msg->ncookies - 1)*(sizeof (reg_msg->cookie[0])); 1266 if (msglen != expected) { 1267 PRN("Expected %lu-byte register-dring message; " 1268 "received %lu bytes", expected, msglen); 1269 return (EBADMSG); 1270 } 1271 1272 if (vd->initialized & VD_DRING) { 1273 PRN("A dring was previously registered; only support one"); 1274 return (EBADMSG); 1275 } 1276 1277 if (reg_msg->num_descriptors > INT32_MAX) { 1278 PRN("reg_msg->num_descriptors = %u; must be <= %u (%s)", 1279 reg_msg->ncookies, INT32_MAX, STRINGIZE(INT32_MAX)); 1280 return (EBADMSG); 1281 } 1282 1283 if (reg_msg->ncookies != 1) { 1284 /* 1285 * In addition to fixing the assertion in the success case 1286 * below, supporting drings which require more than one 1287 * "cookie" requires increasing the value of vd->max_msglen 1288 * somewhere in the code path prior to receiving the message 1289 * which results in calling this function. Note that without 1290 * making this change, the larger message size required to 1291 * accommodate multiple cookies cannot be successfully 1292 * received, so this function will not even get called. 1293 * Gracefully accommodating more dring cookies might 1294 * reasonably demand exchanging an additional attribute or 1295 * making a minor protocol adjustment 1296 */ 1297 PRN("reg_msg->ncookies = %u != 1", reg_msg->ncookies); 1298 return (EBADMSG); 1299 } 1300 1301 status = ldc_mem_dring_map(vd->ldc_handle, reg_msg->cookie, 1302 reg_msg->ncookies, reg_msg->num_descriptors, 1303 reg_msg->descriptor_size, LDC_DIRECT_MAP, &vd->dring_handle); 1304 if (status != 0) { 1305 PRN("ldc_mem_dring_map() returned errno %d", status); 1306 return (status); 1307 } 1308 1309 /* 1310 * To remove the need for this assertion, must call 1311 * ldc_mem_dring_nextcookie() successfully ncookies-1 times after a 1312 * successful call to ldc_mem_dring_map() 1313 */ 1314 ASSERT(reg_msg->ncookies == 1); 1315 1316 if ((status = 1317 ldc_mem_dring_info(vd->dring_handle, &dring_minfo)) != 0) { 1318 PRN("ldc_mem_dring_info() returned errno %d", status); 1319 if ((status = ldc_mem_dring_unmap(vd->dring_handle)) != 0) 1320 PRN("ldc_mem_dring_unmap() returned errno %d", status); 1321 return (status); 1322 } 1323 1324 if (dring_minfo.vaddr == NULL) { 1325 PRN("Descriptor ring virtual address is NULL"); 1326 return (ENXIO); 1327 } 1328 1329 1330 /* Initialize for valid message and mapped dring */ 1331 PR1("descriptor size = %u, dring length = %u", 1332 vd->descriptor_size, vd->dring_len); 1333 vd->initialized |= VD_DRING; 1334 vd->dring_ident = 1; /* "There Can Be Only One" */ 1335 vd->dring = dring_minfo.vaddr; 1336 vd->descriptor_size = reg_msg->descriptor_size; 1337 vd->dring_len = reg_msg->num_descriptors; 1338 reg_msg->dring_ident = vd->dring_ident; 1339 1340 /* 1341 * Allocate and initialize a "shadow" array of data structures for 1342 * tasks to process I/O requests in dring elements 1343 */ 1344 vd->dring_task = 1345 kmem_zalloc((sizeof (*vd->dring_task)) * vd->dring_len, KM_SLEEP); 1346 for (int i = 0; i < vd->dring_len; i++) { 1347 vd->dring_task[i].vd = vd; 1348 vd->dring_task[i].index = i; 1349 vd->dring_task[i].request = &VD_DRING_ELEM(i)->payload; 1350 1351 status = ldc_mem_alloc_handle(vd->ldc_handle, 1352 &(vd->dring_task[i].mhdl)); 1353 if (status) { 1354 PRN("ldc_mem_alloc_handle() returned err %d ", status); 1355 return (ENXIO); 1356 } 1357 } 1358 1359 return (0); 1360 } 1361 1362 static int 1363 vd_process_dring_unreg_msg(vd_t *vd, vio_msg_t *msg, size_t msglen) 1364 { 1365 vio_dring_unreg_msg_t *unreg_msg = (vio_dring_unreg_msg_t *)msg; 1366 1367 1368 ASSERT(msglen >= sizeof (msg->tag)); 1369 1370 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, 1371 VIO_DRING_UNREG)) { 1372 PR0("Message is not an unregister-dring message"); 1373 return (ENOMSG); 1374 } 1375 1376 if (msglen != sizeof (*unreg_msg)) { 1377 PRN("Expected %lu-byte unregister-dring message; " 1378 "received %lu bytes", sizeof (*unreg_msg), msglen); 1379 return (EBADMSG); 1380 } 1381 1382 if (unreg_msg->dring_ident != vd->dring_ident) { 1383 PRN("Expected dring ident %lu; received %lu", 1384 vd->dring_ident, unreg_msg->dring_ident); 1385 return (EBADMSG); 1386 } 1387 1388 return (0); 1389 } 1390 1391 static int 1392 process_rdx_msg(vio_msg_t *msg, size_t msglen) 1393 { 1394 ASSERT(msglen >= sizeof (msg->tag)); 1395 1396 if (!vd_msgtype(&msg->tag, VIO_TYPE_CTRL, VIO_SUBTYPE_INFO, VIO_RDX)) { 1397 PR0("Message is not an RDX message"); 1398 return (ENOMSG); 1399 } 1400 1401 if (msglen != sizeof (vio_rdx_msg_t)) { 1402 PRN("Expected %lu-byte RDX message; received %lu bytes", 1403 sizeof (vio_rdx_msg_t), msglen); 1404 return (EBADMSG); 1405 } 1406 1407 PR0("Valid RDX message"); 1408 return (0); 1409 } 1410 1411 static int 1412 vd_check_seq_num(vd_t *vd, uint64_t seq_num) 1413 { 1414 if ((vd->initialized & VD_SEQ_NUM) && (seq_num != vd->seq_num + 1)) { 1415 PRN("Received seq_num %lu; expected %lu", 1416 seq_num, (vd->seq_num + 1)); 1417 vd_need_reset(vd, B_FALSE); 1418 return (1); 1419 } 1420 1421 vd->seq_num = seq_num; 1422 vd->initialized |= VD_SEQ_NUM; /* superfluous after first time... */ 1423 return (0); 1424 } 1425 1426 /* 1427 * Return the expected size of an inband-descriptor message with all the 1428 * cookies it claims to include 1429 */ 1430 static size_t 1431 expected_inband_size(vd_dring_inband_msg_t *msg) 1432 { 1433 return ((sizeof (*msg)) + 1434 (msg->payload.ncookies - 1)*(sizeof (msg->payload.cookie[0]))); 1435 } 1436 1437 /* 1438 * Process an in-band descriptor message: used with clients like OBP, with 1439 * which vds exchanges descriptors within VIO message payloads, rather than 1440 * operating on them within a descriptor ring 1441 */ 1442 static int 1443 vd_process_desc_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize) 1444 { 1445 size_t expected; 1446 vd_dring_inband_msg_t *desc_msg = (vd_dring_inband_msg_t *)msg; 1447 1448 1449 ASSERT(msglen >= sizeof (msg->tag)); 1450 1451 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 1452 VIO_DESC_DATA)) { 1453 PR1("Message is not an in-band-descriptor message"); 1454 return (ENOMSG); 1455 } 1456 1457 if (msglen < sizeof (*desc_msg)) { 1458 PRN("Expected at least %lu-byte descriptor message; " 1459 "received %lu bytes", sizeof (*desc_msg), msglen); 1460 return (EBADMSG); 1461 } 1462 1463 if (msglen != (expected = expected_inband_size(desc_msg))) { 1464 PRN("Expected %lu-byte descriptor message; " 1465 "received %lu bytes", expected, msglen); 1466 return (EBADMSG); 1467 } 1468 1469 if (vd_check_seq_num(vd, desc_msg->hdr.seq_num) != 0) 1470 return (EBADMSG); 1471 1472 /* 1473 * Valid message: Set up the in-band descriptor task and process the 1474 * request. Arrange to acknowledge the client's message, unless an 1475 * error processing the descriptor task results in setting 1476 * VIO_SUBTYPE_NACK 1477 */ 1478 PR1("Valid in-band-descriptor message"); 1479 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 1480 vd->inband_task.msg = msg; 1481 vd->inband_task.msglen = msglen; 1482 vd->inband_task.msgsize = msgsize; 1483 vd->inband_task.request = &desc_msg->payload; 1484 return (vd_process_task(&vd->inband_task)); 1485 } 1486 1487 static int 1488 vd_process_element(vd_t *vd, vd_task_type_t type, uint32_t idx, 1489 vio_msg_t *msg, size_t msglen, size_t msgsize) 1490 { 1491 int status; 1492 boolean_t ready; 1493 vd_dring_entry_t *elem = VD_DRING_ELEM(idx); 1494 1495 1496 /* Accept the updated dring element */ 1497 if ((status = ldc_mem_dring_acquire(vd->dring_handle, idx, idx)) != 0) { 1498 PRN("ldc_mem_dring_acquire() returned errno %d", status); 1499 return (status); 1500 } 1501 ready = (elem->hdr.dstate == VIO_DESC_READY); 1502 if (ready) { 1503 elem->hdr.dstate = VIO_DESC_ACCEPTED; 1504 } else { 1505 PRN("descriptor %u not ready", idx); 1506 VD_DUMP_DRING_ELEM(elem); 1507 } 1508 if ((status = ldc_mem_dring_release(vd->dring_handle, idx, idx)) != 0) { 1509 PRN("ldc_mem_dring_release() returned errno %d", status); 1510 return (status); 1511 } 1512 if (!ready) 1513 return (EBUSY); 1514 1515 1516 /* Initialize a task and process the accepted element */ 1517 PR1("Processing dring element %u", idx); 1518 vd->dring_task[idx].type = type; 1519 vd->dring_task[idx].msg = msg; 1520 vd->dring_task[idx].msglen = msglen; 1521 vd->dring_task[idx].msgsize = msgsize; 1522 if ((status = vd_process_task(&vd->dring_task[idx])) != EINPROGRESS) 1523 status = vd_mark_elem_done(vd, idx, elem->payload.status); 1524 1525 return (status); 1526 } 1527 1528 static int 1529 vd_process_element_range(vd_t *vd, int start, int end, 1530 vio_msg_t *msg, size_t msglen, size_t msgsize) 1531 { 1532 int i, n, nelem, status = 0; 1533 boolean_t inprogress = B_FALSE; 1534 vd_task_type_t type; 1535 1536 1537 ASSERT(start >= 0); 1538 ASSERT(end >= 0); 1539 1540 /* 1541 * Arrange to acknowledge the client's message, unless an error 1542 * processing one of the dring elements results in setting 1543 * VIO_SUBTYPE_NACK 1544 */ 1545 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 1546 1547 /* 1548 * Process the dring elements in the range 1549 */ 1550 nelem = ((end < start) ? end + vd->dring_len : end) - start + 1; 1551 for (i = start, n = nelem; n > 0; i = (i + 1) % vd->dring_len, n--) { 1552 ((vio_dring_msg_t *)msg)->end_idx = i; 1553 type = (n == 1) ? VD_FINAL_RANGE_TASK : VD_NONFINAL_RANGE_TASK; 1554 status = vd_process_element(vd, type, i, msg, msglen, msgsize); 1555 if (status == EINPROGRESS) 1556 inprogress = B_TRUE; 1557 else if (status != 0) 1558 break; 1559 } 1560 1561 /* 1562 * If some, but not all, operations of a multi-element range are in 1563 * progress, wait for other operations to complete before returning 1564 * (which will result in "ack" or "nack" of the message). Note that 1565 * all outstanding operations will need to complete, not just the ones 1566 * corresponding to the current range of dring elements; howevever, as 1567 * this situation is an error case, performance is less critical. 1568 */ 1569 if ((nelem > 1) && (status != EINPROGRESS) && inprogress) 1570 ddi_taskq_wait(vd->completionq); 1571 1572 return (status); 1573 } 1574 1575 static int 1576 vd_process_dring_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize) 1577 { 1578 vio_dring_msg_t *dring_msg = (vio_dring_msg_t *)msg; 1579 1580 1581 ASSERT(msglen >= sizeof (msg->tag)); 1582 1583 if (!vd_msgtype(&msg->tag, VIO_TYPE_DATA, VIO_SUBTYPE_INFO, 1584 VIO_DRING_DATA)) { 1585 PR1("Message is not a dring-data message"); 1586 return (ENOMSG); 1587 } 1588 1589 if (msglen != sizeof (*dring_msg)) { 1590 PRN("Expected %lu-byte dring message; received %lu bytes", 1591 sizeof (*dring_msg), msglen); 1592 return (EBADMSG); 1593 } 1594 1595 if (vd_check_seq_num(vd, dring_msg->seq_num) != 0) 1596 return (EBADMSG); 1597 1598 if (dring_msg->dring_ident != vd->dring_ident) { 1599 PRN("Expected dring ident %lu; received ident %lu", 1600 vd->dring_ident, dring_msg->dring_ident); 1601 return (EBADMSG); 1602 } 1603 1604 if (dring_msg->start_idx >= vd->dring_len) { 1605 PRN("\"start_idx\" = %u; must be less than %u", 1606 dring_msg->start_idx, vd->dring_len); 1607 return (EBADMSG); 1608 } 1609 1610 if ((dring_msg->end_idx < 0) || 1611 (dring_msg->end_idx >= vd->dring_len)) { 1612 PRN("\"end_idx\" = %u; must be >= 0 and less than %u", 1613 dring_msg->end_idx, vd->dring_len); 1614 return (EBADMSG); 1615 } 1616 1617 /* Valid message; process range of updated dring elements */ 1618 PR1("Processing descriptor range, start = %u, end = %u", 1619 dring_msg->start_idx, dring_msg->end_idx); 1620 return (vd_process_element_range(vd, dring_msg->start_idx, 1621 dring_msg->end_idx, msg, msglen, msgsize)); 1622 } 1623 1624 static int 1625 recv_msg(ldc_handle_t ldc_handle, void *msg, size_t *nbytes) 1626 { 1627 int retry, status; 1628 size_t size = *nbytes; 1629 1630 1631 for (retry = 0, status = ETIMEDOUT; 1632 retry < vds_ldc_retries && status == ETIMEDOUT; 1633 retry++) { 1634 PR1("ldc_read() attempt %d", (retry + 1)); 1635 *nbytes = size; 1636 status = ldc_read(ldc_handle, msg, nbytes); 1637 } 1638 1639 if (status != 0) { 1640 PRN("ldc_read() returned errno %d", status); 1641 return (status); 1642 } else if (*nbytes == 0) { 1643 PR1("ldc_read() returned 0 and no message read"); 1644 return (ENOMSG); 1645 } 1646 1647 PR1("RCVD %lu-byte message", *nbytes); 1648 return (0); 1649 } 1650 1651 static int 1652 vd_do_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize) 1653 { 1654 int status; 1655 1656 1657 PR1("Processing (%x/%x/%x) message", msg->tag.vio_msgtype, 1658 msg->tag.vio_subtype, msg->tag.vio_subtype_env); 1659 1660 /* 1661 * Validate session ID up front, since it applies to all messages 1662 * once set 1663 */ 1664 if ((msg->tag.vio_sid != vd->sid) && (vd->initialized & VD_SID)) { 1665 PRN("Expected SID %u, received %u", vd->sid, 1666 msg->tag.vio_sid); 1667 return (EBADMSG); 1668 } 1669 1670 1671 /* 1672 * Process the received message based on connection state 1673 */ 1674 switch (vd->state) { 1675 case VD_STATE_INIT: /* expect version message */ 1676 if ((status = vd_process_ver_msg(vd, msg, msglen)) != 0) 1677 return (status); 1678 1679 /* Version negotiated, move to that state */ 1680 vd->state = VD_STATE_VER; 1681 return (0); 1682 1683 case VD_STATE_VER: /* expect attribute message */ 1684 if ((status = vd_process_attr_msg(vd, msg, msglen)) != 0) 1685 return (status); 1686 1687 /* Attributes exchanged, move to that state */ 1688 vd->state = VD_STATE_ATTR; 1689 return (0); 1690 1691 case VD_STATE_ATTR: 1692 switch (vd->xfer_mode) { 1693 case VIO_DESC_MODE: /* expect RDX message */ 1694 if ((status = process_rdx_msg(msg, msglen)) != 0) 1695 return (status); 1696 1697 /* Ready to receive in-band descriptors */ 1698 vd->state = VD_STATE_DATA; 1699 return (0); 1700 1701 case VIO_DRING_MODE: /* expect register-dring message */ 1702 if ((status = 1703 vd_process_dring_reg_msg(vd, msg, msglen)) != 0) 1704 return (status); 1705 1706 /* One dring negotiated, move to that state */ 1707 vd->state = VD_STATE_DRING; 1708 return (0); 1709 1710 default: 1711 ASSERT("Unsupported transfer mode"); 1712 PRN("Unsupported transfer mode"); 1713 return (ENOTSUP); 1714 } 1715 1716 case VD_STATE_DRING: /* expect RDX, register-dring, or unreg-dring */ 1717 if ((status = process_rdx_msg(msg, msglen)) == 0) { 1718 /* Ready to receive data */ 1719 vd->state = VD_STATE_DATA; 1720 return (0); 1721 } else if (status != ENOMSG) { 1722 return (status); 1723 } 1724 1725 1726 /* 1727 * If another register-dring message is received, stay in 1728 * dring state in case the client sends RDX; although the 1729 * protocol allows multiple drings, this server does not 1730 * support using more than one 1731 */ 1732 if ((status = 1733 vd_process_dring_reg_msg(vd, msg, msglen)) != ENOMSG) 1734 return (status); 1735 1736 /* 1737 * Acknowledge an unregister-dring message, but reset the 1738 * connection anyway: Although the protocol allows 1739 * unregistering drings, this server cannot serve a vdisk 1740 * without its only dring 1741 */ 1742 status = vd_process_dring_unreg_msg(vd, msg, msglen); 1743 return ((status == 0) ? ENOTSUP : status); 1744 1745 case VD_STATE_DATA: 1746 switch (vd->xfer_mode) { 1747 case VIO_DESC_MODE: /* expect in-band-descriptor message */ 1748 return (vd_process_desc_msg(vd, msg, msglen, msgsize)); 1749 1750 case VIO_DRING_MODE: /* expect dring-data or unreg-dring */ 1751 /* 1752 * Typically expect dring-data messages, so handle 1753 * them first 1754 */ 1755 if ((status = vd_process_dring_msg(vd, msg, 1756 msglen, msgsize)) != ENOMSG) 1757 return (status); 1758 1759 /* 1760 * Acknowledge an unregister-dring message, but reset 1761 * the connection anyway: Although the protocol 1762 * allows unregistering drings, this server cannot 1763 * serve a vdisk without its only dring 1764 */ 1765 status = vd_process_dring_unreg_msg(vd, msg, msglen); 1766 return ((status == 0) ? ENOTSUP : status); 1767 1768 default: 1769 ASSERT("Unsupported transfer mode"); 1770 PRN("Unsupported transfer mode"); 1771 return (ENOTSUP); 1772 } 1773 1774 default: 1775 ASSERT("Invalid client connection state"); 1776 PRN("Invalid client connection state"); 1777 return (ENOTSUP); 1778 } 1779 } 1780 1781 static int 1782 vd_process_msg(vd_t *vd, vio_msg_t *msg, size_t msglen, size_t msgsize) 1783 { 1784 int status; 1785 boolean_t reset_ldc = B_FALSE; 1786 1787 1788 /* 1789 * Check that the message is at least big enough for a "tag", so that 1790 * message processing can proceed based on tag-specified message type 1791 */ 1792 if (msglen < sizeof (vio_msg_tag_t)) { 1793 PRN("Received short (%lu-byte) message", msglen); 1794 /* Can't "nack" short message, so drop the big hammer */ 1795 vd_need_reset(vd, B_TRUE); 1796 return (EBADMSG); 1797 } 1798 1799 /* 1800 * Process the message 1801 */ 1802 switch (status = vd_do_process_msg(vd, msg, msglen, msgsize)) { 1803 case 0: 1804 /* "ack" valid, successfully-processed messages */ 1805 msg->tag.vio_subtype = VIO_SUBTYPE_ACK; 1806 break; 1807 1808 case EINPROGRESS: 1809 /* The completion handler will "ack" or "nack" the message */ 1810 return (EINPROGRESS); 1811 case ENOMSG: 1812 PRN("Received unexpected message"); 1813 _NOTE(FALLTHROUGH); 1814 case EBADMSG: 1815 case ENOTSUP: 1816 /* "nack" invalid messages */ 1817 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 1818 break; 1819 1820 default: 1821 /* "nack" failed messages */ 1822 msg->tag.vio_subtype = VIO_SUBTYPE_NACK; 1823 /* An LDC error probably occurred, so try resetting it */ 1824 reset_ldc = B_TRUE; 1825 break; 1826 } 1827 1828 /* Send the "ack" or "nack" to the client */ 1829 PR1("Sending %s", 1830 (msg->tag.vio_subtype == VIO_SUBTYPE_ACK) ? "ACK" : "NACK"); 1831 if (send_msg(vd->ldc_handle, msg, msglen) != 0) 1832 reset_ldc = B_TRUE; 1833 1834 /* Arrange to reset the connection for nack'ed or failed messages */ 1835 if ((status != 0) || reset_ldc) 1836 vd_need_reset(vd, reset_ldc); 1837 1838 return (status); 1839 } 1840 1841 static boolean_t 1842 vd_enabled(vd_t *vd) 1843 { 1844 boolean_t enabled; 1845 1846 1847 mutex_enter(&vd->lock); 1848 enabled = vd->enabled; 1849 mutex_exit(&vd->lock); 1850 return (enabled); 1851 } 1852 1853 static void 1854 vd_recv_msg(void *arg) 1855 { 1856 vd_t *vd = (vd_t *)arg; 1857 int status = 0; 1858 1859 1860 ASSERT(vd != NULL); 1861 PR2("New task to receive incoming message(s)"); 1862 while (vd_enabled(vd) && status == 0) { 1863 size_t msglen, msgsize; 1864 vio_msg_t *vio_msg; 1865 1866 1867 /* 1868 * Receive and process a message 1869 */ 1870 vd_reset_if_needed(vd); /* can change vd->max_msglen */ 1871 msgsize = vd->max_msglen; /* stable copy for alloc/free */ 1872 msglen = msgsize; /* actual length after recv_msg() */ 1873 vio_msg = kmem_alloc(msgsize, KM_SLEEP); 1874 if ((status = recv_msg(vd->ldc_handle, vio_msg, &msglen)) == 1875 0) { 1876 if (vd_process_msg(vd, vio_msg, msglen, msgsize) == 1877 EINPROGRESS) 1878 continue; /* handler will free msg */ 1879 } else if (status != ENOMSG) { 1880 /* Probably an LDC failure; arrange to reset it */ 1881 vd_need_reset(vd, B_TRUE); 1882 } 1883 kmem_free(vio_msg, msgsize); 1884 } 1885 PR2("Task finished"); 1886 } 1887 1888 static uint_t 1889 vd_handle_ldc_events(uint64_t event, caddr_t arg) 1890 { 1891 vd_t *vd = (vd_t *)(void *)arg; 1892 1893 1894 ASSERT(vd != NULL); 1895 1896 if (!vd_enabled(vd)) 1897 return (LDC_SUCCESS); 1898 1899 if (event & LDC_EVT_RESET) { 1900 PR0("LDC channel was reset"); 1901 return (LDC_SUCCESS); 1902 } 1903 1904 if (event & LDC_EVT_UP) { 1905 PR0("LDC channel came up: Resetting client connection state"); 1906 vd_need_reset(vd, B_FALSE); 1907 } 1908 1909 if (event & LDC_EVT_READ) { 1910 int status; 1911 1912 PR1("New data available"); 1913 /* Queue a task to receive the new data */ 1914 status = ddi_taskq_dispatch(vd->startq, vd_recv_msg, vd, 1915 DDI_SLEEP); 1916 /* ddi_taskq_dispatch(9f) guarantees success with DDI_SLEEP */ 1917 ASSERT(status == DDI_SUCCESS); 1918 } 1919 1920 return (LDC_SUCCESS); 1921 } 1922 1923 static uint_t 1924 vds_check_for_vd(mod_hash_key_t key, mod_hash_val_t *val, void *arg) 1925 { 1926 _NOTE(ARGUNUSED(key, val)) 1927 (*((uint_t *)arg))++; 1928 return (MH_WALK_TERMINATE); 1929 } 1930 1931 1932 static int 1933 vds_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 1934 { 1935 uint_t vd_present = 0; 1936 minor_t instance; 1937 vds_t *vds; 1938 1939 1940 switch (cmd) { 1941 case DDI_DETACH: 1942 /* the real work happens below */ 1943 break; 1944 case DDI_SUSPEND: 1945 PR0("No action required for DDI_SUSPEND"); 1946 return (DDI_SUCCESS); 1947 default: 1948 PRN("Unrecognized \"cmd\""); 1949 return (DDI_FAILURE); 1950 } 1951 1952 ASSERT(cmd == DDI_DETACH); 1953 instance = ddi_get_instance(dip); 1954 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 1955 PRN("Could not get state for instance %u", instance); 1956 ddi_soft_state_free(vds_state, instance); 1957 return (DDI_FAILURE); 1958 } 1959 1960 /* Do no detach when serving any vdisks */ 1961 mod_hash_walk(vds->vd_table, vds_check_for_vd, &vd_present); 1962 if (vd_present) { 1963 PR0("Not detaching because serving vdisks"); 1964 return (DDI_FAILURE); 1965 } 1966 1967 PR0("Detaching"); 1968 if (vds->initialized & VDS_MDEG) 1969 (void) mdeg_unregister(vds->mdeg); 1970 if (vds->initialized & VDS_LDI) 1971 (void) ldi_ident_release(vds->ldi_ident); 1972 mod_hash_destroy_hash(vds->vd_table); 1973 ddi_soft_state_free(vds_state, instance); 1974 return (DDI_SUCCESS); 1975 } 1976 1977 static boolean_t 1978 is_pseudo_device(dev_info_t *dip) 1979 { 1980 dev_info_t *parent, *root = ddi_root_node(); 1981 1982 1983 for (parent = ddi_get_parent(dip); (parent != NULL) && (parent != root); 1984 parent = ddi_get_parent(parent)) { 1985 if (strcmp(ddi_get_name(parent), DEVI_PSEUDO_NEXNAME) == 0) 1986 return (B_TRUE); 1987 } 1988 1989 return (B_FALSE); 1990 } 1991 1992 static int 1993 vd_setup_full_disk(vd_t *vd) 1994 { 1995 int rval, status; 1996 major_t major = getmajor(vd->dev[0]); 1997 minor_t minor = getminor(vd->dev[0]) - VD_ENTIRE_DISK_SLICE; 1998 struct dk_minfo dk_minfo; 1999 2000 /* 2001 * At this point, vdisk_size is set to the size of partition 2 but 2002 * this does not represent the size of the disk because partition 2 2003 * may not cover the entire disk and its size does not include reserved 2004 * blocks. So we update vdisk_size to be the size of the entire disk. 2005 */ 2006 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCGMEDIAINFO, 2007 (intptr_t)&dk_minfo, (vd_open_flags | FKIOCTL), 2008 kcred, &rval)) != 0) { 2009 PRN("ldi_ioctl(DKIOCGMEDIAINFO) returned errno %d", 2010 status); 2011 return (status); 2012 } 2013 vd->vdisk_size = dk_minfo.dki_capacity; 2014 2015 /* Set full-disk parameters */ 2016 vd->vdisk_type = VD_DISK_TYPE_DISK; 2017 vd->nslices = (sizeof (vd->dev))/(sizeof (vd->dev[0])); 2018 2019 /* Move dev number and LDI handle to entire-disk-slice array elements */ 2020 vd->dev[VD_ENTIRE_DISK_SLICE] = vd->dev[0]; 2021 vd->dev[0] = 0; 2022 vd->ldi_handle[VD_ENTIRE_DISK_SLICE] = vd->ldi_handle[0]; 2023 vd->ldi_handle[0] = NULL; 2024 2025 /* Initialize device numbers for remaining slices and open them */ 2026 for (int slice = 0; slice < vd->nslices; slice++) { 2027 /* 2028 * Skip the entire-disk slice, as it's already open and its 2029 * device known 2030 */ 2031 if (slice == VD_ENTIRE_DISK_SLICE) 2032 continue; 2033 ASSERT(vd->dev[slice] == 0); 2034 ASSERT(vd->ldi_handle[slice] == NULL); 2035 2036 /* 2037 * Construct the device number for the current slice 2038 */ 2039 vd->dev[slice] = makedevice(major, (minor + slice)); 2040 2041 /* 2042 * At least some underlying drivers refuse to open 2043 * devices for (currently) zero-length slices, so skip 2044 * them for now 2045 */ 2046 if (vd->vtoc.v_part[slice].p_size == 0) { 2047 PR0("Skipping zero-length slice %u", slice); 2048 continue; 2049 } 2050 2051 /* 2052 * Open all non-empty slices of the disk to serve them to the 2053 * client. Slices are opened exclusively to prevent other 2054 * threads or processes in the service domain from performing 2055 * I/O to slices being accessed by a client. Failure to open 2056 * a slice results in vds not serving this disk, as the client 2057 * could attempt (and should be able) to access any non-empty 2058 * slice immediately. Any slices successfully opened before a 2059 * failure will get closed by vds_destroy_vd() as a result of 2060 * the error returned by this function. 2061 */ 2062 PR0("Opening device major %u, minor %u = slice %u", 2063 major, minor, slice); 2064 if ((status = ldi_open_by_dev(&vd->dev[slice], OTYP_BLK, 2065 vd_open_flags, kcred, &vd->ldi_handle[slice], 2066 vd->vds->ldi_ident)) != 0) { 2067 PRN("ldi_open_by_dev() returned errno %d " 2068 "for slice %u", status, slice); 2069 /* vds_destroy_vd() will close any open slices */ 2070 return (status); 2071 } 2072 } 2073 2074 return (0); 2075 } 2076 2077 static int 2078 vd_setup_partition_efi(vd_t *vd) 2079 { 2080 efi_gpt_t *gpt; 2081 efi_gpe_t *gpe; 2082 struct uuid uuid = EFI_RESERVED; 2083 uint32_t crc; 2084 int length; 2085 2086 length = sizeof (efi_gpt_t) + sizeof (efi_gpe_t); 2087 2088 gpt = kmem_zalloc(length, KM_SLEEP); 2089 gpe = (efi_gpe_t *)(gpt + 1); 2090 2091 gpt->efi_gpt_Signature = LE_64(EFI_SIGNATURE); 2092 gpt->efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); 2093 gpt->efi_gpt_HeaderSize = LE_32(sizeof (efi_gpt_t)); 2094 gpt->efi_gpt_FirstUsableLBA = LE_64(0ULL); 2095 gpt->efi_gpt_LastUsableLBA = LE_64(vd->vdisk_size - 1); 2096 gpt->efi_gpt_NumberOfPartitionEntries = LE_32(1); 2097 gpt->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (efi_gpe_t)); 2098 2099 UUID_LE_CONVERT(gpe->efi_gpe_PartitionTypeGUID, uuid); 2100 gpe->efi_gpe_StartingLBA = gpt->efi_gpt_FirstUsableLBA; 2101 gpe->efi_gpe_EndingLBA = gpt->efi_gpt_LastUsableLBA; 2102 2103 CRC32(crc, gpe, sizeof (efi_gpe_t), -1U, crc32_table); 2104 gpt->efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); 2105 2106 CRC32(crc, gpt, sizeof (efi_gpt_t), -1U, crc32_table); 2107 gpt->efi_gpt_HeaderCRC32 = LE_32(~crc); 2108 2109 vd->dk_efi.dki_lba = 0; 2110 vd->dk_efi.dki_length = length; 2111 vd->dk_efi.dki_data = gpt; 2112 2113 return (0); 2114 } 2115 2116 static int 2117 vd_setup_vd(char *device_path, vd_t *vd) 2118 { 2119 int rval, status; 2120 dev_info_t *dip; 2121 struct dk_cinfo dk_cinfo; 2122 2123 /* 2124 * We need to open with FNDELAY so that opening an empty partition 2125 * does not fail. 2126 */ 2127 if ((status = ldi_open_by_name(device_path, vd_open_flags | FNDELAY, 2128 kcred, &vd->ldi_handle[0], vd->vds->ldi_ident)) != 0) { 2129 PRN("ldi_open_by_name(%s) = errno %d", device_path, status); 2130 return (status); 2131 } 2132 2133 /* 2134 * nslices must be updated now so that vds_destroy_vd() will close 2135 * the slice we have just opened in case of an error. 2136 */ 2137 vd->nslices = 1; 2138 2139 /* Get device number and size of backing device */ 2140 if ((status = ldi_get_dev(vd->ldi_handle[0], &vd->dev[0])) != 0) { 2141 PRN("ldi_get_dev() returned errno %d for %s", 2142 status, device_path); 2143 return (status); 2144 } 2145 if (ldi_get_size(vd->ldi_handle[0], &vd->vdisk_size) != DDI_SUCCESS) { 2146 PRN("ldi_get_size() failed for %s", device_path); 2147 return (EIO); 2148 } 2149 vd->vdisk_size = lbtodb(vd->vdisk_size); /* convert to blocks */ 2150 2151 /* Verify backing device supports dk_cinfo, dk_geom, and vtoc */ 2152 if ((status = ldi_ioctl(vd->ldi_handle[0], DKIOCINFO, 2153 (intptr_t)&dk_cinfo, (vd_open_flags | FKIOCTL), kcred, 2154 &rval)) != 0) { 2155 PRN("ldi_ioctl(DKIOCINFO) returned errno %d for %s", 2156 status, device_path); 2157 return (status); 2158 } 2159 if (dk_cinfo.dki_partition >= V_NUMPAR) { 2160 PRN("slice %u >= maximum slice %u for %s", 2161 dk_cinfo.dki_partition, V_NUMPAR, device_path); 2162 return (EIO); 2163 } 2164 2165 status = vd_read_vtoc(vd->ldi_handle[0], &vd->vtoc, &vd->vdisk_label); 2166 2167 if (status != 0) { 2168 PRN("vd_read_vtoc returned errno %d for %s", 2169 status, device_path); 2170 return (status); 2171 } 2172 2173 if (vd->vdisk_label == VD_DISK_LABEL_VTOC && 2174 (status = ldi_ioctl(vd->ldi_handle[0], DKIOCGGEOM, 2175 (intptr_t)&vd->dk_geom, (vd_open_flags | FKIOCTL), 2176 kcred, &rval)) != 0) { 2177 PRN("ldi_ioctl(DKIOCGEOM) returned errno %d for %s", 2178 status, device_path); 2179 return (status); 2180 } 2181 2182 /* Store the device's max transfer size for return to the client */ 2183 vd->max_xfer_sz = dk_cinfo.dki_maxtransfer; 2184 2185 2186 /* Determine if backing device is a pseudo device */ 2187 if ((dip = ddi_hold_devi_by_instance(getmajor(vd->dev[0]), 2188 dev_to_instance(vd->dev[0]), 0)) == NULL) { 2189 PRN("%s is no longer accessible", device_path); 2190 return (EIO); 2191 } 2192 vd->pseudo = is_pseudo_device(dip); 2193 ddi_release_devi(dip); 2194 if (vd->pseudo) { 2195 vd->vdisk_type = VD_DISK_TYPE_SLICE; 2196 vd->nslices = 1; 2197 return (0); /* ...and we're done */ 2198 } 2199 2200 2201 /* If slice is entire-disk slice, initialize for full disk */ 2202 if (dk_cinfo.dki_partition == VD_ENTIRE_DISK_SLICE) 2203 return (vd_setup_full_disk(vd)); 2204 2205 2206 /* Otherwise, we have a non-entire slice of a device */ 2207 vd->vdisk_type = VD_DISK_TYPE_SLICE; 2208 vd->nslices = 1; 2209 2210 if (vd->vdisk_label == VD_DISK_LABEL_EFI) { 2211 status = vd_setup_partition_efi(vd); 2212 return (status); 2213 } 2214 2215 /* Initialize dk_geom structure for single-slice device */ 2216 if (vd->dk_geom.dkg_nsect == 0) { 2217 PRN("%s geometry claims 0 sectors per track", device_path); 2218 return (EIO); 2219 } 2220 if (vd->dk_geom.dkg_nhead == 0) { 2221 PRN("%s geometry claims 0 heads", device_path); 2222 return (EIO); 2223 } 2224 vd->dk_geom.dkg_ncyl = 2225 vd->vdisk_size/vd->dk_geom.dkg_nsect/vd->dk_geom.dkg_nhead; 2226 vd->dk_geom.dkg_acyl = 0; 2227 vd->dk_geom.dkg_pcyl = vd->dk_geom.dkg_ncyl + vd->dk_geom.dkg_acyl; 2228 2229 2230 /* Initialize vtoc structure for single-slice device */ 2231 bcopy(VD_VOLUME_NAME, vd->vtoc.v_volume, 2232 MIN(sizeof (VD_VOLUME_NAME), sizeof (vd->vtoc.v_volume))); 2233 bzero(vd->vtoc.v_part, sizeof (vd->vtoc.v_part)); 2234 vd->vtoc.v_nparts = 1; 2235 vd->vtoc.v_part[0].p_tag = V_UNASSIGNED; 2236 vd->vtoc.v_part[0].p_flag = 0; 2237 vd->vtoc.v_part[0].p_start = 0; 2238 vd->vtoc.v_part[0].p_size = vd->vdisk_size; 2239 bcopy(VD_ASCIILABEL, vd->vtoc.v_asciilabel, 2240 MIN(sizeof (VD_ASCIILABEL), sizeof (vd->vtoc.v_asciilabel))); 2241 2242 2243 return (0); 2244 } 2245 2246 static int 2247 vds_do_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id, 2248 vd_t **vdp) 2249 { 2250 char tq_name[TASKQ_NAMELEN]; 2251 int status; 2252 ddi_iblock_cookie_t iblock = NULL; 2253 ldc_attr_t ldc_attr; 2254 vd_t *vd; 2255 2256 2257 ASSERT(vds != NULL); 2258 ASSERT(device_path != NULL); 2259 ASSERT(vdp != NULL); 2260 PR0("Adding vdisk for %s", device_path); 2261 2262 if ((vd = kmem_zalloc(sizeof (*vd), KM_NOSLEEP)) == NULL) { 2263 PRN("No memory for virtual disk"); 2264 return (EAGAIN); 2265 } 2266 *vdp = vd; /* assign here so vds_destroy_vd() can cleanup later */ 2267 vd->vds = vds; 2268 2269 2270 /* Open vdisk and initialize parameters */ 2271 if ((status = vd_setup_vd(device_path, vd)) != 0) 2272 return (status); 2273 ASSERT(vd->nslices > 0 && vd->nslices <= V_NUMPAR); 2274 PR0("vdisk_type = %s, pseudo = %s, nslices = %u", 2275 ((vd->vdisk_type == VD_DISK_TYPE_DISK) ? "disk" : "slice"), 2276 (vd->pseudo ? "yes" : "no"), vd->nslices); 2277 2278 2279 /* Initialize locking */ 2280 if (ddi_get_soft_iblock_cookie(vds->dip, DDI_SOFTINT_MED, 2281 &iblock) != DDI_SUCCESS) { 2282 PRN("Could not get iblock cookie."); 2283 return (EIO); 2284 } 2285 2286 mutex_init(&vd->lock, NULL, MUTEX_DRIVER, iblock); 2287 vd->initialized |= VD_LOCKING; 2288 2289 2290 /* Create start and completion task queues for the vdisk */ 2291 (void) snprintf(tq_name, sizeof (tq_name), "vd_startq%lu", id); 2292 PR1("tq_name = %s", tq_name); 2293 if ((vd->startq = ddi_taskq_create(vds->dip, tq_name, 1, 2294 TASKQ_DEFAULTPRI, 0)) == NULL) { 2295 PRN("Could not create task queue"); 2296 return (EIO); 2297 } 2298 (void) snprintf(tq_name, sizeof (tq_name), "vd_completionq%lu", id); 2299 PR1("tq_name = %s", tq_name); 2300 if ((vd->completionq = ddi_taskq_create(vds->dip, tq_name, 1, 2301 TASKQ_DEFAULTPRI, 0)) == NULL) { 2302 PRN("Could not create task queue"); 2303 return (EIO); 2304 } 2305 vd->enabled = 1; /* before callback can dispatch to startq */ 2306 2307 2308 /* Bring up LDC */ 2309 ldc_attr.devclass = LDC_DEV_BLK_SVC; 2310 ldc_attr.instance = ddi_get_instance(vds->dip); 2311 ldc_attr.mode = LDC_MODE_UNRELIABLE; 2312 ldc_attr.mtu = VD_LDC_MTU; 2313 if ((status = ldc_init(ldc_id, &ldc_attr, &vd->ldc_handle)) != 0) { 2314 PRN("ldc_init(%lu) = errno %d", ldc_id, status); 2315 return (status); 2316 } 2317 vd->initialized |= VD_LDC; 2318 2319 if ((status = ldc_reg_callback(vd->ldc_handle, vd_handle_ldc_events, 2320 (caddr_t)vd)) != 0) { 2321 PRN("ldc_reg_callback() returned errno %d", status); 2322 return (status); 2323 } 2324 2325 if ((status = ldc_open(vd->ldc_handle)) != 0) { 2326 PRN("ldc_open() returned errno %d", status); 2327 return (status); 2328 } 2329 2330 /* Allocate the inband task memory handle */ 2331 status = ldc_mem_alloc_handle(vd->ldc_handle, &(vd->inband_task.mhdl)); 2332 if (status) { 2333 PRN("ldc_mem_alloc_handle() returned err %d ", status); 2334 return (ENXIO); 2335 } 2336 2337 /* Add the successfully-initialized vdisk to the server's table */ 2338 if (mod_hash_insert(vds->vd_table, (mod_hash_key_t)id, vd) != 0) { 2339 PRN("Error adding vdisk ID %lu to table", id); 2340 return (EIO); 2341 } 2342 2343 return (0); 2344 } 2345 2346 /* 2347 * Destroy the state associated with a virtual disk 2348 */ 2349 static void 2350 vds_destroy_vd(void *arg) 2351 { 2352 vd_t *vd = (vd_t *)arg; 2353 2354 2355 if (vd == NULL) 2356 return; 2357 2358 PR0("Destroying vdisk state"); 2359 2360 if (vd->dk_efi.dki_data != NULL) 2361 kmem_free(vd->dk_efi.dki_data, vd->dk_efi.dki_length); 2362 2363 /* Disable queuing requests for the vdisk */ 2364 if (vd->initialized & VD_LOCKING) { 2365 mutex_enter(&vd->lock); 2366 vd->enabled = 0; 2367 mutex_exit(&vd->lock); 2368 } 2369 2370 /* Drain and destroy start queue (*before* destroying completionq) */ 2371 if (vd->startq != NULL) 2372 ddi_taskq_destroy(vd->startq); /* waits for queued tasks */ 2373 2374 /* Drain and destroy completion queue (*before* shutting down LDC) */ 2375 if (vd->completionq != NULL) 2376 ddi_taskq_destroy(vd->completionq); /* waits for tasks */ 2377 2378 if (vd->dring_task != NULL) { 2379 ASSERT(vd->dring_len != 0); 2380 /* Free all dring_task memory handles */ 2381 for (int i = 0; i < vd->dring_len; i++) 2382 (void) ldc_mem_free_handle(vd->dring_task[i].mhdl); 2383 kmem_free(vd->dring_task, 2384 (sizeof (*vd->dring_task)) * vd->dring_len); 2385 } 2386 2387 /* Free the inband task memory handle */ 2388 (void) ldc_mem_free_handle(vd->inband_task.mhdl); 2389 2390 /* Shut down LDC */ 2391 if (vd->initialized & VD_LDC) { 2392 if (vd->initialized & VD_DRING) 2393 (void) ldc_mem_dring_unmap(vd->dring_handle); 2394 (void) ldc_unreg_callback(vd->ldc_handle); 2395 (void) ldc_close(vd->ldc_handle); 2396 (void) ldc_fini(vd->ldc_handle); 2397 } 2398 2399 /* Close any open backing-device slices */ 2400 for (uint_t slice = 0; slice < vd->nslices; slice++) { 2401 if (vd->ldi_handle[slice] != NULL) { 2402 PR0("Closing slice %u", slice); 2403 (void) ldi_close(vd->ldi_handle[slice], 2404 vd_open_flags | FNDELAY, kcred); 2405 } 2406 } 2407 2408 /* Free lock */ 2409 if (vd->initialized & VD_LOCKING) 2410 mutex_destroy(&vd->lock); 2411 2412 /* Finally, free the vdisk structure itself */ 2413 kmem_free(vd, sizeof (*vd)); 2414 } 2415 2416 static int 2417 vds_init_vd(vds_t *vds, uint64_t id, char *device_path, uint64_t ldc_id) 2418 { 2419 int status; 2420 vd_t *vd = NULL; 2421 2422 2423 #ifdef lint 2424 (void) vd; 2425 #endif /* lint */ 2426 2427 if ((status = vds_do_init_vd(vds, id, device_path, ldc_id, &vd)) != 0) 2428 vds_destroy_vd(vd); 2429 2430 return (status); 2431 } 2432 2433 static int 2434 vds_do_get_ldc_id(md_t *md, mde_cookie_t vd_node, mde_cookie_t *channel, 2435 uint64_t *ldc_id) 2436 { 2437 int num_channels; 2438 2439 2440 /* Look for channel endpoint child(ren) of the vdisk MD node */ 2441 if ((num_channels = md_scan_dag(md, vd_node, 2442 md_find_name(md, VD_CHANNEL_ENDPOINT), 2443 md_find_name(md, "fwd"), channel)) <= 0) { 2444 PRN("No \"%s\" found for virtual disk", VD_CHANNEL_ENDPOINT); 2445 return (-1); 2446 } 2447 2448 /* Get the "id" value for the first channel endpoint node */ 2449 if (md_get_prop_val(md, channel[0], VD_ID_PROP, ldc_id) != 0) { 2450 PRN("No \"%s\" property found for \"%s\" of vdisk", 2451 VD_ID_PROP, VD_CHANNEL_ENDPOINT); 2452 return (-1); 2453 } 2454 2455 if (num_channels > 1) { 2456 PRN("Using ID of first of multiple channels for this vdisk"); 2457 } 2458 2459 return (0); 2460 } 2461 2462 static int 2463 vds_get_ldc_id(md_t *md, mde_cookie_t vd_node, uint64_t *ldc_id) 2464 { 2465 int num_nodes, status; 2466 size_t size; 2467 mde_cookie_t *channel; 2468 2469 2470 if ((num_nodes = md_node_count(md)) <= 0) { 2471 PRN("Invalid node count in Machine Description subtree"); 2472 return (-1); 2473 } 2474 size = num_nodes*(sizeof (*channel)); 2475 channel = kmem_zalloc(size, KM_SLEEP); 2476 status = vds_do_get_ldc_id(md, vd_node, channel, ldc_id); 2477 kmem_free(channel, size); 2478 2479 return (status); 2480 } 2481 2482 static void 2483 vds_add_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 2484 { 2485 char *device_path = NULL; 2486 uint64_t id = 0, ldc_id = 0; 2487 2488 2489 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 2490 PRN("Error getting vdisk \"%s\"", VD_ID_PROP); 2491 return; 2492 } 2493 PR0("Adding vdisk ID %lu", id); 2494 if (md_get_prop_str(md, vd_node, VD_BLOCK_DEVICE_PROP, 2495 &device_path) != 0) { 2496 PRN("Error getting vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 2497 return; 2498 } 2499 2500 if (vds_get_ldc_id(md, vd_node, &ldc_id) != 0) { 2501 PRN("Error getting LDC ID for vdisk %lu", id); 2502 return; 2503 } 2504 2505 if (vds_init_vd(vds, id, device_path, ldc_id) != 0) { 2506 PRN("Failed to add vdisk ID %lu", id); 2507 return; 2508 } 2509 } 2510 2511 static void 2512 vds_remove_vd(vds_t *vds, md_t *md, mde_cookie_t vd_node) 2513 { 2514 uint64_t id = 0; 2515 2516 2517 if (md_get_prop_val(md, vd_node, VD_ID_PROP, &id) != 0) { 2518 PRN("Unable to get \"%s\" property from vdisk's MD node", 2519 VD_ID_PROP); 2520 return; 2521 } 2522 PR0("Removing vdisk ID %lu", id); 2523 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)id) != 0) 2524 PRN("No vdisk entry found for vdisk ID %lu", id); 2525 } 2526 2527 static void 2528 vds_change_vd(vds_t *vds, md_t *prev_md, mde_cookie_t prev_vd_node, 2529 md_t *curr_md, mde_cookie_t curr_vd_node) 2530 { 2531 char *curr_dev, *prev_dev; 2532 uint64_t curr_id = 0, curr_ldc_id = 0; 2533 uint64_t prev_id = 0, prev_ldc_id = 0; 2534 size_t len; 2535 2536 2537 /* Validate that vdisk ID has not changed */ 2538 if (md_get_prop_val(prev_md, prev_vd_node, VD_ID_PROP, &prev_id) != 0) { 2539 PRN("Error getting previous vdisk \"%s\" property", 2540 VD_ID_PROP); 2541 return; 2542 } 2543 if (md_get_prop_val(curr_md, curr_vd_node, VD_ID_PROP, &curr_id) != 0) { 2544 PRN("Error getting current vdisk \"%s\" property", VD_ID_PROP); 2545 return; 2546 } 2547 if (curr_id != prev_id) { 2548 PRN("Not changing vdisk: ID changed from %lu to %lu", 2549 prev_id, curr_id); 2550 return; 2551 } 2552 2553 /* Validate that LDC ID has not changed */ 2554 if (vds_get_ldc_id(prev_md, prev_vd_node, &prev_ldc_id) != 0) { 2555 PRN("Error getting LDC ID for vdisk %lu", prev_id); 2556 return; 2557 } 2558 2559 if (vds_get_ldc_id(curr_md, curr_vd_node, &curr_ldc_id) != 0) { 2560 PRN("Error getting LDC ID for vdisk %lu", curr_id); 2561 return; 2562 } 2563 if (curr_ldc_id != prev_ldc_id) { 2564 _NOTE(NOTREACHED); /* lint is confused */ 2565 PRN("Not changing vdisk: " 2566 "LDC ID changed from %lu to %lu", prev_ldc_id, curr_ldc_id); 2567 return; 2568 } 2569 2570 /* Determine whether device path has changed */ 2571 if (md_get_prop_str(prev_md, prev_vd_node, VD_BLOCK_DEVICE_PROP, 2572 &prev_dev) != 0) { 2573 PRN("Error getting previous vdisk \"%s\"", 2574 VD_BLOCK_DEVICE_PROP); 2575 return; 2576 } 2577 if (md_get_prop_str(curr_md, curr_vd_node, VD_BLOCK_DEVICE_PROP, 2578 &curr_dev) != 0) { 2579 PRN("Error getting current vdisk \"%s\"", VD_BLOCK_DEVICE_PROP); 2580 return; 2581 } 2582 if (((len = strlen(curr_dev)) == strlen(prev_dev)) && 2583 (strncmp(curr_dev, prev_dev, len) == 0)) 2584 return; /* no relevant (supported) change */ 2585 2586 PR0("Changing vdisk ID %lu", prev_id); 2587 /* Remove old state, which will close vdisk and reset */ 2588 if (mod_hash_destroy(vds->vd_table, (mod_hash_key_t)prev_id) != 0) 2589 PRN("No entry found for vdisk ID %lu", prev_id); 2590 /* Re-initialize vdisk with new state */ 2591 if (vds_init_vd(vds, curr_id, curr_dev, curr_ldc_id) != 0) { 2592 PRN("Failed to change vdisk ID %lu", curr_id); 2593 return; 2594 } 2595 } 2596 2597 static int 2598 vds_process_md(void *arg, mdeg_result_t *md) 2599 { 2600 int i; 2601 vds_t *vds = arg; 2602 2603 2604 if (md == NULL) 2605 return (MDEG_FAILURE); 2606 ASSERT(vds != NULL); 2607 2608 for (i = 0; i < md->removed.nelem; i++) 2609 vds_remove_vd(vds, md->removed.mdp, md->removed.mdep[i]); 2610 for (i = 0; i < md->match_curr.nelem; i++) 2611 vds_change_vd(vds, md->match_prev.mdp, md->match_prev.mdep[i], 2612 md->match_curr.mdp, md->match_curr.mdep[i]); 2613 for (i = 0; i < md->added.nelem; i++) 2614 vds_add_vd(vds, md->added.mdp, md->added.mdep[i]); 2615 2616 return (MDEG_SUCCESS); 2617 } 2618 2619 static int 2620 vds_do_attach(dev_info_t *dip) 2621 { 2622 static char reg_prop[] = "reg"; /* devinfo ID prop */ 2623 2624 /* MDEG specification for a (particular) vds node */ 2625 static mdeg_prop_spec_t vds_prop_spec[] = { 2626 {MDET_PROP_STR, "name", {VDS_NAME}}, 2627 {MDET_PROP_VAL, "cfg-handle", {0}}, 2628 {MDET_LIST_END, NULL, {0}}}; 2629 static mdeg_node_spec_t vds_spec = {"virtual-device", vds_prop_spec}; 2630 2631 /* MDEG specification for matching a vd node */ 2632 static md_prop_match_t vd_prop_spec[] = { 2633 {MDET_PROP_VAL, VD_ID_PROP}, 2634 {MDET_LIST_END, NULL}}; 2635 static mdeg_node_match_t vd_spec = {"virtual-device-port", 2636 vd_prop_spec}; 2637 2638 int status; 2639 uint64_t cfg_handle; 2640 minor_t instance = ddi_get_instance(dip); 2641 vds_t *vds; 2642 2643 2644 /* 2645 * The "cfg-handle" property of a vds node in an MD contains the MD's 2646 * notion of "instance", or unique identifier, for that node; OBP 2647 * stores the value of the "cfg-handle" MD property as the value of 2648 * the "reg" property on the node in the device tree it builds from 2649 * the MD and passes to Solaris. Thus, we look up the devinfo node's 2650 * "reg" property value to uniquely identify this device instance when 2651 * registering with the MD event-generation framework. If the "reg" 2652 * property cannot be found, the device tree state is presumably so 2653 * broken that there is no point in continuing. 2654 */ 2655 if (!ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, reg_prop)) { 2656 PRN("vds \"%s\" property does not exist", reg_prop); 2657 return (DDI_FAILURE); 2658 } 2659 2660 /* Get the MD instance for later MDEG registration */ 2661 cfg_handle = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 2662 reg_prop, -1); 2663 2664 if (ddi_soft_state_zalloc(vds_state, instance) != DDI_SUCCESS) { 2665 PRN("Could not allocate state for instance %u", instance); 2666 return (DDI_FAILURE); 2667 } 2668 2669 if ((vds = ddi_get_soft_state(vds_state, instance)) == NULL) { 2670 PRN("Could not get state for instance %u", instance); 2671 ddi_soft_state_free(vds_state, instance); 2672 return (DDI_FAILURE); 2673 } 2674 2675 2676 vds->dip = dip; 2677 vds->vd_table = mod_hash_create_ptrhash("vds_vd_table", VDS_NCHAINS, 2678 vds_destroy_vd, 2679 sizeof (void *)); 2680 ASSERT(vds->vd_table != NULL); 2681 2682 if ((status = ldi_ident_from_dip(dip, &vds->ldi_ident)) != 0) { 2683 PRN("ldi_ident_from_dip() returned errno %d", status); 2684 return (DDI_FAILURE); 2685 } 2686 vds->initialized |= VDS_LDI; 2687 2688 /* Register for MD updates */ 2689 vds_prop_spec[1].ps_val = cfg_handle; 2690 if (mdeg_register(&vds_spec, &vd_spec, vds_process_md, vds, 2691 &vds->mdeg) != MDEG_SUCCESS) { 2692 PRN("Unable to register for MD updates"); 2693 return (DDI_FAILURE); 2694 } 2695 vds->initialized |= VDS_MDEG; 2696 2697 /* Prevent auto-detaching so driver is available whenever MD changes */ 2698 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, DDI_NO_AUTODETACH, 1) != 2699 DDI_PROP_SUCCESS) { 2700 PRN("failed to set \"%s\" property for instance %u", 2701 DDI_NO_AUTODETACH, instance); 2702 } 2703 2704 ddi_report_dev(dip); 2705 return (DDI_SUCCESS); 2706 } 2707 2708 static int 2709 vds_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 2710 { 2711 int status; 2712 2713 switch (cmd) { 2714 case DDI_ATTACH: 2715 PR0("Attaching"); 2716 if ((status = vds_do_attach(dip)) != DDI_SUCCESS) 2717 (void) vds_detach(dip, DDI_DETACH); 2718 return (status); 2719 case DDI_RESUME: 2720 PR0("No action required for DDI_RESUME"); 2721 return (DDI_SUCCESS); 2722 default: 2723 return (DDI_FAILURE); 2724 } 2725 } 2726 2727 static struct dev_ops vds_ops = { 2728 DEVO_REV, /* devo_rev */ 2729 0, /* devo_refcnt */ 2730 ddi_no_info, /* devo_getinfo */ 2731 nulldev, /* devo_identify */ 2732 nulldev, /* devo_probe */ 2733 vds_attach, /* devo_attach */ 2734 vds_detach, /* devo_detach */ 2735 nodev, /* devo_reset */ 2736 NULL, /* devo_cb_ops */ 2737 NULL, /* devo_bus_ops */ 2738 nulldev /* devo_power */ 2739 }; 2740 2741 static struct modldrv modldrv = { 2742 &mod_driverops, 2743 "virtual disk server v%I%", 2744 &vds_ops, 2745 }; 2746 2747 static struct modlinkage modlinkage = { 2748 MODREV_1, 2749 &modldrv, 2750 NULL 2751 }; 2752 2753 2754 int 2755 _init(void) 2756 { 2757 int i, status; 2758 2759 2760 if ((status = ddi_soft_state_init(&vds_state, sizeof (vds_t), 1)) != 0) 2761 return (status); 2762 if ((status = mod_install(&modlinkage)) != 0) { 2763 ddi_soft_state_fini(&vds_state); 2764 return (status); 2765 } 2766 2767 /* Fill in the bit-mask of server-supported operations */ 2768 for (i = 0; i < vds_noperations; i++) 2769 vds_operations |= 1 << (vds_operation[i].operation - 1); 2770 2771 return (0); 2772 } 2773 2774 int 2775 _info(struct modinfo *modinfop) 2776 { 2777 return (mod_info(&modlinkage, modinfop)); 2778 } 2779 2780 int 2781 _fini(void) 2782 { 2783 int status; 2784 2785 2786 if ((status = mod_remove(&modlinkage)) != 0) 2787 return (status); 2788 ddi_soft_state_fini(&vds_state); 2789 return (0); 2790 } 2791